
 
SAND REPORT 
 

SAND2004-0742 
Unlimited Release 
Printed March 2004 

 

 

Expected Losses, Insurability, and 
Benefits from Reducing Vulnerability to 
Attacks 

Rolf E. Carlson, Mark A. Turnquist, and Linda K. Nozick 
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of  

Energy under Contract DE-AC04-94AL85000. 
 
 
Approved for public release; further dissemination unlimited. 

 
 
 

 
 
 

 
 
 

 

 
 



 
 

Issued by Sandia National Laboratories, operated for the United States Department 

of Energy by Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of 

the United States Government.  Neither the United States Government, nor any 

agency thereof, nor any of their employees, nor any of their contractors, 

subcontractors, or their employees, make any warranty, express or implied, or assume 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represent that its use would 

not infringe privately owned rights. Reference herein to any specific commercial 

product, process, or service by trade name, trademark, manufacturer, or otherwise, 

does not necessarily constitute or imply its endorsement, recommendation, or favoring 

by the United States Government, any agency thereof, or any of their contractors or 

subcontractors.  The views and opinions expressed herein do not necessarily state or 

reflect those of the United States Government, any agency thereof, or any of their 

contractors. 

 

Printed in the United States of America. This report has been reproduced directly 

from the best available copy. 

 

Available to DOE and DOE contractors from 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN  37831 

 

Telephone: (865)576-8401 

Facsimile: (865)576-5728 

E-Mail: reports@adonis.osti.gov 

Online ordering:  http://www.doe.gov/bridge 

 

 

 

Available to the public from 

U.S. Department of Commerce 

National Technical Information Service 

5285 Port Royal Rd 

Springfield, VA  22161 

 

Telephone: (800)553-6847 

Facsimile: (703)605-6900 

E-Mail: orders@ntis.fedworld.gov 

Online order:  http://www.ntis.gov/ordering.htm 

 

 

 

 



SAND2004-0742 
Unlimited Release 

Printed March 2004  
 

Expected Losses, Insurability, and Benefits 
from Reducing Vulnerability to Attacks 

 
Rolf E. Carlson  

Advanced Information and Control Systems 
Sandia National Laboratories 

P.O. Box 5800  
Albuquerque, NM  87185-1351 

 
Mark A. Turnquist 
Cornell University 

Ithaca, NY   
 

Linda K. Nozick 
Cornell University 

Ithaca, NY   
 
 
 
 
 

Abstract 
A model of malicious attacks against an infrastructure system is developed that uses a 
network representation of the system structure together with a Hidden Markov Model of 
an attack at a node of that system and a Markov Decision Process model of attacker 
strategy across the system as a whole.  We use information systems as an illustration, but 
the analytic structure developed can also apply to attacks against physical facilities or 
other systems that provide services to customers.  This structure provides an explicit 
mechanism to evaluate expected losses from malicious attacks, and to evaluate changes 
in those losses that would result from system hardening.  Thus, we provide a basis for 
evaluating the benefits of system hardening.  The model also allows investigation of the 
potential for the purchase of an insurance contract to cover the potential losses when 
safeguards are breached and the system fails. 
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I. INTRODUCTION 
 
Interest is widespread in protection of infrastructure from malicious attack, and protection 
of computer and information systems is an important part of this overall concern.  Most 
available literature on information system security focuses on tactical questions—How 
can intruders be best detected?  What system changes can be implemented to reduce 
known vulnerabilities?  How can vulnerabilities in new software be identified and fixed 
before release?  These tactical questions are very important, but in this paper we focus on 
four questions at a more strategic level: 

1. For a given system, can we estimate the expected loss rate due to malicious 
attacks, as a function of some basic system characteristics and parameters? 

2. If so, can we estimate the probable benefit of various types of “system 
hardening” as a basis for cost-benefit evaluation of potential system 
modifications and/or investments? 

3. By putting uncertain losses from malicious attacks in an economic context, 
can we begin to understand the “insurability” of systems against such 
losses? 

4. From a managerial perspective, what can such analysis tell us about how 
safe is safe enough as organizations (both public and private) struggle with 
the question of how to allocate resources for system security? 

 
This paper provides insight on strategies that might be followed by a system owner to 
reduce expected losses from adversarial attacks.  By focusing on expected losses, we are 
also adopting a perspective that is consistent with the theory of insurance in the 
economics literature [1], and thus a secondary goal is to offer insights about insurability 
of systems against losses from deliberate attacks.  Being able to balance system 
hardening against other forms of protection, such as insurance, is important for a 
complete cost/benefit analysis.  Cost/benefit analyses of potential security upgrades are 
important for effective management of information systems and other types of 
infrastructure systems. 
 
Our application context in this paper is information systems [with a particular interest in 
supervisory control and data acquisition (SCADA) systems], but the general approach is 
likely to be useful for assessing losses from malicious attacks in other kinds of systems as 
well.  The basis for our analysis is a representation of the system of interest as a network 
of nodes and arcs.  Nodes represent system assets, and arcs represent opportunities for 
attackers to move within the system. 
 
Several previous authors have used graph-based methods to represent attackers or 
defenders in security analyses.  Phillips and Swiler [2] introduced the concept of an 
“attack graph” to represent sets of system states and paths for an attacker to pursue an 
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objective in disrupting an information system.  Dacier [3] created a related concept, 
termed a “privilege graph,” to represent varying levels of privileges attained by an 
intruder on different processors in a computer network.  Several subsequent papers (e.g., 
[4], [5], [6]) have extended these initial ideas. 
 
A number of authors have used Markov models to represent uncertainties in system state 
in the face of attacks, especially from viruses, worms, and Trojan horses (e.g., [7], [8]).  
Soh and Dillon [9] used a Markov representation as the basis for a model of intrusion 
detection.  This has been extended to more complex representations using Hidden 
Markov Models (HMM) that focus on intruder detection using indicators that indirectly 
reflect potential attacker activities (see, for example, [10], [11], [12]). 
 
Jha et al. [5] and Sheyner et al. [6] introduce the idea of using Markov Decision 
Processes (MDP) for situations in which the attack path is probabilistic.  We are also 
interested in using MDP tools for analyzing the strategy of system intruders; but our work 
is based on a different type of state representation for the system, and our objective is not 
to reflect detailed actions by either the attacker (often termed “atomic attacks”) or the 
defender. In Section III, we show how our work can be connected to intruder detection 
analyses, but our focus is not on intruder detection, per se, but on the strategic questions 
of loss rates, insurability, and evaluation of investments in system security. 
 
To address these questions, we first construct an HMM to represent an attack at a single 
node in a system.  Then we develop an aggregated representation of that single-node 
model for inclusion in an MDP model of attacker strategy within a network 
representation of the entire system.  Third, the MDP solution is used to compute expected 
losses from different classes of attackers, as a means of tying the analysis to the notion of 
“insurability.”  Finally, the sensitivity information from the MDP solution is used to 
indicate the parts of the system in which “hardening” against attacks may be most 
effective.  To our knowledge, this is the first effort to use HMMs and MDPs in this way 
to evaluate economic losses from malicious attacks in systems and to assess potential 
benefits of hardening measures. 
 
Section II offers a general system description and the notation used throughout the paper.  
In Section III, we describe the model for an attack at a single node in the system.  In 
Section IV, we then use a connected set of abstractions of the single-node models to 
create a MDP model for the attacker’s strategy across the system as a whole.  This 
network-level model forms the basis for expected loss calculations in Section V, and a 
discussion of insurability in Section VI.  The MDP also provides information on the 
relative sensitivity of expected losses to “hardening” of specific nodes, and we explore 
these implications in Section VII.  Conclusions and suggestions for further research are 
discussed in Section VIII.  



7 

 
II. SYSTEM DESCRIPTION 
 
A system, or target of evaluation (TOE), provides services to external users.  The system 
can be an information network, physical facility, or both.  Adversaries attack the system, 
seeking to degrade the services offered, and successful attacks result in economic loss for 
the system owner.  The owner of the TOE may or may not sell services in an open 
market, but we will assume that losses can be measured in monetary terms. 
 
In general, there may be several categories of attackers.  We will define a set C of 
categories.  Attackers in different categories may have different levels of skill and may 
pursue different strategies in attacking the system. 
 
The TOE is represented as a directed graph { }EVG ,=  with finite sets V of nodes and E  of 
edges.  We assume that there are real-valued functions θ c defined on V representing the 
loss incurred by the system owner if a particular node is successfully attacked (i.e., 
breached) by an attacker of category c ∈ C.  Any node v ∈ V for which 0)( >vcθ will be 
regarded as a system asset.  Nodes may represent levels of privilege on a given processor 
(e.g., admin privileges), access to certain protected files, or the ability to initiate actions 
on some processor.  The construct is intended to be quite general to allow application of 
the analysis tools developed here in different types of situations. 
 
Our primary attention is on a class of adversaries that is rational and well informed.  By 
“rational,” we mean that the adversaries make decisions by weighing risks and benefits, 
that they will follow a strategy that maximizes the expected loss they can inflict on the 
system, and that they will quit when the risks of detection outweigh the incremental 
expected loss they can inflict.  By “well informed,” we mean that the adversaries know 
the values of system assets (i.e., they know θc(v) for all nodes v ∈ V), so they can direct 
their attacks to do the most damage. 
 
The focus on adversaries who weigh risks and benefits of attacks in a rational way might 
be considered limiting, but this framework can actually account for quite a wide range of 
plausible behaviors.  One might argue, for example, that a terrorist does not consider the 
risk of detection, and focuses only on the expected losses that can be inflicted.  This is 
handled in a very straightforward way in the framework created here, by simply setting 
the cost of detection (as viewed by the attacker) to zero.  Another extension of this basic 
model is to consider a utility function for the attacker that may be nonlinear in expected 
costs.  This would allow representation of more general types of risk-prone or risk-averse 
behavior on the part of the attacker.  The basic model structure described here can also 
accommodate that extension in a straightforward way. 
 
Our focus on well-informed adversaries is useful because it leads to an estimate of 
expected losses that is likely to be an upper bound on losses from less well-informed 
attackers.  At the end of Section IV, we discuss an extension of the analysis to consider 
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adversaries who know less about the system they are attacking, and describe one way to 
accomplish that extension in a relatively easy way.  Further exploration of this topic is, 
however, an important area for additional work. 
 
The adversaries mount their initial attacks at entry points to the system, and if an attack at 
a particular node is successful, they can traverse edges from the successfully breached 
node to other nodes in the network that are connected to the one breached.  Traversing an 
edge entails a risk of detection.  An attacker who has successfully breached a node may 
also choose to quit and exit the system.  The adversary is assumed to make the decision 
that is most favorable to him/her. 
 
The owner has an objective to maintain the integrity of the system.  We interpret that 
objective as minimizing the expected losses incurred, but other representations of the 
owner’s objective might be equally valid.  Our focus on minimizing expected losses is 
consistent with the objectives of evaluating insurability of the system, but extension to 
consider other measures of system integrity is also very useful. 
 
Throughout the paper, we use a simple remote monitoring system (Figure 1) as an 
example to illustrate the calculations.  This example is built up in steps through the 
sections. 

 

                               
 

Figure 1.  An example network for monitoring the state of an infrastructure 
system.   

 
With the addition of communication channels back to the field, this depiction could 
represent a Command and Control (C2) system, or a portion of a Supervisory Control and 
Data Acquisition (SCADA) system in the electric power grid.  Potential unauthorized 
entry to the system is via nodes 1 and 2, and a variety of possible paths for an attacker 
present themselves as various nodes are breached.  The sensors are portrayed to suggest 
that there may be network elements that exist but are not included in the analysis. 
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III. ADVERSARY AND ATTACK CHARACTERIZATION AT A NODE 
 
An attack on a system node and the interaction between the attacker and the intrusion-
detection system is modeled using a hidden Markov model (HMM).  The general concept 
of such a model is represented in Figure 2.  The attacker’s actions (the lower portion of 
the diagram) are assumed to progress through a set of states as a Markov process.  
Occupancy of various states may result in emanations that are observable by the system 
operator (represented by the “signals” in Figure 2).  The system operator can define some 
subset of emanations that, if observed, will cause the user to be placed on a watch list for 
monitoring.  Some other set of emanations will cause the system to evict the user 
(correctly or incorrectly) under the premise that the user is an attacker.  If the attacker 
reaches a set of states that we call “breach states” without being evicted, we say that the 
node has been breached, and no further emanations will cause the system to evict the 
attacker at that node. 

 
The state space in the HMM is defined to encompass both the categories of attackers and 
the level of monitoring or concern that the system attaches to a user (potential attacker).  
Thus, for example, if we are representing two categories of attackers (nominally referred 
to as “weak” and “strong” attackers), the nodes representing the attack space are 
expanded into two layers, as shown in Figure 3.  Attackers may gain strength in the 
course of their attacks and make transitions from the “weak” layer to the “strong” layer.  
In addition, if we define a set M of monitoring levels, the set of layers expands further to 
reflect attackers in various categories being monitored at different levels.  A different 
HMM may be tailored for each different node in the system, allowing implicit 
characterization of the node, attack, attacker, and threat level. 
 
 
 
 
 

 

 

 

 

 

Figure 2.  A Hidden Markov Model characterizing an attack at a system node. 
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Figure 3.  Layered state representation to reflect multiple categories of attackers. 
 
 
We use a discrete-time, discrete-state HMM characterized by the following equations: 
 

n
T

n XAX =+1       (1) 
 

nn BXY =       (2) 
 
for transition steps n = 1, 2, …, ∞.  The state of the system (i.e., presence of the attacker 
in some node in the lower portion of Figure 2) is represented by the (column) probability 
vector, X.  The dynamics of the system are governed by (1), where A is a transition matrix 
(i.e., it satisfies the properties 0ija ≥  and 1=∑

j
ija .)  The states of the system are not 

observed directly.  The process Y is observed, which is a function of the state of the 
underlying Markov process, X.  Each column of B specifies a conditional probability 
distribution over the possible observations, given that the underlying (hidden) system is 
in a particular state. 
 
In intrusion-detection applications, HMMs are typically used as the basis for an 
estimation problem.  That is, given a set of observations, { }1 2, ,...Y Y , which may also 
include noise, it is desired to estimate the state of the Markov chain at some point in time. 
Often, this is cast as a “filtering” problem: given { }1 2, ,..., kY Y Y , estimate Xk, assuming 
that A and B are known matrices.  However, in many applications, it is assumed that A 
and B are unknown, and the problem may include estimating those matrices from the data 
as well as using the resulting estimates to estimate Xk.  This is termed adaptive 
estimation.  Several algorithms are available for constructing the estimates of A and B 
from sequences of observations (for example, see the discussion in [13]). 
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For our purposes, we assume that A and B are known (or have been estimated).  We want 
to use the estimated HMMs at various nodes as the basis for a network-level model of 
attacker strategy.  To do this, we will abstract the HMM at node v to a simpler 
representation, as shown in Figure 4, which reflects two categories of attackers, denoted 
as “weak” and “strong.”  An attacker in category c enters an “Attack v” state for that 
category.  The attacker continues to occupy that state until the attack is detected (and the 
attacker is evicted), or the attack is successful and transitions to a “Breach v” state 
associated with a category c'.  We adopt a convention that the attacker categories are 
ordered by increasing “strength” of the attacker, and we allow attackers to change 
categories (e.g., become “stronger”) through a successful attack on a node (i.e., c' ≥ c). 
The system can change its level of monitoring as a result of possible emanations from the 
attacker during the attack, and this change in monitoring level must be reflected in the 
transition probabilities shown in Figure 4.  The simplified representation of the HMM at 

a node is characterized by 

( )
2

3+CC

basic parameters – the transition probabilities pcc' (v) 
and dc(v) shown in Figure 4, representing successful attacks and detection (eviction), 
respectively.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 

 

Figure 4.  An aggregated abstraction of the HMM at a node. 
 

Attack - Strong

Attack - Weak

Breach - Strong

Breach - Weak

Evict

pss

pws

pww

ds
dw



12 

To make the abstraction in Figure 4 useful, we must be able to derive the values of pcc' (v) 
and dc(v) from the underlying A and B matrices of the HMM.  The attack states in Figure 
4 are transient states, and the breach states and eviction state are absorbing.  The 
transition probabilities pcc' (v) and dc(v) are specified so that the probabilities of 
absorption in the breach and evict states match those from the original HMM, and so that 
the expected number of transitions prior to absorption also matches the original HMM.  
To do this, we construct an augmented state space for the HMM by adding an eviction 
state.  The transition probabilities to the eviction state are given by the bij values from the 
B matrix corresponding to emanations that are specified to cause eviction.  Transition 
probabilities between levels of monitoring are also specified by bij values, for emanations 
i that correspond to causing increased monitoring.  The original transition probabilities 
(in the A matrix) are adjusted to account for the probability of eviction and/or change in 
monitoring level.  The resulting transition matrix for the augmented state space will be 
denoted as P. 
 
Figure 5 is an example of the augmented Markov model corresponding to Figure 2, 
where there are two categories of attackers (weak and strong, abbreviated to W and S) 
and two levels of monitoring by the system (which we may think of as “normal” and 
“high,” abbreviated as N and H).  The nodes (states) in the model are designated as 1SN, 
3WN, 4SH, etc., indicating the combination of operation, attacker category, and 
monitoring level. 
 
To be more formal about the expansion of the state space illustrated in Figure 5, if the 
original set of states (e.g., as shown in Figure 2) contains K states and we define |C| 
categories of attackers, the state vector X will contain K|C| states (e.g., as shown in the 
example in Figure 3).  The augmented state space, X', will then contain K|C||M| +1 states 
(as illustrated in Figure 5). 
 
We define a subset Ωv of the observation states in Y (at node v) such that if an observation 
is recorded in Ωv, the user is evicted from the system.  We will also define a subset ψv of 
those states that corresponds to the system increasing its monitoring level.  The sets Ωv 
and ψv reflect the security protocols in place in a given system.  Making these sets larger 
(especially Ωv)allows faster detection of attackers, but also causes more false alarms and 
can preclude legitimate users from performing necessary functions.  Making the sets 
smaller reduces the sensitivity of the detection system. 
 
The subset of states in X' denoting “breach” states (for the various combinations of 
attacker category and monitoring level) plus the “evict” state are absorbing.  Given the 
transition matrix P, we can group the absorbing states at the end of the list and partition P 
as follows: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

H
ZQ

P
0

      (3) 
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The submatrix Q represents transitions among the transient states, Z represents transitions 
from the transient states into the absorbing states, and H represents transitions within the 
set of absorbing states.  In applications of interest here, H is usually an identity matrix. 
 
 

 
Figure 5.  States and transitions for the expanded Markov model representing the 

network in Figure 2. 
 
The Fundamental Matrix ( ) 1−−=Φ QI  contains elements φij, interpreted as the expected 
number of visits to state j before absorption, given that the system started in state i (see, 
for example, [14]).  The chain, X', has |C||M| identifiable entry states (initiation of an 
attack by an attacker in category c∈C who is being monitored at level m∈M).  We will 
use )(ceΓ to denote the set of entry states in X' that are aggregated into the “attack” state 
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for category c in the reduced network shown in Figure 4.  In general, this will include 
entry states corresponding to different system monitoring levels.  We use )(cbΓ to denote 
the set of breach states in X' aggregated into the breach state for category c in the reduced 
network. 
 
In Markov chains that have both transient and absorbing states, if j is one of the 
absorbing states, the probability that the system is absorbed in state j, given that the initial 
state was state i, is given by the ijth element of the matrix ΦZ (for a proof of this result, 
see [15], page 157).  We denote this conditional probability as )( jf i : 
 

[ ]iji Zjf Φ=)(       (4) 
 
In the reduced state representation (Figure 4), equation (4) allows us to write two 
expressions: 
 

Prob(Breach in category c' | Entry in category c)  =  
∑
≥

+
cc

ccc

cc

vdp
vp

"
"

'

)(
)(

  (5) 

 

Prob(Eviction | Entry in category c)  =  
∑
≥

+
cc

ccc

c

vdp
vd

"
" )(

)(
   (6) 

 
In the full representation of the Markov chain (Figure 5), the entry in category c is 
represented by a set of entry states, )(ceΓ .  If the probability of entry in state i is πi, the 
conditional probability of entry in state i, given that the attacker is of category c, is: 
 

∑
Γ∈ )(cj

j

i

e

π
π

. 

 
Then, in the full representation, we can write: 
 

Prob(Breach in category c' | Entry in category c)  =  ∑ ∑ ∑Γ∈ Γ∈
Γ∈

)'( )(
)(

)(
ck ci

cj
j

i
i

b e

e

kf
π

π
 (7) 

 
If the Eviction state in Figure 5 is the last state number (i.e., K|C||M| +1), then: 
 

Prob(Eviction | Entry in category c)  =  ∑ ∑Γ∈
Γ∈

+
)(

)(

)1(
ci

cj
j

i
i

e

e

CMKf
π

π
  (8) 
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Equating the expressions in (5) and (7), and in (6) and (8), we have 
( )

2
3+CC

 equations 

in the unknowns pcc' (v) and dc(v).  These equations do not allow unique solution for the 
unknowns, because there are C  linear dependencies in those equations (the conditional 
probabilities in (5) and (6) must sum to 1).  However, it is also desirable that the expected 
number of transitions prior to absorption be equal for the full and reduced 
representations, and this provides C  additional equations.  In general, the expected 
number of transitions prior to absorption for an attacker who enters in state i is: 
 

∑=
j

ijin φ       (9) 

 
For the reduced representation, the expected number of transitions prior to absorption for 
an attacker in category c is then: 
 

 
∑
≥

+
=

cc
ccc

i vdvp
cn

'
' )()(

1)(      (10) 

 
In the expanded representation, this conditional probability is: 
 

∑ ∑Γ∈
Γ∈

=
)(

)(

)(
ci

cj
j

i
ii

e

e

ncn
π

π
     (11) 

 
Equating expressions (10) and (11), we can solve for the denominators in (5) and (6), so 
the final expressions for pcc' (v) and dc(v) are as follows: 

 

∑ ∑

∑ ∑ ∑

Γ∈
Γ∈
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Γ∈=

)(
)(

)'( )(
)(

'
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)(
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cj

j

i
i

ck ci
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j

i
i
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e

e

b e
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n
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π
π

π
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∑ ∑

Γ∈
Γ∈

Γ∈
Γ∈

+

=

)(
)(

)(
)(

)1(

)(

ci
cj

j

i
i

ci
cj

j

i
i

c

e

e

e

e

n

CMKf

vd

π
π

π
π

    (13) 

 



16 

The value of the simplified representation is that it allows us to construct a Markov 
Decision Process (MDP) of the attacker’s strategy at the system level, without carrying 
along all the detail of states within the potential attacks at each node.  This is the focus of 
the following section, and represents the third major step in our analysis. 
 
Before proceeding to that discussion, the analysis is illustrated at a single node level, 
considering entry node 1 in Figure 1 and the HMM that might be constructed as part of 
an intrusion detection system there.  Table 1 represents an example of a set of basic states 
that could represent various attacker actions, and the possible emanations that could 
result from attacker presence in these states.  The definitions in Table 1 correspond to the 
diagram in Figure 2. 
 

Table 1.  Example attack states, emanation signals, and system operator actions. 

State  Example 
Attack 
Operation 

System 
Action if 
Detected 

Possible 
Emanation 
“Signals” 

1 Entry None None 
2 Port Sweep Monitor 21 , yy  
3 Operating 

System 
Fingerprint 

Monitor 531 ,, yyy  

4 FTP 
Connection

Evict 42 , yy  

5 Password 
File Edit 

Evict if 
Monitoring 
Level is High 

3y  

6 Unknown Unobservable None 
7 Breach Unobservable None 

 
As a potential attack unfolds, the operator may observe unusual activity, or emanations 
from various attack operations.  These emanations are represented by 51 ,, yy K .  To 
translate these emanations into a more concrete setting, consider an intrusion detection 
system based on a collection of pattern matching rules.  If a suspicious pattern is 
recognized, then a rule is tripped, and the system is alerted to the activity.  Invoking a 
rule produces the “emanation” that yields observability for the attack operation at that 
moment.  If an emanation suggests a sufficient threat, the system might decide to evict 
the user.  In Table 1, the operator has chosen to evict the user if emanations 2y  and 4y  
are seen together (regardless of the current monitoring level attached to that user), or if 

3y  is seen alone and the user is currently under suspicion (High monitoring level). 
However, if 2y  is seen together with 1y , or 3y  is seen together with 1y  and/or 5y , the 
user is placed on a watch list for monitoring but not evicted.  Note that this structure 
includes the possibility of a “false positive” – a user in state 3 may cause an emanation of 

3y  without either 1y  or 5y  and thus be evicted even though the system would not 
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normally evict a user for the action in state 3.  State 6 represents an action that may not be 
catalogued by the system (e.g., a novel attack mode that does not leave traces detectable 
by the collection of pattern matching rules). 
 
The collection of emanations listed in Table 1 allows us to construct 12 possible 
observable outcomes: 

 
{ }noneyyyyyyyyyyyyyyyyyy ,,,,,,,,,,, 531534251312154321  

 
To define the outcome space (Y) for the HMM, we expand each of these outcomes based 
on the current monitoring level (N or H), leading to 24 elements for the outcome space.  
Outcomes 3y H, 42 yy L, and 42 yy H constitute the set Ω1, leading to eviction at node 1. 
 
We assume that the intrusion-detection process has estimated the A and B matrices shown 
in Figures 6 and 7 for this node.  From these matrices, we can construct estimates of 
pWW(1), pWS(1), pSS(1), dW(1), and dS(1), using equations (5)–(11).  The resulting values 
are: 

  pWW(1) =  .014 
pWS(1)  =  .016 
pSS(1)  =  .03 
dW(1)  =  .029 
dS(1)  =  .006 

 
This collection of five parameter values summarizes the HMM at node 1 for 
representation in the system-level model to be described in the following section. 
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from \ to 1WN 2WN 3WN 4WN 5WN 6WN 7WN 1SN 2SN 3SN 4SN 5SN 6SN 7SN 1WH 2WH 3WH 4WH 5WH 6WH 7WH 1SH 2SH 3SH 4SH 5SH 6SH 7SH evict

1WN 0 0.7 0.25 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2WN 0 0 0.179 0.179 0 0 0 0 0.012 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0
3WN 0 0 0 0 0.836 0.054 0 0 0 0.014 0 0 0 0 0 0 0.096 0 0 0 0 0 0 0 0 0 0 0 0
4WN 0 0 0 0.764 0.08 0 0.01 0 0 0 0.016 0 0 0.004 0 0 0 0 0 0 0.004 0 0 0 0 0 0 0.002 0.12
5WN 0 0 0 0 0.932 0.01 0.02 0 0 0 0 0.018 0 0.008 0 0 0 0 0 0 0.008 0 0 0 0 0 0 0.004 0
6WN 0 0 0 0 0.05 0.91 0.01 0 0 0 0 0 0.02 0.004 0 0 0 0 0 0 0.004 0 0 0 0 0 0 0.002 0
7WN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1SN 0 0 0 0 0 0 0 0 0.3 0.2 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2SN 0 0 0 0 0 0 0 0 0 0.272413 0.272413 0 0 0 0 0 0 0 0 0 0 0 0.455175 0 0 0 0 0 0
3SN 0 0 0 0 0 0 0 0 0 0 0 0.85 0.091044 0 0 0 0 0 0 0 0 0 0 0.058956 0 0 0 0 0
4SN 0 0 0 0 0 0 0 0 0 0 0.8133 0.08 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0.0867
5SN 0 0 0 0 0 0 0 0 0 0 0 0.95 0.01 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 0.012 0
6SN 0 0 0 0 0 0 0 0 0 0 0 0.06 0.92 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0
7SN 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1WH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.25 0 0 0.05 0 0 0 0 0 0 0 0 0
2WH 0 0.000027 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.493987 0.493987 0 0 0 0 0.012 0 0 0 0 0 0
3WH 0 0 0.000262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.739738 0.15 0 0 0 0.014 0 0 0 0 0.096
4WH 0 0 0 0.032768 0 0 0.004 0 0 0 0 0 0 0.002 0 0 0 0.731232 0.08 0 0.01 0 0 0 0.016 0 0 0.004 0.12
5WH 0 0 0 0 0.0016 0 0.0016 0 0 0 0 0 0 0.0008 0 0 0 0 0.1848 0.002 0.004 0 0 0 0 0.0036 0 0.0016 0.8
6WH 0 0 0 0 0 0.05 0.004 0 0 0 0 0 0 0.002 0 0 0 0 0.06 0.85 0.01 0 0 0 0 0 0.02 0.004 0
7WH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1SH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.2 0 0 0.5 0 0
2SH 0 0 0 0 0 0 0 0 0.000862 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.499569 0.499569 0 0 0 0
3SH 0 0 0 0 0 0 0 0 0 0.002204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.732989 0.129351 0 0.135456
4SH 0 0 0 0 0 0 0 0 0 0 0.06727 0 0 0.006 0 0 0 0 0 0 0 0 0 0 0.74603 0.08 0 0.014 0.0867
5SH 0 0 0 0 0 0 0 0 0 0 0 0.032768 0 0.012 0 0 0 0 0 0 0 0 0 0 0 0.237232 0.01 0.028 0.68
6SH 0 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0 0 0 0 0 0 0 0 0 0 0 0.06 0.92 0.014 0
7SH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Evict 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

 
 
 

Figure 6.  Estimated A matrix for the example analysis. 
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signals 1WL 2WL 3WL 4WL 5WL 6WL 7WL 1SL 2SL 3SL 4SL 5SL 6SL 7SL 1WH 2WH 3WH 4WH 5WH 6WH 7WH 1SH 2SH 3SH 4SH 5SH 6SH 7SH
f1,L 0 0.27 0.256 0 0 0 0 0 0.309825 0.276556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f2,L 0 0.07 0 0.48 0 0 0 0 0.139825 0 0.4233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f3,L 0 0 0.096 0 0.8 0 0 0 0 0.135456 0 0.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f4,L 0 0 0 0.08 0 0 0 0 0 0 0.0833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f5,L 0 0 0.016 0 0 0 0 0 0 0.026656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1,f2,L 0 0.63 0 0 0 0 0 0 0.455175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1,f3,L 0 0 0.384 0 0 0 0 0 0 0.287844 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1,f5,L 0 0 0.064 0 0 0 0 0 0 0.056644 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f2,f4,L 0 0 0 0.12 0 0 0 0 0 0 0.0867 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f3,f5,L 0 0 0.024 0 0 0 0 0 0 0.027744 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1,f3,f5,L 0 0 0.096 0 0 0 0 0 0 0.058956 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
none,L 1 0.03 0.064 0.32 0.2 1 1 1 0.095175 0.130144 0.4067 0.32 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0.256 0 0 0 0 0 0.309825 0.276556 0 0 0 0
f2,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.48 0 0 0 0 0.139825 0 0.4233 0 0 0
f3,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.096 0 0.8 0 0 0 0 0.135456 0 0.68 0 0
f4,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0 0 0 0 0 0 0.0833 0 0 0
f5,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.016 0 0 0 0 0 0 0.026656 0 0 0 0
f1,f2,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0.455175 0 0 0 0 0
f1,f3,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.384 0 0 0 0 0 0 0.287844 0 0 0 0
f1,f5,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.064 0 0 0 0 0 0 0.056644 0 0 0 0
f2,f4,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0 0 0 0 0 0 0.0867 0 0 0
f3,f5,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.024 0 0 0 0 0 0 0.027744 0 0 0 0
f1,f3,f5,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.096 0 0 0 0 0 0 0.058956 0 0 0 0
none,H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.03 0.064 0.32 0.2 1 1 1 0.095175 0.130144 0.4067 0.32 1 1

 
 

Figure 7.  Estimated B matrix for the example analysis. 
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IV. EXPANDING TO THE SYSTEM LEVEL 

 
At the system level, we represent the network as shown in Figure 1, but with each node 
expanded using a representation like the one in Figure 4. There may be several potential 
entry nodes to the system, and we denote by ev the probability that a given attack is 
initiated at node v.  Although data are being collected on the topic of information 
intrusion and attack [16], there is little publicly available analysis on the arrival 
distribution of these attacks or a characterization of the arrival process.  We assume that 
attackers arrive as a Poisson process with overall rate λ.  This assumption is consistent 
with a premise of uncoordinated attacks being mounted by individuals out of a large 
population and is similar to assumptions made in other adversarial situations (e.g., [17], 
[18]).  The arrival rate of attacks at entry node v is then evλ. Each of these node-specific 
arrival rates is then further broken down into arrival rates by attackers in category c ∈ C. 
 
We can create the basic building blocks of an MDP model of the attacker’s strategy, 
using the state diagram shown in Figure 4.  Attackers arrive at the “attack v” state at some 
rate (evλ if node v is an “entry” node and via transitions from other nodes if node v is an 
“internal” node).  At each transition, there are probabilities pcc' (v) that the attack is 
successful (i.e., transition to a “Breach v” state) and probabilities dc(v) that the attacker 
will be evicted.  If neither success nor eviction occurs, the attacker remains in the “attack 
v” state, continuing his/her attack.  The “Eviction” state is an absorbing state, and there is 
an associated cost to the attacker, which we denote as ξc(v).  If a “Breach v” state is 
reached, the attacker inflicts some loss, θc(v), on the system owner and then has choices 
about what to do next. 
 
Breaching node v generally offers an opportunity to attack another node, i, in the 
network.  This opportunity is represented by links from the “Breach v” states to “Attack 
i” states for a corresponding attacker category.  These links are assumed to have an 
immediate cost to the attacker denoted by sc(v,i).  This immediate cost represents the risk 
of detection associated with that transition.  The attacker also has the choice of quitting 
(exiting from the system), presumably with an immediate cost sc(v,j) = 0 (where j denotes 
an exit state). 
 
We can pose the problem of finding the optimal attack strategy as an MDP over an 
infinite horizon.  We define the expected reward to the attacker to be the expected loss 
that can be inflicted upon the system operator minus the expected costs to the attacker 
(resulting from risk of detection and associated penalties). As mentioned in Section II, 
there may be some categories of attackers (e.g., terrorists) for whom we would set the 
perceived expected costs of detection to be zero.  Such an attacker would not voluntarily 
quit his/her attack, but is subject to the same mechanisms of detection and eviction.  Also, 
as mentioned in Section II, a utility function that reflects risk-prone or risk-averse 
behavior can be substituted for the expected reward calculation in a straightforward way. 
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We assume that the objective of the attacker is to maximize his/her expected reward (or 
utility), and we examine the problem of finding the optimal attack strategy for this 
objective.  Solving this problem positions us to adopt the perspective of the system 
operator and consider the actions that can have the largest impact on reducing the 
expected losses resulting from such attacks.  We can also consider the potential for 
insuring the system against financial losses from such intentional attacks. 
 
If the attacker is in state i and chooses action ai, we denote the expected value of the 
future stream of rewards by w(i,ai).  Each possible action ai implies an immediate reward 
value Ri(ai) and a change in the transition probabilities that govern the process.  We 
denote the elements of the transition matrix resulting from choosing action ai as Pij(ai). 
The MDP is positive bounded.  At each breach node, there is always a possible decision 
with non-negative expected total return because the attacker can always choose to quit.  It 
is bounded because the process is absorbed into one of two states (“Quit” or “Evict”) that 
have Ri(ai) = 0.  Thus, the sum of future expected rewards is bounded from above.  The 
absorption into states with Ri(ai) = 0 also ensures that an optimal stationary deterministic 
policy exists [19], and that it is conserving.  As a result, we can find the optimal policy 
through either policy iteration or linear programming. 
 
From a computational standpoint, policy iteration is generally preferable to linear 
programming for finding solutions, but the linear programming formulation can yield an 
insight that is significant for our current purposes, so we  proceed along that line.  
Puterman [19] describes the linear programming formulation for positive bounded 
expected total reward models.  The formulation seeks the decision policy (choice of ai) 
that maximizes the expected value of the reward stream, w(i,ai).  We denote the resulting 
optimal expected value as w*(i). 
 
As Puterman [19] describes in detail, the set of w*(i) is the smallest set of values of w(i) 
for which the following inequalities hold for all states, i: 
 

∑+≥
j

iijii jwaPaRiw )()()()(     (14) 

 
If we then introduce an arbitrary set of positive scalars, βi , with the requirement that 

1i
i
β =∑ , the linear program can be written as follows: 

 
∑

i
i iw )(min β       (15) 

 
subject to: iii

j
iij aiaRjwaPiw ,)()()()( ∀≥−∑    (16) 

 
  iiw ∀≥ 0)(      (17) 
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This linear program has a dual that can be expressed as follows: 
 

max ( ) ( )
i

i i i i
i a

R a x a∑∑      (18) 

 
subject to: ( ) ( ) ( )

i i

i i ij i i i i
a j a

x a P a x a iβ− ≤ ∀∑ ∑∑    (19) 

      
( ) 0 ,i i ix a i a≥ ∀       (20) 

 
The primal linear program has many more constraints than variables, so it is more 
effective to solve the dual problem.  In addition, it can be shown (see [19]) that in an 
optimal solution to the dual problem (18)–(20), there is no more than one non-zero xi(ai) 
for each state i.  The ai for which xi(ai) is non-zero indicates the optimal action *

ia  for 
each i. 
 
The optimal values of the non-zero dual variables, xi(ai) for each state i, indicate the 
“shadow prices” for affecting the rewards, Ri(ai).  This provides useful information about 
the relative value of different “hardening” strategies that might be applied in the system. 
This is discussed further in Section VII. 
 
In the application context of interest here, the state space for the MDP is a collection of 
“attack” and “breach” states (as shown in Figure 4) for the nodes in the TOE.  For the 
“attack” states, there is a single action possible (i.e., no decisions are made).  The 
immediate reward for this action is )()()( vvdaR ccii ξ−= , where state i refers to an attack 
at node v by an attacker of category c.  For the “breach” states, there are several possible 
decisions (i.e., attack other nodes k, or quit).  For a decision to attack node k, the 
immediate reward is ( ) ( ) ( , )i i c cR a v s v kθ= − , that is, the value of the loss inflicted at node v 
(which the attacker has just breached) less the expected cost associated with moving from 
node v to node k.  For a decision to quit, the immediate reward is θc(v).  The change in the 
transition probabilities that accompany any decision is simply that the probability of 
transition to the chosen state (“attack k” or “quit”) becomes 1.0. 
 
To see how these ideas are applied in the example shown in Figure 1 (with two categories 
of attackers and two levels of monitoring at each node, as in the previous section), we 
create the state diagram shown in Figure 8.  (Some of the arcs are not shown completely 
to help prevent confusion in the diagram among arcs that appear to cross one another.) 
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Figure 8.  MDP state network and transitions. 
 

The transition probabilities for this Markov chain come from the computations of pWW(v), 
pWS(v), pSS(v), dW(v), and dS(v) for nodes 1 through 8 in Figure 1.  A summary of these 
values is given in Table 2.  Note that the values shown for node 1 are the values we 
computed in Section III.  Table 2 also provides information on the penalty to the attacker 
for detection at each node and the losses to the system operator if a given node is 
breached.  Both the losses and potential penalties increase as the attacker proceeds 
“deeper” into the system, and the detection probabilities are also larger at the deeper 
nodes, reflecting somewhat tighter security at those locations. 
 
Table 3 specifies the probability of detection, ),( kvrc  associated with various moves that 
the attacker might make within the system.  These probabilities are used to compute the 
expected costs to the attacker in category c associated with making a specific move from 
node v to node k, ),( kvsc .  For this example, we compute those expected costs as: 
 

)(),(),( kkvrkvs ccc ξ=      (21) 
 
That is, the expected cost is the probability of detection during the move times the 
penalty cost associated with detection at the intended destination node.  Other methods of 
specifying the ),( kvsc  costs could also be used, but this is a reasonable and simple way 
of determining them. 
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In this example (see Table 2), we are making no distinction in the penalties, )(kcξ , 
among the categories of attackers, c.  However, the formulation is general, and would 
allow such distinctions if desired. 
 
The solution is summarized in Table 4.  If node 3 or node 4 is breached, the optimal 
decision depends on the attacker category.  A weak attacker will try to penetrate the 
system through nodes 5 and 7, while a strong attacker will attack through nodes 4 and 6 
before going to node 7.  This strategy reflects an opportunity for a strong attacker to 
inflict more potential damage on the system by proceeding through nodes 4 and 6, and 
the increased risk to the strong attacker is less than the increase in expected losses 
inflicted.  The solution to the linear program representing the MDP provides a strategy 
that reflects an optimal policy for each category of attacker from any position in the 
network. 
 
The existence of this strategy does not mean that all attackers will always proceed in 
exactly the way indicated.  It does mean that if all attackers were rational and well 
informed (in the sense described at the beginning of the paper), this would be a strategy 
through which they could inflict the greatest amount of expected damage to the system.  
We can compute expected losses to the system in a conservative way by assuming that 
the system operator is always facing rational well-informed attackers who are optimizing 
their attack strategy.  In reality, the overall pattern of attacks is likely to be less damaging 
than this because many attackers will have less information and will not necessarily 
optimize their strategy. 
 
One very direct way to incorporate imperfect information on the part of the attackers in 
the analysis is to embed the MDP model in a simulation where uncertainty in the 
perceptions of the losses, )(vcθ , is reflected.  This is one type of limitation on the 
information assumed to be available to the attackers.  We might assert that an attacker in 
category c bases his/her strategy on a perception of )(vcθ  that may or may not be correct. 
Variations in the perceptions of the losses to be inflicted on the system operator by 
breaching specific nodes can lead to different attack strategies for different attackers in 
the same category, and the effect (from the system operator’s perspective) is that the 
overall attacks appear to be following a mixed (or randomized) strategy.  This form of 
simulation is a step in the general direction of considering the system to be a partially 
observable Markov decision process (POMDP) from the perspective of the attacker. 
 
Suppose that a given attacker in category c perceives the loss at node v to be a Normal 
random variable )(vcθ ′ , with [ ] )()( vvE cc θθ =′ , and standard deviation )(vcσ .  If we 
sample each of the )(vcθ ′  distributions, we have a set of perceived losses, and we can 
then solve the MDP for the optimal strategy under that sample of perceptions.  By 
repeating the process for many samples and recording the strategy for each category of 
attackers in each sample, we can construct an estimate of the probability of a given 
strategy for each attacker category. 
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Table 2.  Example data for network nodes. 

 
 

Node 
(see 

Figure 1) 

Prob. of 
Success 
pWW(v) 

Prob. of 
Success 
pWS(v) 

Prob. of 
Success 
pSS(v) 

Prob. of 
Detection 

dW(v) 

Prob. Of 
Detection 

dS(v) 

Penalty 
for 

Detection 
ξW(v) 

Penalty 
for 

Detection 
ξS(v) 

Loss for 
Breach 
θW(v) 

Loss for 
Breach 
θS(v) 

1 .014 .016 .03 .029 .006 100 100 100 200 
2 .009 .005 .011 .01 .006 100 100 100 200 
3 .008 .004 .01 .008 .005 500 500 200 400 
4 .007 .004 .009 .008 .005 500 500 200 400 
5 .007 .003 .008 .01 .007 1000 1000 500 1000 
6 .006 .003 .007 .01 .007 1000 1000 500 1000 
7 .005 .003 .006 .01 .006 1000 1000 500 1000 
8 .005 .002 .006 .1 .04 5000 5000 1000 2000 
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Table 3.  Probability of detection for possible moves. 

 

Arc Prob. of 
Detection 

(rvk) 
Weak 

Attacker 

Prob. of 
Detection (rvk) 

Strong 
Attacker 

1-3 .01 .005 
2-4 .02 .01 
3-4 .05 .025 
3-5 .1 .05 
4-6 .07 .035 
4-7 .07 .035 
5-8 .1 .05 
6-5 .02 .01 
6-7 .03 .015 
6-8 .04 .02 
7-8 .1 .05 

 
 

Table 4.  Optimal decisions from MDP solution. 

 
If this node 

has just been 
breached: 

And the 
Attacker 

Category is: 

Then do this 
next: 

1 Weak Attack 3 
1 Strong Attack 3 
2 Weak Attack 4 
2 Strong Attack 4 
3 Weak Attack 5 
3 Strong Attack 4 
4 Weak Attack 7 
4 Strong Attack 6 
5 Weak Attack 8 
5 Strong Attack 8 
6 Weak Attack 5 
6 Strong Attack 5 
7 Weak Attack 8 
7 Strong Attack 8 
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For example, in the test network shown in Figure 8, if we assume that weak attackers 
have a perception of losses that has a coefficient of variation of 0.3 at each node, and 
strong attackers have perception distributions with a coefficient of variation of 0.2 at each 
node, we can construct the solution summarized in Table 5 via this type of simulation. 
 

Table 5.  Optimal decisions from simulation of MDP solution with imperfect information on the part 
of attackers. 

 
If this node 

has just been 
breached: 

And the 
Attacker 

Category is: 

Then do this 
next: 

With this 
probability: 

1 Weak Attack 3 1.0 
1 Strong Attack 3 1.0 
2 Weak Attack 4 1.0 
2 Strong Attack 4 1.0 
3 Weak Attack 4 0.33 
3 Weak Attack 5 0.67 
3 Strong Attack 4 0.7 
3 Strong Attack 5 0.3 
4 Weak Attack 7 0.63 
4 Strong Attack 6 0.67 
4 Strong Attack 7 0.33 
5 Weak Attack 8 1.0 
5 Strong Attack 8 1.0 
6 Weak Attack 5 1.0 
6 Strong Attack 5 0.7 
6 Strong Attack 7 0.3 
7 Weak Attack 8 1.0 
7 Strong Attack 8 1.0 

 
In this example, the introduction of imperfect information creates mixed strategies for 
both categories of attackers, but not at the same subsets of nodes.  In each case, the 
strategy identified in the deterministic analysis is the most likely, but there are significant 
variations in attack strategies at nodes 3, 4, and 6. 
 
The simulation approach can also be used to analyze other types of imperfect information 
on the part of attackers – for example, imperfect knowledge of what arcs exist in the 
network for movement among nodes, or even imperfect information of what nodes exist. 
We have not pursued analysis of all these possibilities for the example network, but the 
process is straightforward. 
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V. EXPECTED LOSSES TO THE SYSTEM OPERATOR 
 

The solution to the MDP (either deterministically or using simulation to reflect imperfect 
information) represents a strategy that an attacker could follow to maximize his/her 
expected reward.  Because the attacker’s reward is directly related to the expected losses 
that can be inflicted on the system operator, this strategy represents a reasonable basis for 
estimating the magnitude of those losses.  The solution to the MDP provides the 
transition matrix, P*, whose elements are *( )ij iP a .  The Markov model that underlies the 
attacker strategy is a transient model; eventually, any attacker ends up in one of the two 
absorbing states: “eviction” or “quit.”  If we add to the model an “Entry” state that 
delivers attackers to the entry nodes of the TOE at some rate, we can analyze the 
expected loss rate to the system operator. 
 
We can partition the system states into entry states, interior states, and exit states; the 
transition matrix can be partitioned as: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
I

ZQ
D

P
00

0
00

**

*

*       (22) 

 
In (22), the submatrix D* represents transition probabilities from the entry state to 
interior states; Q* represents transitions among interior states; Z* represents transitions 
from interior states to exit (absorbing) states; and I (the identity matrix) reflects the 
absorption in the exit states. 
 
Using this notation, the expected number of visits to an interior state j, given that the 
process started in state i, is given by the ij element of (I-Q*)-1.  Then, if the overall arrival 
rate of attackers is λ and the vector D* contains the probabilities of system entry at 
various nodes by the various categories of attackers, the expected total visits per time 
period to the interior (transient) states are the entries in the row-vector ( ) 1** −

−QIDλ .  If 
we then create a loss vector, L (assumed to be a column vector), whose elements are θc(v) 
for the “Breach v” states in the set of transient states and zero otherwise, the expected 
loss per time period, E(Θ), is: 

 
( ) LQIDE 1**)( −
−=Θ λ      (23) 

 
For the simple example described in Section IV, if the average arrival rate of attacks (λ) 
is three per day, 90% of the attackers are weak upon entering, and all attackers follow the 
optimal attack strategy shown in Table 4, the expected loss calculated using (23) is $1324 
per day.  Said another way, the average attacker costs the system $441. 
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With the calculation of expected loss in (23), we are now in a position to address three 
very important questions: 
 

1. Is the system insurable against these losses, using the economic concepts of 
insurance theory? 

2. How might the system operator act to reduce the expected loss (e.g., by changing 
security parameters, detection thresholds, etc.)? 

3. Can we estimate the marginal value of specific measures to “harden” the system in 
terms of changes in expected losses as a basis for determining how much 
hardening is worthwhile? 

 
In the following sections, we explore these questions. 
 

VI. INSURING THE SYSTEM 
 
Suppose that we have an insurance company that is willing to write a contract to 
reimburse the TOE owner for damages an adversary may inflict on system assets.  This 
may also be a self-insurance structure, in which the TOE owner sets aside some amount 
of money per period into a reserve fund to cover losses sustained.  Equation (23) in the 
previous section specifies the expected loss rate.  This can be interpreted as either the 
expected cost to the insurance company per period or the size of the set-aside amount that 
the TOE owner would have to contribute each period to maintain the self-insurance. 
 
The insurance underwriter faces some risk, however, since the losses in a given period 
may not always correspond to expectation.  The aggregate loss in any time period is the 
sum of losses from many individual attackers, so using the Central Limit Theorem, the 
aggregate loss per time period is approximately Normally distributed, with mean given 
by (23).  To determine the variance, we recognize that the per-period loss is the sum of a 
random number of i.i.d. random variables (losses from a random number of attackers, 
each of whom inflicts a random loss on the system).  If we use N to denote the random 
number of attackers and ζi to denote the random loss from attacker i, the general form of 
such a variance is (see, for example, [14]): 
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The assumption of Poisson arrivals with a constant arrival rate allows us to argue that the 
number of attackers, N, is Poisson, and under this condition (24) simplifies to: 
 

( ) ][ 2ςλEVar =Θ      (25) 
where )(NE=λ . 
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To find ][ 2ςE , the expectation of the square of the loss from a single attacker, we 
reconsider the matrix ( ) 1* −

−QI , whose elements we denote as *
ijφ .  The probability that a 

transient Markov chain ever makes a transition into state j, given that it started in state i, 
is (see, for example, [14]): 
 

  *

*

jj

ijij
ijf

φ
δφ −

=       (26) 

 
where δij is 1 if i = j and zero otherwise.  Since we know that the Markov chain starts in 
the “entry” state and we can arbitrarily denote that as state 1, we are interested in the 
values of: 
 

*

*

1
jj

ij
jf

φ
φ

=       (27) 

 
If we let Lj denote the loss if state j is entered and a single attacker will inflict a given loss 
at most once (i.e., the Markov chain for a single attacker is acyclic), the probabilities in 
(27) determine a probability distribution of losses from a single attacker.  
 
We can then compute the expected squared loss from a single attacker as follows: 
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Substituting (27) and (28) into (25), we have the result that the variance of loss per time 
period is: 
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Equations (23) and (29) then characterize the Normal distribution of loss per time period. 
Suppose the insurance company (or the TOE owner) had set aside an initial reserve of U 
dollars, and the per-period contributions (or insurance premiums) are π dollars.  Claims 

tΘ  are paid each period t, and if we assume that losses are independent of one another, 
the sequence of per-period changes in available assets, tπ −Θ , is a Wiener process.  For 
such a process, as long as ( )Eπ > Θ , the ultimate ruin probability is (see, for example, 
[20]): 
 

( )
1

2 ( )
( )

( ) lim Pr 0
t

it i

E U
Var

U U t

e
π

ρ π
→∞

=

Θ −
Θ

⎛ ⎞
= + − Θ <⎜ ⎟

⎝ ⎠

=

∑
    (30) 



31 

The value of )(Uρ  can be used to determine the appropriate per-period premium π to 
cover a return on the reserves, U, and to ensure that the risk of ruin is sufficiently small. 
 
It is also important to explore whether it is better to insure the system to cover expected 
losses, or to invest money in system hardening to reduce those losses.  To begin such an 
evaluation, it is important to identify the places in the system that have the greatest 
leverage for reducing expected losses.  This is the topic of the next section. 
 

VII. SENSITIVITY ANALYSIS OF EXPECTED LOSSES 
 
The solution to the MDP for the attackers (found through the dual linear programming 
formulation in equations (18)–(20)) specifies a set of non-zero dual variables, xi(ai), one 
for each state i.  These dual variables indicate the “shadow prices” for affecting the 
rewards, Ri(ai), that appear on the right-hand side of the constraints in the primal linear 
programming problem.  This provides useful information about the relative value of 
different strategies that might be applied to reduce expected losses.  
 
The state space for the MDP is a collection of “attack” and “breach” states (as shown in 
Figure 4) for the nodes in the TOE.  For the “attack” states, the immediate reward is 

)()()( vvdaR ccii ξ−= , where state i refers to an attack at node v by an attacker of 
category c.  For the “breach” states, a decision at node v to attack another node k has 
immediate reward ( ) ( ) ( , )i i c cR a v s v kθ= − , that is, the value of the loss inflicted at node v 
(which the attacker has just breached) less the expected cost associated with moving from 
node v to node k.  In the example of interest here, we have computed 

)(),(),( kkvrkvs ccc ξ= .  Thus, the mechanisms available to reduce Ri(ai) are: 
 

a) increase the detection probability, dc(v); 
b) increase the penalty for detection, ξc(v); 
c) reduce the potential node loss, θc(v); or 
d) increase the movement detection probability, rc(v, k). 

 
By rank ordering the xi(ai) values from largest to smallest, we can develop a list of places 
in the system where changes can have the greatest benefit and then examine our list of 
mechanisms for reducing Ri(ai) to identify the most effective action at that location. 
 
For example, for the system analyzed in Section IV, there are seven xi(ai) values greater 
than 1.0 at the states shown in Table 6.  It is quite clear that the major losses to the system 
are because of the “strong” attackers, even though they constitute only 10% of the total 
attacks at entry.  It is also clear that nodes 4, 5, and 6 are the most important places to 
focus attention on system hardening against these strong attackers.  At the “attack” nodes, 
the mechanisms of interest are (a) and (b) from the list above, so we have a clear 
indication from the analysis of what strategies are likely to be most effective for system 
hardening, and where they should be focused. 



32 

Table 6.  Identification of largest dual variables. 

State (i) Value of xi(ai) 
Strong Attack, Node 5 15.19 
Strong Attack, Node 4 12.72 
Strong Attack, Node 6 11.96 
Strong Attack, Node 3 6.19 
Strong Attack, Node 7 2.31 
Strong Attack, Node 2 1.79 
Weak Attack, Node 2 1.76 

 
In general, the detection probability, dc(v), can be increased by expanding the sets of 
observations that result in increased monitoring attention (ψv) and in eviction of users 
(Ωv), as discussed in Section III.  The sets Ωv and ψv reflect the security protocols in 
place at a given system node, v.  Making these sets larger (especially Ωv) increases the 
probability of detection of attackers. 
 
Using the analysis framework created in this paper, we can trace the effects of a specific 
change in the protocols at nodes 4, 5, and 6, for example, through to a change in expected 
losses for the system operator, and thus we have a quantitative (and perhaps even 
monetary) measure of the effectiveness of the change.  As an illustration, suppose that the 
system operator made changes at nodes 4, 5, and 6 so that the detection probability for 
strong attackers at those nodes increased by 25% in the system as studied in Section IV.  
Tracing this change through the MDP solution shows that it would reduce the expected 
losses (as calculated in Section V) to $1145 per day, a reduction of $179 per day (or 
about 13.5%) from the original conditions. 
 
We must note that the benefit of reduced losses achieved by making the sets Ωv  larger at 
nodes 4, 5, and 6 must be balanced against the cost of increased “false alarms.”  As noted 
in Section III, increasing the set of signals that will cause eviction of a user is also likely 
to make it more difficult for legitimate users to accomplish their work.  Although it is 
often difficult to assign a cost to a false alarm, it may be possible to estimate the cost of 
lost work in some situations and adjust the estimated benefits accordingly. This is an area 
of potential further work. 
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VIII. CONCLUSION 
 
We have created a framework for analyzing expected losses from malicious attacks 
against an infrastructure system.  This framework also allows the system operator (and a 
potential insurer) to evaluate the insurability of the system against such losses and to 
identify where the most effective changes in the system can be made to “harden” it 
against attacks.  We have included an example of a SCADA-related information system 
to illustrate the ideas, but the framework should have much broader applicability, to both 
information systems and physical facility infrastructure. 
 
The basis for our analysis is a representation of the system of interest as a network of 
nodes and arcs.  Nodes represent system assets, and arcs represent opportunities for 
attackers to move within the system.  We construct an HMM to represent an attack at a 
single node in the system.  Then we develop an aggregated representation of that single-
node model for inclusion in an MDP model of attacker strategy within a network 
representation of the entire system.  The MDP solution is used to compute expected 
losses from different classes of attackers, as a means of tying the analysis to the notion of 
“insurability.”  Finally, the sensitivity information from the MDP solution is used to 
indicate the parts of the system in which “hardening” against attacks may be most 
effective.  To our knowledge, this is the first effort to use HMMs and MDPs in this way 
to evaluate economic losses from malicious attacks in systems and to assess potential 
benefits of hardening measures. 
 
The framework we have created offers several important directions for further research.  
Certainly one of these directions is further work on analyzing attacks by adversaries with 
imperfect information.  We have described one approach, using simulation, to incorporate 
some aspects of imperfect information in the analysis, but there is much additional work 
in that direction that is likely to be very useful. 
 
One potentially useful approach is to treat the system (from the perspective of the 
attacker) as a partially observable Markov decision process (POMDP).  While the HMM 
provides partial observability of the system into the attack process, the POMDP provides 
partial observability of the attacker into the system.  We could then represent the 
uncertainty with which the attacker and system owner face each other.  Perfect 
observability of the system by the attacker represents the threat level posed by an insider, 
such as a former system administrator, while partial observability can provide for a more 
realistic representation of any number of attacker classes consisting of system outsiders, 
such as hackers, who have varying, but imperfect levels of system knowledge.    
 
The level of detail that is needed to accurately represent the uncertainty faced by the 
attacker through the POMDP will need to be considered carefully however, because the 
model has the potential to become intractable [21].  Use of parallel computing 
architectures to enable large simulations might be employed to model and understand the 
effects of an attack against a region of the United States, for example.  Extensions of this 
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work to develop an optimal strategy for multi-agent attackers under uncertainty is another 
promising potential outcome of more detailed investigation of the POMDP solution 
structure.  

 
A second direction for enhancing the characterization of attackers is in relaxing the 
assumption that all attackers seek to maximize their expected total reward (or maximize 
the expected damage they can do).  Treating some attackers as risk-averse and others as 
risk-prone is likely to make the analysis richer in providing insight on loss characteristics. 
 
Third, there is much room for further exploration of defensive strategies, following the 
lines laid out in Section VII.  We have identified four basic types of changes that can be 
implemented to reduce the expected rewards to attackers (and hence, losses to the 
system):  (1) increase the detection probability, dc(v); (2) increase the penalty for 
detection, ξc(v); (3) reduce the potential node loss, θc(v); or (4) increase the movement 
detection probability, rc(v, k).  In particular, strategies that have combined effects on 
more than one of these basic parameters are likely to be effective.  For example, an 
operator strategy that distributes the valuable pieces of the systems (as measured by 
θc(v)), thus spreading out the assets and reducing the potential losses, combined with 
adding more barriers, or transitions, before reaching a particular valued node, could be an 
effective means to defend the system. 
 
Finally, there is a need for significant empirical work to verify and validate, or to uncover 
significant weaknesses in, the analysis framework developed here.  It is important to 
develop additional experience in estimating parameters for the types of models described 
here and to determine the scalability of the approach for very large networks. In general, 
good data for analyses of system security are hard to collect, and the model described 
here requires significant supporting data.  Collection of appropriate data will require 
some effort, but the overall approach appears to be a promising direction for 
understanding and improving security of networked infrastructure, and thorough 
empirical testing is an important next step. 
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