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Abstract 

A concurrent computational and experimental investigation of thermal transport 
is performed with the goal of improving understanding of, and predictive capability 
for, thermal transport in microdevices. The computational component involves Monte 
Carlo simulation of phonon transport. In these simulations, all acoustic modes are 
included and their properties are drawn from a realistic dispersion relation. Phonon- 
phonon and phonon-boundary scattering events are treated independently. A new set 
of phonon-phonon scattering coefficients are proposed that reflect the elimination of 
assumptions present in earlier analytical work from the simulation. The experimental 
component involves steady-state measurement of thermal conductivity on silicon films 
as thin as 340nm at a range of temperatures. Agreement between the experiment and 
simulation on single-crystal silicon thin films is excellent, Agreement for polycrys- 
talline films is promising, but significant work remains to be done before predictions 
can be made confidently. Knowledge gained from these efforts was used to construct 
improved semiclassical models with the goal of representing microscale effects in ex- 
isting macroscale codes in a computationally efficient manner. 
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1 Introduction 

The process of packing increasing functionality into decreasing volume has marched for- 
ward with remarkable persistence, particularly in microelectronics and, more recently, mi- 
croelectromechanical systems (MEMS) and micro-opto-electromechanical systems 
(MOEMS). In many devices, this trend implies increased heat generation coupled with a 
smaller area over which to dissipate it. Higher operating temperatures, however, generally 
cause degraded performance and shortened life. For example, the reliability of transistors 
is exponentially dependent on the temperature of the junction. Consequently, an increase 
in the operating temperature of 10-15°C can cut the operating life in half [I]. This is also 
true of semiconductor lasers, which show a similarly strong temperature dependence in 
both their lifetime and their output power. As a result, several research efforts have been 
launched in the area of thermal management, such as DARPA's HERETIC program (FYO1: 
$9M). 

Compounding this problem, several experiments have shown that the thermal conduc- 
tivity of solid materials decreases as their characteristic lengths become very small or char- 
acteristic times become very short. For pure single-crystal silicon at room temperature, 
these effects are observable for (roughly) sub-micron length scales [Z] and sub-picosecond 
time scales, both of which have been reached by a variety of devices already in production. 
For example, measured thermal conductivities have been shown to depart from predicted 
values by more than an order of magnitude for superlattices used in vertical-cavity surface- 
emitting lasers (VCSELs) [3]. 

From an operational standpoint, this reduction in thermal conductivity makes it more 
difficult to dissipate self-generated heating. From a design standpoint, it will cause rapidly 
increasing errors in predictions from macroscale design tools because they are currently un- 
able to represent the governing microscale phenomena. Furthering the modeling difficulty, 
high aspect ratio features, such as thin films, can exhibit anisotropic thermal resistance. 
This anisotropy is also a direct consequence of microscale effects and is therefore absent 
in the baditional Fourier models. These models can therefore yield incorrect results for the 
heat flow pattern as well as its magnitude. 

1.1 Theory 

Thermal transport at the microscale is best viewed in terms of the behavior of heat carri- 
ers, which are predominantly electrons in conductors and phonons (lattice vibrations) in 
semiconductors and insulators. In bulk materials at temperatures greater than roughly 20K, 



these carriers scatter from each other sufficiently often to cause heat flow to function as a 
diffusive process. Thermal transport is thus dominated by properties intrinsic to the ma- 
terial. If these properties are measured (generally as a function of temperature) they are 
considered valid for any geometry. 

As the characteristic length (or the temperature) decreases to very small values, carriers 
become much less likely to scatter from each other than from geometrically-fixed scatterers, 
such as material boundaries, grain boundaries, defects, or impurities. The location of these 
scatterers with respect to the heat flow can therefore dominate the observed behavior and 
thermal transport properties are no longer independent of geometry. For example, in the 
case of a very thin pure single-crystal material, the heat carriers have a high likelihood of 
ballistic travel across the film and a low likelihood of ballistic travel along the film. The 
thermal resistance across the film thus tends to zero and the thermal resistance along the 
film thus tends to infinity. The thermal conductivity gleaned from a material handbook will 
therefore be either too high or too low, depending on the heat flow path. 

In order to predict these effects, the behavior of individual carriers can no longer be 
eliminated from the model by assuming a local thermodynamic equilibrium. Their travel 
and their interactions with each other and with geometric features must be explicitly rep- 
resented. For domains sufficiently larger than the spatial extent of phonon wavepackets, 
which generally span a few angstrom-scale unit cells, wave effects such as interference 
can be neglected [4]. The phonons can then be modeled as a collection of particles (the 
" phonon gas" assumption). In this case, the Boltzmann transport equation (BTE) provides 
a good model because it includes the effects of ballistic flight as well as scattering. This 
equation has seen extensive use in transport modeling, particularly in gases. 

Unfortunately, this seven-dimensional integro-differential equation has proven difficult 
to solve for realistic problems. A number of possibilities have been proposed, ranging 
from analytic to fully numeric, but all require simplifications to make solution possible. 
Choosing a technique for a particular problem therefore requires a compromise between 
accuracy, generality, and computational effort. 

1.2 Approach 

In this work, a concurrent computational and experimental investigation of microscale 
thermal transport in semiconductors is undertaken. By using information gleaned from 
each technique to guide the other, an increased understanding of the governing phenom- 
ena can be obtained through a systematic manipulation of subject conditions. In addition, 
throughout this work, a goal of providing information immediately useful to device design- 



ers is maintained. Understanding gleaned from the experiments and microscale simula- 
tions is therefore used to develop simplified models that can be incorporated into existing 
macroscale codes. Because most current, and many proposed, devices fall into a regime 
where microscale effects are significant but not dominant and where microscale codes are 
impractical for modeling a complete system, such subgrid models should provide microde- 
vice designers with a valuable predictive capability without a significant increase in burden 
on users or computers. 





2 Thermal Conductivity Measurements 

The measurement of thermal conductivity in thin-films has relied upon steady-state electri- 
cal resistance thermometry [5, 6, 7,8, 9, 101, harmonic joule heating (3-0) [l 1, 121, phase 
sensitive detection [13], and transient optical methods [14, 151. Periodic heating methods, 
such as 3-0, have become very popular for thin-films due to their ease of implementation 
and data reduction. In general, this method utilizes periodic surface temperature measure- 
ments, in conjunction with an approximate analmcal solution, to determine a material's 
thermal conductivity. The method exploits the interaction between electrical resistance 
fluctuations, due to the surface temperature changes, and the electrical current which is be- 
ing used to drive the heating. This interaction produces a small, but measurable, signal at a 
frequency which is three times the driving frequency (a), hence the name 3 - 0 .  One great 
advantage of this approach is that the thermal disturbance and temperature measurement 
are both implemented using the same surface structure. 3-0 can also be used to determine 
the conductivity of thin film layers which are situated on the surface of a substrate material. 

A typical 3 -0  surface structure is shown in Fig. 1. This surface device is constructed 
of a highly conductive metallic film, which is deposited and then patterned. Obviously, 
the layer beneath the structure must be a dielectric. It is desirable that the metal have an 
electrical resistance which is strongly sensitive to temperature. The contact pads provide 
connections to external electronics. The principal electronic device that makes this method 
possible is the lock-in-amplifier, which allows one to selectively screen out noise signals 
which are several orders of magnitude larger than the 3-0 signal. 

Figure 1. A typical 3 - 0  surface test device patterned onto a sup- 
ported thin-film sample 



In measuring the thermal conductivity of thin-films, the 3-03 method assumes that film 
being measured is: 

1. of negligible thermal capacity 

2. has a much lower thermal conductivity than the substrate beneath 
(no thermal spreading in the film). 

This allows one to assume that the film adds a constant amplitude shift in the 3-0 voltage 
as function of frequency. In this method, the thermal conductivities of the substrate and 
film are given by: 

where is the applied voltage amplitude, R is the line resistance, L is the test section 
gage length, aR/aT is the slope of the resistivity as a function temperature, b is the half 
width of the heater, tfjIm is the film thickness, and is the 3-03 voltage amplitude. 

Typically, experiments are performed in a thermally controlled vacuum environment. 
However, the 3-0 method can be performed in standard laboratory conditions with the 
addition of about 5% error to the measurement results. The method is also resilient in that 
it is very insensitive to radiation heat loss. This is due to the fact that the heaterltemperature 
sensor in the sample is typically on the order of 20pm or less in width and 1 mm in length. 
The overall surface area of the heated region is quite small and emits very little energy. 
Since the amplitude of the thermal wave decreases with increasing frequency, errors also 
decrease as higher heating frequencies are used. Figure 2 displays an estimate of the ratio of 
heat loss by radiation to that by conduction in a typical 3-0 sample operating at 10 Hz. This 
estimate shows that less than 0.1% of the heat is transferred by radiation for temperatures 
up to 1 OOOK, assuming a conservative emissivity value of 1 across the temperature regime. 
Thus, the 3-01 method is very attractive for thermal cond~ictivity measurements in thin-films 
and requires very little sample preparation. 

One drawback in using the 3-0 method to measure thin-film thermal conductivity is that 
it is difficult to deduce anisotropic properties from this measurement with high accuracy. 
For this reason, methods such as steady-state and phase shift periodic heating methods 



Figure 2. Estimate showing the ratio of the heat lost by radiation 
versus conduction through the sample at a heating frequency of 
10Hz. The estimate show that the radiation contribution to heat 
loss is less than 0.1% for temperatures up to 1000K. 

have been employed to measure in-plane thermal conductivity of thin-films. In general, 
these methods provide very high accuracy of in-plane thermal conductivity at the price of 
increased sample preparation. 

For the highest accuracy measurements, samples are fabricated using standard semi- 
conductor microfabrication to create a membrane structure as shown in Fig. 3. At least two 
electrical elements are microfabricated on the membrane to serve as a temperature sensor 
and heater, independently. Again, electrical isolation layers of dielectric materials are used, 
typically on the order of 10-30nm. If a steady state heating current is passed through the 
heater on the membrane, the thermal conductivity is given in a straightfornard manner by: 

p Lheat es- sensor 
K =  

2Lgauge t f i l ,  AT 

where K is the thermal conductivity, P is the power applied to the heater, Lheater-sensor is 
the distance between the heater and temperature sensor, Lgauge is the test section length, 
and t f j j m  is the film thichess. 

The aspect ratio of the heater design is important. Typically, the gauge length to mem- 
brane width should be a factor of 3 of greater in order to reduce membrane boundary effects 
on the heat flow. The width of the window and spacing of the heaters can be determined 
by the thermal healing length. The thermal healing length is the distance over which the 
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Figure 3, Diagram showing the steady state electrical resistance 
thermometry sample with a thin suspended membrane. Left dia- 
gram displays the side view and right diagram shows a top view. 

temperature decays to the ambient temperature of the controlled environment. This can be 
estimated by using an extended surface analogy and assuming radiation losses along the 
membrane and conduction through the membrane: 

Here, t fir, is the film thermal conductivity, u is the Stefan-Boltzrnann constant, T is 
the average film temperature, and Gmbienl is the surrounding temperature. For materials 
like polysilicon, this generally results in thermal healing lengths on the order of 1-2mm. 
Thus, heater and temperature sensors can be spaced hundreds of microns apart and provide 
excellent measurements of temperahue and thermal conductivity. 

In cases where the membrane structure shown in Fig. 3 cannot be fabricated, samples 
can be measured in the multilayer film configuration shown in Fig. 4. This sample design 
requires less microfabrication, similar to the 3-0 sample, but is more prone to experimental 
uncertainty. In this sample, a thin-film of high thermal conductivity is deposited on a thick 
layer of material with low thermal conductivity. This induces 1-D heat spreading in the 
thin film layer. The thermal conductivity is still calculated according to Eq. 3. However, 
the thermal healing length is much smaller in this case. This can be estimated by: 



Silicon I 

Figure 4, Diagram showing the steady-state thermal conductivity 
sample used for in-plane thermal conductivity measurements on 
highly conductive layers. 

where toxide is the oxide layer thickness, and K o ~ d e  is the oxide layer thermal conductivity. 
This results in thermal healing lengths values on the order of 15pm or less. Thus, heater- 
sensor spacing must be on the order of a few microns. With the heater-sensors being on 
the order of 2pm in width or greater, measurement of temperature over this distance is no 
longer a "point" measurement but an average over distance in which the temperature is 
decaying rapidly. Thus, more uncertainty can be found in these types of measurements. 

2.2 Measurements 

Thermal conductivity measurements were performed on single crystal and polycrystalline 
Si thin-films. Silicon was chosen as a model material because information such as its dis- 
persion relationship is already known, it is amenable to microfabrication, and it is of tech- 
nological importance to the development of surface micromachined MEMS. Thin films 
of single crystal silicon were obtained in the form of silicon-on-insulator wafers from 
SOITECH, Inc. Films ranging from 340 nm to 1500 nm were measured. The sample sizes 
chosen were limited to the availability of wafers from the supplier with the appropriate 
buried oxide thickness. The buried oxide thickness was kept at 3.0pm in order to increase 
the thermal healing length, especially for the thin silicon layers. All samples for the single 
crystalline silicon layers were amenable to the structure shown in Fig. 4 and were tested 
under steady state conditions. The healing length ranged from 1 0 - 2 5 p .  For these sam- 
ples, heaters and sensors were made from evaporated aluminum films. They were etched 
to be 2 pm wide and between 4- 10 pm apart. Aluminum was chosen since it provided excel- 
lent sensitivity, with a relatively large aR/a T (compared to other metals) of approximately 
0.4%/K throughout the temperature range of interest. 

For polysilicon layers, films were deposited by LPCVD at the Center for Integrated 



Figure 5. TEM image showing the grains in the as-deposited 
polysilicon. Average grain size was determined to be approxi- 
mately 130nm. 

Systems at Stanford University. Polycrystalline silicon films (2pm thick) were deposited 
on thermally oxidized silicon wafers at 620°C. This resulted in as-deposited polycrystalline 
films with an average grain size on the order of 130nm (Fig. 5). 

The polysilicon films were annealed in a nitrogen environment at 1 100°C for 1 hour. In 
order to study the effects of multilayer processing found in MEMS devices, a select number 
of wafers were reinserted into the LPCVD chamber to deposit a second layer of polysilicon 
for a total thickness of 4pm. This second layer was also annealed at 1 100°C for 1 hour. 
The in-plane thermal conductivity was measured using electrical resistance thermometry 
on free-standing membranes of polysilicon created through standard Bosch etch processes. 
These samples were amenable to testing using the structure in Fig. 3. With a healing length 
on the order of 2 mm, the heaters and temperature sensors could be patterned much further 
apart than in the single crystal samples. Again, heaters and sensors 2pm in width were 
used, but they were placed 300pm apart. The membrane window was 3.6 mm by 1.5 mm. 
The gauge length of the sensor and heater was 700pm. 

For experiments, samples were cleaved from the silicon wafers and packaged in ceramic 
packages using wirebonding or conductive epoxy (Fig. 6). The samples were placed in a 
liquid nitrogen cooled cryostat and evacuated to a pressure on the order of 1 x torr. 
The temperature was controlled through a cold pedestal on which a 50W heater was at- 
tached. This provided the capability to control the sample from 77-325K. A radiation 
shield was also employed to reduce radiation heat losses to the environment. The radiation 
shield was gold coated and controlled to be the same temperature as the sample. 

The predominant sources of experimental error in the steady state electrical resistance 
thermometry method arise from uncertainty in the film thickness and the slope of the resis- 
tance versus temperature @R/aT) of the heaterlsensor element. Care was taken to reduce 
this error by quantifying the film thickness using broadband reflectometers and scanning 



Figure 6, Pictures showing the patterned heater and temperature 
sensor with wirebond connections (left) packaged and placed in a 
cryostat (middle) and cooled to the desired test temperature (right). 

Figure 7, An SEM photograph showing the thickness of the vari- 
ous layers in the SO1 wafer structure used for thermal conductivity 
testing. 

electron microscopy (Fig. 7). Values of aR/aT were carefully calibrated in the cryostat, 
with a measurement at each test temperature. 

While the samples tested in this study primarily used steady-state electrical resistance 
thermometry, the 3-0 method was also developed and implemented during the project to 
provide additional capabilities for thermal conductivity measurements. This work was done 
largely by Brandon Olson, an IGERT and MESA Institute summer intern from the Univer- 
sity of Utah. While results from the 3 -0  method will not be presented in this report, it 
should be mentioned that this capability does exist at Sandia as well as some new data 
reduction algorithms as a result of this LDRD. 
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Figure 8. Thermal conductivity of single crystal Si as a func- 
tion of temperature. Data compare the results of thin-films to bulk 
silicon. 

2.3 Results 

The experimental results for single crystal silicon are shown in Fig. 8 for films 1.5, 1 .O, and 
0.34pm in thickness. Data for the 1.5pm film shows very little reduction in thermal con- 
ductivity at room temperature when compared to bulk silicon (K = 148 W / m +  Pi). At lower 
temperatures however, the data are markedly different. Near 1 OOK, the thermal conductiv- 
ity of the 1 . 5 p  film is an order of magnitude smaller than the bulk result, with a value of 
approximately 330 W/m.  K, and the peak value, which is only slightly larger, occurs near 
80K. In analyzing the bulk thermal conductivity data, it can be seen that the peak in thermal 
conductivity occurs at a much lower temperature (40K) with a peak value of 3000 W/m+ K. 
Similar results are also seen for the other two films. For the 340 nm film, there is a reduction 
of thermal conductivity on the order of 40% at room temperature (K = 86 W / m +  Kj. This 
shows that length scale effects are still dominant at relatively high temperatures at this size 
scale. 

The reason why the thermal conductivities are so different at lower temperatures and 
converge at higher temperatures can be attributed to boundary scattering effects. At high 
temperatures, the dominant phonon scattering mechanism is Umklapp scattering where the 
scattering mean free path, h, is dominated by temperature effects (1 - exp(OlT)) and is 
much smaller than the thickness of the film (O is the Debye temperature, which is 645K 
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Figure 9. Comparison of data from experiments at Sandia to 
those of our collaborator's group at Stanford [16]. Good agreement 
between measurements is seen. 

for silicon). While phonons are still scattering from the boundaries, the relative contribu- 
tion this has to thermal impedance is quite low. As the temperature decreases, boundary 
scattering becomes more dominant as the mean-free-path for phonon-phonon interactions 
increases. Since boundary scattering length scales are fixed, this limits the maximum con- 
ductivity that can be achieved in the material, thus the obsewed lower peak. 

Figure 9 shows a comparison of the thermal conductivity data measured on single crys- 
tal Si to data obtained by Asheghi [I 61 while a member of Ken Goodson's group at Stanford 
University. The data show fairly good agreement for this size scale. Data on samples fab- 
ricated for this study were taken both at Sandia and at Stanford University to cross check 
the testing procedure. While this does not ensure the complete accuracy of the data, it pro- 
vides some meashre of benchmarking between two different experimental studies. Thhs, 
we have fairly good confidence in the experimental data. Based on a more formal analysis, 
uncertainties in the data taken in both studies range between 15-20%. 

Experiments on doped single crystal silicon was also performed on films that were 
1.5pm in thickness. Films were doped with boron to levels of 1 x 1 0 ~ ~ - 1 0 ~ ~ a t o m s / c ~ .  
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Figure 10. Data showing a comparison of the thermal conduc- 
tivity of doped and undoped single crystal silicon. Virtually no 
difference is seen over the temperature range measured. 

Results of this experiment are shown in Fig. 10. Overall, no observable difference in ther- 
mal conductivity between the doped and undoped films were seen. It is unclear as to why 
this occurred, but the results may be limited to the temperature regime over which the tests 
were performed. Differences in the thermal conductivity of doped and undoped silicon 
have been observed at temperatures below 8OK (Ref. [8], Fig. 6) whereas we were limited 
to testing dawn to 87K with the experimental setup at the time. This resulted from having 
a dual stage heater in the cryostat that had to maintain a temperature difference of at least 
7K. We found during operation that the sample could be controlled much easier at low 
temperatures if this were increased to 10K, thus putting us at a minimum test temperature 
of 87K for liquid nitrogen cooling. 

The thermal conductivity of single and double-layer (2pm per layer) undoped polysil- 
icon films is shown in Fig. 11. The data show that the thermal conductivity ranges from 
approximately 60 W / m +  K at room temperature up to a peak value of 67 W/m.  K. Data for 
the double-layer polysilicon film shows a slightly lower conductivity value ranging from 
5 1 W/m. K at room temperature up to 6 1 W/m K at 150K. 

It is interesting to note that the thermal conduction values reported in this work are 
quite similar or greater in magnitude to those seen for doped polysilicon 181 films and 4-5 
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Figure 11. Data showing the thermal conductivity of single and 
double layer recrystallized undoped polysilicon films compared to 
previous results on an as-deposited single layer film (Srinivasan et 
a1. [ 1 71). Data show that the recrystallized materials posses a larger 
thermal conductivity as well as a stronger temperature dependence 

times greater than previously reported for undoped polysilicon films (-- 12 W/m Pi) [17]. 
While the same deposition program and faciliw was used by Uma Srinivasan et al. [17], 
the additional step of the 1100°C anneal induces a large change in the thermal conductiv- 
ity. The data from Ref. [17] are also included in Fig. 11. It can be seen that the thermal 
conductivity in the as-deposited film is not only lower, but it has very little temperature 
dependence above 150K. This is in contrast with the films that were recrystallized in our 
study. This difference is due to the fact that the Umklapp processes are more dominant 
in recrystallized materials which possess a smaller defect density. For dielectric materials, 
the phonon mean free path is determined predominantly by Umklapp scattering, phonon- 
grain boundary scattering, and phonon-defect scattering. Of these, Umklapp scattering is 
the only temperatwe dependent quantity and becomes dominant when the defect density is 
low. Thus, the behavior of the thermal conductivity is not solely grain size dependent, but 
also defect density dependent. It is expected that the film boundaries had little effect on the 
thermal conductivity seen in these films, based on the study of single crystal silicon. 

Transmission electron microscopy analysis showed an average grain size on the order 



Figure 12. TEM images of the microstructure of the undoped 
polysilicon. Left picture is a single layer film while the right shows 
a double layer film 

of 150nm in the polysilicon material prior to the high temperature annealing. This was 
consistent with previous results on undoped polysilicon [17]. However, the 1100°C anneal 
promoted dramatic recrystallization, with the formation of grains on the order of 580 nm in 
the single layer material (Fig. 12). It is clear to see that some grains are significantly larger 
than 1 pm. Images with increased magnification also show that these recrystallized regions 
have few twins or other defects as seen in the regions without significant recrystallization. 
The presence of these regions provide thermal transport paths with much less resistance. 
The data also show that the peak in thermal conductivity appears to be shifted to higher 
temperatures than observed in single crystalline silicon films. This is due to the fact that 
the phonon mean-free-path is dominated by phonon-grain structure interactions, which are 
spaced on the order of the grain size (fully recrystallized grains) or smaller. Thus, higher 
temperatures must be reached than seen in single crystalline Si before phonon-phonon scat- 
tering effects become dominant. 

TEM micrographs in Fig. 12 show the microstructure of the films with multiple layers 
of polysilicon. In this case, the grain size in the top and bottom layers were measured. The 
data show that the grains in the bottom layer are on the order of 580nm while the top layer 
has a slightly smaller grain size (440nm), with a significant layer of small grains near the 
interface of the two layers (- 100 nm or less in size). The slight difference in grain size may 
be the cause of the smaller thermal conductivity measured for these two films. It should be 
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Figure 13. Data showing the thermal conductivity of recrystal- 
lized polycrystalline silicon before and after an 8 hour, 700°C an- 
neal. Data show no detectable difference in thermal conductivity 
for the samples. 

noted that the difference in conductivity values was consistent and results were repeatable 
across several samples taken from each wafer. While it is not clear as to why the top layer 
has a smaller grain size, it may be due to slight temperature differences between the two 
depositions. It is well known that polysilicon grain size and morphology are highly temper- 
ature dependent and nonlinear between 580-630°C. Thus, a small difference in temperature 
of a few degrees co111d be enough to induce this temperature change. 

Data in Fig. 13 show the effects of downstream heat treabnent on the thermal con- 
ductivity of the undoped recrystallized polysilicon material. Both films were annealed at 
1100°C for 1 hr after film deposition. This was followed by heat treating one of the wafers 
at 700°C for 8 hrs. This temperature was chosen in order to be consistent with or slightly 
greater than many "moderate" temperature CMOS fabrication processes (low temperature 
oxide, polysilicon deposition, silicon nitride deposition, etc.) and temperatures that are en- 
countered in device service. Both thermal conductivity data and TEM analysis showed no 
measurable changes in either thermal conductivity or grain size. 





3 Material Model 

Material models, for the purposes of this work, include phonon characteristics that are 
independent of the problem at hand except perhaps for the material chosen. These phonon 
characteristics include the equilibrium distribution, the dispersion relation, and the group 
speed. The material models described herein are employed, practically verbatim, in all 
subsequent models discussed in this work so they are grouped into an independent section. 

3.1 Equilibrium Distribution 

Phonons are members of a particle class known as bosons, which are characterized by 
overlapping wavefunctions and no exclusion principle. At a given temperature, T, the 
ntmber of phonons expected to occupy a given state, which is defined by a frequency, o, 
and a polarization, p, is given by the Bose-Einstein distribution: 

Note that the polarization appears only through the allowed frequencies, given by the 
dispersion relation described in the next section. For the temperatures treated in this docu- 
ment, the quantization of phonon occupation numbers will be neglected. In that case, Eq. 6 
may be viewed as a continuous function representing the number of phonons per unit fre- 
quency found in a small region around o. We will therefore drop the brackets and reference 
the Bose-Einstein distribution through n(o,  T). 

3.2 Dispersion Relation 

A dispersion relation is the key link between the simulation and the material. It relates 
the wavenumber of a phonon to its frequency, which determines its energy and its phase 
speed. Also important, the slope of the frequency versus wavenumber relationship at a 
given wavenumber, k, determines the group speed of a wave packet centered at k, which is 
the speed at which it will carry information. Becam this work concerns energy transport, 
group speed is a critical parameter. 

Dispersion relations for a number of materials have been measured experimentally via 
neutron scattering, as well as computed using ab initio molecular dynamics techniques 
[I 81. For computational convenience, an analytical representation of the dispersion relation 



is ideal. The literature contains a number of proposals for such representations, many of 
which are reviewed in [19]. In this work, a fourth-order polynomial was chosen. The 
dispersion relation is therefore represented by 

Fitting Eq. 7 to neutron scattering data for the [loo] direction in silicon from Brock- 
house [20] and Nilsson and Nelin [2 11, the coefficients are found to be: 

for the longitudinal acoustic (LA) branch and 

for the (degenerate) transverse acoustic (TA) branches to yield w in radians per second. 

The resulting polynomial representation of the dispersion relation is compared to the 
experimental data in Fig. 14. 

For simplicity at this stage, we will use the [loo] dispersion relation for all direc- 
tions, i.e. the material is assumed isotropic. Under this assumption, triple integrals over 
the wavevector, which occur when computing quantities such as total energy, may be re- 
placed by a single integral over the wavenumber by converting to a spherical integral over 
a sphere of radius k and observing that the integrands of interest are independent of the 
azimuthal and polar angles. The advantage of this formulation over the more common 
conversion to frequency integrals is that the density of states is simply 47&/2? (under the 
periodicity assumption) [22] instead of 4nk2 /a3 g. This removes the numerical difficulties 
associated with integrating in the region (which is considerable for TA phonons) near the 
Brillouin zone boundary where $ becomes infinite. 

As a check on the isotropic assumption, the dispersion fit, and the k-space integral 
formulation, we can calculate the specific heat per unit volume via: 
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Figure 14. Comparison of the dispersion relation fit in [loo] 
sillcon to aperlmental data [20, 211. 

where U is the energy per unit volume, which is obtained by integrating the phonon energy, 
hm, over the distribution function. 

The result of Eq. 8 as a function of temperature is shown in Fig. 15. While reasonable 
agreement is obtained at low temperatures, the calculated specific heat departs increasingly 
from the measured values as T increases. Surmising that the error is due to the omission 
of optical modes from the calculation, they are included in an approximate manner by 
assuming that all three modes oscillate at 14THz, which makes evaluation of Eq. 8 trivial. 
Adding this contribution to the previous result and plotting in Fig. 15, good agreement is 
obtained over the entire temperature range. 

With this representation of the dispersion relation in hand, it is straightforward to evalu- 
ate Eq. 6. For example, to compute the total number of phonons per unit volume at a given 
temperature, we integrate n over k 

which yields 6.3 x phonons/m3 at 300K. 

To view the relative populations of the modes as a function of wavenumber, we can 
plot the integrand of Eq. 9, as shown in Fig. 16(a), which shows relative populations of TA 



Figure 15. Comparison of measured specific heat to values com- 
puted with Eq. 8 under the dispersion model and k-space integrals 
used in the current work. 

and LA phonons at each wavenumber at 300K. It should be noted that the TA populations 
have been doubled to account for the two degenerate branches. For comparison, Fig. 16(b) 
shows the same plot at 80K. Comparing these cases, it is clear that more phonons are 
found at higher frequencies as the temperature increases. At 80K, the high wavenumber 
LA phonons are nearly absent. The high wavenumber TA phonons are still dominant but 
a peak is beginning to form at lower wavenumber. This peak becomes dominant as the 
temperature decreases further. 

3.3 Phonon Group Speed 

An accurate representation of the carrier speed is critical to any transport simulation. For 
phonons, information is carried at the group speed of the wavepacket centered at k, which 
is given by 

This derivative is trivial to compute under the polynomial approximation to the dispersion 
relation of Eq. 7, yielding: 
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Figure 16. Relative probability of TA and LA phonons as a func- 
tion of wavenumber. 

The resulting group speeds for the coeflicients given in the previous section are shown in 
Fig. 17. Two weaknesses in the current polynomial dispersion model are apparent in this 
figure. First, the TA group speed drops slightly below zero at k = 0.913, then reemerges 
and reaches 128m/s at k = 1. In this work, the group speed is manually set to zero above 
k = 0.9 13. A second issue is that the LA group speed does not go to zero at k = 1. Given the 
good fit to the highest k measured in the experiments, it is likely that the the speed drops 
very rapidly to zero near k = 1, thus the region in wavenumber space with an incorrect 
speed is relatively small. It may be noted from Fig. 16(a), however, that k= 1 is the most 
probable LA wavenumber at room temperature, though the distribution is rather flat and TA 
modes are much more numerous. While it is likely that the effects of this shortcoming are 
minimal, this conclusion cannot be guaranteed, thus alternative dispersion models should 
investigated in future work. 





4 IVlonte Carlo Simulation 

The term "Monte Carlo" (MC) appears in a diverse array of generally numerical techniques 
used in a wide variety of fields. The one feature that binds these techniques is some degree 
of randomness in their representation, hence the "Monte Carlo" moniker. 

The simulation scheme employed in this work most closely resembles the method 
known as direct simulation Monte Carlo (DSMC). This technique was developed by Bird 
[23] for simulating gas dynamics in regimes where the continuum assumption breaks down 
and the Navier-Stokes equations are no longer accurate. Later analysis showed rigorously 
the relationship between DSMC and the Boltzmann equation [24] and it has been employed 
iri flows ranging fro~n free niolecular to fully coritinuuni. 

The "direct simulation" portion of the DSMC name comes from the representation of 
a gas as a collection of loosely interacting particles, as it is in the physical case. These 
particles move about the domain and interact with each other and with the boundaries in 
a (generally) physically reasonable way. The "Monte Carlo" portion of the DSMC name 
is required due to some assumptions required to make the code tractable. First, a smaller 
number of particles are represented in the simulation than exist in the physical case. This 
assumption is required due to the vast number of particles in most cases of interest. Func- 
tionally, this means that each computational particle represents a volume, rather than a 
point, in phase space. Second, the move and collide steps are decoupled. This greatly 
simplifies both steps and can make the code more computationally eficient in terms of 
pipelining and cache use. A key consequence of these assumptions is that binary collisions 
defined in terms of two particles arriving at the same point in space and time are no longer 
possible. Under move/collide decoupling, particles move directly through each other with- 
out notice. Furthermore, because the computational particles represent volumes in phase 
space, several intersection points are possible for a given pair. Collisions are therefore han- 
dled in a statistical manner, with stochastic determination of collision pairs as well as the 
post-collision state. 

Functioning under the "phonon gas" assumption (Sec. 1.1), the Boltzmann equation 
captures the relevant phenomena, thus DSMC provides a reasonable technique for this 
investigation. Mazumder and Majumdar [25] published the first work in this direction in 
2001. Many of the submodels used in the cwrent work build hpon the framework developed 
by these authors. 

The code developed for this work will be referred to as MOCAPHTS, for Monte Carlo 
Phonon Heat Transport Simulator. It was written in C++ and has been run on a number of 
platforms (Sun, SGI, LINUX) in serial and in parallel. MOCAPHTS includes compile-time 



selection between one and two dimensional versions. Details of the collection of models 
and techniques that make up the code, as well as presentation and discussion of its results 
are collected in this section. 

4.1 Baseline Code Description 

4.1 .I Random Number Generation 

Because computers generally perform instructions in a consistent manner, it is impossible 
for them to generate truly random quantities. Algorithms have been written, however, that 
produce sequences that appear random by satisfying various statistical tests (sometimes 
referred to as "pseudo-random" sequences). An exhaustive overview of the topic can be 
found in chapter 3 of Knuth [26]. 

Due to their stochastic nature, Monte Carlo algorithms can be very sensitive to the 
quality of the random number generators they employ. Press er al. [27] note that the system- 
supplied rando is often flawed and assert that "If all scientific papers whose results are in 
doubt because of bad randos were to disappear from library shelves, there would be a gap 
on each shelf about as big as your fist." 

Most system-supplied rando routines are of a class known as linear congruential gen- 
erators, which create a sequence according to: 

Rfn+l = (aRfn + c) mod m. 

where a, c, and m are chosen constants. 

These generators are popular because they require very few operations, thus they are 
very fast and can be inlined. In the context of the simulation technique used in this section, 
however, the linear congruential generators have a key flaw: successive calls can be related 
in unfortunate ways. For example, if Rfn is exceptionally small, Rfn+, cannot be large. This 
type of sequential correlation can be easily visualized by using the generator to choose 
coordinates in a space discretized into "bins" and placing a marker in each bin when a 
coordinate is selected within it. In the ideal case, for sufficiently large sequences, all the 
bins would have an eqml nmbe r  of markers when the algorithm terminates. This test is 
referred to as the "serial test" by Knuth [26] and code for such a test in 2D is given in 
Appendix E in Bird [23]. 

The results of this test for a linear congruential generator with a = 197, c = 0, and 
m = 9999943, used in a Ph.D. thesis on simulating hypersonic flows with DSMC, is given 



Figure 18. Series test for a linear congruential generator used in 
previous hypersonic DSMC work. 

in Fig. 18. In this case, a 100 x 100 grid was set up and lo8 pairs of coordinates were 
chosen. We therefore expect 10,000 markers in each bin. It can be seen, however, that 
some contiguous sets of bins have fewer than 5,000 markers in them, implying that certain 
pairs of numbers tend to be neglected. In general, it can be shown that the coordinates 
chosen in this manner in r dimensional space will lie on a maximum of about ml/' planes 
of dimension ( t -  1) [26]. This can be an issue when the acceptance-rejection method 
outlined in App. A is used to choose from a distribution. For example, if a small number 
is improbable, it will be accepted more often than appropriate because the acceptance trial 
will also choose a small number and will thus pass the subsequent probability test. Because 
the driving force in MOCAPHTS is much smaller than in a DSMC simulation of hypersonic 
flow, this generator caused observable anomalous behavior in the current work. 

Schemes for shuffling the sequence have been proposed [26] to eliminate the sequential 
correlation problem. In this work, a subtractive scheme of an entirely different nature 
was eventually adopted. An implementation of this scheme named ran3 0 is given in [27]. 
Taking advantage of C++, the first conditional and the pointer argument to the generator 
were eliminated by making the seed private. Another conditional was eliminated by taking 
advantage of unsigned integer rollover to obviate checking for negative numbers. These 
modifications increased the speed of the scheme by a factor of approximately 2.2. A plot 
similar to Fig. 18 is given for the new scheme in Fig. 19. In this case, no sequential 



Figure 19. Series test for modified ran30 subtractive random 
number generator from Press et al.. 

correlation is observable, even though the color axis has been tightened significantly around 
the expected value of 10,000. 

4.1.2 Weight Factor 

In order to make the computation tractable, the number of particles in the simulation is 
generally smaller than the number present in the physical case. In MOCAPHTS, the user 
specifies the target particle count for the simulation. A "weight factor" is then computed by 
calculating physical phonon count and dividing by the target. The physical phonon count is 
determined by calculating the number of phonons per unit volume at the specified reference 
temperature (Eq. 9) and multiplying by the domain volume. 

4.1.3 Exclusion of Stationary Phonons 

It may be observed from Fig. 16(a) that the most probable phonon at room temperature 
is TA with k= 1. From Fig. 17, however, it is apparent that these phonons are unable to 
transport energy because they have zero group speed. During a calculation, any energy 



transferred to these phonons remains stationary until it is subsequently transferred to a 
mobile mode. Because the cases treated in this work are steady-state, this process is not of 
interest and skipping it by transferring energy only from mobile mode to mobile mode will 
not change the final result. This is equivalent to setting the relaxation time for these modes 
to zero. The same argument holds true for the optical modes. 

Optical modes and TA phonons with k > 0.91 3 (see Sec. 3.3) are therefore omitted from 
the calculation. This enables the computational particle count to be reduced by assigning 
all particles to modes that directly contribute to transport. In effect, for a given number of 
computational particles, the weight factor is decreased because the phonons in the simula- 
tion are used to simulate a subset of the phonons that exist in the physical case. It should 
be noted that, when using this simplification, the upper limit on wavenumber integrals in- 
volving TA phonons, such as Eq. 9, must be changed from 1 to 0.915 in order to properly 
weight the remaining modes. 

Due to the cell-based collision scheme, a particle shot~ld have an adequate opportunity to 
collide, and thus make its presence felt, before it leaves the cell. In addition, the timestep 
must be small compared to the mean collision time to justify decoupling the move and 
collide phases [23]. To satisfy the first constraint, the timestep is set to some fraction 
(usually 112) of the time it takes the fastest particle (an LA phonon with k = 0) to cross a cell 
at its narrowest point. To satisfy the second constraint, in conjunction with the first, the cells 
are set to some fraction (roughly 114) of the mean free path at the reference temperature. 

4.1.5 Initial Conditions 

To initiate a calculation from scratch (rather than from the particle field saved from a pre- 
vious calculation) computational particles must be placed in the domain. For each particle, 
the position, wavenumber, polarization, and velocity must be chosen. To ensure a rea- 
sonably accurate specification of the starting temperature despite the random nature of the 
particle initialization, particles are added until the target energy, rather than until the target 
number of particles, is reached. To implement this requirement, the total energy is com- 
puted before and after the creation of each particle. If the addition of a given particle brings 
the total closer (in absolute value) to the target, the creation process is continued. If, how- 
ever, the particle's addition moves the total energy further from the target, the particle is 
discarded and the process is terminated. 



When creating a computational particle, the wavenumber is chosen first. This selection 
is performed using the acceptance-rejection method outlined in App. A. To begin the pro- 
cess, a wavenumber is chosen from a uniform distribution. The total number of phonons 
per unit k at this k (including both polarizations), n, is then calculated at the reference tem- 
perature and normalized by the maximum value, n,,. A second random number, Rf, is 
then chosen and compared to this result. The chosen k is accepted if Rf < n/n,,. If not, 
the process begins again with another randomly-chosen k. 

To choose the polarization, the fraction nLA/n is computed at the target wavenumber. 
A random fraction is then generated. If Rf < nLA/n, then the particle is assigned to the LA 
branch, otherwise, it is assigned to the TA branch. 

Once the wavenumber and phonon type are determined, the frequency and speed of the 
particle are determined according to equations 7 and 11, respectively. The velocity vector 
is then randomly oriented according to a spherically uniform distribution to determine the 
components of the particle speed. 

4.1.6 Temperature Determination 

In most cases, temperature is a convenient output quantity. For some boundary conditions 
and scattering routines, it is a required quantity. We therefore require a means of determin- 
ing the temperature in a given region of the domain, usually a cell, given the microscopic 
state within it. 

It is quite straightfornard to measure the total energy in a region by tallying the phonons 
it contains and multiplying by the weight factor. It is also straightforward to determine the 
energy per unit volume of an equilibrium state at a given temperature via: 

where the temperature dependence appears in n via Eq. 6. A measure of the temperature 
may therefore be obtained by inverting Eq. 13. Unfortunately, this equation is not easily 
invertible. While the inversion may be done numerically using standard techniques, this 
process is rather expensive becahse it involves nmerical integral evaluations at each root 
finding step. In an early version of the Monte Carlo code developed for this work, it was 
discovered that 96% of the total computation time was spent on this operation. 

A plot of energy as a function of temperature is shown in Fig. 20. At high temperature, 
the relationship is linear while at very low temperature, it is quartic. One could therefore 
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Figure 20, Energy per unit volume of an equilibrium phonon 
distribution at a given temperature. 

conceive of a scheme that switches from quartic to linear at some temperature, with a 
bridging function in between. 

As a simpler option, a lookup table with an adjustable step size linear interpolation 
scheme was implemented in this work. In this scheme, the step size is adjusted until the 
*worst case" error in the calculated temperature reaches a target value {usually 0.01%). 
Because the nonlinearity of the E vs. T curve increases as temperature decreases, it is 
assumed that the worst case error occurs in the middle of the lowest temperature interval. 
The step size that satisfies the error constraint may then be found using a Ridders' method 
root finding scheme [27]. The lookup table is then built by numerical inversion at each 
point. If, during the simulation, an energy lower than the lowest value in the table is 
encountered, a new step size is found and the table is rebuilt. If an energy higher than 
the maximum is encountered, more entries are added to the table using the same step size. 
Because many simulations involve a relatively small temperature range, this scheme often 
requires very little memory. In addition, lookups and interpolation are very fast because 
the step size is constant throughout the table. Speed is important in this operation because 
the temperature is calculated in every cell during every timestep. 



4.1.7 Cell-Finding Scheme 

Once a particle is moved, its position on the grid must be determined. In general DSMC 
codes on unstructured grids, this operation can consume a large percentage of the total CPU 
time. Several methods have been proposed for treating this problem in the general case 
[28, 29, 301. The scheme employed in this work represents a combination of techniques, 
involving both trajectory tracing and regular Cartesian grids. 

The domains in this work are built from a series of "zones", each containing a body- 
fitted regular grid. The particle movement from zone to zone is handled with a trajectory 
tracing algorithm, i.e. if a particle is noted to have left its zone, the zone adjacent to the 
intersected face is interrogated or the boundary condition on that face is employed. This 
operation continues until the particle move is completed and the final zone is identified. 

Once the final zone is found, determining the proper cell is then simply a matter of 
integer division: divide a position component by the cell size in that direction and truncate 
to the nearest integer, producing the cell index. Due to the finite precision with which the 
position is represented and the division is performed, this process occasionally yields a cell 
index that larger than the actual range. Because this only happens at the highest index, and 
the error is always exactly unity, this condition is trivial to detect and correct. 

4.1.8 Boundary Conditions 

Two boundary conditions are required to simulate the systems treated in this work: isother- 
mal and adiabatic, The former boundary condition is used to establish a temperature gra- 
dient across a domain while the latter is required to represent boundary scattering for in- 
plane thermal transport simulations in thin films. It is a notable feature of the MC method, 
compared to the semiclassical methods, that thin film effects are considered separately 
as boundary conditions instead of lumping them with other scattering mechanisms via 
Matthiessenk rule [3 11. 

Isothermal Boundaries 
Isothermal boundaries are based on assuming a stationary equilibrium condition at the spec- 
ified temperature on the boundary face. Given this assumption, the number of phonons 
expected to enter the domain through the face, N f ,  during each timestep can be calculated 
as the equilibrium occupation number of each polarization and frequency times its average 
velocity normal to the boundary. Assuming a spherically-isotropic velocity distribution, 
this expression becomes: 



Because the result is generally not an integer, but the number of particles is necessarily 
integral, a means must be chosen for dealing with the fractional part. Two primary options 
spring to mind: carry the remainder to the next time step, or treat the fractional part as a 
probability that an additional particle will be introduced in each timestep. Because the first 
option results in a regular pattern in time of extra particles being introduced, the second 
option was chosen as slightly more consistent with the stochastic nature of the simulation. 
It should be mentioned, however, that the first option was implemented in the first version 
of the code and no striking difference was observed in the results when the options were 
switched. 

It should be noted that Eq. 14 is only strictly valid if the entire domain is in equilib- 
rium at the specified temperature, which would not be an interesting calculation to perform. 
As temperature gradients in the domain increase, the implicit assumption of a zero mean 
speed will become an increasing liability. This is equivalent to specifying all macroscopic 
quantities in a subsonic fluid dynamics calculation even though some of the characteristic 
directions point upskeam (see Ref. [32]), which indicates that some quantities must be cal- 
culated from within the domain. In the current work, this error is managed by minimizing 
temperature gradients to reduce the drift speed and maximizing domain length to reduce the 
boundary effects on the domain interior until the results become insensitive to these quan- 
tities. In the future, more sophisticated treatments may be required, such as the implicit 
method proposed by Liou and Fang [33] for gas molecules. It should also be noted that the 
particle velocities must always be chosen according to the rules for three dimensions, even 
when fewer components are actually used, because Eq. 14 was written for a spherically- 
symmetric velocity distribution. If the particle velocities are assigned in a plane instead 
of in a sphere, the outgoing flux will be greater than expected and the domain temperature 
will decline. 

The boundary condition is run in an open loop configuration. In other words, the num- 
ber and distribution of particles introduced to the domain during any given timestep are 
independent of the departing particles. The energy of departing phonons is recorded to 
calculate the net flux, then they are simply deleted from the calculation. Mazumder and 
Majumdar [25] point oht that this boundary condition, considered as a whole, is equivalent 
to treating the face as a blackbody held at the specified temperature. 

A polarization, wavenumber, and direction must be chosen for each particle introduced 
at the isothermal boundary. Rather than selecting a polarization, Eq. 14 is evaluated for each 
polarization and the introductions are performed separately. Choosing a wavenumber for an 



incoming particle is slightly different than choosing k for a particle in the domain interior. 
Once again, the phonon group velocity becomes involved. For example, TA phonons with 
k = 1 are most probable in the domain, but they will never be found crossing a boundary 
because they have zero translation speed. The proper distribution of incoming phonons is 
therefore formed by multiplying the Bose-Einstein distribution by the phonon group speed. 
Note that the resulting distribution is a function of polarization as well as frequency. 

Once a wavenumber is chosen, the group speed can be calculated from Eq. I1 but a di- 
rection must be chosen to determine the velocity. In the plane parallel to the boundary face, 
all directions are assumed equally probable. A single angle, 0 is therefore chosen from 
a uniform distribution between 0 and 27t to determine the relation between the tangential 
components. In the plane normal to the boundary face, it was observed that the normal ve- 
locity component, normalized by the speed, has a linear distribution by collecting statistics 
on particles leaving a domain held at equilibrium. This type of distribution is quite easily 
sampled by taking the square root of a uniform random fraction. The two angles required 
to set the velocity of an incoming particle are therefore chosen according to: 

where $ and 8 measure the angles between the velocity vector and the surface normal and 
an arbitrary reference in the surface plane, respectively. 

In order to test the boundary condition formulation, a domain was initialized at a mi-  
form temperature equal to the boundary temperature. A single timestep was performed, 
during which the identity and velocity of all incoming and outgoing particles was output in 
tabular format. This operation was repeated until the table contained more than a million 
entries. Because the boundary is intended to mimic an interface to a region in equilibrium 
at the specified temperature, the outgoing particles should match the incoming particles 
in both number and distribution during this test. Creating unnormalized histograms of the 
various parameters and comparing the incoming and outgoing distributions therefore pro- 
vides a sensitive test of all components in the formulation. Such histograms are presented 
in Fig. 2 1. In all cases, the agreement is excellent. 

Each phonon that enters or leaves the domain through an isothermal boundary during 
a calculation has its energy tallied. At output, each boundary reports its net flux per unit 
time per unit area. This quantity is not only a useful result, it presents a means for deter- 
mining if a calculation has reached steady state. In this work, heat is introduced to, and 
removed from, the domain only through isothermal boundaries. The calculation may thus 
be considered steady when the sum of all boundary fluxes is zero. Due to the nature of the 



Figure 21, Histograms of incoming and outgoing particle char- 
acteristics at flux boundaries with domain and boundary initialized 
to the same temperature. 



calculation, the cutoff below which a quantity is considered zero depends on the statistical 
convergence of the sample. 

Adiabatic Boundaries 
Adiabatic boundaries are much more straightfornard than their isothermal counterparts. In 
order to balance the incoming and outgoing energy fluxes exactly, the phonon polariza- 
tion and frequency are not changed. This leaves only the velocity vector direction open 
to modification. Two choices are available for choosing the outgoing direction: specular 
and diffuse reflection. In specular reflection, the velocity component normal to the face is 
reversed and all remaining components are untouched. This type of reflection represents 
a symmetry plane and preserves momentum except in the normal direction. In diffuse re- 
flection, the outgoing velocity is chosen using the method described in the previous section 
without regard to the incoming velocity. This type of reflection represents a fully rough 
surface in thermal equilibrium with the adjacent region and destroys momentum in all di- 
rections. Choosing between these options on a particle-by-particle basis with a specified 
probability yields a partially-accommodating surface, with the probability of diffuse reflec- 
tion often referred to as the accommodation coefficient. All these options are available in 
MOCAPHTS. 

4.1.9 Bulk Scatteting Routines 

While the entries in both this section and the previous section affect phonon count, identity, 
and direction, often with identical selection mechanisms, the members of this section do so 
without regard to the particle position relative to the domain geometric features. They will 
thus be referred to collectively as "bulk scattering" mechanisms because they determine the 
bulk thermal condt~ctivity, or the thermal conductivity in a sample of infinite extent. 

It may be noted that, strictly speaking, impurities and grain boundaries do not quite 
fall into this category because they are geometrically h e d  in the physical case and their 
distribution may change based on position in the sample. As implemented, however, these 
scattering mechanisms are statistically based on individual particles, rather than on fixed 
scattering centers, so they are included here. 

lnterphonon Scattering 
Interphonon scattering is often referred to as anharmonic interaction because it occurs due 
to third and higher order terms in the lattice potential energy. In simple terms, if the lattice 
was connected by strictly linear springs, where the potential energy would contain terms 



only second order in the displacement, phonons could pass without knowledge of each 
other's presence. If the springs are not linear, however, the stiffness seen by a passing 
phonon will change if another phonon is present and has thus already stretched the spring. 
Interphonon scattering generally becomes more prominent as the temperature increases 
and there are greater numbers of increasingly-energetic phonons on the lattice. The latter 
consideration is significant because higher energy phonons do not always conserve crystal 
momentum in interactions (see nearly any solid state physics text, such as [22], for details). 
Such interactions are critical to establishing thermal resistance in bulk materials. 

Except where noted, the interphonon scattering scheme used in MOCAPHTS is very 
similar to that described in Mazumder and Majumdar [25]. This scheme, traceable to the 
analytical BGK scheme of Bhatnagar, Gross, and Krook [34], is a two step process. In 
the f ist  step, phonons are selected for deletion based on a relaxation time, z, which re- 
lates to the rate at which the relevant segment of the distribution function would return to 
equilibrium after a small perturbation. This relaxation time is generally a function of the 
local temperature and the phonon polarization and frequency. In the second step, phonons 
are introduced until the energy returns to its level before collisions commenced. This pro- 
cess will drive the distribution toward equilibrium, including allowing phonons to switch 
polarizations. 

The collision process is run on a cell-by-cell basis. First, the total energy in the cell 
is calculated and the corresponding temperature determined. Each phonon is then consid- 
ered for relaxation. The probability of the phonon scattering during the timestep, At, is 
calculated via: 

A random fraction is then drawn and the phonon is deleted if the result is smaller than 63. 

After each phonon in the cell has been considered for deletion, the addition process 
commences. In this process, phonons are created from the stationary equilibrium distri- 
bution at the cell temperature. This creation process is identical to that used to start the 
calculation except positions are assigned by copying coordinates from randomly-chosen 
particles in the cell. This "coordinate copying" was implemented to avoid smearing num- 
ber density gradients that may exist in the cell, which persist to arbitrarily small cells in the 
case of linear gradients. 

It is important to note that the process described thus far violates detailed balance, i.e. 
the outgoing and incoming fluxes at equilibrium will not match when the relaxation times 
are frequency dependent (which is true of all proposals in the literature). If the phonons 
taken out of the cell are selected based on a frequency-dependent relaxation time, the prob- 
ability of deleting a particular phonon will be the product of its probability of existing 



Figure 22. Consequences of violating detailed balance by using 
frequency-dependent relaxation times on only the outgoing step. 
The observed behavior depends on whether isothermal or adiabatic 
boundary conditions ace applied. 

{from the Bose Einstein distribution) times the frequency-dependent probability given in 
Eq. 17. The probability of introducing a particular phonon will be simply drawn from 
the Bose Einstein distribution. For frequency-independent relaxation times, this process 
works because the probability of all outgoirig states are scaled evenly. Adding frequency 
dependence, however, produces a variable scaling that changes the shape of the distribu- 
tion. Because the relaxation times are generally smaller as frequency increases, this implies 
that the algorithm is likely to shift the distribution toward lower frequencies. For closed 
domains, this causes the phonon count to increase because more phonons are required to 
reach the pre-collision energy. For domains with open-loop isothermal boundaries, such 
as those described in Sec. 4.1.8, this causes the phonon count to decrease because the fa- 
vored phonons tend to have larger group speeds, thus more leave the domain than expected. 
Examples of the temperature and number density distributions for closed and open 1D do- 
mains held at 300K are presented in Fig. 22 compared to the initial condition. In these 
cases, the relaxation times were set to: 

where the coefficients were set such that the maximum probability of each mode is roughly 0.1. 

To satisfy detailed balance with frequency-dependent relaxation times, the acceptance- 



rejection method was again applied. In this case, a phonon polarization and frequency is 
chosen in the usual manner, then the relaxation time is calculated using the same expres- 
sions as for outgoing phonons. This relaxation time is subsequently used to compute an 
introduction probability using Eq. 17, although it is scaled by 1 / @ ( T ~ ~ )  in this case to set 
the maximum probability at unity to reduce the rejection rate. 

The stopping criterion for the addition process is identical to that used in the domain 
initialization process described in Sec. 4.1.5. In this case, the difference between the start- 
ing and ending energies is stored and added to the starting energy in the next timestep. 
The process therefore tolerates small changes in the total energy in a given timestep, but 
the following timestep will work to make up the difference. This scheme is more likely 
to avoid random walks than simply conserving energy in an average sense over a series of 
timesteps. 

It may be noted that Mazumder and Majumdar [25] use an addition scheme in which 
phonons are created and destroyed until the energy change falls within a fixed tolerance. 
The current scheme provides two improvements to this arrangement. First, it is clearly 
faster because it destroys, at most, only the last created phonon. Second, it avoids the 
danger of skewing the equilibrium distribution by hunting around for a set of phonons that 
satisfy the energy constraint, rather than for those that are most probable in the equilibrium 
distribution. 

Several authors [35, 36, 371 have derived expressions for calculating the relaxation 
times required by this scheme. In this work, the arrangement employed by Holland [38] is 
adopted. In this arrangement, the relaxation times for LA phonons are calculated according 
to: 

z~ = B ~ W ~  73. (1 8) 

and the relaxation times for TA phonons are calculated using two different expressions: 

for low frequencies and 

for high frequencies, where BL, BT, and BT, are empirical constants used to tune the scat- 
tering strength. The crossover point from TT to ZT, was set at k=0.5. 

Figure 23 shows the result obtained via the method and constants given by Holland, 
which matches very closely to Fig. 3 in the original paper. In this figure, the contribution to 
the thermal conductivity, K, due to LA phonons is shown as KL, and the contributions due 
to low and high frequency TA phonons are shown as KT and KT,, respectively. From these 



/ 
- .  
Y --- % 

10' r -. 
3 

I. 1 

,/' 
I 

I 

I 
i 
i '- 

e di I I 
- 0 

i 
I 

I I 
I i 

16' 
I 

I . . . . . . . I  

I 00 10' ~d lo3 
temperature (K) 

Figure 23. Holland result for thermal conductivity of a 0.7 cm 
silicon sample. The total thermal conductivity is shown as K and 
the contributions due to LA, low frequency TA, and high frequency 
TA phonons are shown as KL, KT, and KT,, respectively 

results, Holland concluded that high frequency TA phonons dominate thermal transport at 
room temperature. 1 

Using Holland's coefficients in the current code, bulk thermal conductivities of silicon 
were seen to be smaller than the experimental measurements by approximately a factor of 
two in the temperature range 100-300K. Closer inspection revealed two key assumptions 
inherent to Holland's model which are not present in the Monte Carlo model: piecewise 
constant group speeds and grouplphase speed interchangeability. 

The piecewise constant phonon group speed used by Holland is compared to the output 
of the dispersion model used in the current work in Fig. 24. This assumption represents 
a compromise between using realistic dispersion relation and producing an expression for 
thermal conductivity that can be evaluated analytically. 

The grouplphase speed interchangeability assumption in Holland's model was pointed 
out by Sood and Roy [37]. Due to dispersion, the group and phase speeds can differ sub- 
stantially. A comparison of these speeds under the dispersion model used in this work is 

'It should be noted that it was necessary to reduce the impurity scattering coefficient given by Holland by 
an order of magnitude to produce this figure. 



Figure 24. Comparison of Holland's phonon speeds to those 
from the current dispersion model. 
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Figure 25. Comparison of phase and group speeds under the 
current dispersion model. 
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Figure 26. Modfied Holland model result for thermal conduc- 
tivity of a 0.7 cm silicon sample. The overall fit is comparable to 
that of the unmodified model (Fig. 23), but the contributions from 
individual phonon modes are significantly different. 

presented in Fig. 25. 

Removing these assumptions, as well as converting the integrals to wavenurnber space 
as outlined in Sec. 3.2, a new set of coefficients for Eqs. 18-20 was derived using the least- 
squares optimization routine in MATLAB? 

The resulting fit is shown in Fig. 26. Again, as in Fig. 23, the agreement is good 
throughout the temperature range. Notably, however, the contributions of the various modes 
are now different. For instance, TA phonons are clearly dominant at 300K in Fig. 23 
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Figure 27, Relaxation times for both the original and the mod- 
ified Holland model. In both cases, more than an order-of- 
magnitude jump occurs when switching from the low to the high 
frequency expression for TA phonons. 

whereas TA and LA phonons have comparable strength in Fig. 26. It is not reassuring that 
one can change assumptions in the model, then choose a set of new coefficients to produce 
a comparably good fit to the overall thermal conductivity that leads to different conclusions 
about the underlying physical processes. 

Another feature of the model that raises doubt about its physical basis is shown in 
Fig. 27, where it can be seen that the relaxation time increases by an order of magnitude 
at the law-to-high frequency transition point for TA phonons. This observation is true for 
both Holland's original coefficients as well as the new set. 

These observations led to an attempt to develop an interphonon collision scheme as part 
of this work. This attempt will be detailed in Sec. 4.8. 

Impurity Scattering 
Impurities in the crystal lattice cause phonon scattering through two primary mechanisms: 
change in the atomic mass, and changes in the local spring constant due to lattice distortion. 
In general, the spatial extent of the disturbance is only a few atomic volumes. Thus, for the 
vast majority of phonons, particularly those with large enough group velocities to transport 



significant energy, the disturbance may reasonably be considered a point defect. As such, it 
is common to construct a scattering model based on the arguments made by Rayleigh [39] 
when computing the scattering of sound waves by a small obstruction. 

In this work, as in that of most previous researchers, only the mass difference will be 
considered. For that case, Berman [40] gives the relaxation time for impurities as: 

where cp is the fraction of lattice sites with impurities whose mass differs from the reference 
mass M by A.M. The sum is over the individual impurities. 

As an example, consider "natural" silicon, which is typically composed of 92.23% 2 R ~ i .  
4.67% 2?5i and 3.10% 3 0 ~ i .  Setting the reference mass as 28 a.m.u., the sum becomes: 

It may be noted that Ruf et al. [41] use the average mass as the reference and compute a 
sum of 2.01 x lo-! Our choice of M = 28 a.m.u. is based on an argument that it is more 
reasonable to base the scattering coefficient upon the mass seen most often by the traveling 
wavepackets, rather than an imaginary mass never encountered. In the end, the differ- 
ence between these approaches is small, particularly in view of the other approximations 
involved. 

Preliminary calculations to test this model showed thermal conductivities that were 
much smaller than expected. Manually reducing the mass difference sum calculated in 
Eq. 25 by an order of magnitude, as was required to reproduce Holland's results, brought 
the results into agreement. The reduced coefficient is assumed for the remainder of this 
report. The physical reason for this reduction should be investigated in future work. 

As the scope of the simulations undertaken for this work increased and computation times 
began to exceed a week, it became clear that a parallel version of the code would be neces- 
sary. The parallelization scheme grew directly from the decomposition of the domain into 
zones (see Sec. 4.1.7). Processor decomposition simply involved assigning zones to differ- 
ent processors, dividing user-defined zones if necessary. Parallel commands for transferring 
particles between zones and handling communications for global operations were written 



using MPI [42]. Each processor has knowledge of all zones, but only the cell structure of 
the local zones. The cell finding step is thus performed after the particle is transferred to its 
destination processor. This arrangement combines the scalability advantages of each pro- 
cessor independently determining the final location of all its particles [43] with the memory 
advantages of making the cell layout and data strictly local. 

4.2 Typical Simulation Results 

In the current work, we are generally interested in determining the thermal conductivity 
under various conditions. The typical calculation therefore involves creating a temperature 
gradient across the domain and examining the results once it reaches steady state. The type 
of data available from the simulation include the distributions of drift (or mean) velocity, 
temperature, number density, and collision fraction. The mean flux through each of the 
isothermal faces is also reported. A demonstration of these quantities from a typical calcu- 
lation to determine the thermal conductivity of a 1 pm film at 300K is shown in Fig. 28. 

From this figure, a similarity can be noted between the flow of phonons in temperature 
gradient along a film and the flow of gas molecules in pressure gradient along a channel 
(known as Poiseuille flow). This similarity is made more evident by the comparison shown 
in Fig. 29. 

For the gas molecule case, the pressure is constant in the cross-channel direction and 
nearly linear in the axial direction. The axial speed assumes a parabolic distribution, which 
exhibits an increasingly large velocity at the walls as the pressure is decreased. Due to the 
reduction in density as the pressure falls (the flow is essentially isothermal), the maximum 
speed also increases with axial distance to maintain a constant mass flow. 

For the phonon case, the temperature serves as the pressure analog, which assumes a 
nearly linear distribution (though the concavity is reversed) that is constant in the cross- 
channel direction. The temperature gradient, like pressure gradient in the Poiseuille flow, 
provides the driving force and a parabolic axial flow distribution is established, which again 
shows a nonzero speed at the walls. The mean phonon speed in this case increases with 
axial position because the Bose Einstein distribution shifts to lower frequencies at lower 
temperatures. As shown in Fig. 17, the group speed increases as frequency decreases. 
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Figure 28. Typical simulation results. Case shown is a lx2pm 
film at a reference temperature of 300K. The dashed lines on the 
temperature plot are the linear fit used for determining thermal 
conductivity. Each line in plots (a)-(c) represents cross section 
at a different position on the y axis, which is perpendicular to the 
temperature gradient. 
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(a) argon: pressure 

(c) phonon: temperature 

(b) argon: axial speed 

(d) phonon: axial speed 

Figure 29. Illustration of similarities between argon flow in a 
pressure gradient (Poiseuille flow) [44] and phonon flow in a tem- 
perature gradient. Speed, length and pressure in the argon flow are 
normalized by the most probable molecular speed, the mean free 
path, and the pressure at the inlet, respectively. The pressure in the 
argon flow was averaged across the channel. 



4.3 Thermal Conductivity Determination 

Because the current work primarily focuses on regimes in which the concept of thermal 
conductivity is still useful, a means must be defined for defining this quantity from the 
simulation results. In general, for simulations aimed at determining thermal conductivity, 
a temperature gradient is established across the domain by imposing isothermal boundary 
conditions on opposing faces. At the end of the calculation, the net flux through these faces 
and the temperature distribution are examined. 

For reasons outlined in Sec. 4.1.8, the resulting temperature distribution tends to have 
nonlinear regions near the ends. These areas are thus excluded and a linear curve fit is 
performed on the remaining data near the domain center, as shown in Fig. 28 (a). This curve 
fit is then evaluated at each of the domain ends. Dividing the difference between these 
values by the domain length provides an estimate of the temperature gradient. Dividing 
the calculated flux by the temperature gradient yields the quantity that will be reported in 
this document as thermal conductivity. By measuring the resulting, rather than using the 
imposed, temperature gradient, this method will yield the analytically-predicted infinite 
thermal conductivity in the ballistic regime because the measured temperature difference 
across the domain will tend to zero. 

4.4 Operational Considerations 

4.4.1 Number of Particles 

The number of particles per cell is a measure of the discretization of the distribution func- 
tion. This is a somewhat inexact measure, however, due to their stochastic placement in 
phase space. The "required" number of particles is generally determined via an empirical 
process similar to grid convergence studies used in CFD: perform a series of calculations 
on a representative problem and look for an asymptote in the solution versus the number 
or particles. In DSMC, 30 particles per cell is generally considered a reasonable starting 
point. While the thermal conductivity was somewhat insensitive to particle counts (above 
a threshold of roughly 100) the temperature and drift speed measured near the isothermal 
boundaries tended to show increasingly unsettling behavior as the particle counts were re- 
duced. In particular, for sufficiently small particle counts, the temperature at the higher 
temperature isothermal boundary exceeded the specified value and the drift speed plunged 
suddenly to a negative value, though the flux maintained the expected sign. These "end ef- 
fects" are visible, particularly in the axial drift speed, in Fig. 28. In order to minimize these 
effects, a target of 500 particles per cell was employed in most of the results presented in 
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Figure 30. Mean free path for single crystal silicon under the 
relaxation time model 

this report. 

4.4.2 Cell Count 

Because collisions are performed without regard to a particle's position in the cell, the cell 
should be small compared to the scale length of any gradients present. In practice, the cell 
is generally sized such that it is a fraction (114 to 113) of the local mean free path. When 
sized in this manner, approximately 10% of the particles in the cell will collide during any 
given timestep. Under the relaxation time model, it is trivial to calculate the mean free path 
by averaging the group speed times the relaxation time over the Bose Einstein distribution: 

The results of this calculation are presented in Fig. 30 for isotope-free 2 8 ~ i  using the col- 
lision coeflicients given in Sec. 4.1.9. Analogous results for *naturaln silicon are also 
presented. 

Because the mean free path becomes significantly longer at lower temperatures, a larger 
number of cells than required by the above constraint was often used to place a reasonable 



number of points on the resulting plots. 

4.4.3 Domain Length 

Due to the assumptions inherent to the isothermal boundary condition used in the calcula- 
tions (see Sec. 4.1.8), it was noted that the domain length in the direction of the temperature 
gradient can affect the calculated thermal conductivity. This effect generally disappeared 
as the domain length increased. This is similar to the "entrance effects" seen in fluid flow 
through pipes [45]. As the domain is lengthened, the fraction influenced by these entrance 
effects decreases and the thermal conductivity reaches an asymptote. This asymptote will 
be considered the correct value. 

A demonstration of this behavior is shown in Fig. 31 for bulk and film thermal con- 
ductivities at 100K. The effect tends to be more severe at lower temperatures due to the 
higher drift speeds and lower interphonon collision rates as the temperature decreases. It 
also tends to be more severe for the bulk cases because the adiabatic walls present in the 
thin film cases help reduce the extent of the end effect. This is similar to the case of pipe 
flows, where the entrance region is usually given as some number of pipe diameters. The 
domain length required to reach the asymptote therefore tends to be smaller for thinner 
films. 

4.5 Bulk Thermal Conductivity 

The thermal conductivity of bulk silicon was calculated following the procedures outlined 
in the previous sections. To simulate a sample of infinite extent, these simulations were per- 
formed with MOCAPHTS compiled for one-dimensional domains. For all cases, the ends 
were held at the reference temperature plus or minus 5K. The results of these simulations 
are presented in Fig. 32 for both isotope-free and "natural" silicon. 

For comparison to the isotope-free simulations, experimental measurements of Ruf et 
al. [41] on isotopically-enriched silicon, or silicon that has been processed such that it 
contains 95.8588% 2 8 ~ i ,  are shown. For comparison to the "natural" silicon simulations, 
data from Holland and Newinger [46] are shown. In both cases, the agreement between 
simulation and experiment is excellent, with a maximum error of approximately 14%. 

Accurate reproduction of the bulk thermal conductivity by the simulation for isotope- 
free silicon implies a successful implementation of the interphonon collision model and 
correct choice of the coefficients. Agreement in the natural silicon case suggests similar 
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Figure 31, Domain length effect on ther~nal conductivity results. 
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Figure 32, Computed thermal conductivity of bulk silicon with 
and without naturally-occurring isotopes compared to experirnen- 
tal data. Natural silicon data is from [46] and isotopically-enriched 
silicon data is from [4 11. 



experiment, mlnlmal Isotopes 
Holland, no IWpes  
experiment, natural Sl 

- - Holland, natural Sl I 

Figure 33. Computed thermal conductivity of bulk silicon with 
and without naturally-occurring isotopes using the Holland model. 

conclusions for the impurity scattering model. 

Because the phonon-phonon and impurity relaxation time expressions are identical to 
those used by Holland, except for the coefficients in the former case, it is instructive to 
prepare a figure similar to Fig. 32 using Holland's analyhcal model to evaluate the gains 
made via the added complexity and computer time required for the Monte Carlo model. In 
the resulting figure (Fig. 33), the analytical model can be seen to agree very well with the 
natural silicon data, which is expected because the coefficients are fit to this data. Setting 
the impurity scattering coefficient to zero in the analytical model, however, does not pro- 
duce very good agreement with the isotopically-enriched silicon data. It may therefore be 
argued that the separate treatment of these collision mechanisms in the Monte Carlo simu- 
lation produces a more physically representative model. The inability of the Holland model 
to match the isotope-free data with the impurity scattering coefficient set to zero implies a 
"smearing" of effects, ie. the impurity scattering model is contributing to the curve fit in a 
manner not physically associated with the presence of impurities. 
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Figure 34. Computed thermal conductivity in a 1 p single crys- 
tal silicon film, with and without isotopes, compared to bulk values 
and experimental results. 

4.6 Thln Fllm Thermal Conductlvlty 

Switching to two-dimensional simulations and introducing an adiabatic boundary on one 
of the additional faces and a specular boundary on the opposite face allows the simulation 
of heat conduction in a film of single crystal material twice as thick as the domain (as noted 
in Sec. 4.1.8, specular boundaries represent symmetry planes). 

Simulation results for a 1 pm silicon film with and without impurity scattering are shown 
in Fig. 34 compared to experimental measurements taken in this work. The data for bulk 
silicon are also shown for reference. It is immediately evident that the simulations show the 
size effect seen in the experiments. It is also clear that scattering due to naturally-occurring 
isotopes plays a significant role in determining the thermal conductivity, particularly at low 
temperature, with K overestimated by 69% at lOOK when isotope scattering is neglected. 
With the isotope model running, the simulation reproduces the experimental data reason- 
ably well. In this case, the simulation tends to overpredict thermal conductivity at low 
temperature and underpredict at high temperature. In either case, the maximum error is 
less than 25%. 

To evaluate the predictive capability of the Monte Carlo model against the Holland 
model, the measured thermal conductivity of 1 p and 340 nm films are compared to model 



experiment. l p m  

sr, lb I 
150 200 250 300 350 

temperatun ( K ) 

Figure 35, Thermal conductivity of 1 pm and 340 nm single crys- 
tal silicon films, computed with Monte Carlo and Holland models, 
compared to experimental results. 

results in Fig. 35. The Monte Carlo model shows good agreement for both films without 
adjusting any parameters while the Holland model performs poorly in both cases. The 
Holland model was calibrated for a 0.7 16 cm film, thus Fig. 35 provides additional evidence 
that the relaxation times appearing in the model are performing curve fit functions outside 
of their supposed physical meaning. In the Monte Carlo method, however, the boundary 
scattering model is entirely separate from the interphonon and impurity scattering models, 
being invoked only when a computational particle physically intersects a boundary. 

4.7 Grain Boundary Effects 

Surface micromachined MEMS, such as those produced using Sandia's SUMMiT process 
[47], generally use polysilicon as a structural material. It is therefore important to develop 
a model for phonon scattering by grain boundaries because this can be a dominant factor in 
determining the thermal transport characteristics of the material. 

The simplest grain boundary scattering model is based upon relaxation times calculated 
by dividing the mean grain size by the mean phonon speed. This model can be improved 
by calculating a relaxation time for each particle based on its group speed and generat- 



Figure 36. Simulation results for polydlicon films with varying 
grain size. Experimental data is for the 2 p  film in Fig. 12(a), 
which has an estimated grain sbe  of 580nm. 
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ing grains stochastically according to a distribution. Building upon these improvements, 
columnar grain structures can be represented by making the relaxation time dependent on 
the phonon direction, speed, and position. 

350 

In the following calculations, only the phonon direction was changed if it was selected 
for relaxation due to grain boundary scattering. This procedure guarantees energy con- 
servation in the current formulation but it cannot represent partial transmission/reflection 
at the boundary. Partial transmission, in addition to being expected intuitively, has been 
observed in molecular dynamics simulations of a boundary between two materials whose 
mass differs by a factor of two [48], so it should be considered in future work. 

temperature ( K ) 

Using the relaxation time model with an average grain size, but a group speed based on 
each particle, the thermal conductivity for a range of grain sizes between 145-545nm was 
calculated at 100-300K. No difference was observable between the 1D and 2D calculations 
for a 2p film with 545nm grains at loOK, so the remaining calculations were performed 
in 1D. The results are presented in Fig. 36, along with single-crystal data and experimen- 
tal measurements from the 2 pm film in Fig. 12 (a) (average grain size: - 580 nm). In this 
case, the simulations were able to bracket the experimental measurements, but the simu- 
lations show a stronger temperature dependence for a given grain size than was observed 
experimentally. 



Figure 37, Comparison of measured grain size distribution with 
lognormal pdf of Eq. 27 with 0 = 0.62 p - I  and p= - 1 . 5 8 p .  

It can be noted from Fig. 36 that the temperature dependence in the simulations be- 
comes weaker as the grain size decreases. Noting also that a wide range of grain sizes are 
visible in Fig. 12{a), it was surmised that the discrepancy between simulation and exper- 
iment may be narrowed by increasing the number of parameters in the model by using a 
grain size distribution, rather than a simple average. 

Palmer et al. [49] investigated possible distribution functions for grain size in germa- 
nium and concluded that a lognormal distribution provides a good overall description. The 
lognormal distribution of grain diameters, d 

with a = 620 nm- ' and p= 1580nm appears to fit a grain size distribution obtained from 
Fig. 12{a) by measuring the distance between grain boundary intersections on a series of 
horizontal lines. A comparison of the lognormal fit to the measured distribution is shown 
in Fig. 37. The constants required for this fit imply a mean of 251 nm and a variance of 
172 nm. 

Simulations were then performed in which a grain size was chosen according to Eq. 27 
for each cell during each timestep for calculating the grain boundary scattering relaxation 
time. The result is compared to the previous, constant grain size, calculations in Fig. 38. 



Figure 38, Comparison of polysilicon thermal conductivities ob- 
tained using lognormally-distributed and constant grain sizes. 
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Not surprisingly, simulations performed using a lognormal grain size distribution yield 
a lower thermal conductivity than the constant grain size case using a comparable mean. 
Unfortunately, the temperature variation in the lognormal case is similar to that of the 
constant size case, so this does not appear to be the dominant cause of the disagreement 
visible in Fig. 36. 

Departing altogether from relaxation time-based models, which effectively assign a new 
grain every timestep, a third scheme for modeling polysilicon was attempted in this work. 
This scheme involves assigning a grain size to each particle. When the particle intersects its 
virtual grain boundary, a scattering operation is performed. If the particle's direction with 
respect to the surface normal of the intersected face still has the same sign after scattering, 
it is considered to have passed out of its current grain and a new grain is generated from the 
distribution. This scheme allows grains of various shapes to be implemented, though cubic 
grains were assumed for the current work. 

temperature ( K ) 
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The results of these calculations are presented in Fig. 39. In this case, the temperature 
departs significantly from the specified reference and the thermal conductivity is reported 
at the resulting mean. The increase in mean temperature on the domain indicates an interac- 
tion between the grain scattering model and the isothermal boundary model. In particular, 
it implies a significant disruption of the distribution function. Unfortunately, time did not 
permit a detailed investigation of this issue. 

350 
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Figure 39, Comparison of polysilicon thermal conductivities ob- 
tained using physical lognormal and relaxation time-based fmed 
mean grain scattering. 

The results of this model are reminiscent of those obtained with the previous models 
proposed in this section and, consequently, the disagreement between the simulation and 
the experiments remains an open question. Evidence presented in Sec. 5.4 implies that the 
issue is likely related to defects at the grain boundary. A systematic study of this issue is 
recommended for future work. 

4.8 Non-BGK lnterphonon Scattering 

Due to the deficiencies of the single-mode relaxation time (SMRT) based collision scheme 
discussed in Sec. 4.1.9, as well as its inherent limitation to small departures from equilib- 
rium, a more general scheme is desirable to improve the predictive ability of the simulation 
over a wider range of conditions. Toward this end, this section details efforts to construct a 
collision scheme that is, ideally, dependent only on the individual computational particles 
present in a cell. This scheme was modeled after that used in DSMC for gases. 

In DSMC the basic collision algorithm is: choose two particles in the cell, compute 
a collision probability based on their properties (such as species identity and relative ve- 
locity), and perform a collision if a random number less than the collision probability is 



chosen. If a collision is to be performed, the post collision state is computed according to 
a process that satisfies the relevant conservation laws (in this case mass, energy, and mo- 
mentum). Multiple proposals appear in the literature for both the selection rules and the 
post-collision state calculation [23]. 

Boiled down to its essence, there are three quantities that must be reproduced properly 
by the overall DSMC collision scheme to yield a physically reasonable simulation: 

1. collision rate 

2. probability of a particular collision 

3. post-collision deflection angle 

In a typical simulation, the collision rate is set by a combination of the number of pairs 
considered each timestep and the probability of particular pairs colliding. The probability 
of a particular collision is set by the collision cross section and the relative speed. When 
constructing a model for gases, the macroscopic quantities of diffusion and viscosity are 
used as an indicator of the appropriateness of a given microscopic model. For example, 
the variable hard sphere (VHS) model [50] was developed in order to bring the simulations 
into agreement with experiment on the viscosity temperature dependence and the variable 
soft sphere (VSS) model [51] was subsequently developed to correct the VHS model's 
deficiencies in reproducing diffusion processes. 

Following the nomenclature of Srivastava [36], the most basic type of interphonon inter- 
action, known as three-phonon processes, may divided into two classes: class I processes, 
where two phonons coalesce into one phonon, and class I1 processes, where one phonon 
splits into two phonons. These classes are illustrated schematically in Fig. 40. 

Class I collisions immediately appear compatible with the basic DSMC algorithm be- 
cause they begin with two phonons, thus the idea of selecting a pair from the cell and 
deciding whether or not they will interact based on their individual and pairwise character- 
istics should be possible. Class I1 collisions, however, bear no such resemblance to basic 
DSMC collisions. 

Previous work [35, 36, 521 generally gives the collision probability in terms of oc- 
cupation numbers of all three phonon modes (which, strictly, makes it a state transition 
probability) and creationlannihilation operators that depend on the polarization and fre- 
quency of the participating phonons. In the current framework, occupation numbers are 
time consuming and error-prone to compute due to the relatively coarse representation of 
the distribution. In addition, the creationlannihilation operators, and even their functional 
form, are largely unknown. 



(a) class I (b) class I1 

Figure 40. The two classes of three-phonon processes. 

In this section, new collision schemes are constructed to evaluate the hypothesis that 
the occupation numbers and creationlannihilation operators in the transition probabilities 
can be replaced by a DSMC-like process, In this process, population contributions are re- 
placed by the probability of selecting a particular phonon state and the creationlannihilation 
operators are replaced by the probability of a selected collision type and partners success- 
fully negotiating a set of constraints built around the conservation laws and the dispersion 
relation. 

4.8.1 Constraints 

The consewations laws generally considered valid for phonon interactions spring directly 
from the state transition probabilities, appearing as "resonance factors" that cause the only 
significant contributions to be centered on processes that satisfy the laws: 

where the unprimed, prime, and double prime exponents refer to the three phonons partic- 
ipating in the process and the quantities are negative for outgoing phonons. 

The first expression represents a statement of the conservation of energy. The second 
expression represents a statement of conservation of momentum, where the term is used 
rather loosely in this context because phonons have no mass (note that the three phonon 
processes all violate number conservation). The rather fuzzy nature of phonon momentum 
can be seen in the term G in Eq. 29. This term may be either the reciprocal lattice vector or 



zero. In cases where G is zero, it is said that the process conserves "crystal momentum" and 
it is referred to as a normal process, or simply an N-process. In cases where G is nonzero, 
the crystal momentum is lost (generally considered gained by the crystal as a whole) and 
the process is referred to as an Umklapp process or a U-process. 

In addition to the frequency and wavevector constraints expressed by Eqs. 28 and 29, 
all participating phonons must also be located on the dispersion relation. This additional 
constraint can be shown through a number of graphical constructs [35, 52, 531 to limit the 
possible polarization combinations to: 

These graphical constructs, particularly under the isotropic dispersion relation used in 
this work, make it clear that very few phonon combinations will satisfy all constraints. In 
fact, once a particular phonon is chosen for collision, often only one polarization/wavevector 
combination for the second phonon will yield a realizable third phonon. Randomly choos- 
ing pairs of phonons in a given cell, particularly given the reduced number of computational 
particles over the physical case, is therefore very unlikely to yield a combination that will 
strictly satisfy the constraints. Few to no collisions would therefore be performed even if 
all pairs were considered (which would require computational work scaling as the number 
of particles squared). 

The strategy attempted in this section for assembling collisions under these constraints 
is to always conserve energy exactly and allow, but discourage, departures from Eq. 29 by 
including a term in the collision probability that has a relatively narrow maximum around 
situations where it is satisfied. This strategy is consistent with the transition probabilities 
proposed by many authors, which do not go to zero immediately outside of the constraints 
imposed by Eqs. 28-29. In this manner, selecting particles randomly from the cell mimics 
the occupation numbers in previous transition probabilities and the collision probability 
function, which is of the form: 

a = ~ X P (  -q&) (32) 
where q is some coefficient that determines the width of the peak, mimics the resonance 
factors. Unless otherwise noted, q = 100 in this section. 

4.8.2 Method 

To evaluate the collision schemes, 10 million computational particles are placed on a do- 
main from the equilibrium distribution at a temperature of 300K. A single collision step is 



then performed and the rates for each process and the resulting distribution are examined. 
This procedure is constructed to check a necessary condition for a reasonable collision 
scheme: that the distribution should not change when starting from equilibrium, which im- 
plies that the forward and backward rates of each creatioddestruction process should be 
equal. Because this condition should hold regardless of the collision rate, the number of 
iterations through the collision routine was simply set to the number of particles in the cell 
for these tests. 

Several permutations of the basic collision scheme were evaluated. In all cases, the 
stages can be broken into: 

1. classification 

2. computation 

3. decision 

If this process indicates that a particular collision should proceed, a further stage is 
required: determination of the post-collision state. 

Classification Stage 
One key issue is how to deal with the differing number of pre- and post-collision phonons 
in the two collision classes. Three schemes were considered. In each scheme, the goal is to 
choose the collision class, as well as the polarization of the outgoing phonons if a class I1 
collision is chosen. 

The first classification scheme chooses two particles from the cell. If they are both TA, 
the only process available is class I and both phonons are used on the pre-collision side of 
the equation. Conversely, if they are both LA, only class I1 processes are possible and one 
phonon is used on each side of the equation (in a manner to be determined at stage 3). If one 
of each polarization is chosen, either class is possible and each is given a 50% probability. 
If the chosen collision type is subsequently ruled impossible, the scheme aborts. 

This scheme, somewhat independent of decisions made in the remaining stages, re- 
sulted in a vast number of TA+ TA + LA collisions due to the preponderance of TA 
phonons at 300K (71% of the chosen pairs were TA-  TA). The net result was a large 
increase in the LA population and a twice-as-large decrease in the TA population. Modify- 
ing this scheme by creating an acceptance probability on TA+ TA + LA of (hJLd/2V) and 
on LA + TA+ TA of (IVTA/IV) helped close this gap. 



The second classification scheme chooses three phonons from the cell for each sample. 
The resulting polarization combination determines which of Eqs. 30-31 are possible (or 
neither if all three phonons had the same polarization). The class is then chosen randomly, 
with each having a 50% probability. 

This scheme was constructed in an attempt to force the forward and reverse processes 
of each class to occur with equal probabilities, thus guaranteeing detailed balance. This 
turned out to not be the case once the subsequent stages of the process were considered. In 
particular, due to dispersion, there are a larger number of frequency-wavevector com bina- 
tions possible when forming an LA phonon than a TA. The class I processes therefore tend 
to have a higher success rate than class 11s. This problem can be corrected somewhat by 
allowing the class Ilclass I1 decision to be made after considering downstream conditions 
and by using weighting functions. This scheme was ultimately abandoned, however, when 
it was realized that it would completely fail in a case in which the domain was initialized 
to contain only phonons of one polarization. In this situation, this scheme would yield no 
collisions, thus it would never reach the proper equilibrium. 

The third classification scheme combined elements of the first and second schemes: two 
phonons are chosen from the cell, but the class is selected by subsequent tests. If neither 
class is ruled out, both are considered possible and probabilities for each, as well as neither, 
are computed and considered in the decision stage. 

It may be noted that one of the phonons on the product side of the process in class I1 
collision may reasonably be selected from the equilibrium distribution instead of from the 
cell. The relative merits of this option cannot be evaluated by the current test case because 
the phonons in the cell are also selected from the equilibrium distribution. 

Computation Stage 
Once possible partners and collision classes are selected, the computation stage begins. In 
this stage, information from the known phonons is used to construct the unknown phonon. 
In classification schemes 1 and 3, two phonons are chosen from the cell at stage 1. For 
class I collisions, the wavevectors of these phonons are combined to create the target 
wavevector for the outgoing phonon. For class I1 collisions, one of the phonons chosen 
from the domain will determine the wavevector and polarization of one of the outgoing 
phonons. The hrlknown phonon will be calchlated by subtracting this phonon's wavevector 
from the other phonon chosen at the classification stage. Classification scheme 2 functions 
in a similar manner except a third phonon is chosen in the first step and used to determine 
the polarization of the second outgoing phonon in class I1 collisions. 

To compute the wavevector of the unknown phonon, the two known phonon wavevec- 



tors are broken into components along the Cartesian directions. The unknown wavevector 
components are then determined according to the type of collision class using Eq. 29. 

At this stage, a procedure for U processes must be chosen. In this work, the components 
were examined individually. Any component that exceeded unity was added to a two unit 
vector pointed in the opposite direction. This operation reverses the component and yields 
the proper wavenumber in terms of reflection across the Brillouin zone boundary (most 
easily seen in Peierls [52], Fig. 3). For example, a phonon with k= 1.4, directed along +X 
should become a phonon with k= 0.6 directed along -X. This process does not guarantee 
that the overall magnitude will be less than unity, however, so this must also be checked 
after the component-wise checks are completed. In this case, a U process is performed with 
a wavevector in the opposite direction as the overall wavevector. In Peierls' construction, 
it can be seen that T A t  TA w LA transitions are only available through U processes, so a 
flag is set if a U process is performed to allow enforcement of this constraint. 

The frequency of the unknown phonon is now calculated according to Eq. 28. The target 
wavenumber (energy-conserving k) is then determined from the dispersion relation and err 
is calculated as the square of the difference between the result and that found by the vector 
operations described in the previous paragraph, normalized by the energy-conserving k. 

Decision Stage 
With the potential collision (or collisions, in the case of classification scheme 3) defined, a 
decision must be made as to whether or not it is performed. For classification schemes 1 
and 2,  this requires simply evaluating a probability, $I from Eq. 32 and choosing a random 
fraction, Rr. If Rf < @, the collision is performed. For classification scheme 3, Eq. 32 
is evaluated for each potential collision. A random fraction is then chosen and a potential 
collision, or none at all, is chosen based on its value. For example, if the probability of 
collision A is 0.2 and the probability of collision B is 0.3, collision A is performed if 
0 < Rf < 0.2 and collision B is performed if 0.2 < Rf < 0.5, and neither is performed if 
Rf > 0.5 [43]. 

Post-Collision State Calculation 
If a collision is accepted, any phonons on the left side of the corresponding process shown 
in Fig. 40 are deleted from the simulation. If the process is class 11, a new phonon is created 
with the same polarization and wavenumber as the test phonon chosen from the cell. To 
avoid cloning the existing phonon, which can adversely affect the statistics by creating a 
highly unlikely configuration of two particles occupying exactly the same point in phase 
space, the wavevectors of both created phonons are displaced a random amount on either 
side of their vector average. 



(a) transverse (b) longitudinal 

Figure 41, Comparison of population histograms before and after 
a single collision step. 

4.8.3 Results 

Many permutations of the new collision scheme were evaluated. At fist,  the goal was 
to arrange the decision tree, which includes the selection process, tests for constraints, 
and calculation of a collision probability, such that no net change in phonon population or 
distribution was observed in the equilibrium test case. Due to the complexity of the decision 
tree, particularly in the presence of dispersion, this proved to be an extremely difficult 
task. The goal was eventually relaxed by introducing coefficients, similar to forward and 
backward reaction coeflicients, to force the processes to balance. This left maintenance of 
the proper distribution the only remaining hurdle. 

One of the more successful outcomes is shown in Fig. 41. It can be seen from this 
figure that the distributions before and after the collision process are similar, particularly in 
the transverse case. The primary differences are peaks in the LA distribution near 4.5 and 
9THz. The latter peak corresponds to a frequency equal to twice the maximum frequency 
of the TA mode. Considering the dispersion relation and the Bose Einstein distribution to- 
gether, it can be seen that 4.5THz is, by far, the most probable frequency for TA phonons. 
A great number of candidates therefore exist to feed the TA+ TA + LA process in equilib- 
rium, but not the reverse process. The smaller 4.5 THz LA peak may be akin to a harmonic 



of the 9THz LA peak: as the process progresses, many 9THz LA phonons are available. 
If one is chosen for a collision, it is very likely a LA + LA+ TA process will choose a 
4.5 THz TA and, thus, a 4.5 THz LA product. 

Through the use of differing forward-backward rate coeficients, this problem can be 
partially corrected. The uniform application of these coefficients to all reactions of a given 
type, however, causes problems elsewhere on the distribution. While time did not permit 
investigation of some possible remedies, this observation may indicate that the frequency 
and polarization-dependent operators we set out to avoid may be necessary after all. 



5 Semiclassical IVlodels 

This section describes simplified models, most of which grow from classical theory, that 
were modified to improve their predictive capability based on data and understanding 
gained through the experiments and phonon-scale simulations performed under this LDRD. 
These models were constructed with the goal of providing microscale information to macro- 
scale codes in a computationally convenient manner. This goal is critical to successful 
modeling of microdevices because, when considered on a system scale, most are far too 
large for microscale techniques to be practical using current computers. A successful tool 
will therefore be capable of identifying dominant mechanisms affecting thermal transport, 
which will vary with temperature and characteristic length scale. If mechanisms associated 
with microscale effects, such as boundary scattering, become significant, the subgrid model 
will provide the necessary corrections to the macroscale model. 

For most current devices, which have a limited number of areas where microscale ef- 
fects are significant, but not dominant, this goal can be accomplished by developing the "ef- 
fective thermal conductivity" concept. Under this concept, microscale effects are commu- 
nicated to a macroscale code by modifying the local thermal conductivity, which may now 
be anisotropic, heterogeneous, and a nonlinear function of temperature. The microscale 
model can thus be supplied in the form of a subroutine for calculating K and changes to the 
overall code are minimized. This scheme works well within the general scope of the ASCI 
program that promotes the use of modeling and simulation for performance analysis and 
qualification of microdevices as well as integrated systems with scales reaching meters. 

This approach has the advantages of: 

a ease of implementation 

a better understanding 

robustness 

when compared to performing a coupled continuum-noncontinuum simulation. However 
the "effective thermal conductivity" approach has a few drawbacks: 

assumption of near-equilibrium 

a required validation of heat flux - temperature gradient relationship 

a explicit temperature dependence. 



5.1 Modeling Strategy 

In a thermal non-equilibrium state, where a temperature gradient exists, the phonon dis- 
tribution will deviate from the Bose-Einstein distribution given by Eq. 6. The degree of 
deviation from the B-E distribution depends on the heat flux and boundary conditions. To 
obtain the new phonon distribution, one needs to solve the Boltzmann equation. How- 
ever this is a difficult task because of limitations in computer power and the complexity of 
modeling the phonon scattering process, which highly depends on the phonon propagation 
mode and local temperature. 

A classical approach to this problem is to linearize the Boltzmann equation using pertur- 
bation theory and to develop an analytical closed-form solution for the phonon distribution 
function. A key assumption in this approach is that the nonequilibrium phonon distribu- 
tion is only a small deviation from the equilibrium condition. All the phonon scattering 
processes are assumed to be ways to restore the phonon distribution back to the thermal 
equilibrium condition. The restoration rate is proportional to the departure of the distribu- 
tion function from its equilibrium condition. The time scale to characterize the rate is the 
relaxation time, 2. 

Under these assumptions, a thermal conductivity can be defined as [54, 381: 

where C(p,  o) is the contribution of the phonon mode with polarization p and frequency 
o to the specific heat and the integral is taken over the wavevector, k and summed over all 
polarizations. 

If a constant average phonon speed and relaxation time are assumed, the integral may 
be easily evaluated to yield: 

1 
K = -C$T 

3 (34) 

which may also be derived via kinetic theory [31, 221 

Calculating the thermal conductivity under this model therefore becomes a question 
of how the group speed and the relaxation time are treated. In the latter case, another 
assumption is required: that each scattering process (and its rate) is independent from each 
other. That implies the existence of quantum chaos. The chaotic nature permits us to 
use Matthiessen's rule [31] to approximate the total relaxation time in a manner similar to 
calculating a series resistance in an electrical circuit. That is, a single relaxation time can 
be defined for each class of scattering process. The reciprocal of the total relaxation time is 
then the sum of the reciprocals of the relaxation time for each phonon scattering process. 



Next it is important to study each class of scattering process and determine the re- 
laxation time and its variation with temperature, phonon propagation mode, and polariza- 
tion. A moderate amount of work toward understanding and characterizing the dynamics of 
phonon transport and scattering in materials and quantitatively predicting the thermal con- 
ductivity of materials exists. However, most of this work was driven by an interest in ma- 
terial behavior in the law-temperature or cryogenic conditions. Very little work addresses 
the microscale heat transfer problem. The difference is that at the lowest temperatures, the 
boundary scattering is dominant. Hence the thermal conductivity depends on the size and 
shape of the crystal or crystallites. On the other hand, for structures in microsystems above 
room temperature, both boundary scattering and three-phonon scattering will dominate. 
This makes it difficult to predict the thermal conductivity behavior of materials. 

5.2 Baseline Model 

Among existing models, the Callaway [55] and Holland [38] models were chosen to be 
evaluated in detail. These models were selected because they have been used by many 
researchers to predict thermal conductivity of bulk silicon and other semiconductors. The 
Callaway model uses a single mode for phonon transport, while the Holland model utilizes 
three modes (one longitudinal and two transverse modes). These are the baseline models 
that may be further developed to incorporate any essential microscale effects to predict 
thermal response in microsystems. Another interest is to determine the tradeoff between 
complexity and accuracy of employing a single dominant mode versus multiple modes 
of phonon propagation. Obviously, including multiple modes of phonon propagation will 
produce a more accurate value of thermal conductivity, however it may require significant 
additional computation time. 

Figure 42 shows a comparison of the thermal conductivity of silicon predicted by both 
the Callaway (single mode) model and the Holland (multiple mode) model with measure- 
ments by Holland and Neuringer [46] (1.7 to 300 K) and Slack and Glassbrenner [56] (300 
to 1683 K). The Callaway model fails at high temperature because it focuses on capturing 
the normal and Umklapp scattering processes at low temperature. At high temperature, the 
dependence of normal and Umklapp processes is quite different. In addition, we need to be 
cautious with the Callaway model because it predicts the temperature dependence is T-n, 
where n < I ,  while experimental data implies the temperature dependence is T - ~ . ~  from 
200K to well above 658K [38]. For these reasons, the Holland model was selected as the 
baseline for further work. 
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Figure 42. Predictions of single mode and multimode models 
compared with experimental data for bulk silicon. 

5.3 Boundary Scattering 

As shown in Fig. 35, the Holland model performs poorly in predicting the thermal conduc- 
tivity of thin silicon films. Because it performs well for bulk silicon, this shortcoming can 
reasonably be attributed to its boundary scattering model. 

In the Holland model, the relaxation time for boundary scattering is determined by 
dividing the thickness of a structure by the phonon propagation speed and multiplying by 
a weighting factor, F: 

t 

This weighting factor is intended to characterize the effect of surface topology. In 
Holland's work, a constant value of F=0.8 is med. This constant valm is derived from 
measurements of the thermal conductivity of bulk silicon at low temperature. At low tem- 
perature, even for bulk samples, the boundary scattering dominates because the phonon 
mean free path increases with decreasing temperature. 

Our approach to improve the boundary scattering model is to consider the surface topol- 



ogy at the boundary and how its scattering effect will vary with the wave vector of an in- 
cident phonon. This improved model follows the work of Ziman [31] and McConnell et 
al. [8]. Since six polarization modes of phonon propagation are considered in our model, 
a constant value cannot reflect the very different interactions between individual phonon 
wave vectors and the surface topology. In order to capture this variation in interaction, 
we must treat phonon propagation as waves that impinge upon, and reflect from, the wall. 
Modeling in this way will allow us to compare the phonon wave vector with the rough- 
ness of the thin-film surface. By comparing the reflection of two parallel waves as a result 
of scattering from the boundary, one can derive the probability of specular reflection as 
follows: 

where q is the surface roughness. 

By Wacing the propagation path of phonons scattering from the boundary, for several 
collisions, one can express the weighting factor in a different form as follows: 

thus F = = for zero roughness and F + 1 as the roughness increases. Note that now F 
is a function of frequency as well as polarization. If the roughnes is small compared to 
the incident wavelength, the wave is likely to scatter specularly, increasing F and, conse- 
quently, the relaxation time due to boundary scattering. The boundary effect on thermal 
conductivity in the current model is thus reduced for that phonon state. 

Figures 43 to 45 show predictions of the thermal conductivity of silicon, for three differ- 
ent film thicknesses, by several variations on the semiclassical model and their comparison 
with measurements made by Asheghi at Stanford [I61 and measurements made as part of 
the current work. which were described in Sec. 2. 

The models used to produce Fig. 43, in which the film thickness is 1.5pm, differ in 
their treatment of boundary scattering. As noted previously, the original Holland model 
underpredicts the thermal conductivity significantly. The first modified model uses a single 
weighted average phonon propagation speed, as in the original model, but a nonconstant 
weighting factor calculated from Eq. 37 using a relatively rough surface (rms roughness 
-2Onr1-1). Again, the predicted results do not compare well with experimental data. If we 
repeat this calculation with the rms surface roughness changed to 0.lnr1-1, which is more 
reasonable for single crystal silicon, the result compares much better with experimental 
data. At room temperature, however, it still underpredicts the thermal conductivity some- 
what. Finally, when we use the group velocity for each mode from the dispersion model 
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Figure 43, Comparison of the predicted thermal conductivity of 
a 1.5 pm single crystal silicon film to measured values. 
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Figure 44, Comparison of the predicted thermal conductivity of 
a 1 pn single crystal silicon film to measured values. 
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Figure 45, Comparison of the predicted thermal conductivity of 
a 0.35pm single crystal silicon film to measured values. 

described in Sec. 3.3, the results compare reasonably well with the data near room temper- 
ature. 

Figure 44 presents a similar comparison for a 1 p film. As in the 1.5 p film, the mod- 
ified model with a smooth surface and an averaged phonon speed compares well with ex- 
perimental data at low temperature (<200K), while the modified model with mode-specific 
speeds performs better at room temperature or above. For the 0 . 3 5 ~  film (Fig. 45), the 
mode speed model matches the data better than the average speed model down to the lowest 
temperature (1 00K). 

Figures 46-48 show the contribution of different phonon propagation modes to the total 
thermal conductivity of the thin-film single crystal silicon with different thicknesses. Pre- 
dictions show that at room temperature, the upper transverse mode is the dominant mode 
for phonon propagation. 
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Figure 46. Contribution of phonon propagation modes to thermal 
conductivity of 1.5 pm single crystal silicon films. 
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Figure 47, Contribution of phonon propagation modes to thermal 
conductivity of 1 pm single crystal silicon films. 
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Figure 48. Contribution of phonon propagation modes to thermal 
conductivity of 0.35 pm single crystal silicon films. 

5.4 Grain Boundary Scattering 

To model polysilicon, the Holland-type phonon transport model was modified to include 
phonon-grain boundary scattering effects in a manner similar to that used in the previous 
section for phonon-boundary scattering. This modification uses the method suggested in 
McConnell et al. [8] with group speeds from the dispersion model discussed in Sec. 3.3. 

Results from this model are shown in Fig. 49 compared to experimental data for sin- 
gle and double 2 p polysilicon layers from Fig. 11. The model shows an excellent fit to 
the temperature dependence of the thermal conductivity. Analysis of the effects of phonon 
scattering mechanisms show that grain boundary and defect scattering dominate the re- 
sponse. It should be noted that without defect scattering included, the shape of the thermal 
conductivity versus temperature response could not be captured. 

While the Holland model can be used to predict the effect of grain boundaries and other 
phonon scattering effects on thermal transport, a simplified semi-empirical formula was 
developed based on an electrical resistance analogy. In this case, the thermal resistance 
of the material is broken down into an intrinsic resistance of single crystal silicon plus the 



resistance due to grain boundaries: 

where S/V is the surface to volume ratio of the grain and Pgrajn-boundary is the specific 
grain boundary thermal resistivity. Film boundary effects are assumed negligible based 
on previous measurements and MC simulations, thus the results are independent of film 
thickness. The specific grain boundary thermal resistivity for the undoped samples was 
calibrated at room temperature and used to estimate the effect of grain size on the thermal 
conductivity at the calibrated temperature. In this case, for room temperature, the specific 
grain boundary resistivity was determined to be 2.07 x I O - ~ K & /  w with a reference resis- 
tivity of 6.667 x ~ o - ~ K &  / W. Using this value of resistivity, the semi-empirical estimates 
of room temperature thermal conductivity value are plotted in Fig. 50 versus experimental 
data taken in our study and others from our collaborator's group [8, 171. The fit gives an 
excellent estimate of the thermal conductivity as a function of grain size. The largest error 
is seen for the as-deposited film, which has the largest defect density. An additional term 
taking into account defect scattering resistivity should therefore be applied to Eq. 38 in 
order to make it more physically meaningful. 
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Figure 49. Graph showing the fit of Holland's model to ex- 
perimental data for the polycrystalline silicon samples shown in 
Fig. 12. The model shows an excellent correlation with the data. 
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Figure 50, Comparison of the semi-empirical prediction of room 
temperature thermal conductivity of polysilicon to experimental 
data from the current work, Ref. [8], and Ref. 1171. 





6 Conclusions and Recommendations 

6.1 Experiments 

The experimental portion of this LDRD added a new dimension to the measurement ca- 
pabilities at Sandia. This work was the first to explore the thermal transport properties of 
semiconductor thin-films down to thicknesses of 340 nm. The results showed a very strong 
temperature and size scale dependence which helped to elucidate the pertinent factors con- 
trolling thermal conductivity in silicon materials. 

Key findings in this work were as follows: 

a The length scale effects on the thermal conductivity of single crystalline silicon do 
exist at room temperature for films which are on the order of 300nm and less. A 
reduction in thermal conductivity was seen on the order of 40% at 300K and in- 
creased to be an order of magnitude at temperatures below 100K. For thicker films 
(> 1 pm), deviation from bulk behavior was insignificant at room temperature but was 
manifested as the temperature decreased. 

The effect of doping on the thermal conductivity of single crystalline silicon was not 
observed over the temperature range in which the experiments were performed. 

The thermal conductivity of undoped polycrystalline Si showed a strong dependence 
on grain size. Grain boundary scattering along with defect scattering were deter- 
mined to be the primary factors controlling the reduction of thermal conductivity 
and its temperature dependence. Future work should be extended to doped poly- 
crystalline silicon fabricated by the SUMMiT V process. Experiments must also be 
extended to higher temperatures in order to provide data over the temperature range 
of many thermal MEMS applications. Such experiments were planned but not exe- 
cuted in the LDRD due to logistical obstacles in obtaining samples. 

Overall, these experiments proved to be difficult due to the sample fabrication require- 
ments. In future programs, dedicated fabrication assistance or outsourcing specimen fabri- 
cation may be prudent. From the experiences of the a h o r s ,  Sandia's current facilities are 
not amenable to the fabrication of highly specialized and tailored films and samples. 

Finally, experimental tools were developed during this work which enabled the mea- 
surement of the thermal conductivity of thin-films. Both steady-state and transient tech- 
niques were implemented at Sandia through the course of the LDRD and will remain a 



platf-orm for future studies. These tools can cover the temperature range of 4-320K, and 
a new custom system was designed with Janis Research to extend the temperature range 
up to 800K. This will provide additional resources to fill the needs of thermal property 
measurements for Sandia's MEMS programs in the future. 

6.2 Monte Carlo Simulation 

The Monte Carlo simulation tool developed for this work has proven valuable for investi- 
gating phonon transport. In particular, its ability to employ a realistic dispersion relation 
and to enable scattering mechanisms to be modeled independently provides a more physi- 
cally reasonable representation than was possible in past work. The simulations were thus 
able to successfully capture the thermal conductivity, over the temperature range of 100- 
300K, of isotopically-enriched and natural bulk silicon, as well as films as thin as 340nm. 
Most notably, these simulations were performed in a predictive mode, i.e. without adjusting 
any empirical parameters when changing conditions or geometries. 

Due to its limited time frame, this project can best be described as providing a basis for 
future work. A short list of examples would include: 

a While impurity scattering model performed well for naturally-occurring isotopes, an 
investigation of doped materials over a wide parameter space should be performed. It 
is possible that some dopants may stress the lattice sufficiently to require additional 
terms in the current model, which accounts only for scattering due to mass difference. 
It should be kept in mind, however, that the accuracy of the model as it stands will 
decline when the doping reaches a level such that charge carriers are contributing 
significantly to thermal transport. 

Significant additional work is required to place the grain boundary scattering model 
on a firm footing. The process of fitting the semiclassical model to the experimental 
data indicated that defects near the boundaries may play a significant role. A model 
for these defects should therefore be developed. 

While this project ended before a firm conclusion could be reached, it appears that a 
frequency and polarization-dependent creationlannihilation operator may be required 
to achieve the proper equilibrium distribution in a non-BGK collision process, 

It may be possible to glean information on many of the unknowns cited above through 
molecular dynamics simulation. Regardless of the final outcome, the process of performing 
such simulations would produce valuable insight into aspects of the collision process that 
are unclear in the theoretical analyses to date. 



6.3 Semiclassical Methods 

While experiments and Monte Carlo simulation have proven valuable as investigative tools 
for gaining insight into phonon transport, they have limited value by themselves to a device 
designer. Particularly in the case of microfabricated devices, the time and monetary cost 
of design iterations, as well as the difficulty in obtaining measurements with sufficient 
resolution, generally preclude exclusive reliance on testing to guide the development phase. 
Similarly, 3D Monte Carlo simulations of full devices, particularly with the moving parts 
found in many MEMS, are currently impractical in most cases. The semiclassical methods 
investigated in this work are therefore critical to providing timely, cost-effective input to 
the design process. 

Continued work on these models is necessary to include more detailed physics and to 
establish quantitative bounds on their regimes of applicability. Such work is critical to pro- 
viding predictive models that can confidently be applied to devices that operate outside of 
conventional limits, which is a common situation at Sandia in general and in microdevices 
in particular. 





Acceptance-Rej ection Method 

The "acceptance-rejection method" is a means for choosing a quantity randomly when its 
distribution function is not invertible. This method, detailed in Appendix C of Bird [23], 
involves selecting a value for the quantity of interest using a random number generator. 
The distribution function is then evaluated at this value. A second random number is then 
generated and compared to this result divided by the maximum value of the distribution 
function. If the random number is smaller than this quotient, the selected value is accepted 
and returned. Otherwise, the selected value is rejected and the entire process begins again. 

Two pieces of information are required for a successful implementation of this tech- 
nique: the distribution maximum and the bounds on the quantity of interest. 

If the distribution maximum is set artificially high, the resulting quantities will be prop- 
erly distributed, but several otherwise reasonable values will be discarded, increasing the 
cost of the technique. If the distribution maximum is set too low, its peak will be "flat- 
tened." In practice, for distributions with unknown maxima, the maximum is compared 
to the function evaluation each time it is called and increased when necessary. This tech- 
nique practically eliminates the danger of reshaping the distribution, but it introduces a 
conditional to every function evaluation, slowing execution. 

For selecting from the Bose-Einstein distribution, the maximum occurs at k = 1 for 
temperatures above approximately 100K. Below 20K, this maximum shifts drastically to 
approximately k = 0.05. 

Choosing the bounds on the quantity of interest is straightforward except in cases, such 
as choosing gas molecule speeds from a Maxwellian distribution, where one or more of 
the bounds is infinite. In this case, a compromise must be reached between the number of 
rejected values and the fraction of the quantity's domain that is excluded. Because the codes 
in this work function with the reduced wavenumber as the primary descriptive variable, the 
bounds are simply 0 and 1. 
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