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     ABSTRACT 

 

Simulation-based life-cycle-engineering and the ASCI program have resulted in models of 

unprecedented size and fidelity. The validation of these models requires high-resolution, multi-

parameter diagnostics. Within the thermal/fluids disciplines, the need for detailed, high-fidelity 

measurements exceeds the limits of current Engineering Sciences capabilities and severely tests 

the state of the art; therefore, a diagnostic development effort is warranted. The focus of this 

LDRD is the development and application of filtered Rayleigh scattering (FRS) for high-

resolution, nonintrusive measurement of gas-phase velocity and temperature. This multi-

parameter technique adds significant experimental capability to several Sandia programs 

including Fire Science and Technology (FS&T) and Aerosciences programs in the Engineering 

Sciences Center (9100) and Reacting Flow Research at the Combustion Research Facility 

(8300). 

With FRS, the flow is laser-illuminated and Rayleigh scattering from naturally occurring 

sources is detected through a molecular filter. The filtered transmission may be interpreted to 

yield point or planar measurements of three-component velocities and/or thermodynamic state. 

Different experimental configurations may be employed to obtain compromises between spatial 

resolution, time resolution, and the quantity of simultaneously measured flow variables. This 

capacity for multi-parameter, non-intrusive instrumentation represents an unprecedented advance 

beyond presently available techniques in the Engineering Sciences Center and in the larger 

scientific arena. Furthermore, measurements may be made using naturally occurring scattering 

centers, eliminating potentially intractable difficulties associated with particulate or chemical 

seeding in a hypersonic or reacting environment. Molecular-filter absorption of scattered light 

from solid boundaries also makes FRS advantageous for detailed boundary-layer measurements. 
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These advantages make FRS an attractive alternative to developed techniques and offer a 

substantial payoff impacting multiple thermal/fluids disciplines. Moreover, a virtually identical 

experimental configuration may be utilized for both aerodynamic and thermal diagnostic 

applications simply by adjusting the laser and molecular filter. These measurements are ideally 

suited for use in production-scale facilities, where many other techniques are difficult to 

implement. 

In this report, we present the results of a three-year LDRD-funded effort to develop FRS 

combustion thermometry and Aerosciences velocity measurement systems. The working 

principles and details of our FRS opto-electronic system are presented in detail. For combustion 

thermometry we present 2-D, spatially correlated FRS results from nonsooting premixed and 

diffusion flames and from a sooting premixed flame. The FRS-measured temperatures are 

accurate to within ±50 K (3%) in a premixed CH4-air flame and within ±100 K for a vortex-

strained diluted CH4-air diffusion flame where the FRS technique is severely tested by large 

variation in scattering cross section. In the diffusion flame work, FRS has been combined with 

Raman imaging of the CH4 fuel molecule to correct for the local light scattering properties of the 

combustion gases. To our knowledge, this is the first extension of FRS to nonpremixed 

combustion and the first use of joint FRS-Raman imaging. FRS has been applied to a sooting 

C2H4-air flame and combined with LII to assess the upper sooting limit where FRS may be 

utilized. The results from this sooting flame show FRS temperatures has potential for 

quantitative temperature imaging for soot volume fractions of order 0.1 ppm. FRS velocity 

measurements have been performed in a Mach 3.7 overexpanded nitrogen jet. The FRS results 

are in good agreement with expected velocities as predicted by inviscid analysis of the jet 

flowfield. We have constructed a second FRS opto-electronic system for measurements at 

Sandia’s hypersonic wind tunnel. The details of this second FRS system are provided here. This 

facility is currently being used for velocity characterization of these production hypersonic 

facilities. 
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INTRODUCTION 

 

This document serves as the final LDRD report for the project “Filtered Rayleigh Scattering 

Diagnostic for Multi-Parameter Thermal-Fluids Measurements.” This project was funded by the 

Engineering Sciences investment area for the purpose of cultivating a state-of-the-art diagnostic 

tool that would benefit both Fire Science and Aerosciences programs within the Engineering 

Sciences Center. Development of the Filtered Rayleigh Scattering (FRS) diagnostic at Sandia 

also has potential impact on convective heat-transfer and fluid-mixing measurements in the 

Engineering Sciences Center and for Basic Energy and Hydrogen Sciences programs at Sandia’s 

Combustion Research Facility. The diagnostic development work has followed two parallel paths 

with one thrust of the project directed at temperature imaging in nonpremixed and sooting flames 

(Fire and Combustion Sciences thrust) and the other track devoted to FRS velocimetry in 

compressible flowfields (Aerosciences thrust). Both programs are heavily leveraged against one 

another as 80% or more of the FRS opto-electronic system was used for both Fire and 

Combustion and Aerosciences measurements. 

This document is largely a compilation of published conference papers and submitted journal 

articles that have been reformatted to present a cogent presentation of the course of this 3-year 

project. The report has been organized such that the Fire and Combustion and Aerosciences 

thrusts are discussed under separate subheadings. In addition to making the report simpler to 

compile from existing publications, it also permits the reader who is interested in only one of 

these applications to readily select the pertinent information. The report begins with a discussion 

of previous FRS work and is followed by a description of the Sandia FRS facility. The results of 

FRS temperature imaging experiments for Fire and Combustion applications are then presented, 

followed by a discussion of FRS velocimetry for Aerosciences applications. The report 

concludes with a summary of accomplishments under the LDRD funding and a description of 

ongoing work with FRS at Sandia. 

 

FRS for Temperature Imaging in Fire and Combustion Applications 

 

Multi-point, nonintrusive imaging techniques are powerful methods for obtaining a 

quantitative understanding of complex flows. The excellent spatial resolution and spatial 

correlation provided by imaging methods is especially useful for development and testing of 

subgrid-scale models for turbulent flows and for providing quantitative visualization of highly 
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complex, unsteady flow fields.  In most fluid dynamics experiments, the velocity field is of 

primary interest and, to this end, much attention has been paid to the development of laser-

diagnostic approaches for velocity imaging, namely particle image velocimetry (PIV), which is 

now a standard in most any fluids research laboratory. In applications where convective heat or 

mass transfer is the engineering quantity of interest, where buoyancy forces are driving the flow, 

and/or in chemically reacting flows, the temperature and scalar fields are of equal or greater 

importance than the velocity field.  

Several laser-based techniques have gained popularity for nonintrusive 2-D temperature 

imaging namely: linear (unfiltered) Rayleigh scattering (LRS), planar laser-induced fluorescence 

(PLIF), and filtered Rayleigh scattering (FRS). Linear Rayleigh scattering imaging was first 

demonstrated in flames by Fourguette et al. [1], who used a specialized fuel mixture to keep the 

Rayleigh scattering cross section constant throughout the flame. LRS has also been used in heat 

transfer studies [2] and fluid mixing experiments [3]. LRS has the advantage of simplicity but the 

disadvantage of weak signal strength, which can be quickly overwhelmed by Mie scattering from 

solid surfaces, room particulate and soot. The PLIF technique [4, 5] provides for noninvasive 

imaging of species mole fraction and temperature with greatly increased signal strength relative 

to LRS. However, full-field PLIF thermometry often requires seeding of the flowfield with a 

foreign chemical species, which increases the complexity of the experiment and, in reacting 

flows, can leave “holes” in the data field due to combustion or pyrolysis of the seed molecule 

and can artificially impact flame chemistry. 

FRS is a modification of the LRS technique, first put forth by Miles et al. [6] for flow 

visualization. FRS takes advantage of the full-field, unseeded capabilities of LRS while 

providing increased rejection of Mie scattering interferences from the illuminating laser line. 

This significant rejection of background noise is achieved by placing a molecular iodine vapor 

cell in front of the detector and using an injection-seeded Nd:YAG laser to tune the laser line to 

an absorption maximum of the iodine spectrum. The seeded laser lineshape and associated Mie 

scattering from surfaces and flowfield particulate are thereby strongly rejected while a significant 

portion of the Doppler-broadened Rayleigh signal leaks past the filter and reaches the detector. 

Single-laser-pulse FRS temperature imaging has recently been applied in premixed flames by 

Elliott and coworkers [7, 8] and by Most and Leipertz [9]. These studies also included 

demonstration of simultaneous FRS/PIV for temperature/velocity imaging. Demonstration of 
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FRS thermometry in a lightly sooting flame has also been provided by Hoffman et al. [10], who 

present temperature data but did not quantify the soot volume fraction over which their FRS 

measurements were successful. 

In this work, we present the construction and performance of the Sandia FRS instrument for 

quantitative temperature imaging. The Fire and Combustion temperature-imaging portion of this 

work has proceeded in a systematic fashion so that the impact of local variation in Rayleigh cross 

section, which is by far the largest source of systematic error in any Rayleigh measurement, can 

be adequately addressed. The course of the FRS thermometry program is summarized in bullet 

form here and explained in the next paragraph.  

 

• Hot-air jet measurements for “shakedown” testing of the Sandia FRS facility – no 

variation in Rayleigh cross section 

• Premixed CH4-air flame to assess impact of moderate variations in local Rayleigh 

cross section and begin work in reacting flows 

• CH4-air diffusion flame to extend FRS to the most severe variations in Rayleigh cross 

section. Joint FRS-Raman imaging required 

• Premixed C2H4-air flame to assess FRS diagnostic performance in a sooting 

combustion system with only moderate variations in Rayleigh cross section. 

 

The temperature imaging work begins with “shakedown” type measurements in a heated air 

jet where there are no variations in Rayleigh cross section so that the performance of our FRS 

optical system can be initially assessed. Reacting flow thermometry was then commenced in a 

premixed CH4-air flat flame from the Hencken burner. This flame allowed us to assess the 

impact of Rayleigh cross section on FRS measurements in a well characterized premixed 

combustion system. FRS was then extended to nonpremixed combustion using a 2-D slot 

diffusion-flame geometry. The variations in FRS cross section were most severe for the diffusion 

flame case and joint Raman imaging of the local fuel mole fraction was combined with FRS to 

make accurate estimates of the local scattering behavior. To our knowledge, this work is the first 

extension of the FRS technique to nonpremixed combustion systems and the first report of joint 

FRS-Raman measurements. The FRS temperature imaging experiments were concluded with an 

investigation of a premixed sooting C2H4-air flat flame on the McKenna burner. These 
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experiments allowed us to assess the performance of FRS thermometry in sooting combustion 

systems, while using a premixed flame where variations in Rayleigh cross section are less severe.  

 

FRS for Velocity Imaging in Aerosciences Applications 
 

One of the most important parameters towards understanding supersonic and hypersonic 

flows is the velocity field, for which past laboratory studies have employed a variety of 

measurement techniques.  Traditional and somewhat venerable techniques have been Pitot 

probes and hot-wire anemometry, but both diagnostics suffer from their intrusive nature and are 

restricted to point measurements.  Laser Doppler velocimetry (LDV) overcomes the intrusive 

nature of probe-based measurements, as well as avoiding the density-dependence of hot-wire 

anemometry.  This was followed by the development of particle image velocimetry (PIV), which 

has the same advantages but offers a planar field of velocities.  While both LDV and PIV have 

proven to be effective tools for measuring the velocity fields of supersonic flows, for the higher 

Mach numbers seen in hypersonic flows, particle lag arising from these techniques complicates 

the measurement [11, 12]. 

Avoidance of particle lag and other seeding challenges is one reason why Doppler global 

velocimetry (DGV), alternatively known as planar Doppler velocimetry (PDV), is an attractive 

technique for studying supersonic and hypersonic flows. DGV or PDV are the common 

terminology in the literature for FRS velocimetry and we will use the terms ‘DGV’ and ‘FRS’ 

interchangeably when referring to velocity imaging applications in this document. Like PIV, 

DGV provides a planar field of velocities but does so using a different physical approach: 

whereas PIV tracks particle displacements, DGV measures the velocity-induced Doppler shift of 

laser light.  It also has the appeal of providing an improved spatial resolution as compared to PIV 

and can be transferred to studies involving different flow physics or, more challengingly, 

broadened to provide simultaneous measurement of other properties such as temperature and 

density.  DGV is particularly well-suited to larger experimental facilities such as Sandia’s 

hypersonic wind tunnel (HWT), in which particle-based velocimetry is problematic.  While 

newer than LDV and PIV, the DGV technique has matured in recent years and is sufficiently 

well understood that it can provide a reliable means of gathering velocity data in supersonic and 

hypersonic flowfields. 
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In the present investigation, Doppler global velocimetry is being developed as a diagnostic 

tool to study supersonic and hypersonic flows.  While the primary interest is application of DGV 

to the HWT, the development of DGV from the ground up is better accomplished in a small, 

inexpensive benchtop facilty.  Not only does this avoid the cost and complexity of operating the 

HWT during the initial development effort, it also allows for more frequent operation of the 

facility and hence more rapid acquisition of exploratory measurements.  The benchtop facility 

that has been chosen for the present work is an overexpanded jet exhausting from an 

axisymmetric supersonic nozzle with an exit diameter of 6.35 mm (0.250 inch).  This flowfield is 

of interest in its own right because the jet captures some of the physics found on spin-up rocket 

motors employed on gravity bombs.  If the backpressure placed on a supersonic jet is 

sufficiently large compared to the jet exit pressure, shock-induced separation within the nozzle 

itself will occur.  Although in some circumstances this can actually increase the thrust, 

detrimental effects also are created, including a lateral component to the thrust vector and 

unsteady loads that may induce dangerous vibrations [13]. Many decades of research into this 

subject have yielded an increased understanding of nozzle separation physics [14-17] but it 

remains an active area of investigation for both rocket engines and thrusters used for attitude and 

roll control [18-21]. 

The present document describes the specifics of the implementation of the DGV system for 

the current measurements and provides velocity data concerning the jet exhausting from an 

axisymmetric Mach 3.7 nozzle.  In addition to providing important data on flow separation 

within a supersonic nozzle, the development of the DGV technique in the present flowfield 

serves as a convenient testbed prior to future implementation in a hypersonic wind tunnel.  Once 

a working DGV system has been constructed for the supersonic jet, it can be altered for 

application to the HWT based upon what has been learned during the benchtop development 

process.  The design and construction of a duplicate DGV system specifically for the HWT is 

described following the presentation of the DGV results from the overexpanded benchtop-scale 

jet. 
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FRS WORKING PRINCIPLE 

 

FRS Temperature Imaging 
 

The working principles behind the FRS temperature-imaging technique are summarized here. 

Further detail can be found in papers by Elliott et al. [7, 8] and by Most and Leipertz [9]. A 

schematic explanation of the FRS method is shown in Fig. 1. FRS is an extension of the 

traditional LRS imaging technique in which a molecular filter is placed in front of the detector, 

usually an intensified CCD camera as shown in Fig. 1a. A frequency-doubled Nd:YAG laser is 

typically used to make the Rayleigh measurements and molecular iodine vapor, which has an 

atlas of absorption resonances in the vicinity of the 532-nm laser output, is employed as the filter 

molecule. When the Nd:YAG oscillator is injection seeded, the laser linewidth is an order of 

magnitude less than the I2 absorption linewidth as seen in Fig. 1b. Injection seeding also allows 

for tuning of the laser output over a narrow ~ 1 cm
-1

 range so that the laser line can be made 

coincident with a strong absorption maximum. Strong Mie scattering interferences, which have 

the same spectral profile as the laser lineshape, are significantly attenuated by the filter, 

facilitating measurements in open laboratory air, dirty production environments and in sooting 

flames where LRS often fails. 

For quantitative scalar imaging, the FRS signal must be related to the physical variable of 

interest such as temperature or mole fraction. This is done by integrating the product of the 

measured I2 filter transmission spectrum and the Rayleigh light scattering spectrum, and 

summing the contributions from each species present locally in the flow according to this 

expression, 
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In Eq. 1, S is the FRS signal which most generally depends upon temperature, pressure, and the 

local chemical composition, C is a calibration constant associated with the FRS optical system, Io 

is the local laser light-sheet intensity, N = P/kBT is the local number density, kχ is the mole 

fraction of the kth species present locally in the flowfield, ( )
k

Ω∂∂σ is the differential Rayleigh  
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Figure 1 – FRS working principle: (a) FRS imaging configuration, (b) spectral profiles of 

molecular filter and nitrogen Rayleigh lineshapes, (c) representative calibration curve for FRS 

thermometry. 
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cross section for the kth species, Mk is the molecular weight of the kth species, ω is the scattered 

light frequency, τ(ω) is the measured transmission spectrum of the molecular filter, and 

( )kk MT ,;ωℜ  is the normalized Rayleigh lineshape function for the kth species calculated from 

the S6 model of Tenti et al. [22]. ( )kk MT ,;ωℜ  has an additional dependence on transport 

properties which becomes especially important at higher pressures and lower temperatures. This 

transport-property dependence is not expected to be significant for fire and combustion 

applications, where the temperatures are high, or for aerosciences applications, where the 

pressure and density are very low. 

The reliability of the S6 model has been experimentally verified for a host of atomic, 

diatomic and polyatomic molecules including He, Ne, Ar, H2, N2, HD, CO2, C2F6 [22-24]. In the 

S6 model, the Rayleigh lineshape is parameterized by the following dimensionless groups [22]
∗
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In Eqs. 2 and 3, λo is the incident laser wavelength, µ is the dynamic viscosity, m is the mass 

of a single molecule, kB is Boltzmann’s constant, c is the vacuum speed of light, θ is the angle 

between the laser-sheet propagation vector and the CCD detection axis, and ∆ω is the 

wavenumber shift of the Rayleigh-scattered light. The Y parameter given in Eq. 2 provides a 

relative measure of the wavelength of the exciting laser beam to the mean-free path between 

molecular collisions. For many molecules at atmospheric pressure, a Y parameter of order 1 or 

less, implies that the impact of collisions between different species is minimized so that light 

scattering from each species can be summed independently, as in Eq. 1, without considering gas-

mixture properties. This approximation becomes even better at flame temperatures where mean-

free paths are even longer. The X parameter given in Eq. 3 is essentially the wavenumber shift of 

scattered light from the laser line normalized by the Doppler linewidth. 

                                                           
∗ The Y-parameter given in Eq. 2 has been derived directly from the expressions in Tenti’s original papers. This definition differs by a factor of 

1/π from the expressions given by Elliot et al. [7, 8]. 
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For our FRS measurements, the optical calibration constant and local laser-beam intensity 

dependence are removed by dividing all images by a reference FRS image recorded in room-

temperature air. For constant-pressure flowfields, this process yields the following expression for 

the normalized FRS signal, 
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where To is the reference temperature (usually 293 K) and σk is defined as a temperature-

dependent “FRS cross section,” 
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Using the S6 model to calculate the kℜ , and by measuring the filter transmission spectrum, 

τ (ω), temperature and mole fraction were related to S
*
 via Eq. 4 for analysis of all data to be 

presented below. It should be noted that the reliability of the experimentally verified S6 model 

allows Eqs. 4 and 5 to be used to calculate FRS temperature response curves for any specified 

gas mixture so that no laboratory calibration of the FRS technique is required. 

Sample FRS signal curves are shown in Fig. 2. Each curve has been calculated from Eq. 4 for 

different gas-phase chemical mixtures. Gas mixtures considered include: (1) pure nitrogen, (2) 

stoichiometric products of methane-air combustion, and equilibrium methane-air products for 

equivalence ratios of (3) φ = 0.7, and (4) φ = 1.3. The signal curves shown here indicate that 

local chemical composition can significantly impact evaluated FRS temperatures so that some a 

priori knowledge of the flowfield chemical composition or a measurement of local composition 

may be required. 
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Figure 2 – FRS signal curves calculated for four different gas-phase mixtures at 0.82 atm. 

 

FRS-DGV Velocity Imaging 
 

Descriptions of the specifics of DGV may be found in such references as Elliott and Beutner 

[25] McKenzie [26], Forkey et al. [27] and Meyers [28]. The same fundamental equipment as 

used in the FRS temperature measurements is utilized for DGV; namely, an injection-seeded 

Nd:YAG laser, molecular iodine filter cells, and low-light sensitive cameras.  In brief, DGV 

operates by measuring the Doppler shift induced in laser light scattered from small particles 

traveling with the flow. Figure 3 shows a simplified sketch of the DGV optical principle.  The 

scattered light is observed by both signal and reference detectors, of which the signal detector 

views the flowfield through a filter cell containing molecular iodine vapor.  Iodine has numerous 

absorption lines in the range of a frequency-doubled Nd:YAG laser, such as those shown in Fig. 

4a predicted by Forkey’s well-known computer model [27, 29].  If the laser light possesses a 

suitably narrow linewidth, one of these absorption lines can be chosen to act as a frequency-to-

intensity transfer function by selectively absorbing the scattered light dependent upon its 

Doppler-shifted frequency, as indicated in the experimentally-acquired profile of one absorption  
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Figure 3 – A sketch of the optical principle of DGV. 

(a)

(b)

(a)

(b)

 

Figure 4 – (a) Iodine absorption spectra in the range of a frequency-doubled Nd:YAG laser 

predicted by Forkey’s computer model [27, 29]; (b) An experimental profile of the line near 

18789.3 cm
-1

, including a sketch of how such a line can be used. 
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line in Fig. 4b.  (The model used to produce Fig. 4a does not include the nonresonant background 

measured in practice, which accounts for the difference in absolute transmission between Figs. 

4a and 4b.)  The frequency of the scattered light determines its position along the slope of an 

absorption line and hence the intensity of the light collected after traversing the cell.  

Simultaneously, the reference camera collects the scattered light free of filtering.  The 

transmission ratio calculated from the signal and reference data provides a measure of the degree 

of absorption through the iodine cell, which using Fig. 4b determines the Doppler shift in the 

frequency and hence one component of the velocity of the flow. 

The directional sensitivity of the system is determined from the Doppler shift equation 

 

)ˆˆ(
1

ν isV −•=∆

r

λ
 (6) 

 

where ∆ν is the frequency change due to the Doppler shift, λ is the wavelength of the laser, V
r

is 

the local velocity vector of the jet, and iˆ  and ŝ  are the unit normal vectors in the incident and 

scattered light directions, respectively.  This indicates that the directional sensitivity is the 

bisector of the inverse of the incident light direction and the scattered light direction.  To obtain 

multiple components of velocity in an instantaneous measurement, the scattered light must be 

observed from multiple directions, which necessitates the use of additional cameras and iodine 

filter cells.  Alternatively, mean velocities may be gathered for multiple components by utilizing 

multiple laser sheet directions. 

 

SANDIA FRS OPTO-ELECTRONIC SYSTEM 

 

FRS Opto-Electronic System for Temperature Imaging 
 

System Optical Layout 

A schematic of the FRS optical arrangement is shown in Fig. 5. The frequency-doubled 

Nd:YAG laser (Spectra Physics Pro-350) provides an output of 1250 mJ per 10-ns pulse at 10-

Hz repetition rate. The Nd:YAG oscillator is injection seeded (Spectra OEM seeder) to provide 

an essentially single-longitudinal-mode output, with a linewidth of 0.003 cm
-1

. The output of the 

laser can be temperature tuned over a nominally ±1 cm
-1

 range in the vicinity of 18,789.3 cm
-1

 

(532.22 nm) by providing a bias voltage to the heater circuit of the Nd:YvO4 seed laser. This 

tuning capability allows the seeded Nd:YAG output to be matched to line center of a preferred I2  



 
 

23

 

 

Figure 5 – Schematic of FRS optical arrangement for combustion temperature imaging. 

 

absorption resonance to provide a high level of background rejection for the molecular scattering 

measurements. 

A wedge beamsplitter is used to split 3% of the remaining laser beam to a “monitor leg” that 

is discussed below. The remaining 97% of the laser beam is passed through a half waveplate that 

orients the polarization of the laser beam to vertical. The beam is then periscoped to the 

appropriate height and passed through a f = +750-mm spherical lens and a f = –50-mm 

cylindrical lens to form a diverging laser sheet, which travels through the jet flow facility and is 

then trapped. The waist of the laser sheet is approximately 200 µm wide at the center of the field 

of view and the laser sheet height is nominally 50 mm. Molecular Rayleigh scattering from the 

flow is imaged through a 254-mm long, 76-mm diameter iodine cell onto a 16-bit, intensified 

CCD detector (Princeton Instruments PI-MAX Hi-Q) with a 512 × 512 square pixel format. The 

quantum efficiency of the ICCD photocathode is over 45% at 532 nm, which is exceptionally 

high for an intensified CCD. For the heated jet and CH4-air premixed flame measurements the 

filtered Rayleigh signal is imaged at f/1.8 using a 50-mm focal length Nikkor glass camera lens. 

For the CH4-air driven diffusion-flame and C2H4-air sooting premixed flame measurements the 

filtered signal was imaged at f/2.8 with a 105-mm focal length Nikkor lens.  

The “monitor leg” is used to track the pulse-to-pulse fluctuations in laser power and drifts in 

laser-beam frequency that occur during FRS data collection. The monitor laser beam is 
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attenuated by neutral density filters and split 50/50 using a dielectric plate beamsplitter. One 

portion of the monitor beam is passed directly to an optical diffuser and PIN photodiode 

assembly to provide a direct measure of the single-pulse laser energy. The second portion of the 

beam is passed through a reference iodine cell to a similar diffuser/photodiode assembly. Both 

photodiode outputs are sampled by gated BOXCAR integrators and the calibrated BOXCAR 

outputs are ratioed to provide a measure of the transmission of the reference cell. The 

transmission spectrum of the reference cell is precalibrated so that the measured transmission can 

be related to the laser output frequency. This reference cell arrangement was used to monitor and 

correct any long-term drift in laser frequency over the course of the experiments. Pulse-to-pulse 

frequency variations were generally small compared to the linewidth of the selected I2 transition 

and, while monitored, were not accounted for in the analysis of the FRS images. 

A third optics train is used to calibrate a second iodine-vapor cell that is used as the 

molecular filter for the FRS temperature measurements simultaneously with the calibration of the 

above-mentioned reference iodine cell. For cell calibration, the laser power provided to the 

experiment is set to a minimum and the turning mirror on kinematic mount “KM” is removed to 

pass the beam to the “filter-cell calibration leg”. In both the reference and calibration legs, the 

beam is expanded by 4× before entering the iodine cell in order to avoid saturation of any 

absorption resonances. The cell calibrations are automated using a custom LabVIEW VI that 

scans the seeder bias voltage and averages the BOXCAR output voltages at each seeder bias. 

Nominally, 100 laser shots at each bias setting were averaged to simultaneously produce 

transmission spectra for both the reference cell and molecular filter cell.  The VI also monitors a 

voltage from the seed-laser control circuit which is proportional to the build-up time for the Q-

switched laser pulse in the Nd:YAG oscillator. Exceptionally long buildup times indicate 

momentary loss of seeder lock and the data from these pulses are not included in the average. 

This voltage was also used to monitor seeder lock during all FRS experiments and images with 

poor injection seeding can be similarly discarded. 

 

Iodine Filter Cells 

The molecular iodine cells used to monitor the laser frequency and to filter the Rayleigh 

signal are of the starved-cell design described by Elliott and Beutner [25] . Each cell is a 76-mm 

diameter glass cylinder with optically flat windows on each end. In the starved-cell arrangement, 

each cell contains essentially pure I2 vapor that is superheated to 100
o
C by kapton resistance 
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heaters on the cell sidewalls. Superheating of the cell walls ensures that none of the vapor inside 

the cell condenses back to the solid phase so that a constant I2 number density is kept in the cell. 

The reference cell is 127 mm in length and permanently sealed for enhanced longtime stability 

with a nominal I2 saturation temperature of 35
o
C. The molecular-filter cell is 254 mm in length 

and has valved ports to a vacuum line and a temperature-controlled I2 crystal reservoir so that the 

amount of I2 in the cell can be varied if desired. For the experiments reported here the I2 

saturation temperature for the molecular filter is 45
o
C, with the exception of the premixed, 

sooting C2H4-air flame where a saturation temperature of ~53
o
C was used to make the cell as 

optically thick as possible. The molecular filter has a longer length and higher I2 concentration 

relative to the reference I2 cell so that the maximum level of background rejection is provided in 

the Rayleigh images in conjunction with a reliably measured, nonzero transmission minimum for 

frequency tuning of the injection seeder.  

For all of the reported temperature measurements, the laser output was tuned to line center of 

the R121 (35-0) transition of the B(0
+
u
3
Π) ← X(0

+
g
1
Σ) electronic system of I2 near 18789.25 

cm
-1

.  Calibration data in the vicinity of this line for both the reference and molecular filter cells 

are shown in Fig. 6. The long-time stability of the molecular-filter cell, which has not been 

permanently sealed, is noteworthy.  
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Figure 6 – Measured transmission spectra for (a) molecular-filter cell and (b) reference iodine 

cell. The stability of both the adjustable cell in (a) and sealed cell in (b) is noteworthy. 
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FRS Opto-Electronic System for Aerosciences Velocity Imaging 
 

Optical Arrangement 

The DGV system was designed and assembled in conjunction with the planar thermometry 

instrument described earlier in this document, and in fact it utilizes much of the same equipment 

and techniques.  A schematic of the optical setup is drawn in Fig. 7 and a photograph of the 

experiment is shown Fig. 8.  Its centerpiece is an injection-seeded pulsed Nd:YAG laser (Spectra 

Physics PRO-350) operating at its second harmonic of 532 nm.  The frequency of the beam is 

controlled by an external voltage supplied to the seeder, but the laser is subject to substantial 

jitter and occasional hops in frequency even when the voltage is constant, so a frequency monitor 

must be used to record such frequency changes on a pulse-to-pulse basis.  A small portion of the 

beam is tapped off by a beamsplitter, reduced in intensity by ND filters, and beam-split once 

more.  One of these beams is directed to a ground-glass plate and viewed by a photodiode to 

monitor the pulse-to-pulse beam energy, while the other is passed through an iodine cell prior to 

being intercepted by a second glass plate and photodiode.  The beam is expanded upstream of the 

iodine cell such that a larger beam traverses the cell to avoid saturating the iodine vapor, then is 

refocused on the glass plate.  The iodine cell, supplied by Innovative Scientific Solutions Inc. 

(ISSI), is permanently sealed after filling at a side-arm temperature of 35°C and maintained at a 

cell temperature of 100°C to within ±0.1°C by a digital temperature controller (Cole-Parmer 

DigiSense).  It is 12.7 cm long and 7.6 cm in diameter. 

A second iodine cell is used for the signal camera viewing the jet and is calibrated 

simultaneously with the iodine cell in the frequency monitor.  To accomplish this, an additional 

portion of the laser beam may be tapped off the primary beam and redirected to a second 

calibration station identical to the frequency monitor.  This beam is split into a reference beam 

observed by one photodiode and a signal beam that is expanded, collimated through the second 

iodine cell, and refocused on a ground glass plate observed by another photodiode.  This 

calibration station and the frequency monitor function identically and in parallel when scanning 

the absorption profile of the two iodine cells. 

The four photodiodes used in the frequency monitor and the calibration station are each 

sampled by a gated integrator (Stanford Research Systems SR250) to determine the energy found 

in each laser pulse.  The integrated signals then are recorded by an analog-to-digital converter  
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Figure 7 – A schematic of the optical configuration of the DGV system. 

 

 

Figure 8 – A photograph of the optical configuration of the DGV system. 
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controlled by LabView 6.0 software.  Simultaneously, the laser’s Q-switch build-up time 

monitor is sampled to ascertain the quality of the injection seeding; data points at which the laser 

loses its frequency lock and emits a multi-mode pulse can be identified by a higher voltage from 

this monitor and are discarded.  Simultaneous triggering of the laser, the gated integrators, and 

LabView is maintained by multiple digital delay generators (Stanford Research Systems 

DG535). 

The primary beam is formed into a sheet and re-collimated to ensure that no significant 

divergence in the incident light direction occurs over the span of the laser sheet.  It is deflected 

down towards the jet at an angle of 27° from the vertical, as shown in Fig. 9a.  The cameras are 

positioned in the horizontal plane.  The directional sensitivity of the system is determined as the 

bisector of the inverse of the incident light direction and the scattered light direction, or a 31.5° 

angle from vertical in the scattering plane as shown in Fig. 9a. Thus the velocity component 

measured is primarily sensitive to the jet axial direction, but retains some sensitivity to the radial 

direction as well.  This laser sheet orientation was chosen to maximize its sensitivity to the axial 

velocity component without the laser sheet striking the jet nozzle, which was found to create 

biases from the light reflection off the surface, while still remaining near the exit of the jet. 

A second velocity component can be obtained within the same plane and using the same 

camera alignment by directing the laser sheet from the side, but still inclined with respect to the 

jet axis by 27°.  This is shown in Fig. 9b.  The laser sheet is carefully aligned to coincide with 

the semi-vertical laser sheet of Fig. 9a, although of course only one sheet is operational at a time 

when data are gathered.  The side sheet configuration yields a velocity sensitivity in the 

horizontal plane at 45° from the scattering direction, as shown.  Thus two-component mean 

velocity data may be acquired for the jet. 

 

Collection Optics 

 

Light scattered from the jet is divided by a pellicle beam splitter and then collected by a pair 

of scientific-grade back-illuminated CCD cameras (PixelVision SpectraVideo) with a 512 × 512 

array sampled at 16 bits.  The cameras are thermo-electrically cooled for low noise performance 

and hence increased sensitivity.  Each is equipped with Nikon 105 mm lenses operating at an f-

stop of f/8 to allow sufficient depth of field to focus the inclined laser sheet.  Prior to reaching the 

beamsplitter, the scattered light passes through a polarizer to remove the effects of any 
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(a) (b)(a) (b)

 

Figure 9 – Schematic of the laser sheet position relative to the jet and the resulting directional 

sensitivity of the velocity measurements.  iˆ  and ŝ  are the unit normal vectors in the incident and 

scattered light directions, respectively, and v̂  is the direction of the resulting velocity sensitivity.  

(a) Velocity measured principally in the streamwise direction;  (b) Velocity measured in the 

radial direction. 

 

polarization differences between the calibration procedure and data collection.  This is critically 

important because the camera calibration (see below) is conducted while illuminated with laser 

light at a different polarization than that used to collect data, and the pellicle beamsplitter ratio is 

highly dependent upon the polarization of the incident light.  The polarizer ensures that the 

pellicle and the cameras observe the same polarization of scattered light regardless of any prior 

polarization effects. 

One of the cameras looks through an iodine filter to provide the signal image while the other 

has no filter and thus serves as the reference image.  The iodine cell, a starved-cell design 

purchased from ISSI and based upon the design of Elliott et al. [30] typically was pressure-

broadened with 50 torr of nitrogen and sealed at a side-arm temperature of 45°C.  The cell-body 
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temperature was maintained at 100°C using a second temperature controller (also Cole-Parmer 

DigiSense).  Introduction of nitrogen as a buffer gas increases the absorption line width to 

provide a useful gradient to the line found at 18789.3 cm
-1

 for the Mach 3.7 velocity 

measurements.  The iodine crystals are located in the cell side-arm and hence control of this 

temperature dictates the iodine vapor pressure in the cell.  The side-arm was immersed in a 

temperature-controlled bath of a water-glycol mixture to maintain the desired conditions until the 

side arm was sealed.  The starved-cell design allows the cell’s side-arm and its remaining iodine 

crystals to be isolated from the cell body and therefore eliminates the need for constant control of 

the side-arm temperature, which requires greater precision than the cell-body temperature to 

maintain a constant absorption profile. 

 

Jet Hardware 

 

The supersonic jet is produced by a conical nozzle with a design Mach number of 3.73 and 

an expansion half-angle of 15° that reaches an exit diameter of 6.35 mm (0.250 inch).  The 

nozzle connects to a large settling chamber containing a pressure transducer and a thermocouple 

to measure the stagnation conditions of the jet flow.  The settling chamber is supplied by a 24 

MPa (3500 psi) bottle of nitrogen controlled by a dual-stage pressure regulator to maintain the 

stability of the flow.  In all cases presented in this document, the jet was operated at a stagnation 

pressure of 1.41 ± 0.01 MPa (205 ± 2 psia) and a stagnation temperature of 293 ± 3 K, 

exhausting into ambient room air at 84.1 kPa (12.2 psia).  At these conditions, flow separation 

will occur within the nozzle, with a predicted shock location 2.7 mm (0.11 in) upstream of the 

exit plane [27]. 

A condensate fog was created in the jet flow to serve as a scattering medium for the laser 

light.  Ethanol was injected into the nitrogen line as it approached the settling chamber by an air 

atomizing nozzle; this ethanol evaporated into the nitrogen supply and then condensed during the 

expansion process in the jet nozzle to form a fine fog of ice crystals, which is an ideal scattering 

source for the incident laser light.  The stability provided by the dual-stage regulator was found 

to be necessary to avoid saturating the flow with excess quantities of ethanol when the jet 

stagnation pressure might briefly decline.  The ice crystals were estimated to have a diameter of 

approximately 100 nm by imaging the jet flowfield at two different incident laser light 
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polarizations and comparing the resulting polarization ratio with Mie scattering theory [31], this 

is sufficiently small to track the flow well [11]. 

 

FRS TEMPERATURE IMAGING MEASUREMENTS 

 

FRS Image Preparation for Combustion Thermometry 
 

Single-pulse FRS images were generally acquired in groups of 100 or 200 for each operating 

condition studied. In addition to the FRS thermal images, a reference image set in room-

temperature air was obtained and the shot-averaged FRS air image was used to normalize all data 

so that the experimental data was consistent with the analysis of Eq. 4. An additional FRS image 

in pure Helium at room temperature was also acquired to estimate the degree of background light 

leakage past the filter. These background levels were small (typically less than 5% of the FRS 

signal) but significant enough to impact the results if not monitored. Helium was selected as the 

background reference because it has a Rayleigh cross section that is 73 times less than the cross 

section of air. The air and helium FRS images are then combined to solve for the background 

contribution utilizing an expression similar to the one first presented for LRS by Fourgette et al. 

[1],  
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In Eq. 7, i and j are the ICCD pixel indices, B is the shot averaged background light estimate, A 

is the shot-averaged FRS image in room-temperature air and H is the shot averaged FRS image 

in room-temperature helium. The second term on the RHS of Eq. 7 represents the subtraction of 

the Helium FRS contribution from the total image H, which includes the helium FRS signal plus 

the background noise.  

Normalized FRS signals for use in curves like those shown in Figs. 1c and 2 are then 

computed from the single-pulse or shot-averaged FRS images, Fi,j, using, 

 

jiji

jiji

ji
BA

BF
S

,,

,,*

,
−

−

=   . (8) 

 



 
 

33

FRS temperature data are then obtained from 4th-order polynomial fits to the FRS temperature 

response curves for the appropriate gas-mixture composition for each pixel in the image. 

 

Temperature Imaging in a Heated Air Jet 
 

Our initial sets of FRS temperature imaging experiments were performed in a heated air jet. 

Measurements in the nonreacting heated jet removed the complexities in data interpretation that 

arise in reacting flows due to gas-composition dependent variations in the local Rayleigh cross 

section. The jet was constructed from an approximately 1-m long section of 15.2-mm diameter 

stainless-steel pipe. A Sylvania electric torch was placed inside the entrance to the pipe at a 

sufficient distance upstream of the jet exit so that any disturbances due to the presence of the 

heater were damped out and a fully developed laminar pipe flow emerged from the jet. The 

electric torch provided a jet exit temperature of 800 K, measured using a thermocouple, with a jet 

flow of 6000 SLPM. These conditions resulted in a jet Reynolds number of 180 and a jet 

Richardson number of 1.3. Under these conditions the jet was near-field stable, laminar and in a 

mixed forced-free convection mode. This stable jet was useful for FRS system-evaluation 

purposes because it had a large, isothermal core region, which was at the jet-exit temperature.  

Time-mean and single-laser-pulse FRS temperature data from the stable calibration jet are 

shown in Fig. 10. The in-plane spatial resolution in these temperature images is 160 µm × 160 

µm, with an out-of-plane resolution dictated by the local laser-sheet thickness of approximately 

200 µm.  The time-mean results in Fig. 10a were obtained by averaging 200 single-pulse 

temperature images, and this mean field shows the extent of the uniform-temperature jet core. 

The single-pulse temperature field in Fig. 10b exhibits more noise (primarily intensifier MCP 

and photon shot noise) than the averaged temperature field and shows the impact of 

instantaneous jet structure caused by a sinuous-wave instability that is clearly evident at z = 50-

60 mm or 3.3 to 4.0 jet diameters. 

Radial and axial profiles extracted from the time-mean temperature image in Fig. 10a are 

presented in Fig. 11. The radial profiles presented in Fig. 11a for z from 1.2 to 3.7 jet diameters 

were selected from the stable region of the jet, and all radial profiles exhibit the expected near-

Gaussian shape with no significant jet spreading and some scatter in the maximum centerline 

temperature. This scatter in jet core temperature is indicative of the bias error in the FRS 

measurements due to imperfect background noise subtraction and laser-sheet profile  
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normalization. An estimate of this bias can be obtained from the axial profiles of jet core 

temperature shown in Fig. 11b, which exhibit a mean core temperature of 816 K with an rms 

scatter of 10.7 K. Similar calculations in room air exhibit the same levels of scatter and a 95% 

confidence interval for precision of the shot-averaged air-jet data is approximately 2 rms 

deviations or ± 20 K. 
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Figure 10 – Time-mean averaged for 200 laser shots (a) and single-laser-pulse (b) FRS 

temperature image from a stable hot-air calibration jet. 
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Figure 11 – Radial (a) and axial (b) temperature profiles from the stable hot-air calibration jet. 
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Temperature Imaging in a Premixed Flat Flame 
 

As a first step toward applying our FRS instrument for combustion thermometry, we have 

mapped the temperature field in the premixed CH4-air flame provided by a Hencken burner. The 

Hencken burner consists of a fine array of hypodermic fuel tubes embedded in a 50.8-mm square 

honeycomb matrix, through which dry air flows. The air rapidly mixes with the CH4 fuel near the 

burner surface and, when the gas flow rates are sufficiently high, this arrangement results in a 

stable, near-adiabatic flat flame that is slightly lifted off the burner substrate. Time-mean (100-

laser-pulse average) and single-pulse FRS temperature fields recorded in the post-reaction 

combustion products of the flat flame are shown in Fig. 12. The images in Fig. 12 clearly show 

that this flame provides a uniform-temperature region of products, which can be used to test the 

reliability of our FRS instrument for measurements in reacting flows. It should be noted that 

these premixed flame measurements were performed in an open lab with no coflow shield and 

without precautions to mitigate room particulate, which would not have been possible with 

conventional linear Rayleigh scattering methods. 

We have obtained three FRS data sets from the Hencken burner. In the first two data sets the 

house-air flow rate was set to 40 SLPM and the methane flow was varied from 3.0 to 5.6 SLPM. 

A third FRS data set was recorded with higher flow rates, with 50 SLPM of air and 4.0 to 7.1 

SLPM of methane. For these FRS experiments, the equivalence ratio, φ, varied from 0.71 to 

1.34. For comparison, several sets of coherent anti-Stokes Raman scattering (CARS) temperature 

measurements were also performed with 40 SLPM air flow for φ from 0.86 to 1.36. The CARS 

measurements were performed at the Combustion Research Facility at Sandia/CA
†
 while the 

FRS measurements were conducted at Sandia/NM. The barometric pressure difference between 

Livermore, CA and Albuquerque, NM was not expected to impact flame thermodynamics. This 

assumption was checked using adiabatic equilibrium calculations [32] for pressures of 1.0 and 

0.82 atm, where the results showed less than 5 K change in the predicted flame product 

temperature. 

 FRS-measured flame temperatures were calculated for each φ from time-mean temperature 

images by averaging the mean temperatures within a 7.3 × 11 mm interrogation zone within the 

uniform-temperature region of the flame. The flame temperature data obtained are plotted in 

                                                           
† The authors wish to thank Paul Schrader and Roger Farrow of the Combustion Research Facility for their 
acquisition of all CARS measurements reported here. 
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Fig. 13. The FRS temperatures shown in Fig. 13a were inferred from the normalized FRS data 

using Eq. 4 and equilibrium product mole fractions for major species N2, O2, CO, CO2, and H2O, 

calculated from the NASA equilibrium code [32] for each value of φ. For the range of 

stoichiometries investigated, these 4 major species accounted for 95 to 98% of the total gas-

phase mixture. The balance was added to the N2 mole fraction for FRS data analysis. Using this 

procedure for estimation of local product composition, the FRS results for φ < 1.3 deviated by no 

more than 50 K from the adiabatic flame temperature. For comparison, the average of several 

sets of CARS measurements are shown in Fig. 13a. The uncertainty in the CARS data is ±25 K. 

The CARS temperatures are nominally 25-50 K less than the adiabatic flame temperature for all 

φ, which is generally a result of low-levels of heat loss from the flame. FRS temperatures in Fig. 

13a for φ < 1.3 are generally within 50 K of the CARS results as well. For φ > 1.3, the FRS 

temperatures are nominally 50 K higher than the adiabatic flame temperature and 75-100 K 

higher than the CARS measurements for all three FRS data sets. The reason for this apparent 

high-temperature bias in the FRS results at high φ is not understood at this time. One possibility 

is that at these fuel-rich operating conditions there is an ever-increasing concentration of H2O in 

the combustion products and that potentially imperfect S6 modeling of H2O is having a greater 

impact on interpretation of the FRS results. 

For many practical measurements, the local chemical composition in flames is generally not 

as well understood as for the case of the Hencken burner. For premixed methane-air flames, the 

bulk of the gas species is nitrogen and an often-made simplifying assumption is that all the 

Rayleigh scattering results from N2. Another potential simplification is to use a single methane-

air equilibrium product composition for analysis of the results. We have used the FRS data from 

the Hencken burner to investigate the accuracy of these simplifying assumptions. The FRS 

images were analyzed assuming: (1) all of the FRS signal comes from N2, and (2) using the 

stoichiometric (φ = 1) product composition to analyze the data for all φ. The results are shown in 

Fig. 13b. FRS flame temperatures calculated using the N2 scattering assumption result in a 

significant low-temperature bias in the results; with N2-FRS temperatures as much as 150 K 

lower than the CARS measurements. Use of the stoichiometric product assumption results in a 

significant improvement in FRS flame temperatures as the FRS temperatures for φ from 0.8 to 

1.2 are generally within 50 K of the curve traced by the CARS measurements. The reason for the 

larger discrepancy in the N2-scattering assumption is believed to be the neglection of CO2 
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scattering, which has a Rayleigh cross-section that is about 2.2 times greater than for N2. The 

fact that CO2 is even included in approximate amounts by using the φ = 1 products assumption 

results in much more accurate flame temperatures over a broad range of stoichiometries. Outside 

of the equilibrium-product zone, both simplifying assumptions result in some degree of bias error 

due to uncertainty in the local chemical composition. However, the absolute temperature bias 

decreases at lower temperatures, such that it is nominally +50 K at most at room temperature 

even when assuming a stoichiometric product composition for premixed flame measurements. 



 
 

40

 

 

(a)

(b)

 

(a)

(b)

 

Figure 12 – Time-mean (a) and single-laser-pulse (b) FRS temperature images from the 

combustion-product region of the premixed methane-air flame provided by a Hencken burner for 

an equivalence ratio of φ  = 1. 
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Figure 13 – Comparison of FRS- and CARS-measured flame temperatures from the Hencken 

burner and the calculated equilibrium product temperature for varying fuel-air stoichiometries. 

Part (a) shows the FRS temperatures deduced by using the calculated major product mole 

fractions. In part (b) the same FRS data have been reanalyzed using the following simplifying 

assumptions: (1) all FRS signal results from N2 scattering and (2) all flames are stoichiometric. 
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Temperature Imaging in a Vortex-Driven Diffusion Flame using a Joint FRS-Raman Approach 
 

An even greater diagnostic challenge is to utilize our FRS instrument for measurements in 

diffusion flames, whose nonpremixed nature often results in larger deviations in the local 

Rayleigh cross section than for the case of premixed combustion. We have utilized FRS in 

conjunction with time-averaged Raman scattering measurements of local fuel mole fraction to 

image the temperature field in a two-dimensional diffusion flame that is interacting with a 

vortical flowfield. The laminar flame was stabilized on a Wolfhard-Parker slot burner of the type 

utilized by Smyth and coworkers [33]. The burner facility is shown schematically in Fig. 14 and 

is briefly described here. More details of the facility are reported by Mueller and Schefer [34], 

who report OH PLIF measurements in this facility. The burner consists of an 11-mm wide by 80-

mm long fuel slot through which a 33% CH4, 67% N2 fuel stream flows at a rate of 45.3 SLPM 

(0.86 m/s). The CH4 fuel stream was diluted with N2 to suppress soot formation. The fuel slot is 

surrounded by a 150-mm square honeycomb matrix, which is covered with several flow-

conditioning screens through which an air coflow at 235 SLPM (0.18 m/s) is provided. A two-

dimensional symmetric flame structure is produced with identical flame sheets located in the 

mixing layers adjacent to the fuel jet. The fuel stream is periodically forced by a pair of 

loudspeakers placed in the fuel-supply duct. This facility produces a laminar, repeatable vortex 

flame interaction that is amenable to phase-locked laser measurements. We have investigated 

two forcing frequencies: (1) a 7.5-Hz case where a single vortex stretches the flame zone 

followed by a long period where the flame is relaxed back to an unforced reference state and (2) 

a 90-Hz case where two consecutive vortices interact and lead to a local strain-induced extinction 

of the flame. These vortex-strained diffusion flames supplied a controlled environment that was 

useful for FRS diagnostic development, while still providing a sufficiently complex flowfield to 

push the diagnostic to its limits.  

 

Use of Fuel Raman Images for Correction of Local Rayleigh Cross Section 

As previously mentioned, the FRS cross section in flames can vary significantly with 

changes in local chemical composition. For the premixed flames discussed above, we found that 

cross-section variation is not a critical factor if an approximate gas-mixture composition is used 

in the interpretation of the FRS data using Eqs. 4 and 5. Diffusion flames can present a much 

bigger challenge if the cross section of the fuel stream differs significantly from air. For the 

67/33 N2/CH4 fuel-stream mixture employed in the diffusion-flame experiments, the fuel-stream 
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Figure 14 – Schematic of Wolfhard-Parker slot-flame burner used for FRS and CARS driven 

diffusion flame measurements. 

 

FRS cross section (calculated from Eq. 5) is 1.65 times greater than for air at 300 K. The impact 

of such large variations in Rayleigh cross section is quantified in Fig. 15, where we have 

calculated FRS temperature response curves for air (79/21 N2/O2), the 67/33 N2/CH4 fuel stream, 

and stoichiometric products of CH4-air combustion. These FRS “calibration” curves show that 

bias errors as large as 1000 K can result from a fuel-stream FRS cross section that is 65% larger 

than air at 300 K.  
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Figure 15 – FRS temperature response functions for fuel-stream, air, and methane-air 

combustion products. 

 

To correct the FRS images for such large changes in scattering cross section, Raman-imaging 

measurements of the local number density of the CH4 fuel molecule were performed. The Raman 

data were acquired using the same optical system and ICCD detector used for FRS with the I2 

molecular filter replaced by a with a 633-nm center, 10-nm bandwidth laser-line interference 

filter. This interference filter attenuated the Rayleigh signal by a factor of 10
5
 and passed the 

Raman Q-branch signals arising from the symmetric and asymmetric stretch modes of CH4 near 

15,847 cm
-1

 (633 nm) and 15,780 cm
-1

 (629 nm). The difficulty associated with weak Raman 

signal strengths was overcome by our high laser-sheet fluence and by averaging the Raman 

signal for 200 laser shots, which was possible in the repeatable laminar flame system 

investigated. The Raman images were corrected for the laser sheet profile and scaled using a 

calibration Raman image obtained from a room-temperature fuel stream. Raman signal-to-noise 

was further enhanced by smoothing along the contours of the much stronger FRS signal using 

the method demonstrated by Starner et al. [35]. This smoothing method exploits the high degree 



 
 

45

of correlation between the Raman and Rayleigh signals and allows for improved signal-to-noise 

without significant alteration of gradients in the measured fuel number density. The local CH4 

fuel mole fraction was computed from the processed Raman signal using,  
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where i and j are the ICCD pixel indices, )(
,
f
jiχ is the fuel mole fraction, Ri,j is the processed 

Raman signal, Ti,j is the FRS-measured temperature, Tref = 293 K is the room-air temperature, 

and ( )jiTg
,

 is a function that accounts for small, temperature-dependent changes in the Raman 

cross section of CH4. 

The Rayleigh cross section of hydrocarbon-fueled diffusion flames is primarily determined 

from the local mole fraction of fuel, air, and the major product species CO2, CO, and H2O. Since 

2-D imaging of the local concentrations of all of these species was not feasible, we have used a 

flamelet-based approach [36] to correlate the concentrations of CH4, N2, O2, CO2, CO, and H2O 

based on information gleaned from the joint Raman/FRS data. This approach is similar to the 

conserved scalar approach of Starner and coworkers [37-39], where joint Raman and LRS results 

are used to track a conserved scalar, but it instead relies upon a more simple set of rules. 

The required species mole fractions were computed as unique functions of the fuel-stream 

mixture fraction, Z, for a laminar, opposed-flow, 67/33 N2/CH4 – air diffusion flame. Flamelet-

based modeling [36] postulates that temperature and species mole fractions are unique functions 

of Z for a given local flame strain. The calculation was carried out for a moderate strain
‡
 of 390 

sec
-1

. We used the results of this calculation to correlate all major species mole fractions to the 

Raman-measured CH4 mole fraction on the rich side, and the FRS-measured temperature on the 

lean side. These correlation functions are plotted in Fig. 16. When the Raman-measured CH4 

mole fraction was 1% or larger, the “rich-side” model of Fig. 16a was used to compute the mole 

fraction vector for use in Eq. 4, from which an appropriate FRS temperature response curve was 

calculated. For Raman-measured fuel mole fractions less than 1%, the required mole fractions 

were correlated with the FRS-measured temperature and the “lean-side” model of Fig. 16b was 
  

                                                           
‡ We have analyzed the results using opposed-flow calculations for several different strain rates between equilibrium 
and extinction. The results showed less than a 50-K change in the FRS-measured temperature over this range of 
strains, so that the selection of strain rate should not significantly impact the data. 
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Figure 16 – Correlation functions derived from opposed-flow diffusion-flame calculations and 

used in analysis of the joint Raman/FRS data. The rich-side model is shown in (a) and the lean-

side model in (b). Data points indicate the results of the diffusion flame calculation and lines 

represent curve fits to the calculated results used for analysis of the Raman/FRS data. 
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used. An iterative process utilizing Eqs. 4, 5 and 9 and the correlations plotted in Fig. 16 was 

then applied to obtain maps of temperature and fuel mole fraction. Typical convergence of this 

process required 4-5 iterations. 

We have applied the above data-analysis procedure to all of the results from the vortex-

strained diffusion flame. As a demonstration of the effectiveness of this procedure we first 

present sample data from the “steady” reference condition where the vortex at 7.5-Hz forcing has 

passed through the field of view and the flame has relaxed to its unforced state. Results from this 

unforced base condition are presented in Fig. 17, where the normalized FRS signal is shown in 

Fig. 17a, and the corresponding temperature (color contours) and fuel-mole-fraction 

(black line contours) data are displayed in Fig. 17b. The in-plane spatial resolution of the FRS 

data is 101 µm × 101 µm. The significant difference in Rayleigh cross section between the fuel 

stream and the coflow air is clearly seen in the FRS signal data in Fig. 17a. The joint FRS-

Raman imaging scheme is very effective in minimizing this potentially untenable bias error.  

Horizontal profiles of temperature and fuel mole fraction at 10, 20, and 30 mm above the fuel 

slot have been extracted from the image data in Fig. 17b and plotted as “set 1” in Fig. 18. An 

additional set of FRS temperature profiles, which were acquired several months earlier, are also 

displayed as “set 2”. We estimate that the fuel-mole-fraction results are accurate to ±3% mole 

fraction, or ±10% of the mole-fraction difference between the fuel and air streams. The CH4-

mole-fraction profiles in Fig. 18 reveal 1 to 2% fuel mole fraction at the location of peak FRS-

measured flame temperature. For this unforced laminar diffusion flame the fuel is surely 

consumed at the location of peak temperature. This bias is due to small amounts of jitter in the 

flame, which smear the Raman signal that has been averaged for 200 laser pulses and due to 

small Raman SNR at the very low fuel number densities encountered in the reaction zone. At the 

FRS signal levels encountered in the reaction zone, a 2% bias in the measured fuel mole fraction 

results in a + 40 K increase in the FRS-measured temperature when using the flamelet-based 

model described above. 

For comparison, nitrogen CARS measurements were performed at heights of 10, 20, and 30 

mm above the fuel slot. The spatial resolution of the CARS measurements is 50 µm and the 

uncertainty in the CARS data is ±25 K. The CARS measurements in the slot burner were 

performed at the Combustion Research Facility at Sandia/CA, which is near sea level, while the  
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Table 1 – Comparison of peak flame temperatures from the Wolfhard-Parker slot flame. The 

CARS measurements were performed at sea level at Sandia/CA while the FRS measurements 

were conducted at Sandia/NM at an altitude of 1650 m. 

 

Y [mm] T, FRS [K] 

set1/set2 

T, CARS [K] Xpeak, FRS 

[mm] 

set1/set2 

Xpeak, CARS 

[mm] 

set1/set2 

∆T [K] 

set1/set2 

∆T  [%] 

set1/set2 

10 1809/1722 1872 8.6/8.0 8.05 63/150 3.3/8.0 

20 1836/1820 1848 9.1/9.2 8.10 12/28 0.6/1.5 

30 1829/1771 1849 8.8/10.0 8.10 20/78 1.1/4.2 

 

joint FRS/Raman data were acquired at Sandia/NM at an altitude of 1650 m, where the nominal 

barometric pressure is 0.82 atm. The data in Fig. 18 show the impact of barometric pressure on 

diffusion flame structure, with the high-altitude FRS data exhibiting a broader temperature 

profile than the sea-level CARS results. A similar trend with altitude has also been reported in 

unforced Wolfhard-Parker flames with an undiluted methane fuel stream by Chen et al. [40]. 

Chen et al. observed a broader flame structure with little change in peak flame temperature, 

which suggests that barometric pressure impacts fluid dynamics, but not flame thermodynamics. 

Similarity of flame thermodynamics is also given credence by the good quantitative agreement 

of the flame temperatures at high-altitude (FRS) and sea level (CARS) from the premixed flat 

flame, which are shown in Fig. 13. With this evidence in mind, a quantitative comparison of the 

peak flame temperatures measured with CARS and FRS is still useful.  

A quantitative comparison of the FRS-measured peak flame temperatures with the CARS 

results is summarized in Table 1. The tabulated data show that the agreement in peak flame 

temperatures is generally within 5% or 75 K. The worst-case agreement is at Y = 10 mm, where 

the signal-to-noise in the joint FRS-Raman data is weakest because the flow is illuminated by the 

low-energy tails of the Gaussian laser sheet at this location. The agreement between the two data 

sets is exceptional at Y = 20 mm, where the laser sheet energy is near its maximum. In all cases, 

the FRS-measured temperatures are lower than the CARS temperatures. It is unclear if this 

impact is real or if it is indicative of a small low-temperature bias in the FRS results.   
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Figure 17 – Joint FRS-Raman results from a steady diluted CH4-air slot diffusion flame. 

Normalized FRS signal contours, (a) and contours of temperature (color) and fuel mole fraction 

(black lines) shown in (b). 
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Figure 18 – Profiles of FRS-measured temperatures and Raman-measured fuel mole fraction 

from a diluted CH4-air flame on a Wolfhard-Parker slot burner. The FRS and Raman data were 

recorded in Albuquerque, NM at 0.82 atm. For comparison, temperature profiles obtained by N2 

CARS in Livermore, CA at 1.0 atm are also shown. 
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7.5-Hz Forcing: Single Vortex-Flame Interaction 

 

To demonstrate the effectiveness of the joint FRS-Raman imaging approach in a more 

complicated flame we have used the technique to image temperature and fuel mole fraction in 

vortex-strained slot flames. Forcing frequencies of 7.5 and 90 Hz were used. At 7.5-Hz forcing, a 

single vortex stretches the flame zone. CH chemiluminescence from the 7.5-Hz flame was 

recorded to visualize the structure of the reaction zone using a 50-µs ICCD gate. Four 

representative chemiluminescence images are shown in Fig. 19. The CH chemiluminescence 

images are simple to acquire, but they do display some artifacts of path averaging due to edge 

flames at the boundaries of the fuel slot and collection lens vignetting. This small amount of path 

averaging was deemed acceptable for purposes of reaction-zone characterization in light of the 

simplicity of the technique and the primarily 2-D nature of the slot burner. A previous 

investigation in the same burner by Mueller and Schefer [34] has shown that positive strain rates 

exist in the region around the outer, downstream edge of the vortex, while negative strain rates 

exist in the highly curved region at the upstream edge of the vortex where the flame appears to 

be folded. These regions are labeled for reference in Fig. 19. The CH images in Fig. 19 show that 

positive strain results in thinning of the CH layer while negative strain results in thickening of 

this layer. This result for CH is similar to the OH PLIF images presented by Mueller and Schefer 

[34], which are not impacted by path averaging effects. 

The impact of the local strain rate on the temperature field can be quantified using the joint 

FRS-Raman imaging approach. Normalized FRS signal images and the corresponding 

temperature and fuel-mole-fraction results are shown in Figs. 20 and 21 at t = 22.2 ms, 25.9 ms, 

33.3 ms, and 44.4 ms relative to the emergence of the disturbance from the fuel nozzle. All four 

images display a high-temperature region where the CH layer is thick and folded and a negative 

strain field exists. The peak temperature in this negative strain region ranges from 1850 K at t = 

22.2 ms to 1950-2000 K at the three later times. This increase in temperature with time is 

consistent with the development of the negative-strain region that is evident in the increasing 

thickness of the folded portion of the CH layer with time. In all of the 7.5-Hz images shown in  

Figs. 19-21, the temperature monotonically decreases as one progresses downstream from the 

high-temperature, negative-strain region along the contour of the CH layer. The CH contour 

thins with downstream distance as the vortical “fuel tongue” begins to place increasingly positive 

stretch on the reaction zone. At t = 22.2 ms, the minimum FRS-measured peak flame temperature 
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is of order 1500 K in the vicinity of x = 17 mm and y = 25 mm, where the fuel tongue has 

penetrated farthest from the jet core. No local extinction of the flame is observed to occur at this 

location. As time increases, peak flame temperatures in the stretched region of the flame rise to 

1650, 1675, and 1800 K (± 50 K) for t = 25.9, 33.3, and 44.4 ms, respectively. The vortex 

appears to weaken and place decreasing strain on the reaction zone so that the minimum flame 

temperature increases with time and downstream distance. Support for the hypothesis of a 

weakening vortex is also given by the observed decreases in fuel-mole-fraction gradients in the 

vortex core, which are especially weak at t = 44.4 ms. A more quantitative assessment of the 

temperature-strain correlation in this well-controlled flame is possible with PIV imaging of the 

velocity field. Simultaneous velocity/temperature imaging in this flame is also possible with joint 

FRS-PIV [8, 9], as the molecular filter will strongly block particle Mie scattering from 

contaminating the temperature images. While possible, this work was not undertaken due to time 

and scope constraints associated with this FRS diagnostic development effort. Schefer [41] has 

recorded PIV images from this flame in his laboratory at Sandia/CA. Joint analysis of his 

FRS/PIV results may be possible to obtain a more quantitative picture of the temperature-strain 

behavior. 
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Figure 19 – CH chemiluminescence images (arbitrary units) at four selected phase angles from a 

vortex-strained Wolfhard-Parker slot diffusion flame. The flame is forced at 7.5 Hz where a 

single vortex strains the reaction zone. Red regions indicate the highest chemiluminescence 

signal while deep blue represents essentially no chemiluminescence. 
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Figure 20 – Normalized FRS images at four selected phase angles from a vortex-strained 

Wolfhard-Parker slot diffusion flame. The flame is forced at 7.5 Hz where a single vortex strains 

the reaction zone. The data show the combined impact of temperature and varying Rayleigh 

cross section throughout the flowfield. The fuel stream can be seen in red, the high-temperature 

region in blue and the coflow air in green. 
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Figure 21 – Contour plots of temperature (color) and fuel mole fraction (black lines) at four 

selected phase angles from a vortex-strained Wolfhard-Parker slot diffusion flame. The flame is 

forced at 7.5 Hz where a single vortex strains the reaction zone. 
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90-Hz Forcing: Multiple Vortices and Flame Extinction 

 

When the acoustic forcing frequency is increased to 90 Hz, while keeping all flow rates 

constant, the forcing is sufficiently rapid so that two consecutive vortices interact. This dual-

vortex interaction produces strain rates that are sufficiently high to cause localized quenching of 

the flame. Localized quenching at 90-Hz forcing in this burner configuration was previously 

observed via OH PLIF by Mueller and Schefer [34]. 

CH chemiluminescence images and the corresponding normalized FRS signal images for the 

90-Hz case are shown in Figs. 22 and 23, respectively, for 4 different phase angles. The CH 

chemiluminescence images have been averaged for 20 shots, while the FRS images have been 

averaged over 100 shots. The factor of 1.65 difference in the FRS cross section of the fuel and air 

streams allows for visualization of the fuel-side vortices using the normalized FRS signal data. 

Observation of the chemiluminescence images provides a qualitative description of the reaction 

zone behavior over the forcing cycle. At t = 0 ms (arbitrary reference) the corotating vortices 

create a region of strong, positive strain, which pulls a reacting fuel tongue toward the rich side 

of the diffusion flame. By t = 0.6 ms the CH images show that the fuel–side vortices have 

significantly weakened the flame and the quenching event occurs near this time. By t = 1.2 ms an 

isolated, fuel-rich reacting “island” is observed on the rich side of the flame and the CH data 

show that this island experiences burn out by t = 5.9 ms.  

The corresponding results for temperature and fuel mole fraction for the 90-Hz case are 

displayed in Fig. 24. At t = 0 ms, the peak temperature of the reacting fuel tongue is in the 

vicinity of 1650 K, with a fuel mole fraction of 2 to 3 percent in the burning fuel tongue. This 

1650-K temperature is in good agreement with the 1640-K value at extinction obtained from 

opposed-flow diffusion-flame calculations [42] and is an indicator that localized extinction is 

imminent. The main vertical portion of the diffusion flame exhibits peak temperatures of 1750-

1800 K for y < 20 mm and 1800-1900 K for y > 30 mm, which is downstream of the second fuel-

side vortex. In this downstream region the high temperature zone appears to be thicker and the 

local strain is potentially decreased, although this is not accompanied by an increase in thickness 

of the CH layer.   

By t = 0.6 ms the chemiluminescence data in Fig. 22 show that the reaction zone in the 

vicinity of the fuel tongue has broken. The FRS-measured peak temperatures in this region are 
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on the order of 1550-1600 K, which is below the 1640-K extinction threshold for this flame. The 

fuel mole fraction in the extinguished region remains on the order of 2 to 3 percent. At t = 1.2 

ms, the peak temperatures in the extinguished region of the fuel tongue are even lower at 1475-

1500 K, and the fuel mole fractions in this region have increased to 4-5 percent as a likely 

consequence of diffusion from the nearby fuel vortices. The isolated island of burning fuel 

mixture is at a peak temperature of 1775-1850 K with a fuel mole fraction of about 3 percent in 

this region. The chemiluminescence images of Fig. 22 show that the isolated island burns out 

near t = 5.9 ms. At burnout, the temperature of the reacting fuel island is 1650 K, while the 

measured fuel mole fraction at burnout is 5 percent, which shows that the burnout mechanism is 

consumption of oxygen rather than fuel. 
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Figure 22  – CH chemiluminescence images (arbitrary units) at different phase angles from a 

CH4-N2-air Wolfhard-Parker slot diffusion flame that is periodically forced at 90 Hz. Red-yellow 

regions indicate the highest chemiluminescence while blue regions indicate essentially no 

chemiluminescence. The CH luminosity serves as a marker of the reaction zone and these images 

show evidence of a strain-induced flame extinction event at t = 0.6 ms. 
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Figure 23 – Normalized FRS signals from a CH4-N2-air Wolfhard-Parker slot flame that is 

periodically forced at 90 Hz. The nominal factor of 1.6 difference in the FRS cross section of the 

fuel and coflow air streams allows for the structure of the fuel-side vortices that strain and 

quench the flame to be visualized. 
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Figure 24 – Joint FRS/Raman measurements of temperature (color) and CH4 mole fraction (line 

contours) from a CH4-N2-air Wolfhard-Parker slot flame that is periodically forced at 90 Hz. 
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Temperature Imaging in Sooting Premixed Flames 
 

Background 

 

In this section we present the results of our FRS temperature-imaging studies in a premixed, 

sooting ethylene-air flame. While laser-diagnostic approaches have become popular for a 

multitude of combustion measurements in clean flames, optical interferences from particulate 

have often precluded their use in sooting and other particle-laden combustion systems. For 

noninvasive temperature measurements, a few select laser-diagnostic approaches have been 

applied in sooting flames with some degree of success. Most notably, coherent anti-Stokes 

Raman scattering (CARS) has proven quite successful for point temperature measurements in 

highly sooting flames [43-45], coal-particle-laden combustion [46-48], and in extremely 

luminous propellant-fueled flames [49, 50]. The success of CARS in “dirty” combustion 

environments is mainly due to its coherent laser-like and spectrally narrow signal beam. These 

features permit collection of the full CARS signal at extremely small aperture and spectral 

bandwidth, which lead to highly efficient rejection of incoherent and broadband interferences 

from particulate and renders the measurement insensitive to absorption by soot. The chief 

disadvantage of CARS relative to other modern laser-based approaches is that CARS is limited 

to point or line-imaging data and cannot be used for 2-D, spatially correlated temperature 

imaging. 

For quantitative temperature imaging, two laser-based approaches – two-line indium PLIF 

[51] and Filtered Rayleigh Scattering [10] – have been recently demonstrated by a group at the 

Division of Combustion Physics at the Lund Institute of Technology, Sweden. With two-line 

indium PLIF, an atomic indium seed molecule is added to the reacting flowfield and an exciting 

laser source is tuned to two separate absorption-emission transitions. When the upper level states 

of the two transitions are the same, the LIF signals can be ratioed to eliminate uncertainties 

arising from chemistry-dependent collisional signal quenching. Indium or other metal atoms are 

an attractive choice for sooting flame temperature imaging because of their simple electronic 

structure and because the required fluence of the exciting laser beams can be well below the 

threshold for interference from soot laser-induced incandescence and emission from laser-

produced C2. Drawbacks vis-à-vis FRS include: the required seeding of the flame, where 

metallic seed atoms may artificially reduce soot levels by facilitating soot oxidation, and the 
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increased experimental cost and complexity as two separate dye and/or OPO laser systems and 

two intensified detectors are required for single-pulse temperature imaging.  

FRS does not require chemical seeding and only requires a single laser source and detector 

for experiments in premixed flames, where the variations in local scattering cross section are 

small. To our knowledge, the only demonstration of FRS in sooting flames has been reported by 

Hoffman and Leipertz [10], who provide time-mean temperature imaging in a partially premixed 

CH4-air flame. These researchers characterized the flame as “weakly sooting” and did not 

provide detailed measurements of the range of soot volume fractions where FRS is expected to 

succeed. They did, however, mention successful FRS temperature imaging at a local soot volume 

fraction of 0.25 ppm in a subsequent paper on UV Raman scattering [52]. 

In the present work, our goal is to more systematically assess the applicability of FRS 

temperature imaging in premixed sooting flames. To achieve this, we have performed time-

averaged FRS measurements in the premixed C2H4-air flat flame provided by a 60-mm diameter 

McKenna burner. A premixed flame was selected so that the large variations in Rayleigh cross 

section associated with diffusion-flame structure could be avoided. Quantitative profiles of soot 

volume fraction in these flames were measured using extinction-calibrated laser-induced 

incandescence (LII). It is hoped that this work will provide increased understanding of the 

capabilities and limitations of the FRS technique for quantitative temperature imaging in sooting 

combustion environments. 

 

Sources of Interference for FRS Thermometry in Sooting Flames 

 

The chief potential sources of interference for FRS in sooting flames are: (1) Mie scattering 

from soot particles, (2) laser-induced incandescence (LII) from soot, (3) C2 Swan-band radiation, 

and (4) laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH-LIF). By 

design, FRS minimizes soot Mie-scattering interference, which is spectrally identical to the 

injection-seeded line of the illuminating Nd:YAG laser pulse and is strongly attenuated by the I2 

molecular filter. The remaining sources of interference are often weaker than soot Mie scattering, 

but they are spectrally broadband and can pass through the I2 filter to contaminate measurements 

even with complete rejection of the soot Mie interference. 

The spectral nature of soot LII and C2 Swan-band emission is shown in Fig. 25. Both of these 

interferences are broadband with components in the vicinity of the 532-nm Rayleigh signal and 
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Figure 25 – Spectral characteristics of optical interferences to FRS thermometry in sooting 

flames. Representative soot LII spectra are shown as dashed lines for soot vaporization 

temperatures of 4000 K and 5000 K. The C2 Swan band emission spectrum computed by 

Shaddix and Smyth [53] is also shown. 

 

both largely arise as a result of laser-induced vaporization of in-flame soot particles. With LII, 

the soot particles are rapidly heated by the laser pulse to temperatures between 4000 K (near 

graphitic soot vaporization) and 5000 K [53], from which they cool primarily by particle 

vaporization and conduction over a period of several hundred nanoseconds. The T 
4
 dependence 

of the emitted thermal radiation from soot ensures that the LII signal is much more intense than 

background luminosity from soot at naturally occurring temperatures, which are typically less 

than 2000 K. The spectral profile of the LII signal is well represented by a function of the form, 

λλ bLII iS
,

~ , where iλ,b is the Planck function and λ is the emission wavelength. The factor of 

1/λ reflects the spectral dependence of the soot emissivity in the Rayleigh limit for a constant 

index of refraction. LII emission is sufficiently intense to be detected with an intensified CCD 

camera and this effect is often exploited for measurements of soot volume fraction [53-57]. For 
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FRS imaging applications, this LII signature is an interference that must be minimized and/or 

approximately measured and subtracted from the measured FRS signal. 

In addition to enhanced thermal radiation, the laser-induced soot vaporization process also 

results in the production of the gas-phase C2 radical. C2 is a source of interference for many 

laser-diagnostics because of its “Swan band” electronic resonances, which result in broadband 

fluorescence signatures that span the majority of the visible spectrum. The fluorescence spectrum 

of C2 for near-resonant 560.3-nm laser excitation has been adopted from Shaddix and Smyth [53] 

and plotted alongside the LII spectra in Fig. 25, where it can be seen that C2 fluorescence 

interference spans from 420 nm past 650 nm and into the near infrared. The strongest 

interference occurs at the ∆v = +1, 0, and –1 bandheads near 473, 514, and 563 nm, respectively. 

PAH species in flames are large molecules with mass of several hundred AMU, which have 

been documented as important precursors to soot formation [56]. Laser-induced fluorescence 

(LIF) from PAH species using both UV and visible laser wavelengths is well established [56, 

58]. Spectrally, PAH peaks just to the red of the exciting laser line and then decays to the red of 

the laser peak over a range of several hundred nanometers [59]. Like LII, PAH fluorescence can 

be exploited for diagnostics purposes or it can be a nuisance background source. 

In this study, we expect soot LII to be the largest source of broadband interference. The 532-

nm wavelength the FRS signal is off resonance of the C2 Swan system (Fig. 25) and C2 emission 

signals with 532-nm Nd:YAG excitation have been reported to be more than an order of 

magnitude less than for near resonant C2 excitation [60]. With visible laser wavelengths, PAH-

LIF signatures have been observed to be smaller than with UV excitation sources [59] and LII 

has been reported to dominate PAH-LIF even for even the light 0.1-ppm-level soot volume 

fractions encountered in our study [56]. 
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Figure 26 – Transmission spectrum of the optically thick I2 molecular filter used for 

measurements in a premixed sooting C2H4 flame. The transmission data are compared to the 

theoretical model of McKenzie [26] with a best-fit iodine saturation temperature of 53 
o
C. This 

level of I2 loading resulted in a line-center rejection of 10
3
 for the R121 (35-0) transition near 

18789.25 cm
-1

. 

 

Procedure for FRS Thermometry in the Premixed Sooting Flame 

 

We have performed a series of FRS temperature-imaging experiments in a laminar, 

flickering, premixed C2H4-air flame provided by a 60-mm-diameter McKenna burner. This 

burner is a simple sintered-metal plug embedded in a water-cooled substrate. Fuel and air were 

premixed upstream of the plug and the burner provides a flat flame adjacent to the sintered metal 

surface. FRS and LII measurements were made in the combustion-product gases in a region 

spanning 60 mm parallel to the burner and heights from 3 to 30 mm above the burner surface. 

The objectives of this series of measurements was to perform quantitative temperature imaging 

using FRS while also documenting the levels of soot loadings in these flames using 1-D LII 

imaging of the soot volume fraction. With these complementary FRS/LII data, we hope to 

quantify the maximum degree of soot loading for which FRS is a viable imaging thermometer in 
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sooting flames. A premixed flame has been selected so that complexities associated with large 

spatial variations in Rayleigh cross section are not an issue. Ethylene has been selected as the 

fuel because it readily provides for a wide range of soot loadings from soot inception to heavily 

sooting flames at ppm-level volume fractions.  

The optical arrangement for FRS imaging in the sooting flames was similar to the 

arrangement used for the nonsooting flame investigations, which is shown in Fig. 5, with a few 

minor modifications.  To increase the level of rejection provided by the I2 molecular filter, we 

have increased the nominal iodine vapor pressure in the cell from 1.49 to 2.65 Torr 

(corresponding to an increase in I2 saturation temperature from 45 to 53
o
C). The resulting 

transmission spectrum for the filter is shown in Fig. 26. This increase in I2 number density 

resulted in a line-center rejection of 10
3
 for the R121 (35-0) transition near 18,789.25 cm

-1
, but 

with an overall decrease in transmitted FRS signal as the nonresonant background transmission 

was decreased by about 33% relative to the cell condition used for the nonsooting flame work 

shown in Fig. 6a. A laser-line interference filter with a 10-nm band pass centered at 532 nm was 

also placed in front of the ICCD camera lens to spectrally filter broadband background 

interference from soot LII, C2 Swan emission, and PAH LIF. This laser-line filter had an out of 

band rejection of 10
4
 and pass band transmission of 45%. To minimize broadband interferences 

the laser power for the sooting flame FRS measurements was limited to 200 mJ/pulse. The net 

effect of increased nonresonant I2 molecular-filter rejection, use of the 532-nm laser-line 

interference filter, and limited laser pulse energies resulted in a factor of 7 to 10 decrease in FRS 

signal levels as compared to our investigations in nonsooting flames. Averaging of the FRS 

signal over 100 laser shots helped to increase SNR, but the resulting FRS images were still of 

lower quality than those acquired in the nonsooting flames. 

FRS images were acquired from the sooting premixed flame for 5 different equivalence 

ratios, which are summarized in Table 2. At each equivalence ratio, 100 FRS images were 

accumulated on the ICCD, along with 100 images with the laser blocked to record any 

background flame emission at 532 nm and 100 images with the 532-nm laser-line filter replaced 

by a 633-nm laser line filter. All images were recorded with an ICCD gate of 200 ns. The 

measured flame emission signatures at 532 nm were found be a negligible fraction of the FRS 

signal level. The 633-nm images were acquired to estimate the level of LII and C2 Swan 

background. The reduced laser fluence used in these experiments kept these contributions low,  
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Table 2 – Test matrix for FRS temperature imaging measurements in a sooting, premixed 

ethylene-air flame supplied by a McKenna burner. 

 

Flame # Qair [SCCM] Qfuel 
[SCCM] 

φ C/O 

1 9.2 1.3 2.10 0.67 

2 9.0 1.3 2.14 0.69 

3 8.8 1.3 2.19 0.70 

4 8.6 1.3 2.24 0.72 

5 8.4 1.3 2.29 0.74 

 

however, some broadband interference did contaminate the FRS images. The 633-nm 

wavelength was selected for approximate measurement of these nuisance signals because the 

chief source of background from soot LII was expected to be of similar magnitude at 532 and 

633 nm, with the expected LII levels at the two wavelengths within 4% at a soot temperature of 

4000 K and within 16% at 5000 K. This procedure does not account for any C2 Swan-band 

emission or PAH LIF, but was viewed as acceptable since the measured background signals at 

633 nm were less than 10% of the FRS signal for flames 1 through 4 and since soot LII was 

expected to be the main source of background. Current work in this flame is relying on a much 

faster ICCD gate of 20-30 ns so that broadband interferences are more efficiently rejected.  

The FRS temperature-response curve for the combustion product gases of the premixed 

C2H4-air flame was computed using Eqs. 4 and 5 and using major species mole fractions 

measured by Xu et al. [61] for a similar premixed C2H4-air flame. The tabulated mole fractions 

and the resulting FRS temperature-response curve are shown in Fig. 27. The 100-shot-averaged 

FRS signals were then normalized according a modified version of Eq. 8 above,  
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where Fi,j is the FRS signal, Ai,j is the FRS reference signal recorded in room-temperature air, Bi,j 

is the background laser light scattering estimated using Eq. 7, Ei,j is the measured flame-emission 

background at 532 nm and Li,j is the measured broadband interference signal at 633 nm. 



 
 

68

 

400

600

800

1000

1200

1400

1600

1800

2000

0.2 0.4 0.6 0.8 1 1.2

T
E
M
P
E
R
A
T
U
R
E
 [
K
]

NORMALIZED FRS SIGNAL

 

 
 

Figure 27 – FRS temperature-response function used for analysis of data from the premixed, 

sooting ethylene-air flame. The species mole fractions used with Eq. 4 for computation of this 

function are shown in tabulated form on the plot. 

 

LII Measurements of Soot Volume Fraction in the Premixed Sooting Flame 

 

The same LII signal that is an unwanted background in the FRS measurements can also be 

exploited for measurements of soot volume fraction. The working principles of the LII technique 

are explained in detail in several excellent sources [53-56, 62] and are only discussed in minor 

detail here. In the Rayleigh limit, where laser and soot-particle emission wavelengths are 

significantly larger than the soot-particle diameter, the detected LII signal is represented by 

[ ]( )m/154.03
~

µλ+

dS
LII

 [53], where d is the soot primary particle diameter and λ is the LII detection 

wavelength in microns. For the 633-nm bandpass filter used for LII detection in our experiments 

this results in a d
3.24

 dependence, so that the detected LII signal is nearly proportional to the local 

volume fraction of soot.  
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Interference with the LII signal from C2 Swan emission was expected to be low because the 

633-nm wavelength, at which the LII signal is sensed, is detuned from any C2 Swan resonances 

(see Fig. 25). For 532-nm laser excitation some degree of PAH-LIF background may also be 

present in our LII data [58], but soot LII is expected to be significantly larger than PAH-LIF 

[56]. Detection at wavelengths near 400 nm, as was used by Shaddix and Smyth [53], is often 

more preferable because this region is also off resonance of the C2 Swan system and is 

significantly lower than the laser wavelength, which would eliminate any interference from PAH 

LIF as well. However, the quantum response of our ICCD detector was nearly zero in the blue 

region of the spectrum so 633-nm detection was viewed as the best available compromise 

between minimal interference and LII signal detection. 

We have performed our LII experiments using the same optical system as for FRS with the I2 

molecular-filter cell removed and the LII signal imaged through the same 10-nm bandpass, 633-

nm center laser-line interference filter that was used to estimate background signals in the FRS 

measurements. The LII data were recorded in a 2-D laser-sheet imaging configuration and in a 

1-D line imaging mode obtained by removing the cylindrical lens from the FRS sheet-forming 

optics shown in Fig. 5. The 2-D LII images to be presented here are qualitative in nature due to 

difficulties associated with correcting for the weak, nonlinear dependence of the LII signal on the 

local laser-sheet intensity and due to the long 200-ns gate times employed, which bias the 

measurement toward slow-cooling large soot particles [55]. For a more quantitative measure of 

soot volume fraction, 1-D profiles at heights of y = 15 and 30 mm above the McKenna burner 

surface have been extracted from 1-D LII images of the focused beam propagating through the 

flame. These “line” LII images are much less sensitive to flat-field correction and they have also 

been acquired with a much shorter 25-ns ICCD gate, which opened coincident with the laser 

pulse, so that any measurement bias toward large particles has been minimized.  

The line LII measurements have been calibrated using a laser-beam extinction measurement. 

The beam from a HeNe laser at 632.8 nm was propagated through the premixed C2H4-air flame 

at y = 15 mm above the burner surface for an equivalence ratio of φ = 3.06. This flame was much 

richer than any of the flames that could be interrogated using FRS, but it was used for LII 

calibration because the soot loadings were sufficiently high (0.5 ppm peak) to provide a reliably 

measured extinction signal. A wedge beam splitter sent a portion of the HeNe laser beam to a 

reference photodiode that monitored any fluctuations in the laser power while the remainder of 
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the beam was propagated through the flame to a detection photodiode. Both photodiodes were 

equipped with 633-nm laser-line interference filters to minimize background soot luminosity and 

frequent reference calibration measures of the laser transmission through a soot-free path near 

the burner surface were recorded. In the Rayleigh limit, where the soot particles are much 

smaller than the laser wavelength, scattering may be neglected and the measured laser-beam 

extinction is entirely due to absorption. A horizontal profile of the HeNe laser-beam absorption 

was recorded and the absorption data were deconvolved using the 3-point numerical Abel 

inversion developed by Dasch [63]. The local laser-beam extinction could then be related to the 

soot volume fraction by the following equation, which is valid in the Rayleigh limit. 
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In Eq. 11, I/Io is the local laser-beam extinction ratio obtained from the Abel inversion, λ = 632.8 

nm is the HeNe laser wavelength, ∆r is the grid-spacing of the deconvolved extinction data (2.54 

mm here) and Ke is the dimensionless extinction coefficient which, in the Rayleigh limit, is given 

by, 

 

( )22222
24
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+−+
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knkn

nk
K

e

π

    , (12) 

 

where n and k are the real and imaginary parts of the soot refractive index, respectively. We have 

used the values n = 1.57 and m = 0.56, which have been attributed to Dalzell and Sarofim [64] as 

discussed by Smyth and Shaddix [65]. A line LII profile was then acquired in the φ = 3.06 

calibration flame and a calibration constant (soot ppm per LII signal count) for the LII images 

was obtained by comparing the LII signal counts to the extinction-measured soot volume fraction 

and in the peak sooting region of the calibration flame. 

 

Premixed Sooting Flame Results 

 

Results for each of the five flames listed in the test matrix of Table 2 are displayed in Figs. 

28-32. As listed in Table 2, the flames have been numbered 1 through 5 in order of increasing 

equivalence ratio and soot loading. In each figure, part (a) is an unfiltered Rayleigh image 
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recorded with the image intensifier at very low gain to avoid damage to the ICCD, and with the 

burner surface moved out of the field of view to avoid intense reflections from the burner 

substrate. Part (b) is a filtered Rayleigh image from the sooting flame recorded with the image 

intensifier at maximum gain. Part (c) of the figures is a 2-D soot LII image recorded in a 10-nm 

band centered at 633 nm, with the I2 filter removed, and at a 532-nm laser-sheet energy of 600 

mJ/pulse (3.9 J/cm
2
 average fluence) using a 200-ns ICCD gate that opened coincident with the 

laser pulse. Part (d) of the figures is the FRS-measured temperature field, and parts (e) and (f) are 

1-D profiles of FRS-measured temperature and quantitative soot volume fraction obtained from 

the 1-D LII measurements at y = 15 and 30 mm above the burner surface. 

In all of the figures, the unfiltered and filtered Rayleigh images in parts (a) and (b) are the 

average of 10 laser shots. No pixel binning has been performed on the optical data and the 

resulting in-plane spatial resolution of the FRS and LII results is 110 µm/pixel. All of the raw 

Rayleigh images have been scaled so that the 5% and 95% levels of their respective image-

intensity histograms represent the violet and white color cutoffs. In each of the Rayleigh images, 

the laser-sheet propagates from left to right and the nominally Gaussian profile of the laser-sheet 

energy density is clearly visible in the filtered Rayleigh images in part (b). In the filtered 

Rayleigh images, the high intensity levels at the left- and right-hand edges of the images 

represent cold-gas regions while the hottest regions of the premixed flame are in the image 

center where the relative image intensities are lowest.  

In Flames 2-5 the unfiltered Rayleigh images in part (a) are clearly degraded by intense Mie 

scattering from soot and/or laboratory dust. Flame 1, shown in Fig. 28a, has the lightest soot 

loading of all the flames studied. The profile of the laser-sheet is still discernable in Fig. 28a and 

the scattering signal in the hot-gas region is much lower than for the cold-gas zone. Both of these 

observations suggest that the unfiltered Rayleigh image from Flame 1 is minimally impacted by 

soot Mie scattering. As the soot levels are increased in Flames 2-5 we see that soot Mie 

scattering begins to overwhelm the molecular Rayleigh signal. At the burner centerline and 25 

mm above the burner surface, the measured unfiltered scattering levels in Flames 2-5 are 1.2, 

4.7, 34, and 98 times larger than the measured values in Flame 1. The I2 molecular filter used in 

our experiments provides a measured line-center rejection of 1,000 (±30%), which clearly results 

in a cleaner set of filtered images shown in part (b) of the figures. If we assume that the signal 

from the hot-gas regions of the unfiltered Flame 1 image is a reasonable approximation of the 
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molecular Rayleigh signal, and that the increase in scattering in the other unfiltered images (Figs. 

29a, 30a, 31a, and 32a) is from soot Mie scattering, then the Mie interference is reduced to 0.02, 

0.36, 3.3, and 10% of the molecular Rayleigh signatures for Flames 2-5, respectively. At higher 

soot loadings, such for Flames 4 and 5, the upper regions of the filtered Rayleigh images in part 

(b) are contaminated by soot Mie-scattering and LII/C2 interferences. This contamination causes 

a distortion in the upper portion of the near-Gaussian vertical laser-sheet profile, which appears 

to be broadened at the x = 0 flame centerline. 

For all 5 flames, the 2-D LII images in part (c) of the figures have been left in terms of 

arbitrary units and have not been converted to soot volume fractions due to the difficulties cited 

in the above discussion of the LII technique. Because the LII signal displays only a weak 

dependence on local laser fluence, the raw LII images do serve as a semi-quantitative guide for 

the location of soot relative to the temperature and the more quantitative 1-D soot profiles 

presented in parts d-f of the figures. At the laser fluence levels used for 2D LII imaging, we have 

measured an LII power dependence of 5.0

LII ~ fluenceS  at the vertical center of the laser sheet. 

The 2-D LII images shown in part (c) of the figures have been normalized by the square root of a 

background-subtracted FRS image acquired in room air as an approximate compensation for the 

laser-sheet profile. The soot LII signal in these flames is then observed to increase monotonically 

with vertical distance from the burner and begins to reach a maximum level by y = 20 or 25 mm. 

This observation is consistent with the extinction-based soot volume-fraction measurements of 

Xu et al. [61] obtained in similar C2H4-air premixed flames. 

FRS temperature imaging results are displayed in part (d) of the figures. The temperatures 

have been obtained from FRS signal images that have been averaged on the CCD chip for 100 

laser shots. The resulting FRS temperature fields display a flat-flame structure that is similar to 

the nonsooting measurements from the Hencken burner shown in Fig. 12. The horizontal 

temperature profiles in parts e and f of the figures show an increased level of data scatter relative 

to the results from nonsooting flames. This is likely a result of the factor of 7-10 decrease in FRS 

signal that results from the use of increased signal filtering and the factor of 5 drop in laser-sheet 

energy to minimize broadband LII, C2 and PAH interferences. To better quantify the measured 

temperatures and the degree of scatter in the FRS results, we have computed mean temperatures 

and rms temperature fluctuations for –10 mm < x < +10 mm at y = 15 and 30 mm and for a larger 

square region of the flame defined by 10 mm < y < 20 mm. The horizontal extent of 10 mm on  
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Table 3 – Results of FRS/LII imaging study in a sooting, premixed ethylene-air flame supplied 

by a McKenna burner. 

 

Flame 
# 

Τad 
[K] 

]K[/ [K]
T

σT  

-10 mm< x < +10 mm 

10 mm < y < 20 mm 

]K[[K],
T

σT

y = 15 mm 

]K[[K],
T

σT  

y = 30 mm 

max,v
f  

y = 15 mm 

max,v
f  

y = 30 mm 

LII 
Backgd 

[% of FRS 
signal] 

1 1849 1660 / 90.7 1640 / 82 1707 / 118 6.0 × 10-9 9.0 × 10-9 1.7 

2 1828 1590 / 89.4 1579 / 86 1692 / 115 1.2 × 10-8 3.0 × 10-8 2.5 

3 1802 1498 / 85 1489 / 76 1627 / 117.4 2.0 × 10-8 5.5 × 10-8 4.2 

4 1777 1535 / 91.9 1541 / 83 1312 / 137 5.5× 10-8 1.1 × 10-7 7.4 

5 1751 1811 / 120 1845 / 98 1058 / 160 1.0 × 10-7 1.8 × 10-7 16.3 

 

either side of flame centerline was chosen based on inspection of the FRS data, which exhibit a 

nearly flat temperature profile over this horizontal extent for all vertical heights above the 

burner. The results of these calculations for all 5 flames are shown in Table 3. The adiabatic 

equilibrium temperature and the magnitude of the correction for background LII at 633 nm are 

also listed in Table 3. 

It is expected that the measured temperatures in each of these flames will be less than 

adiabatic equilibrium due to heat losses to the water-cooled burner substrate and from soot 

radiation. The 100-shot-averaged FRS temperature will also be decreased because the flickering 

flame investigated entrained some cold gas into the core on some of the laser shots. The on-chip 

averaged images are then slightly biased toward cold temperatures as a result of the nonlinear 

FRS temperature response and the higher FRS signal associated with colder gas. For Flames 1-3 

and for y < 22 mm in Flame 4, the FRS-measured flame temperatures shown in Table 3 are about 

180 K to 250 K less than adiabatic equilibrium. The measured temperatures decrease, as would 

be expected, with increasing φ both as a result of richer flame chemistry and increased heat loss 

from soot radiation. Xu et al. [61] report temperatures of 1750 K (±50 K) and 1600 K (±50 K) at 

y = 15 and 27 mm above the burner surface for a steady premixed C2H4-air flame at φ = 2.34 on 

the same type of McKenna burner used here. With this in mind the FRS-measured temperatures 

in the core of the flame are likely about 100 to 200 K (5 to 11%) too low. The bulk of this 

temperature bias is likely due to imperfect (underestimated) levels of background correction for 

LII and C2-Swan interferences and the cold-gas density-weighting bias associated with on-chip 

FRS signal averaging. 
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At φ = 2.29, Flame 5 was the richest operating condition investigated using FRS. At this 

operating condition the evaluated temperatures were too high. The reason for this is unclear. At 

16% of the nominal measured FRS signal, the estimated correction for broadband interference is 

by far the largest for Flame 5. Overestimation of this correction would indeed cause an 

overestimate of the FRS-measured temperature. However, the uncorrected FRS signals in Flame 

5 were actually lower than their counterparts for Flame 4. This issue is currently being resolved 

with repeat FRS measurements. These repeat measurements are also utilizing better-stabilized 

flame and a shorter, 20-30 ns detection gate, which will significantly reduce the required 

corrections for broadband optical interferences. 
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Figure 28 – FRS/LII results from a premixed, sooting C2H4-air flame. Flame 1 results at φ = 

2.10: unfiltered Rayleigh image (a), FRS image before background subtraction and 

normalization (b), qualitative soot imaging by 2-D LII (c), FRS-measured temperature field (d), 

horizontal profiles of FRS-measured temperature and soot LII at y = 15 and 30 mm (e,f). 
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Figure 29 – FRS/LII results from a premixed, sooting C2H4-air flame. Flame 2 results at φ = 

2.14: unfiltered Rayleigh image (a), FRS image before background subtraction and 

normalization (b), qualitative soot imaging by 2-D LII (c), FRS-measured temperature field (d), 

horizontal profiles of FRS-measured temperature and soot LII at y = 15 and 30 mm (e,f). 
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Figure 30 – FRS/LII results from a premixed, sooting C2H4-air flame. Flame 3 results at φ = 

2.19: unfiltered Rayleigh image (a), FRS image before background subtraction and 

normalization (b), qualitative soot imaging by 2-D LII (c), FRS-measured temperature field (d), 

horizontal profiles of FRS-measured temperature and soot LII at y = 15 and 30 mm (e,f). 



 
 

78

600

800

1000

1200

1400

1600

1800

2000

0

0.02

0.04

0.06

0.08

0.1

0.12

-30 -20 -10 0 10 20 30

TEMPERATURE [K]

SOOT VOLUME

FRACTION [ppm]

T
E
M
P
E
R
A
T
U
R
E
 [
K
]

S
O
O
T
 V
O
L
U
M
E
 F
R
A
C
T
IO
N
 [p
p
m
]

X [mm]

Y = 30 mm

600

800

1000

1200

1400

1600

1800

2000

0

0.02

0.04

0.06

0.08

0.1

0.12

-30 -20 -10 0 10 20 30

TEMPERATURE [K]

SOOT VOLUME

FRACTION [ppm]

T
E
M
P
E
R
A
T
U
R
E
 [
K
]

S
O
O
T
 V
O
L
U
M
E
 F
R
A
C
T
IO
N
 [p
p
m
]

X [mm]

Y = 15 mm

LII [a.u.]

(c)

(e)

(f)

(a) (b)

REGION OF SOOT

INTERFERENCE

TEMP [K]

(d)

600

800

1000

1200

1400

1600

1800

2000

0

0.02

0.04

0.06

0.08

0.1

0.12

-30 -20 -10 0 10 20 30

TEMPERATURE [K]

SOOT VOLUME

FRACTION [ppm]

T
E
M
P
E
R
A
T
U
R
E
 [
K
]

S
O
O
T
 V
O
L
U
M
E
 F
R
A
C
T
IO
N
 [p
p
m
]

X [mm]

Y = 30 mm

600

800

1000

1200

1400

1600

1800

2000

0

0.02

0.04

0.06

0.08

0.1

0.12

-30 -20 -10 0 10 20 30

TEMPERATURE [K]

SOOT VOLUME

FRACTION [ppm]

T
E
M
P
E
R
A
T
U
R
E
 [
K
]

S
O
O
T
 V
O
L
U
M
E
 F
R
A
C
T
IO
N
 [p
p
m
]

X [mm]

Y = 15 mm

LII [a.u.]LII [a.u.]

(c)

(e)

(f)

(a) (b)

REGION OF SOOT

INTERFERENCE

(a)(a) (b)

REGION OF SOOT

INTERFERENCE

(b)

REGION OF SOOT

INTERFERENCE

TEMP [K]

(d)

TEMP [K]TEMP [K]

(d)

 

Figure 31 – FRS/LII results from a premixed, sooting C2H4-air flame. Flame 4 results at φ = 

2.24: unfiltered Rayleigh image (a), FRS image before background subtraction and 

normalization (b), qualitative soot imaging by 2-D LII (c), FRS-measured temperature field (d), 

horizontal profiles of FRS-measured temperature and soot LII at y = 15 and 30 mm (e,f). 
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Figure 32 – FRS/LII results from a premixed, sooting C2H4-air flame. Flame 5 results at φ = 

2.29: unfiltered Rayleigh image (a), FRS image before background subtraction and 

normalization (b), qualitative soot imaging by 2-D LII (c), FRS-measured temperature field (d), 

horizontal profiles of FRS-measured temperature and soot LII at y = 15 and 30 mm (e,f). 
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Preliminary Assessment of an Upper Soot Loading for FRS Thermometry  

 

One of the chief goals of our FRS investigation in sooting flames is to estimate the maximum 

level of soot loading for which FRS thermometry remains viable. In principle, the absorption line 

strength of the R121 (35-0) transition in the 50.8-mm-long I2 cell used in our work is greater than 

10
8 

as calculated from the theoretical model of McKenzie [26]. Comparable absorption strengths 

have been experimentally verified using CW laser sources of extremely narrow linewidth [25]. 

With an absorption strength of this magnitude, flames with soot loadings of several ppm volume 

fraction could be investigated with FRS. However, the measured rejection measured with our 

pulsed Nd:YAG laser is only 10
3
. Similarly degraded molecular-filter performance with pulsed 

lasers has also been reported elsewhere [25, 66].  

We believe that this nonideal filter performance is a result of residual mode competition in 

the Nd:YAG oscillator
+
. This situation is shown schematically in Fig. 33. Fig. 33a depicts the 

shape of the nominally 1 cm
-1

 wide (FWHM) gain curve of the Nd:YAG laser medium. Within 

this gain envelope are the different longitudinal modes supported by the laser cavity. When the 

laser resonator operates without injection locking, all modes within the gain envelope compete 

for the flashlamp energy stored in the Nd:YAG medium and the laser operates in a multimode 

fashion. When injection locking is used, the CW seed laser is introduced to the cavity along the 

resonator axis and tuned to a selected high-gain longitudinal mode. The energy pumping the 

seeded longitudinal mode is then many orders of magnitude greater than its competitors and the 

cavity “locks in” to the seeded frequency with greater than 99% of the output in a near Fourier-

transform-limited 0.003 cm
-1

 (100 MHz) bandwidth, which is the linewidth that is typically 

quoted for commercial injection-seeded Nd:YAG systems. The remaining high-gain longitudinal 

modes then compete for the remaining energy fraction and the resulting spectrum of the laser 

pulse exhibits a spectrally narrow peak with low-energy “wings” as shown in Fig. 33b. In most 

laser-diagnostic applications, the small fraction of energy in the pulse wings is not significant. 

The implications for FRS are more important because the spectral location of the profile wings 

lies outside the width of the selected I2 transition. Scattering from soot at these wing frequencies  

                                                           
+ The Fourier-transform linewidth for a 10-ns laser pulse is ~ 3 × 10-3 cm-1. This is roughly a one order of magnitude 
less than the I2 absorption linewidth. We have convolved a transform-limited Gaussian laser line with the theoretical 
I2 transmission using the code provided by McKenzie [26] and found a negligible degradation of filter performance, 
thus eliminating the possibility that the decreased coherence of pulsed lasers relative to cw sources is the reason for 
degraded molecular-filter performance. 
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Figure 33 – Illustration of the causes of leakage of pulsed laser light through an optically thick I2 

molecular absorption filter. A schematic of the Nd:YAG gain envelope and the associated cavity 

modes is shown in part (a). The resulting narrow-linewidth output from the seeded longitudinal 

mode with low-energy side-lobe leakage resulting from residual energy competition from 

unseeded longitudinal modes is shown in (b). 

 

can then “bleed” past the I2 filter and contaminate the FRS images when the soot loading is 

sufficiently high. This residual-mode-competition explanation is consistent with our observations 

of the temporal pulse shape of Nd:YAG laser radiation that leaks past line center of optically 

thick I2 transitions. The leakage pulse shape was consistently ragged while the unfiltered laser 

pulse was temporally smooth and indicative of narrow linewidth. 
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The combined FRS/LII data introduced in the previous section can be interpreted to obtain a 

first estimate of the upper sooting limit for FRS. Visual inspection of the filtered Rayleigh 

images in part (b) of Figs. 28-32 can be used to qualitatively assess the performance of the FRS 

technique for a given flame. In Flame 1, the nominally Gaussian shape of the vertical laser sheet 

profile is readily observable. The appearance of the laser-sheet profile in Flame 1 is consistent 

with FRS images recorded in room-temperature air and in nonsooting C2H4-air flames, which is a 

strong indicator that the FRS images from Flame 1 are uncontaminated by Mie scattering from 

soot. The qualitative appearance of the FRS images from Flames 2 and 3 in Figs. 29(b) and 30(b) 

is also similarly unaffected. The consistency of the FRS images and the resulting temperature 

fields for Flames 1-3 suggests that these data sets are minimally impacted by soot Mie scattering, 

with only imperfect compensation for broadband interference from LII/C2 playing a potential 

role.  

 Flames 4 and 5, which have the highest soot loadings and the most intense unfiltered 

scattering signals, begin to display an altered vertical laser-sheet profile in the hot-gas zone of 

the upper portions of the laser-sheet, as indicated in Figs. 31(b) and 32(b). In fact, the FRS signal 

levels in the hot-gas zone in Figs. 31(b) and 32(b) are larger than the cold-gas signals for the 

same height above the burner, which is not possible unless the increased signal comes from soot 

interference. These qualitative observations obtained from the raw FRS images in part (b) of 

Figs. 28-32 are consistent with soot volume-fraction and particle-size distributions that reach 

critical levels in Flames 4 and 5 along the x = 0 mm flame axis in the vicinity of y = 20-25 mm 

above the burner surface.  

Peak soot volume fractions from the 1-D LII measurements at y = 15 and 30 mm are listed in 

Table 3. The peak soot volume fraction measured with 1-D LII at y = 30 mm in Flame 3 is 5.5 × 

10
-8

, or 0.055 ppm (±30%), and is certainly within the range of applicability for the FRS 

measurements presented here. The FRS measurements appear to succumb to soot Mie scattering 

interference along the axis of Flames 4 and 5 for y greater than about 22 mm, where the FRS-

measured temperature along the flame axis begins a rapid and physically unrealistic decay. In 

Flame 4, the peak soot volume fraction at y = 30 mm is 1.1 × 10
-7

, or 0.11 ppm, and the FRS 

technique has clearly failed at this location. A similar peak soot volume fraction of 1.0 × 10
-7

, or 

0.1 ppm, is measured near the flame axis at y = 15 mm in Flame 5, where the FRS image in Fig. 

32(b) does not appear to be contaminated and the corresponding FRS temperature field in Fig. 
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32(d) does not exhibit a significant drop in temperature on the flame centerline until y > 20 mm. 

All of this strongly suggests that the FRS signal is not yet contaminated at this location in Flame 

5.  The similarly measured 0.1-ppm peak soot volume fractions at y = 30 mm in Flame 4, where 

FRS has failed, and at y = 15 mm in Flame 5, where the FRS data appear useable, suggests that 

particle size also plays an important role since younger soot particles of smaller size exist at 

lower heights in these premixed flames [61]. 

The corrected 2-D LII images in Figs. 31(c) and 32(c) can be used to obtain an approximate 

interpolation of the soot-volume-fraction data in the vicinity of the more quantitative 1-D LII 

results available at y = 15 and 30 mm. The initial failure of FRS appears in both Flames 4 and 5 

along the flame axis and near y = 22 mm. The sheet-corrected 2-D LII images display flame-axis 

signal levels at 22 mm which are both about 80% of the y = 30 mm signal for interpolated 

volume fractions of 0.83 × 10
-7

 and 1.1 × 10
-7

 volume fraction for Flames 4 and 5, respectively. 

Both of these estimated critical values at y = 22 mm suggest that quantitative FRS temperature 

imaging is possible in lightly sooting flames for soot volume fractions up to about 1.0 × 10
-7

, or 

0.1 ppm with some secondary dependence on the soot particle-size distribution. 

 

Present Directions for FRS Thermometry for Fire and Combustion at Sandia 

 

Work in FRS thermometry in sooting flames is currently proceeding in the Engineering 

Science Center at Sandia/NM. The experiments in the sooting, premixed C2H4-air flame on the 

McKenna burner have been repeated with a modified commercial Nd:YAG laser at the Air Force 

Research Laboratory (AFRL) Propulsion Directorate at Wright-Patterson AFB, Ohio
#
. The laser 

at AFRL is an injection-locked, pulsed Nd:YAG with an etalon placed in the oscillator cavity. 

The etalon provides additional line-narrowing to reduce the energy in the spectral “wings” of the 

Nd:YAG laser pulse (Fig. 33). We have measured a factor of 7-10 improvement in I2 filter 

rejection with this etalon-equipped laser system, which has promise for FRS thermometry in 

more heavily sooting flames. Analysis of the results from the AFRL experiments is ongoing and 

the data have not been prepared for publication at the time of this writing. Repeat FRS 

measurements and a more vertically resolved quantitative 1-D LII characterization of the soot 

                                                           
# We would like to thank Cam Carter of the Air Force Research Laboratory, Wright-Patterson AFB, OH and Jim 
Crafton of Innovative Scientific Solutions Inc., Dayton, OH for their generous help in performing these sooting 
flame measurements with their specialty Nd:YAG laser. 
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field in the C2H4-air McKenna flames is also being conducted as part of an ongoing ESRF Tech-

Base effort at Sandia/NM. As part of this effort a significantly shorter ICCD gate will be used to 

better reject broadband interference from soot LII, C2, and PAH and the premixed flame will be 

better stabilized to minimize any cold-gas density weighting bias in the results.  As part of this 

ESRF effort, the FRS data will also be supplemented by CARS-measured temperatures so that a 

better quantitative assessment of the FRS accuracy in sooting flames may be obtained.  

It is also our plan to utilize FRS for temperature imaging in moderately sooting, vortex-

strained diffusion flames supplied by a Wolfhard-Parker slot burner that is similar to the one 

shown in Fig. 14. These measurements will be supplemented with UV Raman imaging of the 

fuel molecule using the approach reported by Rabenstein and Leipertz [52] in which a 355-nm 

third harmonic of the Nd:YAG laser is used to provide fuel Raman signals in the blue that can be 

spectrally separated from soot optical interference. These UV fuel-Raman data will be used to 

correct the FRS images for local variations in Rayleigh cross section using the same tools 

developed for the nonsooting vortex-strained flames and presented in this report.  The sooting 

diffusion-flame work supports ongoing efforts at Sandia that are directed toward modeling soot 

formation in nonpremixed flames and in large-scale pool fires. FRS thermometry for clean 

combustion systems is also being introduced for DOE/BES programs at the Combustion 

Research Facility at Sandia/CA [42]. 
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FRS VELOCITY IMAGING MEASUREMENTS 

 

Experimental Procedure 
 

Iodine Cell Calibration 

 

Prior to collecting data, the iodine cells must be scanned in frequency to provide the 

transmission profiles of each cell, a process referred to as calibration.  Before this can be 

initiated, however, the two photodiodes in the frequency monitor must be calibrated to one 

another to ensure that the reference photodiode responds to the laser beam identically to the 

signal photodiode.  Variations in the optical arrangements for each beam path, nonuniform 

beamsplitter ratios, differing photodiode responses, and slightly different integration times for 

the gated integrators all contribute to discrepancies from one photodiode signal to another.  

Similarly, the two photodiodes in the calibration station must be calibrated to one another; this 

calibration station and the frequency monitor function independently though simultaneously and 

therefore the four photodiodes need not all be calibrated to one another.  The calibration was 

accomplished by removing both iodine cells from their calibration positions, then recording the 

signals from the gated integrators for each photodiode as the incident laser power was cycled 

through a range of intensities.  Background signals can pose a difficulty and must be accounted; 

curtains and beam blocks were employed to shield each photodiode from stray laser light and the 

remaining background signal was subtracted from each photodiode by adjusting the zero offset 

on each gated integrator.  Once data points were collected for a range of laser intensities, the 

response of one signal photodiode was mapped to its reference photodiode using a linear least-

squares fit. 

Subsequent to the photodiode calibration, the two iodine cells were calibrated by replacing 

the cells into their calibration positions and spectrally scanning the laser frequency by 

sequentially adjusting the seeder input voltage.  The gated integrator signal from each of the 

now-calibrated photodiodes was recorded, transformed by the linear least-squares fit found for 

each photodiode pair, and reduced to a frequency-dependent transmission ratio that provides the 

spectral characteristics of each iodine cell.  The cell calibrations can be a time-consuming 

process because the laser must be given adequate time for the injection seeding to stabilize 

between each adjustment of the frequency.  Hence, the iodine cells were scanned thoroughly at 

the start of the experiments and then only briefly each day during actual data collection to be 
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certain that the experimental apparatus was functioning properly and that the pressure-broadened 

cell had not leaked. 

The pressure-broadened iodine filter used for the signal camera was scanned at several 

different buffer-gas pressures to evaluate different absorption line shapes for use in velocity 

measurements both in the present work and in future hypersonic endeavors.  To establish the cell 

conditions, first the temperature at the cell’s side arm was reduced to 1°C so that all the iodine 

solidified into crystal form at this location, then the remaining gaseous contents were evacuated 

using a vacuum pump.  An ultra-pure nitrogen source was bled into the cell until the desired 

buffer-gas pressure was achieved, then the temperature of the side arm was raised back to 45°C.  

It was found that at substantial buffer-gas pressures, approximately one day’s time was required 

for the iodine to penetrate back into the cell from the side arm and return to equilibrium.  The 

cell was sealed from the side arm after such time had elapsed, eliminating the need for continued 

control of the side-arm temperature. 

 

Camera Calibration 

 

Analogous to the photodiode calibrations, the two cameras must be calibrated to one another 

to ensure that each pixel on one camera views the same physical location as the corresponding 

pixel in the other camera and possesses an identical response to the intensity of the scattered 

light.  In practice, it is not possible to position each camera such that they achieve identical 

imaging regions, so the two cameras are digitally aligned to one another in post-processing, a 

procedure that also corrects any perspective distortion due to the camera viewing angle with 

respect to the laser sheet.  To achieve this, a dot card is temporarily placed in the same position 

as the laser sheet, providing a uniform array of tie-points at which the images from each camera 

can be matched.  This procedure by necessity was performed with the iodine filter cell in place 

before the signal camera, because it provides a small but distinct lensing effect that would alter 

the images and hence the spatial mapping if it were removed. 

The software used to map one camera to the other was developed in-house.  Dots in each 

image were located using a polynomial fit to find the center, then were matched to one another 

with the aid of user input.  This information allowed a bilinear interpolation to warp each image 

onto a uniform rectilinear grid common to each of the two cameras.  A similar algorithm is 

described in detail in Elliott and Beutner [25] or Crafton et al. [67]. 
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To map the intensity response of the two cameras, the dot card was replaced by a white card 

and illuminated by an expanded and spatially filtered beam from the laser.  Because the 

illumination is dependent upon the laser frequency and its absorption by the iodine cell, the white 

card is not a standard flat-field correction and thus is often called a green card.  The laser 

frequency was tuned to a point outside any iodine absorption wells so that small variations in the 

laser frequency would not appreciably influence the absorption of the cell (note that even away 

from an absorption line, significant absorption of a constant magnitude occurs due to the 

nonresonant background of the iodine molecule [26, 29] ).  The laser was stepped through ten 

intensity values over the range anticipated for the laser light scattered from the ethanol-seeded jet 

and ten images were acquired at each intensity. 

The green card data processing was begun by lightly filtering the images to reduce laser 

speckle effects (a small amount of filtering was found to significantly improve the intensity 

match between the two cameras achieved by the transformation), then background images were 

subtracted from each green card image to correct for room light and camera dark current.  Each 

set of ten images was averaged together to produce a single image at each laser intensity, further 

reducing the impact of laser speckle, while bypassing pixels that were saturated or nearly so.  

The build-up time reduction of the laser was continuously monitored to remove images at which 

the injection-lock of the laser was lost, which could impact the absorption through the iodine cell 

even though the laser is tuned outside an absorption line.  Once all ten averaged image pairs were 

obtained, they were spatially transformed using the results from the dot card images to give both 

images in each pair an identical field of view.  Finally, they were subjected to a linear least-

squares fit on a pixel-by-pixel basis analogous to the one utilized for the photodiodes, wherein 

the measured intensities of the signal camera were fit to those of the reference camera.  This 

array of linear transformations allowed each signal image to be mapped to its matching reference 

image in intensity following its spatial transformation. 

 

Data Reduction 

 

The initial step in reducing the pairs of signal and reference data images was to lightly filter 

each image to reduce laser speckle effects, in the same fashion as with the filtering of the green 

card images.  Background images were acquired with the laser operating but the jet dormant to 

account for stray laser illumination, room light, and the camera dark current; these were 



 
 

88

subtracted from each data image.  These backgrounds were obtained with the laser tuned to the 

same frequency at which the data images would be acquired to ensure that absorption of stray 

laser light through the iodine cell would be consistent.  Each image pair was spatially and 

intensity transformed according to the procedure described above using dot card images and 

green card images collected just prior to data acquisition. 

Each pixel in the transformed signal image was divided by the identical pixel in the reference 

image to yield a transmission ratio, from which the frequency of the scattered light was found by 

consulting the iodine cell calibration for the signal camera, as in the sketch in Figure 4b.  The 

frequency of the incident laser light for the corresponding laser pulse was found from the 

transmission ratio recorded from the frequency monitor and the cell calibration for that iodine 

cell.  The difference between these two frequencies provides the Doppler shift.  The velocity in 

the direction of the system sensitivity is then found from the equation 
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where Vc is the velocity component to which the DGV system is sensitive, λ is the wavelength of 

the laser, φ is the angle between the incident light vector and the scattered light vector (which is 

known from the experimental configuration), and νs and νi are the frequencies found for the 

scattered and incident light respectively. 

Strictly speaking, φ is not constant, as it can vary if the incident or scattered light vectors 

change.  Because the laser sheet has been collimated before reaching the jet, the incident light 

vector is constant.  However, the collection angle varies across the image, creating a variation in 

the scattered light vector ŝ  that induces a small alteration in φ and in the velocity sensitivity 

direction.  This effect is a function of the pixel location and hence can be calculated at each point 

to remove the associated error, but this capability has not yet been introduced into our software.  

Operating the 105-mm lenses at f/8, the variation in ŝ  is ±7°, which yields a significant error if 

this bias is neglected.  However, because the jet is small and the optical path length is fairly large 

to accommodate the required collection optics, the jet filled only a portion of the images.  The 

variation in ŝ  over just this region is only about ±1°, which induces a similar change in the 

velocity sensitivity direction, for which the estimated error in the measured velocity is 1%. 
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Results 
 

Iodine Cell Calibration 

 

Prior to acquiring data, frequency scans were taken of each iodine cell, including scans of the 

pressure-broadened cell at various buffer gas pressures to select the best conditions for the 

present experiment and for future hypersonic studies.  Figure 34 shows scans of the absorption 

line near 18789.3 cm
-1

 for four cases, in which one has no pressure broadening and the remaining 

three display the effects of increasing the partial pressure of nitrogen.  In each case, the side-arm 

temperature was 45°C and the cell body temperature was maintained at 100°C.  The vertical 

scale of the plot has not been normalized to the maximum transmission and the frequency axis is 

relative to the minimum of the absorption line recorded by the frequency monitor iodine cell, 

which was scanned simultaneously.  This allows the permanently sealed cell to serve as a fixed 

frequency reference to the changing conditions in the pressure-broadened cell, whose line 

position does not necessarily match that of the sealed cell.  The scale of the frequency axis was 

determined by matching a wider scan of the sealed cell to the theoretical spectrum predicted by 

Forkey’s model [27, 29] to convert to frequency the voltage scale specific to our laser.  The 

profile of the iodine cell used in the frequency monitor appears similar to the profile with no 

nitrogen addition shown in Figure 34, but has less absorption because the side-arm temperature 

was 35°C as compared to 45°C for the camera filter cell.   

Because the absorption profile has not been normalized, any additional losses from the filter 

cell windows are included.  These losses will be small; the maximum transmission is well below 

unity due to a background nonresonant absorption present in the iodine spectrum [26, 29]. The 

strength of this nonresonant background appears to increase as the nitrogen pressure is increased, 

but this is probably because the broadening of adjacent lines blends with the line shown in Figure 

34.  The figure also shows the line shift evident at the minimum of the absorption lines that 

occurs when a line is broadened due to the presence of a buffer gas.  This effect has been 

previously reported in iodine by such authors as Padrick and Palmer [68], Mukhtar et al. [69] and 

Fletcher and McDaniel [70] but has not been discussed previously by DGV users.  The centers of 

the shifted absorption lines are marked with dashed lines in Figure 34. 

The line shift shown in Figure 34 demonstrates the importance of calibrating the frequency 

monitor iodine cell simultaneously with the pressure-broadened camera iodine cell.  If the cells  
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Figure 34 – Frequency scans of the iodine absorption line near 18789.3 cm
-1

 showing the effects 

of pressure broadening as the partial pressure of nitrogen buffer gas is increased.  The vertical 

dashed lines show the line shift of the minima for each condition. 

 

were calibrated independently and then each referenced to its own minimum, the line shift would 

be overlooked and a bias would be introduced into the velocimetry measurements.  This arises 

because the velocity is measured by the frequency difference between the transmission ratio 

determined from the camera iodine cell and the transmission ratio determined from the frequency 

monitor.  Thus the frequency scales of each cell must be referenced to a common point and the 

presence of line shift in a pressure-broadened cell inhibits use of the absorption line location as 

such a reference. 

 

Mach 3.7 Jet Measurements 

 

For the purposes of flow visualization, initial images were taken in a plane aligned with the 

jet axis and therefore normal to the jet exit plane (not the skewed laser sheet shown in Figure 9).  

A sample instantaneous image and a mean image are shown in Figure 35 for the Mach 3.7 jet.  

The exit plane of the jet lies just below the images.  The initial shock diamonds are distinctly 
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Figure 35 – Unfiltered Rayleigh scattering images acquired in a plane aligned with the jet’s 

centerline axis.  The jet exit plane lies just below the bottom of each image.  (a) sample 

instantaneous image;  (b) mean image. The position of the inclined laser sheet is shown in (b). 

 

visible in both the instantaneous and the mean image, which gradually erode further downstream 

as the effects of mixing become strong. 

Figure 36 displays sample instantaneous and mean unfiltered images acquired using the 

inclined laser sheet drawn in Figure 9.  The approximate position of this sheet is shown in Figure 

35b for reference.  The images shown have been spatially and intensity transformed, which 

removes the perspective distortion created by angling the laser sheet with respect to the camera.  

The shock diamonds seen in Figure 35 are visible within the inclined imaging plane of Figure 36 

as well, seen as the greater intensity region in the central portion of the images.  This must lie 

downstream of oblique shocks where the gas density is higher and hence the ethanol fog density 

is greater. 
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Figure 36 – Unfiltered Rayleigh scattering images of the Mach 3.7 jet acquired in the inclined 

laser sheet plane shown in Figure 9a.  (a) sample instantaneous image;  (b) mean image. 

 

Both images shown in Figure 36 were acquired by the signal camera but with the laser tuned 

outside any absorption line.  Images taken by the reference camera were subject to a significant 

degree of defocus.  As the focus was ideal during the set-up procedure, this apparently was the 

result of a distortion of the pellicle beamsplitter induced by pressure changes when the jet was 

operated.  Efforts to protect the pellicle using additional windows on the beamsplitter mount did 

not appreciably improve the situation.  The signal camera was never affected and attempts to 

compensate for the focal change by adjusting the camera focus prior to running the jet were 

unsuccessful.  Fortunately, DGV does not require a sharp focus to obtain velocity measurements 

and the loss of focus principally acted as an additional filter on the images.  Subsequent 

experiments have utilized a cubic beamsplitter to avoid this difficulty, but this change to the 

system components could not be instituted in sufficient time for application to the jet 

measurements. 

Velocity data have been acquired with the directional sensitivity in the imaging plane shown 

in Figure 9a.  About 30 runs were conducted and mean velocities were computed for quantities 

between 15 and 36 image pairs per run.  Figure 37 shows an instantaneous velocity map for one 

of the DGV images as well as the mean velocities for the run in which it is a part.  Such results 

are representative of other runs. 
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Figure 37 – Velocity images of the Mach 3.7 jet acquired from a sequence of DGV image pairs.  

Data are shown with the directional sensitivity and imaging plane shown in Figure 9a.  The notch 

at the bottom of the jet was caused by a reflection of the laser sheet.  (a) sample instantaneous 

image;  (b) mean image.  The white arrow in (b) indicates the position of the horizontal cut 

plotted in Figure 38. 

 

Figure 38 shows a horizontal cut through the mean velocity data of Figure 37 at the point 

where the inclined imaging plane crosses the nominal centerline axis of the jet.  This point is 

indicated with an arrow in Figure 37b and occurs 11.3 mm above the exit plane of the jet.  The 

solid line is the mean velocity of the entire run, formed from 27 instantaneous DGV images.  The 

open circles are the data points from each of those instantaneous images.  Clearly, a substantial 

degree of scatter exists for the instantaneous data, which is a result of both measurement 

uncertainty and turbulent fluctuations in the jet.  The shock diamond structure of the jet is 

sufficiently unsteady that the shocks and expansions are located in different positions for each 

data realization, contributing greatly to the data scatter.  This shock unsteadiness can be observed 

in sequences of Rayleigh scattering images such as that shown in Figure 35a and in the blurriness 

of the second shock diamond in the mean image of Figure 35b.  Turbulent mixing also is a 

contributor.  The asymmetry across the jet centerline is real and repeatable, not a result of a 

misalignment of the laser sheet or other optics.   

At first glance it seems conceivable that this asymmetry actually may be a result of the off-

axis direction of velocity sensitivity, which may incorporate a positive radial velocity component 

on one side and a negative component on the other, thus skewing the velocity profile from what 

may be symmetric in the streamwise direction.  However, the radial velocity component to which 

the optical configuration is sensitive lies normal to the linear slice shown in Figure 38, which 
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Figure 38  –  Plot of the velocities along a horizontal cut through the mean velocity data of 

Figure 37 at the point where the inclined imaging plane crosses the centerline axis of the jet.  The 

solid line represents the mean velocity and the open circles are the data points from the 

individual instantaneous DGV images comprising the mean. 

 

would require a significant degree of swirl to induce the asymmetry.  Such swirl seems unlikely 

for the present jet apparatus, and therefore the observed asymmetry is likely not a product of the 

instrumentation. 

Fifteen different runs were taken with the jet stagnation pressure at the same condition.  

Mean velocity images were compiled from the instantaneous DGV images for each of these runs, 

then the mean of these means was computed.  Figure 39 plots the same horizontal cut through the 

data as was shown in Figure 38, displaying the mean of these 15 runs and each of the runs 

comprising it.  The data scatter is much less than Figure 38, indicating that the repeatability of 

the jet flow and the measurements is fairly good, again displaying the same jet asymmetry. 

Horizontal cuts taken at other vertical positions (which therefore do not lie on the jet axis) are 

shown in Figures 40 and 41.  These show that 0.5 mm downstream the jet becomes much more 

symmetric, then another 0.5 mm thereafter becomes asymmetric in the direction opposite that 

seen in Figure 38.  However, because these downstream horizontal cuts occur off the nominal jet 

axis, they experience more complex radial velocities.  The varying asymmetry seen in Figures 39  
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Figure 39 –  Plot of the mean velocities along the same horizontal cut as Figure 38.  The solid 

line represents the mean velocity taken from 15 separate runs and the open circles are the data 

points for the mean velocities of each of those 15 runs. 

 

through 41 possibly is a result of asymmetric flow separation within the nozzle, which yields a 

skewed pattern of shock diamonds.  The nature of the asymmetry, then, would be dependent 

upon the downstream location and the position the within the shock diamond. 

Following the inviscid analysis of Romine [17], it can be shown that the lowest jet axial 

velocity occurs after passing through a Mach disk at the jet centerline, which yields a 

downstream velocity of 153 m/s for the present flow conditions and geometry.  The largest 

velocities near the Mach disk can be expected to have originated from an oblique shock 

generated at the separation point within the nozzle, which yields a downstream velocity of 463 

m/s.  In inviscid analysis, these velocities will repeat at subsequent shock diamonds.  Along the 

horizontal cuts displayed in Figures 38 and 39, any radial velocities would be expected to occur 

parallel to the plotted axis because it passes through the jet centerline, and as shown in Figure 9a, 

the DGV system is not sensitive to velocities in this direction.  Therefore, the velocities 

measured in this configuration should be sensitive only to jet axial velocities and are found as 

Vc=Va cos(31.5°), where Vc is the DGV velocity sensitivity and Va is the jet axial velocity.  The 

minimum and maximum velocities predicted by gas dynamics, then, are reduced to 130 m/s and 

395 m/s, respectively, in the direction of DGV velocity sensitivity.  While such inviscid analysis 
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is of limited utility given the viscous mixing present in the jet, the velocities are measured in the 

second shock diamond downstream of the nozzle exit and thus these predicted velocities provide 

a reasonable estimate of those expected from the DGV measurements.  The data in Figures 38 

and 39 are consistent with such estimates. 

Data have been acquired for the radial velocity component using the optical configuration 

drawn in Figure 9b, but these data have not been fully reduced at the time of this writing. 
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Figure 40 –  Plot of the mean velocities along a horizontal cut 0.5 mm above that in Figure 39.  

The solid line represents the mean velocity taken from 15 separate runs and the open circles are 

the data points for the mean velocities of each of those 15 runs. 
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Figure 41 –  Plot of the mean velocities along a horizontal cut 1.0 mm above that in Figure 39.  

The solid line represents the mean velocity taken from 15 separate runs and the open circles are 

the data points for the mean velocities of each of those 15 runs. 
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Transitioning DGV to the Sandia HWT 
 

To conduct DGV measurements in the HWT, a new measurement system has been 

constructed independent of that used for the developmental process.  This route was taken to 

allow the original system to continue to be used to acquire temperature measurements in a 

laboratory environment while DGV measurements proceeded simultaneously in the HWT.  To 

this end, a new injection-seeded Nd:YAG laser was purchased (Continuum Precision II 8000) 

and installed in a newly-constructed laser laboratory integrated with the HWT facility.  

Duplicates of the optics and instrumentation used in the initial system were purchased and 

installed as part of the system for the HWT, with the notable exception of the PixelVision CCD 

cameras, which were not required for the temperature instrumentation and hence could simply be 

relocated to the HWT system.  A photograph of the DGV system for the HWT is shown in 

Figure 42; the schematic would be identical to that shown in Figure 7 except that the jet is 

replaced by the HWT test section. 

 

 
 

Figure 42 –  A photograph of the optical configuration of the DGV system for the HWT. 
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Additional improvements to the system were made based upon experiences with the 

developmental system used in the supersonic jet measurements.  These included removal of the 

pellicle beamsplitter in favor of a cubic beamsplitter, as the pellicle was found to have an 

undesirable impact upon the focus of the reflected light scattered from the jet.  Also, the green 

card calibration procedure that was used to correct for differences in intensity response of the 

two cameras has been altered.  As described earlier, the intensity response was normalized by 

projecting laser light at frequency tuned away from an iodine absorption line upon a white card 

placed in the position of the measurement laser sheet.  Images then were acquired from each 

camera for a sequence of laser intensities to generate a calibration for each camera pixel.  

However, it was found that beam nonuniformities in the laser light projected upon the white card 

added a significant quantity of noise to the calibration, and furthermore, it was difficult to 

spatially filter the powerful pulsed laser beam – several spatial filters were destroyed in the 

attempt.  An attractive alternative is to remove the white card and projected laser beam and 

instead utilize the measurement laser sheet scattered off small smoke particles introduced into 

the HWT test section during the calibration process.  This approach, favored for the DGV 

measurement system in the HWT, reduces the errors in the camera intensity calibration. 

The ethanol seeding system used for the lab-scale Mach 3.7 jet had to be dramatically altered 

for use in the HWT.  The condensate chemical must be introduced upstream of the wind tunnel’s 

heaters, which eliminates the possible use of a flammable chemical such as ethanol.  A logical 

replacement is carbon dioxide, which will condense into a solid phase at the low temperatures 

found in the HWT test section.  However, while the Mach 5 nozzle for the HWT uses nichrome 

heaters, the Mach 8 and 14 nozzles use tungsten heaters.  The presence of oxygen in the flow can 

cause a chemical reaction on the tungsten heater wires leading to their overheating and rupture, 

but Mach 8 and 14 flowfields employ nitrogen as a test gas rather than air and thus eliminate this 

concern.  While the heaters for Mach 8 and 14 operate at temperatures lower than that at which 

carbon dioxide may dissociate to produce oxygen, the heaters may possess hot spots at which 

such dissociation could occur locally.  For this reason, carbon dioxide seeding was deemed 

appropriate only for the Mach 5 nozzle; a different gas would be necessary for Mach 8 or 14. 

The DGV system would be implemented only for the Mach 5 test section within the scope of 

the present work.  A schematic of this seeding system is shown in Figure 43.  Two “six-packs” of 

carbon dioxide cylinders provide the supply gas, which is regulated to the necessary pressure to 
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drive the gas into the air supply line leading to the wind tunnel.  By seeding the carbon dioxide 

into the supply line upstream of the HWT control valves, stagnation chamber, and heaters, 

adequate distance is provided for the carbon dioxide to mix with the primary flow and thus create 

a reasonably uniformly seeded flow.  A high-flow rate regulator is employed to produce the 

desired seeding pressure.  The carbon dioxide is switched using two cryogenic valves to ensure 

that any freezing during the carbon dioxide expansion does not cause the valve to stick.  One of 

these valves is used for control during a wind tunnel run while the other is interlocked to the 

HWT’s downstream vacuum valve, thus ensuring that the seeder cannot be operated unless the 

HWT is exhausted to vacuum and thus preventing against overpressurization.  Oxygen monitors 

are used to detect any leaks into the laboratory.  Construction of the carbon dioxide seeder is 

complete at the time of this writing and undergoing testing under a variety of flow conditions. 

A photograph of the HWT is shown in Figure 44.  Implementation of laser operations has 

necessitated construction of an interlocked room around the test section to enclose laser light 

scattered from the test section to the cameras (not shown in the photograph).  The laser beam 

must be brought from a similar interlocked laser lab on the opposite side of the wind tunnel over 

the dormant test sections mounted on the rotary arrangement for the tunnel.  At the time of this 

writing, an enclosed laser tube is being constructed over the entire HWT to pipe the beam from 

one room to the other, including remotely-controlled laser mirrors to guide the beam.  Beam-

shaping optics similarly are to be shielded from view for wind tunnel personnel.  Construction of 

the optical apparatus for the HWT, begun in the final year of the current project, is expected to 

be complete in the first quarter of FY04 under a program continuing the DGV work.  The first 

laser-based images will be acquired shortly thereafter. 
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Figure 43  – A schematic of the carbon dioxide seeding system for the HWT. 

 
 

 
Figure 44 – A photograph of the hypersonic wind tunnel (HWT).  The laser for DGV 

measurements must be brought over the top of the facility in beam tubes to safely reach the test 

section.
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PROJECT SUMMARY AND CONCLUSIONS 

 

FRS Temperature Imaging – Conclusions 
 

A filtered Rayleigh scattering (FRS) instrument for quantitative temperature imaging has 

been developed in Sandia’s Engineering Sciences Center. The FRS instrument has been applied 

in a systematic manner to increasingly difficult applications. Our FRS system was first applied to 

heated air jets, where chemistry dependent variations in Rayleigh cross section that are the main 

source of bias error in flames are not an issue. The FRS system was then applied to nonsooting 

premixed and diffusion flames. The premixed flame provided an environment where variations 

in scattering cross section were moderate, while the diffusion flame was a more severe test with 

extreme variations in cross section that were corrected using Raman imaging of the methane fuel 

molecule and a mixture-fraction-based model. The FRS thermometry program was concluded 

with an investigation of a sooting, premixed ethylene-air flame and complimentary laser-induced 

incandescence (LII) measurements of the local soot volume fraction.  

In the nonreacting heated air-jet flowfield, the precision in the shot-averaged FRS 

temperatures is on the order of ± 20 K for a laminar jet at 800-K bulk temperature issuing into 

293-K air.  

When the Rayleigh cross section of the combustion gases is evaluated using the actual gas 

composition of the premixed CH4-air flat flame, the shot-averaged FRS flame-temperature data 

are within ±50 K of adiabatic equilibrium temperatures and corroborating nitrogen CARS 

measurements for equivalence ratios less than about 1.3. At richer equivalence ratios, the FRS 

results displayed a high-temperature bias on the order of 75 K. Use of the cross section for 

nitrogen leads to a low-temperature bias of as high as 150 K in FRS temperatures for lean to 

slightly rich φ. Assumption of stoichiometric product cross section for all φ results in greatly 

minimized bias errors for φ from 0.8 to 1.2. 

FRS-temperature, Raman fuel-mole-fraction, and CH-chemiluminescence data have been 

presented for a steady CH4-N2-air diffusion flame. FRS-measured peak flame temperatures in the 

steady-state reference flame were generally within −5% of CARS-measured peak flame 

temperatures. Data from periodically forced diffusion flames at the 7.5- and 90-Hz forcing 

frequencies previously studied by Mueller and Schefer [34] have also been presented. The 7.5-

Hz case shows the impact of a single fuel-side vortex interacting with the flame zone with 



 
 

103

changes in local flame temperature from as high as 1950-2000 K (near adiabatic equilibrium) in 

regions of negative strain to 1650-1750 K in regions of strong, positive strain, which are believed 

to be 50-100 K too low. The 90-Hz forcing case permitted the study of two interacting fuel-side 

vortices that combine to produce strain rates that are high enough to cause localized flame 

extinction. FRS-measured temperatures near flame quenching are on the order of 1600-1650 K. 

FRS measurements from the sooting premixed C2H4-air flame proved to be possible for soot 

volume fractions of order 0.1 ppm or less. The FRS data from this sooting flame were also 

necessarily corrected for spectrally broadband interferences from soot LII and C2/PAH emission. 

These corrections were approximate in nature and were less than 10% of the measured FRS 

signal for 4 of the 5 flames investigated. In these 4 flames, the measured FRS temperatures were 

1500-1700 K, which are 100-200 K lower than expected values. These measurements are 

currently being repeated with a shorter ICCD gate to further reduce measurement bias resulting 

from spectrally broadband interferences. The sooting flame is also being better stabilized and 

will be probed using the nitrogen CARS technique to obtain a more quantitative assessment of 

FRS performance under sooting conditions.   

 

FRS Velocity Imaging – Summary and Conclusion 

 

A Doppler global velocimetry (DGV) system has been designed, constructed, and tested for 

use in a Mach 3.7 overexpanded jet prior to future implementation in a hypersonic wind tunnel. 

The present work describes the implementation and operation of the system, including the optical 

configuration, the iodine cell calibration, the image transformation procedure, and the 

culminating velocity data reduction. Calibrations of a pressure-broadened iodine cell have shown 

that the induced line shift can create velocity biases unless a second iodine cell is scanned 

simultaneously to provide an independent frequency reference. Exploratory velocity data in the 

jet have been acquired that are experimentally repeatable and consistent with physical 

expectations, which lends confidence towards the performance of the assembled system. 

Measurements in Sandia’s hypersonic wind tunnel also are planned and construction of this 

second diagnostic system is largely complete. Measurements in the hypersonic tunnel are 

currently being performed. 
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