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Abstract

This report describes the results of a two-year LDRD funded by the Differentiating Technologies
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Nomenclature

ANC Adaptive Network Countermeasures
ANCP Adaptive Network Countermeasures Protocol
GI general information [modules]
HENC Honeyd Enabled Network Countermeasures, countermeasure com-

ponent of Adaptive Network Countermeasures
IDS intrusion detection system

Athena decision-making component of Adaptive Network Countermeasures
Bro an open source intrusion detection system
datagram also called a “packet”
Honeyd open source virtual honeypot software
ipfw/ipfw2 the FreeBSD packet filter / firewall
mon a Sandia-developed intrusion detection system
Nessus an open source network scanning tool
Nmap an open source network scanning tool
Snort an open source intrusion detection system
Xprobe 1 / Xprobe2 an open source operating system fingerprinting tool
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1 Introduction

Internet attacks are on the rise as shown by the re-
cent Blaster [1] worm. Our operational experience
has shown an increase in the time and manpower
required to defend against attacks and clean up in
their wake. Along with a general increase in at-
tacks, our experience has also been that targeted at-
tacks are becoming more frequent. Malicious users
are now tailoring their attacks for maximum effect
against specific target machines.

Targeted attacks are made possible by advance
reconnaissance conducted by malicious users. At-
tackers use tools such as Nessus [2] and Nmap [3]
to conduct their network surveys. These tools rely
on the fact that the TCP/IP protocol suite was de-
signed to be an open suite of protocols. The proto-
cols freely give information about the computer on
which they are running rather than limiting that
information.

Efforts have been made to mask certain net-
work characteristics in order to prevent malicious
users from tailoring their attacks. Perimeter de-
fenses such as firewalls and proxy servers have been
deployed to limit the information available to at-
tackers. Honeypots are being installed to distract
attackers from “real” network resources.

We believe these solutions leave much room for
improvement. We want to be able to control the
view of our network that can be obtained by outside
users, whether malicious or not. We believe that by
limiting, and even creating, the view from the out-
side, we can severely restrict an attacker’s ability to
conduct reconnaissance of our network and exploit
weaknesses or vulnerabilities found.

In our research we combined the common net-
work security ideas of network countermeasures, au-
tomated response, and honeypots to create Adap-
tive Network Countermeasures (ANC). Our goal was
threefold: to provide a comprehensive and robust
network countermeasure system, to dynamically (in
real-time) detect and respond to malicious traffic
directed to nonexistent and existent machines on
our network, and to design and build an extensi-
ble architecture for conducting the aforementioned
activities.

In this paper we discuss the background sur-
rounding network scanning, network countermea-
sures, and automated response. In the following
section we lay out our ANC architecture and our
working implementation of that architecture. We
discuss in depth the design of the countermeasure
system, our system for making decisions about the
type and timing of network countermeasures, and

the glue that integrates the two systems into ANC.
We then provide results describing the performance
of ANC as well as our evaluation of its effectiveness
in repelling malicious users. We finish by providing
our thoughts regarding future improvements to the
ANC architecture and our prototype implementa-
tion.

2 Background

The concept of network scanning has been around
for a long time. Network scanning tools includ-
ing Nessus and Nmap have made network reconnais-
sance easy. The concept of fingerprinting operating
systems using specially crafted TCP/IP datagrams
is newer as explained by Fyodor in [4]. After an
attacker has performed a network scan, he/she will
further profile machines based on which interest-
ing ports were reported open. This further pro-
filing can include OS fingerprinting, grabbing ban-
ners from running services, and other techniques.
Nmap is the best known of these OS fingerprinting
programs, using specially crafted TCP and UDP
datagrams to gather information about a remote
operating system. Ofir Arkin wrote Xprobe 1 and
Xprobe2 [5] to fingerprint remote machines using
mostly ICMP messages. Arkin first described his
methods in [6]. These two fingerprinting tools each
include a database of the mappings between a par-
ticular operating system and responses to probes.
We used these databases essentially in reverse, craft-
ing our own TCP/IP datagrams according to the
database information provided for a chosen operat-
ing system.

Using automated response on a production net-
work is risky because of potential interference with
legitimate (non-attack) network traffic. In order to
mitigate potential interference with the production
network, [7, 8] allow some leeway in their responses.
We take this approach as well, requiring a given
threat to be of a sufficient weight before we issue a
response on the network. Additionally, we make use
of user-defined white lists of Internet Protocol (IP)
addresses to avoid interfering with certain critical
machines inside and outside of our network.

Many of the most popular intrusion detection
systems (IDSs) provide methods to automatically
block IP addresses and IP address ranges [9, 10, 11].
Some even provide deterministic network responses
directed toward the offending IP [12]. In our ar-
chitecture we introduce a layer of intelligence on
top of our implementations of these functions. We
will begin by describing our innovations including
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Figure 1: ANC Architecture

dynamically configurable network countermeasures,
our pluggable architecture, our attempts to limit
false positives to the bare minimum, and our infor-
mation correlation intelligence.

3 Accomplishments, Design,

and Implementation

Our design, and thus our project, was split into
two main parts: the countermeasures component
(HENC - Honeyd Enabled Network Countermea-
sures (pronounced “Hank”)), and the
decision-making component (Athena). As seen in
Figure 1, the two components each run on their
own machine, using a back channel for unidirec-
tional communication.

3.1 Countermeasures

We designed HENC based on an existing production
system at Sandia National Laboratories. Labora-
tory staff had written individual programs to pro-
vide protocol and service specific countermeasure
protection for the networks. We wanted to combine
these programs into a larger system capable of send-
ing countermeasures using TCP, UDP, and ICMP
as well as emulating various network services over

Honeyd


ipfw


Firewall

Internet


Template

Builder


Figure 2: HENC Architecture

these protocols. As we developed our plans, we re-
alized that we wanted to essentially recreate all the
deterministic responses produced by TCP/IP net-
work stacks when stimulated by all possible inbound
datagrams. Our goal was to build our own IP stack
without actually offering any real services.

We decided to build our system to emulate the
IP stacks of as many operating systems as possible.
This would be accomplished by reversing the use
of the Nmap and Xprobe OS fingerprint databases.
By responding to network traffic consistent with the
way a real OS would respond, our program would
provide countermeasures indistinguishable from the
response traffic of a real operating system. Our
program needed to provide countermeasures that
would create the appearance of fully functioning
Windows 2000, Mac OS X, Linux, or other machines
residing on our network.

We chose Honeyd [13], a virtual honeypot soft-
ware package, to act as the base for our counter-
measure system. Initially Honeyd could read from
the Nmap fingerprint file and send TCP and UDP
datagrams based on the “recipes” in that file. In
order to make our countermeasure system more ro-
bust, we added support to Honeyd for reading the
Xprobe2 fingerprint file and transmission of ICMP
datagrams according to that file.

Our countermeasure system was designed to run
on a single machine as a part of the larger adap-
tive network countermeasures framework. We ar-
chitected our system to run on FreeBSD 4.7 and
4.8, but it would be easy to make changes to work
with other UNIX-like operating systems. In order
to allow the sending of countermeasures with an
IP ID field that is predetermined by our system or
with an ID of zero (as many Linux systems do), we
wrote a small patch for the raw sockets portion of
FreeBSD’s IP stack (see Appendix B).

The HENC architecture has Honeyd at its base
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as shown in Figure 2. Honeyd builds network data-
grams and sends them out. The software knows how
to build those datagrams based on input from both
the Nmap and Xprobe2 fingerprint files. We map
individual operating systems and services to IP ad-
dresses on our network using Honeyd’s configuration
file.

We wrote a utility named Template Builder to
aid in creating host templates for the Honeyd config-
uration file. The utility actually creates a complete
configuration, but its focus is on creating a specified
distribution of operating system templates across all
possible IP addresses being protected by ANC. For
instance, a system administrator can create a con-
figuration file for Template Builder similar to the
one shown below:

# cat net.cfg

iprange 10.3.4-5.1-254

40% Microsoft Microsoft NT 4.0 SP5-SP6

10% NetBSD 1.6

10% Sun Solaris 2.3 - 2.4

3% 3com Office Connect Router 810

2% Compaq Tru64 UNIX V5.1A (Rev. 1885)

25% Linux Kernel 2.4.0 - 2.5.20

5% Apple Mac OS X 10.1.5

2% Apple Mac OS 9 - 9.1

3% SGI IRIX 6.5.14

For the given range(s) of IP addresses, the util-
ity will create random operating system templates
based on the supplied percentages. Template Builder
also has a limited capability to modify configuration
files that already exist.

We modified Honeyd to provide a mechanism
whereby the binding of an operating system tem-
plate to an IP address changes randomly, at in-
tervals specified by the system administrator. The
standard Honeyd syntax for setting a template per-
sonality and binding an IP address to it is as follows:

set my_template personality \

"Microsoft NT 4.0 SP5-SP6"

bind 10.3.1.3 my_template

Using our new keyword, mutate, we bind the
above template so that it will change to a random
personality (operating system) every 100 seconds:

bind 10.3.1.3 my_template mutate 100

If no value is specified after the mutate keyword, a
default of 300 seconds between personality changes
is used.

network


kernel


kernel


user


Link-level

driver and


protocol


BPF


Honeyd


ipfw


TCP/IP


Stack


ip_input()


Protocol

specific


input


routines


Figure 3: Typical datagram flow to Honeyd

BPF makes copies of the datagrams arriving on the

machine [15]. Honeyd receives these datagrams via the

libpcap library. Datagrams not destined for this machine

are filtered out by the ip input() function.

We configured Honeyd to respond for every ad-
dress that we wanted to protect on our network.
This included both unused and used address space.
The ipfw firewall mechanism [14] provides an easy
way for us to regulate the outside IP addresses that
receive countermeasures. We used the standard ipfw

program, but ipfw2 should work as well. HENC’s
firewall rules are written so as to allow all outbound
traffic while allowing inbound traffic only from pre-
viously determined malicious users. If a network
datagram makes its way into our system, it is go-
ing to be responded to by our implementation of
Honeyd.

When running Honeyd on FreeBSD, it relies on
libpcap [16], which in turn relies on BPF (The BSD
Packet Filter) [15], for receiving its IP datagrams.
The FreeBSD IP stack is written such that BPF in-
tercepts and copies IP datagrams before the ipfw

packet filter is called (Figure 3). BPF works this
way by design of course, but we needed the ability to
block most inbound datagrams so that our counter-
measures did not interfere with production network
operations. So we added an interface to Honeyd

giving it the capability of receiving datagrams via
a FreeBSD divert socket in addition to the exist-
ing libpcap interface (Figure 4). Use of these inter-
faces is mutually exclusive. We enable this feature
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Figure 4: Modified datagram flow to Honeyd

BPF makes copies of the datagrams arriving on the

machine [15]. No applications are listening to BPF

descriptors. Datagrams are passed from the link-level driver

to the ip input() function in the TCP/IP stack.

ip input() sends the datagrams to ipfw before deciding

whether to send them up the stack. Honeyd receives

datagrams from ipfw via a divert socket.

by using -d divert port number in the standard
Honeyd command-line. Our inbound ipfw rules are
generated to include the divert divert port number

syntax to direct accepted datagrams to Honeyd.

HENC generates its ipfw rules upon startup
and when told to do so by Athena. Athena talks
to HENC using ANCP (Adaptive Network Coun-
termeasures Protocol). ANCP is built on top of
UDP and consists of a C client library used by
Athena and a standalone PERL server running on
HENC. The server configures the ipfw firewall upon
startup and maintains the firewall rules thereafter.
ANCP can also be used to call the Template Builder
utility in order to generate new configurations dy-
namically. Currently ANCP can only alter IP-to-
template bindings by adding and removing the
mutate keyword, but as the capabilities of Template
Builder are expanded, the ANC protocol will be ex-
tended as well. It should be noted that the ipfw

portion of ANCP affects outside (supposed mali-
cious) IP addresses and the interface to Template
Builder affects inside IP addresses (countermeasure
sources).

Figure 5 is a flow chart of HENC’s operations
starting with the ANCP client in Athena and end-
ing with a network-level response directed toward a
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Figure 5: Flow of datagrams from Athena to HENC
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malicious user. ANCP currently supports sending
messages of two different types. In the first sce-
nario, Athena makes a decision that an outside IP
address is bad and generates an ANCP message in-
dicating that the address should be blocked. The
ANCP server generates a firewall rule allowing in-
bound traffic from the malicious IP address. In-
bound datagrams are then diverted to the divert
port being used by Honeyd. Honeyd will craft a
response based on the destination IP-to-template
binding in its configuration. HENC then sends the
response, destined for the malicious user.

In the second scenario, Athena generates a mes-
sage that changes the characteristics of countermea-
sures being sent from an inside IP address. The
ANCP server calls Template Builder, passing a local
IP address as a parameter, and changes the corre-
sponding IP-to-template binding. A successful ex-
ecution of Template Builder triggers a SIGHUP to
Honeyd and subsequent reload of Honeyd’s configu-
ration. Countermeasures continue to be crafted and
sent according to the new configuration.

3.2 Athena

3.2.1 Design

Athena is the part of the ANC system that makes
decisions about when to send countermeasures and
what the countermeasure behavior should be.
Athena makes ANC adaptive by changing how it
responds based upon input from different modules.
Athena accepts two different types of input: that
from Intrusion Detection System (IDS) modules and
input from General Information (GI) modules.
When information from these two module sets are
combined and correlated by Athena, Athena de-
termines what countermeasures, if any, HENC will
send.

All of the decision making of Athena revolves
around a single piece of data, the source (outside)
IP address of a network datagram. Processing is
initialized when an IDS module sends an alert to
Athena. Athena then creates a cumulative score
for the source IP address, potentially using infor-
mation from GI modules, and adds the information
to a database. If an IP address already has an as-
sociated cumulative score, the score is updated in
the database. If the cumulative score for an IP ad-
dress ever exceeds a (user-defined) threshold, ANC
initiates countermeasures against that IP address.

The behavior of an outside IP address that has
already generated an IDS alert may cause an al-
teration of the countermeasures used against it. If
a source IP address is continually exhibiting “bad

behavior,” it will continue to be responded to with
countermeasures. If a source IP address is occa-
sionally committing “small offenses,” these offenses
will build up over time and the source IP address
may be responded to with countermeasures. These
two results are possible because Athena adds to the
IP address’s cumulative score when an offense has
been committed. Finally, over time and through
“good behavior,” an IP address can be removed
from the list of addresses to which network coun-
termeasures are directed. This is carried out by a
separate “aging” thread within Athena which peri-
odically decrements the cumulative score associated
with each outside address.

Determining which countermeasures to send is
a simple task. Whenever the cumulative score is
within a certain range, the system will perform a
specific countermeasure. This allows ANC to re-
spond with more aggressive countermeasures when-
ever a source IP address has a very high cumulative
score, and less aggressive countermeasures when a
source IP address has a low cumulative score. The
actual countermeasures and threshold ranges are
customizable by the site implementing the ANC
system.

3.2.2 Modular Code

ANC was architected with a very specific goal:
adaptability. There are two ways in which Athena
can be considered adaptive. First, as described
above, Athena will adapt countermeasures based
upon different behavior exhibited by a source IP ad-
dress. The second way Athena is adaptive is by pro-
viding a level of code modularity. When new net-
work security technology is created, particularly in
the realms of intrusion detection and network statis-
tics information, these technologies can be plugged
into the ANC framework. Thus ANC retains the
possibility of remaining a useful layer of network
security long into the foreseeable future.

First, when new intrusion detection systems are
developed or improved, they can be used to send
alerts to Athena. Fortunately, this does not require
modification of the IDS code itself. The new IDS
system can be used as an additional IDS module
by writing a wrapper for the IDS. The wrapper will
translate alerts generated by the IDS into a com-
mon format that Athena understands. This is the
Athena Alert Protocol (AAP). The new IDS and
wrapper are usually run on a computer separate
from Athena, and AAP messages are sent over a
local, usually private, network.

The second form of modularity comes from the
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ability to add new General Information (GI) mod-
ules. Athena queries these modules, and the re-
sponse is used in the information correlation pro-
cess. To add a new GI module, the implementer
must create or modify a function that performs all
of the correlation. The correlation() function re-
trieves information from the information modules,
each with its own specific method of retrieval, and
then correlates all of the retrieved information to
form a number used to update the cumulative score.

The third and final form of modularity in the
ANC framework is the addition and modification
of what countermeasures to use and when to use
them. As described above, different countermea-
sures can be used when the cumulative score falls
within a specific range. When new countermeasures
are developed, they can be integrated into the ANC
framework to increase the adaptability.

3.2.3 Implementation

IDS Modules – In our prototype implementa-
tion of ANC, we use Snort, a popular open source
intrusion detection system, as our solitary IDS. We
wrote a wrapper to allow Snort to communicate
with Athena via the Athena Alert Protocol. The
threat level of an alert is specified in a configura-
tion file. When the Snort wrapper sees a specific
string, specifying the type of threat, the wrapper
converts that to a static number, which becomes
the threat level of that alert.

GI Modules – We use three different sources of
General Information for correlation: Country Check,
NetState, and AthenaDB. The first two are consid-
ered General Information modules. Country Check,
when queried with a source IP address, will return a
number that indicates the sensitivity of that coun-
try according to the Department of Energy’s Sensi-
tive Countries List. A zero value means the country
is not sensitive, one represents a moderately sensi-
tive country, two is sensitive, and a value of three
represents a highly sensitive country. The module
is queried via a direct network connection.

NetState is a different type of information mod-
ule. NetState, internally developed Sandia soft-
ware, can be used outside of ANC for the purpose
of passively gathering information about the “demo-
graphics” of a network. NetState records what ser-
vices are running on networked computers and what
ports they are running on. NetState also stores in-
formation about the operating system running on
each computer and summaries of previous network
activity. Athena uses the NetState GI module to get

specific information about the target of an attack.
This information includes the most recent time of
connection to the target port, the first recorded time
of connection to the target port, and whether the
port and recorded service correspond to the IANA
standard port assignment [17]. Information is gath-
ered over the network via a direct connection to the
NetState MySQL database.

Athena – Athena is the most complex part of our
implementation of the ANC framework. It was de-
signed with efficiency, adjustability, and modular-
ity in mind. Multiple threads, implemented with
pthreads (POSIX threads), handle the many tasks
of Athena. When first initialized, Athena’s Sched-
uler thread initializes variables and then starts the
remaining threads. When finished performing ini-
tialization, it waits for a signal from the operat-
ing system to close all threads and clean up when
Athena terminates.

During initialization, Athena creates an
AlertHandler thread. This thread listens on a local
UDP socket for Athena Alert Protocol messages.
When an AAP message is received, the following
operations are performed: First, the alert message
is added to a cache of alerts, which is then used
to detect floods of attacks that could potentially
overwhelm normal Athena processing. Next, the
threat level of the alert is checked to see if it is
already above the threat threshold. If so, Athena
uses ANCP to request that HENC respond to the
attacker. If not, the alert is queued.

Athena also starts MessageHandler threads,
which dequeue alerts from the alert queue and per-
form the information correlation in order to deter-
mine if the threat is high enough to warrant counter-
measures. Both AlertHandler and MessageHandler
threads update the AthenaDB with the new cumu-
lative score for future correlation as well as other
statistics.

AthenaDB uses a custom PostgreSQL database
that holds attack statistics. In particular, the
AthenaDB is queried for the most recent time of
threat from the attacker, the number of attacks
from the same subnet, the total number of recent
threats, and the number of recent threats of the
same type. This information, along with informa-
tion from the GI modules is all gathered in the
correlation() function, which returns a number
representing the threat level and in turn is used to
modify the cumulative level. (See Appendix C: In-
formation Correlation)

Finally, Athena starts up the FloodHandler
thread, which performs two tasks. First, it monitors
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the threat cache. If a large number of threats are
received in a small amount of time, it sets up vari-
ables to indicate that the AlertHandler should look
for multiple threats of the same type in the cache
and handle such threats as an attack flood. Flood-
Handler’s second task is to periodically decrement
all of the cumulative scores stored in the AthenaDB
according to the aging policy. This allows false pos-
itives to be removed from the malicious address list
over time.

4 Evaluation and Performance

4.1 ifpw

FreeBSD’s ipfw works well within HENC for con-
trolling the breadth of datagrams responded to.
Adding and removing ipfw rules via ANCP is fast.
Work done by Mikula, Tracy, and Holling [18] on
dynamic spam blocking indicates that ipfw can fil-
ter efficiently up through at least 1,000-1,500 fire-
wall rules. Their work was performed on a machine
consisting of a 1GHz Athlon processor, 640MB of
RAM, and FreeBSD 2.2.8-STABLE. Our tests never
exceeded this number of rules, so we were not able
to push the limits of ipfw. In addition, we expect
our system to scale even better because we are us-
ing a newer version of ipfw on more powerful hard-
ware. We did not investigate ipfw in depth enough
to determine if performance differences will surface
because we relied on a default “deny” policy in con-
junction with “allow” rules and the previous work
used a default “allow” policy with “deny” rules.

4.2 Snort

Currently we use the default rule-set for Snort. We
didn’t want to spend time tuning the rule-set for
our network since this is an art already established
by system administrators. Our Snort system was
overwhelmed on our network with traffic averaging
8Mb/s. It is obvious that the rule-set needs to be
trimmed in order for Snort and the Snort alert
wrapper to run effectively. The rule-set should be
similar to that of the IDS system being used for
production network monitoring.

4.3 Athena

We tested the rate at which IDS alerts could be re-
ceived by Athena. Athena was run on a machine
with a 1.7GHz Athlon XP2000+ CPU, 512MB of
RAM, and a Fast Ethernet (100Mb/s) network in-
terface card. We ran a test program from another

machine that simply spit out IDS alerts as fast as it
could. We ran several tests sending 10,000 alerts –
a number we decided was unrealistically high for a
real enterprise network at Gigabit Ethernet speeds
– as fast as possible. Athena was able to handle
every single alert without dropping any.

Next we tested sending 1,000 alerts – still a high
number except when under a Distributed Denial of
Service (DDoS) attack – as fast as our testing tool
would generate them. We ran this test four dif-
ferent times without Athena dropping any alerts.
We restarted Athena in between tests to clear out
its cache. The total time to process the alerts was
only recorded for two of the tests. It took about
10.5 seconds to process the alerts both times. This
showed that Athena could process each alert in little
more than 1/100 of a second. It appears then, that
Athena will be able to process somewhere between
90 and 100 threats per second on any similar ma-
chines. We anticipate that IDS alerts (on a “tuned”
IDS machine) will not occur nearly this often, even
on an enterprise network with a Gigabit Ethernet
infrastructure.

We noticed three obvious processing bottlenecks
in Athena. The first bottleneck is a result of slow in-
teractions with the databases. The database queries
to both NetState and AthenaDB take the most time
within Athena, even with AthenaDB running on the
local Athena machine.

Because of the time spent querying the databases,
the processing of alert messages causes a backlog
since receiving alerts is much faster. This second
bottleneck could potentially fill up Athena’s alert
cache, causing alerts to be dropped.

The third bottleneck appears when Athena is
run with multiple MessageHandler threads. On our
single processor system, multiple threads tend to
slow down the overall speed of processing messages.
We believe that multithreaded or multiprocessor
systems will be able to handle multiple threads within
Athena more efficiently.

We also noticed that processing the first alert af-
ter starting Athena routinely takes more time than
subsequent alerts. The first alert often took be-
tween 1.5 and 3.5 seconds for Athena to process.
Further alerts were processed in the 10,000 microsec-
ond range.

4.4 ANC as a Whole

We ran two different tests to evaluate the overall
performance of our ANC prototype on our produc-
tion network. The first test determined whether
or not we could send countermeasures to attackers
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from a particular address while someone performed
real work across the Internet on the computer with
that same network address. Our test showed that
we could effectively send countermeasures to pro-
tect a computer while that computer participated
in production work via the Internet. HENC and
Athena were each running on their own computer–
a 2.8GHz Intel Xeon CPU, 1 GB of RAM, and Gi-
gabit Ethernet NICs. Snort was run on a machine
with dual 2.8GHz Intel Xeon CPUs, 1 GB of RAM,
and Gigabit Ethernet NICs.

To do this, we wrote a rule for Snort that would
interpret standard ICMP echo request datagrams as
malicious packets. Each time Snort received one
of these datagrams, it notified Athena, which in
turn incremented the malicious IP address’s cumu-
lative level by a value of 5. Our threat level thresh-
old was set at 25, so that six ICMP echo requests
(within the time limit of the threat level aging rou-
tine) would cause the offending IP address to be
added to HENC’s list of hosts to respond to with
countermeasures. We configured Honeyd to respond
with network traffic typical to a specific operating
system (randomly chosen by us) as if no TCP or
UDP ports were open. Using an attacking host un-
der our control on the Internet, we began sending
ICMP echo requests to the computer we were try-
ing to protect. After sending six echo requests and
receiving six echo replies from the real computer,
we started receiving duplicate echo replies. This
was a result of both HENC and the real computer
replying to the attack echo requests. We verified
that HENC had received the appropriate informa-
tion from Athena by listing its ifpw rules. We tried
to connect to the protected computer via ssh and
were not able to connect. Using a good host under
our control on the Internet, we were able to connect
to the protected computer immediately via ssh and
perform our work.

We changed the test slightly so that both our
attacking host and our good host were connected
to the protected computer via ssh before Snort de-
tected our malicious echo requests. We initiated the
echo requests from the attacking host, and after six
requests, HENC terminated the ssh connection to
that host while we continued to conduct our work
from the good host.

Our second test of ANC determined the average
time between detecting an attack and sending the
first countermeasure in response to the attack. We
used the same Snort rule of six ICMP echo requests
to identify our “attack.” We determined this time
by measuring the latency between the time of the
sixth datagram arriving and the time of the first

countermeasure datagram (echo reply) leaving. We
used a tcpdump network tap at our border router to
take these measurements.

We ran six tests:

Run ANC Latency (in seconds)
1 .720362
2 .690251
3 .510538
4 .450718
5 .300322
6 .633722

Mean .551

Notice that there is a rather large deviation from
the mean in most of the data points. We were more
interested in the order of magnitude of the latency
rather than precise values.

There may be many causes for the large devia-
tions, assuming static time for the cost of correla-
tion and communication over the control network.
For one, the reliability of packet delivery over the
Internet can affect the results. For example, if dur-
ing a given run datagrams six through ten were lost,
then the start time of the run would actually be the
reception time of the eleventh packet, not the sixth.
This would actually cause our calculation to under-
state the latency.

Another (more likely) cause of the deviations is
that Snort is not receiving all of the ICMP echo
requests. Because our Snort process is utilizing the
CPU close to 100%, it is highly likely that the IDS is
not running fast enough to keep up with the stream
of incoming datagrams. The result is that data-
grams are being dropped from the receive buffer.
Some of those dropped datagrams would likely be
the malicious ICMP echo requests. Due to the dy-
namics of Internet traffic, it would be very diffi-
cult to predict which of the echo requests is being
dropped. Our sixth recorded datagram may actu-
ally be the tenth datagram sent, for instance. This
phenomenon would also cause our calculation to un-
derstate the actual latency.

We believe the latency of 551 milliseconds is ac-
ceptable in a real-time countermeasure system. Op-
timizations could be made to the Snort ruleset, the
control network, and the ANC software itself, if less
latency were required.

5 Future Work

While working on this project, we discovered several
areas where we would like to spend more time. Be-
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low we outline several areas that we believe deserve
further investigation.

5.1 HENC

Currently, countermeasures are sent in response to
inbound datagrams as determined by the binding
of the destination IP address to a Honeyd template.
Using the mutate keyword, we can randomly change
that binding at a specified interval. We would like
to allow Athena to choose a specific Honeyd tem-
plate (and thus operating system) to rebind an IP
address to. In addition, we would like to dynam-
ically open and close virtual ports of machines on
the protected network.

We envision countermeasures that are even more
dynamic in nature than they currently are. We
would like to investigate sending different counter-
measures from the same IP address when the source
of the malicious datagrams differs. Doing this would
require a substantial overhaul of the underlying
Honeyd code in order to allow for a binding between
source and destination addresses. Athena’s scoring
system, with its varying threat levels, would allow
easy use of these types of countermeasures.

As noted in the performance evaluation of ANC,
attackers will receive two responses to each of their
datagrams when attacking real machines. This is
because both HENC and the real computer respond.
A smart attacker may analyze his/her probe or at-
tack results at the network level (as opposed to
blindly accepting results given by the attack ap-
plications) and thereby see that he/she is receiv-
ing countermeasures. The attacker could then al-
ter his/her attack methods to slip into the net-
work undetected, without being subjected to coun-
termeasures. HENC could be modified to commu-
nicate with a firewall on the protected network.
The firewall would filter out network datagrams di-
rected from the real computer to the attack host
once countermeasures have been initiated to pro-
tect the real computer.

Also, we would like to investigate the perfor-
mance of ipfw further to determine its scalabil-
ity on the newest CPUs with the most up-to-date
FreeBSD operating system. We were not able to
find other recent research in this area.

5.2 IDS Modules

We currently only support receiving IDS alerts from
Snort. We would like to write additional IDS mod-
ule wrappers to support Sandia’s mon system and
Vern Paxson’s Bro.

5.3 GI Modules

Currently, to incorporate additional GI modules,
the user is required to modify the Athena source
code directly. To increase the usability and modu-
larity of the system, we want to create a standard
interface to the modules using an Expect script.
The wrapper would listen for a standardized re-
quest, query the GI modules, and then translate
the response from the GI modules to a strictly for-
matted message useable within Athena.

5.4 Athena

Athena relies on the IDS modules for recognition
of malicious patterns of traffic on the network. If
the IDSs do not detect a threat, Athena will not
have a stimulus to begin correlation. We would like
to initiate the Athena correlation engine based on
other stimuli to the system. Pattern recognition
could take place within Athena as well, tipping the
system off to threats before an IDS has picked them
up. Using sources other than those typically used
by an IDS could allow earlier detection of threats.

We would like Athena to gather more statis-
tics about its performance. Athena already com-
putes and uses the real-time load of the system,
but it would also be useful to compute the CPU
load for each type of alert and keep a history of
measured loads. Athena could use these values to
adjust thresholds at various times during the course
of a day or month when the load is abnormally
high or low. The system would essentially adapt
to varying network conditions, changing the prior-
ity and/or types of threads to appropriately handle
the load (or expected load) at any given time.

It is difficult to handle real-time threats because
alerts can arrive at gigabit speed from the network,
and analysis and processing of the alert may require
many network based queries and numerous calcula-
tions. We could speed up Athena’s analysis by re-
placing the PostgreSQL back-end database with a
real-time database such as Prevayler [19], which is
fully ACID compliant and much faster.

Another way to speed up real-time threat han-
dling would be to have Athena adapt to suit the
need of the given configuration. Since the GI mod-
ules are user configurable, we cannot predict how
long it would take to query them all. Having Athena
perform this calculation ahead of time would pro-
vide the system administrator a means for deciding
which GI modules Athena should query based on
the expected slowdown.

We could also speed our system up by load bal-
ancing the Athena duties. We could link multi-
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ple systems running Athena, thereby adding redun-
dancy and increasing capacity for analysis of IDS
alerts.

6 Conclusion

The Adaptive Network Countermeasure system has
proven to work well in our test environment and
in limited production testing. We believe that a
full-scale implementation of this system on a pro-
duction network would produce significant results
in repelling Internet attacks while not interfering
with legitimate use of the network.

Through our work we have shown that we can
provide a comprehensive and robust countermea-
sure system. The system responds quickly enough
to be effective in repelling active attackers. Network
datagrams generated by the system appear authen-
tic and succeed in leading malicious users in the
direction of our choosing.

The ANC system is able to dynamically (in real-
time) detect and respond to malicious traffic di-
rected to nonexistent and existent machines. This
behavior allows us to send countermeasures to pro-
tect a machine that is conducting typical business
via the network without interfering with that legit-
imate communication.

The Athena portion of ANC has proven to be
an intelligent system for detecting malicious behav-
ior and acting on it dynamically. Athena can take
information from several different sources, correlate
that information to provide a threat assessment of
a potential malicious user, and issue commands to
the countermeasure system to act on that threat.
The code was written modularly so that additional
information sources can be added easily to the ex-
isting set of sources. Athena’s “brain” can be eas-
ily reprogrammed by modifying or rewriting the
correlation() function.
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Appendix A

Setting up an ANC System

1. Overall design – The ANC architecture is com-
posed of many modular components with spe-
cific functions. In our prototype system, each
of these parts is implemented by software with
communication channels between each part.
Some of the software is open source, off-the-
shelf software, and some is internally devel-
oped software. Our working prototype mir-
rors very closely the logical model that we ar-
chitected (Figure 1).

Corresponding with each of the four parts in
the model – IDS modules, GI modules, Athena,
and HENC – are four different physical com-
puters that, in our prototype, provide each of
the functions. Our communication channels
between systems and the greater network are
closely analogous as well.

2. Configuring the Basic system – Each of the
four computers in the prototype has the same
basic underlying hardware and operating sys-
tem. They are fairly high-performance server-
like systems with 2.8 GHz Intel Xeon proces-
sors, 1GB of RAM, and 36 GB SCSI hard-
drives. Two of the computers, for Snort and
NetState, require one Gigabit Ethernet card
and one Fast Ethernet card each. The HENC
computer requires two Gigabit Ethernet cards
and one Fast Ethernet card. The Athena sys-
tem requires only one Fast Ethernet card. The
internal communication can be set up in many
different ways. We chose to have all four com-
puters attached to the same 10/100 Ethernet
switch for internal communication. We do not
anticipate that traffic loads will require more
bandwidth on this internal network.

Each of the four systems is running FreeBSD
4.8-RELEASE. The default kernels are accept-
able, with two exceptions: the HENC com-
puter needs to have the IPFW and DIVERT
options turned on. IPFW is used to filter out
traffic that HENC is not responding to, and
Honeyd uses divert sockets to receive network
datagrams.

3. Configuring the Snort computer – Snort can
be installed from the FreeBSD ports tree. Run
Snort according to the supplied documenta-
tion. We use the default rule set that comes
with Snort. Snort gets its incoming traffic
from the GigE network.

Snort needs to be run with the ’-A unsock’
flag so that messages are sent to a local Unix
socket. Our program, snort wrapper, listens
on the other end of that Unix socket and sends
Athena Alert Protocol messages to Athena
over the Fast Ethernet control network.

4. Configuring the NetState computer – NetState
is Sandia-developed software
and must be installed from source. The com-
puter with NetState must have MySQL in-
stalled, which can be installed from the ports
tree. Follow the NetState-supplied instruc-
tions for installing and running NetState.

NetState does have one flaw when combined
with network countermeasures. The counter-
measures themselves, if seen by NetState, will
affect how NetState views the network. The
solution is to place NetState in a location in
the network architecture such that it does not
receive traffic that is the result of network
countermeasures.

Additionally, the NetState computer runs the
Country Check program, which has its own
set of installation instructions. Athena com-
municates with Country Check using a TCP/IP
connection over the control network.

5. Configuring the Athena computer – Athena
should be compiled from source and run on
the Athena computer. All of Athena’s com-
munication happens over the Fast Ethernet
control network. Both PostgreSQL and MySQL
need to be installed on the Athena computer;
they can be installed from the ports collection.
The Athena configuration files offer many vari-
ables that can be changed to tune for perfor-
mance and/or desired modes of operation.

6. Configuring the HENC computer – The mod-
ified version of Honeyd needs to be compiled
from source and run on the HENC computer.
This computer also runs the countermeasure
logger (cmlog) and the ANCP server (server.pl).
Some of the configuration variables can be
changed in the configuration files. Template
Builder (tb.pl) can be used to build the con-
figuration files.

7. Putting it all together – All of the services and
programs should be set up to be run when the
computer is booted. When the network con-
nections are all set up properly, the HENC,
NetState, and Snort computers should all be
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receiving network traffic. The HENC com-
puter should also be able to send countermea-
sure datagrams. Finally, all computers should
be able to communicate on the internal con-
trol network.
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Appendix B

FreeBSD IP Stack Patch

(available from http://erie.ca.sandia.gov/anc/)

This patch has been successfully tested with both FreeBSD 4.7 and 4.8. Other versions of FreeBSD
should work, but care should be taken to ensure the patch is applied successfully.

You must have the FreeBSD source installed to apply this patch and be comfortable with compiling your
own kernel. Please look in /usr/src/Makefile for steps to compile the kernel. Basic directions to apply the
patch and recompile are as follows:

# patch < /path/to/stack.patch

# cd /usr/src/

# make buildkernel KERNCONF=YOUR_KERNEL_HERE (default is GENERIC)

# make installkernel KERNCONF=YOUR_KERNEL_HERE (default is GENERIC)

# reboot

Patch:

--- /usr/src/sys/netinet/raw_ip.c Fri Feb 15 13:25:24 2002

+++ /usr/src/sys/netinet/raw_ip.c Fri Sep 6 09:53:19 2002

@@ -239,12 +239,14 @@

m_freem(m);

return EINVAL;

}

+/* FreeBSD patch for proper honeyd functionality

if (ip->ip_id == 0)

#ifdef RANDOM_IP_ID

ip->ip_id = ip_randomid();

#else

ip->ip_id = htons(ip_id++);

#endif

+*/

/* XXX prevent ip_output from overwriting header fields */

flags |= IP_RAWOUTPUT;

ipstat.ips_rawout++;
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Appendix C

Information Correlation

Athena receives information for characterizing
threats from multiple entities in the ANC system.
This information is correlated to determine the
threat level of a particular outside IP address. The
threat level describes how bad or malicious the re-
mote host is. When the threat level has crossed
a given threshold, countermeasures are sent to the
offending host. The types and frequency of coun-
termeasures may change based on the system ad-
ministrator’s configuration of ANC.

In addition to the alert information send by an
IDS module, Athena retrieves information from sev-
eral built in GI (General Information) modules:
CountryCheck, a NetState module, and an inter-
nal database, AthenaDB. The AthenaDB database
is used to maintain statistics about the behavior of
remote hosts. The querying and correlation of all of
this information occurs in the correlation() func-
tion.

The first step in information correlation is the
retrieval of information. The correlation() func-
tion receives the IDS alert from the MessageHan-
dler thread as a parameter. This message contains
the source and destination IP addresses and ports,
the time of receipt of the alert (in microseconds),
the threat type, the threat level, and the protocol
of the datagram(s) that triggered the alert. Some
of this information is used to retrieve information
from the NetState database. In particular, Athena
retrieves the time of the most recent connection to
a local IP/port pair, the time of the first connection
to a local IP/port pair, and whether the local desti-
nation port matches the recorded service according
to the IANA registry of well-known ports.

Next, the local AthenaDB is queried for spe-
cific recent (within the last 60 seconds) statistics.
These statistics include the number of IDS alerts,
the number of IDS alerts of the same threat type,
and the number of IDS alerts whose source IP ad-
dress is within the same 24-bit subnet as the IP
address that generated the IDS alert in question.

Finally, Athena retrieves statistics related to the
specific remote IP address. Athena retrieves the
current cumulative level for that IP address, the last
time a threat was received for that IP, and the last
type of threat received from that IP. The Country
Code level is also retrieved.

Six-Step Correlation

The computed threat level always starts off at the
level retrieved from AthenaDB or zero if the IP ad-
dress has never caused an alert before. This com-
puted threat level is then modified by the results
of different correlations, with each correlation mul-
tiplying their contribution by a user configurable
weight value.

The first modifier is the threat level of the IDS
alert message itself. This number is weighted and
then added to the computed threat level.

Next, the country code modifier, a number be-
tween zero and three, is weighted and added to the
computed threat level.

Next, Athena checks the port-to-service match
modifier by querying NetState. If the port does not
match the service running on that port according
to the list of well-known ports, this is considered
a bad situation. It may mean that the destination
host is compromised and running a backdoor (Tro-
jan Horse) program that allows remote access. If
that port was opened recently (within the last 60
seconds), the situation is worsened because it could
mean that the host is actively being compromised.
Numerical values associated with these conditions
are weighted and added to the computed threat
level. This correlation is limited by the fact that
NetState is only able to recognize a limited set of
services.

The fourth modifier is related to detecting ma-
licious intent. A remote host may accidentally trig-
ger an alert once, but alerts become increasingly
less likely to be accidental if the host continues to
trigger the same alert. So, if the current threat type
is the same as the last threat type from the specified
IP address, the computed threat level is updated to
reflect this possibly bad behavior.

The next modifier is similar to the backdoor de-
tection modifier above, except that there is no cor-
relation to whether the service matches the port.
Though not necessarily a sign of malicious intent
by itself, this information may signify bad behavior
when combined with other alerts generated for that
remote source IP address.

The final correlation determines whether the
alert has been generated during normal business
hours. Some attackers may opt to perform mali-
cious activities at night because they believe no-
body will be watching their actions. This modifier
penalizes this traffic based on that line of thought.

When all of the information is correlated, the
new cumulative threat level is set to the computed
threat level for the remote IP address. This new
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level may trigger changes in response. After any
changes have been initiated via ANCP, the database
is updated to reflect the new threat level.

24



Distribution:

1 Chris Tracy
1001 Milton Street #1
Pittsburgh, PA 15218

1 MS 0455 R. S. Tamashiro
1 MS 0630 D. H. Schroeder
1 MS 0801 A. L. Hale
1 MS 0801 W. F. Mason
1 MS 0801 M. R. Sjulin
1 MS 0806 J. A. Hudson
1 MS 0806 P. C. Jones
1 MS 0806 M. M. Miller
1 MS 0806 L. Stans
1 MS 0812 R. L. Adams
1 MS 0813 R. M. Cahoon
1 MS 0813 S. R. Carpenter
1 MS 0813 D. M. Kayatt Jr.
1 MS 0813 A. A. Quintana
1 MS 0813 R. A. Suppona
1 MS 9003 J. L. Handrock
1 MS 9003 C. M. Hartwig
1 MS 9003 K. E. Washington
1 MS 9011 N. A. Durgin
1 MS 9011 B. V. Hess
1 MS 9011 J. D. Howard
1 MS 9011 S. A. Hurd
1 MS 9011 J. A. Hutchins
1 MS 9011 E. D. Thomas
1 MS 9011 T. J. Toole
5 MS 9011 J. A. Van Randwyk
1 MS 9012 J. A. Friesen
1 MS 9012 S. C. Gray
1 MS 9012 P. E. Nielan
1 MS 9019 S. C. Carpenter
1 MS 9019 B. A. Maxwell
1 MS 9037 J. C. Berry
1 MS 9217 S. W. Thomas
1 MS 9914 C. D. Ulmer
1 MS 9915 N. M. Berry
1 MS 9915 H. Y. Chen
1 MS 9915 M. L. Koszykowski

3 MS 9018 Central Technical Files, 8945-1
1 MS 0899 Technical Library, 9616
1 MS 9021 Classification Office, 8511/Technical Library, MS 0899, 9616

DOE/OSTI via URL
1 MS 0323 D. Chavez, LDRD Office, 1011

25



This page intentionally left blank

26


	Abstract
	Contents
	Nomenclature
	1 Introduction
	2 Background
	3 Accomplishments, Design, and Implementation
	3.1 Countermeasures
	3.2 Athena

	4 Evaluation and Performance
	4.1 ifpw
	4.2 Snort 
	4.3 Athena
	4.4 ANC as a Whole

	5 Future Work
	5.1 HENC
	5.2 IDS Modules
	5.3 GI Modules
	5.4 Athena

	6 Conclusion
	7 Acknowledgments
	References
	Appendix A setting up an ANC System
	Appendix B FreeBSD IP Stack Patch
	Appendix C Information Correlation
	Distribution

