
SANDIA REPORT
SAND2003-4724
Unlimited Release

uary 2004

re Research:

Gordon C.

Prepared by
Sandla National Laboratones
Albuquerque, New Mexico 871 85 and Lwermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unllrnited.

Q Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: re~orts@,adonis.osti.gov
Online ordering: htt~:l lwww.doe.~ovibridae

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 221 61

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@,ntis.fedworId.gov
Online order: ht~://www.ntis.~ov/hel~/ordemethods.as~?~oc=~-~-O#on~ine

mailto:reDorts@,adonis.osti.gov
http://fedworId.gov

SAND2003-4724
Unlimited Release

Printed January 2004

Self Organizing Software Research:

LDRD Final Report

Gordon C. Osbourn
Complex Systems Science

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87 185- 1423

Abstract

We have made progress in developing a new statistical mechanics approach to designing self

organizing systems that is unique to SNL. The primary application target for this ongoing research has been

the development of new kinds of nanoscale components and hardware systems. However, this research also

enables an out of the box connection to the field of software development. With appropriate modification, the

collective behavior physics ideas for enabling simple hardware components to self organize may also provide

design methods for a new class of software modules. Our current physics simulations suggest that

populations of these special software components would be able to self assemble into a variety of much

larger and more complex software systems. If successful, this would provide a radical (disruptive

technology) path to developing complex, high reliability software unlike any known today. This high risk,

high payoff opportunity does not fit well into existing SNL funding categories, as it is well outside of the

mainstreams of both conventional software development practices and the nanoscience research area that

spawned it. This LDRD effort was aimed at developing and extending the capabilities of self

organizing/assembling software systems, and to demonstrate the unique capabilities and advantages of this

radical new approach for software development.

Project Background

Biological self-organizing systems are all capable of building their own highly complex organic

"hardware" and "software". The methods by which biological systems self-organize the reliable processing of

large amounts of complex information (e.g. directing the construction and real-time operation of a living

organism) are quite different from the software engineering techniques developed by humans. Besides the

inability of our software systems to self-construct, human software development techniques seem generally

less effective and less reliable than those of self-organizing 'systems. For example, software users have

become painfully aware that errors are never hlly eliminated from today's large commercial software

packages. Surveys from the software industry indicate that: 5 out of 6 large software systems fail to perform

as required; 1 out of 3 large development projects are abandoned without completion. Large, abandoned

software projects are typically terminated when the true scaling of development costhime with system

size/functionality becomes clear only late in the project. Some analyses of complex software projects (e.g.

the IBM mainframe OSl360) have shown that the software hnctionality can grow as slowly as the square

root or even the cube root of the manpower effort invested in software development. These scaling behaviors

have the very unfortunate property that progress always appears to be rapid at the beginning of the project,

but then it stagnates after a large effodexpense has already been invested. Nature "knows" much about

developing large and effective information processing systems that eludes us.

Computer scientists have long sought to improve the process of software development. Many useful

techniques for improvement, including structured design, CASE tools, software patterns, code reuse and

object oriented design have been championed in the last several decades. All have provided definite benefits,

but none of these has been the desired "silver bullet", i.e. none have reduced the development costs by orders

of magnitude. A key problem in software development is that there is no room for uncertainty in the software

commands. Every minute detail of every task must be explicitly, completely and perfectly described

somewhere in the software code. Any and all special cases that arise must be explicitly addressed. All

possible situations, user input combinations, ranges of variables and so on should be anticipated in the design

to avoid "crashes". These requirements are essentially impossible to meet while developing complex software

codes using existing techniques. We call this the "minutia specification" problem. Generating vast amounts

of perfect minutia is a task that clashes with the way that human minds deal with complex tasks. Humans

tend to make mistakes when specifying large amounts of minutia, and many of these mistakes go

undiscovered. Even when errors are discovered, it has been estimated that 115 to 113 of software corrections

that fi x a known mistake inadvertently introduce a new (but now undiscovered) mistake.

We believe that the effectiveness of biological information systems is a consequence of the

hierarchical self-organization processes that occur in such systems, and one goal of this project was to

provide scientific support for this idea. Hierarchical self-organization is the process by which biological

systems build themselves through separate self-organization processes at different length scales.

Understanding this process is one of the major scientific goals of the nation's nanoscience initiative. We have

been developing a general non-equilibrium statistical physics model for understanding the collective

behaviors that underlie a variety of physical self-organization processes at different length scales. As noted

above, living systems self-organize not only organic physical "hardware", but complex "software" as well.

Further, we expect that self-organized software will exhibit other novel properties in common with

self-organized living systems. To illustrate one example, consider the common situation of added-on

software requirements that are requested after code has been developed. Such requirements are typically

inconsistent with the original set of requirements. All existing software engineering techniques require a

human to internally modify the minutia of the existing code to satisfy the new requirements without breaking

any of the remaining functionality. This would be difficult to do correctly even for the original development

team, but such modifications are often implemented later by someone unfamiliar with the complex

interdependencies of this minutia with the rest of the software system. Such code modifications can break

complex software systems in unanticipated ways that may not be realized at the time. In contrast, we expect

that self-organized software will self-adapt to inconsistent changes in design specification without internal

intervention by a software engineer. In effect, we expect to have the general ability to correctly override and

modify existing functionality through external interactions with the self-organized software. This would be a

powerful ability that no existing software engineering system exhibits today.

Project Results

In this section we summarize some of the key accomplishments of the LDRD project. The full

details of the methods we developed and the results we obtained are described in two conference proceedings

papers that are included as Appendices in this report.

We have identified a few crucial properties of proteins and their interactions that are sufficient to

enable the processes of self-assembly and computation. (1) Proteins have tremendous selectivity of their

binding sites, operating much like a lock and key. (2) Binding or unbinding a ligand at one of these sites can

result in a conformational change of another part of the protein. This conformational change can perform

some sort of actuation, such as moving (e.g., in motor proteins) or catalyzing an assembly or disassembly

reaction (e.g., in enzymes). (3) A conformational change can also expose (or hide) additional binding sites,

which in turn can bind and cause a conformational change resulting in actuation, or exposing or hiding yet

another binding site. We abstracted these important self-assembly and computational properties of proteins

into an "agent," the fundamental building block of our self-assembling software. An agent can store data,

perform some simple or complex computation, or both. Each agent has binding sites that can bind only to

matching sites (property (1)). Once bound, property (2) enables it to actuate (perform its computation).

Property (3) enables it to then bind to another agent, to trigger it to execute next, so that a sequence of

computations may be carried out in a specific order. We have developed the infrastructure to allow software

self-assembly processes to occur, and have implemented a simple example of the use of this approach to self-

assemble and modify software modules.

We demonstrated the synthesis of some simple software systems as a test our biophysics-emulating,

dynamic self-assembly scheme. Sets of software building blocks actively participate in the construction and

subsequent modification of the larger-scale programs of which they are a part. Self-assembly generates

hierarchical modules (including both data and executables); creates software execution pathways; and

concurrently executes code via the formation and release of activity-triggering bonds. Hierarchical

structuring is enabled through encapsulants that isolate populations of building block binding sites. The

encapsulated populations act as larger-scale building blocks for the next hierarchy level. Encapsulant

populations are dynamic, as their contents can move in and out. Such movement changes the populations of

interacting sites and also modifies the software execution.

We showed that our new approach offers novel constructs for constructing large hierarchical

software systems and reusing parts of them. For example, we implemented a self-assembling software

construct called a "situation." Situations provide a mechanism for "sensing" whenever certain conditions or

events occur by providing passive agents with empty binding sites. These binding sites correspond to the

conditions of interest, and when all sites are bound, the sensing agent is activated to report or trigger a

desired response. Situation detection is asynchronous. It is also passive, in that no repeated active polling by

the agent itself is required to detect the events. We also implemented an "external override." This self-

assembling software construct overrides the behavior of the existing code, and it is imposed externally. I.e.,

the original source code "inside" the executable is not modified; instead, additional agents are added from the

outside to effect the override. External overrides, inspired by the biological roles of protein phosphorylation,

temporarily (or permanently) switch off undesired subsets of behaviors (code execution, data

access/modification) of other agents. "Monitoring" is a special case of the override and situation processes,

and was implemented to inspect the code or the status of its agents. Monitors are like the external override in

that they are implemented by inserting agents into the execution pathway during runtime. They are like the

situation in that they can sense sought-after conditions of the running code and report on activity or on the

data that are being manipulated. Monitoring and querying only differ in their usage. Monitoring is used to

"keep an eye on" some aspect of the code.

Conclusions

At the end of this short-term, out-of-the-box project, we expected to have in hand the beginnings of

a system that can hierarchically self-organize functional software, and an initial set of tools that will allow us

to interact with and steer the self-organization process toward desired specifications. Given the limited time

frame and funding level of this ambitious project, we could only expect to develop, test and characterize our

approach using example software tasks of modest size. We succeeded at these objectives, and demonstrated

some of the advantages we can expect from a more fully developed self-assembling software development

system. We have made considerable progress towards our long-term goal of developing a self

organizing/assembling software capability that is modeled on biological processes.

Acknowledgements

This work was sponsored by the U.S. Department of Energy under Contract DE-AC04-94AL85000. Sandia

is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the US. Department of

Energy.

Appendix A

(Conference proceedings paper)

Dynamic Self-Assembly of Hierarchical Software Structures/Systems

Gordon C. Osbourn and Ann M. Bouchard

Sandia National Laboratories
P.O. Box 5800 MS-1423

Albuquerque, NM 87 185-1 423
gcosbouki,sand~a.~ov, bouchar(cusandia.eo\

Abstract
We present initial results on achieving synthesis of complex
software systems via a biophysics-e~ul&g, dynamic self-
assembly scheme. This a~vroach offers novel constructs for . '
constructing large hierarchical software systems and reusing
parts of them. Sets of software building blocks actively
participate in the construction and subsequent modification
of the larger-scale programs of which they are a part. The
building blocks interact through a software analog of
selective protein-protein bonding. Self-assembly generates
hierarchical modules (including both data and executables);
creates software execution pathways; and concurrently
executes code via the formation and release of activity-
triggering bonds. Hierarchical structuring is enabled
through encapsulants that isolate populations of building
block binding sites. The encapsulated populations act as
larger-scale building blocks for the next hierarchy level.
Encapsulant populations are dynamic, as their contents can
move in and out. Such movement changes the populations
of interacting sites and also modifies the software execution.
"External ovemdes", analogous to protein phosphorylation,
temporarily switch off undesired subsets of behaviors (code
execution, data access/modification) of other structures.
This provides a novel abstraction mechanism for code reuse.
We present an implemented example of dynamic self-
assembly and present several alternative strategies for
specifying goals and guiding the self-assembly process.

Self-assembling Software Background

Dynamic self-assembly is a ubiquitous process in non-
equilibrium physical and biological systems (Whitesides
and Grzybowski, 2002). We are developing an approach to
create artificial systems that dynamically self-assemble into
hierarchical structures. We are interested more broadly in
physical realizations of such processes and how
computational capability emerges in biological systems.

As a first step, we are developing dynamically-self-
assembling software systems that are modeled after
physical systems and physical self-assembly processes.
This paper is our first report on this research direction. We
have developed the infrastructure to allow software self-
assembly processes to occur, and provide an example of the
use of this approach to self-assemble and modify software
modules.

A central result here is that a variety of software self-
assembly processes become available by emulating

physical self assembly. As we describe below, physics-
emulating self-assembly can generate data structures,
multiple kinds of executable code structures, dynamic
execution pathways, hierarchies of software modules,
movement of modules within the hierarchy and triggers that
execute or inhibit certain code structures. These processes
can also dismantle any structure that has been assembled.

The concept of bonding is a central part of our approach.
We translate the physical notions of bonding, as they occur
in biology (i.e. strong covalent bonds and weak protein-
protein bonds), into software. Our "strong" software
bonding mechanism directly builds long-lived software
structures. These lead to software structures with parts that
execute sequentially and deterministically. "Weak"
bonding is a more active process that not only assembles
executable software structures but also triggers their
execution. The weakly-bonded structures and the code
execution pathways associated with them are transient.
Further, weak bonds can be used to interfere with the action
of other bonding processes on the same structure. This type
of override is analogous to protein phosphorylation. This
provides functionality that is distinct from object-oriented
inheritance as it allows removal of unwanted functionality
from the "outside" of the existing software structure. This
additional flexibility may be useful for enhancing software
reuse. The detailed implementation of these ideas is
described in a later section.

Weak bonding occurs at bonding sites. Each site allows
at most one bond with another individual site at any time.
These sites have numerical keys that only allow bonding
with complementary sites. Thus, this bonding is a selective
process as in biological and physical systems. The
selectivity of bonding sites provides certain error-
prevention capability intrinsically and provides a general
mechanism for self-assembly of desired structures and
execution pathways. Matching bond sites can be thought of
as having a virtual attraction, as weak bonds will readily
form between them when they become available (by
breaking existing bonds).

A natural property of this physics-emulating approach is
the availability of concurrent non-deterministic execution
pathways that can self-assemble. Here, populations of
individual software structures self-assemble individual
execution steps in single execution pathways or complex
execution networks over time by making and breaking

weak bonds with each other. It is possible to completely
"wire" together modules into an execution software process
using only these flexible (but relatively slow) stochastic
processes. Deterministic (faster but inflexible) execution
can also be assembled, using structures that are strongly
bonded, in which the order of the components in memory
determine the execution sequence. The ability to readily
mix and modify both sequential deterministic execution
processes and dynamic stochastic execution processes
provides a novel flexibility to the software self-assembly
processes. In fact, the executing self-assembling software
alternates between these two mechanisms. Stochastic weak
bonding and unbonding events trigger a set of deterministic
actions within the associated structures, which in turn lead
to more stochastic bond formation and release events.

Newly freed bonding sites become available for bonding
with other free sites that have complementary key matches.
If no matching sites are available, such sites passively
"wait" until matching sites do become available for bond
formation. The new bonds may activate dormant structures
that contain these sites. In this way, execution pathways
become alternately active and dormant, so that the physical
order of such software components in memory becomes
irrelevant to the execution behavior of the system. Software
structures with free sites can act as passive (i.e. non-
polling) sensors for detecting complex situations that
generate matching bonding sites. This is unlike the
conventional conditional branching constructs such as IF
and CASE, and is a software analog of hardware interrupts.
We discuss this construct (called the "situation") further
below.

The hierarchical structure of the self-assembling
software is enabled through an encapsulant structure. This
is analogous to a cell wall. Encapsulants allow bonds to
form only for pairs of sites that are within the same
encapsulant. By limiting the population size of machines in
any encapsulant, we prevent an o (N~) escalation of
possible site-site interactions and help enforce scalability of
the approach to large software systems. The encapsulants
manage external interactions with other encapsulants
through surface sites. These surface sites enable "transport"
in and out of the encapsulant. Encapsulants can contain
other encapsulants, allowing a hierarchical structure.
Movement of machines and encapsulants in and out of
other encapsulants changes the populations of sites that can
form bonds within these encapsulants, and so directly
modifies the internal software execution.

Our system intentionally resembles a stochastic physics
or biology simulation (Ideker, Galitski, and Hood, 2001),
in that the stochastic bonding and unbonding events are
posted to a priority queue and assigned a future (virtual, not
processor) "time" for execution that is used simply to
provide an ordering to event execution. Despite the non-
physical nature of software modules, we subject them to
several physics-emulating processes. Modules can be
moved through the encapsulant hierarchy, machine parts
can be assembled and eliminated dynamically, and
machines and encapsulants can stick together and come

apart dynamically. Machine proximity is used here as well,
albeit in a graph-theory sense. The bonds between
machines form graph edges, and we can use these graph
edges to directly locate "nearby" machines. We use this in
some cases to deterministically search for multiple
matching sites between machines that have just formed a
new weak bond. This allows groups of matching bonding
sites on two machines to bond at essentially the same time,
so as to behave like a single effective pair of larger scale
bonding sites.

Multiple, concurrent threads of self-assembly and
associated computation are automatically available in this
approach. We note that the virtual event times can be used .
to provide execution priority to concurrent processes
without the involvement of the operating system. Further,
additional code for monitoring and querying the existing
code can be introduced during execution.

This approach exhibits features that may prove useful for
generating large software systems. First, self-assembly
reduces the amount of minutia that must be provided by the
software developer. The self-assembly processes take over
some of the details that must be designed and coded. This
may save development time. It may also reduce coding
errors. The interactions between modules are self-
assembling, and are enforced to generate hierarchical
structuring. Second, this approach enables novel
programming constructs, e.g. the "situation", the "external
override" for software reuse, concurrent "stochastic"
reconfigurable execution pathways, and the ability to
modify and add monitoring capability to a preexisting
machine as it executes. Third, the bonding selectivity
enforces correct interactions between modules and data
structures that may allow greater surety of the
implementation.

The downside is that this system will pay an execution
speed penalty. The impact on code size, compared to
compiled code from a conventional language like C++, is
unclear at present.

System Infrastructure

Overview
We call the low-level constructs of our approach

"machines". High-level "language7' commands are used to
clone populations of these machines (rather than be parsed
and compiled into machine code). The machines are
constructed from sequences of machine parts. High-level
commands can also be used to combine a sequence of
certain generic machine parts into a single (new) machine.
The machine parts, in turn, have sites for bonding and
optional executable code attached to them.

There are two part types: controls and actuators.
Controls have only one bonding site. The controls are
further categorized as activating or non-activating. An
activating control must have its single site bonded in order
for the machine it is in to become active (i.e. execute the

code in the actuators). A non-activating control has a
bonding site that does not activate the machine but is useful
for other machines that must dock to or manipulate the
machine. Controls may also be associated with data in a
type of control called a "data store." A data store has all
the features of a simple control and also points to a block
of memory that is used for general-purpose data storage.
The data-associated site keys of data stores can be used to
enforce correct matching and usage, and give a form of unit
checking (for example, it would enforce that meters are
only added to other meters, and never added to, say,
seconds). It can also enforce the correct transfer and usage
of complex data structures that are self-assembled.

Actuator parts each contain a "small" piece of execution
code and execute sequentially (in the order that they exist
in their machine). Actuators can have multiple bonding
sites. Each actuator part in a machine may also be active or
inactive depending on the bonding status of the sites in the
part. An inactive actuator will halt execution of a machine,
and this execution can resume when the actuator site forms
the necessary bond (and all activating control bonds are
still in place). Actuators can also be internal to a machine,
typically, to manipulate the data stores of its own machine.
It that case, it has no sites exposed to other machines.
Instead, it checks that its associated data stores are bonded,
in order to activate data manipulation.

Both control and actuator parts are described by generic
design data and execution code (analogous to a class
definition in object oriented programming). One aspect of
this design is whether the part makes bonds stochastically
(by finding a match on the free-site list) or deterministically
(through proximity). Individual versions of these parts are
instantiated into particular machines when these machines
are created.

Encapsulants effectively create local environments in
which collections of free bond sites can interact to form
new bonds. Encapsulants in our approach are meant to
resemble biological cell walls that isolate their internal
contents from bonding interactions with external structures.
Encapsulants can contain machines as well as other
encapsulants (for hierarchical organization). They also
contain "surface7' machines that act as gates to move
machines and other encapsulants in and out of the gate's
encapsulant. These surface machines manage all external
interactions of the encapsulant, and allow it to act as a
"machine" building block for structures and execution
pathways at anoiher (higher) hierarchy level. The
encapsulant gates are analogous to membrane proteins in
biological cells. Our encapsulants play some of the roles
that "modules" or objects play in modem computer
languages (McConnel, 1993; Watt, 1990). That is, they
provide modularity and information hiding. In contrast to
object modules, the contents of encapsulants are dynamic,
with machines (containing data and executables) and other
encapsulants being moved in and out during self-assembly
and sofhvare execution.

The overall action of the system is to execute make-bond
and break-bond events, and these then trigger the activation

or deactivation of associated machines that can carry out
deterministic behaviors. This system is thus event-driven,
with the events consisting of stochastic bond formation and
bond breaking. An event queue is maintained to efficiently
post future events and to execute the events in
chronological order. Free bonds are generally posted to a
data structure, with sites arranged according to their site
keys so that matching site pairs can be efficiently found.
Bond formation triggers the execution of the machine(s)
that contain the sites. Machines do not become active
unless all of their activating controls have bonds. Machine
actuators then can execute their code in the sequence that
they occur in the machine if their sites are in the necessary
bonding configuration. Execution stops at an actuator site
that is not "ready" to execute. Each machine maintains its
own "instruction pointer" to enable restart of the machine
execution at the proper part when bonding conditions
change externally to allow restart. We do not allow
deterministic machines to execute arbitrary numbers of
loops as this would prevent the stochastic actions from
taking place. Instead, the number of deterministic repeats is
constrained, and then the machine must relinquish control
by posting a future activation event for itself on the priority
queue.

The code executed by the actuator parts is typically the
lowest level functionality that a language would provide.
The complexity of the overall software comes from: the
assembly of parts into machines; the stochastic assembly of
machine execution sequences within encapsulants; and the
hierarchical assembly and interaction of encapsulant
execution structures.

Novel Software Constructs
Situations are a generalization of the IF branching

construct. Situations provide a mechanism for "sensing"
whenever certain conditions or events occur by providing
passive machines with empty bonds. These bonds
correspond to the conditions of interest, and when all bonds
are satisfied, the sensing machine is activated to report or
trigger a desired response. Situation detection is
asynchronous. It is also passive, in that no repeated active
polling by the machine itself is required to detect the
events. Situations can monitor the code structure itself. For
example, the activity of other machines, their status
(number of bonded and unbonded sites, active or dormant),
their functionality, and the numbers and types of machines
present in an encapsulant can all be determined
automatically.

External overrides are a useful and novel construct that
is enabled in our approach. The term "external" indicates
that the code designer does not alter or remove the original
source sofhvare that is being overridden. There are a
variety of ways that the self-assembling software system
can carry out external overrides, and they can be carried
out at the encapsulant level or at the machine level. In all
cases, additional generic override machines are introduced
into the system (even to remove existing functionality). At
the encapsulant level, existing machines can be skipped,

made to wait for new conditions (not present in the original
design), or to take part in alternative stochastic execution
pathways not present originally. At the machine level,
modified clones of the original machines can be self-
assembled. In this work we describe only the encapsulant-
level override process. These external overrides can be
introduced into existing self-assembling software in "real-
time" while the existing software is being executed.

Monitoring and auerving of self-assembling and
executing software during runtime are special cases of the
override and situation processes. These processes can be
developed long after the software of interest has self-
assembled. Monitoring can be accomplished by inserting
sensors into the stochastic execution pathway during
execution and having them report on activity or on the data
that are being manipulated. The fimctionality of the
monitored machines is not affected during monitoring.
However, the total execution time will clearly be altered by
this monitoring process.

Runtime ~rioriw can be modified for various concurrent
self-assembly processes. Processor allocation is often
implemented at the operating system level. It is easy to
allocate different amounts of processing time to concurrent
processes here by varying the future (virtual) event times
associated with each process. Those with short times will
repeatedly activate more frequently.

Implementation Details
We chose FORTH to implement our self-assembling

software system. FORTH finds use both for developing
embedded software applications (Napier, 1999) and
Windows applications (Conklin and Rather, 2000).
FORTH essentially lacks conventional language syntax.
Our self-assembled software can execute without concern
for syntax errors or keyword use restriction. FORTH
permits the entry of executable code directly and allows
code definitions to be deferred and redefined later. This
allows the software to directly modify itself while running
without the offline compilation step that would be required
by a compiled language.

We implement the two types of software bonds as
follows. Weak bonds (corresponding to protein-protein
binding) are implemented by setting pointers of the
bonding sites of two machines pointing to each other.
Strong bonds are formed by placing items in contiguous
memory locations and result in arrays of executable parts.
This type of bonding is used to implement the machine
structures with ordered parts that execute sequentially and
deterministically. ~ach ines are "born" when they are
instantiated. Multiple copies of a machine are readily
cloned if needed.

Figure 1 illustrates the layout of machines, controls, and
actuators in computer memory. The machine is the left
column: a set of consecutive memory cells, with eight
controls (gray) and four actuators (white). Each cell of the
machine has the address of its control or actuator, which
can be anywhere in memory. The essential parts of the
controls are shown: the key for its bonding site, and the

Figure 1. A schematic illustration of the data structure
associating machines, controls, and actuators. Refer to the text
for details.

type of control. The control type contains code that
executes when the control's site makes or breaks a bond.
The actuators shown are internal actuators, so rather than
having keys, they have a pointer to their associated data
stores. They also have a pointer to the actuator type. The
actuator type contains code that handles not only make- and
break-bond events, but also the actuator's activation. Any
exterior actuators would look schematically like the
controls of Figure 1.

We chose the calendar queue as the data structure for
implementing our event priority queue (Brown, 1988) and
also for the free-site data structures in each encapsulant.

An overview of the software execution is as follows: The
next event (a make- or break-bond event) is pulled from the
priority queue. If it is a make-bond event, a weak bond is
made between the two specified sites (that is, their "site-
bonded-to" pointers are set pointing to each other). Each
site's make-bond event handler is executed. These event
handlers typically update the active state of the part, and
any deterministically bonding parts on the two machines
make additional bonds if their keys match. Then the
machine logic for each machine is executed. This checks if
all activating controls are active, and if so, executes the
actuators in sequence until either an actuator is not ready,
or the end of the actuators is reached. When a machine's
actuation is complete, it is "reset." It breaks all of its
bonds. The sites of stochastically bonding parts are
matched against the free-site list. If a matching site is
found, a future make-bond event is posted to the priority
queue. If no match is found, the free site is put on the free-
site list to wait for a free matching site.

Actuators are the parts that perform software functions
most programmers expect, such as reading or writing data,

Figure 2. Initially, the Account Balance, Withdrawal Manager,
and Start Codon machines are available for making bonds. A
Withdrawal occurs, and many bonds with the Withdrawal
Manager promptly form.

or performing calculations or otherwise manipulating data.
An actuator may also change the keys of its own machine's
sites, or those of the machine it is bonded to. As described
in the previous paragraph, when a machine is reset, its
stochastically bonding sites are matched against the free
sites. If the machine's actuators changed some of its site's
keys in one way, it will bond to a different machine,
resulting in the execution of a different software function
than if the actuators had changed the site's keys in some
other way. In this way, actuators can influence the
execution pathway of the self-assembled software.

If the event pulled fiom the priority queue was a break
event, the bond between the two specified sites is broken
(i.e., their "site-bonded-to" pointers are set to 0). Each
site's break-bond event handler is executed. These event
handlers typically update the active state of the part (to set
it inactive). Since breaking a bond cannot make a machine
go from inactive to active, there is no need to execute the
machine logic for the two machines.

When the make- or break-bond processing is completed,
the next event is pulled fiom the priority queue, and the
process is repeated until there are no more events on the
priority queue. Alternatively, a "pause" event can be
placed on the priority queue to temporarily pause
execution. Such an event may be used, for example, to
update a Windows display or output to a file at regular
intervals.

We implemented a simple but general mechanism for
overrides via machines that modify the keys of other
machines. Altering a key to an unusual or "invalid" value
prevents the associated site from forming any bonds. This
allows bonding to be turned on and off externally. Altering
keys also allows stochastic execution pathways to be
altered. Machines can be added or removed from an
execution path through the generation of "glue" machines
that manage the key alterations. The appropriate sites for

~ k a ~ e r , the Withdrawal Manager changes one of its keys fiom 0
to -108. A bond then forms between the Account Balance and
the Withdrawal Manager. The Withdrawal Manager subtracts the
withdrawal amount from the balance, and updates the balance.

modification can be found by the machines themselves, so
that human designer intervention can be at a high level.

Sequential stochastic execution pathways can be
implemented among machines in multiple ways. One
method is to introduce a signal machine that bonds to a
corresponding control site on the machines of interest. A
sequencing machine can alter the key of this signal machine
so that it triggers a series of machines to act in the desired
order. Multiple pathways can be spawned by generating
multiple signal machines at the same time.

A more direct method is to have an "output" site on one
machine match an enabling control site on a second
machine that is to execute after the first machine. The first
machine site can hide its output site (the site key made an
invalid value) until it is finished executing, then it can
restore the necessary output site key.

Steering the Self-Assembly Process
The ultimate goal is to cause self-assembling software to

create data structures and behaviors that conform to the
software designer's requirements. There are a variety of
potential mechanisms for accomplishing this. The simplest
is to start with initial conditions - i.e. initial sets of
machines - that are already known to self-assemble in ways
that lead to desired types of results. One can design and
verify that particular populations of machines will carry out
frequently needed behaviors, and then create machine clone
populations in an encapsulant with a single high level
command word. Further, machines can be designed that
implement common types of overriding modifications in
the self-assembly process, and these override machine
populations can similarly be introduced into existing
encapsulants by high level words. By combining these high

Withdrawal Manager changes the keys of the Withdrawal, so that
it bonds with the Start Codon. Then the Withdrawal Manager is
ready to handle a new Withdrawal.

level constructs, more complex behaviors can be
assembled. Further, hierarchical structuring can be
enforced by limiting the population size in any encapsulant,
and automatically triggering the creation of additional
encapsulants as machine population sizes exceed selected
limits.

Another approach is to provide timedependent steering
by adding or taking away machines or by suppressing or
overriding existing machines (again using high level words)
at various times as self-assembly progresses. This breaks
up the development into well defined stages.

Another category of steering involves evolutionary
modification of machine properties and machine designs in
populations of machines. This will be a subject of future
work.

Example: Bank Transaction
We present an example of the handling of savings

account withdrawals, chosen for its simplicity to
demonstrate our concepts and infrastructure. We represent
machines graphically by polygon shapes. For example, the
Withdrawal Manager in Figure 2 represents the machine
data structure shown in Figure 1. The bonding sites and key
values are tabs at the perimeter of the machine. The
internal parts are omitted for clarity. When the sites of two
machines touch, this represents a weak bond.

Initially (Figure 2), three machines are present, the
Account Balance, the Withdrawal Manager, and the Start
Codon. The Account Balance holds the current balance for
the account in a data store, the Withdrawal Manager
subtracts the withdrawal amount From the current balance
and updates the current balance. The Start Codon acts as

Figure 5. The Key-Modification &chine bonds to the
Withdrawal Manager to modify its keys. Then the Verify
Withdrawal machine inserts itself.

the "head" of a "polymer" of completed transactions, which
can be walked later by a Monthly Account Report machine.
All of their stochastically bonding sites are posted on the
free-site list.

When a Withdrawal occurs, its free sites post make-bond
events with the Withdrawal Manager. When these make-
bond events are handled, the Withdrawal Manager's
actuators activate, changing its site with a key of 0 to -108.
The -1 08 site now bonds with the Account Balance (Figure
3). Additional actuators in the Withdrawal Manager then
activate, subtracting the withdrawal amount (in a data store
of the Withdrawal machine) from the current balance (in a
data store of the Account Balance machine), and saving the
result back to the Account Balance machine. The
Withdrawal Manager then changes several keys of the
Withdrawal (Figure 4), so that (1) it will not bond again to
the Withdrawal Manager (which would result in subtracting
the same withdrawal again) and (2) it will bond to the Start
Codon and leave a 105 site available for the next
Withdrawal to bond to. Lastly, the Withdrawal Manager
sets its -108 key back to 0 and resets. Now it is ready for
another Withdrawal (Figure 4). Note that the Withdrawal
Manager changes its site keys to bond to the Account
Balance only temporarily. This leaves the Account
Balance free to bond to other machines (such as a Deposit
Manager or Interest Compounder) when needed.

After executing this code, we 'Yealize" that a
requirement was omitted: the system shall prevent the
withdrawal of an amount exceeding the current balance. a

To accommodate this requirement, we implement an
external override. In essence, a machine inserts itself into
the execution pathway before the Withdrawal Manager to
check whether there are sufficient funds to complete the
transaction.

Figure 6. Now, when a Withdrawal occurs, the Verify
Withdrawal machine bonds to it first.

A Key-Modification machine (Figure 5) modifies some
of the keys of the Withdrawal Manager so that Withdrawals
will no longer automatically bond with it. Only the 100,
106, and 107 sites of the Withdrawal make bonds
stochastically. Therefore only -1 00, -1 06, and -1 07 of the
Withdrawal Manager need to be changed. Once the Key-
Modification machine has done its job, it sets all of its own
keys to 0.

When the Verify Withdrawal machine inserts itself, its
keys are posted to the free-site list. Now, when a
Withdrawal occurs, it bonds with the Verify Withdrawal
machine instead of the Withdrawal Manager (Figure 6).

The Verify Withdrawal actuators compare the
withdrawal amount to the account balance. If there are
sufficient funds for the withdrawal, the Verify Withdrawal
machine changes the keys of the Withdrawal (Figure 7)
enabling bonding with the Withdrawal Manager, and the
transaction proceeds as illustrated in Figures 2-4. If there
are insufficient funds, the Verify Withdrawal machine
changes the keys of the Withdrawal to some other values,
resulting in bonding with an Insufficient Funds machine
instead (not shown).

Note that with our dynamic self-assembly approach, this
new function was inserted into the existing program
without (a) rewriting the original source code, (b)
compiling an entire new program, or (c) shutting down the
already running software.

Finally, when the Savings Account software module is
completed, it is encapsulated. Other banking functions are
also encapsulated (Figure 8). Each encapsulant has a Gate
machine embedded in its surface, which selectively allows
machines to enter, based on matching keys. In the overall
banking system, when a Withdrawal occurs, its key
matches only the Gate of the Savings Account module, so it
enters and undergoes the same process described above.

In our computational experiments, we have implemented
all of the behaviors described here. In addition we have
implemented machine and encapsulant transport into and
out of encapsulants executing concurrently with the above
example.

Figure 7. If there are sufficient funds, the Verify Withdrawal
machine changes the keys of the Withdrawal so that it bonds with
the Withdrawal Manager, and the tmnsaction proceeds as before.
If there are insufficient funds, the Verify Withdrawal machine
changes the keys of the Withdrawal so that it bonds with an
Insufficient Funds machine (not shown).

Future Directions
We are in the process of developing a language for

steering self-assembling software for general-purpose
applications. The language words will generate populations
of machines and encapsulants that carry out the intent
behind the high level words. Our infrastructure is designed
enable the autonomous generation of encapsulants,
machines, and keys that implement the desired execution
paths, so that the software designer will not be required to
specify detail at that level. For example, the external
ovemde described above would be programmed as
"VERIFY balance > withdrawal BEFORE ALLOWING
withdrawal." The novel constructs of passive situation
monitoring, external overrides for reuse, and correctness
enforcement through selective bonding site keys will enable
programming with a reduced burden of minutia
specification.

An interesting extension of our approach is to add
evolutionary processes into the self-assembly process. The
ability to selectively ovemde actions of an existing
machine or module externally provides novel opportunities
for "mutating" existing software structure in ways that are
more likely to remain functional than random changes or
recombinations of existing code. In particular, the
stochastic execution pathways provide a mechanism for
introducing new kinds of machines into an execution
pathway that is very robust, and may require only the

Figure 8. A schematic illustration of different encapsulants that
might be in an overall banking application. Each encapsulant has
a Gate machine on its surface with a specific key. The
Withdrawal (upper left) will only enter the Savings Withdrawals
module, because they have matching keys. Similarly, auto loan
payments wodd only pass into the Auto Loan module and Credit
Card charges would only enter the Credit Cards module.

automated reassignment of a few bonding site keys in the
original machinery. Further, the ability of the machines to
self-monitor their performance means that ineffective
modifications can be "backed out of ' without necessarily
destroying the machine. Populations of competing
machines can readily be maintained, with winners
achieving more access to processor time as described
above. Apoptosis (programmed death) of machines within
encapsulant populations provides for a finer tuning of
evolved performance. Machines can monitor the activity of
machines or machine parts within an encapsulant, and
identify unused structures for elimination. It will be of
interest to see if this eliminates the accumulation of
"introns" in the software developed via such evolutionary
processes (Banzhaf, Nordin, Keller, and Fancone, 1998).
Evolving, self-assembling software promises to be a rich
research topic that we will explore in considerable depth.

Another future direction for this research is to develop
self-optimizing behaviors for the self-assembling software
performance. One approach is to convert stochastic
execution pathways directly into deterministic machinery.
This will speed up the code execution at the cost of
interfering with future external overrides at the module
level. Such changes are reversible, so that any relative ratio
of stochastic and deterministic pathways is achievable at
any time.

In addition, we envision alternative data structures or
algorithms, all appropriate for the same task (but each more
effective for a different size of data set or a different
distribution of data values) that can replace each other
based on their monitoring of the overall execution and the

available data set. On a larger scale, populations of similar
machinedencapsulants with a distribution of operating
parameters could be deployed for evolving an optimal
population mix.

Again, we note that such optimizations can occur in
"real-time" as the original code is executing. This could be
convenient for high-consequence applications that cannot
be frequently taken off-line.

Acknowledgement
We would like to thank Geny Hays and Julia Phillips for
their support of this research effort. This work was carried
out at Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company for the United States
Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.

References

Whitesides, G., and Grzybowski, B. 2002. Self-Assembly
at All Scales. Science 295: 2418-2421.
Ideker, T., Galitski, T., and Hood, L. 2001. A New
Approach to Decoding Life: Systems Biology. Annu. Rev.
Genomics Hum. Genet. 2: 34 13-3472.
McConnell, S. 1993. Code Complete. Redmond CA.:
Microsoft Press.
Watt, D. 1990. Programming Language Concepts and
Paradigms. New York, NY.: Prentice Hall.
Napier, T.,1999. Forth Still Suits Embedded Applications.
Electronic Design 47(24) :97- 106.
Conklin, E. and Rather, E. 2000. Forth Programmer's
Handbook. Manhattan Beach, CA.: Forth, Inc.
Brown, R. 1988. Calendar Queues: A Fast q 1) Priority
Queue Implementation for the Simulation Event Set
Problem. Commun. ACM 3 1 : 1220- 1227.
Banzhaf, W., Nordin, P., Keller, R., and Francone, F. 1998.
Genetic Programming. San Francisco, CA.: Morgan
Kauffman Publishers, Inc.

Appendix B

(Conference proceedings paper)

Computation Via Dynamic Self-Assembly of Idealized Protein Networks

Ann M. ~ouchard* and Gordon C. Osbourn
Sandia National Laboratories

P.O. Box 5800 MS 1423
Albuquerque, NM 87 1 85- 1423

We describe stochastic agent-based simulations of protein-emulating agents to
perform computation via dynamic self-assembly. The binding and actuation properties of
the types of agents required to construct a RAM machine (equivalent to a Turing
machine) are described. We present an example computation and describe the molecular
biology and non-equilibrium statistical mechanics, and information science properties of
this system.

I Introduction
Dynamic self-assembly is a ubiquitous process in non-equilibrium physical and

biological systems.' It is our view that in such systems, dynamic self-assembly and
computation are intimately related: that dynamic self-assembly can be used to perform
computation, and that if the computational language can be understood, it can be used to
program self-assembly. In this paper, we focus on the first of these relationships, that
dynamic self-assembly can be used to perform computation. We examine how the self-
assembly processes of protein networks can be harnessed to perform computation at the
molecular scale. We present results of stochastic simulations of non-equilibrium
idealized protein networks that we have designed to provide programmable computing.
We present an example computation and describe the molecular biology, non-equilibrium
statistical mechanics, and information science properties of this system.

Biomolecular systems provide models for guiding the development of molecular-
based computing and self-assembly technologies. For example, chemical ~ ~ s t e m s ~ " ? ~ and
DNA-based systems for computing596 have been discussed. It has been suggested that
protein networks play a computational role in single cells analogous to that of neural
networks in multi-cellular organisms.7 Protein networks are of particular interest, as they
carry out much of the molecular-scale directed transport, assembly, communication, and
decision-making activity within and across cells. Achieving programmable computation
via engineered protein networks would shed light on the extent to which biological
systems perform true computing. Computational protein networks may never displace
semiconductor technology for purely numerical processing. However, they suggest a
novel approach to programming self-assembly processes, for both organic and inorganic
structures, at the molecular scale. Consideration of engineered protein networks as
platforms for molecular computing raises several issues. Can any arbitrary Turing
machine be implemented? If so, what are the key properties required of the proteins, and
to what extent are such properties actually exercised in living systems? How reliable
would such Turing machinery be, and how would errors be corrected? To explore these
issues, we present stochastic simulations of non-equilibrium idealized protein networks
that we have designed to provide programmable computing. Stochastic simulations are an

To whom correspondence should be addressed. Ernail: bouchar@,sandia.gov

mailto:bouchaF@,sandia.gov

effective tool for modeling the dynamics of small protein networks, and have been used,
for example, to understand protein network properties responsible for the robust
adaptivity of chemotaxis.' As an example, we present a simple simulation of computing
(A*B)+(C*D)+(E*F) using an ATP-driven dynamic stochastic protein network. These
information processing protein networks require simultaneous treatment of their non-
equilibrium statistical mechanics, information science, and molecular biology properties
to fblly describe their behaviors.

We present two main conclusions. First, we find that stochastic versions of any
deterministic Turing machine can in principle be obtained using dynamic self-assembly
of proteins that exhibit commonly available properties. Second, we find that partial
equilibration of the far-fi-om-equilibrium stochastic protein networks intrinsically leads to
increasing computational errors with length of computation, so that an ensemble of such
computing networks diverges in configuration with time to different internal states and
different computational results. This is a direct consequence of the stochastic nature of
the protein networks and the second law of thermodynamics. The implication is that if
natural systems do indeed perform computations with low error rates, they must employ
error-correction mechanisms as part of the algorithm. Such error-correction mechanisms
that might be found in nature are currently under investigation.

2 Simulation Infrastructure
We have identified a few crucial properties of proteins and their interactions that

are required to enable the processes of self-assembly and computation. (I) Proteins have
tremendous selectivity of their binding sites, operating much like a lock and key. (2)
Binding or unbinding a ligand at one of these sites can result in a conformational change
of another part of the protein. This conformational change can perform some sort of
actuation, such as moving (e.g., in motor proteins) or catalyzing an assembly or
disassembly reaction (e.g., in enzymes). (3) A conformational change can also expose
(or hide) additional binding sites, which in turn can bind and cause a conformational
change resulting in actuation, or exposing or hiding yet another binding site.

We abstract these important self-assembly and computational properties of
proteins into an "agent" with these three properties. An agent is constructed from a
sequence of parts. These parts are roughly analogous to protein domains, except that
only those domains with binding sites are included. The detailed physics and chemistry
of conformational changes is not modeled. Instead, we directly model the properties of
the agent that matter for self-assembly and computation-the actuation and
exposinglhiding of other binding sites. Each part has a binding site that can be bound to
at most one other site at any time. Each site has a numerical key that can either be invalid
(hiding the site, preventing it f?om binding), or that only allows binding with a
complementary site. Thus, this binding is a selective process as in biological systems
(property (1)). Matching binding sites can be thought of as having a virtual attraction,
since binding will readily occur between them when they become available (by becoming
exposed or unbound from an existing ligand).

Each binding site can have two types of events, binding and unbinding, and has an
"event handler" associated with each event type. These event handlers are executable
code, and implement properties (2) andlor (3). For example, when a kinase binds to a
substrate, it phosphorylates the substrate and releases it (property (Z)), and then hides its

own substrate-binding site until the kinase is activated again (property (3)). All of the
"action" of the agent, then, is coded in the event handlers.

Initially, a population of agents is included in the simulation environment. The
simulation infrastructure locates any exposed sites with complementary keys, and
schedules binding events for these sites on an event queue, ordered by the scheduled
event time. Any unmatched sites are placed on a fiee-site list to wait passively until a
complementary site becomes available. The simulation proceeds by pulling the first
event from the event queue, binding the designated sites to each other (essentially,
removing the site fiom the free-site list and setting the two sites' pointers pointing to each
other), and executes the two sites' binding event handlers. During the execution of the
event handlers, a number of things could happen. (a) Some physical actuation could be
performed. (b) A bindmg site could be exposed. If a site with a complementary key is
found on the free-site list, a binding event is scheduled. If no complement is found, the
site is placed on the free-site list. (c) A site could be hidden. If that site is associated
with any scheduled events, those events are canceled. If the site was on the free-site list,
it is removed. (d) The key of a site could be changed. Corrections are made to any
scheduled events, andfor corrections are made to the free-site list to reflect the new key.
(e) An unbinding event could be scheduled.

The simulation proceeds by pulling the next event from the queue, binding or
unbinding the designated sites, according to the event type, and then executing the event
handlers. (The same possibilities (a)-(e) could occur during the execution of an
unbinding event handler.) This process continues until there are no more events on the
event queue, or the maximum desired time is reached.

A specific execution sequence or biological signaling pathway can be "wired"
together by including a set of agents with keys that drive them to execute sequentially.
For example, suppose each agent has a "trigger" site that activates it (its binding event
handler does something interesting) and a "done" site that is exposed when its task is
complete. Suppose the key of agent A's done site is complementary to agent B's trigger
site, agent B's done site is complementary to agent C's trigger site, and agent C's done
site is complementary with agent D's trigger site. Once A is triggered, then B will
execute, followed by C, followed by D. Such an execution sequence or pathway is not
hard-coded, but self-assembled. The agents are just "dumped" into the simulation
environment, and the execution order occurs as a natural consequence of the binding and
unbinding events that are pulled from the event queue.

A natural property of this approach is the self-assembly of concurrent non-
deterministic execution pathways in parallel, or multi-threading execution paths. For
example, the A + B + C -+ D pathway described above can be executed in parallel with
a completely different pathway Q + R + S + T, as long as the keys from one pathway
do not match those of the other.

"Encapsulants" effectively create local environments in which collections of free
binding sites can interact. Encapsulants in our approach are meant to resemble biological
cell membranes that isolate their internal contents from interactions with external
structures. Thus, identical A + B + C + D pathways could be executing in parallel in
different encapsulants, without any interference, even though they have matching keys.
Encapsulants can contain agents as well as other encapsulants (for hierarchical
organization). They also contain "surface" agents that act as signals or receptors for

interaction with other encapsulants, or gates to move agents and other encapsulants into
and out of the encapsulant. These surface agents manage all external interactions of the
encapsulant, and allow it to act as an "agent" building block for structures and execution
pathways at another (higher) hierarchy level. The surface agents are analogous to
transmembrane proteins in biological cells.

3 Simulations

3.1 RAM Machine Computing With Proteins
We wish to examine how the self-assembly processes of protein networks can be

harnessed to perform computation. Instead of dealing with Turing machines directly, we
will discuss RAM machine^.^ A RAM machine is more directly realizable using
proteins. Turing and RAM machines are equivalent, i.e. any Turing machine can be
assembled from a suitable set of RAM machines, and vice-versa.9 RAM machine
computing requires an ordered sequence of operations that are carried out on a small set
of idealized integer registers (each of unlimited capacity). Any computation can be
programmed using only two types of operations: those that increment a particular register
by 1 ([+]reg); and those that either decrement a particular register by 1 (if the register is
nonzero) or else jump to some other part of the program sequence ([-]reg/jump). Thus,
to construct a RAM machine from the protein-emulating agents described in section 2,
we need agents that represent registers, agents that perform the increment operation on
each register, and agents that perform the decrementljurnp operation on each register.

A unary representation9 for integers allows the size of any clone population of
assembled molecules to serve as a register. The register molecules can be free-floating or
can be assembled into polymers. We use the phosphorylated state (pA') of a model
protein (PA) as an individual count of a register (called A). To be more concrete, if five
of the pA proteins are phosphorylated, then the value of register A is five. A kinase that
can phosphorylate protein pA can act as the increment agent [+]A, if it can be activated
and can signal as described below. Similarly, a phosphatase that can dephosphorylate pA'
can decrement register A if it is nonzero. Different registers are made from different
types of proteins.

Ordered sequences of [+]reg and [-]reg/jump are dynamically self-assembled by
switching on the appropriate agent at the appropriate step in the computation sequence.
The system produces an ordered sequence of computational operations by temporal
activation, rather than through spatial wiring. To implement this, we consider protein
complexes that must be triggered by another selective signaling protein to become active.
Similarly, these protein complexes must release another signaling protein to activate the
next protein agent. Allosteric proteins with unique binding site selectivity and switchable
binding site dynamics are ideal for creating the unique sequences of protein activity
needed for computation. Signal cascades can also be implemented, so that parallel
execution pathways can be triggered. The timings of the sequence depend on bonding
rates that in turn depend on molecular amval time statistics. Thus, the computation
execution times are stochastic.

"Trigger" site

Figure I. Illustration of the decrement operation. (a) The [-jregljump agent is labeled, as
are the ATP agents. The two collections of agents to the right represent a single register

with a value of 5 (phosphorylated proteins are textured). (b) When the [-]reg/jump agent is
triggered, it binds to an ATP and a phosphorylated register protein. (c) Then i t

dephosphorylates the register protein, thereby decrementing the register, releases the
ATP and register protein, and signals success.

22

Decisions/branchings are carried out by the exit pathways of the [-]reg/jump
agents. This means that these agents must be able to release two alternate signaling
molecules--one if a dephosphorylation actually occurred, and a different jump signal
molecule after a "waiting" time in which no register protein binds to this agent. The
"jump" molecule clearly must be released with a rate that is, on average, slow compared
to the arrival time of a register protein (when one is present). Also, the arrival of the
register protein must prevent the jump molecule from being released. These properties
are designed into the event handlers of the agent's binding sites, and are of similar
complexity to those of a conventional kinesin protein that "walks" along a microtubule in
a eucaryotic cell." The hydrolysis of ATP drives cyclic irreversible behavior.

Figure 1 illustrates the interactions of the [-]regjump agent with the signaling
proteins, register proteins, and ATP. Agents are represented by polygon shapes. The
binding sites and key values are shown as tabs at the perimeter of the agent. When the
sites of two agents are bound, they are shown as touching. The [-]reg/jump agent is
labeled, as are the ATP agents. The two collections of agents to the right represent a
single register. The phosphorylated version of the register protein is shown as textured.
Initially, in panel (a), the value of the register is five, and the [-]reg/jump agent has a
single "trigger" binding site exposed, with a key of 1. It also has four other sites that are
hidden (they have an invalid key, 0). In panel (b), when a signaling agent with a
complementary key of -1 binds with the trigger site of the [-]reg/jump agent, two
additional sites are exposed, with key values of 2 and 3. When the trigger site unbinding
event is handled, if both the ATP and register proteins are bound to these two sites (as in
panel (b)), then in panel (c), the hydrolysis of ATP drives the [-]reg/jump agent to
dephosphorylate the register protein (note that in panel (c), there are only four
phosphorylated register proteins, and an additional unphosphorylated version), releases it
and the "spent" ATP, and exposes the "done" site with a key of 5. A different signaling
protein with a key of -5 binds to the done site. When released, it will trigger the next
operation in the execution sequence.

If there had been no register protein bound when the trigger site unbinding event
was handled, then the "jump" site (lower right site of the [-]reg/jump agent in Figure 1)
would have been exposed with a key of 6, rather than the done site with a key of 5. As a
result, a dfferent signaling protein would become bound to the jump site, and a different
execution path would follow. Certainly, if there are no phosphorylated versions of the
register protein (i.e., the register value is zero), then the jump pathway will be taken.
However, due to the stochastic nature of the "race" between the binding event of the
register site and the unbinding event of the trigger site, the stochastic jump process will
produce incorrect jumps (when the register is nonzero) with some probability that
depends on the relative rates involved.

The increment agent, [+]reg, is similar to, but slightly simpler than, the decrement
agent. The binding of the trigger site exposes the ATP- and register-protein-binding
sites. The ATP key is the same, 2, but in this case the register-protein-binding site's key
is 4, to bind to the unphosphorylated version of the register protein. To increment the
register, it phosphorylates the register protein (i.e., changes its key to -3), then exposes a
done site with a key of 7. There is no "jump" associated with the increment operation.

start

next

Figure 2. Schematic diagram of protein network to multiply registers A and B into register
G. Each increment and decrement agent also interacts with ATP and register proteins, but

these have been omitted from the figure for clearer viewing of the execution sequence.
Solid arrows represent a signaling protein going from the done site of one agent to the

trigger site of the next. Dashed arrows represent a signaling protein's pathway from the
jump site of one agent to the trigger site of the next. The sequence begins with

decrementing register A, followed by a loop in which B is added into G and H. Then B is
restored from the H register, and then the entire outer loop repeats until [-JAljump is

triggered when the value of A is zero, and it jumps to the next operation.

We have implemented simulated protein networks for elementary operations such
as zeroing a register, register copying, adding contents of one register to another, using a
register to control the number of loops through a repeated sequence of agent operations,
multiplying two register contents into a third register, and computing a modulus of a
register value. To illustrate how this simple set of agents can accomplish such
computations, Figure 2 shows a schematic diagram of the network of proteins required to
multiply two registers, A and B, into a third register G. Only the increment and
decrement agents are shown. Each of these agents in the actual simulation interacts with
the register proteins and ATP, as shown in Figure 1, but these are omitted from Figure 2
for clearer viewing of the execution sequence itself. A solid arrow represents a pathway
that a signaling protein makes from the done site of one agent (tail of the arrow) to the
trigger site of the next agent (head of the arrow). A dashed arrow represents a signaling
protein's pathway from the jump site of one agent to the trigger site of the next agent.

The order in which the signals are propagated is indicated by a number in
parentheses along the signaling pathway. We will describe the sequence using an
example in which registers A and B are initially set to 2 and 3, respectively, and G and H
are both 0. A start signal (1) triggers the decrement of register A, so that we now have A
= 1. We then (2) enter a loop contained in a box in the figure. In this loop, B is
decremented, (3) G is incremented, and (4) H is incremented. (It will become apparent
shortly why we must increment H.) The loop is repeated (5) , beginning with the
decrement of B. After three passes through the loop, B = 0, and G = H = 3. This loop
has the effect of adding the value of B into registers G and H. The next attempt to

decrement B will find a zero-valued B register and therefore jump (6) to the next loop to
restore B from H. In this loop, (7) and (8), H is decremented and B incremented until H
= 0 and B = 3. When we attempt to decrement H again, it jumps (9) to decrementing A
(A = O), and then the entire outer loop, (2) - (9) is repeated, so that G = 6 (= 2 * 3, the
original values of A * B). On the next attempt to decrement A, it jumps (10) to whatever
the next operation might be in a more extensive calculation.

For this illustration, we have described the ideal, "correct" behavior of the
network. However, any time a decrement occurs, it could jump even though the register
is nonzero, due to the stochastic nature of this agent. So, in fact, there are numerous
opportunities for errors in even this simple computation.

3.2 Stochastic Computing, Errors, and Entropy
We present results of stochastic simulations of encapsulants computing

(A*B)+(C*D)+(E*F), where A, B, C, D, E, and F are initial register values. We simulate
a small population of encapsulants with identical internal component populations and
examine the error rates and configurational entropy (Sconfig) of this system as a function of
time. For this analysis, we consider two encapsulants to be in the same configuration if
all of the [+]reg and [-Iregljump agents and signaling proteins are in the same binding
state and all of the register populations have the same associated integer value. Sconfig of
these small populations can be zero when all encapsulants are in the same configuration,
so that these encapsulants are far from equilibrium. The stochastic nature of the jump
operations means that such a set of identically configured encapsulants with SConfig=O will
not remain so, and SConfig will tend to increase with time (but not monotonically, as we
show below). The maximum Sconfig condition is for each encapsulant to be in a unique
state.

The simulation begins with a population of ten duplicate encapsulants, but with
randomly selected initial register values. The first phase of the simulation is to copy all
register values from single "starter" encapsulant to the other nine encapsulants, so that
they all begin the calculation with the same values in registers A through F. This process
occurs with some "yield," i.e., there is a nonzero probability that one or more register
copy operations will produce an incorrect register value. When the copying is completed,
a synchronizing encapsulant is used to trigger the calculation. The calculation process
then proceeds to completion, also with some "yield" of correct register values. The
averaged yields of final results were obtained from 220 simulations. Figure 3 (left panel)
shows the average yield for the computation as a function of ATP concentration. These
results make clear that the dynamic, non-equilibrium behavior of these encapsulated
protein networks is driven by the free energy of the ATP population. If the system dies
not have sufficient energy (ATP), it cannot perform the computation correctly. Figure 3
(right panel) shows a scatter plot of final Sconfig as a function of final yield of correct
answers. These results show that ending in a more highly ordered state is clearly
correlated with high yields of correct computational results, so that maintaining far from
equilibrium configurations is the desired outcome for these protein networks. The entropy
captures all configurational differences, including those that do not disrupt the final
register values, and this produces the scatter in the plot.

. . q0SC;L7 ' ' , y $ B %'y& Vu2 ' a " 1 1 ' s ' 1 " 4 ' 1 " " I 0 25 0 5 0 75
WPI (M I hactton result errors

Figure 3. (left) The fraction of encapsulants with the correct final results as a function of
ATP concentration. (right) Normalized final entropy vs. fraction of encapsulants with

errors in their final results. See text for discussion.

The Sconsg as a function of time for a single computational run is shown in Figure
4. We have chosen a case where all of the encapsulants are correctly copied, and all but
one of the computations achieved the correct result. Sconfig begins at a large value due to
the initial randomized values of the registers in each encapsulant. The register-copying
phase is completed at t - 5000, in a totally ordered configuration of encapsulants (Sconfig =
0). The calculation is initiated at t - 22000, and while each encapsulant is performing its
calculation independent of the others, their configurations again diverge (Sconfig = 1).
Finally, all of the encapsulants reach a finished state, with all but one encapsulant
reaching the same final state (low, but nonzero Sconfig). Thus, this non-equilibrium
process is cyclic in the SConfig.

l-

10000 20000 30000 40000
erne (arb. units)

Figure 4. Normalized entropy as a function
of time for a single computation where all of
the encapsulants are correctly copied, and
all but one of the computations achieved the
correct result.

The tendency of these stochastic computational processes to increase their SConfig
after a computational cycle is simply the slow equilibration of the configurational degrees
of freedom. This clearly prevents arbitrarily long computations from being performed in
the simple manner described above. The imperfect yield in the computational processes
described above has some similarities to the classic problem of communicating through a
noisy channel. ' ' Here we have a more general process of r~oisy computing processes

(state transitions) in addition to noisy information transfer. Correct computing in general
requires a mechanism for restoring SConf,, to zero periodically, with each restoration
occurring before the distribution equilibrates too far. We are currently developing
simulations of a hierarchical algorithm (i.e., in which the encapsulants act as agents) to
restore low entropy in order to correct computational errors.

4 Conclusion
In this report, we have described stochastic agent-based simulations of protein-

emulating agents to perform computation via dynamic self-assembly. We described the
binding and actuation properties of the types of agents required to construct a RAM
machine (equivalent to a Turing machine), and provided the example computation of
multiplying and adding several registers. We find that partial equilibration of the far-
from-equilibrium stochastic protein networks intrinsically leads to increasing
computational errors with length of computation, so that an ensemble of such computing
networks diverges in configuration with time to different internal states and different
computational results. This is a direct consequence of the stochastic nature of the protein
networks and the second law of thermodynamics. The implication is that if natural
systems do indeed perform computations with low error rates, they must employ error-
correction mechanisms as part of the algorithm. This is the subject of further
investigation.

Acknowledgements
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000.

1 Whitesides, G., and Grzybowski, B., "Self-Assembly at All Scales," Science 295: 241 8-2421 (2002).
2 Magnasco, M., "Chemical Kinetics is Turing Universal," Phys. Rev. Lett., 78, 1190-1 193 (1997).
3 Steinbock, O., Ketturan, P. and Showalter, K., "Chemical Wave Logic Gates," J. Phys. Chem. 100,
18970- 18975 (1 996).
4 Beny, G. and Boudal, G., "The chemical abstract machine," Theoretical Computer Science 96,217-248
(1992).

Winfree, E., Liu, F., Wenzler, L.A.,and Seeman, N.C., "Design and self-assembly of two-dimensional
DNA crystals," Nature 394, 539-544 (1998).
6 Yokomori, and Takashi, "Molecular computing paradigm-toward freedom from Turing's charm,"
Natural Computing 1,333-390 (2002).
7 Bray, D. "Protein molecules as computation elements in living cells," Nature 376, 307-3 12 (1995).
H Ideker, T., Galitski, T., and Hood, L., "A New Approach to Decoding Life: Systems Biology," Annu. Rev.
Genomics Hum. Genet. 2,343-372 (2001).

Minsky, M.L., Computation: Finite and Infnite Machines (Prentice-Hall, Englewodd Cliffs, N. J., 1967).
l o Howard, J., Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, MA,
2001)
I ' Shannon, C. E., "A Mathematical Theory of Communication," The Bell System Technical Journal 27,
379-423 (1948).

Distribution:

1 MS-0188 LDRD office, 4001

10 MS-1423 G.C. Osbourn, 01001

2 MS-0899 Technical Library, 96 16

1 MS-90 18 Central Technical Files, 8945- 1

1 MS-016 1 Patent and Licensing Office, 1 1500

	Self Organizing Software Research: LDRD Final Report
	Abstrac
	Project Background
	Project Results
	Conclusions
	Acknowledgements
	Appendix A (Conference proceedings paper)
	Appendix B (Conference proceedings paper)
	Distribution

