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Abstract 

We have made progress in developing a new statistical mechanics approach to designing self 

organizing systems that is unique to SNL. The primary application target for this ongoing research has been 

the development of new kinds of nanoscale components and hardware systems. However, this research also 

enables an out of the box connection to the field of software development. With appropriate modification, the 

collective behavior physics ideas for enabling simple hardware components to self organize may also provide 

design methods for a new class of software modules. Our current physics simulations suggest that 

populations of these special software components would be able to self assemble into a variety of much 

larger and more complex software systems. If successful, this would provide a radical (disruptive 

technology) path to developing complex, high reliability software unlike any known today. This high risk, 

high payoff opportunity does not fit well into existing SNL funding categories, as it is well outside of the 

mainstreams of both conventional software development practices and the nanoscience research area that 

spawned it. This LDRD effort was aimed at developing and extending the capabilities of self 

organizing/assembling software systems, and to demonstrate the unique capabilities and advantages of this 

radical new approach for software development. 



Project Background 

Biological self-organizing systems are all capable of building their own highly complex organic 

"hardware" and "software". The methods by which biological systems self-organize the reliable processing of 

large amounts of complex information (e.g. directing the construction and real-time operation of a living 

organism) are quite different from the software engineering techniques developed by humans. Besides the 

inability of our software systems to self-construct, human software development techniques seem generally 

less effective and less reliable than those of self-organizing 'systems. For example, software users have 

become painfully aware that errors are never hlly eliminated from today's large commercial software 

packages. Surveys from the software industry indicate that: 5 out of 6 large software systems fail to perform 

as required; 1 out of 3 large development projects are abandoned without completion. Large, abandoned 

software projects are typically terminated when the true scaling of development costhime with system 

size/functionality becomes clear only late in the project. Some analyses of complex software projects (e.g. 

the IBM mainframe OSl360) have shown that the software hnctionality can grow as slowly as the square 

root or even the cube root of the manpower effort invested in software development. These scaling behaviors 

have the very unfortunate property that progress always appears to be rapid at the beginning of the project, 

but then it stagnates after a large effodexpense has already been invested. Nature "knows" much about 

developing large and effective information processing systems that eludes us. 

Computer scientists have long sought to improve the process of software development. Many useful 

techniques for improvement, including structured design, CASE tools, software patterns, code reuse and 

object oriented design have been championed in the last several decades. All have provided definite benefits, 

but none of these has been the desired "silver bullet", i.e. none have reduced the development costs by orders 

of magnitude. A key problem in software development is that there is no room for uncertainty in the software 

commands. Every minute detail of every task must be explicitly, completely and perfectly described 

somewhere in the software code. Any and all special cases that arise must be explicitly addressed. All 

possible situations, user input combinations, ranges of variables and so on should be anticipated in the design 

to avoid "crashes". These requirements are essentially impossible to meet while developing complex software 

codes using existing techniques. We call this the "minutia specification" problem. Generating vast amounts 

of perfect minutia is a task that clashes with the way that human minds deal with complex tasks. Humans 

tend to make mistakes when specifying large amounts of minutia, and many of these mistakes go 

undiscovered. Even when errors are discovered, it has been estimated that 115 to 113 of software corrections 

that fi x a known mistake inadvertently introduce a new (but now undiscovered) mistake. 

We believe that the effectiveness of biological information systems is a consequence of the 

hierarchical self-organization processes that occur in such systems, and one goal of this project was to 

provide scientific support for this idea. Hierarchical self-organization is the process by which biological 

systems build themselves through separate self-organization processes at different length scales. 

Understanding this process is one of the major scientific goals of the nation's nanoscience initiative. We have 



been developing a general non-equilibrium statistical physics model for understanding the collective 

behaviors that underlie a variety of physical self-organization processes at different length scales. As noted 

above, living systems self-organize not only organic physical "hardware", but complex "software" as well. 

Further, we expect that self-organized software will exhibit other novel properties in common with 

self-organized living systems. To illustrate one example, consider the common situation of added-on 

software requirements that are requested after code has been developed. Such requirements are typically 

inconsistent with the original set of requirements. All existing software engineering techniques require a 

human to internally modify the minutia of the existing code to satisfy the new requirements without breaking 

any of the remaining functionality. This would be difficult to do correctly even for the original development 

team, but such modifications are often implemented later by someone unfamiliar with the complex 

interdependencies of this minutia with the rest of the software system. Such code modifications can break 

complex software systems in unanticipated ways that may not be realized at the time. In contrast, we expect 

that self-organized software will self-adapt to inconsistent changes in design specification without internal 

intervention by a software engineer. In effect, we expect to have the general ability to correctly override and 

modify existing functionality through external interactions with the self-organized software. This would be a 

powerful ability that no existing software engineering system exhibits today. 

Project Results 

In this section we summarize some of the key accomplishments of the LDRD project. The full 

details of the methods we developed and the results we obtained are described in two conference proceedings 

papers that are included as Appendices in this report. 

We have identified a few crucial properties of proteins and their interactions that are sufficient to 

enable the processes of self-assembly and computation. (1) Proteins have tremendous selectivity of their 

binding sites, operating much like a lock and key. (2) Binding or unbinding a ligand at one of these sites can 

result in a conformational change of another part of the protein. This conformational change can perform 

some sort of actuation, such as moving (e.g., in motor proteins) or catalyzing an assembly or disassembly 

reaction (e.g., in enzymes). (3) A conformational change can also expose (or hide) additional binding sites, 

which in turn can bind and cause a conformational change resulting in actuation, or exposing or hiding yet 

another binding site. We abstracted these important self-assembly and computational properties of proteins 

into an "agent," the fundamental building block of our self-assembling software. An agent can store data, 

perform some simple or complex computation, or both. Each agent has binding sites that can bind only to 

matching sites (property (1)). Once bound, property (2) enables it to actuate (perform its computation). 

Property (3) enables it to then bind to another agent, to trigger it to execute next, so that a sequence of 

computations may be carried out in a specific order. We have developed the infrastructure to allow software 

self-assembly processes to occur, and have implemented a simple example of the use of this approach to self- 

assemble and modify software modules. 



We demonstrated the synthesis of some simple software systems as a test our biophysics-emulating, 

dynamic self-assembly scheme. Sets of software building blocks actively participate in the construction and 

subsequent modification of the larger-scale programs of which they are a part. Self-assembly generates 

hierarchical modules (including both data and executables); creates software execution pathways; and 

concurrently executes code via the formation and release of activity-triggering bonds. Hierarchical 

structuring is enabled through encapsulants that isolate populations of building block binding sites. The 

encapsulated populations act as larger-scale building blocks for the next hierarchy level. Encapsulant 

populations are dynamic, as their contents can move in and out. Such movement changes the populations of 

interacting sites and also modifies the software execution. 

We showed that our new approach offers novel constructs for constructing large hierarchical 

software systems and reusing parts of them. For example, we implemented a self-assembling software 

construct called a "situation." Situations provide a mechanism for "sensing" whenever certain conditions or 

events occur by providing passive agents with empty binding sites. These binding sites correspond to the 

conditions of interest, and when all sites are bound, the sensing agent is activated to report or trigger a 

desired response. Situation detection is asynchronous. It is also passive, in that no repeated active polling by 

the agent itself is required to detect the events. We also implemented an "external override." This self- 

assembling software construct overrides the behavior of the existing code, and it is imposed externally. I.e., 

the original source code "inside" the executable is not modified; instead, additional agents are added from the 

outside to effect the override. External overrides, inspired by the biological roles of protein phosphorylation, 

temporarily (or permanently) switch off undesired subsets of behaviors (code execution, data 

access/modification) of other agents. "Monitoring" is a special case of the override and situation processes, 

and was implemented to inspect the code or the status of its agents. Monitors are like the external override in 

that they are implemented by inserting agents into the execution pathway during runtime. They are like the 

situation in that they can sense sought-after conditions of the running code and report on activity or on the 

data that are being manipulated. Monitoring and querying only differ in their usage. Monitoring is used to 

"keep an eye on" some aspect of the code. 

Conclusions 

At the end of this short-term, out-of-the-box project, we expected to have in hand the beginnings of 

a system that can hierarchically self-organize functional software, and an initial set of tools that will allow us 

to interact with and steer the self-organization process toward desired specifications. Given the limited time 

frame and funding level of this ambitious project, we could only expect to develop, test and characterize our 

approach using example software tasks of modest size. We succeeded at these objectives, and demonstrated 

some of the advantages we can expect from a more fully developed self-assembling software development 

system. We have made considerable progress towards our long-term goal of developing a self 

organizing/assembling software capability that is modeled on biological processes. 



Acknowledgements 

This work was sponsored by the U.S. Department of Energy under Contract DE-AC04-94AL85000. Sandia 

is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the US.  Department of 

Energy. 



Appendix A 

(Conference proceedings paper) 



Dynamic Self-Assembly of Hierarchical Software Structures/Systems 

Gordon C. Osbourn and Ann M. Bouchard 

Sandia National Laboratories 
P.O. Box 5800 MS-1423 

Albuquerque, NM 87 185-1 423 
gcosbouki,sand~a.~ov, bouchar(cusandia.eo\ 

Abstract 
We present initial results on achieving synthesis of complex 
software systems via a biophysics-e~ul&g, dynamic self- 
assembly scheme. This a~vroach offers novel constructs for . ' 
constructing large hierarchical software systems and reusing 
parts of them. Sets of software building blocks actively 
participate in the construction and subsequent modification 
of the larger-scale programs of which they are a part. The 
building blocks interact through a software analog of 
selective protein-protein bonding. Self-assembly generates 
hierarchical modules (including both data and executables); 
creates software execution pathways; and concurrently 
executes code via the formation and release of activity- 
triggering bonds. Hierarchical structuring is enabled 
through encapsulants that isolate populations of building 
block binding sites. The encapsulated populations act as 
larger-scale building blocks for the next hierarchy level. 
Encapsulant populations are dynamic, as their contents can 
move in and out. Such movement changes the populations 
of interacting sites and also modifies the software execution. 
"External ovemdes", analogous to protein phosphorylation, 
temporarily switch off undesired subsets of behaviors (code 
execution, data access/modification) of other structures. 
This provides a novel abstraction mechanism for code reuse. 
We present an implemented example of dynamic self- 
assembly and present several alternative strategies for 
specifying goals and guiding the self-assembly process. 

Self-assembling Software Background 

Dynamic self-assembly is a ubiquitous process in non- 
equilibrium physical and biological systems (Whitesides 
and Grzybowski, 2002). We are developing an approach to 
create artificial systems that dynamically self-assemble into 
hierarchical structures. We are interested more broadly in 
physical realizations of such processes and how 
computational capability emerges in biological systems. 

As a first step, we are developing dynamically-self- 
assembling software systems that are modeled after 
physical systems and physical self-assembly processes. 
This paper is our first report on this research direction. We 
have developed the infrastructure to allow software self- 
assembly processes to occur, and provide an example of the 
use of this approach to self-assemble and modify software 
modules. 

A central result here is that a variety of software self- 
assembly processes become available by emulating 

physical self assembly. As we describe below, physics- 
emulating self-assembly can generate data structures, 
multiple kinds of executable code structures, dynamic 
execution pathways, hierarchies of software modules, 
movement of modules within the hierarchy and triggers that 
execute or inhibit certain code structures. These processes 
can also dismantle any structure that has been assembled. 

The concept of bonding is a central part of our approach. 
We translate the physical notions of bonding, as they occur 
in biology (i.e. strong covalent bonds and weak protein- 
protein bonds), into software. Our "strong" software 
bonding mechanism directly builds long-lived software 
structures. These lead to software structures with parts that 
execute sequentially and deterministically. "Weak" 
bonding is a more active process that not only assembles 
executable software structures but also triggers their 
execution. The weakly-bonded structures and the code 
execution pathways associated with them are transient. 
Further, weak bonds can be used to interfere with the action 
of other bonding processes on the same structure. This type 
of  override is analogous to protein phosphorylation. This 
provides functionality that is distinct from object-oriented 
inheritance as it allows removal of unwanted functionality 
from the "outside" of the existing software structure. This 
additional flexibility may be useful for enhancing software 
reuse. The detailed implementation of these ideas is 
described in a later section. 

Weak bonding occurs at bonding sites. Each site allows 
at most one bond with another individual site at any time. 
These sites have numerical keys that only allow bonding 
with complementary sites. Thus, this bonding is a selective 
process as in biological and physical systems. The 
selectivity of bonding sites provides certain error- 
prevention capability intrinsically and provides a general 
mechanism for self-assembly of desired structures and 
execution pathways. Matching bond sites can be thought of 
as having a virtual attraction, as weak bonds will readily 
form between them when they become available (by 
breaking existing bonds). 

A natural property of this physics-emulating approach is 
the availability of concurrent non-deterministic execution 
pathways that can self-assemble. Here, populations of 
individual software structures self-assemble individual 
execution steps in single execution pathways or complex 
execution networks over time by making and breaking 



weak bonds with each other. It is possible to completely 
"wire" together modules into an execution software process 
using only these flexible (but relatively slow) stochastic 
processes. Deterministic (faster but inflexible) execution 
can also be assembled, using structures that are strongly 
bonded, in which the order of the components in memory 
determine the execution sequence. The ability to readily 
mix and modify both sequential deterministic execution 
processes and dynamic stochastic execution processes 
provides a novel flexibility to the software self-assembly 
processes. In fact, the executing self-assembling software 
alternates between these two mechanisms. Stochastic weak 
bonding and unbonding events trigger a set of deterministic 
actions within the associated structures, which in turn lead 
to more stochastic bond formation and release events. 

Newly freed bonding sites become available for bonding 
with other free sites that have complementary key matches. 
If no matching sites are available, such sites passively 
"wait" until matching sites do become available for bond 
formation. The new bonds may activate dormant structures 
that contain these sites. In this way, execution pathways 
become alternately active and dormant, so that the physical 
order of such software components in memory becomes 
irrelevant to the execution behavior of the system. Software 
structures with free sites can act as passive (i.e. non- 
polling) sensors for detecting complex situations that 
generate matching bonding sites. This is unlike the 
conventional conditional branching constructs such as IF 
and CASE, and is a software analog of hardware interrupts. 
We discuss this construct (called the "situation") further 
below. 

The hierarchical structure of the self-assembling 
software is enabled through an encapsulant structure. This 
is analogous to a cell wall. Encapsulants allow bonds to 
form only for pairs of sites that are within the same 
encapsulant. By limiting the population size of machines in 
any encapsulant, we prevent an o (N~)  escalation of 
possible site-site interactions and help enforce scalability of 
the approach to large software systems. The encapsulants 
manage external interactions with other encapsulants 
through surface sites. These surface sites enable "transport" 
in and out of the encapsulant. Encapsulants can contain 
other encapsulants, allowing a hierarchical structure. 
Movement of machines and encapsulants in and out of 
other encapsulants changes the populations of sites that can 
form bonds within these encapsulants, and so directly 
modifies the internal software execution. 

Our system intentionally resembles a stochastic physics 
or biology simulation (Ideker, Galitski, and Hood, 2001), 
in that the stochastic bonding and unbonding events are 
posted to a priority queue and assigned a future (virtual, not 
processor) "time" for execution that is used simply to 
provide an ordering to event execution. Despite the non- 
physical nature of software modules, we subject them to 
several physics-emulating processes. Modules can be 
moved through the encapsulant hierarchy, machine parts 
can be assembled and eliminated dynamically, and 
machines and encapsulants can stick together and come 

apart dynamically. Machine proximity is used here as well, 
albeit in a graph-theory sense. The bonds between 
machines form graph edges, and we can use these graph 
edges to directly locate "nearby" machines. We use this in 
some cases to deterministically search for multiple 
matching sites between machines that have just formed a 
new weak bond. This allows groups of matching bonding 
sites on two machines to bond at essentially the same time, 
so as to behave like a single effective pair of larger scale 
bonding sites. 

Multiple, concurrent threads of self-assembly and 
associated computation are automatically available in this 
approach. We note that the virtual event times can be used . 
to provide execution priority to concurrent processes 
without the involvement of the operating system. Further, 
additional code for monitoring and querying the existing 
code can be introduced during execution. 

This approach exhibits features that may prove useful for 
generating large software systems. First, self-assembly 
reduces the amount of minutia that must be provided by the 
software developer. The self-assembly processes take over 
some of the details that must be designed and coded. This 
may save development time. It may also reduce coding 
errors. The interactions between modules are self- 
assembling, and are enforced to generate hierarchical 
structuring. Second, this approach enables novel 
programming constructs, e.g. the "situation", the "external 
override" for software reuse, concurrent "stochastic" 
reconfigurable execution pathways, and the ability to 
modify and add monitoring capability to a preexisting 
machine as it executes. Third, the bonding selectivity 
enforces correct interactions between modules and data 
structures that may allow greater surety of the 
implementation. 

The downside is that this system will pay an execution 
speed penalty. The impact on code size, compared to 
compiled code from a conventional language like C++, is 
unclear at present. 

System Infrastructure 

Overview 
We call the low-level constructs of our approach 

"machines". High-level "language7' commands are used to 
clone populations of these machines (rather than be parsed 
and compiled into machine code). The machines are 
constructed from sequences of machine parts. High-level 
commands can also be used to combine a sequence of 
certain generic machine parts into a single (new) machine. 
The machine parts, in turn, have sites for bonding and 
optional executable code attached to them. 

There are two part types: controls and actuators. 
Controls have only one bonding site. The controls are 
further categorized as activating or non-activating. An 
activating control must have its single site bonded in order 
for the machine it is in to become active (i.e. execute the 



code in the actuators). A non-activating control has a 
bonding site that does not activate the machine but is useful 
for other machines that must dock to or manipulate the 
machine. Controls may also be associated with data in a 
type of control called a "data store." A data store has all 
the features of a simple control and also points to a block 
of memory that is used for general-purpose data storage. 
The data-associated site keys of data stores can be used to 
enforce correct matching and usage, and give a form of unit 
checking (for example, it would enforce that meters are 
only added to other meters, and never added to, say, 
seconds). It can also enforce the correct transfer and usage 
of complex data structures that are self-assembled. 

Actuator parts each contain a "small" piece of execution 
code and execute sequentially (in the order that they exist 
in their machine). Actuators can have multiple bonding 
sites. Each actuator part in a machine may also be active or 
inactive depending on the bonding status of the sites in the 
part. An inactive actuator will halt execution of a machine, 
and this execution can resume when the actuator site forms 
the necessary bond (and all activating control bonds are 
still in place). Actuators can also be internal to a machine, 
typically, to manipulate the data stores of its own machine. 
It that case, it has no sites exposed to other machines. 
Instead, it checks that its associated data stores are bonded, 
in order to activate data manipulation. 

Both control and actuator parts are described by generic 
design data and execution code (analogous to a class 
definition in object oriented programming). One aspect of 
this design is whether the part makes bonds stochastically 
(by finding a match on the free-site list) or deterministically 
(through proximity). Individual versions of these parts are 
instantiated into particular machines when these machines 
are created. 

Encapsulants effectively create local environments in 
which collections of free bond sites can interact to form 
new bonds. Encapsulants in our approach are meant to 
resemble biological cell walls that isolate their internal 
contents from bonding interactions with external structures. 
Encapsulants can contain machines as well as other 
encapsulants (for hierarchical organization). They also 
contain "surface7' machines that act as gates to move 
machines and other encapsulants in and out of the gate's 
encapsulant. These surface machines manage all external 
interactions of the encapsulant, and allow it to act as a 
"machine" building block for structures and execution 
pathways at anoiher (higher) hierarchy level. The 
encapsulant gates are analogous to membrane proteins in 
biological cells. Our encapsulants play some of the roles 
that "modules" or objects play in modem computer 
languages (McConnel, 1993; Watt, 1990). That is, they 
provide modularity and information hiding. In contrast to 
object modules, the contents of encapsulants are dynamic, 
with machines (containing data and executables) and other 
encapsulants being moved in and out during self-assembly 
and sofhvare execution. 

The overall action of the system is to execute make-bond 
and break-bond events, and these then trigger the activation 

or deactivation of associated machines that can carry out 
deterministic behaviors. This system is thus event-driven, 
with the events consisting of stochastic bond formation and 
bond breaking. An event queue is maintained to efficiently 
post future events and to execute the events in 
chronological order. Free bonds are generally posted to a 
data structure, with sites arranged according to their site 
keys so that matching site pairs can be efficiently found. 
Bond formation triggers the execution of the machine(s) 
that contain the sites. Machines do not become active 
unless all of their activating controls have bonds. Machine 
actuators then can execute their code in the sequence that 
they occur in the machine if their sites are in the necessary 
bonding configuration. Execution stops at an actuator site 
that is not "ready" to execute. Each machine maintains its 
own "instruction pointer" to enable restart of the machine 
execution at the proper part when bonding conditions 
change externally to allow restart. We do not allow 
deterministic machines to execute arbitrary numbers of 
loops as this would prevent the stochastic actions from 
taking place. Instead, the number of deterministic repeats is 
constrained, and then the machine must relinquish control 
by posting a future activation event for itself on the priority 
queue. 

The code executed by the actuator parts is typically the 
lowest level functionality that a language would provide. 
The complexity of the overall software comes from: the 
assembly of parts into machines; the stochastic assembly of 
machine execution sequences within encapsulants; and the 
hierarchical assembly and interaction of encapsulant 
execution structures. 

Novel Software Constructs 
Situations are a generalization of the IF branching 

construct. Situations provide a mechanism for "sensing" 
whenever certain conditions or events occur by providing 
passive machines with empty bonds. These bonds 
correspond to the conditions of interest, and when all bonds 
are satisfied, the sensing machine is activated to report or 
trigger a desired response. Situation detection is 
asynchronous. It is also passive, in that no repeated active 
polling by the machine itself is required to detect the 
events. Situations can monitor the code structure itself. For 
example, the activity of other machines, their status 
(number of bonded and unbonded sites, active or dormant), 
their functionality, and the numbers and types of machines 
present in an encapsulant can all be determined 
automatically. 

External overrides are a useful and novel construct that 
is enabled in our approach. The term "external" indicates 
that the code designer does not alter or remove the original 
source sofhvare that is being overridden. There are a 
variety of ways that the self-assembling software system 
can carry out external overrides, and they can be carried 
out at the encapsulant level or at the machine level. In all 
cases, additional generic override machines are introduced 
into the system (even to remove existing functionality). At 
the encapsulant level, existing machines can be skipped, 



made to wait for new conditions (not present in the original 
design), or to take part in alternative stochastic execution 
pathways not present originally. At the machine level, 
modified clones of the original machines can be self- 
assembled. In this work we describe only the encapsulant- 
level override process. These external overrides can be 
introduced into existing self-assembling software in "real- 
time" while the existing software is being executed. 

Monitoring and auerving of self-assembling and 
executing software during runtime are special cases of the 
override and situation processes. These processes can be 
developed long after the software of interest has self- 
assembled. Monitoring can be accomplished by inserting 
sensors into the stochastic execution pathway during 
execution and having them report on activity or on the data 
that are being manipulated. The fimctionality of the 
monitored machines is not affected during monitoring. 
However, the total execution time will clearly be altered by 
this monitoring process. 

Runtime ~rioriw can be modified for various concurrent 
self-assembly processes. Processor allocation is often 
implemented at the operating system level. It is easy to 
allocate different amounts of processing time to concurrent 
processes here by varying the future (virtual) event times 
associated with each process. Those with short times will 
repeatedly activate more frequently. 

Implementation Details 
We chose FORTH to implement our self-assembling 

software system. FORTH finds use both for developing 
embedded software applications (Napier, 1999) and 
Windows applications (Conklin and Rather, 2000). 
FORTH essentially lacks conventional language syntax. 
Our self-assembled software can execute without concern 
for syntax errors or keyword use restriction. FORTH 
permits the entry of executable code directly and allows 
code definitions to be deferred and redefined later. This 
allows the software to directly modify itself while running 
without the offline compilation step that would be required 
by a compiled language. 

We implement the two types of software bonds as 
follows. Weak bonds (corresponding to protein-protein 
binding) are implemented by setting pointers of the 
bonding sites of two machines pointing to each other. 
Strong bonds are formed by placing items in contiguous 
memory locations and result in arrays of executable parts. 
This type of bonding is used to implement the machine 
structures with ordered parts that execute sequentially and 
deterministically. ~ach ines  are "born" when they are 
instantiated. Multiple copies of a machine are readily 
cloned if needed. 

Figure 1 illustrates the layout of machines, controls, and 
actuators in computer memory. The machine is the left 
column: a set of consecutive memory cells, with eight 
controls (gray) and four actuators (white). Each cell of the 
machine has the address of its control or actuator, which 
can be anywhere in memory. The essential parts of the 
controls are shown: the key for its bonding site, and the 

Figure 1. A schematic illustration of the data structure 
associating machines, controls, and actuators. Refer to the text 
for details. 

type of control. The control type contains code that 
executes when the control's site makes or breaks a bond. 
The actuators shown are internal actuators, so rather than 
having keys, they have a pointer to their associated data 
stores. They also have a pointer to the actuator type. The 
actuator type contains code that handles not only make- and 
break-bond events, but also the actuator's activation. Any 
exterior actuators would look schematically like the 
controls of Figure 1. 

We chose the calendar queue as the data structure for 
implementing our event priority queue (Brown, 1988) and 
also for the free-site data structures in each encapsulant. 

An overview of the software execution is as follows: The 
next event (a make- or break-bond event) is pulled from the 
priority queue. If it is a make-bond event, a weak bond is 
made between the two specified sites (that is, their "site- 
bonded-to" pointers are set pointing to each other). Each 
site's make-bond event handler is executed. These event 
handlers typically update the active state of the part, and 
any deterministically bonding parts on the two machines 
make additional bonds if their keys match. Then the 
machine logic for each machine is executed. This checks if 
all activating controls are active, and if so, executes the 
actuators in sequence until either an actuator is not ready, 
or the end of the actuators is reached. When a machine's 
actuation is complete, it is "reset." It breaks all of its 
bonds. The sites of stochastically bonding parts are 
matched against the free-site list. If a matching site is 
found, a future make-bond event is posted to the priority 
queue. If no match is found, the free site is put on the free- 
site list to wait for a free matching site. 

Actuators are the parts that perform software functions 
most programmers expect, such as reading or writing data, 



Figure 2. Initially, the Account Balance, Withdrawal Manager, 
and Start Codon machines are available for making bonds. A 
Withdrawal occurs, and many bonds with the Withdrawal 
Manager promptly form. 

or performing calculations or otherwise manipulating data. 
An actuator may also change the keys of its own machine's 
sites, or those of the machine it is bonded to. As described 
in the previous paragraph, when a machine is reset, its 
stochastically bonding sites are matched against the free 
sites. If the machine's actuators changed some of its site's 
keys in one way, it will bond to a different machine, 
resulting in the execution of a different software function 
than if the actuators had changed the site's keys in some 
other way. In this way, actuators can influence the 
execution pathway of the self-assembled software. 

If the event pulled fiom the priority queue was a break 
event, the bond between the two specified sites is broken 
(i.e., their "site-bonded-to" pointers are set to 0). Each 
site's break-bond event handler is executed. These event 
handlers typically update the active state of the part (to set 
it inactive). Since breaking a bond cannot make a machine 
go from inactive to active, there is no need to execute the 
machine logic for the two machines. 

When the make- or break-bond processing is completed, 
the next event is pulled fiom the priority queue, and the 
process is repeated until there are no more events on the 
priority queue. Alternatively, a "pause" event can be 
placed on the priority queue to temporarily pause 
execution. Such an event may be used, for example, to 
update a Windows display or output to a file at regular 
intervals. 

We implemented a simple but general mechanism for 
overrides via machines that modify the keys of other 
machines. Altering a key to an unusual or "invalid" value 
prevents the associated site from forming any bonds. This 
allows bonding to be turned on and off externally. Altering 
keys also allows stochastic execution pathways to be 
altered. Machines can be added or removed from an 
execution path through the generation of "glue" machines 
that manage the key alterations. The appropriate sites for 

~ k a ~ e r ,  the Withdrawal Manager changes one of its keys fiom 0 
to -108. A bond then forms between the Account Balance and 
the Withdrawal Manager. The Withdrawal Manager subtracts the 
withdrawal amount from the balance, and updates the balance. 

modification can be found by the machines themselves, so 
that human designer intervention can be at a high level. 

Sequential stochastic execution pathways can be 
implemented among machines in multiple ways. One 
method is to introduce a signal machine that bonds to a 
corresponding control site on the machines of interest. A 
sequencing machine can alter the key of this signal machine 
so that it triggers a series of machines to act in the desired 
order. Multiple pathways can be spawned by generating 
multiple signal machines at the same time. 

A more direct method is to have an "output" site on one 
machine match an enabling control site on a second 
machine that is to execute after the first machine. The first 
machine site can hide its output site (the site key made an 
invalid value) until it is finished executing, then it can 
restore the necessary output site key. 

Steering the Self-Assembly Process 
The ultimate goal is to cause self-assembling software to 

create data structures and behaviors that conform to the 
software designer's requirements. There are a variety of 
potential mechanisms for accomplishing this. The simplest 
is to start with initial conditions - i.e. initial sets of 
machines - that are already known to self-assemble in ways 
that lead to desired types of results. One can design and 
verify that particular populations of machines will carry out 
frequently needed behaviors, and then create machine clone 
populations in an encapsulant with a single high level 
command word. Further, machines can be designed that 
implement common types of overriding modifications in 
the self-assembly process, and these override machine 
populations can similarly be introduced into existing 
encapsulants by high level words. By combining these high 



Withdrawal Manager changes the keys of the Withdrawal, so that 
it bonds with the Start Codon. Then the Withdrawal Manager is 
ready to handle a new Withdrawal. 

level constructs, more complex behaviors can be 
assembled. Further, hierarchical structuring can be 
enforced by limiting the population size in any encapsulant, 
and automatically triggering the creation of additional 
encapsulants as machine population sizes exceed selected 
limits. 

Another approach is to provide timedependent steering 
by adding or taking away machines or by suppressing or 
overriding existing machines (again using high level words) 
at various times as self-assembly progresses. This breaks 
up the development into well defined stages. 

Another category of steering involves evolutionary 
modification of machine properties and machine designs in 
populations of machines. This will be a subject of future 
work. 

Example: Bank Transaction 
We present an example of the handling of savings 

account withdrawals, chosen for its simplicity to 
demonstrate our concepts and infrastructure. We represent 
machines graphically by polygon shapes. For example, the 
Withdrawal Manager in Figure 2 represents the machine 
data structure shown in Figure 1. The bonding sites and key 
values are tabs at the perimeter of the machine. The 
internal parts are omitted for clarity. When the sites of two 
machines touch, this represents a weak bond. 

Initially (Figure 2), three machines are present, the 
Account Balance, the Withdrawal Manager, and the Start 
Codon. The Account Balance holds the current balance for 
the account in a data store, the Withdrawal Manager 
subtracts the withdrawal amount From the current balance 
and updates the current balance. The Start Codon acts as 

Figure 5. The Key-Modification &chine bonds to the 
Withdrawal Manager to modify its keys. Then the Verify 
Withdrawal machine inserts itself. 

the "head" of a "polymer" of completed transactions, which 
can be walked later by a Monthly Account Report machine. 
All of their stochastically bonding sites are posted on the 
free-site list. 

When a Withdrawal occurs, its free sites post make-bond 
events with the Withdrawal Manager. When these make- 
bond events are handled, the Withdrawal Manager's 
actuators activate, changing its site with a key of 0 to -108. 
The -1 08 site now bonds with the Account Balance (Figure 
3). Additional actuators in the Withdrawal Manager then 
activate, subtracting the withdrawal amount (in a data store 
of the Withdrawal machine) from the current balance (in a 
data store of the Account Balance machine), and saving the 
result back to the Account Balance machine. The 
Withdrawal Manager then changes several keys of the 
Withdrawal (Figure 4), so that (1) it will not bond again to 
the Withdrawal Manager (which would result in subtracting 
the same withdrawal again) and (2) it will bond to the Start 
Codon and leave a 105 site available for the next 
Withdrawal to bond to. Lastly, the Withdrawal Manager 
sets its -108 key back to 0 and resets. Now it is ready for 
another Withdrawal (Figure 4). Note that the Withdrawal 
Manager changes its site keys to bond to the Account 
Balance only temporarily. This leaves the Account 
Balance free to bond to other machines (such as a Deposit 
Manager or Interest Compounder) when needed. 

After executing this code, we 'Yealize" that a 
requirement was omitted: the system shall prevent the 
withdrawal of an amount exceeding the current balance. a 

To accommodate this requirement, we implement an 
external override. In essence, a machine inserts itself into 
the execution pathway before the Withdrawal Manager to 
check whether there are sufficient funds to complete the 
transaction. 



Figure 6. Now, when a Withdrawal occurs, the Verify 
Withdrawal machine bonds to it first. 

A Key-Modification machine (Figure 5) modifies some 
of the keys of the Withdrawal Manager so that Withdrawals 
will no longer automatically bond with it. Only the 100, 
106, and 107 sites of the Withdrawal make bonds 
stochastically. Therefore only -1 00, -1 06, and -1 07 of the 
Withdrawal Manager need to be changed. Once the Key- 
Modification machine has done its job, it sets all of its own 
keys to 0. 

When the Verify Withdrawal machine inserts itself, its 
keys are posted to the free-site list. Now, when a 
Withdrawal occurs, it bonds with the Verify Withdrawal 
machine instead of the Withdrawal Manager (Figure 6). 

The Verify Withdrawal actuators compare the 
withdrawal amount to the account balance. If there are 
sufficient funds for the withdrawal, the Verify Withdrawal 
machine changes the keys of the Withdrawal (Figure 7) 
enabling bonding with the Withdrawal Manager, and the 
transaction proceeds as illustrated in Figures 2-4. If there 
are insufficient funds, the Verify Withdrawal machine 
changes the keys of the Withdrawal to some other values, 
resulting in bonding with an Insufficient Funds machine 
instead (not shown). 

Note that with our dynamic self-assembly approach, this 
new function was inserted into the existing program 
without (a) rewriting the original source code, (b) 
compiling an entire new program, or (c) shutting down the 
already running software. 

Finally, when the Savings Account software module is 
completed, it is encapsulated. Other banking functions are 
also encapsulated (Figure 8). Each encapsulant has a Gate 
machine embedded in its surface, which selectively allows 
machines to enter, based on matching keys. In the overall 
banking system, when a Withdrawal occurs, its key 
matches only the Gate of the Savings Account module, so it 
enters and undergoes the same process described above. 

In our computational experiments, we have implemented 
all of the behaviors described here. In addition we have 
implemented machine and encapsulant transport into and 
out of encapsulants executing concurrently with the above 
example. 

Figure 7. If there are sufficient funds, the Verify Withdrawal 
machine changes the keys of the Withdrawal so that it bonds with 
the Withdrawal Manager, and the tmnsaction proceeds as before. 
If there are insufficient funds, the Verify Withdrawal machine 
changes the keys of the Withdrawal so that it bonds with an 
Insufficient Funds machine (not shown). 

Future Directions 
We are in the process of developing a language for 

steering self-assembling software for general-purpose 
applications. The language words will generate populations 
of machines and encapsulants that carry out the intent 
behind the high level words. Our infrastructure is designed 
enable the autonomous generation of encapsulants, 
machines, and keys that implement the desired execution 
paths, so that the software designer will not be required to 
specify detail at that level. For example, the external 
ovemde described above would be programmed as 
"VERIFY balance > withdrawal BEFORE ALLOWING 
withdrawal." The novel constructs of passive situation 
monitoring, external overrides for reuse, and correctness 
enforcement through selective bonding site keys will enable 
programming with a reduced burden of minutia 
specification. 

An interesting extension of our approach is to add 
evolutionary processes into the self-assembly process. The 
ability to selectively ovemde actions of an existing 
machine or module externally provides novel opportunities 
for "mutating" existing software structure in ways that are 
more likely to remain functional than random changes or 
recombinations of existing code. In particular, the 
stochastic execution pathways provide a mechanism for 
introducing new kinds of machines into an execution 
pathway that is very robust, and may require only the 



Figure 8. A schematic illustration of different encapsulants that 
might be in an overall banking application. Each encapsulant has 
a Gate machine on its surface with a specific key. The 
Withdrawal (upper left) will only enter the Savings Withdrawals 
module, because they have matching keys. Similarly, auto loan 
payments wodd only pass into the Auto Loan module and Credit 
Card charges would only enter the Credit Cards module. 

automated reassignment of a few bonding site keys in the 
original machinery. Further, the ability of the machines to 
self-monitor their performance means that ineffective 
modifications can be "backed out of '  without necessarily 
destroying the machine. Populations of competing 
machines can readily be maintained, with winners 
achieving more access to processor time as described 
above. Apoptosis (programmed death) of machines within 
encapsulant populations provides for a finer tuning of 
evolved performance. Machines can monitor the activity of 
machines or machine parts within an encapsulant, and 
identify unused structures for elimination. It will be of 
interest to see if this eliminates the accumulation of 
"introns" in the software developed via such evolutionary 
processes (Banzhaf, Nordin, Keller, and Fancone, 1998). 
Evolving, self-assembling software promises to be a rich 
research topic that we will explore in considerable depth. 

Another future direction for this research is to develop 
self-optimizing behaviors for the self-assembling software 
performance. One approach is to convert stochastic 
execution pathways directly into deterministic machinery. 
This will speed up the code execution at the cost of 
interfering with future external overrides at the module 
level. Such changes are reversible, so that any relative ratio 
of stochastic and deterministic pathways is achievable at 
any time. 

In addition, we envision alternative data structures or 
algorithms, all appropriate for the same task (but each more 
effective for a different size of data set or a different 
distribution of data values) that can replace each other 
based on their monitoring of the overall execution and the 

available data set. On a larger scale, populations of similar 
machinedencapsulants with a distribution of operating 
parameters could be deployed for evolving an optimal 
population mix. 

Again, we note that such optimizations can occur in 
"real-time" as the original code is executing. This could be 
convenient for high-consequence applications that cannot 
be frequently taken off-line. 
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Computation Via Dynamic Self-Assembly of Idealized Protein Networks 

Ann M. ~ouchard* and Gordon C. Osbourn 
Sandia National Laboratories 

P.O. Box 5800 MS 1423 
Albuquerque, NM 87 1 85- 1423 

We describe stochastic agent-based simulations of protein-emulating agents to 
perform computation via dynamic self-assembly. The binding and actuation properties of 
the types of agents required to construct a RAM machine (equivalent to a Turing 
machine) are described. We present an example computation and describe the molecular 
biology and non-equilibrium statistical mechanics, and information science properties of 
this system. 

I Introduction 
Dynamic self-assembly is a ubiquitous process in non-equilibrium physical and 

biological systems.' It is our view that in such systems, dynamic self-assembly and 
computation are intimately related: that dynamic self-assembly can be used to perform 
computation, and that if the computational language can be understood, it can be used to 
program self-assembly. In this paper, we focus on the first of these relationships, that 
dynamic self-assembly can be used to perform computation. We examine how the self- 
assembly processes of protein networks can be harnessed to perform computation at the 
molecular scale. We present results of stochastic simulations of non-equilibrium 
idealized protein networks that we have designed to provide programmable computing. 
We present an example computation and describe the molecular biology, non-equilibrium 
statistical mechanics, and information science properties of this system. 

Biomolecular systems provide models for guiding the development of molecular- 
based computing and self-assembly technologies. For example, chemical ~ ~ s t e m s ~ " ? ~  and 
DNA-based systems for computing596 have been discussed. It has been suggested that 
protein networks play a computational role in single cells analogous to that of neural 
networks in multi-cellular organisms.7 Protein networks are of particular interest, as they 
carry out much of the molecular-scale directed transport, assembly, communication, and 
decision-making activity within and across cells. Achieving programmable computation 
via engineered protein networks would shed light on the extent to which biological 
systems perform true computing. Computational protein networks may never displace 
semiconductor technology for purely numerical processing. However, they suggest a 
novel approach to programming self-assembly processes, for both organic and inorganic 
structures, at the molecular scale. Consideration of engineered protein networks as 
platforms for molecular computing raises several issues. Can any arbitrary Turing 
machine be implemented? If so, what are the key properties required of the proteins, and 
to what extent are such properties actually exercised in living systems? How reliable 
would such Turing machinery be, and how would errors be corrected? To explore these 
issues, we present stochastic simulations of non-equilibrium idealized protein networks 
that we have designed to provide programmable computing. Stochastic simulations are an 
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effective tool for modeling the dynamics of small protein networks, and have been used, 
for example, to understand protein network properties responsible for the robust 
adaptivity of chemotaxis.' As an example, we present a simple simulation of computing 
(A*B)+(C*D)+(E*F) using an ATP-driven dynamic stochastic protein network. These 
information processing protein networks require simultaneous treatment of their non- 
equilibrium statistical mechanics, information science, and molecular biology properties 
to fblly describe their behaviors. 

We present two main conclusions. First, we find that stochastic versions of any 
deterministic Turing machine can in principle be obtained using dynamic self-assembly 
of proteins that exhibit commonly available properties. Second, we find that partial 
equilibration of the far-fi-om-equilibrium stochastic protein networks intrinsically leads to 
increasing computational errors with length of computation, so that an ensemble of such 
computing networks diverges in configuration with time to different internal states and 
different computational results. This is a direct consequence of the stochastic nature of 
the protein networks and the second law of thermodynamics. The implication is that if 
natural systems do indeed perform computations with low error rates, they must employ 
error-correction mechanisms as part of the algorithm. Such error-correction mechanisms 
that might be found in nature are currently under investigation. 

2 Simulation Infrastructure 
We have identified a few crucial properties of proteins and their interactions that 

are required to enable the processes of self-assembly and computation. (I) Proteins have 
tremendous selectivity of their binding sites, operating much like a lock and key. (2) 
Binding or unbinding a ligand at one of these sites can result in a conformational change 
of another part of the protein. This conformational change can perform some sort of 
actuation, such as moving (e.g., in motor proteins) or catalyzing an assembly or 
disassembly reaction (e.g., in enzymes). (3) A conformational change can also expose 
(or hide) additional binding sites, which in turn can bind and cause a conformational 
change resulting in actuation, or exposing or hiding yet another binding site. 

We abstract these important self-assembly and computational properties of 
proteins into an "agent" with these three properties. An agent is constructed from a 
sequence of parts. These parts are roughly analogous to protein domains, except that 
only those domains with binding sites are included. The detailed physics and chemistry 
of conformational changes is not modeled. Instead, we directly model the properties of 
the agent that matter for self-assembly and computation-the actuation and 
exposinglhiding of other binding sites. Each part has a binding site that can be bound to 
at most one other site at any time. Each site has a numerical key that can either be invalid 
(hiding the site, preventing it f?om binding), or that only allows binding with a 
complementary site. Thus, this binding is a selective process as in biological systems 
(property (1)). Matching binding sites can be thought of as having a virtual attraction, 
since binding will readily occur between them when they become available (by becoming 
exposed or unbound from an existing ligand). 

Each binding site can have two types of events, binding and unbinding, and has an 
"event handler" associated with each event type. These event handlers are executable 
code, and implement properties (2) andlor (3). For example, when a kinase binds to a 
substrate, it phosphorylates the substrate and releases it (property (Z)), and then hides its 



own substrate-binding site until the kinase is activated again (property (3)). All of the 
"action" of the agent, then, is coded in the event handlers. 

Initially, a population of agents is included in the simulation environment. The 
simulation infrastructure locates any exposed sites with complementary keys, and 
schedules binding events for these sites on an event queue, ordered by the scheduled 
event time. Any unmatched sites are placed on a fiee-site list to wait passively until a 
complementary site becomes available. The simulation proceeds by pulling the first 
event from the event queue, binding the designated sites to each other (essentially, 
removing the site fiom the free-site list and setting the two sites' pointers pointing to each 
other), and executes the two sites' binding event handlers. During the execution of the 
event handlers, a number of things could happen. (a) Some physical actuation could be 
performed. (b) A bindmg site could be exposed. If a site with a complementary key is 
found on the free-site list, a binding event is scheduled. If no complement is found, the 
site is placed on the free-site list. (c) A site could be hidden. If that site is associated 
with any scheduled events, those events are canceled. If the site was on the free-site list, 
it is removed. (d) The key of a site could be changed. Corrections are made to any 
scheduled events, andfor corrections are made to the free-site list to reflect the new key. 
(e) An unbinding event could be scheduled. 

The simulation proceeds by pulling the next event from the queue, binding or 
unbinding the designated sites, according to the event type, and then executing the event 
handlers. (The same possibilities (a)-(e) could occur during the execution of an 
unbinding event handler.) This process continues until there are no more events on the 
event queue, or the maximum desired time is reached. 

A specific execution sequence or biological signaling pathway can be "wired" 
together by including a set of agents with keys that drive them to execute sequentially. 
For example, suppose each agent has a "trigger" site that activates it (its binding event 
handler does something interesting) and a "done" site that is exposed when its task is 
complete. Suppose the key of agent A's done site is complementary to agent B's trigger 
site, agent B's done site is complementary to agent C's trigger site, and agent C's done 
site is complementary with agent D's trigger site. Once A is triggered, then B will 
execute, followed by C, followed by D. Such an execution sequence or pathway is not 
hard-coded, but self-assembled. The agents are just "dumped" into the simulation 
environment, and the execution order occurs as a natural consequence of the binding and 
unbinding events that are pulled from the event queue. 

A natural property of this approach is the self-assembly of concurrent non- 
deterministic execution pathways in parallel, or multi-threading execution paths. For 
example, the A + B + C -+ D pathway described above can be executed in parallel with 
a completely different pathway Q + R + S + T, as long as the keys from one pathway 
do not match those of the other. 

"Encapsulants" effectively create local environments in which collections of free 
binding sites can interact. Encapsulants in our approach are meant to resemble biological 
cell membranes that isolate their internal contents from interactions with external 
structures. Thus, identical A + B + C + D pathways could be executing in parallel in 
different encapsulants, without any interference, even though they have matching keys. 
Encapsulants can contain agents as well as other encapsulants (for hierarchical 
organization). They also contain "surface" agents that act as signals or receptors for 



interaction with other encapsulants, or gates to move agents and other encapsulants into 
and out of the encapsulant. These surface agents manage all external interactions of the 
encapsulant, and allow it to act as an "agent" building block for structures and execution 
pathways at another (higher) hierarchy level. The surface agents are analogous to 
transmembrane proteins in biological cells. 

3 Simulations 

3.1 RAM Machine Computing With Proteins 
We wish to examine how the self-assembly processes of protein networks can be 

harnessed to perform computation. Instead of dealing with Turing machines directly, we 
will discuss RAM  machine^.^ A RAM machine is more directly realizable using 
proteins. Turing and RAM machines are equivalent, i.e. any Turing machine can be 
assembled from a suitable set of RAM machines, and vice-versa.9 RAM machine 
computing requires an ordered sequence of operations that are carried out on a small set 
of idealized integer registers (each of unlimited capacity). Any computation can be 
programmed using only two types of operations: those that increment a particular register 
by 1 ( [+]reg ); and those that either decrement a particular register by 1 (if the register is 
nonzero) or else jump to some other part of the program sequence ( [-]reg/jump ). Thus, 
to construct a RAM machine from the protein-emulating agents described in section 2, 
we need agents that represent registers, agents that perform the increment operation on 
each register, and agents that perform the decrementljurnp operation on each register. 

A unary representation9 for integers allows the size of any clone population of 
assembled molecules to serve as a register. The register molecules can be free-floating or 
can be assembled into polymers. We use the phosphorylated state (pA') of a model 
protein (PA) as an individual count of a register (called A). To be more concrete, if five 
of the pA proteins are phosphorylated, then the value of register A is five. A kinase that 
can phosphorylate protein pA can act as the increment agent [+]A, if it can be activated 
and can signal as described below. Similarly, a phosphatase that can dephosphorylate pA' 
can decrement register A if it is nonzero. Different registers are made from different 
types of proteins. 

Ordered sequences of [+]reg and [-]reg/jump are dynamically self-assembled by 
switching on the appropriate agent at the appropriate step in the computation sequence. 
The system produces an ordered sequence of computational operations by temporal 
activation, rather than through spatial wiring. To implement this, we consider protein 
complexes that must be triggered by another selective signaling protein to become active. 
Similarly, these protein complexes must release another signaling protein to activate the 
next protein agent. Allosteric proteins with unique binding site selectivity and switchable 
binding site dynamics are ideal for creating the unique sequences of protein activity 
needed for computation. Signal cascades can also be implemented, so that parallel 
execution pathways can be triggered. The timings of the sequence depend on bonding 
rates that in turn depend on molecular amval time statistics. Thus, the computation 
execution times are stochastic. 



"Trigger" site 

Figure I. Illustration of the decrement operation. (a) The [-jregljump agent is labeled, as 
are the ATP agents. The two collections of agents to the right represent a single register 

with a value of 5 (phosphorylated proteins are textured). (b) When the [-]reg/jump agent is 
triggered, it binds to an ATP and a phosphorylated register protein. (c) Then i t  

dephosphorylates the register protein, thereby decrementing the register, releases the 
ATP and register protein, and signals success. 
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Decisions/branchings are carried out by the exit pathways of the [-]reg/jump 
agents. This means that these agents must be able to release two alternate signaling 
molecules--one if a dephosphorylation actually occurred, and a different jump signal 
molecule after a "waiting" time in which no register protein binds to this agent. The 
"jump" molecule clearly must be released with a rate that is, on average, slow compared 
to the arrival time of a register protein (when one is present). Also, the arrival of the 
register protein must prevent the jump molecule from being released. These properties 
are designed into the event handlers of the agent's binding sites, and are of similar 
complexity to those of a conventional kinesin protein that "walks" along a microtubule in 
a eucaryotic cell." The hydrolysis of ATP drives cyclic irreversible behavior. 

Figure 1 illustrates the interactions of the [-]regjump agent with the signaling 
proteins, register proteins, and ATP. Agents are represented by polygon shapes. The 
binding sites and key values are shown as tabs at the perimeter of the agent. When the 
sites of two agents are bound, they are shown as touching. The [-]reg/jump agent is 
labeled, as are the ATP agents. The two collections of agents to the right represent a 
single register. The phosphorylated version of the register protein is shown as textured. 
Initially, in panel (a), the value of the register is five, and the [-]reg/jump agent has a 
single "trigger" binding site exposed, with a key of 1. It also has four other sites that are 
hidden (they have an invalid key, 0). In panel (b), when a signaling agent with a 
complementary key of -1 binds with the trigger site of the [-]reg/jump agent, two 
additional sites are exposed, with key values of 2 and 3. When the trigger site unbinding 
event is handled, if both the ATP and register proteins are bound to these two sites (as in 
panel (b)), then in panel (c), the hydrolysis of ATP drives the [-]reg/jump agent to 
dephosphorylate the register protein (note that in panel (c), there are only four 
phosphorylated register proteins, and an additional unphosphorylated version), releases it 
and the "spent" ATP, and exposes the "done" site with a key of 5. A different signaling 
protein with a key of -5 binds to the done site. When released, it will trigger the next 
operation in the execution sequence. 

If there had been no register protein bound when the trigger site unbinding event 
was handled, then the "jump" site (lower right site of the [-]reg/jump agent in Figure 1) 
would have been exposed with a key of 6, rather than the done site with a key of 5. As a 
result, a dfferent signaling protein would become bound to the jump site, and a different 
execution path would follow. Certainly, if there are no phosphorylated versions of the 
register protein (i.e., the register value is zero), then the jump pathway will be taken. 
However, due to the stochastic nature of the "race" between the binding event of the 
register site and the unbinding event of the trigger site, the stochastic jump process will 
produce incorrect jumps (when the register is nonzero) with some probability that 
depends on the relative rates involved. 

The increment agent, [+]reg, is similar to, but slightly simpler than, the decrement 
agent. The binding of the trigger site exposes the ATP- and register-protein-binding 
sites. The ATP key is the same, 2, but in this case the register-protein-binding site's key 
is 4, to bind to the unphosphorylated version of the register protein. To increment the 
register, it phosphorylates the register protein (i.e., changes its key to -3), then exposes a 
done site with a key of 7. There is no "jump" associated with the increment operation. 
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Figure 2. Schematic diagram of protein network to multiply registers A and B into register 
G. Each increment and decrement agent also interacts with ATP and register proteins, but 

these have been omitted from the figure for clearer viewing of the execution sequence. 
Solid arrows represent a signaling protein going from the done site of one agent to the 

trigger site of the next. Dashed arrows represent a signaling protein's pathway from the 
jump site of one agent to the trigger site of the next. The sequence begins with 

decrementing register A, followed by a loop in which B is added into G and H. Then B is 
restored from the H register, and then the entire outer loop repeats until [-JAljump is 

triggered when the value of A is zero, and it jumps to the next operation. 

We have implemented simulated protein networks for elementary operations such 
as zeroing a register, register copying, adding contents of one register to another, using a 
register to control the number of loops through a repeated sequence of agent operations, 
multiplying two register contents into a third register, and computing a modulus of a 
register value. To illustrate how this simple set of agents can accomplish such 
computations, Figure 2 shows a schematic diagram of the network of proteins required to 
multiply two registers, A and B, into a third register G. Only the increment and 
decrement agents are shown. Each of these agents in the actual simulation interacts with 
the register proteins and ATP, as shown in Figure 1, but these are omitted from Figure 2 
for clearer viewing of the execution sequence itself. A solid arrow represents a pathway 
that a signaling protein makes from the done site of one agent (tail of the arrow) to the 
trigger site of the next agent (head of the arrow). A dashed arrow represents a signaling 
protein's pathway from the jump site of one agent to the trigger site of the next agent. 

The order in which the signals are propagated is indicated by a number in 
parentheses along the signaling pathway. We will describe the sequence using an 
example in which registers A and B are initially set to 2 and 3, respectively, and G and H 
are both 0. A start signal (1) triggers the decrement of register A, so that we now have A 
= 1. We then (2) enter a loop contained in a box in the figure. In this loop, B is 
decremented, (3) G is incremented, and (4) H is incremented. (It will become apparent 
shortly why we must increment H.) The loop is repeated (5 ) ,  beginning with the 
decrement of B. After three passes through the loop, B = 0, and G = H = 3. This loop 
has the effect of adding the value of B into registers G and H. The next attempt to 



decrement B will find a zero-valued B register and therefore jump (6) to the next loop to 
restore B from H. In this loop, (7) and (8), H is decremented and B incremented until H 
= 0 and B = 3. When we attempt to decrement H again, it jumps (9) to decrementing A 
(A = O), and then the entire outer loop, (2) - (9) is repeated, so that G = 6 (= 2 * 3, the 
original values of A * B). On the next attempt to decrement A, it jumps (10) to whatever 
the next operation might be in a more extensive calculation. 

For this illustration, we have described the ideal, "correct" behavior of the 
network. However, any time a decrement occurs, it could jump even though the register 
is nonzero, due to the stochastic nature of this agent. So, in fact, there are numerous 
opportunities for errors in even this simple computation. 

3.2 Stochastic Computing, Errors, and Entropy 
We present results of stochastic simulations of encapsulants computing 

(A*B)+(C*D)+(E*F), where A, B, C, D, E, and F are initial register values. We simulate 
a small population of encapsulants with identical internal component populations and 
examine the error rates and configurational entropy (Sconfig) of this system as a function of 
time. For this analysis, we consider two encapsulants to be in the same configuration if 
all of the [+]reg and [-Iregljump agents and signaling proteins are in the same binding 
state and all of the register populations have the same associated integer value. Sconfig of 
these small populations can be zero when all encapsulants are in the same configuration, 
so that these encapsulants are far from equilibrium. The stochastic nature of the jump 
operations means that such a set of identically configured encapsulants with SConfig=O will 
not remain so, and SConfig will tend to increase with time (but not monotonically, as we 
show below). The maximum Sconfig condition is for each encapsulant to be in a unique 
state. 

The simulation begins with a population of ten duplicate encapsulants, but with 
randomly selected initial register values. The first phase of the simulation is to copy all 
register values from single "starter" encapsulant to the other nine encapsulants, so that 
they all begin the calculation with the same values in registers A through F. This process 
occurs with some "yield," i.e., there is a nonzero probability that one or more register 
copy operations will produce an incorrect register value. When the copying is completed, 
a synchronizing encapsulant is used to trigger the calculation. The calculation process 
then proceeds to completion, also with some "yield" of correct register values. The 
averaged yields of final results were obtained from 220 simulations. Figure 3 (left panel) 
shows the average yield for the computation as a function of ATP concentration. These 
results make clear that the dynamic, non-equilibrium behavior of these encapsulated 
protein networks is driven by the free energy of the ATP population. If the system dies 
not have sufficient energy (ATP), it cannot perform the computation correctly. Figure 3 
(right panel) shows a scatter plot of final Sconfig as a function of final yield of correct 
answers. These results show that ending in a more highly ordered state is clearly 
correlated with high yields of correct computational results, so that maintaining far from 
equilibrium configurations is the desired outcome for these protein networks. The entropy 
captures all configurational differences, including those that do not disrupt the final 
register values, and this produces the scatter in the plot. 
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Figure 3. (left) The fraction of encapsulants with the correct final results as a function of 
ATP concentration. (right) Normalized final entropy vs. fraction of encapsulants with 

errors in their final results. See text for discussion. 

The Sconsg as a function of time for a single computational run is shown in Figure 
4. We have chosen a case where all of the encapsulants are correctly copied, and all but 
one of the computations achieved the correct result. Sconfig begins at a large value due to 
the initial randomized values of the registers in each encapsulant. The register-copying 
phase is completed at t - 5000, in a totally ordered configuration of encapsulants (Sconfig = 
0). The calculation is initiated at t - 22000, and while each encapsulant is performing its 
calculation independent of the others, their configurations again diverge (Sconfig = 1). 
Finally, all of the encapsulants reach a finished state, with all but one encapsulant 
reaching the same final state (low, but nonzero Sconfig). Thus, this non-equilibrium 
process is cyclic in the SConfig. 
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Figure 4. Normalized entropy as a function 
of time for a single computation where all of 
the encapsulants are correctly copied, and 
all but one of the computations achieved the 
correct result. 

The tendency of these stochastic computational processes to increase their SConfig 
after a computational cycle is simply the slow equilibration of the configurational degrees 
of freedom. This clearly prevents arbitrarily long computations from being performed in 
the simple manner described above. The imperfect yield in the computational processes 
described above has some similarities to the classic problem of communicating through a 
noisy channel. ' ' Here we have a more general process of r~oisy computing processes 



(state transitions) in addition to noisy information transfer. Correct computing in general 
requires a mechanism for restoring SConf,, to zero periodically, with each restoration 
occurring before the distribution equilibrates too far. We are currently developing 
simulations of a hierarchical algorithm (i.e., in which the encapsulants act as agents) to 
restore low entropy in order to correct computational errors. 

4 Conclusion 
In this report, we have described stochastic agent-based simulations of protein- 

emulating agents to perform computation via dynamic self-assembly. We described the 
binding and actuation properties of the types of agents required to construct a RAM 
machine (equivalent to a Turing machine), and provided the example computation of 
multiplying and adding several registers. We find that partial equilibration of the far- 
from-equilibrium stochastic protein networks intrinsically leads to increasing 
computational errors with length of computation, so that an ensemble of such computing 
networks diverges in configuration with time to different internal states and different 
computational results. This is a direct consequence of the stochastic nature of the protein 
networks and the second law of thermodynamics. The implication is that if natural 
systems do indeed perform computations with low error rates, they must employ error- 
correction mechanisms as part of the algorithm. This is the subject of further 
investigation. 
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