

SANDIA REPORT

SAND2003-4404
Unlimited Release
Printed December 2003

Evaluation of TCP Congestion Control
Algorithms

Robert M. Long

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

 3

SAND2003-4404
Unlimited Release

Printed December 2003

Evaluation of TCP
Congestion Control Algorithms

Robert M. Long

Advanced Networking Integration Department
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-0806

Abstract

Sandia, Los Alamos, and Lawrence Livermore National Laboratories currently
deploy high speed, Wide Area Network links to permit remote access to their
Supercomputer systems. The current TCP congestion algorithm does not take
full advantage of high delay, large bandwidth environments. This report involves
evaluating alternative TCP congestion algorithms and comparing them with the
currently used congestion algorithm. The goal was to find if an alternative
algorithm could provide higher throughput with minimal impact on existing
network traffic. The alternative congestion algorithms used were Scalable TCP
and HighSpeed TCP. Network lab experiments were run to record the
performance of each algorithm under different network configurations. The
network configurations used were back-to-back with no delay, back-to-back with
a 30ms delay, and two-to-one with a 30ms delay. The performance of each
algorithm was then compared to the existing TCP congestion algorithm to
determine if an acceptable alternative had been found. Comparisons were made
based on throughput, stability, and fairness.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockeed Martin Company for the United States Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

 4

 This page intentionally left blank

 5

Contents
Background 4
Introduction 5
 Standard TCP 5
 HighSpeed TCP 7
 Scalable TCP 9
 Summary of TCP Congestion Control Algorithms 10
Lab Experiments 11
 Test Environment 11
 Back-to-Back 13
 Back-to-Back with 30ms delay 15
 Two-to-One with 30ms delay 17
 Adjusting Scalable TCP a,b Values 23
 Txqueuelen Testing 28
 Parallel Stream Testing 37
Conclusions 40

Figures
 Figure 2. Standard TCP Congestion Control 7
 Figure 3. Example of HighSpeed TCP Congestion Control 9
 Figure 4. Example of Scalable TCP Congestion Control 10
 Figure 6. Network Diagram: Back-to-Back 13
 Figure 9. Network Diagram: Back-to-Back with Delay 15
 Figure 13. Network Diagram: Two-to-One with Delay 18

 6

Background

Network congestion occurs when a machine (computer, router, switch, etc)
receives data faster than it can process. Congestion leads to dropped packets.
For connection oriented protocols, such as TCP, since the destination does not
receive the dropped packet, no acknowledgement is sent to the sender.
Therefore, the sender retransmits the lost packet, possibly leading to more
congestion. Network congestion led to several collapses of the Internet in the
late 80’s.

When TCP was first standardized in 1980 the standard did not include any
congestion control mechanisms [1]. TCP congestion control was created to allow
TCP connections to recover from a lost packet more gracefully. A congestion
window (Cwnd) was implemented to limit the amount of outstanding data
(unacknowledged packets) a connection can have at any given time. The
congestion window is resized upon receiving an ACK for new data or a
congestion event (receiving duplicate ACKs for the same data or a timeout).

The TCP congestion control algorithm used today is based on the algorithms
proposed by Van Jacobson in 1988 [2]. This TCP congestion control algorithm
was designed over a decade ago for much lower bandwidth speeds than used
today. The network speeds used then were around 32Kbps. Sandia, Los
Alamos, and Lawrence Livermore National Laboratories are currently connected
using a 2.5Gbps network, over 78000 times the speed used in 1988. With the
current high speed, long delay networks, an alternative congestion control could
possibly provide better utilization of the channel. The alternative congestion
control algorithms being tested are HighSpeed TCP and Scalable TCP.

 7

Introduction

Standard TCP
Standard TCP uses the congestion control algorithms described in RFC2581 [3].
The algorithms used are: slow start, congestion avoidance, fast retransmit, and
fast recovery. A TCP connection is always using one of these four algorithms
throughout the life of the connection.

Slow Start
After a TCP connection is established, the initial congestion algorithm used is the
slow start algorithm. During slow start, the congestion window is increased by
one segment for every new ACK received. The connection remains in slow start
until one of three events occurs. The first event is when the congestion window
reaches the slow start threshold. The connection then uses the congestion
avoidance algorithm after the congestion window is greater than, or equal to, the
slow start threshold. The slow start threshold, ssthresh, is a variable used to
determine when the connection should change from the slow start algorithm to
the congestion avoidance algorithm. The initial value for ssthresh is set to an
arbitrarily high value [3], this value is not usually reached during the initial slow
start after a new connection is established. The second event is receiving
duplicate ACKs for the same data. Upon receiving three duplicate ACKs, the
connection uses the fast retransmit algorithm. The last event that can occur
during slow start is a timeout. If a timeout occurs, the congestion avoidance
algorithm is used to adjust the congestion window and slow start threshold.

Figure 1. Example of Slow Start.

 8

Figure 1 is an example of slow start for a TCP connection. The 30ms delay
between increases is the round-trip time (RTT) for the given example. The figure
shows the outstanding data bytes for the connection. Observe how the
outstanding data doubles every RTT, this indicates that the congestion window is
doubling each RTT. The outstanding data levels off at 3,740,000 bytes. For the
given example, this is the maximum outstanding data possible given by the
bandwidth-delay product. The bandwidth-delay product is the bandwidth
multiplied by the delay; In the case of the example, it is 1Gb/s * 30ms = 30Mb or
approximately 3.75MB. The bandwidth-delay product gives you the number of
bytes it takes to fill the channel that you are using.

Congestion Avoidance
The congestion avoidance algorithm consists of two parts, additive increase (AI)
and multiplicative decrease (MD), referred to as AIMD. When in congestion
avoidance, additive increase is used to adjust the congestion window after
receiving new ACKs. Multiplicative decrease is used to adjust the congestion
window after a congestion event occurs.

Additive Increase
After receiving an ACK for new data, the congestion window is increased by
(MSS)2/Cwnd, where MSS is the maximum segment size, this formula is known
as additive increase. The goal of additive increase is to open the congestion
window by a maximum of one MSS per RTT. Additive increase can be described
by using equation (1):
 Cwnd = Cwnd + a*MSS2/Cwnd (1)

where the value of a is a constant, a = 1.

Multiplicative Decrease
Multiplicative decrease occurs after a congestion event, such as a lost packet or
a timeout. After a congestion event occurs, the slow start threshold is set to half
the current congestion window. This update to the slow start threshold follows
equation (2):
 ssthresh = (1 – b)*FlightSize (2)

FlightSize is equal to the amount of data that has been sent but not yet ACKed
and b is a constant, b = 0.5. Next, the congestion window is adjusted
accordingly. After a timeout occurs, the congestion window is set to one MSS
and the slow start algorithm is reused. The fast retransmit and fast recovery
algorithms cover congestion events due to lost packets.

Fast Retransmit
The fast retransmit algorithm was designed to quickly recover from a lost packet
before a timeout occurs. When sending data, the fast retransmit algorithm is
used after receiving three duplicate ACKs for the same segment. After receiving
duplicate ACKs, the sender immediately resends the lost packet, to avoid a
timeout, and then uses the fast recovery algorithm.

 9

Fast Recovery
The fast recovery algorithm is used to avoid setting the congestion window equal
to one MSS segment after a dropped packet occurs. After a drop occurs, the
multiplicative decrease portion of congestion avoidance is then used to update
the slow start threshold. Next, the congestion window is set to the new value of
ssthresh. After the window size is decreased, additive increase is used to
reopen the congestion window.

Figure 2 shows an example of the outstanding data for a TCP connection and
illustrates the performance of congestion control. The connection starts using
the slow start algorithm until the channel is filled and then switches congestion
avoidance. In the example, a single drop occurs around three seconds. The fast
retransmit and recovery algorithms are used to resend the lost segment and then
cut the congestion window in half. Additive increase is used after the drop to
reopen the congestion window.

Figure 2. Standard TCP Congestion Control.

HighSpeed TCP
HighSpeed TCP was proposed by Sally Floyd as a sender-side alternative
congestion control algorithm [4]. HighSpeed TCP attempts to improve the
performance of TCP connections with large congestion windows. Another goal
of HighSpeed TCP is to behave similarly to Standard TCP when using small
congestion windows.

 10

HighSpeed TCP uses the same slow start and fast retransmit and recovery
algorithms that are implemented in Standard TCP. Modifications were only made
to the congestion avoidance algorithm.

Congestion Avoidance
HighSpeed TCP still uses an AIMD congestion avoidance algorithm. The
changes made involved adjusting the increase and decrease parameters, more
specifically the a and b parameters in equations (1) and (2) respectively. The
new parameters are found in a table and are based on the current congestion
window in MSS segments, given by equation (3).
 w = Cwnd/MSS (3)

The table is created using equations (4) and (5):
 a(w) = (HW2 * HP * 2 * b(w)) / (2 – b(w)) (4)
 b(w) = (((HD – 0.5) * (log(w) – log(HW))) / (log(LW) – log(w))) + 0.5 (5)

HW = 83000, HP = 10-7, LW = 38, and HD = 0.1. The first 5 values generated for
the HighSpeed TCP table are given below in Table 1.

w a(w) b(w)
38 1 0.50

118 2 0.44
221 3 0.41
347 4 0.38
495 5 0.37

Table 1. HighSpeed TCP Table.

Additive Increase
Equation (1) can be rewritten as equation (6) to show HighSpeed TCP’s additive
increase formula.
 Cwnd = Cwnd + a(w)*MSS2/Cwnd (6)

The goal of HighSpeed TCP’s additive increase is to open the congestion
window by a(w) each RTT. Equation (6) allows for large congestion windows to
open faster than equation (1) would have allowed.

Multiplicative Decrease
Highspeed TCP follows the same multiplicative decrease algorithm as Standard
TCP except for the following change to equation (2). Equation (7):
 ssthresh = (1 – b(w))*FlightSize (7)

The congestion window is resized the same as in Standard TCP after detecting a
lost packet, using fast recovery, or a timeout occurs.

Figure 3 shows an outstanding data plot for a connection using HighSpeed TCP
and shows how the congestion control algorithms function. The example shows

 11

that the same slow start algorithm is used. A single drop occurs at around 1
second. This lead to the fast retransmit and recovery algorithms being used. At
the time of the drop Cwnd ~ 3.6MB. Using equation (3) and Table 1, w = 408
segments so b(w) = 0.37. After the congestion window is reduced to ~2.4MB or
w = 262, a(w) = 4. A slight bend in the linear increase is observed around 2.5
seconds. This bend is when w becomes greater than 347 and uses a(w) = 5.

Figure 3. Example of HighSpeed TCP Congestion Control.

Scalable TCP
Tom Kelly proposed Scalable TCP as another alternative sender-side congestion
control algorithm [3]. The goal of Scalable TCP is to quickly recover from short
congestion periods.

Congestion Avoidance
Scalable TCP uses a different congestion avoidance algorithm than Standard
TCP. Scalable TCP uses a multiplicative increase multiplicative decrease
(MIMD) rather than the AIMD of Standard TCP.

Multiplicative Increase
The multiplicative increase occurs when the standard additive increase would
normally occur. Equation (8) shows the formula used to adjust the congestion
window after receiving a new ACK.
 Cwnd = Cwnd + a*Cwnd (8)

where a is adjustable, the value of a used was 0.02.

 12

Multiplicative Decrease
The multiplicative decrease is the same as Standard TCP except that the value
of b in equation (2) is adjustable, the value of b used was 0.125.

Figure 4 shows an example of a Scalable TCP connection and the congestion
control algorithm that it uses. The connection starts in the slow start algorithm
until the channel is filled. Next the connection uses the multiplicative increase
portion of congestion avoidance to adjust the congestion window. After a single
drop occurs around 1.4 seconds, the fast retransmit and recovery algorithms are
used to cut the congestion window by 0.125, the value of b, and congestion
avoidance is used again to reopen the congestion window.

Figure 4. Example of Scalable TCP Congestion Control.

Summary of TCP Congestion Control Algorithms
Table 2 gives an overview of the congestion control algorithms used.

 Increase Decrease a,b Values Algorithm
Standard TCP a*MSS2/Cwnd b*FlightSize Constant AIMD
HighSpeed TCP a(w)*MSS2/Cwndb(w)*FlightSize Varies AIMD
Scalable TCP a*Cwnd b*FlightSize Adjustable MIMD

Table 2. Summary of Congestion Control Algorithms.

 13

Lab Experiments

Test Environment
The test environment consisted of three Dell PowerEdge™ 2650 servers. Each
system had dual 2.8GHz Intel® Xeon™ processors, 1GB of memory, and Intel®
PRO/1000 Network Interface Cards (NICs). The operating system used in the
test environment was RedHat 9. A separate kernel was built for each congestion
control algorithm. The kernel used for Standard TCP was a standard 2.4.20.
HighSpeed TCP and Scalable TCP each used a modified 2.4.19 kernel.
HighSpeed TCP used a 2.4.19-hstcp kernel; the HighSpeed TCP patch was
downloaded from [6]. Scalable TCP used a 2.4.19scale0.5.1 kernel; the Scalable
TCP patch was downloaded from [7].

The software used to test network performance was Iperf v1.7.0, tcpdump v3.7.2
(with libpcap v0.7.2), tcptrace v6.4.2, and a slightly modified version of Ethereal
v0.9.13. Iperf is a networking tool that allows the maximum bandwidth to be
measured. Iperf measures the maximum bandwidth by performing memory to
memory data transfers. The hardware used was a Spirent Communications
Adtech AX/4000™ and a Network Associates Giga-bit Sniffer. The AX/4000™
was used to simulate delays in the network. The Sniffer was used to capture
network traffic for analysis.

Capture problems
During the experiments, tcpdump had difficulty accurately capturing network
traffic at a full 1Gbps. Tcpdump would drop 5-30% of the packets seen. Since
tcpdump was running on one of the computers involved in the test, tcpdump
could have also affected the performance of the computer by utilizing system
resources. Different capture techniques were used in an attempt to accurately
capture network traffic. The goal was to find a capture technique that did not
affect the test streams performance or drop packets.

The first alternative capture technique used was the Adtech AX/4000™ capture
units. The Adtech capture units satisfied the goal of not dropping packets or
affecting the test streams. A conversion routine was written to convert the
Adtech capture files to a file format that could be analyzed, such as a tcpdump
file. Figure 5 shows a comparison of an Adtech capture vs. a tcpdump capture
taken during slow start. The Adtech capture accurately shows more detail than
the tcpdump capture. The problem with the Adtech capture units was that they
captured the entire packet; capturing the entire packet resulted in only saving half
a seconds worth of network traffic. This was determined to be an insufficient
amount of time and another technique had to be found.

 14

Figure 5. Comparison of Outstanding Data Plots (Adtech-left, tcpdump-right).

The second technique used was a software add-on to the Linux kernel called
MAGNET. MAGNET is a kernel event tracker developed at Los Alamos National
Laboratories [8]. MAGNET did capture packets successfully. The problem with
MAGNET was that a conversion routine was needed to reassemble the events
that it captured. MAGNET captured TCP, IP, and socket events separately; to
create a tcpdump compatable format these three events would have to be
reassembled to create a single event. No statistics were available for packet loss
so it could not be determined if the time to write the conversion routine would be
worthwhile. In the end, there would have been no way to determine if MAGNET
was capturing all the packets and that it was not affecting the processors
performance.

The last technique used was a Network Associates Sniffer. The Sniffer satisfied
the goals of not dropping packets or affecting the test streams. The capture files
from the Sniffer were converted to tcpdump format using Ethereal. It was then
noticed that Ethereal did not correctly convert the timestamps. To solve this
problem the source code for Ethereal was modified to correctly convert the
timestamps. This conversion allowed for Sniffer capture files to be analyzed
using tools such as tcptrace. The limitations on the Sniffer were a 72MB buffer,
which allowed for capturing around twenty seconds of network traffic.

Tuning parameters
The following tuning parameters were used on both senders and receivers.

#configure for jumbo frames
ifconfig eth2 mtu 9000
#using the default value of txqueuelen
ifconfig eth2 txqueuelen 100
#timestamps are on by default
echo 1 > /proc/sys/net/ipv4/tcp_timestamps
#window scaling is on by default
echo 1 > /proc/sys/net/ipv4/tcp_window_scaling
#selective ack is on by default
echo 1 > /proc/sys/net/ipv4/tcp_sack

 15

echo 8388608 > /proc/sys/net/core/wmem_max
echo 8388608 > /proc/sys/net/core/rmem_max
echo "4096 87380 4194304" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 65536 4194304" > /proc/sys/net/ipv4/tcp_wmem

The window sizes were chosen based on the bandwidth-delay product of
3.75MB. The following command was also run before each test was executed.

/sbin/sysctl –w net.ipv4.route.flush=1

Flushing the route reset the slow start threshold (ssthresh) for all connections.
This needed to be done to allow for repeatable test results.

Back-to-Back
The back-to-back test was run to verify that the congestion control algorithms did
not affect network performance given ideal network conditions, no delay and no
competing traffic. A network diagram is shown in Figure 6.

Client Server

Figure 6. Network Diagram: Back-to-Back.

The results from the back-to-back test showed that the congestion control
algorithms behave similarly in this network environment. Figure 7 shows the
throughput for the tested algorithms using standard ethernet frames, MTU =
1500, and various window sizes. The results shown are an average of 10 Iperf
tests. The Iperf tests used were each run for ten seconds. Scalable TCP shows
slightly lower performance for 1MB and 4MB windows. These performance
numbers are the result of a single bad run for each of these window sizes. The
other nine tests for 1MB and 4MB windows reported throughput numbers of
940Mb/s.

 16

Maximum Throughput w ithout Delay - MSS = 1448 bytes

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

HighSpeed TCP

Scalable TCP

Figure 7. Back-to-Back Throughput - MSS = 1448 bytes.

Figure 8 shows the throughput for the tested algorithms using jumbo frames,
MTU = 9000, and various window sizes. For jumbo frames, the three algorithms
behaved similarly for all window sizes.

Maximum Throughput w ithout Delay - MSS = 8948 bytes

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

HighSpeed TCP

Scalable TCP

Figure 8. Back-to-Back Throughput - MSS = 8948 bytes.

 17

Back-to-Back with delay
For the back-to-back with delay test a delay of 30ms delay was added to the
back-to-back test setup. The 30ms delay was chosen to simulate the RTT from
Sandia to Lawrence Livermore. This test allows the behavior of each congestion
control algorithm to be observed in the environment, long delay and high
bandwidth, that it is being tested for. The back-to-back with delay circuit is
shown in Figure 9.

Client Server

30ms
Delay

Capture
Unit

Capture
Unit

Adtech Circuit

Figure 9. Network Diagram: Back-to-Back with Delay.

Figure 10 shows the results using standard Ethernet frames. The test results
shown use the same principles as the back-to-back tests, that is that they are the
average of ten-10 second Iperf tests. The results are fairly consistent for each of
the tested algorithms. The biggest exception occurs when using 512KB
windows. For 512KB windows, HighSpeed TCP performed better than Standard
TCP, while Scalable TCP performed worse than Standard TCP.

Maximum Throughput w ith Delay - MSS = 1448

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

HighSpeed TCP

Scalable TCP

Figure 10. Back-to-Back with Delay Throughput - MSS = 1448 bytes.

 18

Figure 11 shows the results using jumbo frames. In this case, the three
algorithms perform the same until 3MB windows. For window sizes greater than
3MB, HighSpeed TCP outperformed Standard TCP by over 100Mb/s, roughly a
14% increase in throughput. Scalable TCP also performed better than Standard
TCP by around 70Mb/s, an 8% increase in throughput.

Maximum Throughput w ith 30ms Delay - MSS = 8948 bytes

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

HighSpeed TCP

Scalable TCP

Figure 11. Back-to-Back with Delay Throughput - MSS = 8948 bytes.

The increase in performance is unexpected since the difference between the
algorithms is the congestion control mechanisms. Upon further investigation, it
was noticed that the test streams are backing off periodically. The back off does
not seem to be the result of a network congestion event. The back off for each
TCP algorithm is shown in Figure 12.

 19

Figure 12. Back off with txqueuelen=100.

Figure 12 shows the outstanding data bytes for a test stream using jumbo frames
and 16MB windows. From the figure, each algorithm cuts the window back after
slow start ends. It does not appear to be a network congestion event since the
outstanding data window after the decrease is equal for all three algorithms. The
performance increase for HighSpeed TCP and Scalable TCP occurs because of
the way each algorithm recovers from this back off. The back off also seems to
be periodic, as shown by HighSpeed TCP and Scalable TCP. The back off also
occurs on a regular interval for Standard TCP but this is not shown in Figure 12.
By altering the txqueuelen, the back off eventually goes away and all three
algorithms obtain the same performance. For the remainder of the evaluation,
the default value of txqueuelen=100 was kept and effects of txqueuelen are
investigated in a later section.

Two-to-One with delay
The two-to-one test was run to evaluate the fairness of the congestion control
algorithms. For the two-to-one test, the 30ms delay was kept for the network
setup. The setup used for the two-to-one test is shown in Figure 13.

 20

Switch Server

Adtech Circuit

30ms
Delay

Capture
Unit

Capture
Unit

7/1

Client 2

Client 1

Sniffer

7/2

8/13 7/3

Port A

Figure 13. Network Diagram: Two-to-One with Delay.

A Sniffer was used to capture the traffic of the competing streams. The captures
were taken to observe how each of the streams share the channel. The following
figures show throughput plots for competing streams. Iperf tests were used to
generate the test streams; each stream used jumbo frames, 9000 byte MTU’s,
with 16MB window sizes and was run for 20 seconds. The captures taken are of
a single run and show the behavior for different competing streams.

In Figure 14, clients 1 and 2 are using Standard TCP.

Figure 14. Standard TCP vs. Standard TCP (20 seconds).

 21

To determine if two Standard TCP streams oscillate, tcpdump was used to
capture a 240 second test. Tcpdump was used since it was the only capture
method that could be used for a 240 second test. The results are shown in
Figure 15. From Figure 15, it appears that Standard TCP streams do oscillate,
sharing the bandwidth.

Figure 15. Standard TCP vs. Standard TCP (240 seconds).

In Figure 16, client1 is using HighSpeed TCP and client 2 is using Standard TCP.

 22

Figure 16. HighSpeed TCP vs. Standard TCP.

In Figure 17, client 1 is using Scalable TCP and client 2 is using Standard TCP.
Scalable TCP shares very little of the bandwidth with Standard TCP in Figure 17.

Figure 17. Scalable TCP vs. Standard TCP.

In Figure 18, clients 1 and 2 are using HighSpeed TCP.

 23

Figure 18. HighSpeed TCP vs. HighSpeed TCP.

In Figure 19, clients 1 and 2 are using Scalable TCP.

Figure 19. Scalable TCP vs. Scalable TCP.

 24

Longer captures were taken of HighSpeed TCP vs. HighSpeed TCP and
Scalable TCP vs. Scalable TCP using tcpdump. In both cases, the captures
showed that they oscillate similar to two Standard TCP streams in Figure 15.

Figure 20 shows the average results of ten-10 second Iperf tests using jumbo
frames. For window sizes greater than 2MB, the second Standard TCP stream
only gets 38% of the channel with an average of 308Mb/s vs. 500Mb/s of the first
Standard TCP stream.

Two-to-One with 30ms delay - MSS = 8948 bytes

0

100

200

300

400

500

600

700

800

900

1000

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
3M

B
4M

B
5M

B
6M

B
7M

B
8M

B
10

MB
12

MB
14

MB
16

MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Standard TCP stream 2

Standard TCP stream 1

Figure 20. Standard TCP vs. Standard TCP.

Figure 21 shows a HighSpeed TCP stream and a Standard TCP stream using
jumbo frames. For window sizes greater than 2MB, HighSpeed TCP allows the
Standard TCP stream 35.5% of the channel with an average throughput of
285Mb/s vs. 520Mb/s of HighSpeed TCP.

 25

Two-to-One w ith 30ms delay - MSS = 8948 bytes

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

HighSpeed TCP

St andard TCP

Figure 21. HighSpeed TCP vs. Standard TCP.

Figure 22 shows the throughput from a Scalable TCP stream and a Standard
TCP stream. For window sizes greater than 2MB, Standard TCP only gets an
average of 29.5% of the channel with 242Mb/s vs. 582Mb/s of Scalable TCP.

Two-to-One w ith 30ms delay - MSS = 8948 bytes

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Scalable TCP

St andard TCP

Figure 22. Scalable TCP vs. Standard TCP.

 26

Two-to-One testing shows the fairness between two competing streams. For
ten-10 second Iperf tests, Standard TCP shares 38%, HighSpeed TCP shares
35%, and Scalable TCP shares 29.5%.

Adjusting Scalable TCP a,b Values
Scalable TCP uses adjustable values for the increase and decrease parameters,
a and b used in equations (2) and (8). The current values used were the default
values included in the Scalable TCP Linux kernel, a=1/50 and b=1/8, providing
an increase of 2% each RTT and a decrease of 12.5% on a congestion event.
Alternative a,b values could continue to provide higher overall throughput and
possibly increase the fairness with existing traffic. The alternative a,b values
were chosen to keep the a/b ratio currently used, a/b=(1/50)/(1/8) = 4/25, and the
a/b ratio described by Tom Kelly in [5], a/b=(1/100)/(1/8) = 2/25. For each a/b
ratio, four different a,b sets were chosen. The sets will be described in [a,b]
notation. For a/b=2/25, the following values were used [1/25,1/2], [1/50,1/4],
[1/100,1/8], and [1/200,1/16]. For a/b=4/25, the following values were used
[2/25,1/2], [1/25,1/4], [1/50,1/8], and [1/100,1/16].

Two-to-one with 30ms delay tests were run using each [a,b] pair. The results
would allow to observe the effects that each [a,b] pair had on the overall
combined throughput and the fairness between streams. Figures 23-30 show the
results for various window sizes using MSS = 8948 bytes for each [a,b] pair. The
results are the average of ten-10 second Iperf tests. In each figure, a Standard
TCP stream and a Scalable TCP stream, each with a different [a,b] pair, were
used.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/25,b=1/2

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 23. Scalable TCP using a=1/25, b=1/2.

 27

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/50,b=1/4

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 24. Scalable TCP using a=1/50, b=1/4.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/100,b=1/8

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 25. Scalable TCP using a=1/100, b=1/8.

 28

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/200,b=1/16

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 26. Scalable TCP using a=1/200, b=1/16.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=2/25,b=1/2

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 27. Scalable TCP using a=2/25, b=1/2.

 29

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/25,b=1/4

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 28. Scalable TCP using a=1/25, b=1/4.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/50,b=1/8

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 29. Scalable TCP using a=1/50, b=1/8.

 30

Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/100,b=1/16

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

Scalable TCP

Figure 30. Scalable TCP using a=1/100, b=1/16.

Each [a,b] pair was then ranked based on the results from Figures 23-30. The
ranking was based on two variables. The first was the combined throughput of
both streams; this had the most impact on the overall rating. The second
variable used was Standard TCP’s throughput; this was looked at if two [a,b]
pairs had similar overall throughput to allow an [a,b] pair that shared more to rank
higher. The rankings are shown in Table 3.

Rank a b
1 1/100 1/8
2 1/50 1/4
3 1/25 1/4
4 1/50 1/8
5 1/200 1/16
6 1/25 1/2
7 1/100 1/16
8 2/25 1/2

Table 3. Scalable TCP a,b pair rankings.

From Table 3, the [a,b] pair that had been used, [1/50,1/8], was only the fourth
best. Switching to [1/100,1/8] would provide higher overall throughput and
around the same throughput as [1/50,1/8] for Standard TCP, as shown in Figures
25 and 29.

 31

Txqueuelen Testing
The results of the back-to-back testing showed that the txqueuelen has an impact
on the maximum throughput of the test streams. Alternative values of txqueuelen
were tested to better observe the impact on each of the TCP congestion control
algorithms. The goal of testing various txqueulen’s was to find if an alternative
value could provide higher throughput without decreasing the current levels of
sharing. For Standard TCP, the txqueuelen was varied from 5-250 in increments
of five using the back-to-back with delay test setup. The test parameters used
were a window size of 16MB and MSS=8948 bytes. Figure 31 shows the
throughput results for the various txqueuelen’s. The highlighted bar indicates
txqueuelen = 100. From Figure 31, using txqueuelen = 100 results in 828 Mb/s
while using a value >210 results in 966 Mb/s, an increase of 16%. From the
back-to-back with delay test setup, using a txqueuelen > 210 would result in the
highest throughput.

Throughput for various txqueuelen's (Standard TCP)

0

100

200

300

400

500

600

700

800

900

1000

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

txqueuelen

B
an

dw
id

th
 (M

b/
s)

Figure 31. Standard TCP throughput for various txqueuelen’s.

To determine what type of effect changing the txqueuelen has on competing
streams, Two-to-One tests were performed using different values for txqueuelen.
The values used for txqueuelen were 5, 15, 20, 60, 95, 100, 105, 155, 200, 205,
210, and 250. Figure 32 shows the throughput graph using a txqueuelen of 100
and jumbo frames. From Figure 32, eight different window sizes result in a
combined throughput of 800+ Mb/s. For txqueuelen = 100, the average
combined throughput for window sizes 2MB-16MB is 808Mb/s. Figure 33 shows
the throughput graph using a txqueuelen of 250 and jumbo frames. In Figure 33,
there are no window sizes that result in a combined throughput of 800Mb/s. For
txqueuelen = 250, the average combined throughput for window sizes 2MB-
16MB is 767Mb/s, over 50Mb/s, or 5.3%, lower than the average for txqueuelen =
100.

 32

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=100

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Standard TCP stream 2

Standard TCP stream 1

Figure 32. Standard TCP Two-to-One using txqueuelen = 100.

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=250

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Standard TCP stream 2

Standard TCP stream 1

Figure 33. Standard TCP Two-to-One using txqueuelen = 250.

Figure 34 shows the number of window sizes for each txqueuelen tested that
result in 800+ Mb/s combined throughput. The maximum number achievable
would be 11; combined throughput of both streams resulted in 800+ Mb/s for
window sizes in the range of 2MB-16MB (11 different window sizes) for all
txqueuelen tested. For Standard TCP, a txqueuelen of 100 provided the highest
combined throughput values.

 33

Two-to-One w ith 30ms delay - MSS = 8948 bytes - 2 Standard TCP Streams

0

1

2

3

4

5

6

7

8

9

10

11

5 15 20 60 95 100 105 155 200 205 210 250

txqueuelen

N
um

be
r o

f 8
00

+
M

b/
s

(C
om

bi
ne

d
Th

ro
ug

hp
ut

)

Figure 34. Number of 800+ Mb/s throughputs for various txqueuelen’s.

Varying the txqueuelen from 5-250 for Scalable TCP resulted in Figure 35. A
7.7% increase, 897 Mb/s vs. 966 Mb/s, in throughput is gained by using a
txqueuelen >210 instead of the default value of 100.

Throughput for various txqueuelen's (Scalable TCP)

0

100

200

300

400

500

600

700

800

900

1000

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

txqueuelen

B
an

dw
id

th
 (M

b/
s)

Figure 35. Scalable TCP throughput for various txqueuelen’s.

 34

Figure 36 shows the results of Two-to-one testing using an MSS = 8948 bytes
and a txqueuelen = 100.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - txqueuelen=100

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Scalable TCP

St andard TCP

Figure 36. Scalable TCP and Standard TCP Two-to-One using txqueuelen = 100.

Figure 37 shows the results of Two-to-One testing using a txqueuelen of 250.

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=250

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Scalable TCP

Standard TCP

Figure 37. Scalable TCP and Standard TCP Two-to-One using txqueuelen = 250.

From Figure 36 and 37, the increase of txqueuelen resulted in higher overall
throughput but lowered the throughput for Standard TCP by almost half.

 35

Figures 38 and 39 show the results of two-to-one testing with two Scalable TCP
streams using a txqueuelen of 100 and 250, respectively. The results are similar
to those encountered by Standard TCP. The higher txqueuelen of 250 provided
lower combined throughput than the default value of 100. The average
combined throughput for 2MB-16MB window sizes was 897Mb/s for a txqueuelen
of 100. For a txqueuelen = 250, the average combined throughput was 886Mb/s,
1.2% lower than with the default txqueuelen.

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=100

0

100

200

300

400

500

600

700

800

900

1000

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
3M

B
4M

B
5M

B
6M

B
7M

B
8M

B
10

MB
12

MB
14

MB
16

MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Scalable TCP stream 2

Scalable TCP stream 1

Figure 38. Scalable TCP Two-to-One using txqueuelen = 100.

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=250

0

100

200

300

400

500

600

700

800

900

1000

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
3M

B
4M

B
5M

B
6M

B
7M

B
8M

B
10

MB
12

MB
14

MB
16

MB

Window Size

B
an

dw
id

th
 (M

b/
s)

Scalable TCP stream 2

Scalable TCP stream 1

 36

Figure 39. Scalable TCP Two-to-One using txqueuelen = 250.

Figure 40 shows the results of varying the txqueuelen from 5-250 for HighSpeed
TCP. A 2% increase, 948 Mb/s vs. 966 Mb/s, is gained by using a txqueuelen
>210, over the default value of 100.

Throughput for various txqueuelen's (HighSpeed TCP)

0

100

200

300

400

500

600

700

800

900

1000

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

txqueuelen

B
an

dw
id

th
 (M

b/
s)

Figure 40. HighSpeed TCP throughput for various txqueuelen’s.

The two-to-one testing using HighSpeed TCP and different txqueuelen’s showed
the same type of effects as Scalable TCP. A txqueuelen of 250 resulted in
higher overall throughput while reducing Standard TCP’s throughput. These
results are shown in Figures 41 and 42.

 37

Two-to-One w ith 30ms delay - MSS = 8948 bytes - txqueuelen=100

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

HighSpeed TCP

St andard TCP

Figure 41. HighSpeed TCP and Standard TCP Two-to-One using txqueuelen = 100.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - txqueuelen=250

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

HighSpeed TCP

St andard TCP

Figure 42. HighSpeed TCP and Standard TCP Two-to-One using txqueuelen = 250.

Figures 43 and 44 show two-to-one tests with two HighSpeed TCP streams and
txqueuelen’s of 100 and 250, respectively.

 38

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=100

0

100

200

300

400

500

600

700

800

900

1000

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
3M

B
4M

B
5M

B
6M

B
7M

B
8M

B
10

MB
12

MB
14

MB
16

MB

Window Size

B
an

dw
id

th
 (M

b/
s)

HighSpeed TCP stream 2

HighSpeed TCP stream 1

Figure 43. HighSpeed TCP Two-to-One using txqueuelen = 100.

Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=250

0

100

200

300

400

500

600

700

800

900

1000

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
3M

B
4M

B
5M

B
6M

B
7M

B
8M

B
10

MB
12

MB
14

MB
16

MB

Window Size

B
an

dw
id

th
 (M

b/
s)

HighSpeed TCP stream 2

HighSpeed TCP stream 1

Figure 44. HighSpeed TCP Two-to-One using txqueuelen = 250.

Figures 43 and 44 show that the larger txqueuelen value of 250 again resulted in
lower combined throughput values. For HighSpeed TCP, the average combined
throughput for window sizes 2-16MB was 824Mb/s for txqueuelen = 100. Using
txqueuelen = 250, the average combined throughput was slightly lower at
817Mb/s.

 39

Adjusting the txqueuelen provided higher throughput during the back-to-back
testing. However, adjusting the txqueuelen led to lower levels of sharing and
decreased throughput in a homogenous environment during two-to-one testing.
Based off these results, the default value of txqueuelen = 100 provided the most
acceptable test results.

Parallel Stream Testing
Parallel streams are often used to increase network efficiency. The way that
parallel streams accomplish the increase in efficiency is as follows. For N
parallel streams, a single lost packet only affects a single stream, resulting in a
reduction of that streams congestion window. For each of the other N-1 streams,
no change is made to the congestion window, so the current throughput for each
N-1 streams is maintained.

Parallel streams were tested using Iperf and the back-to-back with 30ms delay
setup, Figure 9; Iperf contains a parallel stream parameter specifying the number
of streams to use. The number of streams to test was 2,4,8, and 16. Figure 45
shows the total throughput from two parallel for each TCP algorithm used. For
two parallel streams, the client in Figure 9 would initiate two separate test
streams with the server. The test streams used a MSS = 8948 bytes.

Two-to-one w ith 30ms delay - MSS = 8948 bytes - 2 Parallel Streams

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

HighSpeed TCP

Scalable TCP

Figure 45. Throughput for Two Parallel Streams.

Figure 46 shows the percent increase over Standard TCP using two parallel
streams for each window size using HighSpeed TCP and Scalable TCP. From
Figure 46, HighSpeed TCP and Scalable TCP had an increase in overall
throughput of 1-7% for most window sizes.

 40

Two-to-One w ith 30ms delay - MSS = 8948 bytes - 2 Parallel Streams

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

Pe
rc

en
t I

nc
re

as
e

fr
om

 S
ta

nd
ar

d
TC

P

HighSpeed TCP

Scalable TCP

Figure 46. Percent Increase for Two Parallel Streams.

Figure 47 shows the results using sixteen parallel streams.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - 16 Parallel Streams

0

100

200

300

400

500

600

700

800

900

1000

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

B
an

dw
id

th
 (M

b/
s)

St andard TCP

HighSpeed TCP

Scalable TCP

Figure 47. Throughput for Sixteen Parallel Streams.

Figure 48 shows the percent increase over Standard TCP when using sixteen
parallel streams. For sixteen parallel streams, using HighSpeed TCP generally
resulted in a decrease in performance of around 0.5-1%. Scalable TCP resulted

 41

in higher decreases than HighSpeed TCP did with some decreases at almost 3%
below that of Standard TCP’s throughput values.

Two-to-One w ith 30ms delay - MSS = 8948 bytes - 16 Parallel Streams

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 10MB 12MB 14MB 16MB

Window Size

Pe
rc

en
t I

nc
re

as
e

fr
om

 S
ta

nd
ar

d
TC

P

HighSpeed TCP

Scalable TCP

Figure 48. Percent Increase for Sixteen Parallel Streams.

Using parallel streams resulted in little, if any, performance increase by using the
alternative congestion control algorithms. For large numbers of parallel streams
a decrease in performance was observed when using large window sizes.
Parallel streams accomplished their goal and effectively mask the effect of a
single drop well enough that Standard TCP performed within 7% of HighSpeed
TCP for two parallel streams. Standard TCP even outperforms both HighSpeed
and Scalable TCP when using large window sizes for 8, not shown, and 16
parallel streams.

 42

Conclusions

Both HighSpeed TCP and Scalable TCP implement simple changes to the
currently used congestion control algorithm. These changes have both a positive
and negative effect on existing network traffic. Each alternative algorithm
provides higher channel utilization for the high speed, long delay environment.
However, the alternative algorithms do not share the channel equally when
mixed with Standard TCP traffic. In a homogenous environment, both the overall
channel utilization and sharing between streams increases, as compared to a
mixed environment. Future work is needed to study the effects of more than two
competing streams.

 43

References

[1] W. Noureddine, F. Tobagi. The Transmission Control Protocol, URL

http://citeseer.nj.nec.com/noureddine02transmission.html, 2002

[2] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM 1988.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control, Internet

RFC 2581, April 1999.

[4] S. Floyd. HighSpeed TCP for Large Congestion Windows. Internet Draft <

draft-ietf-tsvwg-highspeed-01.txt>, August 2003. Work in progress.

[5] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area

Networks, URL http://www-lce.eng.cam.ac.uk/~ctk21/scalable/, December
2002

[6] High-Speed TCP, URL http://www.hep.man.ac.uk/u/garethf/hstcp

[7] Scalable TCP, URL http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

[8] MAGNET -- Monitoring Apparatus for General kerNel-Event Tracing, URL

http://public.lanl.gov/radiant/research/measurement/magnet.html

 44

Distribution

1 MS 0801 M.R. Sjulin, 9330
1 MS 0805 W.D. Swartz, 9329
1 MS 0806 C.R. Jones, 9322
1 MS 0806 Len Stans, 9336
1 MS 0806 J.P. Brenkosh, 9336
1 MS 0806 J.M. Eldridge, 9336
1 MS0806 A.Ganti, 9336
1 MS 0806 S.A. Gossage, 9336
1 MS 0806 T.C. Hu, 9336
1 MS 0806 B.R. Kellogg, 9336
1 MS 0806 L.G. Martinez, 9336
1 MS 0806 M.M. Miller, 9336
1 MS 0806 J.H. Naegle, 9336
1 MS 0806 R.R. Olsberg, 9336
1 MS 0806 L.G. Pierson, 9336
1 MS 0806 T.J. Pratt, 9336
1 MS 0806 J.A. Schutt, 9336
1 MS 0806 T.D. Tarman, 9336
1 MS 0806 J.D. Tang, 9336
1 MS 0806 L.F. Tolendino, 9336
1 MS 0806 D.J. Wiener, 9336
1 MS 0806 E.L. Witzke, 9336
1 MS 0812 M.J. Benson, 9334
1 MS 0826 J. D. Zepper, 9324

1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616 (2)

	Abstract
	Contents
	Figures
	Background
	Introduction
	Standard TCP
	HighSpeed TCP
	Scalable TCP
	Summary of TCP Congestion Control Algorithms

	Lab Experiments
	Test Environment
	Back-to-Back
	Back-to-Back with delay
	Two-to-One with delay
	Adjusting Scalable TCP a,b Values
	Txqueuelen Testing
	Parallel Stream Testing

	Conclusions
	References
	Distribution

