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Abstract 
 
Sandia, Los Alamos, and Lawrence Livermore National Laboratories currently 
deploy high speed, Wide Area Network links to permit remote access to their 
Supercomputer systems.  The current TCP congestion algorithm does not take 
full advantage of high delay, large bandwidth environments.  This report involves 
evaluating alternative TCP congestion algorithms and comparing them with the 
currently used congestion algorithm.  The goal was to find if an alternative 
algorithm could provide higher throughput with minimal impact on existing 
network traffic.  The alternative congestion algorithms used were Scalable TCP 
and HighSpeed TCP.  Network lab experiments were run to record the 
performance of each algorithm under different network configurations.  The 
network configurations used were back-to-back with no delay, back-to-back with 
a 30ms delay, and two-to-one with a 30ms delay.  The performance of each 
algorithm was then compared to the existing TCP congestion algorithm to 
determine if an acceptable alternative had been found.  Comparisons were made 
based on throughput, stability, and fairness.   
 
 
 
 
 
 
 
 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, a  
Lockeed Martin Company for the United States Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 
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Background 
 
Network congestion occurs when a machine (computer, router, switch, etc) 
receives data faster than it can process.  Congestion leads to dropped packets.  
For connection oriented protocols, such as TCP, since the destination does not 
receive the dropped packet, no acknowledgement is sent to the sender.  
Therefore, the sender retransmits the lost packet, possibly leading to more 
congestion.  Network congestion led to several collapses of the Internet in the 
late 80’s. 
 
When TCP was first standardized in 1980 the standard did not include any 
congestion control mechanisms [1].  TCP congestion control was created to allow 
TCP connections to recover from a lost packet more gracefully.  A congestion 
window (Cwnd) was implemented to limit the amount of outstanding data 
(unacknowledged packets) a connection can have at any given time.  The 
congestion window is resized upon receiving an ACK for new data or a 
congestion event (receiving duplicate ACKs for the same data or a timeout). 
 
The TCP congestion control algorithm used today is based on the algorithms 
proposed by Van Jacobson in 1988 [2].  This TCP congestion control algorithm 
was designed over a decade ago for much lower bandwidth speeds than used 
today.  The network speeds used then were around 32Kbps.  Sandia, Los 
Alamos, and Lawrence Livermore National Laboratories are currently connected 
using a 2.5Gbps network, over 78000 times the speed used in 1988.  With the 
current high speed, long delay networks, an alternative congestion control could 
possibly provide better utilization of the channel.  The alternative congestion 
control algorithms being tested are HighSpeed TCP and Scalable TCP. 
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Introduction 
 
Standard TCP 
Standard TCP uses the congestion control algorithms described in RFC2581 [3].  
The algorithms used are:  slow start, congestion avoidance, fast retransmit, and 
fast recovery.  A TCP connection is always using one of these four algorithms 
throughout the life of the connection.   
 
Slow Start 
After a TCP connection is established, the initial congestion algorithm used is the 
slow start algorithm.  During slow start, the congestion window is increased by 
one segment for every new ACK received.  The connection remains in slow start 
until one of three events occurs.  The first event is when the congestion window 
reaches the slow start threshold.  The connection then uses the congestion 
avoidance algorithm after the congestion window is greater than, or equal to, the 
slow start threshold.  The slow start threshold, ssthresh, is a variable used to 
determine when the connection should change from the slow start algorithm to 
the congestion avoidance algorithm.  The initial value for ssthresh is set to an 
arbitrarily high value [3], this value is not usually reached during the initial slow 
start after a new connection is established.  The second event is receiving 
duplicate ACKs for the same data.  Upon receiving three duplicate ACKs, the 
connection uses the fast retransmit algorithm.  The last event that can occur 
during slow start is a timeout.  If a timeout occurs, the congestion avoidance 
algorithm is used to adjust the congestion window and slow start threshold.   

 
Figure 1.  Example of Slow Start.  
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Figure 1 is an example of slow start for a TCP connection.  The 30ms delay 
between increases is the round-trip time (RTT) for the given example.  The figure 
shows the outstanding data bytes for the connection.  Observe how the 
outstanding data doubles every RTT, this indicates that the congestion window is 
doubling each RTT.  The outstanding data levels off at 3,740,000 bytes.  For the 
given example, this is the maximum outstanding data possible given by the 
bandwidth-delay product.  The bandwidth-delay product is the bandwidth 
multiplied by the delay; In the case of the example, it is 1Gb/s * 30ms = 30Mb or 
approximately 3.75MB.  The bandwidth-delay product gives you the number of 
bytes it takes to fill the channel that you are using. 
 
Congestion Avoidance 
The congestion avoidance algorithm consists of two parts, additive increase (AI) 
and multiplicative decrease (MD), referred to as AIMD.  When in congestion 
avoidance, additive increase is used to adjust the congestion window after 
receiving new ACKs.  Multiplicative decrease is used to adjust the congestion 
window after a congestion event occurs. 
 
Additive Increase 
After receiving an ACK for new data, the congestion window is increased by 
(MSS)2/Cwnd, where MSS is the maximum segment size, this formula is known 
as additive increase.  The goal of additive increase is to open the congestion 
window by a maximum of one MSS per RTT.  Additive increase can be described 
by using equation (1): 
 Cwnd = Cwnd + a*MSS2/Cwnd (1) 

where the value of a is a constant, a = 1. 
 
Multiplicative Decrease 
Multiplicative decrease occurs after a congestion event, such as a lost packet or 
a timeout.  After a congestion event occurs, the slow start threshold is set to half 
the current congestion window.  This update to the slow start threshold follows 
equation (2): 
 ssthresh = (1 – b)*FlightSize (2) 

FlightSize is equal to the amount of data that has been sent but not yet ACKed 
and b is a constant, b = 0.5.  Next, the congestion window is adjusted 
accordingly.  After a timeout occurs, the congestion window is set to one MSS 
and the slow start algorithm is reused.  The fast retransmit and fast recovery 
algorithms cover congestion events due to lost packets. 
 
Fast Retransmit 
The fast retransmit algorithm was designed to quickly recover from a lost packet 
before a timeout occurs.  When sending data, the fast retransmit algorithm is 
used after receiving three duplicate ACKs for the same segment.  After receiving 
duplicate ACKs, the sender immediately resends the lost packet, to avoid a 
timeout, and then uses the fast recovery algorithm. 
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Fast Recovery 
The fast recovery algorithm is used to avoid setting the congestion window equal 
to one MSS segment after a dropped packet occurs.  After a drop occurs, the 
multiplicative decrease portion of congestion avoidance is then used to update 
the slow start threshold.  Next, the congestion window is set to the new value of 
ssthresh.  After the window size is decreased, additive increase is used to 
reopen the congestion window.  
 
Figure 2 shows an example of the outstanding data for a TCP connection and 
illustrates the performance of congestion control.  The connection starts using 
the slow start algorithm until the channel is filled and then switches congestion 
avoidance.  In the example, a single drop occurs around three seconds.  The fast 
retransmit and recovery algorithms are used to resend the lost segment and then 
cut the congestion window in half.  Additive increase is used after the drop to 
reopen the congestion window. 

 
Figure 2.  Standard TCP Congestion Control. 

 
HighSpeed TCP 
HighSpeed TCP was proposed by Sally Floyd as a sender-side alternative 
congestion control algorithm [4].  HighSpeed TCP attempts to improve the 
performance of TCP connections with large congestion windows.  Another goal 
of HighSpeed TCP is to behave similarly to Standard TCP when using small 
congestion windows. 
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HighSpeed TCP uses the same slow start and fast retransmit and recovery 
algorithms that are implemented in Standard TCP.  Modifications were only made 
to the congestion avoidance algorithm. 
 
Congestion Avoidance 
HighSpeed TCP still uses an AIMD congestion avoidance algorithm.  The 
changes made involved adjusting the increase and decrease parameters, more 
specifically the a and b parameters in equations (1) and (2) respectively.  The 
new parameters are found in a table and are based on the current congestion 
window in MSS segments, given by equation (3).   
 w = Cwnd/MSS (3) 

The table is created using equations (4) and (5): 
 a(w) = (HW2 * HP * 2 * b(w)) / (2 – b(w)) (4) 
 b(w) = (((HD – 0.5) * (log(w) – log(HW))) / (log(LW) – log(w))) + 0.5 (5) 

HW = 83000, HP = 10-7, LW = 38, and HD = 0.1.  The first 5 values generated for 
the HighSpeed TCP table are given below in Table 1. 

w a(w) b(w) 
38 1 0.50 

118 2 0.44 
221 3 0.41 
347 4 0.38 
495 5 0.37 

Table 1.  HighSpeed TCP Table. 

 
Additive Increase 
Equation (1) can be rewritten as equation (6) to show HighSpeed TCP’s additive 
increase formula. 
 Cwnd = Cwnd + a(w)*MSS2/Cwnd (6) 

The goal of HighSpeed TCP’s additive increase is to open the congestion 
window by a(w) each RTT.  Equation (6) allows for large congestion windows to 
open faster than equation (1) would have allowed. 
 
Multiplicative Decrease 
Highspeed TCP follows the same multiplicative decrease algorithm as Standard 
TCP except for the following change to equation (2).  Equation (7): 
 ssthresh = (1 – b(w))*FlightSize (7) 

The congestion window is resized the same as in Standard TCP after detecting a 
lost packet, using fast recovery, or a timeout occurs. 
 
Figure 3 shows an outstanding data plot for a connection using HighSpeed TCP 
and shows how the congestion control algorithms function.  The example shows 
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that the same slow start algorithm is used.  A single drop occurs at around 1 
second.  This lead to the fast retransmit and recovery algorithms being used.  At 
the time of the drop Cwnd ~ 3.6MB.  Using equation (3) and Table 1, w = 408 
segments so b(w) = 0.37.  After the congestion window is reduced to ~2.4MB or 
w = 262, a(w) = 4.  A slight bend in the linear increase is observed around 2.5 
seconds.  This bend is when w becomes greater than 347 and uses a(w) = 5. 

 
Figure 3.  Example of HighSpeed TCP Congestion Control. 

 
Scalable TCP 
Tom Kelly proposed Scalable TCP as another alternative sender-side congestion 
control algorithm [3].  The goal of Scalable TCP is to quickly recover from short 
congestion periods. 
 
Congestion Avoidance 
Scalable TCP uses a different congestion avoidance algorithm than Standard 
TCP.  Scalable TCP uses a multiplicative increase multiplicative decrease 
(MIMD) rather than the AIMD of Standard TCP. 
 
Multiplicative Increase 
The multiplicative increase occurs when the standard additive increase would 
normally occur.  Equation (8) shows the formula used to adjust the congestion 
window after receiving a new ACK. 
 Cwnd = Cwnd + a*Cwnd (8) 

where a is adjustable, the value of a used was 0.02. 
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Multiplicative Decrease 
The multiplicative decrease is the same as Standard TCP except that the value 
of b in equation (2) is adjustable, the value of b used was 0.125. 
 
Figure 4 shows an example of a Scalable TCP connection and the congestion 
control algorithm that it uses.  The connection starts in the slow start algorithm 
until the channel is filled.  Next the connection uses the multiplicative increase 
portion of congestion avoidance to adjust the congestion window.  After a single 
drop occurs around 1.4 seconds, the fast retransmit and recovery algorithms are 
used to cut the congestion window by 0.125, the value of b, and congestion 
avoidance is used again to reopen the congestion window. 

 
Figure 4.  Example of Scalable TCP Congestion Control. 

 
Summary of TCP Congestion Control Algorithms  
Table 2 gives an overview of the congestion control algorithms used. 
 
  Increase Decrease a,b Values Algorithm 
Standard TCP a*MSS2/Cwnd b*FlightSize Constant AIMD 
HighSpeed TCP a(w)*MSS2/Cwndb(w)*FlightSize Varies AIMD 
Scalable TCP a*Cwnd b*FlightSize Adjustable MIMD 

Table 2.  Summary of Congestion Control Algorithms. 
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Lab Experiments 
 
Test Environment 
The test environment consisted of three Dell PowerEdge™ 2650 servers.  Each 
system had dual 2.8GHz Intel® Xeon™ processors, 1GB of memory, and Intel® 
PRO/1000 Network Interface Cards (NICs).  The operating system used in the 
test environment was RedHat 9.  A separate kernel was built for each congestion 
control algorithm.  The kernel used for Standard TCP was a standard 2.4.20.  
HighSpeed TCP and Scalable TCP each used a modified 2.4.19 kernel.  
HighSpeed TCP used a 2.4.19-hstcp kernel; the HighSpeed TCP patch was 
downloaded from [6].  Scalable TCP used a 2.4.19scale0.5.1 kernel; the Scalable 
TCP patch was downloaded from [7]. 
 
The software used to test network performance was Iperf v1.7.0, tcpdump v3.7.2 
(with libpcap v0.7.2), tcptrace v6.4.2, and a slightly modified version of Ethereal 
v0.9.13.  Iperf is a networking tool that allows the maximum bandwidth to be 
measured.  Iperf measures the maximum bandwidth by performing memory to 
memory data transfers.  The hardware used was a Spirent Communications 
Adtech AX/4000™ and a Network Associates Giga-bit Sniffer.  The AX/4000™ 
was used to simulate delays in the network.  The Sniffer was used to capture 
network traffic for analysis. 
 
Capture problems 
During the experiments, tcpdump had difficulty accurately capturing network 
traffic at a full 1Gbps.  Tcpdump would drop 5-30% of the packets seen.  Since 
tcpdump was running on one of the computers involved in the test, tcpdump 
could have also affected the performance of the computer by utilizing system 
resources.  Different capture techniques were used in an attempt to accurately 
capture network traffic.  The goal was to find a capture technique that did not 
affect the test streams performance or drop packets.   
 
The first alternative capture technique used was the Adtech AX/4000™ capture 
units.  The Adtech capture units satisfied the goal of not dropping packets or 
affecting the test streams.  A conversion routine was written to convert the 
Adtech capture files to a file format that could be analyzed, such as a tcpdump 
file.  Figure 5 shows a comparison of an Adtech capture vs. a tcpdump capture 
taken during slow start.  The Adtech capture accurately shows more detail than 
the tcpdump capture.  The problem with the Adtech capture units was that they 
captured the entire packet; capturing the entire packet resulted in only saving half 
a seconds worth of network traffic.  This was determined to be an insufficient 
amount of time and another technique had to be found. 
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Figure 5.  Comparison of Outstanding Data Plots (Adtech-left, tcpdump-right). 

The second technique used was a software add-on to the Linux kernel called 
MAGNET.  MAGNET is a kernel event tracker developed at Los Alamos National 
Laboratories [8].  MAGNET did capture packets successfully.  The problem with 
MAGNET was that a conversion routine was needed to reassemble the events 
that it captured.  MAGNET captured TCP, IP, and socket events separately; to 
create a tcpdump compatable format these three events would have to be 
reassembled to create a single event.  No statistics were available for packet loss 
so it could not be determined if the time to write the conversion routine would be 
worthwhile.  In the end, there would have been no way to determine if MAGNET 
was capturing all the packets and that it was not affecting the processors 
performance. 
 
The last technique used was a Network Associates Sniffer.  The Sniffer satisfied 
the goals of not dropping packets or affecting the test streams.  The capture files 
from the Sniffer were converted to tcpdump format using Ethereal.  It was then 
noticed that Ethereal did not correctly convert the timestamps.  To solve this 
problem the source code for Ethereal was modified to correctly convert the 
timestamps.  This conversion allowed for Sniffer capture files to be analyzed 
using tools such as tcptrace.  The limitations on the Sniffer were a 72MB buffer, 
which allowed for capturing around twenty seconds of network traffic. 
 
Tuning parameters 
The following tuning parameters were used on both senders and receivers. 
 
#configure for jumbo frames 
ifconfig eth2 mtu 9000 
#using the default value of txqueuelen 
ifconfig eth2 txqueuelen 100 
#timestamps are on by default 
echo 1 > /proc/sys/net/ipv4/tcp_timestamps 
#window scaling is on by default 
echo 1 > /proc/sys/net/ipv4/tcp_window_scaling 
#selective ack is on by default 
echo 1 > /proc/sys/net/ipv4/tcp_sack 
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echo 8388608 > /proc/sys/net/core/wmem_max 
echo 8388608 > /proc/sys/net/core/rmem_max 
echo "4096 87380 4194304" > /proc/sys/net/ipv4/tcp_rmem 
echo "4096 65536 4194304" > /proc/sys/net/ipv4/tcp_wmem 
 
The window sizes were chosen based on the bandwidth-delay product of 
3.75MB.  The following command was also run before each test was executed. 
 
/sbin/sysctl –w net.ipv4.route.flush=1 

 
Flushing the route reset the slow start threshold (ssthresh) for all connections.  
This needed to be done to allow for repeatable test results. 
 
Back-to-Back 
The back-to-back test was run to verify that the congestion control algorithms did 
not affect network performance given ideal network conditions, no delay and no 
competing traffic.  A network diagram is shown in Figure 6. 
 

Client Server
 

Figure 6.  Network Diagram:  Back-to-Back. 

The results from the back-to-back test showed that the congestion control 
algorithms behave similarly in this network environment.  Figure 7 shows the 
throughput for the tested algorithms using standard ethernet frames, MTU = 
1500, and various window sizes.  The results shown are an average of 10 Iperf 
tests.  The Iperf tests used were each run for ten seconds.  Scalable TCP shows 
slightly lower performance for 1MB and 4MB windows.  These performance 
numbers are the result of a single bad run for each of these window sizes.  The 
other nine tests for 1MB and 4MB windows reported throughput numbers of 
940Mb/s. 
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Figure 7.  Back-to-Back Throughput - MSS = 1448 bytes. 

Figure 8 shows the throughput for the tested algorithms using jumbo frames, 
MTU = 9000, and various window sizes.  For jumbo frames, the three algorithms 
behaved similarly for all window sizes. 
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Figure 8.  Back-to-Back Throughput - MSS = 8948 bytes. 
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Back-to-Back with delay 
For the back-to-back with delay test a delay of 30ms delay was added to the 
back-to-back test setup.  The 30ms delay was chosen to simulate the RTT from 
Sandia to Lawrence Livermore.  This test allows the behavior of each congestion 
control algorithm to be observed in the environment, long delay and high 
bandwidth, that it is being tested for.  The back-to-back with delay circuit is 
shown in Figure 9. 
 

Client Server 

30ms 
Delay

Capture 
Unit

Capture 
Unit

Adtech Circuit

 
Figure 9.  Network Diagram:  Back-to-Back with Delay. 

Figure 10 shows the results using standard Ethernet frames.  The test results 
shown use the same principles as the back-to-back tests, that is that they are the 
average of ten-10 second Iperf tests.  The results are fairly consistent for each of 
the tested algorithms.  The biggest exception occurs when using 512KB 
windows.  For 512KB windows, HighSpeed TCP performed better than Standard 
TCP, while Scalable TCP performed worse than Standard TCP. 
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Figure 10.  Back-to-Back with Delay Throughput - MSS = 1448 bytes. 
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Figure 11 shows the results using jumbo frames.  In this case, the three 
algorithms perform the same until 3MB windows.  For window sizes greater than 
3MB, HighSpeed TCP outperformed Standard TCP by over 100Mb/s, roughly a 
14% increase in throughput.  Scalable TCP also performed better than Standard 
TCP by around 70Mb/s, an 8% increase in throughput. 
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Figure 11.  Back-to-Back with Delay Throughput - MSS = 8948 bytes. 

The increase in performance is unexpected since the difference between the 
algorithms is the congestion control mechanisms.  Upon further investigation, it 
was noticed that the test streams are backing off periodically.  The back off does 
not seem to be the result of a network congestion event.  The back off for each 
TCP algorithm is shown in Figure 12. 
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Figure 12.  Back off with txqueuelen=100. 

Figure 12 shows the outstanding data bytes for a test stream using jumbo frames 
and 16MB windows.  From the figure, each algorithm cuts the window back after 
slow start ends.  It does not appear to be a network congestion event since the 
outstanding data window after the decrease is equal for all three algorithms.  The 
performance increase for HighSpeed TCP and Scalable TCP occurs because of 
the way each algorithm recovers from this back off.  The back off also seems to 
be periodic, as shown by HighSpeed TCP and Scalable TCP.  The back off also 
occurs on a regular interval for Standard TCP but this is not shown in Figure 12.  
By altering the txqueuelen, the back off eventually goes away and all three 
algorithms obtain the same performance.  For the remainder of the evaluation, 
the default value of txqueuelen=100 was kept and effects of txqueuelen are 
investigated in a later section.  
 
Two-to-One with delay 
The two-to-one test was run to evaluate the fairness of the congestion control 
algorithms.  For the two-to-one test, the 30ms delay was kept for the network 
setup.  The setup used for the two-to-one test is shown in Figure 13. 
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Figure 13.  Network Diagram:  Two-to-One with Delay. 

A Sniffer was used to capture the traffic of the competing streams.  The captures 
were taken to observe how each of the streams share the channel.  The following 
figures show throughput plots for competing streams.  Iperf tests were used to 
generate the test streams; each stream used jumbo frames, 9000 byte MTU’s, 
with 16MB window sizes and was run for 20 seconds.  The captures taken are of 
a single run and show the behavior for different competing streams. 
 
In Figure 14, clients 1 and 2 are using Standard TCP. 

 
Figure 14.  Standard TCP vs. Standard TCP (20 seconds). 
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To determine if two Standard TCP streams oscillate, tcpdump was used to 
capture a 240 second test.  Tcpdump was used since it was the only capture 
method that could be used for a 240 second test.  The results are shown in 
Figure 15.  From Figure 15, it appears that Standard TCP streams do oscillate, 
sharing the bandwidth. 

  
Figure 15.  Standard TCP vs. Standard TCP (240 seconds). 

In Figure 16, client1 is using HighSpeed TCP and client 2 is using Standard TCP. 
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Figure 16.  HighSpeed TCP vs. Standard TCP. 

In Figure 17, client 1 is using Scalable TCP and client 2 is using Standard TCP.  
Scalable TCP shares very little of the bandwidth with Standard TCP in Figure 17. 

 
Figure 17.  Scalable TCP vs. Standard TCP. 

In Figure 18, clients 1 and 2 are using HighSpeed TCP. 
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Figure 18.  HighSpeed TCP vs. HighSpeed TCP. 

 
In Figure 19, clients 1 and 2 are using Scalable TCP. 

 
Figure 19.  Scalable TCP vs. Scalable TCP. 
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Longer captures were taken of HighSpeed TCP vs. HighSpeed TCP and 
Scalable TCP vs. Scalable TCP using tcpdump.  In both cases, the captures 
showed that they oscillate similar to two Standard TCP streams in Figure 15. 
 
Figure 20 shows the average results of ten-10 second Iperf tests using jumbo 
frames.  For window sizes greater than 2MB, the second Standard TCP stream 
only gets 38% of the channel with an average of 308Mb/s vs. 500Mb/s of the first 
Standard TCP stream. 
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Figure 20.  Standard TCP vs. Standard TCP. 

Figure 21 shows a HighSpeed TCP stream and a Standard TCP stream using 
jumbo frames.  For window sizes greater than 2MB, HighSpeed TCP allows the 
Standard TCP stream 35.5% of the channel with an average throughput of 
285Mb/s vs. 520Mb/s of HighSpeed TCP. 
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Figure 21.  HighSpeed TCP vs. Standard TCP. 

Figure 22 shows the throughput from a Scalable TCP stream and a Standard 
TCP stream.  For window sizes greater than 2MB, Standard TCP only gets an 
average of 29.5% of the channel with 242Mb/s vs. 582Mb/s of Scalable TCP. 
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Figure 22.  Scalable TCP vs. Standard TCP. 
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Two-to-One testing shows the fairness between two competing streams.  For 
ten-10 second Iperf tests, Standard TCP shares 38%, HighSpeed TCP shares 
35%, and Scalable TCP shares 29.5%.   
 
Adjusting Scalable TCP a,b Values 
Scalable TCP uses adjustable values for the increase and decrease parameters, 
a and b used in equations (2) and (8).  The current values used were the default 
values included in the Scalable TCP Linux kernel, a=1/50 and b=1/8, providing 
an increase of 2% each RTT and a decrease of 12.5% on a congestion event.  
Alternative a,b values could continue to provide higher overall throughput and 
possibly increase the fairness with existing traffic.  The alternative a,b values 
were chosen to keep the a/b ratio currently used, a/b=(1/50)/(1/8) = 4/25, and the 
a/b ratio described by Tom Kelly in [5], a/b=(1/100)/(1/8) = 2/25.  For each a/b 
ratio, four different a,b sets were chosen.  The sets will be described in [a,b] 
notation.  For a/b=2/25, the following values were used [1/25,1/2], [1/50,1/4], 
[1/100,1/8], and [1/200,1/16].  For a/b=4/25, the following values were used 
[2/25,1/2], [1/25,1/4], [1/50,1/8], and [1/100,1/16]. 
 
Two-to-one with 30ms delay tests were run using each [a,b] pair.  The results 
would allow to observe the effects that each [a,b] pair had on the overall 
combined throughput and the fairness between streams.  Figures 23-30 show the 
results for various window sizes using MSS = 8948 bytes for each [a,b] pair.  The 
results are the average of ten-10 second Iperf tests.  In each figure, a Standard 
TCP stream and a Scalable TCP stream, each with a different [a,b] pair, were 
used. 
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Figure 23.  Scalable TCP using a=1/25, b=1/2. 
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Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/50,b=1/4
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Figure 24.  Scalable TCP using a=1/50, b=1/4. 
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Figure 25.  Scalable TCP using a=1/100, b=1/8. 
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Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/200,b=1/16
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Figure 26.  Scalable TCP using a=1/200, b=1/16. 
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Figure 27.  Scalable TCP using a=2/25, b=1/2. 
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Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/25,b=1/4
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Figure 28.  Scalable TCP using a=1/25, b=1/4. 
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Figure 29.  Scalable TCP using a=1/50, b=1/8. 
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Two-to-One w ith 30ms delay - MSS = 8948 bytes - a=1/100,b=1/16
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Figure 30.  Scalable TCP using a=1/100, b=1/16. 

Each [a,b] pair was then ranked based on the results from Figures 23-30.  The 
ranking was based on two variables.  The first was the combined throughput of 
both streams; this had the most impact on the overall rating.  The second 
variable used was Standard TCP’s throughput; this was looked at if two [a,b] 
pairs had similar overall throughput to allow an [a,b] pair that shared more to rank 
higher.  The rankings are shown in Table 3. 

Rank a b 
1 1/100 1/8 
2 1/50 1/4 
3 1/25 1/4 
4 1/50 1/8 
5 1/200 1/16 
6 1/25 1/2 
7 1/100 1/16 
8 2/25 1/2 

Table 3.  Scalable TCP a,b pair rankings. 

From Table 3, the [a,b] pair that had been used, [1/50,1/8], was only the fourth 
best.  Switching to [1/100,1/8] would provide higher overall throughput and 
around the same throughput as [1/50,1/8] for Standard TCP, as shown in Figures 
25 and 29. 
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Txqueuelen Testing 
The results of the back-to-back testing showed that the txqueuelen has an impact 
on the maximum throughput of the test streams.  Alternative values of txqueuelen 
were tested to better observe the impact on each of the TCP congestion control 
algorithms.  The goal of testing various txqueulen’s was to find if an alternative 
value could provide higher throughput without decreasing the current levels of 
sharing.  For Standard TCP, the txqueuelen was varied from 5-250 in increments 
of five using the back-to-back with delay test setup.  The test parameters used 
were a window size of 16MB and MSS=8948 bytes.  Figure 31 shows the 
throughput results for the various txqueuelen’s.  The highlighted bar indicates 
txqueuelen = 100.  From Figure 31, using txqueuelen = 100 results in 828 Mb/s 
while using a value >210 results in 966 Mb/s, an increase of 16%.  From the 
back-to-back with delay test setup, using a txqueuelen > 210 would result in the 
highest throughput. 
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Figure 31.  Standard TCP throughput for various txqueuelen’s. 

To determine what type of effect changing the txqueuelen has on competing 
streams, Two-to-One tests were performed using different values for txqueuelen.  
The values used for txqueuelen were 5, 15, 20, 60, 95, 100, 105, 155, 200, 205, 
210, and 250.  Figure 32 shows the throughput graph using a txqueuelen of 100 
and jumbo frames.  From Figure 32, eight different window sizes result in a 
combined throughput of 800+ Mb/s.  For txqueuelen = 100, the average 
combined throughput for window sizes 2MB-16MB is 808Mb/s.  Figure 33 shows 
the throughput graph using a txqueuelen of 250 and jumbo frames.  In Figure 33, 
there are no window sizes that result in a combined throughput of 800Mb/s.  For 
txqueuelen = 250, the average combined throughput for window sizes 2MB-
16MB is 767Mb/s, over 50Mb/s, or 5.3%, lower than the average for txqueuelen = 
100.   
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Figure 32.  Standard TCP Two-to-One using txqueuelen = 100. 
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Figure 33.  Standard TCP Two-to-One using txqueuelen = 250. 

Figure 34 shows the number of window sizes for each txqueuelen tested that 
result in 800+ Mb/s combined throughput.  The maximum number achievable 
would be 11; combined throughput of both streams resulted in 800+ Mb/s for 
window sizes in the range of 2MB-16MB (11 different window sizes) for all 
txqueuelen tested.  For Standard TCP, a txqueuelen of 100 provided the highest 
combined throughput values. 
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Two-to-One w ith 30ms delay - MSS = 8948 bytes - 2 Standard TCP Streams
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Figure 34.  Number of 800+ Mb/s throughputs for various txqueuelen’s. 

Varying the txqueuelen from 5-250 for Scalable TCP resulted in Figure 35.  A 
7.7% increase, 897 Mb/s vs. 966 Mb/s, in throughput is gained by using a 
txqueuelen >210 instead of the default value of 100. 
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Figure 35.  Scalable TCP throughput for various txqueuelen’s. 
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Figure 36 shows the results of Two-to-one testing using an MSS = 8948 bytes 
and a txqueuelen = 100. 
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Figure 36.  Scalable TCP and Standard TCP Two-to-One using txqueuelen = 100. 

Figure 37 shows the results of Two-to-One testing using a txqueuelen of 250. 
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Figure 37.  Scalable TCP and Standard TCP Two-to-One using txqueuelen = 250. 

From Figure 36 and 37, the increase of txqueuelen resulted in higher overall 
throughput but lowered the throughput for Standard TCP by almost half. 
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Figures 38 and 39 show the results of two-to-one testing with two Scalable TCP 
streams using a txqueuelen of 100 and 250, respectively.  The results are similar 
to those encountered by Standard TCP.  The higher txqueuelen of 250 provided 
lower combined throughput than the default value of 100.  The average 
combined throughput for 2MB-16MB window sizes was 897Mb/s for a txqueuelen 
of 100.  For a txqueuelen = 250, the average combined throughput was 886Mb/s, 
1.2% lower than with the default txqueuelen. 
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Figure 38.  Scalable TCP Two-to-One using txqueuelen = 100. 
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Figure 39.  Scalable TCP Two-to-One using txqueuelen = 250. 

 
Figure 40 shows the results of varying the txqueuelen from 5-250 for HighSpeed 
TCP.  A 2% increase, 948 Mb/s vs. 966 Mb/s, is gained by using a txqueuelen 
>210, over the default value of 100. 
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Figure 40.  HighSpeed TCP throughput for various txqueuelen’s. 

The two-to-one testing using HighSpeed TCP and different txqueuelen’s showed 
the same type of effects as Scalable TCP.  A txqueuelen of 250 resulted in 
higher overall throughput while reducing Standard TCP’s throughput.  These 
results are shown in Figures 41 and 42. 
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Figure 41.  HighSpeed TCP and Standard TCP Two-to-One using txqueuelen = 100. 
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Figure 42.  HighSpeed TCP and Standard TCP Two-to-One using txqueuelen = 250. 

Figures 43 and 44 show two-to-one tests with two HighSpeed TCP streams and 
txqueuelen’s of 100 and 250, respectively. 
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Two-to-One with 30ms delay - MSS = 8948 bytes - txqueuelen=100
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Figure 43.  HighSpeed TCP Two-to-One using txqueuelen = 100. 
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Figure 44.  HighSpeed TCP Two-to-One using txqueuelen = 250. 

Figures 43 and 44 show that the larger txqueuelen value of 250 again resulted in 
lower combined throughput values.  For HighSpeed TCP, the average combined 
throughput for window sizes 2-16MB was 824Mb/s for txqueuelen = 100.  Using 
txqueuelen = 250, the average combined throughput was slightly lower at 
817Mb/s. 
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Adjusting the txqueuelen provided higher throughput during the back-to-back 
testing.  However, adjusting the txqueuelen led to lower levels of sharing and 
decreased throughput in a homogenous environment during two-to-one testing.  
Based off these results, the default value of txqueuelen = 100 provided the most 
acceptable test results. 
 
Parallel Stream Testing 
Parallel streams are often used to increase network efficiency.  The way that 
parallel streams accomplish the increase in efficiency is as follows.  For N 
parallel streams, a single lost packet only affects a single stream, resulting in a 
reduction of that streams congestion window.  For each of the other N-1 streams, 
no change is made to the congestion window, so the current throughput for each 
N-1 streams is maintained. 
 
Parallel streams were tested using Iperf and the back-to-back with 30ms delay 
setup, Figure 9; Iperf contains a parallel stream parameter specifying the number 
of streams to use.  The number of streams to test was 2,4,8, and 16.  Figure 45 
shows the total throughput from two parallel for each TCP algorithm used.  For 
two parallel streams, the client in Figure 9 would initiate two separate test 
streams with the server.  The test streams used a MSS = 8948 bytes. 
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Figure 45.  Throughput for Two Parallel Streams. 

Figure 46 shows the percent increase over Standard TCP using two parallel 
streams for each window size using HighSpeed TCP and Scalable TCP.  From 
Figure 46, HighSpeed TCP and Scalable TCP had an increase in overall 
throughput of 1-7% for most window sizes. 
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Figure 46.  Percent Increase for Two Parallel Streams. 

Figure 47 shows the results using sixteen parallel streams. 
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Figure 47.  Throughput for Sixteen Parallel Streams. 

Figure 48 shows the percent increase over Standard TCP when using sixteen 
parallel streams.  For sixteen parallel streams, using HighSpeed TCP generally 
resulted in a decrease in performance of around 0.5-1%.  Scalable TCP resulted 
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in higher decreases than HighSpeed TCP did with some decreases at almost 3% 
below that of Standard TCP’s throughput values. 
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Figure 48.  Percent Increase for Sixteen Parallel Streams. 

 
Using parallel streams resulted in little, if any, performance increase by using the 
alternative congestion control algorithms.  For large numbers of parallel streams 
a decrease in performance was observed when using large window sizes.  
Parallel streams accomplished their goal and effectively mask the effect of a 
single drop well enough that Standard TCP performed within 7% of HighSpeed 
TCP for two parallel streams.  Standard TCP even outperforms both HighSpeed 
and Scalable TCP when using large window sizes for 8, not shown, and 16 
parallel streams. 
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Conclusions 
 
Both HighSpeed TCP and Scalable TCP implement simple changes to the 
currently used congestion control algorithm.  These changes have both a positive 
and negative effect on existing network traffic.  Each alternative algorithm 
provides higher channel utilization for the high speed, long delay environment.  
However, the alternative algorithms do not share the channel equally when 
mixed with Standard TCP traffic.  In a homogenous environment, both the overall 
channel utilization and sharing between streams increases, as compared to a 
mixed environment.  Future work is needed to study the effects of more than two 
competing streams. 
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