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Abstract 

We have investigated the possibility of constructing nanoscale metallic vehicles powered by 

biological motors or flagella that are activated and powered by visible light. The vehicle’s body 

is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or 

nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles 

is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system 

in the bilayer that can generate a pH gradient across the liposomal membrane. The proton 

gradient can fuel a molecular motor that is incorporated into the membrane. Some molecular 

motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the 

membrane, will use the pH gradient across the membrane to produce ATP from ADP and 

inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological 

components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic 

components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and 
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storable ADP, phosphate, water, and weak electron donor are required fuel components. These 

nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic 

reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such 

as light intensity and field gradients, in a manner similar to the way that magnetic bacteria 

navigate. The delivery package might include decision-making and guidance components, drugs 

or other biological and chemical agents, explosives, catalytic reactors, and structural materials. 

 We expected in one year to be able only to assess the problems and major issues at each 

stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with 

our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that 

metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of 

metallized liposomes with photosynthetic function included and studied these structures by 

electron microscopy. Both platinum and palladium nanosheeting have been used to coat the 

micelles. The stability of the vehicles to mechanical stress and the solution environment is 

enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous 

platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. 

However, with the liposomes drying on a TEM grid may cause the platinized liposomes to 

collapse, although probably stay viable in solution. It remains to be shown whether a proton 

motive force across the metallized bilayer membrane can be generated and whether we will also 

be able to incorporate various functional capabilities including ATP synthesis and functional 

molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP 

synthase into metallized liposomes and the incorporation of a molecular motor into metallized 

liposomes.  
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Introduction 

Our original idea of how a nanovehicle and its 

basic power system would be fabricated entirely 

by self-assembly and self-compartmentalization 

processes is illustrated in Fig 1.  These nanoscale 

metallic vehicles would be powered by biological 

motors that could be activated and driven by 

visible light.  We expected that the vehicle’s body 

would be composed of the surfactant bilayer of a 

liposome, which had been coated with metallic 

nanoparticles that are grown together into a 

porous single crystal.  This metallic shell could be 

synthesized on the inside (as shown) or outside 

surface of the surfactant bilayer of a liposome by a photocatalytic approach being developed at 

Sandia.  The power components of this nanovehicle, when exposed to light, generate a proton 

gradient across the bilayer membrane which could be used to drive the rotary motor of a 

flagellum to move the vehicle (see below).  However, incorporating the flagellum or other 

molecular propulsion systems into liposomes is a challenging problem.  The flagellum would 

have to be properly anchored into the membrane while allowing the flagellum to rotate, and it is 

not yet possible to reconstitute functioning flagella in this way, though a several groups are 

working on this problem.  Instead, linear motion could be achieved using kinesin motors to carry 

the metallized liposome by walking on microtubules, a technology being developed by George 

Bachand at Sandia.  The nanoscale vehicles envisioned are thus composed of both natural 

biological components (ATPase, molecular motors) and biomimetic components (vehicle 

housing, artificial photosynthetic membrane) as functional units.  Only light and storable ADP, 

Pi, water, and a weak electron donor such as a tertiary amine are required to fuel both motor and 

delivery-package components. These nanovehicles will be constructed entirely by self-assembly 

and photocatalytic processes.   

The ultimate goal is to develop a nanoscale vehicle that can move about to deliver a payload 

to a specific site.  The payload might be (1) the catalytic capability to produce a specific 

chemical or biochemical, (2) the ability to sense chemical or biological agents, (3) the ability to 
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Fig 1. The nanovehicle and its power source.  Light 
induces H2 evolution and a pH increase within the 
metallized liposome.  The pH gradient across the 
liposomal bilayer is used by ATP synthase, a 
molecular motor itself, to produce ATP.  The ATP 
produced can power other molecular motors such as 
myosin and kinesin.  

ATPase 



 5

spatially sort and organize molecules, (4) explosives, (5) nanoscale chemical reactors, and (6) 

construction materials.  If active payloads were constructed properly, different light-driven 

components within the vehicle might be turned on and off by using different colors of light, 

giving one the ability to move the nanovehicles and switch on their payloads independently. 

Previously, we had already demonstrated the construction of similar nanostructures.  In this 

case, the metal was crystalline platinum and the surfactant substrate was sodium dodecylsulfate 

(SDS) micelles instead of liposomes.   Micelles are small surfactant assemblies that are 

essentially composed of only a single layer of surfactant, as illustrated in Fig 2.  We had shown 

that it was possible to photocatalytically grow nanodendrites of Pt on the surface of micelles of 

SDS, and Fig 2 illustrates this synthetic process.  We have now extended this synthesis to the 

lipid bilayer surfaces of liposomes to create our nanovehicles.  Unlike micelles, liposomes are 

spheroidal bilayer structures that have an interior and an exterior surface and they enclose 

solvent in the interior space.  Liposomes of between 100 nm and a few microns are easily 

produced by extrusion of a surfactant solution through pores of a particular size.   

For the platinized surfactant assemblies, first a water-insoluble porphyrin is dissolved in the 

surfactant solution, which is then diluted and sonicated to form an aqueous solution containing 

the photocatalyst molecules.  Next, a Pt(II) salt solution, containing mostly PtCl2(H2O)2, and an 

electron donor (ascorbic acid) are added and the solution containing the desired surfactant 

assembly is illuminated with light from a tungsten lamp.  In this system, photoactivated electron 

Fig 2.  Synthesis of platinized micelles and liposomes.  For the micelles, Sn octaethylporphyrin is added to a 
solution of sodium dodecylsulfate (SDS) above the critical micellar concentration (green arrows).  This SnOEP 
solution is added to a solution of Pt complex and ascorbic acid and, under intense illumination with visible light, a 
Pt nanodendrite is grown on the micelle.  (A) a partially coated micelle, (B) a fully coated micelle, and (C) a larger 
nanodendrite on the micelle.. TEM images show that each nanodendrite is a single crystal.  Taking the bottom route 
(red arrows) leads to metallized liposomes as illustrated in Fig 1, the main goal of this work. 
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transfer from the porphyrin to reduce Pt(II) to the zero-valent metal occurs at the surfactant 

surface.  Within 5 minutes, the metal ions are reduced giving a platinized surfactant assembly 

containing the still active photocatalyst inside as indicated for micelles in Fig 2.   

 

Accomplishments 

We have fully studied the platinum-reduction reaction just described and found that under 

certain conditions the reaction also involves autocatalytic reduction of Pt(II) at the surface of 

growing metallic platinum nanodendrites.  That is, porphyrin-mediated photocatalytic reduction 

of Pt(II) grows platinum nanoparticles, which can then grow rapidly by autocatalytic oxidation of 

electron donors like ascorbic acid to produce 2- or 3-dimension nanodendrites. 

TEM images of the amazing 3-dimensional nanodendrites grown on micelles are shown in 

Fig 3.  The TEM studies show that the nanodendrite grown on each micelle is a single crystal.  

The crystallinity of the entire nanodendrite surrounding the micelle makes the nanoassembly a 

robust structure that survives for months in solution and even survives drying and re-suspension 

by sonication. 

We have generalized the synthesis of the micellar nanoassemblies to make platinized 

liposomal nanoassemblies like that illustrated in Fig 4 and similar to that proposed in Fig 1.  For 

the platinized liposomes, the photocatalytic porphyrin is located in the lipid bilayer.  After the Pt 

complex is depleted from solution, the photocatalytic tin porphyrin remains active, i.e., light is 

still able to drive the porphyrin-based photocatalytic reaction in the bilayer and thus electrons 

that would go into reducing 

Pt ions the go to the 

platinum metal, which is a 

well-known catalyst for 

reducing water to H2.  We 

have measured the 

efficiency of this reaction 

for the platinized micelles 

of Fig 3, and fully expect 

the reaction to be even more 

efficient for the platinized 

Fig 3.  Platinized micelles of controlled size produced by the photocatalytic 
generation of initial growth centers followed by autocatalytic growth into 
nanodendrites.  The nanodendrites are crystalline as shown by the atomic 
fringing evident in the high magnification TEM image on the right. 
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liposomes.  For the platinized liposomes, 

H2 evolution reaction takes up protons 

from water, raising the pH and generating a 

pH gradient across the liposomal 

membrane.  Although the platinized 

micelle nanodendrites evolve hydrogen, 

they could not serve as useful nanovehicles 

because they have only rudimentary 

compartmentalization of function.   

Further, the development of the light-

harvesting arrays presents a major problem 

for the micellar nanoassemblies because 

their small size makes the incorporation of 

a sizable light-harvesting array virtually 

impossible.   In contrast, the the platinized liposomal nanostructures like that illustrated in Fig. 2 

could allow a light-harvesting array to be included because of the large area of the liposomal 

membrane compared to the Pt coating.  Another advantage is that water-soluble and water-

insoluble porphyrins tend to self-organize both in the aqueous interior of the liposomes and 

within the hydrophobic environment of the liposomal membranes; the latter arrangement of the 

light receptors is preferable for energy transport.   For these reasons, we concentrated our effort 

on producing free-standing platinized liposomes for nanovehicle bodies. 

We were encouraged when it was found that using large liposomes as a template produced 

dendritic disk-like sheets (nano-caps) or solid foam-like nanomaterials (also see Fig 6).  TEM 

images of the nanocaps produced are shown in Fig 4.  This suggested that we might be able to 

coat the liposomes with the 2-nm thick platinum sheeting rather than the 3-dimensional 

nanodendrites shown in Fig 3.  Because of the dendritic nature of these 2-dimensional dendrites, 

the platinized liposomes will retain the needed porosity on the scale of small molecules while 

providing a thin platinum jacket around the liposome. 

 Further indications that individual liposomes might be coated with the Pt nanosheet came 

from TEM and SEM of the nanofoams shown in Fig 5.  The particular type of morphology 

obtained for the foams depends on light exposure, solution conditions, and size of the liposomes.  

50 nm 

b

30 nm 

c

Fig. 4.  Dendritic platinum nanocaps templated by liposomes. 
(a) HAADF scanning TEM image of three platinum nanocaps 
grown on 160-nm diameter DSPC liposomes.  (b) TEM image 
of a large dendritic Pt nanocap made using DSPC liposomes 
and (Inset) its electron diffraction pattern.  The surfactant 
assemblies cannot be seen in the TEM images because of the 
lack of contrast of carbon with the much denser Pt and the 
interference from the carbon film of the TEM grid. 
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Control over the 

morphology is provided 

by the diameter of the 

templating unilamellar 

DSPC/cholesterol 

liposomes.  The large 

cavities in the foams are 

determined by the size of 

the liposomes; when 65-

nm liposomes are used in 

the reaction, the cavities 

in the foams have this 

average size, and similarly 

when 120-nm or 165-nm 

liposomes are used 

instead, the cavities in the 

nanofoams reflect the 

larger liposomal size.  These cavities are particularly evident in the SEM images of Fig 5.  These 

results suggested that with not much more control over the structure obtained by varying the 

liposome size, photo-catalyst concentration, light exposure, and solution conditions, we might be 

able to produce free-standing platinized liposomes. 

For the Pt foams, we have indeed achieved additional control mainly by using the porphyrin 

photocatalyst incorporated into the liposomes.  Exposure of the reaction solution to incandescent 

light produces smaller balls of the foam and a more uniform ball size distribution (Fig 5).  

Varying the light exposure and porphyrin loading at constant platinum-salt concentration 

determines the size of the foam balls and 

even gives continuous foam phases under 

certain conditions.  This suggested that we 

might also vary the Pt concentration and 

light exposure to obtain individual 

liposome coated with 2-nm thick, 2-

dendrites 

Sn porphyrin
photocatalyst Liposome

bilayer 

300 nm 

b 
500 nm 

c 

200 nm

a 

Fig 5.  Foam-like balls composed of platinum nanosheets grown at the interfaces 
between aggregated DSPC liposomes.  The balls have a uniform size because the 
porphyrin photocatalyst initiates growth within the liposomal aggregates, and 
growth occurs along the interfaces between the liposomes in a spherically 
symmetric manner until the Pt(II) is exhausted.  (a) SEM image of the platinum 
foam balls.  (b) TEM image of the foam balls.  (c) Under certain condition the
growth centers are close enough so that growth leads to a continuous phase, 
which retains the nanoscale pore size dictated by the liposomal template. 

Fig 6.  Dendritic platinum nanocaps templated by liposomes; 
illustration of the growth of Pt nanocaps on the liposomal 
surface. 
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dimensional nanodendrites.  An 

early stage in this process is 

illustrated in Fig 6, where porphyrins 

in the liposomal membrane initiate 

the growth of nanodendrites that 

grow together to coat the entire 

surface.  

The nanoscale porosity is 

particularly evident in the isolated 

nanosheets or nano-caps that can be grown on the liposomes under certain condition (Figs 4(a) 

and 4(b)).  The nanocap growth process is illustrated in Fig 6.  The TEM images of the nanocaps 

in Fig 4 show the dendritic nature of the 2-dimensional nanostructures; the platinum metal foams 

are also clearly made up of joined 2-dimensional dendrites.  The platinum nanofoams will have 

potential applications in catalysis because of their high surface area, the ability to control their 

porosity on different length scales, and the possibility of tailoring their structural stability.  Fuel 

cells may be one commercial area in which the platinum nanofoams may have advantages.  

Most importantly for the nanovehicles, these liposomal structures coated with platinum 

sheeting further indicated that reaction conditions could be found that would allow individual 

liposomes to be fully coated with Pt metal.  Indeed, varying the reaction conditions has produced 

nanostructures for which TEM images clearly indicate the formation of liposomes with near 

complete coatings of either the nanosheets or the 3-dimensional dendritic platinum.  TEM 

images of some liposomes coated with platinum or palladium metal are shown in Fig 7.  The 

success in producing the platinized liposomes relies 

on the ability to increase the concentration of the 

photocatalytic porphyrin within the 

DSPC/cholesterol surfactant bilayer.   

Accomplishing this proved difficult, but ended up 

providing the desired conditions.   

Fig 8 shows the density profile of the large 

palladium coated liposome in Fig 7(b).  For a 

spherical shell of thin platinum sheeting, one would 

Fig 7.  (a) Platinized liposomes. (b) Liposomes coated with 
nanometer-thick palladium dendritic sheets. 

Fig 8.  Density profile of the large liposome 
coated with nanometer-thick palladium dendritic 
sheets  shown in Fig 7.  The profile suggests that 
the liposome is fully coated—Pt at the perimeter 
is thicker than in the middle suggesting a 
spherical structure which may have collapsed 
upon drying. 

70 nm 70 nm

a b 
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expect such a profile, with much platinum at the perimeter and 

only thin sheets for most of the interior.  The metallized liposome 

may have collapsed upon drying on the TEM grid. 

We have also been able to metallize liposomes with what 

appears to be a coating of the nanodendrites of the form observed 

on SDS micelles.  A TEM image of these metallized liposomes is 

shown in Fig 9.  Nanovehicles based on this type of nanostructure 

would also be possible and may offer some advantages over those 

jacketed with the 2-nm thick dendritic metal sheets.  

   

Summary and Conclusions 

The work accomplished so far has clearly demonstrated all of 

the elements required to produce a liposome coated with Pt 

nanosheets—the body of our nanovehicle—with the capability of 

evolving molecular hydrogen as a means of producing a proton 

gradient across the membrane when exposed to light.  It remains 

to be shown that these interesting nanostructures can be put to use as fully functional, light-

powered vehicles that can carry useful cargos.  If ATP synthase (ATPase) is embedded in the 

membrane, it should use the pH gradient to produce ATP from ADP and inorganic phosphate 

(Pi).  ATPase has been reconstituted into liposomes by others; the ATP produced could fuel any 

number of desirable biochemical reactions including motive systems.  

The most attractive motile system to attach to the metallized liposomes would be a bacterial 

flagellum with its motor directly incorporated into the liposomal membrane.  The flagellum 

motor does not require ATP, but is powered directly by the proton gradient across the plasma 

membrane.  It rotates at about 100 revolutions per second, powered by passive transport of 

protons back across the membrane.  Unfortunately, we do not yet have the ability to reconstitute 

flagella into liposomal membranes, although this capability may become available in the next 

few years.  In fact, the structural rigidity of the Pt shell around the liposome may aid in the 

incorporation of natural flagella. 

A more viable alternative approach is to use other biological motors and processes to propel 

the nanovehicles using the light-generated ATP as fuel.  For example, vesicle-attached kinesin-

70 nm 

Fig 9.  Liposomes coated with Pd 
metal dendrites similar to those 
coating SDS micelles and the 
density profile of one of the 
metallized liposomes. 
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like molecular motors might move the vesicle along a microtubule.  The kinesin-microtubule 

system is the system by which vesicles and organelles are transported within cells.  The 

microtubules form a railway system and kinesin connected to vesicles walks along the 

microtubule rails carrying the vesicles with it.  A single kinesin motor can move a vesicle along a 

microtubule.  The problems to be solved here are how to attach the kinesin motor to our 

liposome and how to get the ATP produced to the kinesin motor.  This most likely will require 

the reverse configuration to that shown in Fig 1, i.e., the Pt nanoparticles should be on the 

exterior and the ATPase should be inverted in the membrane, producing ATP outside the 

liposome and near the kinesin motor.  

Liposomes with incorporated photosystems that pump electrons vectorially across the bilayer 

membrane are being developed by others using carotenoid-porphyrin-quinone triads, and 

liposomes with incorporated chloroplast ATPase enzymes have produced both a proton motive 

force and an inter-membrane potential.  Our new approach uses a metallic shell to increase 

stability a much simpler and efficient photosynthetic system.  The previous work on soft 

liposomes demonstrates the chemical validity of our approach, but the soft liposomes lack the 

additional advantages offered by our metallized liposomes.  The stability of these vehicles to 

mechanical stresses and solution conditions seems to be enhanced by the single-crystalline metal 

coating on the vesicle.  Evidence for this comes from the TEM studies, which show that these 

nanostructures survive the stresses of drying during sample preparation.  The enhanced structural 

integrity of our metallized liposomes is expected to greatly aid in the attachment molecular 

motors.  The lack of a known method of attachment is now the major impediment to producing 

mobile liposomes.  One method of attachment might be to include gold nanoparticles on the 

outer surface and modify the motor proteins with self-assembling thiol groups. 

There are substantial risks associated with such radical biomimetic technologies, not the least 

of which is the question of whether effective motile systems can be incorporated even with the 

potential advantages offered by the proposed metallized liposomal nanoassemblies.  

Nevertheless, an attempt to use the metallized liposomes is appropriate given that they represent 

a radical departure from conventional liposomes and given that our approach is entirely different 

and potentially more robust.   

The applications of such nanoscale vehicles seem limitless provided that these nanobots can 

be made to move about and deliver a payload to a specific site.  The delivered package might 
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include decision-making and guidance components, drugs and other biological/chemical agents, 

explosives, and structural materials.  The payloads might be biomedical in nature such as 

delivering catalytic or enzymatic activity capable of correcting biochemical deficiencies.  Both 

biomedical and non-biomedical application of the ability to transport various sensor capabilities 

at the nanoscale can be envisioned.  The ability to spatially sort and organize molecules at the 

nanoscale could have interesting environmental and remote construction applications.  Imagine 

mining nanovehicles that hunt and retrieve valuable resources from mineral slurries.  They might 

transport, concentrate, and ignite explosives payloads on a nanoscale.  They might also provide 

mobile nanoscale chemical reactors for combinatorial procedures or provide chemical power in 

spatially confined regions.  If active payloads were constructed properly, different light-driven 

components within the vehicle might be turned on and off by using different colors of light, 

giving one the ability to move the nanovehicles and switch on their payloads independently.  

These nanovehicles can potentially respond to chemical gradients and other factors such as light 

intensity and field gradients.   
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