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Abstract 
 

The mouth of the Rio Grande has become silted up, obstructing its flow into the Gulf of Mexico.  
This is problematic in that it has created extensive flooding.  The purpose of this study was to 
determine the erosion and transport potential of the sediments obstructing the flow of the Rio 
Grande by employing a unique Mobile High Shear Stress flume developed by Sandia’s Carlsbad 
Programs Group for the US Army Corps of Engineers.  The flume measures in-situ sediment 
erosion properties at shear stresses ranging form normal flow to flood conditions for a variable 
depth sediment core.  The flume is in a self-contained trailer that can be placed on site in the 
field.  Erosion rates and sediment grain size distributions were determined from sediment 
samples collected in and around the obstruction and were subsequently used to characterize the 
erosion potential of the sediments under investigation. 
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1.0 Introduction 
Sandia deployed a field measurement technology that enables the determination of 

erosion and transport potential of sediments.  The study focused on the mouth of the Rio Grande 

where it enters the Gulf of Mexico.  The mouth of the Rio Grande has become silted up, 

obstructing its flow into the Gulf of Mexico.  This is problematic in that it has created extensive 

flooding on both the US and Mexican soil.  The purpose of this study was to determine the 

erosion and transport potential of the sediments obstructing the flow of the Rio Grande by 

employing a unique Mobile High Shear Stress flume developed by Sandia’s Carlsbad Programs 

Group for the US Army Corps of Engineers (USACE).  The flume is also employed extensively 

in collaborative efforts on near shore and fluvial systems throughout the United States. 

The technology deployed was the Mobile High Shear Stress Flume.  This device 

measures in-situ sediment erosion properties at shear stresses ranging from normal flow to flood 

conditions for a variable depth sediment core.  It is housed in a self-sufficient trailer that can be 

placed on site in the field.  Sediment samples were collected and erosion rates and sediment 

grain size distributions were determined.  The data derived from these tests will be used to 

characterize the erosion potential of the sediments analyzed, after which time concerns 

including: 1) water quality, use, management and conservation, 2) contaminant and sediment 

transport, 3) sand turbidity and intrachannel accumulation rates, 4) agricultural stress analyses, 

and 6) aquatic habitat evolution can be more accurately assessed. 
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2.0 Experimental Procedures 

2.1. Description of the Mobile High Shear Stress Flume 

The High Shear Stress Sediment Erosion Flume (Figure 2.1) is essentially a straight 

flume, which has a test section with an open bottom through which a rectangular, or circular 

cross-section coring tube containing sediment can be inserted.  The main components of the 

flume are: 1) the coring tube, 2) the test section, 3) an inlet section for uniform, fully developed, 

turbulent flow, 4) a flow exit section, 5) a water storage tank, and 6) a pump to force water 

through the system.  The coring tube, test section, inlet section, and exit section are made of clear 

acrylic or polycarbonate so that the sediment-water interactions can be observed.  The coring 

tube can be either rectangular with a 10 by 15 cm cross-section, or circular with a 10 cm 

diameter.  The length can be up to 1 m.  The table in Figure 2.1 correlates the associated shear 

(measured in Pa) along the smooth, channel bed for each applied flow rate (measured in gallons 

per minute) within the enclosed channel.  
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Figure 2.1. Mobile High Shear Stress Flume Illustration 

 

The flume is housed in a 16 ft mobile trailer (Figure 2.2) so it can be easily moved to 

each site of interest.  The trailer is self-contained with a 7 kW gas generator for electric power 

and pumps for water intake from external sources. 
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Figure 2.2. Mobile Flume 

Water is pumped through the system from a 100-gallon storage tank, through a 5 cm 

diameter pipe, and then through a flow converter into the rectangular duct shown.  This duct is 

4.1 cm in height, 10 cm in width, and 130 cm in length, and connects to the test section, which 

has the same cross-sectional area and is 15 cm long (see Figure 2.1, observation panel).  The 

flow converter changes the shape of the cross-section from circular to the rectangular duct.  A 

three-way valve regulates the flow so that part of the flow goes into the duct while the remainder 

returns to the tank.  Also, there is a small valve in the duct immediately downstream from the test 

section, which is opened at higher flow rates to keep the pressure in the duct and over the test 

section at atmospheric conditions. 

Cores can either be taken in-situ from the field or reconstructed in the laboratory.  The 

procedure for preparing the reconstructed sediments in the laboratory will be described later.  

The coring tube and the sediment it contains are then inserted into the bottom of the test section.  

An operator moves the sediment upward using a piston, which is inside the coring tube and is 

connected to a mechanical jack and then driven by a variable-speed controller.  By this means, 
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the sediments can be raised and made level with the bottom of the test section by a trained 

operator.  The speed of the jack movement can be controlled at a variable rate in measurable 

increments as small as 0.25 mm. 

Water is forced through the duct and the test section over the surface of the sediments.  

The shear produced by this flow causes the sediments to erode.  The operator continually moves 

sediments within the core upwards into the channel so that the sediment-water interface remains 

level with the bottom of the test and inlet sections.  The erosion rate is recorded as the upward 

movement of the sediments in the coring tube over time. 

2.2. Hydrodynamics 

For the flow rates of interest, it can be shown that fully developed turbulent flow exists in 

the test section.  Turbulent flow through pipes has been studied extensively, and empirical 

functions have been developed which relate the mean flow rate to the wall shear stress.  In 

general, flow in circular cross-section pipes has been investigated.  However, the relations 

developed for flow through circular pipes can be extended to non-circular cross-sections by 

means of a shape factor.  An implicit formula relating the wall shear stress to the mean flow in a 

pipe of arbitrary cross-section can be obtained from Prandtl's Universal Law of Friction 

(Schlichting, 1979).  For a pipe with a smooth surface, this formula is: 

    1 2 0 08
λ

λ
ν

=
⎡

⎣
⎢

⎤

⎦
⎥ −. log .UD     (2.1) 

where U is the mean flow speed, ν is the kinematic viscosity, λ is the friction factor, and D is the 

hydraulic diameter defined as the ratio of four times the cross-sectional area to the wetted 

perimeter. 
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For a pipe with a rectangular cross-section, or duct, the hydraulic diameter is 

 

    D = 2hw/(h + w)     (2.2) 

 

where w is the duct width and h is the duct height.  The friction factor is defined by 

 

    λ τ
ρ

= 8
U2       (2.3) 

 

where ρ is the density of water and τ is the wall shear stress.  Inserting Equations (2.2) and (2.3) 

into Equation (2.1) then gives the wall shear stress τ as an implicit function of the mean flow 

speed, U. 

For shear stresses in the range of 0.1–10 N/m2, the Reynolds numbers (UD/ν) are on the 

order of 104–105.  These values are sufficient for turbulent flow to exist for the stresses of 

interest in this study.  For flow in a circular pipe, turbulent flow theory suggests that the 

transition from laminar to turbulent flow occurs within 25 to 40 diameters from the entrance to 

the pipe.  Since the hydraulic diameter of the duct pipe is 5.9 cm, this suggests an entry length of 

approximately 150 cm.  The length of the duct leading to the test section is 130 cm and is 

preceded by a 20 cm flow converter and several meters of inlet pipe.  These arguments along 

with direct observations indicate that the flow is fully turbulent in the test section. 

2.3. Core Retrieval 

Sediment cores were obtained in situ by applying pressure to the top of the core sleeve 

and penetrating this sleeve into the sediment bed (Figure 2.3).  The coring sleeve is then pushed 
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as far as possible into the sediment bed.  The distance of penetration will vary due to the 

characteristics of the sediment (i.e., further penetration will occur in a softer sediment than in a 

more compact sediment).  This results in a sediment core that is obtained relatively undisturbed 

from its natural surroundings.  The coring sleeve is then brought back and a plug is slid up into 

the core tube to act later as a piston, and the core is then capped.  Sediment cores varying in 

length from 10 to 30 cm were obtained using this method. 

 

   

Figure 2.3. Sediment Sampling Examples 

2.4. Measurements of Sediment Erosion Rates 

The procedure for measuring the erosion rates of the sediments in circular cores (Roberts 

and Jepsen, 2001a) as a function of shear stress and depth was as follows.  The sediment cores 

were obtained as described above and then moved upward into the test section until the sediment 

surface was even with the bottom of the test section.  A measurement was made of the depth to 

the bottom of the sediment in the core.  The flume was then run at a specific flow rate 

corresponding to a particular shear stress.  Erosion rates were obtained by measuring the 

remaining core length at different time intervals, taking the difference between successive 

measurements, and dividing by the time interval. 
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In order to measure erosion rates at multiple shear stresses using only one core, the 

following procedure was generally used.  Starting at a low shear stress, the flume was run 

sequentially at higher shear stresses (each succeeding shear stress was twice the previous one).  

Generally, approximately three shear stresses were run sequentially.  Each shear stress was 

employed until at least 1 to 3 mm, but no more than 2 cm was eroded.  Also, each shear stress 

was run for a minimum of 20 seconds and a maximum of 10 minutes.  Thus, the minimum and 

maximum erosion rates measured by the high shear stress sediment erosion flume are 1.67 × 10-4 

and 0.1 cm·s-1 respectively.  The time interval was recorded for each run with a stopwatch.  The 

flow was then increased to the next shear stress, and so on until the highest shear stress run was 

complete.  This cycle was repeated until all of the sediment within the core was eroded.  If after 

three cycles a particular shear stress showed a rate of erosion less than approximately 1.7 × 10-4 

cm·s-1, it was dropped from the cycle; if after many cycles the erosion rates decreased 

significantly, a higher shear stress was included in the cycle. 

2.5. Measurements of Critical Shear Stress for Erosion 

As the rate of flow of water over a sediment bed is increased, there is a range of 

velocities (or shear stresses) at which the movement of the smallest and easiest-to-move particles 

is first noticeable to an observer.  These eroded particles then travel a relatively short distance 

until they come to rest in a new location.  This initial motion tends to occur only at a few isolated 

spots.  As the flow velocity and shear stress increase further, more particles participate in this 

process of erosion, transport, and deposition, and the movement of the particles becomes more 

sustained. 
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Because of this gradual increase in sediment erosion as the shear stress increases, it is 

difficult to precisely define a critical velocity or critical stress at which sediment erosion is first 

initiated.  More quantitatively and with less ambiguity, a critical velocity or critical shear stress 

can be defined as the shear stress at which a small, but accurately measurable rate of erosion 

occurs. In the present study, this rate of erosion was chosen to be 10-4 cm·s-1; this represents 1 

mm of erosion in approximately 15 minutes.  Since it would be difficult to measure all critical 

shear stresses at exactly 10-4 cm·s-1, erosion rates were generally measured above and below 10-4 

cm·s-1 at shear stresses that differ by a factor of two.  The critical shear stress can be obtained by 

interpolation between the two points.  This gives results with 20% accuracy for the critical shear 

stress. 

Some of the samples could not be eroded at rates greater than 10-4 cm/s within the range 

of shear stresses possible. For these samples, the test was run at a particular shear stress for 

several hours in order to obtain a measurable amount of erosion. 

2.6. Measurements of Sediment Bulk Properties 

Particle sizes and particle size distributions were determined by use of a Malvern 

Mastersizer-S particle sizing package for sample diameters between 0.05 and 900 µm.  Sieve 

analysis was performed for particle sizes larger than 900 µm.  When using the Malvern particle 

sizer, approximately 5 to 10 grams of sediment is placed in a beaker containing about 500 mL of 

water and mixed by means of a magnetic stir bar/plate combination.  Approximately 1 mL of this 

solution was then inserted into the sizer’s sampling system and further disaggregated as it was 

recirculated through the sampling system by means of a centrifugal pump.  The sample was 

allowed to disaggregate for five minutes on the stir plate and for an additional five minutes in the 

recirculating pump sampling system before analyses.  To ensure complete disaggregation and 
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sample uniformity, the sediment samples were analyzed multiple times and repeated in triplicate.  

From these measurements, the distribution of grain sizes and mean grain sizes as a function of 

depth were determined. 
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2.7. Core Descriptions 

Core Nomenclature Core Length Textural Grain Size Analyses 
 (cm) (mean) 
   
SZN - Surf Zone North 15      260 µm sand 
   
SZM - Surf Zone Middle 12      238 µm sand 
   
SZS - Surf Zone South 25      233 µm sand 
   
SZ1B - Surf Zone 1st Bar 12      248 µm sand 
   
SZ2T - Surf Zone 2nd Trough 28      233 µm sand 
   
RGMC - Rio Grande Mouth Crest 16      226 µm sand 
   
RGM - Rio Grande Mouth 15      215 µm sand 
   
RGC1- Rio Grande Channel 1 27      226 µm silt and sand 
   
RGC2 - Rio Grande Channel 2 0-2      75 µm sand, silt, clay and organics  
 2-4      28 µm silt, clay and organics 
 7-9      100 µm sand, silt, clay and organics 
 10-12      20 µm clay and organics 
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3.0 Sediment Sampling Results 
 

The following section presents the results from erosion tests on a suite of samples 

extracted from the Rio Grande Delta region.  The distance between SZN and SZS is 

approximately 300 m.  

 
 
 
 
 
 

 
 
 
 

 
3.1 Surf Zone 

3.1.1 Surf Zone North 

  The core obtained from the surf zone north of  
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Figure 3.1 is a generalized map showing the relative position of 9 (red) core sampling sites.  The 

U-shaped line around the Rio Grande Channel illustrates that there was no surficial 

communication between the river and the Gulf of Mexico at the time of this study. 

3.1. Surf Zone 

3.1.1. Surf Zone North 

The core obtained from the surf zone, north of the Rio Grande Mouth (SZN) was 15 cm 

in length. The core was observed to contain a homogeneous mixture of sand (mean grain size = 

260 µm). 
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Figure 3.2. 
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The erosion data as a function of shear stress for sample taken for erosion testing within 

the SZN is shown in Figure 3.2.  For each shear stress, the erosion rate generally increases with 

depth.  The sediment was also observed to contain shells from the middle of the core to the 

bottom.  The critical shear stress was approximately 0.3 Pa in the top half of the core sample and 

was not measured in the lower half.  The sediment transported completely as bedload for the 0.5 

Pa tests. 

3.1.2. Surf Zone Middle 

The core taken from the surf zone, at the mouth of the Rio Grande (SZM), for erosional 

(flume) testing was 12 cm long.  This core was observed to contain a homogeneous mixture of 

sand.  A different core also procured from the SZM for grain size analyses was 18 cm long.  The 

mean grain size was measured as 238 µm, with a range at depth between 210 – 250 µm. 
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Figure 3.3. 

 

The erosion data for SZM is shown in Figure 3.3.  The erosion was nearly constant with 

depth with a critical shear stress of 0.3 Pa.  The eroded sediment transported as 100% bedload 

for all 0.5 Pa tests. 

3.1.3. Surf Zone South 

The sample taken from the surf zone, south of the Rio Grande Mouth (SZS) was 25 cm 

long and was a homogeneous mixture of sand for the top 15 cm.  Below 15 cm, the sand 
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transitioned sharply to a placer sand material that was black in color.  This beach placer is 

composed primarily of magnetite, deposited within the sand by the process of mechanically 

weathering mafic rocks (those containing dense or heavy minerals).  The transition to this placer 

material, however, did not affect the observed erosion rates (Figure 3.4).  The mean particle size 

was constant with depth (233 µm), with a range between 219 – 248 µm.  The black placer 

material had the same mean grain size and spatial distribution as the rest of the core sample. 
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Figure 3.4. 

The critical shear stress was approximately 0.3 Pa for the top 2 cm and increased to 0.35 

Pa from 13 cm to the bottom of the cored sample.  The eroded sediment transported as 100% 

bedload for all 0.5 Pa tests. 
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3.1.4. Surf Zone First Bar 

The sample obtained from the first sand bar off shore in the surf zone (SZ1B) was 12 cm 

long.  The erosion rate was relatively constant with depth, except for at the surface, where the 

erosion rate was slightly lower (Figure 3.5).  The critical shear stress was 0.3 Pa for the entire 

core, of which 100% transported as bedload during the 0.5 Pa tests.  The mean particle size for 

sample SZ1B was also consistent with depth, 248 µm.  The grain size variation with depth was 

235 – 255 µm. 
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Figure 3.5. 
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3.1.5. Surf Zone Second Trough 

The sample taken from the second trough within the surf zone (SZ2T) was 28 cm long 

and was fairly homogeneous throughout.  The erosion rate was constant with depth (Figure 3.6) 

and the grain size variation with depth was 223 – 248 µm (mean grain size = 233 µm). 
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Figure 3.6. 



 25 

3.2. Rio Grande 

3.2.1. Rio Grande Mouth 

Two samples were taken from the Rio Grande Mouth region.  One was taken from the 

sand crest between the river and the Gulf of Mexico (RGMC), and the other was taken from the 

Rio Grande Mouth (RGM), where the river terminated at the sand obstruction.  The erosion rate 

for sample RGMC (16 cm long) was constant with depth for the 0.5 Pa and 1.0 Pa tests (Figure 

3.7).  The eroded sediment transported as 100% bedload for all applied 0.5 Pa tests. 
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Figure 3.7. 
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The erosion rate of core RGM (15 cm long) was constant with depth for the 0.5 Pa and 

1.0 Pa tests (Figure 3.8).  The eroded sediment transported as 100% bedload for all applied 0.5 

Pa tests and was generally lower than that measured in the RGMC core.  The critical shear stress 

was determined to be 0.28 Pa for the top 5 cm of the core and was not measured below this 

depth. 
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Figure 3.8. 

The mean grain size of core RGMC was determined to be 226 µm, whereas the RGM 

sample was measured as a finer 215 µm.  The particle cohesiveness of core RGM was slightly 
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higher than that of core RGMC, due in part to the finer, measured mean grain size and a higher 

density of the clay-size fraction. 

3.2.2. Rio Grande Channel 

The samples procured from within the Rio Grande Channel were located 75 m (RGC1) 

and 500 m (RGC2) upstream from the delta (Figure 3.1).  Sample RGC1 was collected in 

approximately 0.3 m water depth, whereas core RGC2 was collected at a depth of approximately 

2.2 m. 

RGC1 was 27 cm long and consisted predominately of fine sand throughout.  The mean 

grain size was measured as 226 µm, with a range at depth between 213 – 240 µm.  The critical 

shear stress was 0.35 Pa in the top 3 cm and 0.25 Pa for the remaining core.  Erosion rates and 

mean particle size of this sample were very similar to that found in sample RGMC at the same 

shear stresses (Figure 3.9).  The eroded sediment transported as 100% bedload for all 0.5 Pa 

tests. 
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Figure 3.9. 

Core RGC2 (17 cm long) was visibly stratified throughout and progressively more 

difficult to erode with increasing depth (Figure 3.10), where an order of magnitude decrease in 

the erosion rate was observed, primarily due to the presence of interstitial clay and organic 

material.  The measured, mean particle size was 75 µm near the surface (first 2 cm), 28 µm (at 4 

cm), 100 µm (7–9 cm), and 20 µm (bottom of the core).  The 7 to 9 cm horizon of RGC2 was not 

eroded in the flume, as this section was selectively removed for the purpose of conducting 

particle size analysis only.  We observed a noticeable increase in the mean particle size within 

this 2 cm seam, compared to the layers just above and below.
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Figure 3.10. 

A comparison of the distribution and the mean grain sizes for all (9) erosional test cores 

extracted from the Rio Grande Delta region are presented in Figure 3.11. 



 30 

0

50

100

150

200

250

300

R
G

C
2

R
G

C
1

R
G

M
C

R
G

M

SZ
S

SZ
M

SZ
N

SZ
B

1

SZ
T2

Grain Size Analysis
G

ra
in

 S
iz

e 
(m

ic
ro

ns
)

 
 

Figure 3.11. 

4.0 Surf Zone Velocity Measurements 
Velocity measurements were taken of the longshore current in both the SZN and the SZS 

(from the shoreline seaward to approximately 60 m offshore) at the Rio Grande Delta, U.S. and 

at the Mexican border.  Longshore currents are wave induced currents that travel parallel to the 

shoreline, and are “refracted in a complex manner due to irregularities in depth of the shelf and 

in the coastline,” (Reading, 1996).  Waves operating in the surf and breaker zones deposit 

sediment not only shoreward, but also parallel (bilaterally) to the shoreline by these longshore 
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currents.  Such complex deposition of sand along the shoreline “produces zones of convergence 

and divergence even on a long, straight beach,” (Reading, 1996).  Sand deposited by the 

longshore drift contributes to the observed restrictive condition of the Rio Grande Mouth, 

abating its flow into the Gulf.  A Marsh-McBirney, Inc. portable flowmeter (Model 2000) 

coupled with a Scientific Instruments, Inc. English units wading rod were employed for this 

purpose.  All velocity measurements were collected while positioning the Marsh-McBirney’s 

current meter in the direction of flow at 0.6 of the water depth.  Two measurements were taken 

from the SZS along Transect A (A1–A2; Figure 4.1), whereas four current velocity 

measurements were taken from the SZN along Transect B (B1–B4; Figure 4.1). 

The observed longshore current flow direction was from south to north for all 

measurements procured along the two transects.  Water depths measured along Transect A and 

Transect B extended from 0.0 - 0.2 m at the shoreline, to approximately 1.1 m, 60 m offshore.  

The comprehensive, mean longshore velocities (30 second time averaged measurements) ranged 

between 0.2 and 0.3 m·s-1 (Figure 4.1).  The highest mean current velocities were recorded in the 

first trough along both transects at A1 and B1 (between the shoreline and 25 m offshore), and 

just off the first sandbar along Transect B at B3.  Measured depths of the first trough were 

between 0.3 and 0.6 m depending on the state of the tide.  Maximum, instantaneous current 

velocities (2 second time averaged measurements) were observed as high as 0.43 m·s-1 in the first 

trough (B1), and 0.51 m·s-1 superior to the first bar (B2), both along Transect B and recorded 

between low and high tides.  Note that high tide was observed at both 02:07:00 and 17:31:00, 

whereas low tide was recorded at 09:31:00 on October 21, 2002. 
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 Figure 4.1 Longshore current velocity measurements recorded from the northern and southern surf zones of the Rio Grande
 Delta, U.S. and Mexican border.  The maximum current velocity is an instantaneous, 2s time averaged measurement
 recorded over an interval of 180s.  Mean current velocity is a 30s time averaged measurement taken over 180s
 intervals.
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For open channel flow, the shear stress can be approximated by: 

2

2
1 Uc f ρτ =          (4.1) 

where cf is the friction coefficient, ρ is the density, and U is the fluid velocity.  For a sandy 

substrate, similar to that observed in the northern and southern Rio Grande surf zone, the cf is 

approximately 0.004.  Therefore, employing Formula 4.1 and using a current velocity of  

0.3 m·s-1, the calculated shear stress (τ) is approximately 0.20 Pa.  Using a current velocity of 

0.43 m·s-1, as measured at trough B1, the shear stress approaches 0.40 Pa. 

Because the critical shear stress (τc) is greater than or equal to 0.25 Pa for all sediments 

analyzed, the mean current velocities do not generate enough shear to initiate erosion.  

Observations indicate that the sand-size fraction is transported during peak or maximum current 
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velocities when greater than critical shear stresses are generated and the sand is transported as 

bedload.  

5.0 Conclusions 
The study demonstrated that the sediment observed within the surf zone, extending 

onshore through the Rio Grande Delta and at least 75 m into the Rio Grande Channel have very 

similar erosional properties and mean particle sizes.  These sediments are predominately 

homogeneous mixtures of sand, having critical, erosional shear stresses between 0.25 and 0.35 

Pa.  Inchannel flow rates large enough to produce bottom shear stresses greater than this critical 

shear are required to transport sediments obstructing the Rio Grande Channel.  All analyzed 

sediments transported completely as bedload at shear stresses of 0.5 Pa or lower.  The finest 

grained sediments (sand, silt, clay and organic material) observed in core procured 

approximately 500 m upstream in the Rio Grande Channel (RGC2) were significantly more 

difficult to erode than the coarser grained sediments (sand) found proximal to the shore.  This 

was to be expected, as the near-shore current is too strong to accumulate cohesive clay and 

organic deposits. 

Longshore current velocity measurements taken in the surf zone correlate with erosional 

shear stresses of approximately 0.20 Pa or lower, with peaks approaching 0.40 Pa.  When we 

compare these shear stress values to those measured in the erosion rate tests, all of the sediments 

analyzed would be eroded and transported northward by the Gulf’s long shore current.  Because 

the transport is 100% bedload at these velocities, none of the material would be carried offshore 

in the overlying water.  If the velocities of the Rio Grande discharge are not higher than the 

Gulf’s longshore current (> 0.3 m·s-1 [average], > 0.43 m·s-1 [peak]), the effects of longshore 

transport can and will introduce enough coarse material into the Rio Grande Delta Region 
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capable of plugging the Rio Grande Channel, causing the river to breach its banks and inundate 

the adjacent flood plain. 
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