
SANDIA REPORT

N M el to ~ltra-compact
Ultra-low-power Communications

semination unlimited.

ndia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by bade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their Contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: re~orts@,adonis.osti.eov
Online ordering: hm:l/www.doe.sov/bridee

Available to the public from
C.S. Department of Commerce
Nar~onal Technical Informauon Senice
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: ordersiii,ntis.fedworld.eov
Online order: htt~:l/ww.ntis.govihelo/ordemethods.as~?loc=7-4-0#online

SAND2003-3962
Unlimited Release

Printed March 2004

Novel Methods for Ultra-compact Ultra-low-power
Communications

LDRD Final Report

Richard C. Ormesher and Jeff Mason
Radar and Signal Analysis Department

Vivian Guzman Kammler
Digital Signal Processors Department

Abstract

This report describes a new algorithm for the joint estimation of carrier phase, symbol timing and
data in a Turbo coded phase shift keyed (PSK) digital communications system. Jointly estimating
phase, timing and data can give processing gains of several dB over conventional processing,
which consists of joint estimation of carrier phase and symbol timing followed by estimation of
the Turbo-coded data. The new joint estimator allows delay and phase locked loops (DLLIPLL) to
work at lower bit energies where Turbo codes are most useful. Performance results of software
simulations and of a field test are given, as are details of a field programmable gate array (FPGP'
implementation that is currently in design.

This page intensionally left blank.

Contents

1 Introduction .

. . . . 2 Turbo decoding with the Integrated Viterbi Algorithm

. 3 Simulation Results

4 Field Test Results

. 5 FPGA Implementation

. . . . 6 Software Implementation

This page intensionally left blank.

1 Introduction

This report describes a new algorithm for jointly tracking and decoding convolutionally encoded
error control channel symbols in a phase-shift keyed (PSK) digital communications receiver. The
new symbol tracking Viterbi decoder is put to use in a Turbo decoder, which has two component
Viterbi decoders. We discuss our experiences in using this Turbo decoder in a direct-sequence
spread-spectrum (DSSS) receiver, although the spreading is not essential to the new algorithms.

The new approach incorporates both symbol time and phase estimation within the Viterbi decoding
process. We call this new approach the Integrated Viterbi Algorithm (IVA). The key idea is that
making data decisions inside the Viterbi decoding process improves the performance of the time
and phase tracking loops, compared to existing methods which makes data decisions prior to the
Viterbi decoding process. Data decisions in this context are decisions regarding occurrences of step
changes in phase due to the PSK modulation. The phase modulation steps must be recognized and
removed from the phase measurements, which are then smoothed by the phase tracking, or phase
locked loop (PLL), in order to produce estimates of underlying carrier phase. The mechanism of
the improved decisions is through the correlation among adjacent convolutionally-encoded
symbols. Within the Viterbi decoder a PSK decision can be based not solely on the measured phase
of the symbol in question, but also on the phases and decisions regarding all other symbols on the
path selected during the Viterbi decoding process.

Next, we show that the IVA can be incorporated into a Turbo decoder resulting in a tracking Turbo
decoder that can operate at lower signal-to-noise ratio (SNR) than that of a delay and phase locked
loop (DLLIPLL) using conventional data decisions. The proposed Integrated Turbo Algorithm
(ITA) consists of the parallel concatenation of an IVA decoder and a standard soft-output Viterbi
algorithm (SOVA) decoder. The IVA estimates timing and phase, performs the PSK symbol
detection, including despreading in the DSSS system, and generates the soft PSK symbol values
for input to the following standard SOVA decoder.

2 Turbo decoding with the Integrated Viterbi Algorithm

In this chapter we develop a Viterbi decoder with integrated (internal) delay and phase locked
loops and then show how this Viterbi decoder can be used to make a Turbo decoder with integrated
delay and phase tracking loops.

We assume that the incoming message consists of a preamble or acquisition sequence followed by
a block of coded channel symbols that have been spread with a direct sequence spread spectrum
(DSSS) code. The acquisition preamble's SNR is large enough to provide an estimate of the initial
carrier frequency, phase, and symbol timing. We assume that the signal has both symbol timing
and carrier frequency drift, due to clock errors and relative motion between the receiver and
transmitter.

2.1 Received Signal Model

A sample at time t,, of a DSSS binary phase-shift keyed (BPSK) communications signal transmitted
over an additive white Gaussian noise channel has the following complex form

where E, denotes the constant symbol energy, ci(k,t) is the bipolar spreading function of time t for

the kth data hit, i is the symbol index for the kth data bit and consist of the values {1,2} for a 112
rate code, or {1,2,3} for a rate 113 code, for example. T, is the data symbol interval, mAk) is the
sequence of data symbols from the channel encoder output (see Figure 1) and for BPSK
modulation takes on values of + I, ~ (t) is an unknown time-varying time delay, cp(t) is an unknown
time-varying carrier phase, n(t) is zero mean complex Gaussian noise with variance 0,2= N O / q d
and n is the time sample index. The received signal is sampled such that

where Tad is the analog-to-digital converter sample interval.

Figure 1. Turbo channel encoder

2.2 Conventional Time and Phase Synchronization

systematic symbols UW
Input Bits

Coherent PSK communications require that the transmitter and receiver waveforms be
synchronized. As mentioned above, the received signal (1) contains both an unknown timing term,
s(t), and phase term, cp(t). These unknown terms are due to transmitter and receiver clock errors
and RF channel dynamics. The receiver, therefore, needs to estimate and remove these unknown
time and phase terms prior to despreading and detecting the channel symbols.

Multiplexer output:

Multiplex

(and puncture

for rate 1,2 code)

u(kl

The conventional coherent demodulation approach, shown in Figure 2, is to employ phase and
delay locked loops (PLLIDLL) to track and remove unknown phase and time terms prior to channel
decoding. The weakness in this approach is that the data-aided loops are making hard channel
symbol decisions without regarding the information imparted on the surrounding data symbols by
the channel coding.

m,O *

Figure 2. Conventional phase and delay locked loops precede the channel decoder.

PFI
p,ty I *

v
loterleaver Componpnt encoder

Code 2

,

Figure 3 is a block diagram for a conventional coherent data-aided Delay and Phase Locked Loop
(DPLL). The input data stream, y(t,J, is assumed to be a sampled complex signal defined by (1).
The time tracking and phase tracking loops are implemented in parallel. The DLL consists of a pair
of early and late correlators to track bit timing and despread the DSSS modulation. The data-aided
PLL is implemented digitally with a Numerically Controlled Oscillator (NCO) and hard-symbol
detector. The PLL performs the carrier phase tracking required to remove the unknown phase term,

q(k)
parity 2 *

Cornpanem encoder
Code I

Safl
Symbals + Channel Decoder

.J Delay and Phase
Locked Loops

cp(t,J. The output of the middle correlator is the complex value of the despread symbol and the
phase of this term is corrected by 0 or ?I radians according to the sign of the detected soft symbol
(i.e., a data-aided loop). The phase corrected middle correlator output is fed into the loop filters. In
Figure 3 we use the parameter I to indicate the index of a data symbol. Dropping the subscript on
mi@) indicates the alternate indexing scheme such that m(l)=m(k+i/R) for a rate R code. We use
this symbol index to illustrate how data symbols are processed in the conventional PDLL approach.

Sofl

Reference Function

Figure 3. Conventional phase and delay locked loops

The equations for the correlators and phase detector are given as follows:

where y(n) is the sampled input signal; yr& the reference signal used to despread the input signal,
v ~ , v ~ , and vL are the integrate and dump outputs of the early, middle and late correlators,

respectively; 6&i) is the instantaneous phase estimate of the input signal and is obtained from the

output of the middle correlator, v ~ , m(l) is the filteredphase estimate, &(E) is the instantaneous
time delay estimate of the input signal and is obtained from the output of the early and late

correlators, v ~ and vL , ;(I) is the filtered time delay estimate.

The receiver shown above is described in detail in the open literature [3]. Several observations,
however, motivate us to consider a new approach for data-aided time and phase estimation:

1) Turbo codes can operate with very low symbol energy to noise power density ratios
values (E, /No < 0 dB)

2) Conventional coherent data-aided DPLLs do not perform very well at these low values
of E, /No

3) The performance of the DPLL will improve if the SNR at the correlator output is
increased from Es/No by removing the data modulation and coherently integrating over
more than one symbol.

The first two observations result in conflicting requirements. To take advantage of turbo encoding
we desire to operate at very low signal-to-noise ratios; however; the conventional DPLLs do not
perform very well at these levels of signal-to-noise ratios. As suggested in observation three, this
issue can be resolved if we can increase the coherent integration time of the early, middle, and late
correlators. However, we cannot increase the coherent integration interval without first removing
the unknown data symbol modulation.

In the following, we introduce a novel approach to solve this problem. Our approach integrates the
DPLL into the Turbo decoder algorithm. The approach we present uses the estimated symbols from
within the decoding process to remove a set of one or more unknown data symbols prior to the
correlators (i.e., integrate and dump operation) used in the standard DPLL method.

This new approach results in two improvements relative to the standard DPLL approach. First,
using the data symbol estimates from within the data decoder provides a better symbol estimator
than the simple hard symbol detector used over a single data symbol as done in the standard DPLL.
By using the data symbol estimates from within the decoder we are taking advantage of the
information imparted on adjacent symbols by the channel encoder. This results in fewer phase
modulation removal errors in the data-aided loop. Second, in the standard DPLL only a single
symbol is detected and removed at a time and this limits the coherent integration time to a single
symbol. With the new approach, we can estimate and integrate over several data symbols at a time
as explained in section 2.4. This increases the coherent integration time and results in an increased
signal to noise ratio at the output of the DPLL conelators. The end result is improved estimates of
the instantaneous phase and time delay terms which allows the DPLL to work at lower E#VD

2.3 Integrated Turbo Algorithm

A block diagram for a Turbo decoder that simultaneously despreads channel symbols, decodes
channel symbols, and tracks timing and phase is shown in Figure 4. Similar to the standard Turbo
decoder, two component decoders are linked together by an interleaver, a de-interleaver, and the a
priori information that is passed between them. However, there are several differences between the
new Turbo decoder, herein called the Integrated Turbo Algorithm (ITA), and the standard Turbo
decoder.

The first component decoder of the ITA is the Integrated Viterbi Algorithm (IVA). This is a Soft
Output Viterbi Algorithm (SOVA) decoder that has been modified such that the time and phase
tracking are implemented simultaneously within the decoding processes. The input into the IVA is
the sampled complex received signal as defined in Eqn. (1). The input signal has a spreading
sequence applied and has an unknown time-varying phase and time-delay. In the block diagram in
Figure 4, we show the input signal partitioned into systematic and parity symbols. The operations
required to despread the symbol and estimate and remove the unknown time and phase terms are
implemented as an integral operation within the first component decoder.

The basic approach is to use a data-aided coherent Delay and Phase Lock Loop (DPLL) that is
executed simultaneously during the Viterbi decoding process. We perform joint phase and time
estimation on a spread spectrum BPSK signal. The output of the IVA is a set of despread soft
symbols and the normal extrinsic information, Le(uk), related to the information bit u(k). The

spread Sysrematis

w e a d Parity 1

spread interleaved P a i q

despread soft symbols are the set of soft symbols that would typically come from the output of a
conventional DPLL preceding the channel decoder.

L,(u(k)) >
despiead Systematic symbols >

Integrated
SOVA

Because of interleaving, joint phase and time estimation, and data despreading can only be
implemented within the first component decoder. This is because the input systematic symbols for
the second component decoder are interleaved after transmission through the RF channel to match
the order of parity symbols for the second component decoder which where interleave before
transmission as shown in Figure 1. This interleaving scrambles the phase on the systematic
symbols making tracking impossible.

Rpferenee (despreading) waveform

de~pread interleaved Panty 2 symbols

lnterleaver

Intprleaver

-

-

L,(u(k)) -
Parity 2 hard-symbol estimates, P*

L("(LYY) >

Standard

Figure 4. Integrated Turbo decoder block diagram

> SOVA

The output from the second component decoder consists of the extrinsic information, Le(uk) ,

related to the information bit, u(k), the aposteriori Log-Likelihood Ratio (LLR) for the
information bit L(ufi)[y), and the hard-symbols estimates for the parity symbols from the second
component decoder. The hard detected parity symbols are used in the DPLL of the first component
decoder. In the next section, we describe the Integrated Viterbi Algorithm in more detail.

2.4 Integrated Viterbi Algorithm

In this section we describe how the DPLL is intemated into the Viterbi Aleorithm. Recall that the - -
Viterbi algorithm searches all possible paths in it's associated trellis. The codeword (i.e.encoder
output) is chosen with the smallest distance between the received symbol sequence and all possible
codewords,

The decoding algorithm starts at the first received symbol and continues until the last received
symbol is processed. At each bit interval, the path is reduced by deselecting codewords from all
the possible remaining codewords. At each trellis two paths merge into a single state and the path
with the smallest metric is eliminated as the optimal path leaving a single surviving path for each
state. When the end of the trellis is reached the surviving path with the largest path metric is

K- 1
selected as the most likely path. At any bit interval within the decoding process there are 2
possible surviving paths where Kis the constraint length of the encoder and each of these paths has
a unique associated codeword. Our goal is to use these codewords to implement the data-aided loop

K - 1
described above. Since there are 2 possible surviving paths we shall implement a separate
DPLL for each of these paths during the decoding process.

Consider the correlators defined by Eqn. (3) through Eqn. (5) above that are used to estimate

instantaneous time delay, & (I) , and phase, 66(6), of the rh symbol, m(1) within the conventional
data-aided DPLL. The signal outputs vE@) and vL(6) are used in the delay computer to track and
time align the input signal to a reference signal, while output vd6) is used to estimate the phase of

the current symbol. In each case, the correlators use the detected hard-symbol & (I) to remove the
data modulation before the symbol phase and time estimate are made (i.e, a data-aided loop). In the
loop shown in Figure 3 above, we see that the hard-symbol detection occurs after the basic integrate
and dump operation from the middle correlator.

As previously mentioned, our goal is to improve the SNR at the output of the correlators, improve
the instantaneous estimates of both symbol time and phase, and thereby, improve the overall
performance of the DPLL. By examination of Eqn. (3) through Eqn. (5) we see that if the symbol
values, h(6) are known apriori and time and phase are constant over several symbols then the
correlators can integrate over several symbols before estimating time and phase. Define L as the
number of bit intervals in which time and phase are considered constant enough to allow for
coherent integration. Then, for a 112 rate component code, at any bit interval in the Viterbi

decoding process there are a set of 2*L symbol estimates for each surviving path. These symbols
can be used to remove data symbol modulation and increase the correlator integration interval in a
data-aided DPLL. One of the surviving paths will eventually be selected has the most likely path.

The following equations are Eqn. (3) through Eqn. (5) modified to implement coherent integration
over a block of L Viterbi decisions for a 112 rate punctured Turbo code.

In Eqn. (8) to Eqn. (10) sk indicates the current state at the kth bit interval in the Viterbi decoding
process, sk-] indicates the previous state for the selected path and N, is the number of PN code chips

per data symbol. In the 112 rate Turbo decoder mi(k, sk) is the symbol estimate at the Qh bit for

state sk while i=l for the systematic symbol and i=2 for the parity symbol. Notice, that for a 112
rate encoder the correlators sum over two data symbols per decoding interval and will sum over a
total of 2*L data symbols before they are dumped and phase and time estimates are updated. Also,
notice that there is a unique DPLL implemented for each surviving path of the trellis. Eqn. (12)
needs to use a two argument arctangent function whose range is -n to n.

To illustrate the use of Eqn. (8) to Eqn. (12) assume that we are at the k!' bit interval in the
Integrated Viterbi Algorithm. Then, at each state, sk, there is a surviving path an associated Viterbi
path metric (see Figure 5). In addition, each surviving path has a phase and time delay estimate,

Gk, and @Si, respectively. These are the time and phase terms that are estimated and tracked via

the DPLL and are updated every L bit intervals.

For the correlators, we desire to sum the next 2*L data symbols using the decision sequence
h i (k , sk), . . ., A .(k + L, sk + L) to remove the data modulation. Because we are in the middle of the

I

Viterbi decoding process, there is a decision sequence from Sk to Sk+L for each survivor of state,
Sk+L, at the k+L bit.

To perform the summation we initialize the terms v ~ , V M , and VL to zero (i.e, at the start of a block
of 2*L symbols) and continue with the Viterbi decoding process and sum the terms in Eqn. (8) to
Eqn. (lo), for each state, over the selected path.

For example, at the next bit interval, k, for each state, sk, we perfom the following steps:

1) Using the current time estimate, ẑ,,_, , and phase estimate, &,_, , we despread the

sampled data symbol sequence and calculate the transition metrics as follows

where fil and lfz2 are the codeword symbols associated with the branch transition from

sk.1 to sk. For the rate 112 (punctured) code the parity symbol is not sent on even numbered
bits, as shown in Figure 1, so the second sum in Eqn. (13) must be set to zero every other
bit period. For the rate 113 Turbo code the parity bits are always sent so both sums are
computed.

Using the transition metrics the Viterbi path metric is updated and the codeword symbols

(k, sk) and &(k, sk) are selected according to the normal Viterbi Algorithm. In

addition, the time, i s , , ,and phase estimate, @,,_,, associated with the selected transition
are propagated to the next bit iteration.

Using the selected codeword symbols and propagated phase and time estimates we
perform the early, late, and middle correlation operations as defined in Eqn. (8) to Eqn.
(10)

4) Steps one through three continue until the end of the block, k+L, occurs. At this point in
time, the integrators in Eqn. (8) to Eqn. (10) are dumped and the results are fed to the
delay computer and phase detector followed by the Loop filters to produce updated phase
and time estimate which become available for the next block of 2*L symbols.

k k+l H 2 k+3 k+4 k+S

Figure 5. Example Trellis diagram for an 112 rate RSC code of constraint length 3

At the end of the trellis, as with the standard Viterbi Algorithm, we have a path metric for each
surviving path and the ML path is the path with the largest metric. Also, since we are performing
Turbo decoding, we need a soft output in the form of the aposteriori LLR L(u(k)Ly) for each
decoded bit. To calculate L(u(k)[y) we perform the normal trace-back operation for the Soft-Output
Viterbi Algorithm (SOVA) [4].

Next, the output from the first component decoder, the IVA, is fed to the input of the second
component decoder, a standard SOVA decoder. The input signal, therefore, needs to be despread
prior to being used by the standard SOVA decoder. Hence, we use the IVA to provide the set of
despread symbols that feed the second decoder. Note in Figure 4 that the systematic symbols are
interleaved before presentation to the standard SOVA to agree with the bit order that was encoded
in Figure 1. The output of the second decoder consist of the extrinsic information, L,(u(k)), the a

posteriori LLR L(u(k)[y), and symbols estimates, P*, for the second component code.

The parity symbols, P*, shown in Figure 4, are created in the second SOVA and are used in the
DPLL section of the first SOVA decoder. The use of these parity symbols are unique to the
Integrated Turbo Algorithm and are used to increase to SNR at the DPLL correlators outputs. To
illustrate their use, consider Eqn. (8), Eqn. (9), Eqn. (10) above for a rate 112 punctured Turbo code.
The first term is a summation of systematic bits and the second term is a summation over the parity
bits. For a rate 112 Turbo code the parity bits are alternately from encoder 1 and the encoder 2 as
shown in Figure 1. The symbol estimates for the parity bits must be taken alternately from the two
SOVA decoders. The second SOVA parity symbol estimates, P*, are therefore used to remove the
parity symbol modulation and allow for integration over all ofy(t,) in Eqn. (8), Eqn. (9) and Eqn.

(10). This improves the SNR of the correlator outputs. In Viterbi metric computation Eqn. (13) for
the rate 112 (punctured) code, the input signal y(tJ corresponding to the second component encoder
parity symbols is still set to zero every other bit for.

The extrinsic information from the second SOVA decoder is deinterleaved and fed to the first
component decoder. Only the second decoder works with interleaved data. As with the standard
Turbo algorithm, the first component decoder now decodes the same input using the extrinsic
information from the second decoder to improve the decoding process. The process is repeated
until the Turbo decoder is terminated.

2.5 Chapter References

[l] Pooi Y. Kam and Hsi C. Ho, "Viterbi Detection with Simultaneous Suboptimal Maximum
Likelihood Carrier Phase Estimation," IEEE Trans. Comm., Vol. 36, No. 12, pp. 1327-1330, Dec.
1988.

[2] 0. Macchi and L. Scharf, "A Dynamic Programing Algorithm for Phase Estimation and Data
Decoding on Random Phase Channels," IEEE Trans. Inform. T h e o ~ , Vol. IT-27, No. 5, pp. 581-
595, Sept. 1981

[3] Proakis, John G., Digital Communications, 3rd Ed., 1995, McGraw Hill, Boston, Mass.

[4] L. Hanza, T. H. Liew, and B.L.Yeap, Turbo Coding. Turbo Equalization and Space-Time
Coding for Transmission over Fading Channels, IEEE Press, 2002.

3 Simulation Results

The integrated DPLLlTurbo decoder, or ITA, has been implemented in C and exercised in a
Monte Carlo simulation in order to evaluate performance in terms of bit-error rate (BER) at vari-
ous levels of (bit energy to noise power density ratio).

Figure 6 below shows the observed performance of the new and prior approaches for the follow-
ing set of parameters:

* Nb = 1000, data (message) block length in bits - K=5, constraint length of the constituent RSC encoders
* R = 113, rate 113 (unpunctured) Turbo code

Many secondary parameters such as time and phase slew rates, loop bandwidths and spreading
code and interleaver sequences are required to fully specify the simulation.

In these simulations a loop consisting of the following steps are repeated a large number of times
at each Eb /No.

- A random vector of 1000 data bits is generated.
* The data is Turbo encoded as shown in Figure 1 and converted to bipolar (BPSK) format.
* The Turbo channel symbols are spread using a 63 bit maximal-length PN sequence.
* The chipped data, which is over sampled, is now filtered and sampled asynchronously,

approximately twice per chip, simulating the digital sampling done at a receiver having some
clock rate error.

* The samples are put on a slewing RF center frequency, giving a complex signal, to which ther-
mal noise is added to complete the simulation of the RF channel.

* The complex signal is then decoded/demodulated by the ITA and the number of bit errors is
recorded.

Figure 6 shows that the proposed algorithm can provide significant performance gains over the
prior approach. For example comparing the Eb /Ng to achieve a BER of 1 x 1 0 8 we see that the
ITA requires about 2 dB while the standard Turbo decoder following a DPLL requires a bit more
than 6 dB, giving the new approach a 4 dB advantage at this operating point.

The curve for the baseband Turbo decoder is given in the plot as well. Baseband here means that
there is no timing error and the signal phase angle remains exactly 0 so that tracking loops are
unnecessary. The horizontal distance, at a given BER, between the baseband and either of the
decoders with tracking loops shows the "implementation loss", or loss of sensitivity due to imper-
fect tracking of the loops, for that tracking decoder. The large reduction in implementation loss of
the integrated decoder under these conditions is readily apparent.

. . . :

. . ! c , ; -8- dpll then turbo i .
. ++ turbo-dpll
. baseband turbo

.
i ; i i i : : : : : : : : : : : : : : : : ; : : : : : i i i i i : : : ; : : : : : : : : : ; : : : : : : : i i : : : : : : : : : : : : ~ . . , .
. .

Figure 6. Comparison of performance of baseband Turbo, Integrated Turbo Algorithm, and
Turbo following a DLLPLL for a 1000-bit block, code rate 113, and constraint length 5.

It is instructive to see in Figure 7 and Figure 8 how baseband SOVA and Turbo decoder perfor-
mance depends on two key parameters. These figures do not show performance for the Integrated
Turbo Algorithm directly but recall that this would differ from the baseband Turbo performance
only by the implementation loss. Comparing Figure 7 and Figure 8 you can see that the while the
SOVA decoder does not depend on the number of bits in the message, or interleaver block length,
the Turbo performance is very strongly tied to this parameter. It is significant that performance
improves strongly with block length, while processing burden is virtually unaffected. Decoding
latency time increases with blocklength however, and this can become an issue in latency sensi-
tive applications such as digital telephony.

Figure 7. Comparison of performance ofbaseband 1,000 bit rate 112 SOVA and rate
112 (punctured) Turbo decoders for three different constraint lengths.

Figure 8. Comparison of performance of baseband 10,000 bit rate 112 SOVA and
rate 112 (Punctured) Turbo decoders for three different constraint lengths.

4 Field Test Results

We were able to compare the performance of the Integrated Turbo Algorithm (ITA) to standard
processing over an ISM band RF link using equipment assembled by the Goldmine LDRD, Project
No. 26574. This link, shown in Figure 9 below, consists of an S-band transmitter, a C-band to S-
band translator, or "bent-pipe", and a C-band receiver. The transmitter and receiver were located
on Sandia property on Kirtland Air Force Base while the bent pipe was carried on a gas balloon
that was launched on September 29,2003 from Ft. Summer, New Mexico and rose to an altitude
of 80,000 feet.

bent-pipe w
.

0
0

v I - - -. .
/ .

0

S-band uplink C-band downlink- '
0

computer

Figure 9. Goldmine LDRD RF link.

The transmitted signal was a 1000 bit message encoded by a rate 113 Turbo encoder, i.e. with 3
symbols per data bit, and then spread using 127 chips per symbol. This message was transmitted
at 4 million chips per second (Mcps). Since there are 381 chips per bit (127 chips/symbols times 3
symbols/bit), the resulting bit rate is 4 million divided by 381 or about 10.5 kilobits per second.
The duration of the 1000-bit messages is therefore just less than 0.1 second. The message was
transmitted repetitively for 5 seconds at each of several transmitted power levels as controlled by
the setting of a variable power attenuator inserted between transmitter and its antenna.

Columns 1 and 2 of Table 1 shows the Bit Error Rate (BER) both for the Integrated Turbo
Algorithm and for conventional processing, a Turbo decoder following a DPLL, for different
attenuator settings. Column 3 gives the average measured Eb/NO, which typically fluctuates a few

tenths of a dB from message to message. Each row of Table 1 gives the cumulative BER ftom 48
messages from the 5 second data collection at the indicated attenuator setting. As only 48,000 bits
were sent at each attenuator setting the lower BER values are very rough.

Table 1: Bit Error Rates (BER) for old and new style processing of the Sept. 29 test data

The ITA out-performed conventional processing at all Eb&, and did not make any bit errors in
the 4 runs with positive SNR. In the last 3 runs the SNR fell below the usable level for either
processing scheme. The results for both new and old style processing agreed well with that
observed in simulations as shown in Figure 6 for example. These results validate an expectation of
a 4 dB gain at a BER of for this ITA configuration (block length, constraint length, etc).

Integrated Turbo
BER

0

DPLL-then-Turbo
BER

0

median Eb /Ng
(dB)

8.8

attenuation inserted
(dB)

0

5 FPGA Implementation of Soft-Output Viterbi Decoder for Turbo Codes
Based on C Algorithm

The Integrated Viterbi Algorithm (IVA) uses integrated delay and phase lock loops for
decoding convolutionally encoded spread spectrum BPSK signals. The algorithm has
been tested with C and Matlab and has demonstrated promising performance for bit error
correction for use in low-power applications. The algorithm programmed in commercial
digital signal processors, however, may not easily meet the speed required for desired bit
rates. Here, an FPGA implementation is investigated.

The soft-output Viterbi algorithm (SOVA), although useful for simple convolutional
codes, is also a main component in Turbo decoding. It is the most computationally
complex part of the ~ u r b o algorithm and requires <he most hardware. This paper focuses
on the implementation of this component, which we call SOVA1, in FPGA hardware.
The output from this module is interleaved and iteratively refined through another Viterbi
decoder that feeds back input into SOVA1. This second Viterbi decoder is a simplified
version of the SOVA and is referred to as SOVA2. The interleavers, since inherently
sequential, can be implemented in embedded software or in additional hardware.

The proposed hardware implementation is a "point" design with pre-defined parameters.
These were chosen to test a useful design that may still fit on a single FPGA device. - -
Although the design is synthesizable and provides size and speed estimates for a given set
of design parameters, it has not yet been verified against software models and changes
are stililikely to be made.

The implementation described here uses a constraint length of 5, a code rate of 113, a
message length of 1000 bits, and 512 chips per symbol. Our analysis concludes that this
design could fit on a Xilinx Virtex-I1 XC2V8000, run at a 50 Mhz clock and operate at a
maximum bit rate of 785 bps and chipping rate of 1.2 Mcps. These data rates are within
the range where software models of the Turbo algorithm have demonstrated Eb/N,,
savings of 3-5 dB over typical Viterbi decoder based systems.

5.1 Design Methodology
The hardware implementation is based primarily on C code describing SOVA behavior.
Preliminary estimations on latency and size were based on line-by-line analysis of code.

To translate software into hardware, memory arrays are mapped to hardware memory
elements and interfaces are converted to fixed widths. Iterations must be unrolled into
multiple components to take advantage of parallelism in hardware.

Initial estimates were made using spreadsheets. The original C code was evaluated line
by line to determine memory requirements and estimate clock cycles. Parameters
affecting processing time and size include:

Constraint length
Number of chips per symbol

0 Number of information bits
Number samples per chip

a Number symbols per bit
Oversampling rate
Number of states computed in parallel

a Initial input width of signals
Maximum bus width for signals

a Number of iterations through SOVAl/SOVA2 loop

We also must assume a maximum system bus-width and truncate data accordingly. If
precision was maintained as values were added, multiplied, or otherwise operated on,
system resources would be quickly exhausted. Since this has not yet been tested,
however, any degradation in experimental results cannot be quantified.

5.2 Requirements
When implementing a software algorithm in hardware, several considerations are made to
control size and speed:

1) All data becomes fixed-width in hardware. Input width and maximum bus width
determines size of adders, multipliers, and memories. This also affects the
ultimate precision of results. Data is treated as integers. If fractional bits are
required, additional shifters may be needed to align data after arithmetic
operations.

2) Memories are reorganized when advantageous to simplify addressing and speed
up access time. Number of information bits, constraint length, and number of
samples per chip determine amount of memory needed.

3) Iterations are unrolled and processed in parallel where possible. Dependencies
between one iteration and the next will force the computation to be done
recursively as with tracing fonvard or backward across message bits. In cases
where computations may be done in parallel, as with states in the trellis, limited
FPGA resources may also require computations to be done in segments.

4) Multiplies are best handled by embedded processors on the FPGA. The number
of 18x1 8 multipliers available depends on the device chosen. Smaller multiplies
can be handled in a lookup-table, and again, these resources are fixed. Limited
multipliers may also force computations to be done sequentially.

For this design, we considered Xilinx's Virtex-I1 lineup of FPGAs. These are currently
their highest density FPGAs, with system gate equivalents of up to 8 million.

Table 3. Xilinx Virtex-I1 FPGAs

I
Virtex II
System Gates 2M 3M 4M 6M 8M
Logic Cells 24.192 32,256 51,840 76,032 104,
Slices 10,752 14,336 23.040 33,792 46
BRAM (Kbits) 1,008 1,728 2,160

I
18x18 Multipliers
D~gital Clock Management Blocks
 ax Dist. RAM Kb

In order to estimate whether or not the Turbo design will fit on a single chip, we target
the largest Virtex-I1 FPGA available. For the first prototype of this design, we assume
certain parameters in hope of producing an implementation that can be tested on a single
FPGA:

8 Constraint length, K=5
a Number of chips per symbol = 512
a Number of information bits = 1000
a Number samples per chip = 2
a Number symbols per bit = 3
a Oversampling Rate = 8
a States computed in parallel = 8
a Input width = 8 bits
a Maximum data width = 32 bits

Number of iterations through SOVAllSOVA2 loop = 10

Using the above parameters, we were able to fit a design to the Virtex-I1 XC2V8000 part
after synthesis as shown in Section 5.8, SOVAl and SOVA2 size and speed. A
comfortable utilization margin is desired for place and route, otherwise hand-
optimizations may be necessary. Additional FPGA resources should also be available for
the integration of the SOVA2 component and interleavers. A place and routed Turbo
FPGA implementation has not yet been tried. Our analysis of latency and area is based
on individual synthesis results of SOVAl and SOVA2.

Methods for improving latency and tradeoffs for changing other parameters are also
discussed in Section 5.8. Spreadsheets were refined after hardware implementation for
better estimates of these tradeoffs.

5.3 FPGA Board
Since there is not enough memory available on an FPGA for all memory requirements,
off-chip RAM needs to be available on the FPGA board. This is where received signals
can be stored along with a pre-calculated reference signal. The board should have a
standard JTAG interface and PROM for programming the Virtex-11. There should also
be a way to initialize external RAM, preferably without using FPGA resources. The
FPGA can treat the memory as read-only. An alternate FPGA for implementing second

Viterbi decoder and interleavers may also be desired to complete the Turbo decoder.
Such a board may be commercially available for prototyping purposes.

The FPGA itself is oreanized in four main modules. The data vrocessor ~rovides all -
hardware for executing the algorithm. On-chip memory provides storage space for large
arrays that are computed per iteration and needed for computations later in the algorithm.
 he-data controllermana~es the data flow through the pr&essor and to the other parts of
the chip. The memory controller is enabled by the data controller, and handles transfers
between FPGA and external RAM or local transfers that can be done without interrupting
data flow. The memory controller updates local memories ahead of future iterations.

Received
Signal

Re

Received
Signal

Reference
Signal

Off-Chip Memory Xilinx Virtex I1

Figure 10. Soval organization of FPGA and external memory -

5.3.1 Data Processor
This module is what most closely correlates to the structure of the C algorithm. For a
constraint length of 5, we must create the trellis for 16 states. Figure 11 represents the
possible path eom one state to the next for a given information bit. The "trace-forward"
step is done for each information bit, as well as for the appended tail bits which
guarantees that the trellis with end at a zero state. The total number of bits, NUM-BITS,
including these tail bits is 1004. The real and imaginary parts of the received signal are
input into this module, as well as its reference signal. For each state, these samples are
despread into one systematic and two parity symbols. This is a multiply-accumulate
operation, and given the number of multipliers available, all three symbols can be
computed in parallel for 8 states at a time. The result is stored in on-chip memory.

next-state0

next- state1

next- state2

next_ state3

next- state4

next- state5

next_ state6

next- state7

next- state8

next- state9

next- state10

next- state1 1

next- state12

next- state13

next- state14

next- state15

Info bit 0------*
Info bit 1 -

Figure 11. Trellis for K = 5. Solid line for bit = 'l', dotted line for bit = '0'

Because the computation is done for 8 states, the Despread Symbol process must be
executed twice before feeding input into the next stage as in Figure 12. All 16 symbols
must be ready to compute path metrics in the Add-Compare-Select stage. Repeating
this stage then gets delay estimates ready for the Correlate and Update stage, which
also must he repeated. The Update Delay and Phase stage processes all states in parallel
before the next bit of information while tracing forward.

Systematic and
Parity Symbols

...
AdcLCampare Despread / /

Select Symbols*
(8-states) (8-states)

, . , m I i , , , m ; I
/ For each bit forward / / For each bit backward I I For each bit forward / .. 8 : ,

1
. . , m . 8 , # , # ; 1 , # , # I ;

*Complex Multiply and Accumulate hardware shared fordespreading symbols and early and latecarrelators

Figure 12. Data Flow for computing soft outputs in data processor

After the trellis is created for the given message, the path with the best metric (max-
likelihood) is selected by "tracing back" to the first bit of information in the Traceback
stage. The final stage does one more pass through the information bits to determine the
minimum path metric difference determined from any deviation from the max-likelihood
path. This is referred to as the SOVA Delta Loop. The resulting soft output for each
message is buffered locally or passed to the next device external to the FPGA.

The architectures for each of these sub-modules in the data flow are detailed in the
following sections.

: Soft I-
/ output

' I

Correlate*
and Update

Black Bounds
(Bstates)

- , m , m , m

, , , rn

, , , , m

, m , , , ,
, # , ,
, m , #

I ;
, 8
, m

5

: I , ,
: I
I

Update Delay
and Phase
Estimates
(Idstates)

~wlikelihood&
Path

Min Path
0iffemce

5.3.2 Despread Symbol

Figure 13. Despread-symbol component interface

Table 4. Despread-symbol component interface description

ymlim[31:0] I o ~ t llmaginary component of first systematic symbol
ym2re[31:0] I O L ~ l ~ e a l component of second systematic symbol

lsym2im[31 :0] I out llmaginary component of second systematic symbol

This module performs the first 8-state parallel function in the bit-fonvard stage in Figure
12. It takes in real and imaginary components of received and reference signals, and
performs a complex multiply. Code Excerpt 1 demonstrates the despreading of the fmt
systematic symbol, SysSymMat. The variable Nsamp is the number of chips per symbol
multiplied by the number of samples per chip. The DelayEst value is used in the
addressing of the reference signal, &Ref, and is controlled externally (see Section 5.6:

sym3re[31:0]
sym3~m[31:0]
OVFL
RDY

o ~ t
O L ~

out
out

Real component of parity symbol
Imaginary component of parity symbol
Overflow flag for multiply and accumulates
Asserts when all iterations complete

Memory Control). The SysSymMat variable is stored in On-Chip Memory.
Computations for parity symbols, ParSymlMat and ParSym2Mat, are handled similarly.

Code Excerpt 1. Despreading symbols
1 for (state = 0; state < Nstates; stafeti) 1
2
3 D = DelayEst[statel; / / get projected delay estimate far this sia:e
4
5 if (pll-flag)
6 :hetaEs: = TwoPi*phi-nco[starel;
7 else
8 ThetaEst = 0; / / turn PL; off, assum sig is real
9
lo / / prin=f("ThetaEst=Pf \n", rhetaEst) ;

11 re2 = cos(ThetaEst); im2 = -sin1 ThetaEst); / / pre-cmppute for loops
12
13 / / despread f k s t symbol
14 for i i=O, synlre=symlim=O ; i< Nsamp; i+-) I
15 re1 = RnSigRe:indexl+i] * RxRef[indexl*Os+D+i*Osl;
16 iml = RxSig:miindexl+i] * RxRef[indeul*Os+D+i*Osl;
17 symlre += rel*reZ-inl*im2; / / term1 = xl ' x2 (complex)
18 symlim += rel*imZtre2*iml;
19 I
2C
21 SysSymMafIstatel [tl=symlre;
22 / / ...
23 / / Despread second and third symbols and assign
24 / / ...
25 1

Each state requires its own DelayEst andphi-nco memory arrays. RnSigRe and RxSigIm
in lines 15 and 16 are also independent of state, so these can be read directly from
external memory and fed to each of eight despread-symbol components. The &Ref
signal, however, does depend on state and requires special handling to provide 8 unique
words to the components. This is explained further in Section 5.6.3, &Ref-ctrl.

The complex multiply and accumulate hardware used in computing lines 14 to 19 is
pictured below. This hardware is similar for despreading second and third symbols not
described in code. The 8x8 multiply in lines 15 and 16 and the 16x16 multiply in lines
17and 18 are done with dedicated multiplier resources on the Virtex-I1 part. For 1024
cycles (Nsamp), the mac1024 parts multiply and accumulate values. When RDY goes
high, the symbol summations are valid.

Figure 14. Complex Multiply and Add Hardware

The real and imaginary components of three output symbols are computed in parallel for
8 states. This utilizes 144 multipliers, which would be available on a Xilinx XC2V6000
part or larger. Results are written to On-Chip RAM and used in the Add-Compare-
Select stage.

5.3.3 Add Compare Select

F i r e 15. Add-Compare-Select component interface

Table 5. Add-Compare-Select component interface description

*

3

-34-

I out [Difference between metrics
I out llmaginary component of pll integrator

Puncture
Turbomode

ymMLl
SymML2
SymML3
stateML[3:0]
Delta phi[31 :O]
D ML(7:OJ

2(3 1 :0] 1 out /Intermediate summer for resioual pnase
3[31:0] I out llntermediate summer, i n c l ~ d i n ~ 12, for residual phase

in
in

out
out
out
out
out
out

MX re[31:0]
PathMetricNext[31:0]
phi m[31:0]

lsel bit I out Iselects estimated bit for updating delays in &Ref I

and rate = 113
1' if turbo cude, '0' if simple convolutional code
Estimated systematic symbol
Estimated parity symbol
If punctured, not used. Else second parity symbol
Estimated next state
Phase rate per block
DLL delay

In the Add-Compare-Select stage, metrics are compared to judge whether the most
likely data bit in the current location o f the message is a '0' or a ' 1'. Metrics for data bit
'0' are computed as in Code Excerpt 2. Metrics for data bit '1' are computed similarly
and in parallel.

out
out
out

This code is implemented using two's complement blocks and adders. The signal syml
in line 4 handled i s used as a control to a two's complement block for evaluating
TvanMetORe or TranMetOIm in lines 19 and 20. If the high b i t of SymsO in line 4 is '1',
the core function is bypassed. Otherwise, a two's complement o f symlre and symlim in
line 19 and 20 is output.

Real component of pll integrator
Path metric for next state in path
Model phase

Code Excerpt 2. Computing metric for 0 data bit
1 state0 = prevs:ateOistatel; / / get prev state assoc~atec with info bit=O
2 SyrnsC = prevsymC[sta:el; / / ge; sym pair assacia:ed with info bi:=O
3
4 synl = (SymsC&2) ? 1 : -1; sym2 = (Syms0bll ? 1 : 1 / / split out syms
5
6 symlre = DespreadSpRe[Ol [stateol; / / ge: 1st despread sym fro". state0

7 symlim = DespreadSymIm[Ol [stateol;
8 sym2re = DespreadSrne[ll [stateol; / I get 2nd despread sym from state0
9 sym2im = DespreadSymIm[ll [state01 ;
10
11 if (TurbaMode & & !Puncture) 1
12 sym3re = DespreadSymRe[LI [state01 ;
13 sym3im = DespreadSymIm[2][stateOl;
14 I
15
16 if (TurboMade) (
17 if (Puncture) (
18 if (t%2) I / / parity punctured
19 TranMetORe = syml * symlre;
20 TranMetOIm = syml * symlie;
2 1 Sova2energyORe = s-hat[2*t+lI'sym2re;
22 Sova2energyOIm = s-hati2'tt:]'sym2im;
23 I else (/ / parity is available
24 TranMetORe = syml * symlre + sym2 sym2re;
25 TranMetOIm = syml * synlim + sym2 sym2im;
2 6 Sova2energyORe = 0;
27 Sova2energyOIm = 0;
2 8 I
29 I else I / / unpunctured, third sym is parity ~ Y L 0-

30 TranMetORe = syml * syrrlre t sym2 ' sym2re;
31 TranMetOIm = syml ' syrr,lim + sym2 sym2im;
32 SovaZenergyORe = s_hatl2*t+ll * sym3re;
33 Sava2energyOIm = s-hat[2*ttl] * sym3im;
34 I
35 t else I / / not a Turbo code, simple conv code only
36 TranMetORe = svml + sm:re t svm2 . sm2re:
37 TranMetOIm = syml . sym:im t sym2 . sym2im;
38 SovaZenergyORe = 0;
39 Sova2energyOIm = 0;
40 I

The Add-Compare-Select stage is completed in 5 clock cycles. In the first clock, path
metrics for either case are com~uted in uarallel. The next states in the trellis associated
with bit '0' or bit '1' are called state0 and statel, respectively. Using the symbol pair for
state0 and statel as bvpass controls to twos-complement blocks, BPSK modulation is
removed from the despread symbols. In effect, the symbols are multiplied by 1 or -1.
For every other iteration for a punctured code or every iteration for a non-punctured code,
the transition metric is an addition of terms in the second clock. Sova2energy is
computed at the output of another pair of two-complement blocks, controlled by hard
s-hat symbols (meaning a value of '1' or '-1 ') produced by the Sova2 decoder. In the
third and fourth clock cycles, path metrics are computed from both possible paths and are
compared using a priori information, La. Finally, in the fifth clock, the best metric is
selected and systematic and parity symbols are estimated. Accumulated delta and phase
delays from state0 or statel propagate to the current state.

5.3.4 Correlate and Update

i correlate n update0

check boundarie!

Figure 16. Correlate-n-update component interface

Table 6. Correlate-n-update component interface description

I in IPrevious summation for late gate
l ~ e a l component of first systemaric symbol from

I in ldespread symbol component 1

sym2Re[31:O]

sym3Re[31:0]

sel-early

ISymSumRe-2[31:O] I out Isurnmation for late gate

chk-blk-bounds
atan-ND

I our IUpdated oelay for next iteration
I our ilf 'O', oelay is decrementeo, else delay is incrementeo

in

in

I out lupdated intermediate summer for residual phase
l~pdated intermediate summer, including t2, for residual

Real component of parity symbol from despread-symbol
component
Real component of second parity symbol from
despread symbol component
If ' I ' calculate earlv correlation. else calculate late

in
in

in

correlation
If '1', update DLL and PLL with new delays and phases
If ' Iv, indicates new MX-im and MX-re ready for
calculation of delta phi

The delay and phase lock loops (DLL and PLL) are maintained in the Correlate and
Update stage. As in the despread-symbol block, the spread spectrum signals must be
multiplied and accumulated over 1024 samples, only this time for both early and late
delay estimates.

-
phi_m_out[31:0]
Delta-phi-out[31:O]
RDY

Code Excerpt 3. Early and late correlations
1 / / Sum. Rnsig aver bloc:< length L for use ;n DLL, first sum Early Gate
2 re2 = cos(ThetaEst); ir.2 = -sin(ThetaEst);

out
out
out
out

3
4 / / Despread first symbol
5 for (i=termlre=termlim=O ; i< Nsarnp; Lit) (
6 re: = RxSigRe[indexl+i] * RxRef[indexl*OsLD-ML-DeltaDll+i*Os];
7 im: = RxSigIm[indexl+il * RxRef[indexl*Os+D-ML-DeltaDlltiiOs1:
8 zernlre t= rel*reZ-iml*ir.Z:
9 :errJim += rel*im2tre2*irrl;
10 i
11
12 / / Despread second symbol
13 / / ...
14
15 if ITurbaMode & & !Punc:ure) ;

phase
Updated model phase
Updated phase rate per block
Ready asserted after updating DLL and PLL

16
17 / / Despread third symbo;
18 / / ...
19
20 SpSunRe[0: [state] = SymML:~er,.,rre t S y m h u ~ ~errn2rc T

SymML3*term3re t SymSurnPrevRe:Ol [stateMLl;
1 else (
SymSurnRe[Ol [state] = SymMLl*termlre t SymMLZ*term2re +
SymSumPrevRe[Ol [stateMLl;

/ / Sum for Late Gate

/ / Despread first symbol
for (i=termlre=termlim=O ; i< Nsamp; it+) (
re1 - RxSigRe[indexltil RxRef[indexl*Os+D-ML-DeltaDllti*Osl;
iml = RxSigIm[indexltil * RxRef[indexl'Os+D-ML-DeltaDllti*Osl;
termlre += relire2-iml*im2;
termlim += rel*irnZtre2*iml;

I

/ / Despread second symbol
/ / ...

if (TurboMade & & !Puncture) i
/ / Despread third symbol
/ / ...

47 I else (
48 SyrnSurrRe[2][statel = SymMLl*termlre t SymMLZ*term2re +

Once again, RxRef values must be accessed externally from the FPGA. The first time, the
RxRef address is shifted a location early for the multiply-accumulate. The second time,
the &Ref address is shifted a location late. These summations are used as early and late
correlators for maintaining delay and phase locked loops. See Section 5.6.3 for further
details.

The correlate-n-update component monitors our location in the message, 1, and
determines when the iteration is at a block boundary:

Code Excerpt 4. Updating DLL and PLL at block boundary
1 / / update DLL and PLL if at block boundary
2 if ((ttl) P BlockLen == 0)
3 {
I if (SymSumRe[O] [state] > SymSumRe[2] [state]) / / assume PLL pulled in
5 DelayEstNext[state] = D-MLtdll-step; / / retard delay
5 else
1 DelayEstNext[statel = D-ML-dll-step; / / advance delay
1
3 / / reset to 0 and integrate aver next block
10 SymSumRe[Ol [statel = 0;
11 SymSumRe[ZI [state] = 0;
.-
12

13 deltaqhi [state: = atan2 (MX-irr.[state:, MX-re[statel) /Twopi;
14 t2:statel = t2[statel + deltagh5Istatel;
15 t3:statel = t3[state:tt2[statel;
16 Deltaghi[statel = K:*delta-phi[state] t KZ*tZ[stateI + K3*t3[statel;
17 phi-m[statel = phi-m[statel + Delta-philstate:;
18 I else i
19 / / Propagate Delay Estimate for use in next iteration
20 DelayEstKextlstatel = D-ML;
21 t
22 1

In this case, a BlockLen is defined to be 5 bits long. If the summation for the early
correlation is greater than the summation for the late correlation, the delay estimates are
incremented one step. Delay estimates are used primarily as address pointers to RxReJ
RxSigRe, and RxSigIm, values stored in external memory. For an oversampling rate of 8,
a dl1 step is an interval of 8 address locations. Similarly, if the late estimate has better
correlation, the address pointer is decremented 8 locations. This manipulation is handled
in the ram-ctrl component, which transfers RxRef values to on-chip memory for parallel
processing (Section 5.6.3).

To update phase rate in line 16 of Code Excerpt 4:

Delta-phi = K1. t a d + ~ 2 . t 2 + ~ 3 . t 3

where coefficients KI = 0.5463, K2 = 0.1768, K3 = 0.02470 (in 32-bit fractional unsigned
representation Ox8BDA5 119,0~2D42C3C9,0~00652BD3C); K i m m t e and 1WC_re,@t,
are PLL accumulators: and t2 and t3 are residual phase summers. In hardware, the arctan
is computed using C ~ I C algorithms. ~l though there is a 22 clock cycle latency in
computation, the computation can be started after the MY-im and h5-re values are ready
from the add-compare-select block. With two sets of signal despreading (1024 clock
cycles each) in the Correlate and Update stage before the DLLs and PLLs need to be
updated, there are more than enough clock cycles available before new outputs need to be
ready. The multiplies are done in lookup tables (LUTs). Since KI, K2, and K3 are
constant, 32-bit results for a 32x8 multiply can be accessed by an &bit address.

5.3.5 Update Delays and Sums

i-update-delaysaysnnsums
Full ~arallel im~lementatbn

sums

Figure 17. Update-delays-n-sums component interface

Table 7. Update-delays-n-sums component interface description

bhi-m[15:0][7:0] in I ~ o d e l phase for each state

MX re[15:0][31:0]

n updale n IEnables upoate for next terar on
ymSumRe 0[15:0][31:0] n l~ummation for early gate for each state 1

in l ~ e a l component of pll integrator for each state

n l~ummat on for late gate for eacn stare
In l~ntermed~ate sdmmer for res dual phase for eacn state

PathMetricNext[l5:0][31:0]

After the Correlate and Update stage has operated on all states, delays, metrics, and
other accumulator sums can be updated for the next iteration through the received
message. An en-update control from data-ctrl enables the update-delays-n-sums
component (Figure 17) to update PLL and DLL quantities. This block propagates values
from present state to next state to set up the next iteration of the trace-forward loop. It
also computes phase correction,phi-nco, for each of the 16 states. The compgh jnco
module imvlements:

in \path metrics for next state in path

termediate summer, including t2, for residual phase fo

The block utilizes 2 32-bit adders and a right-shift for the middle term. Since BlockLen is
constant, an 8-bit addressed LUT in conjunction with a 3x8 LUT computes the last term.
The ramp signal is a 3-bit counter that resets at the end of a block, or 5 iterations through
the trace-forward loop.

t2Prev[15:0][31:0]

t3Prev[15:0][31:0]

out

out

Previous intermediate summer for residual phase for
each state
Previous intermediate summer, including t2, for residual
phase for each state

5.3.6 Traceback

Figure 18. Traceback component interface

Table 8. Traceback component interface description
-

Traceback

I
n iter ~n l~nables next iteration

Ilf '0'. trace back from zero state. else trace back from
In ktat;? with highest metric

athmetric curi[15~0][31:0] in l~urrent pathmetrics for each state

After the message has been traced forward across its length, the best path metric indicates
the end of the max-likelihood path. By tracing back, the estimated bits and
corresponding systematic and parity symbols along this max-likelihood path is
determined.

prev bit[l5:0]
Done
beststate prev[3:0]
est bits

Code Excerpt 5. Traceback for max-likelihood path
1 / / ~f Term = 1 trace back from zero state
2 / / ~f Term = 2 trace back froa state wlth hlghest metrlc * /
3 -f (Tern == 1)
4 beststate[NUM-BZTS' = 0;
5 else

in
out
out
out

6 i
7 / / flnd best me:rlc
8 bestmetrlc = PathMetrlcCurrrO.;
9 beststate[NUEI_BITSI = 0;
10 for (1=0; 1<NUM-STATES; lit)

11 I

Previous estimated bit
Iteration done
Previous state for estimated bit
Estimated b ~ t

19
20 for (t=NUM-BITS; t>O; t--1

23 if (est-blts [tl)
2 4 beststate[t-11 = prevstatel[beststate[tll;
25 else
2 6 beststate[t-11 = prevstateO[beststate[tl I;
27 if (TurboMode 66 !Puncture) I
28 Despreadsyms[3"t-31=SysSymMat[beststate[t-111 [t-11;
2 9 DespreadSym~[3*t-21=ParSymlMat[beststate[t-l11 [t-11;
30 De~preadSyms[3*t-l]=ParSymZMat[beststate[t-111 [t-11;
31 1 else I

/ / est blt 1

/ / est blt 0

15)

At the first iteration, en-iter and FD input signals for the traceback block are asserted to
initialize the last location in the message with bestmetric and beststate. For t=1004, a
comparison tree finds the best metric for 16 states in 4 cycles. Tracing back, the
estimated bit, est bits, of ' 1' or '0' for the previous location determines the previous
state. This vaiueis used to address systematic and parity symbols for the bit location.
Iterating to the 0" state takes another 1004 cycles. Data Control (Section 5.4) handles
control for this recursive computation. Memory Control (Section 5.6) handles
addressing for storing systematic and parity symbols for best states at each bit location.

5.3.7 Sova Delta

L~~-d.ItS-W
I

--a

Figure 19. Sova-Delta-Top component interface

Table 9. Sova-Delta-Top component interface description

The sova-delta-top block finds the minimum path difference for an error path up to
SUVA-DELTA bits from the current message location. It implements the following code:

Code Excerpt 6. Sova Delta loop
1 for (t=l; t<NUM-BITS+:; t++) / / for each bit find Le
2 1
3 llr = BIG-POS; / / set log-likehoad ratio to large number
4 for (i =O; i<=SOVA-DELTA; i++)
5 1
6 if(tti < NUM-BITStl) / / do not go past end
1 !

8 error-bit = 1-est-bi~s[tti]; //force an error at begining of path
9 beststate-tb = beststate[t+il;
10 / / trace back from bit error
11 far (j=i; j>O; j--)
12 4
13 if (error-bit)
14 beststate-tb = prevstatel[beststate-LUJ;

else
1
beststate-tb = prevs~ateO[beststare~tb;; / / est bit 0

I
19 error-bit = (prev-bit [ttj-11 6 bitmapLbeststate-tbl >> beststate-tl
7fi 1 - -
21 / / after tracing back check if incorrect decision at stage t+i
22 / / resulted an bit error at stage t.
23 if (error-bit != est-bits[tl
24 1 = m i 1 1 , Mdiff[beststatelt+ill lt+il);
25 I
26 I
27 / / calculate La11 for bit at stage t
28 / / recall that llr is stored at t-1 while decoded bit is at t
29 Lallit-11 = (2* (int)es:-bits[t: -l)*llr;
30 I

In this implementation, SUVA-DELTA is 30 stages. If computed sequentially, as in
software, this triple-nested loop would take

SOYA-DELTA tSOYA_DELTA = NUM-BITS*(SOVA-DELTA+l)*
iterations, or 1004x30x15=451800 iterations. To optimize the computation, we structure
the hardware as follows:

for all information b'ts (
initialize log-likelihood ratio to be large integer
for i=[O,SOVA-DELTA],[l, SOVA-DELTA-11, ... [15,SOVA-DELTA-1511

//sova-delta-i computation for iIO1
force error at beginning of path for if01
propagate error to location in path for i f01
if new path causes error, compare to log-likelihood ratio and keep minimum for
if01

//sova-<a-i computation for i i l l
force error at beginning of path for ill1
propagate error to location in path for ill1
if new path causes error, compare to log-likelihood ratio and keep minimum for
iill

I
compute soft output for bit location

Here, the j loop is absorbed into its parent i loop. The first sova-delta-i block takes 1
iteration to compute the loop for i[O]=O and then SOVA-DELTA iterations to compute the
loop for i[l]=SOVA-DELTA. The sova-delta-i block for the next i-pair, [I,
SOVA-DELTA-11, takes 2 iterations for the first loop and SOVA-DELTA-1 iterations for
the next. The next i-pair takes 3 and SOVA-DELTA-2 iterations, and so on. Thus, all 15
pairs of sova-delta-i computations complete in SOVA-DELTA+l iterations. The Sova
Delta Loop for the entire message now takes

- NUM BITS * (SOVA - DELTA + 1) ~SOYA-DELTA - -
iterations. Although the fmt loops through the sova-delki blocks may finish at
different times, the blocks are in sync after the second loop. The control for sova-delta-i
computations is shown below.

Figure 20. Sova-delta-i FSM

The finite state machine (FSM) computes ilr (line 24) for i[O] then i[l]. An error at
location t+i is assigned to error-bit (line 8), and the state corresponding to the max-
likelihood path is assigned to beststate-tb. The j loop of lines 11-20 is executed between
finite states tracebackl and traceback2. If the forced error results in an alternate path
through the trellis, Mdiff-bstate is the path metric difference between this alternate path
and the estimated path.

Once again, memory access becomes an issue since all blocks need to access path metric
differences, Mdzfi which are stored in RAM. For a given bit location, t, each i loop
requires Md~flbeststate[t+i]][t+i] in line 24. The Mdiffmemory is organized as 1K x 512
bits. The wide output bus consists of 16 32-bit Mdzjfvalues, each longword
corresponding to a state in the trellis. The memory is addressed by the location in the
message, or t+i in this case. The path metric difference for an error along the path at this
stage is selected by beststate[t+i].

For all i loops, beststate[t] through beststate[t+SOVA-DELTA] must be available. Since i
loops are executed in parallel, a shift-register pipe 30 (or SOYA-DELTA) longwords deep
is loaded with Mdiffs[beststate[t]] to Mdiffs[beststate[t+SOVA-DELTA]] during the last
30 iterations of the Traceback process. This is used in the first iteration of the Sova
Delta Loop. For the next iteration, Mdzrvalues are shiRed such that t,,, <= t +l. The
only Mdiffvalue that needs updating for each t loop corresponds to t,,,+SOVA - DELTA.

The load-sd control signal is used when initializing the pipe with 30 Mdzfvalues for t-1
to SOVA-DELTA+l. An update-sd is used when updating for the next iteration, e.g. t=2
to SOVA_DELTA+2. Addressing is controlled by ram-ctrl while the load-sd and
update - sd controls are asserted by data-ctrl.

Soft output, Lull, is generated in line 29 where the log-likelihood ratio, ilr, is encoded as
either a positive or negative fixed-point value. This is done through a twos-complement
block with bypass capability.

5.4 Data Control
The data-ctrl block is a finite state machine (FSM) which manages data flow through the
processor. The top level FSM is shown in Figure 21.

Figure 21. Finite state machine for data control block

Upon inspection, this resembles

Systematic and
Parity Symbols

............

/ /
I I Ad&Compare Despread I I

Select Symbols* I I
(Bstates) (8-states) I , I rn

! ! ! ' I

i I i I
/ For each bit forward / / For each bit backward j / For each bit forward ..

+ , m , m / I

Tamplex Multiply and Accumulate hardware shared fordespreading symbols and early and latecorrelators

Figure 12 in data flow. When the finite state machine is enabled, the Despread Symbols
process is done for lower states, hi states int = '0 ', and then for higher states,
hi-states-in? = '1 : The sel-ds-rxief is asserted and selects RxRef outputs from
on-chip memory for despreading symbols.

Despread symbols for all states in the trellis must be ready (RDY-acs) before the
add-compare-select component can be enabled. Once enabled (en-acs), there is a 3
clock latency for selecting the metric for the best possible path to the next state in the
trellis. The Add-Compare-Select process is done for lower states and then for higher
states. The sel-ds-mref signal at this point has already been de-asserted for RxRef
outputs used in the following Correlate and Update stage. The atan-ND-cnu signal
enables the arctan hardware in Section 5.3.4 to begin operating on new PLL accumulator
values, MY im and MY re. The arc tangent is a CORDIC implementation using Xilinx's
Core ene era tor. herei is a 22 clock cycle latency for the computation, but this can be
absorbed into the system's latency which is dominated by complex multiplies. The
Correlate and Update stage itself completes 2 sets of complex multiplies, which require
Nsamp iterations each.

The sel-early_cnu-in? and addr-rxsigref-ofset assignments entering the Correlate and
Update process set up memory writes for symbol summations (SymSumRe in Code
Excerpt 3) and memory reads for &Re$ Early correlations are done first, followed by
late correlations.

, m I I , m , , ! I

Min Path
Di f fmce

Correlate*
and Update

Block Bounds
(&states)

After repeating the Correlate and Update process for lower and upper states, the DLL
and PLL can be updated. The chk blk bounds-cnu enables the correlate-n-update
block to determine whether or notthe next iteration falls on a block boundary, i.e. is a
multiple of 5 . If so, ram-ctrl is enabled to update RxRef buffers.

: Soft -
/ Output

Update Delay
and Phase
Estimates
(I &states)

- 8 m , m , # , #
, , , ,

. , m , , #
, rn , , , m
8 m , rn

, # , m , m

M a x - I i k e l i h o o d L
Path

, m

I I
, I , I

, ,
I I
I I
I I

The Update Delays and Sums process sets up values for the next iteration in the trace-
forward loop. The update4next-! signal propagates symbol summations, path metrics,
delays, and phase summations to the next state. T-in! is incremented for NUM-BITS
iterations through the trace-forward loop.

The Traceback loop control is implemented in the traceback state in the FSM. It is
hierarchical and hides the loop in its child FSM. The sova-delta state, which implements
the Sova Delta Loop in the FSM, is also hierarchical and hides a double-nested loop in
its child FSM. These child FSMs, along with those for Despread-gmbol and correlate
states are described in the next sections.

5.4.1 Despread-symbol FSM
The Despread-symbol state machine is pictured in Figure 22. The FD-despread-sym
and ND despread-sym signals control the multiply and accumulate block in the
deyread-symbol hardware. The rd-RwSigRef signal enables another FSM in the
ram-ctrl block for accessing the RxRef buffer in on-chip RAM. The complex multiply
iterates for Nsamp cycles and has a 12 clock cycle latency. The RDY-despread-sym
output of the dataqroc block indicates that the computation is done. The
wr despread sym_res signal is asserted for ram-ctrl to write systematic and parity
results to on-chip RAM.

Figure 22. Finite state machine for despread-symbols

5.4.2 Correlate and Update FSM
The child FSM for the Correlate and Update process is pictured in Figure 23.

Figure 23. Finite state machine for correlation

The early and late correlators reuse the complex multiply hardware used in despreading
symbols. Only the addressing to the &Ref buffers is different. The addr-rxsigref-offset
of "lo", "Ol", "00" addresses an early, middle, or late RxSigRef signals, respectively.
More details are offered in Section 5.6.3. The sel-early_cnu-int signal (at the parent
FSM level) toggles between designating an early estimate and late estimate for storing
summations in the appropriate summation registers when update-symsums-cnu is
asserted.

The comparison in lines 4-7 of Code Excerpt 4 determines how RxSigRef buffers will be
updated for the next block of iterations (refer to Section 5.6.3: RxRef-ctrl). Correlation
should take 2*(Nsamp+14) clock cycles.

5.4.3 Traceback FSM
Control for the Traceback loop is shown in Figure 24.

Figure 24. Finite state machine for traceback loop

This takes
- log, (NUM - STATES) + NUM - BITS * t,o, + 1 'nocebzck -

cycles to complete. Time to select best metric takes log2(NUM_STATES) cycles, or 4
clock cycles. This selection is done before the first iteration of Traceback and is
asserted by FD-haceback. Each iteration takes tm,b,k cycles, which is 3 clock cycles.
At the end of every iteration, ND-haceback, indicates new systematic and parity symbols
can be stored to memory. Another cycle is added for setup of the Sova Delta Loop.
During this stage of data flow we also want to load the MdlfSqipe that is needed in the
Sova Delta Loop. This is loaded (load-SD) during the last SOVA-DELTA iterations of
the Traceback process as the needed values become available.

5.4.4 Sova Delta Loop FSM
Data control for the Sova Delta Loop is pictured below.

Figure 25. Finite state machine for Sova Delta loop

The Sova Delta Loop, as mentioned in Section 5.3.7, is a double-nested loop. Data-ctrl,
however, only handles the outer-level iterations from 1 to NUM-BITS + 1. Control for
the inner loop is summarized in Section 5.3.7. After each iteration, lull is written to
external memory or another device for further processing.

5.5 On-Chip Memory
On-chip memory provides local memory access for data processor. Memory blocks may
be implemented in the Virtex-I1 Block RAM or distributed RAM. Block RAM consists
of dedicated memory resources that can be implemented as single or dual-port RAMS or
ROMs. Alternatively, memory can use distributed resources utilizing LUTs.

In this implementation, block RAMS are used for each memory except for rxref-buj3,
which are implemented using LUTs. Memories used on the chip are listed in Table 10.

look-ahead, look-behind, and curren
correlations. Each buffer location c
8-bit RxS~gRef values from external mem
for each systemattc or parity symbol The
address depth of 1026 covers Nsamp
cteratlons of a complex multiply plus extra

Table 10: On-Chip Memory Block

5.6 Memory Control
The purpose of this module is to handle data transfers to and from memory while
minimizing clock cycles from data control. If a block of memory needs updating and
data is available, then the process may be enabled with a single control signal fiom
data-ctrl. Memory control, implemented in ram-ctrl, is needed for reading and writing
despread symbols SysSymMat, ParSymlMat, and ParSymZMat; shift-registers est-bits,
beststate, and Mdzff for Sova Delta Loop computations; and &Ref values for complex
multiplies.

5.6.1 Despread Symbols Memory Control

A

Figure 26. Finite State Machine for writing systematic and parity symbols and
being despread

In the control pictured in Figure 26, the writes being handled in the write-dr_res state in
the FSM are

SysSymNat[s=atel [tl=syrnlre;
ParSymlMat[state] [t =syrr2re;
ParSymZWatIstate][tI=syrr3re;

This is from despreading symbols in line 21 of Code Excerpt 1, which is similar for first
and second parity symbols. By default, addressing to these memories (addr-symmat) is
set up for reads. The enable signal, RDY-despread-sym, from data-ctrl starts the write.
The top 4 bits of addr-symmat is then set to state=O for the first state of the current
iteration, t, in the trace-forward loop. The SysSymMat, ParSymlMat, and ParSymZMat
memories, which are 32xl6Kbit, are then sequentially written for the following states in
the current iteration. This takes NUM-STATES*3 clock cycles. The state signal is sent
to a multiplexer to select the appropriate longword to be written to memory since symlre,
symZre, and sym3re are produced for 8 states in parallel.

In the update-tmceback state of the FSM, SysSymMat, ParSymlMat, and ParSym2Mat
(for non-punctured Turbo codes) are read in Code Excerpt 5 and written to
DespreadSyms. The DespreadSym memory (Table 10) is 96 bits wide and all 3 32-bit
symbols can be addressed by addr-tb (equivalent to t-1). Beststateqrev is the state for
the estimated path at t-1 and makes up the 4-MSBs of the SymSymMat, ParSymlMat, and
ParSymZMat addresses. It determines the 3 symbols to be transferred to DespreadSyms.

5.6.2 Est-bits, beststate, and Mdiff memories

In Section 5.3.7, the sova-delta-i blocks required special handling for inputs for
SOVA-DELTA computations. Shift registers are used to implement 30-deep pipes for
est-bits, beststate, and Mdzffmemories. The FSM for control is shown below.

Figure 27. Reading and writing est-bits, beststate, and Mdiff memories

Est-bits is written in line 22 of the Traceback loop in Code Excerpt 5. Beststate is
written in lines 15,24, or 26. The enable signal DONE traceback from data-ctrl puts
the state machine in the update-traceback state where G t e s are enabled for the est-bits
and beststate memories.

Mdzfi however, is written earlier, in the Add-Compare-Select stage. The RDY-acs
signal from data-ctrl indicates when the FSM should be in the wr-mdzff state to enable
writes to Mdifmemory. Although Mdzfffor all 16 states are ready, the values are written
sequentially to memory.

Loading of 30-deep pipe for est-bits, beststate, and Mdzffis handled in the last iterations
of the Traceback loop. This is done by the loadgipe state of the FSM when data-ctrl
sends a load sd signal to ram-ctrl. Est bits and beststate memories must be of the Read-
~efore-writetype so that values can beread and shifted down the pipe in the same clock
cycles as they are being written. Mdzfneeds to be addressed and read along with esf-bits
and beststate in the last 30 iterations of the Traceback loop. The Traceback FSM in
Figure 24 produces the load-sd signal for entering this loadqipe state where the shift-
registers for est-bits, beststate, and Mdlffare initialized.

After each iteration for the Sova Delta Loop, data-ctrl sends an update sd signal to
ram-ctrl and puts the FSM in its updateqipe state. This sets up addressand write
signals to read the next est-bits, beststate, and Mdzfflongwords to be updated in memory.
The address, addr-sd, for this new longword corresponds to t+SOVA - DELTA after t has

been incremented for the next iteration. Data-ctrl asserts update-sd after each iteration
of the Sova Delta Loop.

5.6.3 &Ref-ctrl
In the Turbo algorithm, the RxRef buffer must be accessed for early, middle, and late
correlations.

Code Excerpt 7. Despreading systematic symbol
for (i=C, symlre=symlie=C ; i< Nsam ; itt) i

re1 = RxSigRe:indexl+il * RxRef[
in1 = RxSig1m:indexltil ' RxRef[/ i
s m l r e t= rel*reZ-iml'im2; / / term1 = xl * x2 (complex)

t

Index2 and Index3 are used for parity symbols. For early and late estimations,

Code Excerpt 8. Early gate sum for systematic symbol
for (i=ternlre=:ernlLs=O ; i< Nsamp; it+) i

re1 = RxSigRe[indexlti: RxRef[indexl
Iml = RxSigIn[indexl+i: * RxReflindexl*Os+
~ e r m l r e += rel*re2-iml'im2;
zermlim t= rel*imZtreZ'iml;

I

Code Excerpt 9. Late gate sum for systematic symbol
for (i=termlre=termlim=C ; i< Nsamp; Lit) i

re1 = RxSigRe:indexl+il * RxRef[indexl*Os+
in1 = RxSigIm:indexl+il RxRef[indexl*Ost
termlre -= rel*reZ-iml*im2;
termlim += rel*im2+reZ*iml;

t

Note the different address schemes for RxRef in each example. RxSigRe and RxSigIm are
not state dependant, so all 16 states can access the same memory locations. RxRef,
however, has state dependency buried in D and D-ML.

For delay, D, in the first example in Code Excerpt 7, we have
D = DelayEstIstatel

from line 3 in Code Excerpt 1. Since we want to compute 8 states in parallel, we need a
buffer for each state that will cover Nsamp values for the complex multiply. To do this,
we want to re-organize external memory onto the FPGA so that all 3 symbols can be
accessed cycle by cycle.

RXRef[lndexl*O~tD+1'05. = RxRef[Os*(lnaexltlIiD1

Since 0 s is constant (oversampling rate of 8 times) and indexl, index2, and index3 are
constants, &Ref can then be sequentially accessed with i as with RxSigRe andRxSigIm.
One such buffer is needed for each state with its individual offset, D.

In the second and third examples, which occur in the Correlate-n-Update stage, bit '0'
or ' 1 ' has been estimated to determine whether

D ML = DelayEst[prevstateO] Or D-ML=DelayEst[prevstatell .
This relates D-ML to D used for the first correlation, whereprevstate0 is equivalent to
the previous state for an input of 'O', andprevstatel is the previous state for an input of
1 For these two possibilities, we need to map the delay, D-ML, to the appropriate

RxRef buffer for bit '0' or bit '1'. The trellis used for propagating from the current state
to the next is shown in Figure 11. This corresponds to an array where:

Thus, a ' 1' input in state15 would stay in state15 for the next iteration since
prevstatel(l5) = 15. A '0' input would propagate to state14 sinceprevstateO(l4) = 15.

A multiplexer at the output of each &Ref block can assign D-ML. The signal, sel-ds,
selects the middle case for the Despread Symbols stage. For the Correlate and Update
stage, the signal sel-rxref(satte) selects one of the two other cases for an information bit
ofGl'or'O'.

~ ~ J E a e L L 4 , block

sel-rxreql

RxRef
R"R?f 12 , -

block

. . .
RxRcf RxRef o
block

Figure 28. Assign RxRef for despreading symbol and propagating input bits of '1'
or '0'

Now, extending into the case where early and late estimates are made, the RxRef buffer
should also allow for the iDeltaDll values in Code Excerpt 8 and Code Excerpt 9. Since
DeltaDN = Os,

RxRef[indexl*OstD_ML+De:taDll+ i*Os] = RxRef[Os*lindexl+ifl)+D-Mll.

Again, RxRef can be sequenced by the counter i. By loading in bytes offset by a constant
indexl, index2 and index3, our local RxRef buffer can be addressed from -0s + D to
Nsamp*Os + D as in Figure 29.

Addrn t -Os+ D

Addrl t D

A d d R t O S + D

Addr3 t 2 0 s + D

AddrN e Nsarnp'Os + D

Figure 29. Mapping of &Ref in external memory to on-chip memory

Moreover, at each block boundary of length 5, the delays are incremented or decremented
a step:

if (SymSumRe[O] istatel > SymSumRe:Zl [szatel I / / assure PLL pulled in
De:ayEstNext[statel = D_MLtdll-step; / / retard delay

else
De:ayEszNext[statel = VL-dll-step; / / advance delay

The interval, dll-step, is a unit step, as opposed to DeltaDLL, which steps by 8 units.
Timing becomes an issue since the SymSumRe[O] and SymSumRe[2] values are not ready
until just before this update in the Correlate-n-update stage. The new RxRefvalues
corresponding to the new DelayEstNext, however, are needed immediately for the next
iteration, in the Despread Symbols stage. By triplicating the memories in Figure 29 for
each state, we could assign a "look-behind buffer for the case ofD-ML-dcstep as well
as "look-ahead" buffer for D-ML+dll-step. When the DLL is ready to be updated, the
&Ref buffers for all states can be updated in parallel. Using Read-Before-Write
memories keep data from being corrupted. Putting a second Read-only port on the main
(middle) buffer allows the Despread Symbol stage to process without added latency
during the update. The structure of each &Ref block in Figure 28 is illustrated in Figure
29.

Ext-Rxref

out-nunusl

Ext-Rxref

Figure 30. &Ref-blk implementation

A read-only port off the main buffer accesses Dout-&Re$ A read-write port on the same
buffer is used to update the main buffer while transferring previous data to look-ahead or
look-behind buffers.

In the case of advancing delay, the look-ahead buffer gets data from the middle buffer.
The middle buffer simultaneously gets data from the look-behind buffer. The DLL
update takes Nsamp+2 clock cycles, roughly the length of the Despread Symbol stage
where new data is immediately used. At this point, main buffers have been updated from
local memory at the block boundary. But now either the look-ahead or look-behind
buffer of each state needs to be updated from extemal memory. This update would also
take Nsama+2 clock cvcles. Since each iteration while tracing forward takes at least -
6*Nsamp cycles (8-states executed at a time for middle, early, and late correlations),
there are enough clock cycles to update about 6 of these look-ahead or look-behind
buffers in an iteration. With 5 iterations until buffers are needed for the next update,
there are plenty of clock cycles to update 16 states can be sequentially updated with
access to external memory.

5.7 SOVA2 implementation
The standard soft-output Viterbi decoder, as mentioned before, is not nearly as complex
as the SOVAl implementation. It shares the same sova-delta-top block and a similar
recursive structure to the traceback function. Although it also has an iterative trace-
forward computation, it does not require any complex multiplies for each information bit,
as with SOVAl. Consequentially, the SOVA2 block is expected to contribute a small
percentage to the Turbo decoders final latency and area. Synthesis results are
summarized in the following section.

5.8 SOVAl and SOVA2 size and speed results
Results from synthesis are as follows:

Table 11. Synthesis results for SOVA implementations

The number of flip-flops and LUTs used in the top-level SOVA2 and SOVAl modules
and sub-modules are listed in Table 11. The sum total of these top-level component
resources is then compared those available on the largest Xilinx Virtex-I1 part, the
XC2V8000. According to these numbers, enough resources exist on this FPGA to
implement both decoders on the same part. An interleaver and control unit for the
SOVAl and SOVA2 loop should fit on the remainder of the chip, although
implementation of the entire Turbo decoder is not covered here.

The Data Processor, which makes up the bulk of the logic in SOVA1, is broken down
further into sub-modules. The despread-symbols, add-compare-select, and
correlate-n-update modules have been adjusted to reflect 8 instantiations of each. Note
that the sum of the sub-module resources does not necessarily match those of the parent.
Optimizations visible at higher levels in the design hierarchy allow the synthesis tool to
minimize area. On the other hand, there may also be structures wrapped around sub-
modules that add overhead resources to the parent.

Synthesis also estimates speed based on longest data paths within the design. Since
resources have not been placed and routed, interconnect delay is not properly represented.
The higher the utilization of the FPGA, the more significant this routing delay can
become, thus the speed estimate is considered an upper bound. During verification,
speed optimizations can be made along critical paths for improved timing performance.
The maximum speeds for the SOVAl and SOVA2 modules indicate that SOVAl will be
the bottleneck for the algorithm. With ideal routing, the part should run at 63 Mhz, but
since this is hardly ever the case, we can expect the part to run slower. The design in its
current form does not route using Xilinx's Project Navigator tools. Verification and

additional constraints will be necessary for computer-aided place and routing and final
timing analyses. For our estimates, we use a clock speed of 50 Mhz.

Latencies for the SOVAl and SOVA2 hardware implementations are summarized below.

Table 12. Clock cycle latencies for SOVA implementations

Id Compare Select 10,
gorrelate and Update 4,170,

setup complex mult 2,008
despread early estimate 2,080,288
update symbol sums 2,008
reset addresses 2,008
setup complex mult 2,008
despread late estimate 2,080,288
update symbol sums 2.008

.atency #cycles per 10 iterations
3it rate @ 50 Mhz(bps)
:hio~ina rate @ 50 Mhz l M c ~ s l 1.2

The overall latency of 64M clock cycles is the sum of latencies for SOVAl, SOVA2, and
interleavers multiplied by 10, which is the number of times that the algorithm iteratively
refines its out~ut. Since the entire Turbo decoder and its interleavers have not been
implemented, the interleaver and top-level latencies are approximate. Using a 50 Mhz
clock a 1000 bit message can be calculated in 1.3 seconds. If 1000-bit messages were
received back-to-back,?85 bps could be processed without overrunning the SOVA1
decoder. This would correspond to a 1.2 Mcps chipping rate.

The SOVAl is shown to contribute to most (98.9%) of the overall latency for the Turbo
decoder. The following trade-off analysis is done in terms of the SOVAl-top latency.

SOVAl-top latency is dominated by complex multiplies in the trace-forward loops of the
data flow. Data and memory controls occur in parallel and do not contribute to overall
latency. The latency of the complex multiplies grows with Nsamp:

The latency in the multiplier, in this case is 12 cycles. Complex
multiplies are performed once during Despread Symbols and twice for early and late
estimations during Correlate and Update stages. Each of these stages are repeated for
each iteration.

The latency for hardware not dependant on Latency,mp~m,a is 86,349 clock cycles. The
higher Nsamp is, the closer it approximates the entire latency of the SOVAl algorithm.
Since Nsamp is 1024 (5 12 chips per symbol and 2 samples per chip), the latency for
complex multiplies in this implementation comprises 98.6% of SOVAI-top latency.
Halving Nsamp saves roughly half (48.7%) the overall SOVAl-top latency. Doubling
Nsamp would nearly double (197%) SOVAl-top latency. In this case, however,
additional off-chip memory may be needed since the depth of RrRef buffers also depend
on Nsamp.

Increasing Nsamp by increasing the number of chips per symbol may also require
increasing maximum bus width allowed for signals. More multiply-accumulates means a
greater chance of causing an overflow in the final result and a larger multiply-
accumulator may be necessary. Other hardware and memory blocks would also need to
accommodate the larger bus widths.

L a t e n ~ y , , , ~ ~ ~ , ~ , furthermore, depends on NUM-BITS. Raising the number of bits from
1000 to 10000 would increase latency another order of magnitude. Increasing number of
bits per message would increase memory requirements in Table 10 and available BRAM
on the Xilinx device may become a limiting factor. Thus, custom interfaces to off-chip
RAM will likely be needed for messages longer than 1000 bits.

Changing constraint length would also affect the latency of the system. Constraint
length, K, determines the number of states in a trellis. In this implementation, K=5 was
chosen to target the largest Xilinx Virtex-I1 device. With this implementation, however,
not all 16 states could be computed at once with resources on an FPGA. Lowering the
constraint length to 3 would create a trellis of 4 states, and despread-symbol,
add-compare-select, and correlate-n-update blocks could be instantiated 4 times
instead of 8 for K=5. Not only would this save space on the FPGA, but all states could
then be computed in parallel. This would lower overall SOVAI-top latency by 49.4%.

Another way to decrease the latency by 33% is to compute early and late summations for
correlation in parallel. Even if reducing the number of dedicated 18x18 multipliers
required for each complex multiply to 4 from 6, however, 192 multipliers would still be
needed to compute 6 symbols in parallel for correlation. This number of multipliers is
still not available on Xilinx parts, and again, there are not enough LUTs available on the
chip to implement the extra multiplies. If we expect the Turbo decoder to operate on
punctured code most of the time, however, we could achieve the same savings by
implementing complex multipliers for just the fmt and second symbols. This would
require only 128 dedicated 18x18 multipliers. But, if codes are not punctured, the
savings are lost.

Presented here is essentially a "paper" design since no part of this design has yet been
simulated and verified. The design, however, is written in synthesizable VHDL and
therefore is ready to he tested against the algorithm written in C. Software should be
modified to use fixed-point representations for verification with hardware. The software
should also be modified to generate test vectors in intermediate points in the program for
module-by-module verification. Having a bit-accurate software model would also
simplify tradeoff analyses and allow design decisions to be made at a higher level before
implementing a new hardware design. Using an environment such as SystemC would co-
simulate hardware and software implementations. This would enable module by module
testing of the hardware using a C-based testbench and speed up simulation and
verification times.

This design targets the largest Xilinx Virtex-I1 FPGA available, the XC2V8000, which is
equivalent to 8 million system gates. Its data rates target the region where the Turbo
algorithm has demonstrated its strongest gains for 3 to 5 dB in E&, over typical systems
used today. Using constraint length of 5, a code rate of 113, message length of 1000 bits,
and 512 chips per symbol, we were able to synthesize a design on a single FPGA that
would operate at a bit rate of 785 bps and a chipping rate of 1.2 Mcps.

6 Software Implementation

6.1 sova-dpl1.c
The function sova-dpll is a soft output (and soft input) Viterbi algorithm (SOVA) decoder with
integrated delay and phase lock loops for decoding convolutionally encoded (possibly as a con-
stituent code in a Turbo code) spread spectrum BPSK signals. The encoder shift register connec-
tions are set in header file scenari0.h as are other parameters such as constraint length, K, the
number of data bits, the number of spread spectrum chips per symbol, the number of AID samples
per chip, etc. The decoder operation is effected by the boolean function parameter TurboMode,
which indicates a turbo code or a simple convolutional code. Sova-dpll can be called by main in
the file run-sova-dl1.c with TurboMode set False or main in run-turbo-dll.c, via turbo-dpU,
with the TurboMode flag set True. Note that the Turbo code can be punctured or not punctured
(set in scenari0.h) giving a rate 112 or a rate 113 Turbo code respectively, but the two constituent
convolutional codes are fixed rate 112 codes. The convolutional encoders are recursive systematic
convolutional (RSC) encoders meaning that the input data bit is one of the output channel sym-
bols, called the "systematic" symbol, while the parity symbol is computed with the recursive
structure shown in Figure 31, showing a binary shift register and mod-2 adders.

The RSC encoder block diagram is shown in Figure 31. In the file encode-rsc.c the initial state of
the encoder is set to 0, i.e. all registers are cleared. The feedback bit, Fb, is the mod-2 sum of the
state of the encoder after shifting in the input bit, 0 or 1, and-ed with the register connection vec-
tor, gl. This mod-2 sum is computed by using the result of the and as an index into Partab. This
table performs the mod-2 sum by mapping all indices whose binary expansions have an odd num-
ber of 1's to an output of 1 and all indices with an even binary representation to an output of 0. For
example indexes of 1 and 2 are 01 and 10 in base 2 respectively and map to 1 while an index of 3,
which is 11, maps to 0. The Fb bit replaces the input bit to create state2 which is and-ed with g2 to
produce the parity bit output for this input bit. If the Terminate flag is True the last K-1 data bits
are changed to values that force Fb to 0 thereby driving the final state to the 0 state. Since the tail
bits can be overwritten no data is ever put there, the tail bits are initially all 0. The even outputs are
simply the input bits, called the systematic symbols, and the odd outputs are the parity symbols.

systematic
output

F i r e 31. RSC encoder block diagram (K=3 example with gl = 11 1 and gz = 101)

The function encode-turbo calls encode-rsc twice as shown in Figure 32. The data is shown
passing through the RSCl block because a terminating tail is added to the data by RSCl as
described above. The data and tail are then interleaved by the block marked "a" and are encoded
by RSC2. Note that the tail terminates RSCl to the 0 state, but not RSC2, since interleaving
scrambles the data and tail bits. The data bits (with tail), di, and the parity outputs from RSC1, pi,
and RSC2, qi, are then multiplexed into a single stream. If the Puncture flag is False then the mul-
tiplexer output is dl , pl, ql , d2, p2, q2 ... or if the Puncture flag is True the multiplexer output is dl,
p,, d2, q2 ,d3, p3, d4, 44 ... , in other words all the data bits, or systematic symbols, are sent but . - - - ~

only half of the parity symbols are sent. Figure 32 also shows the direct sequence spread spectrum
(DSSS) chip sequence being generated and multiplied onto the encoder channel symbols.

sig
data out

L - RSCl ---b in

Figure 32. Turbo encoder

The binary signal leaving Figure 32 is impressed on an RF carrier (BPSK modulated) which is
then received, converted to baseband and passed to the decoder shown in Figure 33. If soval-dpll
is processing simple RSC encoded data, so that TurboMode is False, indicating that encode-rsc

was called directly by main rather than by encode-turbo the tail may be either terminating or -
nonterminating, a id ;he appropriate decoder is just the Enhanced SOVA~ block.

I DSSS reference function

Figure 33. Turbo decoder with integrated phase and delay tracking loops in SOVA 1

Le

For comparison, in Figure 34, we give the block diagram for a standard Turbo decoder that could
be used following a standard "external" delay and phase locked loop (DPLL), as implemented in
run-dpll-then-turb0.c and the functions that this main calls. In this decoder the phase-cor-
rected, time-aligned, despread channel symbols are demultiplexed sending the sytematic bits, di ,

in + output

La
Enhanced
SOVA 1 sig +

and RSCl parity bits, pi , to decoder 1. The systematic bits are passed through an interleaver to
put them in the order in which they were presented to RSC2 in Figure 32. The parity symbols are
already in the interleaved order so they are passed to SOVA2 directly. The extrinsic information,
Le 3 g enerated by SOVA2 is deinterleaved to match the bit order for SOVAl which is then used as
a priori information, La . Extrinsic information computed by SOVAl is interleaved for SOVA2

SOVA 2
LU

>
despread syms - I-

which works with interleaved data.

4; -

I I > J systematic syms

Figure 34. Standard Turbo decoder

Figure 33 has all of the elements in Figure 34 plus the additional DPLL functionality inside
SOVAl. The symbol demultiplexing occurs after the spreading code removal which is part of the

DPLL function so the demultiplexing must occur within (can not precede) SOVAl as well. The

additional line running from SOVA2 to SOVA1, labeled ii , represents the hard parity symbol

estimates that SOVA2 produces during the decoding process. These hard parity symbol estimates
from SOVA2 are used by the "data-aided" tracking loops in SOVA1 along with hard parity and
hard systematic symbol estimates from SOVAl itself. (Hard symbols are +1 or -1, as opposed to
soft symbols which are noisy.)

With all of the foregoing background material we are now ready to look at the coding of the
enhanced SOVA decoder in the file sova-dp1l.c. We assume a preamble detector has given us the
initial DLL delay, InitDelayEst, and put the beginning of the signal squarely in the I (in-phase)
channel. Keep in mind that in TurhMode there will be parity symbols from RSC2 that the Viterbi
algorithm in SOVAl will not use but the despreading and loop algorithms will use.

On the first call to sova-dpll the function gen-tables is called. This function generates the previ-
ous state and previous symbol tables, which for a given state and a given data bit, gives the previ-
ous state and the parity symbol associated with the transition between these two states. In
gen-tables each state defines a bit pattern in the shift register to which both possible bit inputs, 0
and 1, are shifted. The feedback bit, Fb, is the mod-2 sum of the state of the encoder after shifting
in the input bit, 0 or 1, and-ed with the tap code vector, g l . The mod-2 sum is computed by using
the result of the and as an index into Partab. This table perfoms the mod-2 sum by mapping all
indices whose binary expansion has an odd number of 1's to an output of 1 and all indices with an
even binary representation to an output of 0. The Fb bit replaces the input bit to create state2
which is and-ed with g2 to produce the parity symbol output for this initial state and input bit. The
nextstate for this initial state and input bit are stored too and used to generate theprevstate arrays.
TheprevsymO andprevsyml arrays give both the systematic symbol, which is the input data bit
itself, and the parity symbols calculated above. Adding the systematic bit that precedes the parity
bit is accomplished by adding 10 (binary) to parity1 to give prevsyml.

The decoder begins by looping over the encoded bits, or equivalently the received symbol groups.
There are 2 symbols per group for a punctured Turbo code, 1 systematic and 1 parity symbol.
Recall the earlier description of the multiplexed output from encode-turbo where symbols
O,2,4 ... are sytematic symbols, while symbol l,3,5 ... are parity symbols, alternately from RSCl
and RSC2. The punctured parity symbols are simply not transmitted, the RF energy is put into the
remaining symbols. (Punctured codes use less BW for a given data rate but provide less coding
gain.) There are three symbols per group in an unpunctured Turbo code, the systematic bit and the
parity from each of the two RSC encoders. If TurboMode is False the decoder expects a simple
rate 112 RSC code with each symbol group having 2 symbols, the systematic symbol and the
accompanying parity symbol.

For each bit (or symbol group) we calculate the index of the symbols, indexl, index2, and index3,
if applicable. These indexes are directly used with RxSig and are multiplied by the reference over-
sampling factor, OS, and offset by DLL delay, D, for the reference function. Over sampling of the
reference allows the alignment of the signal and reference in the despreading correlators to be
adjusted in small steps. Smaller steps gives better alignment and less scalloping loss.

We loop through each state despreading and phase unwrapping the signal. Note that the phase and
delay estimates are state dependent, as calculated below, except for the first hit (first time step)
where D is InitDelayEst for all states and ThetaEst is 0 for all states. The result is despread soft
symbols that are saved in SysSymMat[state][t], ParSymlMat[state][t], and ParSym2Mat[state][t],
from which the best soft symbols will be recovered during the traceback when we are finding the
best path through the trellis. We also calculate and store the complex despread symbols for the
current time step. These are stored in DespreadSymRe[O-2][state] and DespreadSymlm[O-
2][state]. The first index gives the symbol number within the group, so DespreadSymRe[O][state]
is the systematic symbol and DespreadSymRe[l][state] is a parity symbol (RSC1 parity for
unpunctured or alternating RCS 1lRSC2 for punctured). For an unpunctured Turbo code the RSC2
parity is stored in DespreadSymRe[2][state]. Think of state, the state at which we know D and
PhaseEst, as being the node to the left of the transitions in the trellis. This concludes this loop
over state.

Now in a second loop over state we do the "add-compare-select" operation, thinking of state now
as the nodes on the right side of the transitions in the trellis, i.e. these are the states that we are try-
ing to propagate parameters to. For each state we find which previous state, state0, we would have
come from if the current bit were a 0 , and which state, statel, if the bit were a 1. Likewise we get
the hard symbol pairs, SymsO and Symsl, associated with the transitions between these particular
states. Each of these holds exactly 2 symbols since the RSC encoders are rate 112 encoders. We
split the two symbols out of SymsO and Symsl by masking with 2 (binary 10) and 1 (binary 01)
and setting syml and sym2 to 1 or -1. These hard symbols are used to multiply the despread soft
symbols to remove the BPSK modulation to give the transition metrics associated with the two
possible data bit values, 0 or 1. The transition metrics are stored in variables with a base name of
the form TranMet. We similarly remove the BPSK modulation from the RSC2 symbols using hard
symbol estimates from SOVA2 which are stored in S-hat[t] , storing the results in variables with a
base name of Sovatenergy. The variable s-hat is produced by SOVA2 for the enhanced SOVAl

and consists of the interleaved systematic symbol estimates and the parity symbol estimates, ii,
which is shown in Figure 33. Only the parity symbol estimates in s-hat are used at present. The
TranMet variables are added to the previous state's total path metric, PathMetric[stateO/statel][t],
plus the a priori info, La[t], to get the data-dependent total path metrics at the new state, mO and
m l . These two quantities are then compared and the largest gives the assumed path into the new
state. The Sovatenergy variables are added to the transition metrics to form complex PLL integra-
tors, MX, that span all of the symbols in the group.

If mO > m l then the decision is that the current bit is a 0 and the path metric calculated for the path
associated with the 0 bit, mO, is stored in PathMetric[srate][t+l]. The DLL delay, D-ML, is copied
from state0 as are the PLL variables. The PLL accumulators, K r e and MX-im, are updated
with the despread soft symbols after the BPSK modulation has been removed by multiplying
them by the hard symbol estimates syml and sym2. Else if m l > mO the current bit is decoded as a
1 and info from state1 is propagated to the current state.

The next section of code are the early and late correlators. Here the spread spectrum signal and
reference are again multiplied and summed as in the first state loop above except that now the ref-
erence is shifted early and late by DeltaDll. The all symbols in the Turbo code are included in the

integrators by using hard symbol estimates from both SOVAl and SOVA2, s-hat. The soft symbol
outvuts from the correlators and multiplied by the hard symbol estimates to remove the BPSK
modulation, before the products are added together.

The PLL and DLL quantities are propagated along these paths from previous state to current state
at time step t so that the current states become the old states at t+l. The DLL and PLL are updated
rather than just propagated when t is divisible by BlockLen. At a block boundary the DLL delay
for this state is increased or diminished by 1 reference sample depending on whether the magni-
tude of the Early gate is larger or smaller than the magnitude of the Late gate. The PLL is also
updated at block boundaries: residual phase is measured and added to the summer t2, which is
added to the summer t3. The phase rate, Deltaqhi, and model phase, phi-m, are then calculated.

The phase correction, phi-nco, is calculated as the model phase minus one half of the phase
change across a block (i.e. model phase is referenced to center of block) plus the phase rate per
sample times the sample number, ramp. Deltaqhi is the phase rate per block so DeltaghU
BlockLen is the phase rate per sample.

This ends the second loop over state.

The variable ramp, is the sample number in the block so is reset when t==BEockLen and incre-
mented otherwise.

This ends the loop over t, the forward pass through the RSC code trellis.

We trace back through the trellis to find the max-likelihood path and transmitted data. The
Enhanced SOVA decoder will have a terminating tail in a Turbo code scheme. If the boolean flag
Term is true we know that the transmitted symbols drove the encoder state to 0 at the end of the
message. Hopefully the 0 state has the largest PathMetric at the final time step but may not due to
noise. If Term is true we set beststate[NUM-BITS] = 0, otherwise we search through the final path
metrics looking for the state with the largest path metric. From there we trace backwards using the
prev-bit array, and knowing this we can get the previous state. The previous bit for each state was
stored in bit packed form in a 64-bit integer at each time step. (There are 64 states in a constraint
length 7 code so this is the maximum constraint length for this code at this time.) When the data
bit decision was for a 1, a 1 was or-ed into the integer at the correct bit position for the current
state and this was repeated for each state. After packing an integer in this fashion at each time step
we haveprev-bit[t] from which we can extract our bit decisions using the mask bitmap which was
used to or the bits into position. bitmap[state] has a single bit set at the bit position state. To
unpack a bit decision at the state beststate we and prev-bit with a mask which has a single bit in
the beststate position and then right-shift the result into the LSB. Given the current state and the
previous bit decision we get the previous state and continue to trace back through the trellis mak-
ing the array of bit decisions. We also collect the despread soft symbols that go with the bit deci-
sions. Some of these will be processed by SOVA2 in a Turbo code.

The final section of code finds the minimum path metric difference between the ML path and any
other path that produces an opposite bit decision. For each bit decision we check all possible paths
back as far SOVA-DELTA, from scenario.h, time steps. At each stage the path deviation is found

by choosing the incorrect bit i.e., the opposite bit from the ML path from est-bits and beststate.
Path metric differences were stored in Mdiff as they were computed in the forward trace. The final
line of code in this module assigns a polarity to the minimum path metric that is based on the bit
value, i.e. we create soft bipolar decisions from the hard bit decisions.

6.2 Code listing

Although many other files are required to build the executable images, listings of only the
following files, specifically discussed in Chapters 5 or 6 , are included in this section:

I/ 5cenario.h
/I
// simulation parameters and constants that determine array sizes, etc that
// must be fixed at compile time
//
// Richard C. Ormesher, Jeff Mason, SNL dept. 2344,511102

// #include <limits.h> // for INT-MAX = 2"31 - 1

#define min(a,b) (((a)<(b)) ? (a) : (h))
#define round(a) (floor(O.S+(a))) // like Matlab for a=0.5, not for a=-0.5

#if 1 // choose fixed or floating point
#define NUMTYPE double

#else
#define NUMTYPE int
#define FIXED

#endif

#define CONSTRAIN'LLENGTH 5 11 max of K=7 for long long prev-bit
#define PUNCTURE 0 // set to 0 for R=l/3, set to 1 for R=1/2
#define NUM-INFO 1000 // num of data bits before tail is added
#define NUM-CHIP-PER-SYM 127 I/ set chiping rate relative to sym rate
#define NUM-SAMP-PER-CHIP 3 // AID sample rate
#define REILOVER-SAMP 8 I1 reference function oversampling factor
#define TAU-SYM 10 I/ allows for DLL movement & E-L gate overhang

// The following constants are used by the sova decoder and are not scenario
// dependent. They are currently set to match sova0.m for now.

#define SOVA-DELTA 30
#define BIG-NEG (-1000000)
// #define BIG-POS INT-MAX
#define BIG-POS 1000000 I/ give same results as Matlab for all SOVA-DELTA

I/ *** derived constants - no changes are necessary below this line ***

/I RSC-G1 is the tap code for the feedback bit in the Recursive Systematic
// Convolutional encoder and RSC-G-2 is the tap connection vector for the
I/ parity output. The LSB is the input so RSC-G-1 must be an odd number, ie
// g l l = l or the input data is not used immediately.

#if CONSTRAINT-LENGTH == 7
#define NUM-STATES 64 // 2"(K- 1)
#define RSC-G-I 0x73 // code 1, used by decoder
#define RSC-G-2 0x59 //code 2, used by decoder

#elif CONSTRAINTLENGTH == 5
#define NUM-STATES 16 /I 2"(K- I)
#define RSC-G-1 0x19 // CCSDS
#define RSC-G-2 Oxlb /I CCSDS
// #define RSC-G-1 Oxlf / / Sklar "Digital Communications"
// #define RSC-G-2 0x1 1 // Sklar 2nd Ed. pg. 496

#else /I CONSTRAINT-LENGTH == 3

#define NUM-STATES 4 11 2YK-1)
#define RSC-G-1 0x7 11 code 1, used by decoder
#define RSC-G-2 0x5 11 code 2, used by decoder

#endif

#define NUKBITS (NUM-INFO+CONSTRAINT-LENGTH-1) 11 includes tail bits

#if PUNCTURE
#define NUM-SYKPER-BIT 2 11 R=112

#else
#define NLTM-SYM-PERBIT 3 I1 R=1/3

#endif

#define CODE-RATE (~.O/(~OU~~~)NUM-SYM~PER-BIT)
#define NUM-SYMS (NUM-BITS*NUM_SYMJERJ3IT) I/ num channel syms in msg
#define NUM-SAMP-PERSYM RJUM-SAMP-PER-CHIP*NUM-CHIP-PRSYM)
#define NUM-SAMPJN-REF-TAIL (TAIL-SYMcNUM-SAMPJER-SYM*REF-OVERSAMP)
#define NUM-SAMP-IN-SIG (NUM-SYMS8NUM-SAMP-PER-SYM)
#define NUM-SAMP-IN-REF
(REF-OVERRSAMP*NUM-SAMPPIN-SIG+NUM-SAMPJNNREF-TAIL)
#define NUM-STATES (NUhLSTATES/2) 11 half the states

I1 sova-dp1l.c
I1
I1 soft output Viterbi decoder with integrated DLL and PLL
11
11 Richard C. Ormesher, Jeff Mason, SNL dept. 2344,915102

#include <stdio.h>
#include cstdlib.h> N for exit()
#include <math.h> 11 for M-PI, cos, sin, atan2
#include "scenario.h" 11 simulation constants
#include "gen-tah1es.h"
#include "sova-dpl1.h" I/ make sure proto is up to date

#ifdef MATLAB-MEX-FILE
#include "mex.h" /I for mexPrintf0

#endif

static NUMTYPE MX-re[NUM-STATES];
static NUMTYPE MX-im[NUM-STATES];
static NUMTYPE MX-prev-re[NUM-STATES];
static NUMTYPE MX ~rev imlNUM STATESI: -. - .
static NUMTYPE ~~[NUM-STATES],~PR~[&-STATES];
static NUMTYPE t3[NUM_STATES], t3Prev[NUM-STATES];
static NUMTYPE phi-m[NUM-STATES], phi-mPrev[NUM-STATES];
static NUMTYPE Delta-phi[NUM-STATES], Delta-phiPrev[NUM-STATES];
static NUMTYPE DespreadSymRe[3][NUM-STATES];
static NUMTYPE DespreadSymIm[3][NUMUMSTATES];
static NUMTYPE SvmSumRel311NUM STATESI:

s~atic NUMTYPE ParSym2Mat[NUM_STATES][NUMBITS]:
static NUMTYPE SysSymMat[NUM-STATES][NUM-BITS];
static NUMTYPE Mdiff[NUM-STATESIINUMUMBITS+l];
static NUMTYPE PathMeUicCurr[NUM-STATES];
static NUMTYPE PathMeUicNext[NUM-STATES];

static int prevsymO[NUM-STATES];
static int prevsyml[NUM-STATES];
static int prevstateO[NUM-STATES];
static int prevstate 1 [NUKSTATES];
static int beststate[NUM-BITS+l], beststatetb;
static int tables-ready = 0;
static int SymVa1[4][2] = (1-1,-11, (-1,1], (1,-11, {1,1]);

static unsigned char est-bits[NUMBITS+l], error-hit;

static unsigned long long prev-hit[NUM_BITS+l]; 11 non-portable ?
static unsigned long long bitmap[NUM-STATES]; If non-portable 1

int sova-dpll(NUMTYPE *RxSigRe, NUMTYPE *RxSigIm, NUMTYPE *La,
NUMTYPE *Lall, int Term, NUMTYPE *RxRef, int InitDelayEst,
int BlockLen, NUMTYPE *DespreadSyms, int *s-hat,
int TurboMode, int dll-step, int pll-flag, NUMTYPE *pll-params)

inti, j, t, state, state0, statel;
int SymsO, Symsl, SymsML, SymMLl, SymML2, SymML3=O;
int Puncture = PUNCTURE;
int Nsamp = NKk-SAMP-PER-SYM;
int Nstates = NUM-STATES;
int Nbits = NUMBITS;
int 0 s = REF-OVER-SAMP;
int DeltaDll = REF-OVER-SAMP;
int DelayEst[NUM-STATES];
int DelayEstNext[NUM-STATES];
int D, D-ML, stateML;
int indexl, index2, index3=0, ramp=O;
int index3Max;
int syml, sym2;

NUMTYPE mO, ml , 111, bestmetric;
NUMTYPE ThetaEst;
NUMTYPE TwoPi = 2.0 * M-PI; 11 from math.h
NUMTYPE phi-nco[NUMSTATES];
NUMTYPE delta-phi[NUMSTAI'ES];
NUMTYPE symlre, symlim, sym2re, symZim, sym3re=O, sym3im=0;
NUMTYPE termlre, termlim, termzre, temZim, term3re, term3im;
NUMTYPE rel , iml, re2, im2; I1 working variables for doing complex ops
NUMTYPE TranMetORe, TranMetOIm, TranMetlRe, TranMetlIm;
NUMTYPE Sova2energyORe=O, Sova2energyOIm=O;
NUMTYPE SovaZenergy lRe=O, Sova2energy lIm=O;
NUMTYPE Kl=pll-params[O];
NUMTYPE KZ=pll-params[l];
NUMTYPE K3=pll-params[Z];

N FILE *fpdebug;

11 open debug file
11 fpdebug=fopen("debugfile" ,"w3');
I/ fprintf(fpdebug, "%d W, RxSig[50]);

if (0) {
printfrS* RxSigRe[O]=%f \n", RxSigRe[O]);
printfr* RxSigIm[O]=%f \n", RxSigIm[O]);
printfy* RxSigRe[End]=%f \n", RxSigRe[NUM-SAMP-IN-SIG-11);
printfy* RxSigIm[End]=%f \n", RxSigIm[NUM-SAMP-IN-SIG-11);
printfy* La[O]=%f \n", La[O]);
printfy* La[Nb]=%f \n", La[Nbits]);
printfy* Term=%d W, Term);
printfr* RxReqO]=%f \n", RxRef[O]);
printf("* RxRef[End]=%f W, RxRef[NUMSAMP-IN-REF-11);
printfr* InitDelayEst=%d \n", InitDelayEst);
printfr* BlockLen=%d \nM, BlockLen);
printfr* s-hat[O]=%d W, s-hat[O]);
printfr* TurboMode=%d \n", TurboMode);
printfr* dll-step=%d \n", dll-step);

if (TurboMode && !Puncture)
index3Max = 3*Nsamp*Nbits;

else
index3Max = 2*Nsamp*Nbits;

if (index3Max > NUM-SAMP-W-SIG) (
printf("sova-dpll: index3 will over-run array RxSig -- abortingW);
exit(1);

1

if (index3Max*Os+InitDelayEst > NLTM-SAMP-IN-REF) {
printfrsova-dpll: index3 will over-run array RxRef -- aborting\nn);
exit(2);

1

if (!tables-ready) (I/ init bitmap on first call
tables-ready=l;
gen-tables(prevstateo, prevstatel, prevsym0, prevsyml);
for (i=O, bitmap[O]=l; icNUM-STATES-1; i++)

bitmap[i+l] = bitmap[il<< 1;
1

/I initialize vars
for(state = 0; state<NUM-STATES; state++)
{
PathMetricCurr[state] = BIG-NEG; 11 set to large neg number
DelayEst[state] = InitDelayEst; 11 init delay for all states
phi-nco[state]=O;
SymSumPrevRe[O][state] = O;
SymSumPrevRe[l][state] = O;
SymSumPrevRe[2l[statel = O;
MX-prev-re[state]=O;
MX-prev-im[state]=O;
t2Prev[state]=O;
t3Prev[state]=O;
phi-mPrev[state]=O;
Delta-phiPrev[statel=O;

1

PathMetricCurr[O] = O; I* start with state 0 *I

I* Trace forward fort = 0 to NLTMBITS *I
for (t=O; t<Nbits; t++)
{

I1 calculate indexes into RxSig and RxRef for the t-th bit's symbols
if (TurboMode && !Puncture) (

index1 = 3*Nsamp*t;

index2 = indexl+Nsamp;
index3 = indexZ+Nsamp;

1 else {
index1 = 2*Nsamp*t;
index2 = indexl+Nsamp;

1

for (state = 0; state < Nstates; state++) {

D = DelayEst[state]; I/ get projected delay estimate for this stak

if (pll-flag)
ThetaEst = TwoPi*phi-nco[state];

else
ThetaEst = 0; I/ turn PLL off, assume sig is real

I/ printf('%etaEst=%f \n", ThetaEst);
re2 = cos(ThetaEst); im2 = -sin(ThetaEst); /I pre-compute for loops

I/ despread first symbol
for (i=O, symlre=symlim=O ; i< Nsamp; i++) {
re1 = RxSigRe[indexl+i] * RxRef[indexl*Os+D+i*Os];
iml = RxSigIm[indexl+i] * RxRef[indexl*Os+D+i*Os];
symlre += rel*re2-iml*im2; // term1 = xl * x2 (complex)
symlim += rel*imZ+re2*iml;

/I despread second symbol
for (i=O, sym2re=sym2im=O ; i< Nsamp; i++) {
re1 = RxSigRe[indexZ+i] * RxReflindex2*Os+D+i*Osl;
iml = RxSigIm[index2+i] * RxRef[index2*Os+D+i*Os];
sym2re += rel*re2-iml *im2;
sym2im += re1 *im2+re2*iml;

1

if (TurboMode && !Puncture) { // despread third symbol
for (i=O, sym3re=sym3im=O ; i< Nsamp; i++) [
re1 = RxSigRe[index3+i] * RxRef[index3*Os+D+i*Os];
iml = RxSigIm[index3+i] * RxReflindex3*Os+D+i*Osl;
sym3re += re1 *re2-iml *im2;
sym3im += rel*imZ+re2*iml;

N save despread sym, each state has its own delay and phase estimates

DespreadSymRe[O][state] = symlre;
DespreadSymIm[O][state] = syml im;
DespreadSymRe[l][state] = sym2re;

DespreadSymIm[l][statel = sym2im;
if (TurboMode && !Puncture) {

DespreadSymRe[2][state] = sym3re;
DespreadSymIm[2][state] = sym3im:

I

/* for stage t+l set all bits at each state to zero */
prev-bit[t+l] = 0;

for (state = 0; state < Nstates; state++) {

I/ *** perfrom add-compare-select operation for SOVA # 1 *--
I/ first compute mehics for a 0 data bit

. state0 = prevstateO[state]; // get prev state associated with info bit=O
SymsO = prevsymO[state]; /I get sym pair associated with info bit=O

syml = (SymsO&2) ? 1 : -1; sym2 = (SymsO&l) ? 1 : -1; N split out syms

symlre = DespreadSymRe[O][stateO]; /I get 1st despread sym from state0
symlim = DespreadSymIm[O][stateO];
sym2re = DespreadSymRe[l][stateO]; I/ get 2nd despread sym from state0
sym2im = DespreadSymIm[l][stateO];
if (TurboMode && !Puncture) {

sym3re = DespreadSymRe[2][stateO];
sym3im = DespreadSymIm[2][stateO];

1

if (TurboMode) {
if (Puncture) {

if (t%2) { // parity punctured
TranMetORe = syml * symlre;
TranMetOh = syml * symlim;
SovaZenergyORe = S-hat[2*t+l]*symZre;
SovaZenergyOIm = s-hat[Z*t+l]*sym2irn;

] else [I/ parity is available
TranMetORe = syml * symlre + sym2 * sym2re;
TranMetOIm = syml * symlim + sym2 * sym2im;
Sova2energyORe = 0;
Sova2energyOIm = 0;

1
) else { // unpunctured, third sym is parity for SOVA #2
TranMetORe = syml * symlre + sym2 * sym2re;
TranMetOh = syml * symlim + sym2 * sym2im;
Sova2energyORe = s_hat[2*t+l] * sym3re;
Sova2energyOIm = s_hat[2*t+l] * sym3im;

1
) else { N not a Turbo code, simple conv code only
TranMetORe = syml * symlre + sym2 * sym2re;
TranMetOIm = syml * symlim + sym2 * sym2im;
SovaZenergyORe = 0;
SovaZenergyOIm = 0;

11 next compute metrics for a 1 data bit

state1 = prevstatel[state]; I/ get prev state associated with info bit=l
Symsl = prevsyml[statel; !/get sym pair associated with info bit=l

syml = (Symsl&2) ? 1 : -1; sym2 = (Symsl&l) ? 1 : -1;

symlre = DespreadSymRe[O][statel 1; I/ get 1 st despread sym from state1
symlim = DespreadSymImfO] [statel];
sym2re = DespreadSymRe[I][statel]; I/ get 2nd despread sym from state1
sym2im = DespreadSymIm[l][statel];
if (TurboMode && !Puncture) (

sym3re = DespreadSymRe[2][stateI];
sym3im = DespreadSymIm[2l[statel];

1

if (TurboMode) {
if (Puncture) (
if (t%2) (I/ parity punctured

TranMetlRe = syml * symlre;
TranMetlIm = syml * symlim;
Sova2energy 1Re = s_hat[2*t+l]*sym2re;
Sova2energy 1Im = s_hat[2*t+l]*sym2im;

] else { N parity is available
TranMetlRe = syml * symlre + sym2 * sym2re;
TranMetlIm = syml * symlim + sym2 * sym2im;
Sova2energy 1Re = 0;
SovaZenergy 1Im = 0;

1
] else (/I unpunctured, third sym is parity for SOVA $2
TranMetlRe = syml * symlre + sym2 * sym2re;
TranMetlIm = syml * symlim + sym2 * sym2im;
Sova2energy 1Re = s_hat[2*t+l] * sym3re;
Sova2energylIm = s_hat[2*t+l] * sym3im;

I
) else { N not a Turbo code, simple conv code only
TranMetlRe = syml * symlre + sym2 * sym2re;
TranMetlIm = syml * symlim + sym2 * sym2im;
Sova2energy lRe = 0;
Sova2energylIm = 0;

I/ update the path metric for the 2 possible paths into this state
mO = TranMetORe t PathMetricCurr[stateO] - La[t]l2;
ml = TranMetlRe + PathMetricCurr[statel] + La[t]/2;

N select best path based on current path metric mO or ml
if(mO > ml)
! I/ decide bit == 0

PathMetricNext[state] = mO;
Mdifflstate][t+l] = mO-ml;
SymsML = SymsO; I/ symbol pair for ML path
D-ML = DelayEst[stateO]; 11 propagate delay for ML path
if (t==- 1)
printfr *** t=%d, D-ML+I=%d\n",t,D-ML+l);

stateML=stateO;
MX-re[state] = MX-prev-re[stateO] + TranMetORe + Sova2energyORe;
MX-im[state] = MX-prev-im[stateO] + TranMetOIm + Sova2energyOIm;
t2[state] = t2Prev[stateO];
t3[state] = t3Prev[stateO];
phi-m[state] = phi-mPrev[stateO];
Delta-phi[state] = Delta-phiF'rev[stateOl;

] else {
PathMetricNext[state] = ml;
Mdiff[state][t+l] = ml-mO;
SymsML = Symsl;
prev-bit[t+l] I= bitmap[state]; 11 set hit at bit position "state" to 1
D-ML = DelayEst[statel]; I1 propagate delay for ML path
if (t==-l)
printf(" *** t=%d, D-ML+I=%d\n",t,D-ML+l);

stateMLstate1;
MX-re[state] = MX-prev-re[statel] + TranMetlRe + Sova2energy lRe;
MX-im[state] = MX-prev-im[statel] + TranMetlIm + Sova2energy 1Im;
t2[state] = t2Prev[statell;
t3[state] = t3Prev[statel];
phi-m[state] = phi-mPrev[statel];
Delta-phi[state] = Delta-phiPrev[statell;

1

/I If we are doing a punctured Turbo code we substitute the hard parity
I1 symbol estimate from SOVA #2 so E L gate conelators can integrate
/I all of RxSig (systematic bits plus parity bits for both decoders). If
11 unpunctured Turbo then integrate across all three symbols. If SOVA
11 only there are just the 2 symbols from this SOVA.

SymMLl=SymVal[SymsML] [O]; 11 systematic symbol

if (TurhoMode)
if (Puncture) {

if (t%2) 11 odd time step
SymML2=s4at[2*t+l]; 11 parity symbol from SOVA #2

else
SymML2=SymVal[SymsML][I]; 11 SOVA 1 parity symbol

) else (
SymML2=SymVal[SymsML][l]; IISOVA 1 parity symbol
SymML3=s-hat[2*t+l]; I1 parity symbol from SOVA #2

I
else
SymML2=SymVaI[SymsML][l]; 11 SOVA 1 parity symbol

11 Sum RxSig over block length L for use in DLL, first sum Early Gate

re2 = cos(ThetaEst); im2 = -sin(ThetaEst);

for (i=termlre=termlim=O ; i< Nsamp; i++) (
re1 = RxSigRe[indexl+i] * RxReflindexl*Os+D-ML+DeltaDll+i*Os];
iml = RxSigIm[indexl+i] * RxRef[indexl*Os+D-ML+DeltaDll+i*Os];
termlre += rel*re2-iml *im2;
termlim += rel*imZ+re2*iml;

I

for (i=term2re=term2im=O ; i< Nsamp; i++) {
re1 = RxSigRe[index2+i] * RxRef[index2*Os+D-ML+DeltaDll+i*Os];
iml = RxSigIm[index2+i] * RxRef[index2*Os+D-ML+DeltaDll+i*Os];
term2re += re 1 *re2-iml *im2;
term2im += re1 *im2+re2*iml;

if (TurboMode && !Puncture) [

for (i=term3re=term3im=O ; i< Nsamp; i++) [
re1 = RxSigRe[index3+i] * RxRef[index3*Os+D-ML+DeltaDll+i*Os];
iml = RxSigIm[index3+i] * RxRef[index3*Os+D-ML+DeltaDll+i*Os];
term3re += re1 *re2-im 1 *im2;
term3im += rel*im2+reZ*iml;

I

/I Sum for Late Gate

for (i=termlre=termlim=O ; i< Nsamp; i++) {
re1 = RxSigRe[indexl+i] * RxReflindexl*Os+D-ML-DeltaDll+i*Os];
iml = RxSigIm[indexl+i] * RxRef[indexl *Os+D-ML-DeltaDll+i*Os];
termlre += rel*re2-iml*im2;
termlim += re1 *im2+re2*iml;

I

for (i=term2re=term2im=O ; i< Nsamp; i++) {
re1 = RxSigRe[index2+i] * RxRef[index2*Os+D-ML-DeltaDll+i*Os];
iml = RxSigIm[index2+i] * RxRef[index2*Os+D-ML-DeltaDll+i*Osl;
term2re += rel*re2-iml *im2;
term2im += rel*im2+re2*iml;

t

if (TurboMode && !Puncture) {

for (i=tem3re=term3im=O ; i< Nsarnp; i++) {
re1 = RxSigRe[index3+i] * RxReflindex3*Os+D-ML-DeltaDll+i*Os];
iml = RxSigIm[index3+i] * RxRef[index3*Os+D-ML-DeltaDll+i*Osl;
tem3re += rel*re2-iml *im2;
term3im += rel*im2+re2*iml;

] else {

I1 update DLL and PLL if at block boundary
if((t+l) % BlockLen == 0)
I

if(SymSumRe[O][state] z SymSumRe[2][state]) I/ assume PLL pulled in
DelayEstNext[state] = D-ML+dll-step; /I retard delay

else
DelayEstNexxt[state] = D-ML-dll-step; I/ advance delay

I/ reset to 0 and integrate over next block
SymSumRe[O][state] = 0;
I/ SyrnSumRe[l][statel = 0;
SymSumRe[2][state] = 0;

] else 1
I/ Propagate Delay Estimate for use in next iteration
DelayEstNext[state] = D-ML;

1

) I* end state loop *I

I1 update PathMetric, Delay and symbol sum for next time iteration
for(state = 0; state< Nstates; state++)

PatbMetricCurr[state]=PathMemcNext[state];
DelayEst[state] = DelayEstNext[statel;
SymSumPrevRe[Ol[state] = SymSumRe[O][statel; I/ early
SymSumPrevRe[1][state] = SymSumRe[l][statel; I/ middle
SymSumPrevRe[2][state] = SymSumRe[2][state]; I/ late
MX-prev-re[statel = MX-re[statel;
MX-prev-im[state] = MX-im[statel;

if((t+l) % BlockLen = 0) {
for(state=& stateeNstates; state++) [
MX-prev- state] = 0; MX-prev-im[state] = 0;

1
ramp =O;

1

ramp = ramp+l; /I ramp linear phase correction across the block

] 11 end trace forward, t

/I if Term = 1 trace back from zero state
/I if Term = 2 trace back from state with higest metric *I
if (Term == 1)
beststate[NUM-BITS] = 0;

else

/I find best metric
besunetric = PathMetricCurr[O];
beststate[NUM-BITS] = O;
for (i=O; i<NUM-STATES; i++)

if (PathMetricCurr[i] > bestmetric)
{
bestmetric = PathMetricCurr[i];
beststate[NUMBITS] = i;

for (t=NUM-BITS; t>O; t--)

est-bits[t] = (prev-bit[t] & bitmap[beststate[t]]) >> beststate[t];
if(est-bits[t])
beststate[t-11 = prevstatel[beststate[t]]; 11 est bit 1

else
beststate[t-11 = prevstateO[beststate[t]]; 11 est bit 0

if (TurboMode && !Puncture) I

~es~read~~ms[3*t-l]=~ar~~m2~at[beststate[t-l]][t-l];
) else 1

// Find the minimum path metric diff that corresponds to an error path with
//different information bit estimation. For each bit in est(t) check all
/I possible paths up to Delta stages. At each stage the path deviation is
I/ found by choosing the incorrect bit i.e., the opposite bit from the
//chosen path. The path and bit is indicated in the arrays beststate[]
// and est-bits[].

for (e l ; t<NUMBITS+l; t++) // for each bit find Le
{
llr = BIG-POS; // set log-likehood ratio to large number
for (i =O; i<=SOVA-DELTA; i++)
I
if(t+i < NUMBITS+I) // do not go past end
{
error-bit = l-est-bits[t+i]; I/ force an error at begining of path
beststate-tb = beststate[t+il;
N trace back from bit error
for Q=i; j>O; J--)

I
if(error-bit)

beststate-tb = prevstatel[beststate-tb]; /I est bit 1
else
(
beststate-tb = prevstateO[beststate-tb]; // est bit 0

I
error-bit = (prev-bit[t+j-I]& bitmap[beststate-tb]) >> beststate-tb;

I
N after tracing back check if incorrect decision at stage t+i
I/ resulted an bit error at stage t.
if (error-bit != est-bits[t])

llr = min(llr, Mdiffl beststate[t+i]l[t+il);
1

I
/I calculate Lall for bit at stage t
//recall that llr is stored at t-1 while decoded bit is at t
Lall[t-11 = (2*(int)est-bitflt] -l)*llr;

I

Il turbo-dp1l.c
11
11 call sova-dpll& sova to make turbo decoder with an integrated DLLPLL
I/
N Richard C. Omesher, Jeff Mason, SNL dept. 2344,915102

#include "scenario.h I1 simulation constants
#include "turbo-dpl1.h I/ make sure proto is up to date
#include "sova-dp1l.h I1 for s o v a - d p l l proto
#include "sova.h I/ for sova-K3 proto

#ifdef MATLAB-MEX-FILE
#include "mex.h" 11 for mexPrintf()

#endif

int turbo-dpll(NUMTYPE *Lall, NUMTYPE *RxSigRe, NUMTYPE *RxSigIm.
NUMTYPE *RxRef, int *alpha, int niter, int BlockLen,
int InitDelay, int *TxBits, int dll-step,
int pll-flag, NUMTYPE *pll-params)

11 La11 -- returned log-likehood ratio for estimated bit, sign of La11
11 indicates bit value
11 RxSig -- samples of spread spectrum signal
I1 alpha -- interleave pattern for decoder 2.
I1 niter -- number of iterations for sova decoder.
11 RxRef -- reference function used to despread symbols

NUMTYPE DespreadSyms[NUM-SYMS];
NUMTYPE La[NUMBITS];
NUMTYPE Le[NUMBlTS];
NUMTYPE SoftSymsl[NUMBITS*2];
NUMTYPE SoftSyms2[NUMBITS*21;
NUMTYPE TempV[NUM-BITS];

int s-hat[NUM_BITS*2];
int TurboMode; 11 tell sova-dpll it is part of a turbo code
inti, j, k;
int status, Nerrl, Nerr2;
int Term; I/ flag indicating whether hellis is terminated or not
int Puncture=PUNCTURE;

11 printf("InitDelay=%d \n", InitDelay);

11 init extrinsic info and SOVA #2 hard sym estimates for 1st sova-dpll call
for (i=O; i<NUM-BITS; i++)
Le[i]=O;

for (i d ; i<NUMBITS*2; i++)
s-hat[i]=O;

I1 Imp through niter iterations before decoding data
for (i=O; kniter; i t+)
I
/ I Decoder 1
11 Deinterleave extrinsic info for decoder 1
for (i=O; j<NUMBITS; j++)

La[alphaul] = LeljlR; I1 Le growth control

// if (i==l) for (i=O; j<2*NUMBITS; j++) printf("%d\n",s-hatlj]);

11 call sova-dpll
status = sova-dpll(RxSigRe, RxSigIm, La, Lall, Term=l, RxRef, InitDelay,

BlockLen, DespreadSyms, s-hat, TurboMode=l, dll-step,
pll-flag, pll-params);

11 count the bit errors after sova-dpll
Nerrl=O;
for(j=O; j<NUM-BITS; j++) {

I1 printf("& 1.8f\n", Lalllj]);
k = (O<Lallfi]) ? 1 : 0;
if (k!=TxBitsfj])
Nerrl++;

1

I1 demultiplex the despread symbols that sova-dpll just produced
if (Puncture) {

for (j=O; ;<NUMBITS; j++) {
SoftSymsl[2*j]=DespreadSyms[2*j]; 11 systematic bits
SoftSyms2[2*j]=DespreadSyms[2*alpba~]]; 11 systematic bits
if (i%2) 1

SoftSyms1[2*j+l]=O; 11 punctured bits
SoftSyms2[2*j+l]=DespreadSyms[2*~+1]; I / parity bits

) else {
SoftSymsl[2*j+l]=DespreadSyms[2*j+l]; I1 parity bits
SoftSyms2[2*j+l]=O; 11 punctured bits

1
1

] else 1
for (j=O; j<NUMBITS; j++) {
SoftSyms1[2*j]=DespreadSyms[3*j]; // systematic bits
SoftSyms2[2*j]=DespreadSyms[3*alphalj]]; // systematic bits
SoftSymsl[2*j+l]=DespreadSyms[3*j+l]; 11 parity bits
SoftSyms2[2*j+l]=DespreadSyms[3*j+2]; 11 parity bits

1
I

for(k=O; k< NUMBITS; k++) {
Le[k] = Lall[k] - 2*SoftSymsl[2*k] - La[k];
11 printf("% 1.8f %1.8f %l.8f\n", Le[k], Lall[k], La[k]);

1

I1 Decoder 2
11 interleave extrinsic info for decoder 2
for (j=O; j<NUM-BITS; j++) {

Lalj] = Le[alphalj]];
I

11 call sova
status = sova(SoftSyms2, La, Lall, s-hat, Term=2);

for(k=O; k< NUM-BITS; k+t)
Le[k] = Lall[k] - 2*SoftSyms2[2*k] - La[k];

11 de-interleave the soft syms in order to count the hit errors
for (i=0; j<NUM-BITS; j++) {
TempV[alphaljl I = Lallljl;
11 printf("Lall[%d]=%15.5f, s_hat[%d]=%3dW, j, Lallfi], j, s-hatljl);

I

ll count the bit errors this iter
Nerr23;
for(j=O; j<NUM-BITS; j++) 1
/I printf(" %2d, TempVfi]=%f\n".
k = (OcTempVfi]) ? 1 : 0;
if (k!=TxBitslj])
Nerr2t+;

I

printf(" iter %2d, Lall[O]=% 1.6f, Nerrl=%d, Nerr2=%d\n",
i+l, TempV[O], Nerrl, Nerr2);

if (Nerr2==0) break I1 cheat to save simulation time

I

I/ Estimate data bits from sign of Lall, use Le as temp array to deinterleave
for (i=O; j<NUM-BITS; j++)
Le[alphaljl I = Lallljl;

for +O; j<NUM-BITS; j++)
Lall[j] =Leu];

return(0);
I

84 -

/I encode-rsc.c
11
/I void encode-rsc(int *data,
11 int *codeword,
'I int Terminate)
' I
I1 ABSRACT -- used to recursive systematic convolve (RSC) info bits
I/ contained in data, up to a constraint length of 7
I/
11 INPUT
N data -- infomation bits, each int in the array contains a 1 or 0.
11 Length of data must include room for K-l tail bits if
N Terminate is True.
/I Terminate -- bwlean, if set indicates to Terminate encoder state to u.
N Tail bits are added to the data such that the encoder
11 ends with all zeros in shift register.
(1
11 RCO, JJM 10116/02

#include "encode-rsc.h" I/ this guarantees that the proto is up to date
#include "scenari0.h /I for NUMBITS and g l & g2
#include <stdio.h>

11 Partab is a LUT for the binary output of a 7 input mod-2 adder, the 7
11 inputs are packed to form the index into table. Note max index is ZA7=128
N to accomodate K=7, K=3 only could be just the first row.

void encode-rsc(int *data,
int *codeword,
int Terminate)

{
int e,i;
int Ntail=CONSTRAINT-LENGTH- 1;
int Nbits=NUb-BITS;

int gl=RSC-G-1, g2=RSC-G-2; /I defined in scenari0.h
int Fb, state2, state=@

if (i > Nbits-Ntail-1 && Terminate)
{
//Terminate to zero state by changing tail bits so that Fb will be zero.
data[i] = Partab[state & gl];

I

if(data[i] == 0)
I
/I info bit = 0, bit 0 of state remains zero
Fb = Partab[state & gl]; /I feedback symbol
codeword[2*i] = 0; /I info bit

I
else
I
/I info bit = 1, bit 0 of state is set to 1
Fb = Partab[(state+l) & gl]; I/ Fb is the feedback symbol for g l input
codeword[2*i] = 1; /I info bit

I

state2 = state (Fb; N input Fb into the shift register
e = Partab[state2 & g21; I/ get parity generated by g2
codeword[2*i+l] = e; /I parity bit
state = 2*state2; /I update state, g l & g2 will mask out old bits

N gen-tab1es.c
11
N return prevstate0, prevstatel, prevsym0 & prevsyml
I/
I/ use code from Sergio Benedetto, IEEE Tran on Comm, Vol46 No 9, Sept 1998
/I
/I RCO, JJM

#include "scenario.h /I for CONSTRAINT-LENGTH, NUM-STATES, G1 and G2
#include "gen-tab1es.h" 11 make sure proto is up to date

I/ Partab[n] is the mod 2 sum of the binary digits of n

int gen-tables(int *prevstateO, int *prevstatel, int *prevsymO, int *prevsyml)
{
int e, i, Mask=O;
int gl=RSC-G-1, g2=RSC-G-2, Fb, state2;

int nextstateO[NUM-STATES], nextstatel [NUM-STATES];
int parityO[NUM-STATES], parityl[NUM-STATES];

for (~=O.~<CONSTRAINT-LENGTH-I;~++)
Mask=(Mask<<l)lOxl;

for(i=O;icNLTM-STATES;i++)
(
I* i is the state of the shift reg, 2*i shifts a zero in lsb *I

I* info bit = 0 *I
Fb = Partab[2*i & gl]; I* Fb is the feedback symbol for g2 input *I
state2 = 2*i I Fb; I* input for second operation with g2 *I
e = Partab[state2 & g21; I* get parity for feedback with g2 *I
parityO[i] = e; I* parity bit *I
nextstateO[il= ((i<<l)lFb)&Mask; I* shift Fb into state register*/

I* info bit = 1 *I
Fb = Partab[(2*i+l) & gl]; I* Fb is the feedback symbol for g2 input *I
state2 = 2*i I Fb; I* input for second operation with g2 *I
e = Partab[state2 & gZ1; I* get parity for feedback with g2 *I
parity l[i] = e; I* parity bit *I
nextstatel[il = ((i<<l)lFb)&Mask; I* shift Fb into state register *I

/I get previous state given current state and sym
for (i=O; i<NUM-STATES; i++)
{
prevstateO[nextstateO[i]] = i;
prevstatel[nextstatel[i]] = i;

I

for (i=O; i m - S T A T E S ; i++)
prevsymO[i]=parityO[prevstateO[i]];

for (i=O; kNUM-STATES; i++)
prevsyml [i]=2+parity 1 [prevstatel [ill;

Il encode-turb0.c
11
I/ int encodeturbo(int *TxSym, int *Data, int *Alpha)
11
/I ABSRACT
N
/ I Generate 112 or 113 Rate turbo code using Alpha as interleaver.
I/ Results are in TxSym. Turbo encoder uses two RSC encoders.
I1
I1 INPUT
11
/I Data -- data bits to be encoded - length must include room for tail,
/I i.e. length is NUM-BITS, which is defined in scenari0.h
I1
I1 Alpha -- interleave pattern, i.e. random indices, length NUMBITS
I1
11 OUTPUT
I1
I1 TxSym -- encoded symbols
11
I1 For Punctured code
11 TxSym=[dl,sll,dZs22,d3,s13,d4s24..
I1
I For non-punctured code
11 TxSym= [dl, s l l , s21, d2, s12, s22, d3, s13, s23, d4 ...
11
I/ where dl , d2, ... are info bits; s l l , s12, .. are parity symbols
11 from first encoder; and s21, s22 are parity from second encoder.
I/
11 RCO, JJM 4130102

#include "encode-turbo.h 11 this guarantees that the protos are up to date
#include "encode-rscW
#include "scenario.h 11 for NUM-BITS and g l & g2

I/ declare working arrays for encoding
static int codewordl[NUM-BITS*21;
static int codeword2[NUM-BITS*2];
static int data-int[NUM-BlTSl;

int encode-turbo(int *TxSym, int *Data, int *Alpha)
{

int i, Nbits=NUMBITS;
int Puncture=PUNCTURE;
int Terminate;

N get codeword from first encoder and add tail to Data
encode-rsc(Data, codewordl, Terminate=l);

11 interleave data bits
for (i=O; icNbits; i t+)

11 get ccdeword for second encoder
encode-rsc(data-int, codeword2, Terminate=O);

/I create complete codeword
if(Puncture)
I
11 Create punctured rate = 112 code
for (i = 0; ieNbits; i=i+2)
I
TxSym[2*i] = Data[i];
TxSym[2*i +1] = codewordl[2*i+l];

1
for (i = 1; idbits; i=i+2)

J
I
else
[
I/ create non-punctured rate 113 code
for (i=O; i<NbiU; i++)
I

// run-turbo-dkc
N
I/ call gen-turbo-sig() and turbo-dl()
/I
I1 JJM, RCO 5/7/02

#include cstdio.b>
#include <stdlib.h> I / for exit
#include <math.h> I/ for M-PI, sin, cos, sqrt

#include "turbo-dp1l.h"
NUMTYPE RxSigRe[NUM-SAMP-IN-SIG];
NUMTYPE RxSigIm[NUM-SAMP-IN-SIG];

NUMTYPE RXC~~~S[NUM-SAMP_IN~SIG];
NUMTYPE RxRef[NUM_SAMP-IN-REF];

int main()
{

double EbNOdB = 1.0;
double TxClockError = 5e-6;
double A=l ;
double CodeRate = CODE-RATE;
double EbNO, EsNO, SNR, Sigma, Noise;

int BlockLen=20; N number of symbols integrated for each PLL and DLL step
int dll-step=l; I/ have dl1 step this many reference samples at a time
int Nite-10; /I max number of turbo algorithm iterations

NUMTYPE La[NUMBITS];
NUMTYPE Lall[NUMBITSl;

11 NUMTYPE pll-params[3]=(0.5463, 0.1768, 0.02470); 11 under-damped 0.4 BLT
NUMTYPE pll~params[3]={0.3599,0.06842,0.005269]; /I under-damped 0.2 BLT

int TxBits[NUM-BITS];
int RxBits[NUMBITS];
int Alpha[NUMBITS];
int TxSyms[NUM-SYMS];

int NumBits = NUMBITS; 11 info plus tail bits
int NumSyms = NUM-SYMS;
int Nspc = Nub-SAMP-PER-CHIP;
int OS = REF-OVER-SAMP;
int K = CONSTRAINT-LENGTH;
int Lsig = NUM-SAMP-IN-SIG;

int Lref = NUM-SAMP-W-REF;
int Ns=NUM-SAMP-PER-SYM;
int Nc = NUM-CHIP-PER-SYM;
int Puncture = PUNCTURE;

inti, n, Nerror;
int NumBlocks;
int delta-clock;
int Nf=OS*8;
int InitDelayEst=Nf+5-1; I/ hand tweak group delay

double Pi = M-PI;
double RxPhase;
double t=O, dt, delta-tot-phase;

int pll-flag=l; /I 0 turns PLL off, Gam should be 0 for this case
double Gam=5; /I linear phase rate

printfysize of NUMTYPE = %d bytes\n", sizeof(NUMTYPE));
printf("Ninf0 = %d W, NUM-INFO);
printfrK = %d\n", K);
printf("Puncture = %d, CodeRate = %g \n", Puncture, CodeRate);
printfrNumBits = %d W , NumBits);
printf("NumSyms = %d \n", NumSyms);
printf(Wc = %d \nn, Nc);
printf("Nspc = %d \n", Nspc);
printf("0S = %d W , 0 s) ;
printf("g1 = %#Ox, g2 = %'o#OxW, RSC-G-1, RSC-G-2);
printf("dl1-step = %d \n", dll-step);
printf("pl1-flag = %d\n",pll-flag);
printf("1nitDelayEst = %d \n", InitDelayEst);
printf("Niter=%d\n",Niter);
printf("Kl=%f, K2=%f, K3=%f\nn,pllgarams[0],pll-params[l],pll-params[2~~.

I1 Print the number of reference samples of clock drift over the signal, this
I1 is the no. of clicks the DLL must move, and must be less than NumBlocks
NumBlocks=ceil((double)NumBits/B1ockLen);
delta~clock=ceil(TxClockError*Nc*NumSyms*Nspc*OS);
printf("BlockLen = %d W , BlockLen);
printfrdelta-clock = %dW,delta-clock); /I units are reference samples
printf("NumBlocks=%d\n",NumBlocks);

N Print clock drift as the fractional rate, eg chipslchip, and in terms of
/I the number of chips of adjustment that will he required of the DLL.
printf("TxClockError=%g\n",TxClockError);
printf("delta-clock = %l.lf chips\n",(double)deIta~clocW(Nspc*OS));

if (delta-clock>NumBlocks*dll~step) (
printfrdecrease BlockLen, there are not enough blocks");
return(2);

I

I1 RNGs are set both here for s igsen and further below for some particular
/I iteration from run-turbo-dl1.m

set-useed(0); set-nseed(0);
printf("sig gen seeds: %u, %u\nn, get-weed(), get-meed());

gen-turbo-sig(TxClockError, Nf, Alpha, TxBits, TxSyms, RxChips, RxRef);

EbNC=pow(lO,EbNOdBIlO);
EsNC=CodeRate*EbNO;
SNR = EsNO/Ns; / I Input SNR at AID bandwidth; Es/NO - Gain
Sigma = A/sqrt(Z*SNR);
printf("EbNO=%g dB\nW,EbNOdB);
printf("Lsig = %d, Lref = %d\n", Lsig, Lref);

printf("Gam = %f\nW,Gam);
delta-tot-phase=Gam/Z; // total cycle of phase, assume sig is 1 sec long
dt=l.OLsig; 11 time step, use this for now
printf("delta-phase = %f cycles\n", delta-tot-phase);
printf("delta-phase = %f cycles/block\n", delta~tot~pbase/NumB1ocks);

set-useed(0); set-nseed(0);
printf("iterati0n seeds: %u, %uW, get-usseed(), &-meed());

for (i=O; i<NumBits; i++)
La[i] = 0;

for (n=O; n<Lsig; n++) (
RxPhase=Pi*Gam*t*t;
t += dt;
Noise=Sigma*gasdev();
RxSigRecnl = A*RxChips[n]*cos(RxPhase)+Noise;
Noise=Sigma*gasdev();
RxSigIm[nl = A*RxChips[n]*sin(RxPhase)+Noise;

I

turbo-dpll(Lall, RxSigRe, RxSigIm, RxRef, Alpha, Niter, BlockLen,
InitDelayEst, TxBits, dll-step, pll-flag, pll-params);

NerrosO;
printf("Error Indices: ");
for(n=O; ncNUMBITS; n++) {

RxBits[n] = (O<Lall[n]) ? 1 : 0;
if (RxBits[n]!=TxBits[n]) {

Nerror++; I1 which bits were in error ?
printf("%d ",n+l); I1 number hits from 1 to compare to Matlah

I
1
printf("\n9');

/I s0Ya.c
11
I1 soft output viterbi algorithm decoder
N
I/ adapted from Yufei Wu's sova0.m and Phil Karn's C-code
I/
I/ Richard C. Ormesher, Jeff Mason, SNL dept. 2344,915102

#include <stdio.h>
#include "scenario.h"
#include "genlables.h"
#include "s0va.h" 11 include proto to guarantee its consistency

static int prevsymO[NUM-STATES];
static int prevsyml[NUM-STATES];
static int prevstateO[NUM-STATES];
static int prevstatel [NUM-STATES];

/I i -- current state
11 symO -- symbol weight for info bit = 0
Nsyml --symbol ewight forinfo hit = 1
#define BUTERFLY(i,symO, syml) { \

SO = prevstateO[i]; \
s l = prevstatel[i]; \
mO = pathmetric-cm[s0] + mets[symO] - La[t]l2; \
ml = pathmetric-curr[sl] t mets[syml] t La[t]/2; \
i f (mO>ml) (\

pathmetric-next[i] = mO;\
Mdiff[il[t+ll = mO-ml; I* bit at state i defaults to G -1 \

11
else {\

pathmetric-next[i] = ml;\
Mdiff[i][t+l] = ml-mO; \

if (i <NUM-STATES3) \
prev-bit-lo[t+ll I = bitmap[i]; I* set hit at state i to 1 *I\

else\
prev-bit-hi[t+ll I = hitmap[i-NUM-STATES-21; \

I \

static NUMTYPE mets[NUM-STATES], mO, ml, 111, bestmetric;
static NUMTYPE pathmetric-curr[NUM-STATES];
static NUMTYPE pathmetric-next[NUM_STATESl;
static NUMTYPE MdiflNUM-STATES][NUM-BITSfl];
static unsigned prev-bit-lo[NUM-BITS+l];
static unsigned prev-bit-hi[NUMBITS+l];
static unsigned char est-bits[NUM-BITStl], error-bit;
static unsigned bitmap[NUM-STATES]; static int tables-ready = 0;
static int beststate[NUM-BITStlI. beststate-tb:
staticintSYMVAL[4][2]= ((- [, - I) , (-1, I) , (1 , - I) , (1, I)] ;

int sova(NUMTYPE *symbols, NUMTYPE *La, NUMTYPE *Lall,
int *s-hat, int termination)

inti, j, t, state, SO, s l ;

if (!tables-ready) { I1 init tables on first call
tables-ready=l ;
gen-tables(prevstate0, prevstatel, prevsym0, prevsyml);
for (i=O, bitmap[O]=l; i<NUM-STATES-1; i t+)

hitmap[i+l] = bitmap[i] * 2;
I

/I Initialize path metric
for(state = 0; state<NUM-STATES; state++) {

pathmetric-curr[state] = BIG-NEG; /I set to large neg number
I

pathmetric-curr[O] = 0; /I start with state 0

// init prev-bit
for(t=0; t 4WMBITS; t++) {
prev-bit-lo[t] = 0;
prev-bit-hiit] = 0;

1

/I Trace forward fort = 0 to NUXBlTS
for (k0; t<NUM-BITS; t++) {
/I calculate transistion metric to t+l
// this means that decoded bits start at t=l
mets[O] = -symbols[2*t] - symbols[2*t+l];
mets[l] = -symbols[2*t] + symbols[2*t+ll;
mets[2] = +symbols[2*t] - symbols[2*t+ll;
mets[3] = +symbols[2*t] + symhols[2*t+l];

11 for stage t+l set all bits at each state to zero
prev-bit-lo[t+l] = 0;
prev-bit-hi[t+l] = 0;

/I calcuate metric at next state
for (state=O; state<NUM-STATES; state++)
BUTTERFLY(state, prevsymO[state], prevsyml[statel);

for (state=0; state<NUM-STATES; state++)
pathmetric-curr[state]=pathmetric-next[state;

] I/ end trace forward

I/ if termination = 1 trace back from zero state
I/ if termination = 2 trace back from state with highest metric
if (termination == 1)

beststate[NUMBITS] = 0;

else {
/I find best metric
bestmetric = pathmetric-curr[O];
beststate[NUMBITS] = 0;
for (i=O; i<NLTM-STATES; i++) {

if (pathmetric-curr[i] > bestmetric) {
bestmetric = pathmetric-curr[i];
beststate[NUM-BITS] = i;

1
I

I

/I trace back for end and get estimated bit value at each interval
for (t=NUM-BITS; 0 0 ; t--) {

if (beststate[t] < NUM-STATES-2)
est-bits[t] = (unsigned char)

((prev-bit-lo[t] & hitmap[beststate[t]]) >> beststate[tl);
else

est-bits[t] = (unsigned char)
((prev-bit-hi[t] & bitmap[beststate[t]- NUM-STATES-21) >>

(beststate[t]-NUM-STATES1));
if (est-bits[t]) {

beststate[t-11 = prevstatel[beststate[tll; /I est bit 1
s-hat[2*t-21 = 1; I/ systematic bit
s-hat[2*t-I] = SYMVAL[prevsyml[beststate[t]]][l]; N parity bit

1 else {
beststate[t-I] = prevstateO[beststate[tll; /I est bit 0
s-hat[2*t-21 = -1; 11 systematic bit
s-hat[2*t-I] = SYMVAL[prevsymO[beststate[t]]][l]; I/ parity bit

I
I

/I Find the minimum SOVA-DELTA that corresponds to an error path with
/I different information bit estimation. For each bit in est(t) check all
/I possible paths up to Delta stages At each stage the path deviation is
/I found by chossing the incorrect bit i.e., the opposite bit from the
/I chossen path. The path and bit is indicated in the arrays heststate[]
/I and est-bit$].

for (t=l ; t<NUM-BITS+l; t++) (/I for each bit find Le

llr = BIG-POS; /I set log-likehood ratio to large number
for (i =O; i<=SOVA-DELTA; i++) {

if(t+i < NUk-BITS+l) (I/ do not go past end

error-bit = 1-est-bits[t+il; I/ force an error at begining of path
beststate-tb = beststate[t+i];

/I trace hack from bit error
for fj=i; j>O; j--) (

if(error-bit)
beststate-tb = prevstatel[beststate-tb]; I/ est bit 1

else (

beststatetb = prevstateO[beststate-tb]; /I est bit 0
I
if(beststatetb < NUM-STATES-2)
error-bit = (unsigned char)
((prev-bit-lo[t+j-I]& bitmap[beststate-tb]) >> beststate-tb);

else
error-bit = (unsigned char)

((prev-bit-hi[t+j-l]& bitmap[beststate-tb-NUM-STATES-21) >>
(beststate-tb-NUMSTATES-2));

1

I/ after tracing back check if incorrect decion at stage t+i
/I resulted an bit error at stage t.
if (error-bit != est-bits[tl)
llr = min(llr, Mdifl beststate[t+ill[t+il);

] I/ end if
] /I end for i

/I calculate Lall for bit at stage t
/I recall that llr is stored at t-1 while decoded bit is at t
Lall[t-1] = (2*(int)est-bits[t] -l)*llr;

1 /I end fort

I/ turb0.c
I1
/I RCO, JJM 4130102

#include <stdio.h>
#include "scenario.h
#include "turbo.h" N make sure proto is up to date
#include "sova.h

int turbo(NUMTYPE *Lall, NUMTYPE *RxSym, int *alpha, int niter, int * TxBits)
I/ Lall -- returned log-likehood ratio for estimated hit, sign of Lall
11 indicates bit value, length NUM-BITS
I/ RxSym -- soft symbols for decoders: ui, pli, p2i, ui+l ... length NUM-SYMS
I1 alpha -- interleave pattern for decoder 2, length NUM-BITS
I/ niter -- number of iterations for sova decoder.
IITxBits -- the binary data bits that were transmitted, used only to print
I/ the number of bit errors at each turbo iteration, length NUMBITS

static NUMTYPE rec-s_l[NUMBITS*2];
static NUMTYPE rec-s-2[NUM-BITS*2];
static NUMTYPE La[NUMBITSl;
static NUMTYPE Le[NUMBITS];
static NUMTYPE TempV[NUMBITSl.

int puncture=PUNCTURE;
inti, j, k, status=O;
int Nerrl, Nerr2;
int s-hat[NUMBITS*2];

/I get symbols for decoder 1 and decoder 2
if (puncture == 1)
I
I1 if puncture == 1 then code is 112 rate
for (i=O; i<NUMBITS; i++)
(
rec-s-l[2*i] = RxSym[2*i]; I/ info bit for encoder 1
rec-s-2[2*il = RxSym[2*alpba[ill; N interleave info bits for encoder 2

if (i%2) {
recs-l[2*i+l] = 0; /I punctured sym gets a 0
rec-s_2[2*i+l] = RxSym[2*i+l]; I1 copy parity sym

] else {
rec-s-l[2*i+l] = RxSym[2*i+l]; //copy parity sym
rec-s_2[2*i+l] = 0; /I punctured sym gets a 0

I

else

I
/I if punture -=I then code is 113 rate
for (i=O; i<NUMBITS; i t+)
I
rec-s-l[2*i] = RxSym[3*i]; I/ info bits
rec-s_2[2*i] = RxSym[3*alpha[i]]; N interleave info bits for encoder 7

rec-s-l[2*itl] = RxSym[3*i+l]; 11 symbols from encoder1
rec-s_2[2*i+l] = RxSym[3*it2]; I1 symbols from encoder 2

/I Initialise extrinsic information to zero
for (i = 0; i<NUM-BITS; i t+)

Le[i] = O;

/I loop trough niters iterations before decoding data
for (i=O; ia i ter ; i t+)
I

11 Deinterleave extrinsic info for decoder 1
for (j=O; j<NLTMBITS; j+t)
La[alphalj]] = Lelj]/2; I1 Le growth control

11 call sova
status = sova(rec-s-1, La, Lall, s-hat, 1);

/I count the bit errors after sova 1
Ne r r l d ;
for(j=o; j<NLTM-BITS; j t t) I

k = (O<Lallfi]) ? 1 : O;
if (k!=TxBitslj])
Nerrl+t;

I

for(k=O; k< NUMBITS; kt+)
Le[k] = Lall[k] - 2*rec_s-l[2*k] -Lack];

/I Interleave extrinsic info for decoder 2
for (j=@ j<NUM_BITS; j t t)
Lalj] = Le[alphalj]];

// call sova
status = sova(rec-s2, La, Lall, s-hat, 2);
for(k=Q k< NUMBITS; kt+)
Le[k] = Lall[k] - 2*rec-s_2[2*k] - La[k];

11 de-interleave the soft syms in order to count the bit errors
for (j=O; j<NLTMBITS; j++)

TempV[alphaljl I = Lallljl;

I1 count the bit errors this iter
Nerr2=O;
for(j=O; j<NUMBITS; j+t) {

#ifdef FIXED
/I printfr iter %2d, Lall[O]=%d, Nerr2=%d\n", i+l, TempV[O], N e d) ;

#else
/I printfr iter %2d, Lall[Ol=%e, Nerrl=%d, Nerr2=%d\n",
/I i+l, TempV[O], Nerrl, N e d) ;

#endif

if (Nerr2==0) break; /I cheat to save simulation time

/I Estimate data bits using sign of Lall
/I return deinterleaved Lall, use Le as temp array

for (j=O; j<NUMBITS; j++)
Le[alphalj]] = Lallfi];

for (j=O; j<NUMBITS; j++)
Lall[j] = Leu];

/I dpLc
/I
N C implementation of dpllm, a plain old DLLmLL
/I
I/ RCO, J J M 10/23/02

#include <stdio.h>
#include <math.h> 11 MJI, cos, sin, atan2
#include "scenario.h" /I simulation constants
#include "dp1l.h" /I make sure proto is up to date

void dpll(NUMTYPE *SoftSyms, int pll-mode, int init-delay,
NUMTYPE *RxSigRe, NUMTYPE *&Sigh, int dll-step, NUMTYPE *&Ref,
int Nacq, NUMTYPE K1, NUMTYPE K2, NUMTYPE K3, NUMTYPE K4, int OS)

(
int m, n, k, D=init-delay;
int NumSyms=NUM-SYMS;
int Ns=NUM-SAMP-PER-SYM;
int maxi, SigIndex, RefI ndex;

NUMTYPE TwoPi = 2.0 * M-PI: 11 from math.h
NUMTYPE ys-re, ys-im;
NUMTYPE maxv, phi-nco;
NUMTYPE phi-m[NumSymsl;
NUMTYPE phi-start[NumSymsl;
NUMTYPE DELTA-phi[NumSymsl;
NUMTYPE DTPP, delta-phi;
NUMTYPE rel, iml, re2, im2; I1 working variables for doing complex ops
NUMTYPE EML[3][2]; 11 E,M,L correlators (summers)
NUMTYPE v[31;
NUMTYPE t 2 4 , t3=0, t4=0;

11 init Early, Middle and Late gate summers
for (k=O; k<NumSyms; k++) {

DTPP = DELTA-phi[k]lNs; 11 calculate DELTA-phi per sample point

for (m e m<3; m++)
for (n=O; n<2; n++)

EML[m][n]=O; /I init E,M,L comelators (summers)

for (n=O; n<Ns; n++) {

phi-nco = phi-startlk] + DTPP*n; /I phase units of cycles

SigIndex = k*Ns+n; /I calculate index into signal

re1 = RxSigRe[SigIndexl;
iml = RxSigIm[SigIndex];
re2 = cos('IboF'i*phi-nco);

Reflndex = SigIndex*OS+D; 11 calculate index into reference function

EML[O][O] += RxRef[RefIndex-OSl*ys-re; //early real
EML[O][l] += RxRef[Reflndex-OS]*ys-im; N early imag
EML[1][0] += RxRef[RefIndexl*ys-re; I1 middle real
EML[1][1] += RxReflRefIndex]*ys-im; 11 middle imag
EML[2][0] += RxReflReflndex+OSl*ys~e; 11 late real
EML[2][1] += RxRef[RefIndex+OS]*ys-im; I1 late imag

v[O]=EML[O][O]*EML[O][O]+EML[O][~]*EML[O][~]; Nearly mag sqr
V[~]=EML[~][~]*EML[~][O]+EML[~][~]*EML[~][~I; I1 middle mag sqr
V[~]=EML[~][~]*EML[~I[O]+EML[~][~]*EML[~] [I]; I/ late mag sqr

for (maxv=maxi=n=O; n<3; n++) [I1 find max value and index
if (v[n] > maxv) {

maxv=v[n];
maxi=n;

I
I

I1 calc delta phi over last symbol, use the max val so that PLL pulls in
delta-phi = atan2(EML[maxi][l], EML[maxi][O]) 1 WoPi;

I1 Use the middle value because its the best guess at where the signal is.
11 We assume that the DLL has pulled in by the time data modulation begins
SoftSyms[k] = EML[l][O]lsqrt(v[l]);

N Compute the BPSK Data and flip phase if Data is a -1 (recall delta-phi is
11 in cycles per sym). Perfonn Olpi demod after the Nacq preamble symbols,
/I this keeps delta-phi in quadrants 1 and 4, ie -0.25 <= delta-phi <= 0.25

if (k+l > Nacq) {

if (delta-phi > 0.25)
delta-phi -= 0.5;

if (delta-phi < -0.25)
delta-phi += 0.5;

/I compute next DLL step, delta-t

if (v[O] > v[2])
D -= dll-step; I1 retard delay

else
D += dll-step; I1 advance delay

/I Compute terms for pll filter
t2 += delta-phi;
t3 += t2;
t4 += t3;

11 estimate phase-rate in cyclsymbol
DELTA-phi[k+l] = Kl*deltaghi + KZ*t2 + K3*t3 + K4*t4;

N update next midbit phase estimate and calculate next starting NCO phase
if (pll-mode == 1) {

I1 model phase is computed but not used in rate only feedback
phi-m[k+l] = phi-m[k] + (DELTA-phi[k] + DELTA-phi[k+l])&
phi-start[k+l] = phi-start[k] + DELTA-phi[k];

] else if (pll-mode = 2) 1
I/ update model phase and find start phase given rate and midbit value
phi-m[k+l] = phi-m[k] + DELTA-phi[k+l];
phi-start[k+l] = phi-m[k+l] - 0.5*DELTA-phi[k+ll;

1 else {
printf("dp1l.c: invalid pll-modeln");

1

I1 run-dpll-then-turb0.c
I/
/I call gen-turbo-sig(), dpll() and turbo()
11
11 JJM, RCO 5/7/02

#include <stdio.h>
#include cstdlib.h> // for exit
#include cmath.h> /I for M-PI, sin, cos, sqrt

NUMTYPE RxSigRe[NUM-SAMP-IN-SIC];
NUMTYPE RxSigIm[NUM-SAMPIN-SIG];
NUMTYPE RxChips[NUM-SAMP-IN-SIG];
NUMTYPE RxReflNUM-SAMP-IN-REF];

int main()
I

double Gam = 10;
double EbNOdB = 4;
double TxClockError = le-5;
double CodeRate = CODE-RATE;
double EbNO, EsNO, SNR, Sigma;
double Pi = M-PI, RxPhase;
double A=], t=O, dt, delta-tot-phase;
double K1=0.04996, K2=0.001133, K3=9.72e-6, K4=@

int pll_mode=2; 11 mode 2 is phase and phase-rate
int dll-step=l; I/ have dl1 step this many reference samples at a time
int Niter=lO; // max number of turbo algorithm iterations
int Nacq = O; N no acq symbols to track

NUMTYPE La[NUMBITS];
NUMTYPE Lall[NUKBITSl;
NUMTYPE SoftSyms[NUM-SYMS];

int TxBits[NUM_BITSl;
int RxBits[NUMBITS];
int Alpha[NUMBITSl;
int TxSyms[NUM-SYMS];
int RxSyms[NUM-SYMS];

int NumBits = NUM-BITS; /I info plus tail hits
int NumSyms = NUM-SYMS;
int Nspc = NUM-SAMP-PER-CHIP;
int OS = REF-OVER-SAMP;
int K = CONSTRAINT-LENGTH;

int Lsig = NUKSAMP-IN-SIG;
int Lref = NUM-SAMP-IN-REF;
int NS=NUM-SAM~PER-SYM;
int Nc = NUWHIP-PER-SYM;
int Puncture = PUNCTURE;

inti, n, Nerror;
int delta-clock;
int Nf=OS*8;
int InitDelayEst=Nf+7-1; I1 hand tweak group delay

float Noise;

/I RNGs are set both here for sig_gen and further below for "iters",
I/ to give same results as run-dpll-then-turbom

set-useed 0); set-meed(0);

printf("Ninf0 = %d W, NUM-INFO);
printf("K = %d W , K);
printf("Puncture = %d, CodeRate = %g W, Puncture, CodeRate);
printf("NumBits = %d W , NumBits);
printf("NumSyms = %d \n", NumSyms);
printf("Nc = %d W , Nc);
printf("Nspc = %d W , Nspc);
printf("0S = %d \n", 0s) ;
printfydll-step = %d W , dll-step);
printf("pl1-mode = %d \n", pllmode);
printf("1nitDelayEst = %d \n", InitDelayEst);
printf("Niter=%dW,Niter);

delta~clock=ceil(TxClockError*Nc*NumSyms*Nspc*OS);
printfrdelta-clock = %d ref samps\n",delta-clock);

I1 Print clock drift as the fractional rate, eg chipslchip, and in terms of
/I the number of chips of adjustment that will be required of the DLL.
printf~TxClockErro~=%gW,TxClockError);
printfydelta-clock = %l.lf chipsW,(double)delta~clock~(Nspc*OS));

EbNO=pow(lO,EbNOdBl10);
EsNO=CodeRate*EbNO;
SNR = EsNOINs; /I Input SNR at AID bandwidth; EsINO - Gain
Sigma = A/sqrt(Z*SNR);
printf("EbNO=%g dBW,EbNOdB);
printf("Lsig = %d, Lref = %dW, Lsig, Lref);

printf("Gam = %f\n",Gam);
deltaJot_phase=Gam/2; /I total cycle of phase, assume sig is 1 sec lonp
dt=l .O/Lsig; 11 time step, use this for now
printf("delta-phase = %f cyclesW, delta-tot-phase);
printf("delta-phase = %f cycles/sym\n", delta-tot-phaseINumSyms);

for (i=O; i<NumBits; i t+)
La[i] = 0;

set-useed 0); set-meed(3614762644UL); 11 set RNGs for some particular iter

for (n=O; n<Lsig; n++) (
RxPhase=Pi*Gam*t*t;
t t= dt;
if (EhNOdB<100) (

Noise = Sigma*gasdev();
RxSigRe[n] = A*RxChips[n]*cos(RxPhase)tNoise;
Noise = Sigma*gasdev();
RxSigIm[n] = A*RxChips[n]*sin(RxPhase)tNoise;

) else {
RxSigRe[n] = A*RxChips[n]*cos(RxPhase);
RxSigIm[n] = A*RxChips[n]*sin(RxPhase);

I
1

dpll(SoftSyms, pll-mode, InitDelayEst, RxSigRe, RxSigIm, dll-step,
RxRef. Nacq, K1, K2, K3, K4,OS);

11 for (i=O; i4IumSyms; i t+)
/I printf("%t\n",SoftSyms[i]);

Nerror=O,
printf("symbol error indices: ");
for(n=O; n4IumSyms; n+ t) (
RxSyms[n] = (O<SoftSyms[n]) ? 1 : -,,
if (RxSyms[n]!=TxSyms[n]) {

Nerrortt ; 11 which syms were in error ?
printf("%d ",ntl); 11 number syms from 1 to compare to Matlab

1

turbo(Lall, SoftSyms, Alpha, Niter, TxBits);

/I for(n=O; n<5; n t t) (
I / printf("Lall[%d] = %20.14e \n", n, Lall[n]);
11 I

Nerror=O;
printfrbit error indices: ");
for(n=O; n<NumBits; n t+) (

RxBits[n] = (O<Lall[n]) ? 1 : O;
if (RxBits[n]!=TxBits[n]) {

Nerrortt ; I/ which bits were in error ?
printf("'%d ",ntl) ; I1 number bits from 1 to compare to Matlab

I
1
printf("\nn);

DISTRIBUTION
Unlimited Release

S. M. Becker
V. Guzman Kamrnler

M. W. Callahan

L. M. Wells
J. T. Cordaro
A. W. Doerry
B. D. Guess
G. B. Haschke
J. J. Mason
R. C. Ormesher

B. L. Remund
B. L. Bums

W. H. Hensley

M. B. Murphy
A. Martinez
C. W. Ottesen
K. W. Plumrner
D. A. Wiegandt

K. W. Sorenson
D. E Dubbert

J. A. Heise

C. A. Boye

R. Mata
R. M. Axline
T. D. Atwood

J . A. Ramos
D. D. Cox

Central Technical Files
Technical Library
LDRD Office
Patent and Licensing Office

	LDRD Office

