SANDIA REPORT

SAND2003-3962
Unlimited Release
Printed March 2004

._?'.--Novel Methods for Ultra-compact
| _}'Ultra-low-power Communlcatlons

Richard C. Ormesher
J. Jeff Mason
Vivian Guzman Kammler

Prepared by
Sandia National Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commetcial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports(@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2003-3962
Unlimited Release
Printed March 2004

Novel Methods for Ultra-compact Ultra-low-power
Communications

LDRD Final Report

Richard C. Ormesher and Jeff Mason
Radar and Signal Analysis Department

Vivian Guzman Kammler
Digital Signal Processors Department

Abstract

This report describes a new algorithm for the joint estimation of carrier phase, symbol timing and
data in a Turbo coded phase shift keyed (PSK) digital communications system. Jointly estimating
phase, timing and data can give processing gains of several dB over conventional processing,
which consists of joint estimation of carrier phase and symbol timing followed by estimation of
the Turbo-coded data. The new joint estimator allows delay and phase locked loops (DLL/PLL) to
work at lower bit energies where Turbo codes are most useful. Performance results of software
simulations and of a field test are given, as are details of a field programmable gate array (FPGA)
implementation that is currently in design.

This page intensionally left blank.

Contents

INtrOQUCEION &« v o v e et e e e et a e 7
Turbo decoding with the Integrated Viterbi Algorithm. 8
Simulation ReSUIS oo e et i 20
Field Test ReSUlts. . . o oo tv e e e e e e e i e a e mene 23
FPGA Implementation.ovuurvereennimeeenneeeueenns 25
) Software Implementation.veeeeeetiie i 62

This page intensionally left blank.

1 Introduction

This report describes a new algorithm for jointly tracking and decoding convolutionally encoded
error control channel symbols in a phase-shift keyed (PSK) digital communications receiver. The
new symbol tracking Viterbi decoder is put to use in a Turbo decoder, which has two component
Viterbi decoders. We discuss our experiences in using this Turbo decoder in a direct-sequence
spread-spectrum (DSSS) receiver, although the spreading is not essential to the new algorithms.

The new approach incorporates both symbol time and phase estimation within the Viterbi decoding
process. We call this new approach the Integrated Viterbi Algorithm (IVA). The key idea is that
making data decisions inside the Viterbi decoding process improves the performance of the time
and phase tracking loops, compared to existing methods which makes data decisions prior to the
Viterbi decoding process. Data decisions in this context are decisions regarding occurrences of step
changes in phase due to the PSK modulation. The phase modulation steps must be recognized and
removed from the phase measurements, which are then smoothed by the phase tracking, or phase
locked loop (PLL), in order to produce estimates of underlying carrier phase. The mechanism of
the improved decisions is through the correlation among adjacent convolutionally-encoded
symbols. Within the Viterbi decoder a PSK decision can be based not solely on the measured phase
of the symbol in question, but also on the phases and decisions regarding all other symbols on the
path selected during the Viterbi decoding process.

Next, we show that the [VA can be incorporated into a Turbo decoder resulting in a tracking Turbo
decoder that can operate at lower signal-to-noise ratio (SNR) than that of a delay and phase locked
loop (DLL/PLL) using conventional data decisions. The proposed Integrated Turbo Algorithm
(ITA) consists of the parallel concatenation of an IVA decoder and a standard soft-output Viterbi
algorithm (SOVA) decoder. The IVA estimates timing and phase, performs the PSK symbol
detection, including despreading in the DSSS system, and generates the soft PSK symbol values
for input to the following standard SOVA decoder.

2 Turbo decoding with the Integrated Viterbi Algorithm

In this chapter we develop a Viterbi decoder with integrated (internal) delay and phase locked
loops and then show how this Viterbi decoder can be used to make a Turbo decoder with integrated
delay and phase tracking loops.

We assume that the incoming message consists of a preamble or acquisition sequence followed by
a block of coded channel symbols that have been spread with a direct sequence spread spectrum
(DSSS) code. The acquisition preamble’s SNR is large enough to provide an estimate of the initial
carrier frequency, phase, and symbol timing. We assume that the signal has both symbol timing
and carrier frequency drift, due to clock errors and relative motion between the receiver and
transmitter.

2.1 Received Signal Model

A sample at time ¢, of a DSSS binary phase-shift keyed (BPSK) communications signal transmitted
over an additive white Gaussian noise channel has the following complex form

(1) = ﬁ:sc,-(k, £, —1(t,)m (ke " + n(z,) (1)

where E; denotes the constant symbol energy, c,(k,¢) is the bipolar spreading function of time # for
the &P data bit, i is the symbol index for the kM data bit and consist of the values {1,2} fora 1/2
rate code, or {1,2,3} for a rate 1/3 code, for example. T is the data symbol interval, mk) is the

sequence of data symbols from the channel encoder output (see Figure 1) and for BPSK
modulation takes on values of + 1, t(¢) is an unknown time-varying time delay, ¢(f) is an unknown

time-varying carrier phase, n(f) is zero mean complex Gaussian noise with variance csn2 =Np/Tya
and # is the time sample index. The received signal is sampled such that

t_t—l:Td (2)

a

where T, s the analog-to-digital converter sample interval.

systematic symbols u(k,
Input Bits K
Multiplex
u(k) pk)
| Component encoder m;(k)
Code 1 parity 1 (and puncture
v for rate 1/2 code)
q(k)
Interleaver —— Compenent encoder -
Code 2 parity 2

Multiplexer output:

rate 1/2: m(k) = {m (k). my(k)} = u(1).p(1), u(2),q(2), u(3), p(3), u(4), g(4)...
rate 1/3: m(k) = {mj(k), my(k), m3(k)} = u(D), p(1),q(1), u(2), p(2). 4(2), u(3), p(3). 9(3) .

Figure 1. Turbo channel encoder

2.2 Conventional Time and Phase Synchronization

Coherent PSK communications require that the transmitter and receiver waveforms be
synchronized. As mentioned above, the received signal (1) contains both an unknown timing term,
t(t), and phase term, ¢(z). These unknown terms are due to transmitter and receiver clock errors
and RF channel dynamics. The receiver, therefore, needs to estimate and remove these unknown
time and phase terms prior to despreading and detecting the channel symbols.

The conventional coherent demodulation approach, shown in Figure 2, is to employ phase and
delay locked loops (PLL/DLL) to track and remove unknown phase and time terms prior to channel
decoding. The weakness in this approach is that the data-aided loops are making hard channel
symbol decisions without regarding the information imparted on the surrounding data symbols by
the channel coding.

Soft
¥lta) » Delay and Phase Symbols Decoded Data Bits
Locked Loops ———®| Channel Decoder |

Figure 2. Conventional phase and delay locked loops precede the channel decoder.

Figure 3 is a block diagram for a conventional coherent data-aided Delay and Phase Locked Loop
(DPLL). The input data stream, y(z,,), is assumed to be a sampled complex signal defined by (1).
The time tracking and phase tracking loops are implemented in parallel. The DLL consists of a pair
of early and late correlators to track bit timing and despread the DSSS modulation. The data-aided
PLL is implemented digitally with a Numerically Controlled Oscillator (NCO) and hard-symbol
detector. The PLL performs the carrier phase tracking required to remove the unknown phase term,

-9.

¢(t,,). The output of the middle correlator is the complex value of the despread symbol and the
phase of this term is corrected by 0 or & radians according to the sign of the detected soft symbol
(i.e., a data-aided loop). The phase corrected middle correlator output is fed into the loop filters. In
Figure 3 we use the parameter / to indicate the index of a data symbol. Dropping the subscript on
m;(k) indicates the alternate indexing scheme such that m(/)=m(k+i/R) for a rate R code. We use

this symbol index to illustrate how data symbols are processed in the conventional PDLL approach.

Phase

NCO Loop Filter
~ Early Ve
e Correlator
—o(#,) =
e
¥(ty) () Middle i)
N4 i~ Correlator
Late v
~| Correlator l
c(tn - ()
Spreading Code (/) DLL
Reference Function Loop Filter

Detector

(/)

m(l)y =01
Soft
Symbol Symbels
——
Detector

Figure 3. Conventional phase and delay locked loops

The equations for the correlators and phase detector are given as follows:

-10 -

n=I1-N.+N -1

)= S) 8T y()e ©)
n=1[-N,
n=1[0N+N,—1)
WO SRR A (9o (9 4
n=1[0-N,
n=1I1 N+N,—1 .
= T ety T30, 5Tt)e)
n=1-N,
. B imag (v, /)
6(9(!) = atan2[—rm (6)
8t(1) = fivg(D) — vy (D) (7)

where y(n) is the sampled input signal; y,.ris the reference signal used to despread the input signal,
vg, vy and v; are the integrate and dump outputs of the early, middle and late correlators,

respectively; 8¢(/) is the instantaneous phase estimate of the input signal and is obtained from the

output of the middle correlator, v,, (/) is the filtered phase estimate, 81(!) is the instantaneous
time delay estimate of the input signal and is obtained from the output of the early and late

correlators, v and v, , T(/) is the filtered time delay estimate.

The receiver shown above is described in detail in the open literature [3]. Several observations,
however, motivate us to consider a new approach for data-aided time and phase estimation:

1) Turbo codes can operate with very low symbol energy to noise power density ratios
values (E; /N,y < 0 dB)

2) Conventional coherent data-aided DPLLs do not perform very well at these low values
of ES /NU

3) The performance of the DPLL will improve if the SNR at the correlator output is
increased from E, /N, by removing the data modulation and coherently integrating over

more than one symbol.

The first two observations result in conflicting requirements. To take advantage of turbo encoding
we desire to operate at very low signal-to-noise ratios; however; the conventional DPLLs do not
perform very well at these levels of signal-to-noise ratios. As suggested in observation three, this
issue can be resolved if we can increase the coherent integration time of the early, middle, and late
correlators. However, we cannot increase the coherent integration interval without first removing
the unknown data symbol modulation.

-11 -

In the following, we introduce a novel approach to solve this problem. Our approach integrates the
DPLL into the Turbo decoder algorithm. The approach we present uses the estimated symbols from
within the decoding process to remove a set of one or more unknown data symbols prior to the
correlators (i.e., integrate and dump operation) used in the standard DPLL method.

This new approach results in two improvements relative to the standard DPLL approach. First,
using the data symbol estimates from within the data decoder provides a better symbol estimator
than the simple hard symbol detector used over a single data symbol as done in the standard DPLL.
By using the data symbol estimates from within the decoder we are taking advantage of the
information imparted on adjacent symbols by the channel encoder. This results in fewer phase
modulation removal errors in the data-aided loop. Second, in the standard DPLL only a single
symbol is detected and removed at a time and this limits the coherent integration time to a single
symbol. With the new approach, we can estimate and integrate over several data symbols at a time
as explained in section 2.4. This increases the coherent integration time and results in an increased
signal to noise ratio at the output of the DPLL correlators. The end result is improved estimates of
the instantaneous phase and time delay terms which allows the DPLL to work at lower E /N,

2.3 Integrated Turbo Algorithm

A block diagram for a Turbo decoder that simultaneously despreads channel symbols, decodes
channel symbols, and tracks timing and phase is shown in Figure 4. Similar to the standard Turbo
decoder, two component decoders are linked together by an interleaver, a de-interleaver, and the a
priori information that is passed between them. However, there are several differences between the
new Turbo decoder, herein called the Integrated Turbo Algorithm (ITA), and the standard Turbo
decoder.

-12-

Le(u(k))

Interleaver

spread Systematic Inte grated .
despread Systematic symbols

spread Parity 1 SOVA Interleaver -

spread interleaved Parity 2 despread interleaved Parity 2 symbols

Reference (despreading) waveform

Le(u(k))

Standard De-interleaver
Parity 2 hard-symbol estimates, P*
SOVA

Lu(k)/y)

Figure 4. Integrated Turbo decoder block diagram

The first component decoder of the ITA is the Integrated Viterbi Algorithm (IVA). This is a Soft
Output Viterb1 Algorithm (SOVA) decoder that has been modified such that the time and phase
tracking are implemented simultaneously within the decoding processes. The input into the IVA is
the sampled complex received signal as defined in Eqn. (1). The input signal has a spreading
sequence applied and has an unknown time-varying phase and time-delay. In the block diagram in
Figure 4, we show the input signal partitioned into systematic and parity symbols. The operations
required to despread the symbol and estimate and remove the unknown time and phase terms are
implemented as an integral operation within the first component decoder.

The basic approach is to use a data-aided coherent Delay and Phase Lock Loop (DPLL) that is
executed simultaneously during the Viterbi decoding process. We perform joint phase and time
estimation on a spread spectrum BPSK signal. The output of the IVA is a set of despread soft

symbols and the normal extrinsic information, L (), related to the information bit (k). The

despread soft symbols are the set of soft symbols that would typically come from the output of a
conventional DPLL preceding the channel decoder.

Because of interleaving, joint phase and time estimation, and data despreading can only be
implemented within the first component decoder. This is because the input systematic symbols for
the second component decoder are interleaved after transmission through the RF channel to match
the order of parity symbols for the second component decoder which where interleave before
transmission as shown in Figure 1. This interleaving scrambles the phase on the systematic
symbols making tracking impossible.

= 13 =

The output from the second component decoder consists of the extrinsic information, L _(u,),

related to the information bit, u(k), the a posteriori Log-Likelihood Ratio (LLR) for the
information bit L(u(k)|y), and the hard-symbols estimates for the parity symbols from the second
component decoder. The hard detected parity symbols are used in the DPLL of the first component
decoder. In the next section, we describe the Integrated Viterbi Algorithm in more detail.

2.4 Integrated Viterbi Algorithm

In this section we describe how the DPLL is integrated into the Viterbi Algorithm. Recall that the
Viterbi algorithm searches all possible paths in it’s associated trellis. The codeword (i.e.encoder
output) is chosen with the smallest distance between the received symbol sequence and all possible
codewords.

The decoding algorithm starts at the first received symbol and continues until the last received
symbol is processed. At each bit interval, the path is reduced by deselecting codewords from all
the possible remaining codewords. At each trellis two paths merge into a single state and the path
with the smallest metric is eliminated as the optimal path leaving a single surviving path for each
state. When the end of the trellis is reached the surviving path with the largest path metric is

selected as the most likely path. At any bit interval within the decoding process there are k!
possible surviving paths where K is the constraint length of the encoder and each of these paths has
a unique associated codeword. Our goal is to use these codewords to implement the data-aided loop

described above. Since there are 2% ' possible surviving paths we shall implement a separate
DPLL for each of these paths during the decoding process.

Consider the correlators defined by Eqn. (3) through Eqn. (5) above that are used to estimate

instantaneous time delay, 87(/), and phase, 8¢(/), of the il symbol, m(/) within the conventional
data-aided DPLL. The signal outputs vg(/) and v; (/) are used in the delay computer to track and
time align the input signal to a reference signal, while output v,,(7) is used to estimate the phase of

the current symbol. In each case, the correlators use the detected hard-symbol (/) to remove the
data modulation before the symbol phase and time estimate are made (i.e, a data-aided loop). In the
loop shown in Figure 3 above, we see that the hard-symbol detection occurs after the basic integrate
and dump operation from the middle correlator.

As previously mentioned, our goal is to improve the SNR at the output of the correlators, improve
the instantaneous estimates of both symbol time and phase, and thereby, improve the overall
performance of the DPLL. By examination of Eqn. (3) through Eqn. (5) we see that if the symbol
values, 71(/) are known a priori and time and phase are constant over several symbols then the
correlators can integrate over several symbols before estimating time and phase. Define L as the
number of bit intervals in which time and phase are considered constant enough to allow for
coherent integration. Then, for a 1/2 rate component code, at any bit interval in the Viterbi

-14 -

decoding process there are a set of 2*L symbol estimates for each surviving path. These symbols
can be used to remove data symbol modulation and increase the correlator integration interval in a
data-aided DPLL. One of the surviving paths will eventually be selected has the most likely path.

The following equations are Eqn. (3) through Eqn. (5) modified to implement coherent integration
over a block of L Viterbi decisions for a 1/2 rate punctured Turbo code.

n=2kN,+N,-1

~ T"(b\', A
ve(k, s;) = Z m(k, s)y(t,)e J‘yref(tn +1,,T0)+
n=2kN,
n=2kN,+2N,- 1) (&
~ _jw.s ~
Z mZ(ks Sk)y(tn)e kyref(tn + 15, +9)+ VEU(, Sp_])
n=2kN,+N,
n=2kN,+N,—1)
o —j(Ps, ~
vadk,s.) = Z m,(k,s,)y(t,)e ‘yrqf(z‘n +15,) +
n=2kN,
n=2kN,+2N,- 1) ©)
~ —th ~
Z my(k, s,)y(t,)e kyref(tn +15,) tvadk s,)
n= 2kN(‘+NC
n=2kN,+N, —1 .
o J0s, o
VL(k, Sk) = Z iy (k, Sk)y(tn)e ‘yref(tn Tl o)+
n=2kN,
n=2kN,+2N.— 1) LY
" s a
Z m,(k, s;)y(t,)e kyrej(tn-l-'csk—ﬁ)-k vk, s, 1)
n=2kN,+N.
: imag (v, (k. 5,))
865, = atan) 1
Y (A) ()
875, = fvplk, sp) = vk 5p)) (12)

In Eqn. (8) to Eqn. (10) s; indicates the current state at the K™ bit interval in the Viterbi decoding

process, s;._; indicates the previous state for the selected path and N,. is the number of PN code chips
per data symbol. In the 1/2 rate Turbo decoder n:tz.(k, 5 k) is the symbol estimate at the K bit for

state s; while =1 for the systematic symbol and i=2 for the parity symbol. Notice, that for a 1/2

rate encoder the correlators sum over two data symbols per decoding interval and will sum over a
total of 2* L data symbols before they are dumped and phase and time estimates are updated. Also,
notice that there is a unique DPLL implemented for each surviving path of the trellis. Eqn. (12)
needs to use a two argument arctangent function whose range is -7 to 7.

-15 -

To illustrate the use of Eqn. (8) to Eqn. (12) assume that we are at the £ bit interval in the
Integrated Viterbi Algorithm. Then, at each state, s;, there is a surviving path an associated Viterbi

path metric (see Figure 5). In addition, each surviving path has a phase and time delay estimate,

7 ,»and fosk , respectively. These are the time and phase terms that are estimated and tracked via

the DPLL and are updated every L bit intervals.

For the correlators, we desire to sum the next 2*L data symbols using the decision sequence
ik 81y -y m{k+L,s; . ;) toremove the data modulation. Because we are in the middle of the

Viterbi decoding process, there is a decision sequence from S; to S;,; for each survivor of state,
Sy+1, at the £+L bit.

To perform the summation we initialize the terms vg, v;, and v; to zero (i.e, at the start of a block

of 2*L symbols) and continue with the Viterbi decoding process and sum the terms in Eqn. (8) to
Eqgn. (10), for each state, over the selected path.

For example, at the next bit interval, £, for each state, 53, we perform the following steps:

1) Using the current time estimate, Arsk . » and phase estimate, (Bs,‘,, , we despread the

sampled data symbol sequence and calculate the transition metrics as follows

n=2kN,+N,— 1

o _l"'ij.ikﬁ
V(Sk—l’sk) = ml Z y(rn)yref(tn+ﬁcskfl)e +
n=2kN
‘ 1
n=2kN +2N_ -1) (3)
~ 7j‘p-’k,|
M, Z Y)Yl + 15, e
n=2kN,+N,

where 1, and M, are the codeword symbols associated with the branch transition from

St.j to 8. For the rate 1/2 (punctured) code the parity symbol is not sent on even numbered

bits, as shown in Figure 1, so the second sum in Eqn. (13) must be set to zero every other
bit period. For the rate 1/3 Turbo code the parity bits are always sent so both sums are
computed.

2) Using the transition metrics the Viterbi path metric is updated and the codeword symbols

m 1(k,s;) and n?zz(k, s,) are selected according to the normal Viterbi Algorithm. In

addition, the time, T, ., »and phase estimate, 0 5, »associated with the selected transition
are propagated to the next bit iteration.

3) Using the selected codeword symbols and propagated phase and time estimates we
perform the early, late, and middle correlation operations as defined in Eqn. (8) to Eqn.

(10)

-16 -

4) Steps one through three continue until the end of the block, k+L, occurs. At this point in
time, the integrators in Eqn. (8) to Eqn. (10) are dumped and the results are fed to the
delay computer and phase detector followed by the Loop filters to produce updated phase
and time estimate which become available for the next block of 2*L symbols.

Sy (State)
00

01

Figure 5. Example Trellis diagram for an 1/2 rate RSC code of constraint length 3

At the end of the trellis, as with the standard Viterbi Algorithm, we have a path metric for each
surviving path and the ML path is the path with the largest metric. Also, since we are performing
Turbo decoding, we need a soft output in the form of the a posteriori LLR L(u(k)|y) for each
deccoded bit. To calculate L(u(k)|y) we perform the normal trace-back operation for the Soft-Output
Viterbi Algorithm (SOVA) [4].

Next, the output from the first component decoder, the IVA, is fed to the input of the second
component decoder, a standard SOVA decoder. The input signal, therefore, needs to be despread
prior to being used by the standard SOVA decoder. Hence, we use the IVA to provide the set of
despread symbols that feed the second decoder. Note in Figure 4 that the systematic symbols are
interleaved before presentation to the standard SOV A to agree with the bit order that was encoded
in Figure 1. The output of the second decoder consist of the extrinsic information, L (u(k)), the a

posteriori LLR L(u(k)|y), and symbols estimates, P*, for the second component code.

The parity symbols, P* shown in Figure 4, are created in the second SOV A and are used in the
DPLL section of the first SOV A decoder. The use of these parity symbols are unique to the
Integrated Turbo Algorithm and are used to increase to SNR at the DPLL correlators outputs. To
illustrate their use, consider Eqn. (8), Eqn. (9), Eqn. (10) above for a rate 1/2 punctured Turbo code.
The first term is a summation of systematic bits and the second term is a summation over the parity
bits. For a rate 1/2 Turbo code the parity bits are alternately from encoder 1 and the encoder 2 as
shown in Figure 1. The symbol estimates for the parity bits must be taken alternately from the two
SOVA decoders. The second SOV A parity symbol estimates, P*, are therefore used to remove the
parity symbol modulation and allow for integration over all of y(z,)) in Eqn. (8), Eqn. (9) and Eqn.

-17 -

(10). This improves the SNR of the correlator outputs. In Viterbi metric computation Eqn. (13) for
the rate 1/2 (punctured) code, the input signal y(z,)) corresponding to the second component encoder

parity symbols is still set to zero every other bit for.

The extrinsic information from the second SOV A decoder is deinterleaved and fed to the first
component decoder. Only the second decoder works with interleaved data. As with the standard
Turbo algorithm, the first component decoder now decodes the same input using the extrinsic
information from the second decoder to improve the decoding process. The process is repeated
until the Turbo decoder is terminated.

-18 -

2,5 Chapter References

[1] Pooi Y. Kam and Hsi C. Ho, “Viterbi Detection with Simultaneous Suboptimal Maximum
Likelihood Carrier Phase Estimation,” IEEE Trans. Comm., Vol. 36, No. 12, pp. 1327-1330, Dec.
1988.

[2] O. Macchi and L. Scharf, “A Dynamic Programing Algorithm for Phase Estimation and Data
Decoding on Random Phase Channels,” IEEE Trans. Inform. Theory, Vol. IT-27, No. 5, pp. 581-
595, Sept. 1981

[3] Proakis, John G., Digital Communications, 3rd Ed., 1995, McGraw Hill, Boston, Mass.

[4] L. Hanza, T. H. Liew, and B.L.Yeap, Turbo Coding. Turbo Equalization and Space-Time
Coding for Transmission over Fading Channels, IEEE Press, 2002.

-19 -

3 Simulation Results

The integrated DPLL/Turbo decoder, or ITA, has been implemented in C and exercised in a
Monte Carlo simulation in order to evaluate performance in terms of bit-error rate (BER) at vari-
ous levels of £,/N, (bit energy to noise power density ratio).

Figure 6 below shows the observed performance of the new and prior approaches for the follow-
ing set of parameters:

* N, =1000, data (message) block length 1n bits

» K=5, constraint length of the constituent RSC encoders
* R=1/3, rate 1/3 (unpunctured) Turbo code

Many secondary parameters such as time and phase slew rates, loop bandwidths and spreading
code and interleaver sequences are required to fully specify the simulation.

In these simulations a loop consisting of the following steps are repeated a large number of times
at each £y, /Ny.

= A random vector of 1000 data bits is generated.

» The data is Turbo encoded as shown in Figure 1 and converted to bipolar (BPSK)) format.

* The Turbo channel symbols are spread using a 63 bit maximal-length PN sequence.

* The chipped data, which is over sampled, is now filtered and sampled asynchronously,
approximately twice per chip, simulating the digital sampling done at a receiver having some
clock rate error.

» The samples are put on a slewing RF center frequency, giving a complex signal, to which ther-
mal noise is added to complete the simulation of the RF channel.

» The complex signal is then decoded/demodulated by the ITA and the number of bit errors is
recorded.

Figure 6 shows that the proposed algorithm can provide significant performance gains over the
prior approach. For example comparing the £, /N, to achieve a BER of 1 x 107 we see that the
ITA requires about 2 dB while the standard Turbo decoder following a DPLL requires a bit more
than 6 dB, giving the new approach a 4 dB advantage at this operating point.

The curve for the baseband Turbo decoder is given in the plot as well. Baseband here means that
there is no timing error and the signal phase angle remains exactly 0 so that tracking loops are
unnecessary. The horizontal distance, at a given BER, between the baseband and either of the
decoders with tracking loops shows the “implementation loss”, or loss of sensitivity due to imper-
fect tracking of the loops, for that tracking decoder. The large reduction in implementation loss of
the integrated decoder under these conditions is readily apparent.

-20 -

L 2

NumBits=1k , Rate=1/3, K=5 , Tc=5e-6 , Gam=5 , BlockLen=20

—— dpll then turbo
—— turbo_dpll
—£— baseband turbo |

BER

Eb/NO dB

Figure 6. Comparison of performance of baseband Turbo, Integrated Turbo Algorithm, and
Turbo following a DLL/PLL for a 1000-bit block, code rate 1/3, and constraint length 5.

It is instructive to see in Figure 7 and Figure 8 how baseband SOVA and Turbo decoder perfor-
mance depends on two key parameters. These figures do not show performance for the Integrated
Turbo Algorithm directly but recall that this would differ from the baseband Turbo performance
only by the implementation loss. Comparing Figure 7 and Figure 8 you can see that the while the
SOVA decoder does not depend on the number of bits in the message, or interleaver block length,
the Turbo performance is very strongly tied to this parameter. It is significant that performance
improves strongly with block length, while processing burden is virtually unaffected. Decoding
latency time increases with blocklength however, and this can become an issue in latency sensi-
tive applications such as digital telephony.

221 -

BER

BER

NumBits = 1k, Rate=1/2

: (1] * Sova_K7 |3
IESRiS2orsaiaia LolTiiinn —%— Turbo_K7 |1
: o -+ Sova_K5 []
10"k . . AR Prrirriiriiae i —— Turbo_K5 [3

: 20 : B Sova_K3 |
—E— Turbo_K3 |]

107

I
-]

1 =5 2 2.5 3 3.5 4

Eb/NO dB

Figure 7. Comparison of performance of baseband 1,000 bit rate 1/2 SOV A and rate
1/2 (punctured) Turbo decoders for three different constraint lengths.

NumBits = 10k, Rate=1/2

| % Sova_K7 |j
. o e : o Ll . o | —#%— Turbo_K7 |]

= |+ Sova_K5 []
F :| —+— Turbo_K5 |j
= Sova_K3

—&— Turbo_K3 |]

10‘_9.‘.,,,,,,,, i R R
1 fiES) 2 2N 3 3.5

Eb/NO dB

Figure 8. Comparison of performance of baseband 10,000 bit rate 1/2 SOVA and
rate 1/2 (Punctured) Turbo decoders for three different constraint lengths.

_22.-

4 Field Test Results

We were able to compare the performance of the Integrated Turbo Algorithm (ITA) to standard
processing over an ISM band RF link using equipment assembled by the Goldmine LDRD, Project
No. 26574. This link, shown in Figure 9 below, consists of an S-band transmitter, a C-band to S-
band translator, or “bent-pipe”, and a C-band receiver. The transmitter and receiver were located
on Sandia property on Kirtland Air Force Base while the bent pipe was carried on a gas balloon
that was launched on September 29, 2003 from Ft. Summner, New Mexico and rose to an altitude
of 80,000 feet.

bent-pipe
» h i e
_ = “S-band uplink C-band downlink ~ ~ .Lj
k -~ +
. -

? receiver LNA

variable
attenuator A/D converter
transmitter

computer

Figure 9. Goldmine LDRD RF link.

The transmitted signal was a 1000 bit message encoded by a rate 1/3 Turbo encoder, i.e. with 3
symbols per data bit, and then spread using 127 chips per symbol. This message was transmitted
at 4 million chips per second (Mcps). Since there are 381 chips per bit (127 chips/symbols times 3
symbols/bit), the resulting bit rate is 4 million divided by 381 or about 10.5 kilobits per second.
The duration of the 1000-bit messages is therefore just less than 0.1 second. The message was
transmitted repetitively for 5 seconds at each of several transmitted power levels as controlled by
the setting of a variable power attenuator inserted between transmitter and its antenna.

Columns 1 and 2 of Table 1 shows the Bit Error Rate (BER) both for the Integrated Turbo
Algorithm and for conventional processing, a Turbo decoder following a DPLL, for different
attenuator settings. Column 3 gives the average measured £}, /N, which typically fluctuates a few

-23-

tenths of a dB from message to message. Each row of Table 1 gives the cumulative BER from 48
messages from the 5 second data collection at the indicated attenuator setting. As only 48,000 bits
were sent at each attenuator setting the lower BER values are very rough.

Table 1: Bit Error Rates (BER) for old and new style processing of the Sept. 29 test data

Integrated Turbo DPLL-then-Turbo median E;, /N, attenuation inserted
BER BER (dB) (dB)
0 0 8.8 0
0 1.8x 10 4.0 1
0 29x1073 3.5 2
0 0.12 2.8 3
0.30 0.35 -0.5 4
0.37 0.43 2.7 5
0.42 0.46 -4.8 6

The ITA out-performed conventional processing at all £, /Ny, and did not make any bit errors in

the 4 runs with positive SNR. In the last 3 runs the SNR fell below the usable level for either
processing scheme. The results for both new and old style processing agreed well with that
observed in simulations as shown in Figure 6 for example. These results validate an expectation of

a 4 dB gain at a BER of 107 for this ITA configuration (block length, constraint length, etc).

-24 -

5 FPGA Implementation of Soft-Output Viterbi Decoder for Turbo Codes
Based on C Algorithm

The Integrated Viterbi Algorithm (IVA) uses integrated delay and phase lock loops for
decoding convolutionally encoded spread spectrum BPSK signals. The algorithm has
been tested with C and Matlab and has demonstrated promising performance for bit error
correction for use in low-power applications. The algorithm programmed in commercial
digital signal processors, however, may not easily meet the speed required for desired bit
rates. Here, an FPGA implementation is investigated.

The soft-output Viterbi algorithm (SOVA), although useful for simple convolutional
codes, is also a main component in Turbo decoding. It is the most computationally
complex part of the Turbo algorithm and requires the most hardware. This paper focuses
on the implementation of this component, which we call SOVAL, in FPGA hardware.
The output from this module is interleaved and iteratively refined through another Viterbi
decoder that feeds back input into SOVAL1. This second Viterbi decoder is a simplified
version of the SOV A and is referred to as SOVA2. The interleavers, since inherently
sequential, can be implemented in embedded software or in additional hardware.

The proposed hardware implementation is a “point” design with pre-defined parameters.
These were chosen to test a useful design that may still fit on a single FPGA device.
Although the design is synthesizable and provides size and speed estimates for a given set
of design parameters, it has not yet been verified against software models and changes

are still likely to be made.

The implementation described here uses a constraint length of 5, a code rate of 1/3, a
message length of 1000 bits, and 512 chips per symbol. Our analysis concludes that this
design could fit on a Xilinx Virtex-I1 XC2V8000, run at a 50 Mhz clock and operate at a
maximum bit rate of 785 bps and chipping rate of 1.2 Mcps. These data rates are within
the range where software models of the Turbo algorithm have demonstrated Ey/N,
savings of 3-5 dB over typical Viterbi decoder based systems.

5.1 Design Methodology

The hardware implementation is based primarily on C code describing SOV A behavior.
Preliminary estimations on latency and size were based on line-by-line analysis of code.

To translate software into hardware, memory arrays are mapped to hardware memory
elements and interfaces are converted to fixed widths. Iterations must be unrolled into
multiple components to take advantage of parallelism in hardware.

Initial estimates were made using spreadsheets. The original C code was evaluated line
by line to determine memory requirements and estimate clock cycles. Parameters
affecting processing time and size include:

e Constraint length

e Number of chips per symbol

225-

Number of information bits

Number samples per chip

Number symbols per bit

Oversampling rate

Number of states computed in parallel

Initial input width of signals

Maximum bus width for signals

Number of iterations through SOVA1/SOVAZ2 loop

® @ © @ ¢ % ¢ ¢

We also must assume a maximum system bus-width and truncate data accordingly. If
precision was maintained as values were added, multiplied, or otherwise operated on,
system resources would be quickly exhausted. Since this has not yet been tested,
however, any degradation in experimental results cannot be quantified.

5.2 Requirements

When implementing a software algorithm in hardware, several considerations are made to
control size and speed:

1y

2)

3)

4)

All data becomes fixed-width in hardware. Input width and maximum bus width
determines size of adders, multipliers, and memories. This also affects the
ultimate precision of results. Data is treated as integers. If fractional bits are
required, additional shifters may be needed to align data after arithmetic
operations.

Memories are reorganized when advantageous to simplify addressing and speed
up access time. Number of information bits, constraint length, and number of
samples per chip determine amount of memory needed.

Iterations are unrolled and processed in parallel where possible. Dependencies
between one iteration and the next will force the computation to be done
recursively as with tracing forward or backward across message bits. In cases
where computations may be done in parallel, as with states in the trellis, limited
FPGA resources may also require computations to be done in segments.
Multiplies are best handled by embedded processors on the FPGA. The number
of 18x18 multipliers available depends on the device chosen. Smaller multiplies
can be handled in a lookup-table, and again, these resources are fixed. Limited
multipliers may also force computations to be done sequentially.

For this design, we considered Xilinx’s Virtex-II lineup of FPGAs. These are currently
their highest density FPGAs, with system gate equivalents of up to 8 million.

26-

Table 3. Xilinx Virtex-II FPGAs

XC XC XC XC XC
Virtex I 2V2000 2\V3000 PATELY] 2V6000 2V8000
System Gates o 2M aMm 4M . BM 8M
Logic Cells : ; 24,192 32256 51,840 76032 104,882
Slices - . 10,752 14336 23,040 33792 46,592
BRAM (Kbits) : ' 1,008 ;1,728 2,160 2,592 3,024
18x18 Multipliers i - 56 96 120 144 168
Digital Clock Management Blocks e 8 12 12 g 12
Max Dist. RAM Kb : i 336 ; 448 720 1,056 1,456
Max Available User /O i 624 720 - 912 1,104 1,108

In order to estimate whether or not the Turbo design will fit on a single chip, we target
the largest Virtex-II FPGA available. For the first prototype of this design, we assume
certain parameters in hope of producing an implementation that can be tested on a single
FPGA:

Constraint length, K=5

Number of chips per symbol = 512

Number of information bits = 1000

Number samples per chip = 2

Number symbols per bit =3

Oversampling Rate = 8

States computed in parallel = 8

Input width = 8 bits

Maximum data width = 32 bits

Number of iterations through SOVA1/SOVA2 loop = 10

Using the above parameters, we were able to fit a design to the Virtex-I1 XC2V8000 part
after synthesis as shown in Section 5.8, SOVA1 and SOVAZ2 size and speed. A
comfortable utilization margin is desired for place and route, otherwise hand-
optimizations may be necessary. Additional FPGA resources should also be available for
the integration of the SOVA2 component and interleavers. A place and routed Turbo
FPGA implementation has not yet been tried. Our analysis of latency and area is based
on individual synthesis results of SOVA1 and SOVA2.

Methods for improving latency and tradeoffs for changing other parameters are also
discussed in Section 5.8. Spreadsheets were refined after hardware implementation for
better estimates of these tradeoffs.

5.3 FPGA Board

Since there is not enough memory available on an FPGA for all memory requirements,
off-chip RAM needs to be available on the FPGA board. This is where received signals
can be stored along with a pre-calculated reference signal. The board should have a
standard JTAG interface and PROM for programming the Virtex-1I. There should also
be a way to initialize external RAM, preferably without using FPGA resources. The
FPGA can treat the memory as read-only. An alternate FPGA for implementing second

27-

Viterbi decoder and interleavers may also be desired to complete the Turbo decoder.
Such a board may be commercially available for prototyping purposes.

The FPGA itself is organized in four main modules. The data processor provides all
hardware for executing the algorithm. On-chip memory provides storage space for large
arrays that are computed per iteration and needed for computations later in the algorithm.
The data controller manages the data flow through the processor and to the other parts of
the chip. The memory controller is enabled by the data controller, and handles transfers
between FPGA and external RAM or local transfers that can be done without interrupting
data flow. The memory controller updates local memories ahead of future iterations.

Received
Signal
Re

Received
Signal
Im

Memory

Control Data Processor

Data Control
Reference i s

Signal

Off-Chip Memory Xilinx Virtex T
Figure 10. Soval organization of FPGA and external memory

5.3.1 Data Processor

This module is what most closely correlates to the structure of the C algorithm. For a
constraint length of 5, we must create the trellis for 16 states. Figure 11 represents the
possible path from one state to the next for a given information bit. The “trace-forward”
step is done for each information bit, as well as for the appended tail bits which
guarantees that the trellis with end at a zero state. The total number of bits, NUM_BITS,
including these tail bits is 1004. The real and imaginary parts of the received signal are
input into this module, as well as its reference signal. For each state, these samples are
despread into one systematic and two parity symbols. This is a multiply-accumulate
operation, and given the number of multipliers available, all three symbols can be
computed in parallel for 8 states at a time. The result is stored in on-chip memory.

28-

cutr_state) We=—=co-c-----—-—---——o— oo next_stateQ
curr_statel next_ statel
curr_ statel next_ statel
cuty_ state3 next_ stated
curt_ stated next_ stated
curt_ stated next_ stated
cutr_ stated next_ state6
cutr state? next_ state?
curr_ state® next statef
cury_ state9 next stated

curr_ statell
curr_ statell
curr_ statel2
cutr_ statel3

cutr_ stateld

et
==

next_ statell
next_ statell
next_ statel2
next statel3

next_ stateld

curr_ statel 5 @ o next statels

Info bit 0-—---- >
Info bit | ————»

Figure 11. Trellis for K =5. Solid line for bit = ‘1°, dotted line for bit = ‘0’

Because the computation is done for 8 states, the Despread Symbol process must be
executed twice before feeding input into the next stage as in Figure 12. All 16 symbols
must be ready to compute path metrics in the Add-Compare-Select stage. Repeating
this stage then gets delay estimates ready for the Correlate and Update stage, which
also must be repeated. The Update Delay and Phase stage processes all states in parallel
before the next bit of information while tracing forward.

229

Systematic and
Parity Symbols

P ET EE AP A= A 4

i Add-Compare Despread : 3
5 Select Symbols* i [
: (8-states) (8-states) i e

Trace forward l _______________ Traceback SOVA Delta

b

Correlate* Update Delay ; !

and Update and Phase Maxlikelihood| __{ »| Min Path iy Soft
i Block Bounds Estimates “1 Path] i Difference ! tout
! (8-states) (16-states) H H i oulpu
: For each bit forward i+ For each bit backward i For each bit forward

*Complex Multiply and Accumulate hardware shared fordespreading symbols and early and late correlators

Figure 12. Data Flow for computing soft outputs in data processor

After the trellis is created for the given message, the path with the best metric (max-
likelihood) is selected by “tracing back™ to the first bit of information in the Traceback
stage. The final stage does one more pass through the information bits to determine the
minimum path metric difference determined from any deviation from the max-likelihood
path. This is referred to as the SOV A Delta Loop. The resulting soft output for each
message is buffered locally or passed to the next device external to the FPGA.

The architectures for each of these sub-modules in the data flow are detailed in the
following sections.

-30-

5.3.2 Despread Symbol

_ i_despread_symO
| _SyImi
i _Sym2
i Sy)+
i Sy F
i YIS 2 O+
i —Syme ’
i_| —Symy? D) [+
U el
— D} [
=+ ThetaEst(7:0) sym1Re(NUM_TYPE-1:0) £
— D) f—
=1 RxSiglm(sig_mem_width-1:0) sym1Im(NUM_TYPE-1:0) b per
— D) p—
=+ RxSigRe(sig_mem_width-1:0) sym2re(NUM_TYPE-1:0) 0
— Lp—
=1 RxSigRef(sig_mem_width-1:0) sym2im(NUM_TYPE-1:0) \'{V—-'
v b
—] sym3re(NUM_TYPE-1:0) F—
—+{FD >
— sym3im(NUM_TYPE-1:0) —
—+{ND
= OVFL
—|pll_flag
% RDY

l'

Despread_symbol

Figure 13. Despread symbol component interface

Table 4. Despread_symbol component interface description

 Despread Symbols
Direction Description

ThetaEst[7:0] in Projected data delay estimate for this state
RxSiglm[7:0] in Imaginary component of received signal
RxSigRe[7:0] in Real component of received signal
Indicates first RxSigRe, RxSiglm, and RxRef on bus for
despreading signal. In the case of 128 chips per sample,
FD in this is the first of 256 iterations.
Indicates new RxSigRe, RxSiglm, and RxRef remainder
ND in of despreading computation.

Il_flag in 1'if PLL is used. '0' if PLL off and assume signal is real.
sym1re[31:0] out |Real component of first systematic symbol
sym1im[31:0] out [Imaginary component of first systematic symbol
symZ2re[31:0] out [Real component of second systematic symbol
sym2im[31:0] out |Imaginary component of second systematic symbol

sym3re[31:0]

out |Real component of parity symbol

sym3im[31:0]

out [Imaginary component of parity symbol

OVFL

out |Overflow flag for multiply and accumulates

RDY

out |Asserts when all iterations complete

This module performs the first 8-state parallel function in the bit-forward stage in Figure

12. It takes in

real and imaginary components of received and reference signals, and

performs a complex multiply. Code Excerpt 1 demonstrates the despreading of the first
systematic symbol, SysSymMat. The variable Nsamp is the number of chips per symbol
multiplied by the number of samples per chip. The DelayEst value is used in the

addressing of the reference signal, RxRef, and is controlled externally (see Section 5.6:

31-

Memory Control). The SysSymMat variable is stored in On-Chip Memory.
Computations for parity symbols, ParSymMat and ParSym2Mat, are handled similarly.

Code Excerpt 1. Despreading symbols

1 for (state = 0; state < Nstates; statet+) {

2

3 D = DelayEst[state]; // get projected delay estimate for this state
4

5 Lf (pll flag)

6 Thetakst = TwoPi*phi nco[state];

7 else

8 ThetaEst = 0; // turn PLL off, assume sig is real

9

10 // printf("ThetaEst=%f \n", ThetaEst);

11 re2 = cos(ThetaEst); im2 = -sin(ThetaEst); // pre-compute for loops
12

13 // despread first symbol

14 for (i=0, symlre=symlim=0 ; i< Nsamp; i+-) {

15 rel = RxSigRe [indexl+i] * RxRef[index1*0s+D+i*Cs];

16 iml = RxSigIm[indexl+i] * RxRef [index1*0s+D+i*0s];

17 symlre += rel*re2-iml*im2; // terml = xl1 * x2 ({complex)
18 symlim += rel*im2+rel2*iml;

19 }

20

21 SysSymMat [state] [t]=symlre;

22 I

23 // Despread second and thira symbols and assign

24 .-

25 1}

Each state requires its own DelayEst and phi_nco memory arrays. RxSigRe and RxSigim
in lines 15 and 16 are also independent of state, so these can be read directly from
external memory and fed to each of eight despread symbol components. The RxRef
signal, however, does depend on state and requires special handling to provide 8 unique
words to the components. This is explained further in Section 5.6.3, RxRef_ctrl.

The complex multiply and accumulate hardware used in computing lines 14 to 19 is
pictured below. This hardware is similar for despreading second and third symbols not
described in code. The 8x8 multiply in lines 15 and 16 and the 16x16 multiply in lines
17and 18 are done with dedicated multiplier resources on the Virtex-1I part. For 1024
cycles (Nsamp), the mac1024 parts multiply and accumulate values. When RDY goes
high, the symbol summations are valid.

32

1024 cycles

50 Mhz Clock Rate (up 1o 300 Mhz)
16 x 8 signed multiply

31 bit oulput, convergent rounding
Uses embedded multipliers

i_retre2
RxSigRe(sig_width-1.0) > ot wrse) LR s oares

HIger 39'—'—“
ReRel(sig_widih-1:0) [>- [re(aig_widih-1.0)]

FD_s03
+4FD L iwm!re
mem

ROY_1 813

nevi_dala B% —F———+{m |+

2
=

muled mac1024 [,

ok i o i
by D Mo s
N kS
| i_im1xim2 add_suba

RuSigim(sig_width-1.0) D> DR ! mi{150) | R ' v
im2(sig_vidth-1:0) b1ty AT s iy D .

| L . —lm -
+{nd L] M NO30H g

s 2 ROY_Y_811,

H T 2, ROY o1 ROY, 312
multBs3 mac1024 |, ROY 3811, SUP * BROY
clk | ROY_4 811,
|

1 Oy WSmSumRn(NUM TYPE-1:0)

2 OVFL

i_telxim2

“rarn] lgl‘s:lmm mmtnv: 11
MATO) lpra mor[iiet

im 1 15.0) a5y
DR o
ey 1o e ROT-A3H

D3,

mac1024 :m
Figure 14. Complex Multiply and Add Hardware

The real and imaginary components of three output symbols are computed in parallel for
8 states. This utilizes 144 multipliers, which would be available on a Xilinx XC2V6000
part or larger. Results are written to On-Chip RAM and used in the Add-Compare-
Select stage.

-33-

5.3.3 Add Compare Select

0(31:00
ML1 | »—=
L1 M2
ML1 ML2 ML3 [r—
ML1 ME2 ML3 [3:0) -+
ML1 ML2 ML3 [3:0) D) [+—
ML1 ML2 ML3 [3:0) [P-0) [P-0) -+
==+ DespreadSymReD_s0(31:0)
==+ DespreadSymIm0_s0(31:0) ML1 ML2 ML3 [3:0) [P0) [P:0) [:0)
==+ DespreadSymRe1_s0(31:0)
==+ DespreadSymIm1_s0(31:0) SymML1 ME2 M3 [3:0) [7:0) [P:0) [#:0) [#:0) |
—pi| DespreadSymRe2_s0(31:0)
=+ DespreadSymIm2_s0(31:0) SymML2 ML3 |2:0) [P-0) [-0) (1-0) (#:0) [#:0) [
= prevsym0(1:0)
=1 DelayEst_s0(7:0) SymML3 [30) [™-0) (P:0) [1-0) [#:0) [#:0) [9:0)
= Delta_phiPrev_s0(7:0)
=1 MX_prev_im_s0(31:0) stateML(3:0) (P:0) [P0) [:0) [1+0) [#:0) [#:0) [P:0) p+—
==+1MX_prev_re_s0(31:0)
= phi_mPrev_s0(7:0) Delta_phi(7:0) [0) (#:0) [#:0) [.0) [#:0) [>0) it | + —
= 2prev_s0(31:0) 0!
=+ t3prev_s0(31:0) D_ML(7:0) [1:0) [#:0) [1:0) [1=0) [?:0) I=*bit | 1:0)
=1 PathMetricCurr_s0(31:0)
Mdiff(31:0) [#:0) [#:0) [1:0) (2:0) p2bit | :0) [#:0) [—=
MX_im(31:0) [+:0) [1:0) [:0) i2bit[1%0) 1#:0) |2bit [+—=
=1 DespreadSymRe0_s1(31:0)
=+ DespreadSymIm0_s1(31:0) MX_re(31:0) [+:0) [?0) r2bit 1:0) [4:0) j2bit |+
==+ DespreadSymRe1_s1(31:0)
=+ DespreadSymim1_s1(31:0) PathMetricNext(31:0) [?0) 2bit|1.0) {#:0) j2bit |+
—pt| DespreadSymRe2_s1(31:0)
=1 DespreadSymim2_s1(31:0) phi_m(7:0) | 2bit | 1:0) [+:0) §2bit|*
= prevsym1(1:0)
=+ DelayEst_s1(7:0) prev_bit|1:0) [4:0) [-*bit | +
= Delta_phiPrev_s1(7:0)
==+ MX_prev_im_s1(31:0) t2(31:0) 10) fbit| >
==-1MX_prev_re_s1(31:0)
=== phi_mPrev_s1(7:0) t3(31:0) j*bit| >
==+ t2prev_s1(31:0)
= t3prev_s1(31:0) sel_bit|+ —
=+ PathMetricCurr_s1(31:0)

—+ La(31:0) =

*—+1s_hat —

={t(9:0) _

*—+1 Puncture —

*—+ | Turbomode %

NSl

ﬂuu_l-rull IPﬂI E_GUIUUIT T ko
add_compare_select

Figure 15. Add_Compare_Select component interface

Table 5. Add_Compare_Select component interface description

Sele:
DespreadSymRe0_s0[31:0] in Sym1re for case data bit ='0’
DespreadSymim0_s0[31:0] in Sym1im for case data bit ='0’
DespreadSymRe1_s0[31:0] in [Sym2re for case data bit ='0’
DespreadSymim1_s0[31:0] in [Sym2im for case data bit ='0'
DespreadSymRe2_s0[31:0] in Sym3re for case data bit = '0’
DespreadSymim2_s0[31:0] in [Sym3im for case data bit ='0'
revsym0[1:0] in Symbol pair for data bit ='0'

-34-

-

DelayEst_s0[7:0]

Delay estimate for previous state for data bit = '0'

in

Delta phiPrev_s0[31:0] in Phase rate per block for data bit = '0’
MX_prev_im_s0[31:0] in |Real component of PLL accumulator for data bit = '0'
MX_prev_re_s0[31:0] in |[Imaginary component of pll accumulator for data bit ='0'
phi_mPrev_s0[31:0] in __ [Model phas for data bit = '0'
t2prev_s0[31:0] in Intermediate summer for residual phase for data bit = '0'

Intermediate summer, including t2, for residual phase for
t3prev_s0[31:0] in |data bit ='0'
PathMetricCurr_s0[31:0] in [Total metric for path with data bit ='0'
input ports repeated for data bit = '1'] in
La[31:0] in__ |A-priori info
s _hat in |Hard parity symbol estimate
t[9:0] in __ [Bit location in message

If 1" punctured code and rate = 1/2, if '0" not punctured
Puncture in |and rate = 1/3
[Turbomode in 1' if turbo cude, '0' if simple convolutional code

ymML1 out |[Estimated systematic symbol
SymML2 out |Estimated parity symbol
SymML3 out |If punctured, not used. Else second parity symbol
stateML[3:0] out |[Estimated next state
Delta phi[31:0] out |Phase rate per block
D_ML{7:0] out DLL delay
Mdiff[31:0] out |Difference between metrics
MX_im[31:0] out |Imaginary component of pll integrator
MX_re[31:0] out [Real component of pll integrator
PathMetricNext[31:0] out |Path metric for next state in path
hi_ m[31:0] out Model phase

t2[31:0] out |Intermediate summer for residual phase
t3[31:0] out |[Intermediate summer, including t2, for residual phase
sel_bit out [Selects estimated bit for updating delays in RxRef

In the Add-Compare-Select stage, metrics are compared to judge whether the most
likely data bit in the current location of the message is a ‘0’ or a ‘1’. Metrics for data bit
‘0" are computed as in Code Excerpt 2. Metrics for data bit ‘1’ are computed similarly

and in parallel.

This code is implemented using two’s complement blocks and adders. The signal sym/
in line 4 handled is used as a control to a two’s complement block for evaluating
TranMetORe or TranMetOIm in lines 19 and 20. If the high bit of Syms0 in line 4 is ‘17,
the core function is bypassed. Otherwise, a two’s complement of sym/re and sym/im in

line 19 and 20 is output.

Code Excerpt 2. Computing metric for 0 data bit

1 statel = prevstate0[state]; // get prev state associated with info bit=0
2 SymsC = prevsym(C[statce]; // get sym pair associated with info bit=C
3

4 syml = (SymsC&2) ? 1 : -1; sym2 = (Syms0&l) 2?2 1 : -1; // split out syms
5

[symlre = DespreadSymRe[0] [state0]; // get 1lst despread sym from statel

-35-

7 symlim = DespreadSymIm[0] [statel];
8 sym2re = DespreadSymRe[l] [state0]; // get 2nd despread sym from state0
9 symZim = DespreadSymIm([l] [state0];

10

11 if (TurboMode && !Puncture) |

12 sym3re = DespreadSymRe[2] [statel];

13 sym3im = DespreadSymIm([2] [statel];

14 '}

15

16 1f (TurbcMode)

17 if (Puncture) {

18 if (t%2) { // parity punctured

19 TranMetORe = syml * symlre;

20 TranMet0Im = syml * symlim;

21 SovaZenergyORe = s_hat [2*t+1]*sym2re;

22 SovaZenergy0Im = s_hat[2*t+l]*symZim;

23 } else { // parity is available

24 TranMetORe = syml * symlre + sym2 ® sym2re;
25 TranMetOIm = syml ® symlim + sym2 ® sym2im;
26 SovaZenergy(ORe = 0;

27 SovaZenergy0Im = 0;

28 }

20 } else { // unpunctured, third sym is parity for SOVA #2
30 TranMetORe = syml * symlre + symZ * sym2re;
31 TranMetQIm = syml * symlim + sym2 @ sym2im;
32 SovaZenergyORe = s hat[2*t+1] ® sym3re;

33 SovaZenergy0Im = s_hat[2*t+1l] * sym3im;

34 }

35 } else { // not a Turbo code, simple conv cede only
36 TranMetCRe = syml * symlre + symZ ® symZre;

37 TranMet(OIm = syml ® symlim + symZ2 ® sym2im;

38 SovaZenergyORe = (;

39 SovaZenergy0Im = C;

40 1}

The Add-Compare-Select stage is completed in 5 clock cycles. In the first clock, path
metrics for either case are computed in parallel. The next states in the trellis associated
with bit “0” or bit °1” are called stare0 and statel, respectively. Using the symbol pair for
state0 and statel as bypass controls to twos-complement blocks, BPSK modulation is
removed from the despread symbols. In effect, the symbols are multiplied by 1 or —1.
For every other iteration for a punctured code or every iteration for a non-punctured code,
the transition metric is an addition of terms in the second clock. SovaZenergy is
computed at the output of another pair of two-complement blocks, controlled by hard
§_hat symbols (meaning a value of ‘1’ or *-1”) produced by the Sova2 decoder. In the
third and fourth clock cycles, path metrics are computed from both possible paths and are
compared using a priori information, La. Finally, in the fifth clock, the best metric is
selected and systematic and parity symbols are estimated. Accumulated delta and phase
delays from state0 or statel propagate to the current state.

-36-

5.3.4 Correlate and Update

i_correlate_n_update0

i_correlate_n
F i)
i_correlate_n 1
- =, e
i_correlate_n_update3 -
prate_n_upcaiat . .

nt-1:0) f+—=

t-1:0) pitet=@) -+

i_correlate_n]z
l——t‘- P S R pt-1:0) pt=1:0) +—
i corré ate n
"‘y nt-1:0) pt=1:0) [
compute symsums nt-1:0) pie1:0) -+
—iul gdate symsums
-t urboMode nt-1:0) pt=1:0) [+
=+ Puncture
nt-1:0) pit=1:0) [+
vt SymML1
=+ SymML2 SymSumRe_0(nt-1:0) pi=1:0) wt(7:0) +—
—+ SymML3
SymSumRe_2(nt-1:0) -+ bet(7-0) =D |-+ —
=+ SymSumPrevRe_0(31:0)
=+ SymSumPrevRe_2(31:0) pet{(7:0) réw_D ¥+
nt-1:0) -—
=i sym1Re(NUM_TYPE-1:0) p(7:0) péw_Di* =+ pt-1.0) +—
s sym2Re(NUM_TYPE-1.0) nt-1:0) =
—— sym3Re(NUM_TYPE-1:0) bA(7:0) ey _D [+ mt-1:0) m [
ht-1:0) pt7:0) H—
» |sel_early X(7:0) ew_D | *—+ nt-1:0) #(7:0) BEYO) "~
- ht-1:0) t(7:0) =
check boundaries b(7:0) row_D |+ ht-1:0) pi(7:0) FRDY +—
=+ | chk_blk_bounds nt-1.0) ki(7.0) 1+ 0)
~—+{ atan_ND DelayEstNext(7:0) péw_D [+—= nt-1:0) jpt¢7:0) [RDY |+
—t titw-T:0) nt-1:0) wi(7:0) -~
sal_new_D [+ nt-1:0) gt{7:0) [ROY [+
i) ML(s-1:0) nt-1:0) wt(7:0) i+
-t MX_re(nt-1:0) nt-1:0) ot(7:0) FRDY [+
=4 MX_im{nt-1:0) 12_aut{nt-1:0) kt(7:0) [+ —
t3_out(nt-1:0) wt(7:0) ROY | *
= t2(nt-1:0) phi_m_out(7:0) +
— t3(nt-1:0) Delta_phi_out(7:0) (RDY |+
it phi_m(7:0)
=t Delta_phi(7:0) RDY |+
]
"
z

] M3
—

correlate_n_update

Figure 16. Correlate_n_update component interface

Table 6. Correlate_n_update component interface description

Correlate and Update
Direction Description

update_symsums in Enables correlations to be compared
[TurboMode in 1' if turbo cude, '0' if simple convolutional code
Puncture If '1' punctured code and rate = 1/2, if '0' not punctured

in and rate = 1/3
SymML1 in Estimated systematic symbol
SymML2 in Estimated parity symbol
SymML3 in If punctured, not used. Else second parity symbol
SymSumPrevRe_0[31:0] in Previous summation for early gate
SymSumPrevRe_2[31:0] in Previous summation for late gate
sym1Re[31:0] Real component of first systematic symbol from

in despread_symbol component

37-

sym2Re[31:0] Real component of parity symbol from despread_symbol
in icomponent

sym3Re[31:0] Real component of second parity symbol from
in despread_symbol component

sel_early If '1' calculate early correlation, else calculate late
in correlation

chk_blk_bounds ' in If '1', update DLL and PLL with new delays and phases

atan_ND If *1', indicates new MX_im and MX_re ready for
in__[calculation of defta_phi

t[9:0] in Bit location in message

D_ML[7:0] in __|DLL delay

MX_re[31:0] in |Real component of pll integrator

MX_im[31:0] in Imaginary component of pll integrator

t2[31:0] in |Intermediate summer for residual phase

t3[31:0] in __|Intermediate summer, including t2, for residual phase

phi_m[31:0] in Model phase

Delta_phi[31:0] in Phase rate per block

SymSumRe_0[31:0] out |Summation for early gate

SymSumRe_2[31:0] out [Summation for late gate

DelayEstNext[7.0] out |Updated delay for next iteration

sel_new_D out [If'0', delay is decremented, else delay is incremented

t2_out[31:0] out |Updated intermediate summer for residual phase

t3_out[31:0] Updated intermediate summer, including t2, for residual

out |phase

phi_m_out[31:0] out |Updated model phase

Delta_phi_out[31:0] out |Updated phase rate per block

RDY out |Ready asserted after updating DLL and PLL

The delay and phase lock loops (DLL and PLL) are maintained in the Correlate and
Update stage. As in the despread_symbol block, the spread spectrum signals must be
multiplied and accumulated over 1024 samples, only this time for both early and late
delay estimates.

Code Excerpt 3. Early and late correlations

1 // Sum RxSig over block length L for use in DLL, first sum Early Gate
2 re2 = cos(ThetaEst); im2 = -sin(ThetaEst):;

3

4 // Despread first symbol

5 for (i=termlre=termlim=0 ; i< Nsamp; I++) {

6 rel = RxSigRe[indexl+i] * RxRef[indexl*Os+D ML-DeltaDll+i*Os];
7 iml = Rx8igIm[indexl+i] * RxRef[index1*Os+D ML-DeltaDll+i*Os];
8 cermlre += rel*reZ-iml*imZ;

9 termlim += rel*imZ+re2*iml;

10

11

12 // Despread second symbol

13 // .

14

15 1f (TurbcMede && !Puncture) |

16

17 // Despread third symbol

18 YA

19

20 SymSurmRe [0 [state] = SymMLl*termlre + SymMLZ*termlZre +

-38-

21 SymML3*term3re + SymSumPrevRe[0] [stateML];

22 } else {

23 SymSumRe [0] [state] = SymMLl*termlre + SymMLZ*termZre +

24 SymSumPrevRe [0] [stateML’ ;

25

26}

27

28 // Sum for Late Gate

29

30 // Despread first symbol

31 for (i=termlre=termlim=0 ; i< Nsamp; i++)

32 rel = RxSigRe[indexl+i] @ RxRef[indexl1*Cs-D_ML-DeltaDll+:1*0s];
33 iml = RxSigIm[indexl+i] * RxRef[index1*0s~D_ML-DeltaDll+i*0s];
34 termlre += rel*reZ-iml*im2;

35 termlim += rel*imZ+re2*iml;

36)

37

38 // Despread second symbol

39 // .

40

41 if (TurboMode && !Puncture) |
42 // Despread third symbcl

43 -

44

45 SymSumRe [2] [state] = SymMLl*termlre + SymMLZ*term2re +
46 SymML3*term3re + SymSumPrevRe[Z2] [stateML];

47 '} else {

48 SymSurRe [2] [state] = SymMLl*termlre + SymMLZ*termZre +
49 SymSumPrevRe [2] [stateML];

5C }

Once again, RxRef values must be accessed externally from the FPGA. The first time, the
RxRef address is shifted a location early for the multiply-accumulate. The second time,
the RxRef address is shifted a location late. These summations are used as early and late
correlators for maintaining delay and phase locked loops. See Section 5.6.3 for further
details.

The correlate_n_update component monitors our location in the message, ¢, and
determines when the iteration is at a block boundary:

Code Excerpt 4. Updating DLL and PLL at block boundary

1 // update DLL and PLL if at block boundary

2 if((c+l) % Blocklen == 0)

3 {

4 if{ SymSumRe[0 [state] > SymSumRe[2] [state]) // assume PLL pulled in
5 DelayEstNext [state] = D ML+dll step: // retard delay
6 else

7 DelayEstNext [state] = D_ML-dll step: // advance delay
=]

9 // reset to 0 and integrate over next blecck

10 SymSumRe [0] [state] = 0;

11 symSumRe [2] [state] = 0

12

13 delta phi[state! = atan2(MX im[state], MX re[state]) /TwoPi;
14 t2(state] = t2[state] + delta_phi[state];

15 t3state] = t3[state! +t2[state];

16 Delta phi[state] = Kl*delta_phi[state] + K2*t2[state] + K3*t3[state];
7 phi_m[state] = phi m[state] + Delta phi[state];

18 } else {

19 // Propagate Delay Estimate for use in next iteration

20 DelayEstNext [state] = D ML;

21 }

22 1}

-39-

In this case, a BlockLen is defined to be 5 bits long. If the summation for the early
correlation is greater than the summation for the late correlation, the delay estimates are
incremented one step. Delay estimates are used primarily as address pointers to RxRef,
RxSigRe, and RxSiglm, values stored in external memory. For an oversampling rate of 8,
a dll_step is an interval of 8 address locations. Similarly, if the late estimate has better
correlation, the address pointer is decremented 8 locations. This manipulation is handled
in the ram_ctrl component, which transfers RxRef values to on-chip memory for parallel
processing (Section 5.6.3).

To update phase rate in line 16 of Code Excerpt 4:

M}rm-rumﬁ
re

Delta phi=K1- tan“[
where coefficients K7 = 0.5463, K2 = 0.1768, K3 = 0.02470 (in 32-bit fractional unsigned
representation 0x8BDA5119, 0x2D42C3C9, 0x00652BD3C); MX _imgtare and MX_ resyare
are PLL accumulators; and #2 and 3 are residual phase summers. In hardware, the arctan
is computed using CORDIC algorithms. Although there is a 22 clock cycle latency in
computation, the computation can be started after the MX_im and MX_re values are ready
from the add_compare_select block. With two sets of signal despreading (1024 clock
cycles each) in the Correlate and Update stage before the DLLs and PLLs need to be
updated, there are more than enough clock cycles available before new outputs need to be
ready. The multiplies are done in lookup tables (LUTs). Since K/, K2, and K3 are
constant, 32-bit results for a 32x8 multiply can be accessed by an 8-bit address.

5.3.5 Update Delays and Sums

i_update_delays_n_sums
Full parallel implementation

=+ | DelayEstNext DelayEst |+
s-—==+-1 Delta_phi Delta_phiPrev}#—
| MX_im MX_prev_imj+—
vk MIX_re MX_prev_re|*
-+ | PathMetricNext PathMetrieCurr | »
= 1phi_m phi_mPrev | » -
phi_nco | #—=
=== an_update
ROY | #—
==+ Gym3umRe_0 SymSumPrevRe_0 | +—
~——+1{SymSumRe_2 SymSumPrevRe_2 [+
L | 7 2Prev | +—
3 t3Prev|
i tltw-1:0)
% &
+ o+

update_delays_n_sums

Figure 17. Update_delays_n_sums component interface

-40-

Table 7. Update_delays_n_sums component interface description

ndate Delay and Sums
Direction Description

i

DelayEstNext[15:0][7:0] in Delay for next iteration for each state
Delta_phi[15:0][7:0] in |Phase rate per block for each state
MX_im[15:0][31:0] in Imaginary component of pll integrator for each state
MX_re[15:0][31:0] in Real component of pll integrator for each state
PathMetricNext[15:0][31:0] in Path metrics for next state in path
phi_m[15:0][7:0] in Model phase for each state
len_update in Enables update for next iteration
SymSumRe_0[15:0][31:0] in [Summation for early gate for each state
SymSumRe_2[15:0][31:0] in Summation for late gate for each state
t2[15:0][31:0] in Intermediate summer for residual phase for each state
Intermediate summer, including t2, for residual phase for
t3[15:0][31:0] in each state
t[9:0] in Bit location in message
DelayEst[15:0][7:0] out |Delay for each state
Delta_phiPrev[15:0][7:0] out |Previous phase rate per block for each state
Previous imaginary component of pll integrator for each
Mx_prev_im[15:0][31:0] out |state
MX_prev_re[15:0][31:0] out |Previous real component of pll integrator for each state
PathMetricCurr[15:0][31:0] out [Current path metrics for each state in path
hi_mPrev[15:0][7:0] out |Previous model phase for each state
hi_nco[15:0][7:0] out |Previous phase correction for each state
RDY out [Indicates update is done
SymSumPrevRe _0[15:0][31:0] out |Previous summation for early gate for each state
SymSumPrevRe 2[15:0][31:0] out |Previous summation for late gate for each state
Previous intermediate summer for residual phase for
t2Prev[15:0](31:0] out |each state
Previous intermediate summer, including t2, for residual
t3Prev[15:0][31:0] out |phase for each state

After the Correlate and Update stage has operated on all states, delays, metrics, and
other accumulator sums can be updated for the next iteration through the received
message. An en_update control from data_ctrl enables the update_delays n_sums
component (Figure 17) to update PLL and DLL quantities. This block propagates values
from present state to next state to set up the next iteration of the trace-forward loop. It
also computes phase correction, phi nco, for each of the 16 states. The comp_phi_nco
module implements:

. Delta_phi,,,, = rampDelta_phi,,.

=P hl_rnsmte o _2p =+ pBIockLe{)n =

The block utilizes 2 32-bit adders and a right-shift for the middle term. Since BlockLen is
constant, an 8-bit addressed LUT in conjunction with a 3x8 LUT computes the last term.
The ramp signal is a 3-bit counter that resets at the end of a block, or 5 iterations through

the trace-forward loop.

phi_nco

ate

41-

5.3.6 Traceback

i_traceback
1 3°] Done f#—
=l en_fter beststate_prev(3:0} =
s tarmiination(1:0) st _bits | ¥
s———{ pathmetric_curr
st~ prev_bit{15:0) g ;
¥

traceback

Figure 18. Traceback component interface

Table 8. Traceback component interface description

Traceback
Direction Description
FD in Enables first iteration in traceback loop
len iter in Enables next iteration
If '0', trace back from zero state, else trace back from

termination[1:0] in state with highest metric
pathmetric_curr{15:0][31:0] in Current pathmetrics for each state

rev_bit[15:0] in Previous estimated bit
Done out |lteration done
beststate_prev[3:0] out [Previous state for estimated bit
est bits out |[Estimated bit

After the message has been traced forward across its length, the best path metric indicates
the end of the max-likelihood path. By tracing back, the estimated bits and
corresponding systematic and parity symbols along this max-likelihood path is

determined.

Code Excerpt 5. Traceback for max-likelihood path

1 // if Term = 1 trace back from zero state
2 // if Term = 2 trace back from state with highest metric */
3 if (Term == 1)

4 beststate [NUM_BITS! = 0;

9 else

6 {

7 // find best metric

8 bestmetric = PathMetricCurr(0]:

g beststate [NUM_BITS] = 0;

10 for (i=0; i<NUM_STATES; 1++)

11 {

12 if { PathMetricCurr[i] > bestmetric)
13 {

14 bestmetric = PathMetricCurr([i];

15 beststate [NUM_BITS] = i;

16 1

17

18 1}

19

20 for (t=NUM BITS; t>C; t--)

21 |

22 est_bits[t] = (prev_bit[t! & bitmapl beststate[t]]) >> beststate[z];

-42-

23 if(est bits[t])

24 beststate[t-1] = prevstatel [beststate[t]]; /f est bit 1
25 else

26 beststate[t-1] = prevstate([beststate[t]]; // est bit 0O
27 if (TurboMode && !Puncture) {

28 DespreadSyms [3*t-3]=SysSymMat [beststate[t-1]][t-1];

29 DespreadSyms [3*t-2]=ParSymlMat [beststate[t-1]][t-1];

30 DespreadSyms [3*t-1]=ParSym2Mat [beststate[t-1]][t-1];

31 } else {

32 DespreadSyms [2*t-2]=5ysSymMat [beststate[t-1]] [t-1];

33 DespreadSyms [2*t-1]=ParSymlMat [beststate[t-1]][t-1];

34 }

35 1}

At the first iteration, en_iter and FD input signals for the fraceback block are asserted to
initialize the last location in the message with bestmetric and beststate. For =1004, a
comparison tree finds the best metric for 16 states in 4 cycles. Tracing back, the
estimated bit, est_bits, of ‘1’ or ‘0’ for the previous location determines the previous
state. This value is used to address systematic and parity symbols for the bit location.
Iterating to the 0™ state takes another 1004 cycles. Data Control (Section 5.4) handles
control for this recursive computation. Memory Control (Section 5.6) handles
addressing for storing systematic and parity symbols for best states at each bit location.

5.3.7 Sova Delta

i_sova_delta_top

b | Mot Ll 1:0) e
w——t-|prev_bits_out(16:0} fall_RDY}*»—*

KN

s

e 30-deep pipe stores Mdiff values for SOVA_DELTA
o0 double loop. LOAD fills pipe when first SOVA_DELTA
-+ {en_comp values are ready. UPDATE is done with every iteration

e of t for last location in pipe. EN_COMP starts

i g i computation of double loop.

sova_delta_top

Figure 19. Sova_Delta_Top component interface

Table 9. Sova_Delta_Top component interface description

. Soygbelta . - . L0
Direction Description
Mdiff_out[15:0][31:0] in Pathmetric differences for each state
prev_bits_out[15:0] in Previous bit estimates for each state
Loads Mdiff, prev_bit, beststate,and est_bit pipes for 30-
load in deep sova delta calculation
Updates Mdiff, prev_bil, beststate,and est_bit pipes for
update in 30-deep sova delta calculation after each iteration
beststate[3:0] in Best state for given bit location
[9:0] in Bit location in message
en_comp in Enables nested sova delta loop computation
est_bit in Estimated bit
Lall[31:0] out |Soft output for given bit location
lall_ RDY out |Indicates soft output ready for bit location

43-

The sova_delta_top block finds the minimum path difference for an error path up to
SOVA DELTA bits from the current message location. It implements the following code:

Code Excerpt 6. Sova Delta loop

for (t=1; t<NUM_BITS+l; t++) // for each bit find Le

O W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

{

llr = BIG_POS; // set log-likehood ratioc tec large number
for (i =0; i<=SOVA_ DELTA; i++)

{

1f(t+i < NUM_BITS+1) // do not go past end

error_bit = l-est_bics[t+i]; //force an error at begining of path
beststate_th = beststate[t+i];

// trace back from bit error

for (j=i; 3>0; j--)

{

if (error_bit)

beststate tb = prevstatel beststate tb]; // est bit 1
else
{
beststate_tb = prevstatel [beststate tbl; // est bit O
}
error _bit = (prev_bit[t+j-1]& bitmap beststate_tb]) >> beststate_tb;

}
// after tracing back check if incorrect decision at stage t-+i
// resulted an bit error at stage t.
if (erreor_bit != est_bits[t])
1lr = min(1lr, Mdiff[beststate[t+i]][t+1i]);
}
}
// calculate Lall for bit at stage t
// recall that llr is stored at t-1 while decoded bit is at t
Lall[t-1] = (2*(int)est_bits[t] -1)*1llr;

In this implementation, SOVA DELTA is 30 stages. If computed sequentially, as in
software, this triple-nested loop would take

Lsova perra = NUM BITS *(SOVA _DELTA+1)* ———SOI’!A—Z‘DEL“

iterations, or 1004x30x15=451800 iterations. To optimize the computation, we structure
the hardware as follows:

for all information bits ({

}

}

initialize log-likelihood ratio to ke large integer

for i=[0,SOVA_DELTA], [1, SOVA DELTA-1],..[15,S50VA_DELTA-15]{

//sova_delta i computation for 1[0]

force error at beginning of path for if0]

propagate error to location in path for i(0]

if new path causes error, compare to log-likelihood ratic and keep minimum for
ifoj

//sova_delta i computation for i[l]

force error at beginning of path for i[1]

propagate error to location in path for i[1]

if new path causes error, compare to log-likelihood ratio and keep minimum for
ifi]

compute soft output for bit lccation

44-

Here, the j loop is absorbed into its parent i loop. The first sova_delta_i block takes 1
iteration to compute the loop for i[0]=0 and then SOVA_DELTA iterations to compute the
loop for i[1]=SOVA DELTA. The sova_delta_i block for the next i-pair, [1,
SOVA _DELTA-1], takes 2 iterations for the first loop and SOVA_DELTA-1 iterations for
the next. The next i-pair takes 3 and SOVA_DELTA-2 iterations, and so on. Thus, all 15
pairs of sova_delta_i computations complete in SOVA_DELTA+] iterations. The Sova
Delta Loop for the entire message now takes

Lsova pra = NUM _ BITS *(SOVA_DELTA +1)

iterations. Although the first loops through the sova_delta_i blocks may finish at
different times, the blocks are in sync after the second loop. The control for sova_delta_i
computations is shown below.

’%\ en="1"andf+i<NUM BITS + 1

[RDV_i <= notROY_int;] .~ . [emor_bit <= not est_bit_it;
~ | beststate_tb <= beststate;
/ RECTE

g if error_bit = not est_bil_int and Mdiff_bstate < l_int then
fir_int <= Miff_bstate:
eise
[Wr_int <= Wr_int:
Lendif,

A"
Ay

if error_bit = '1' then

beststate_tb <= conv_std_logic_vector(prevstate1{conv_integer(beststate_tb)).4);
else

beststate_tb <= conv_std_logic_vector(prevstated(conv_integer(beststate_Ib)),4);
end if;
error_bit <= prev_bit_out{conv_integer(beststate_th)):
j <= prev_bit_index;

Figure 20. Sova_delta_i FSM

The finite state machine (FSM) computes //r (line 24) for i[0] then i[1]. An error at
location t+i is assigned to error bif (line 8), and the state corresponding to the max-
likelihood path is assigned to beststate _tb. The j loop of lines 11-20 is executed between
finite states tracebackl and traceback2. 1f the forced error results in an alternate path
through the trellis, Mdiff _bstate is the path metric difference between this alternate path
and the estimated path.

Once again, memory access becomes an issue since all blocks need to access path metric
differences, Mdiff, which are stored in RAM. For a given bit location, ¢, each i loop
requires Mdiff| beststate[t+i]][++i] in line 24. The Mdiff memory is organized as 1K x 512
bits. The wide output bus consists of 16 32-bit Mdiff values, each longword
corresponding to a state in the trellis. The memory is addressed by the location in the
message, or t+i in this case. The path metric difference for an error along the path at this
stage is selected by beststate[t+i].

-45-

For all i loops, beststate[t] through beststate[t+SOVA_DELTA] must be available. Since i
loops are executed in parallel, a shift-register pipe 30 (or SOVA_DELTA) longwords deep
is loaded with Mdiffs[beststate[t]] to Mdiffs|beststate[t+SOVA_DELTA]] during the last
30 iterations of the Traceback process. This is used in the first iteration of the Sova
Delta Loop. For the next iteration, Mdiff values are shifted such that #,., <=¢+1. The
only Mdiff'value that needs updating for each ¢ loop corresponds to £, +SOVA_DELTA.

The load_sd control signal is used when initializing the pipe with 30 Mdiff values for /=1
to SOVA DELTA+1. An update sd is used when updating for the next iteration, e.g. =2
to SOVA DELTA+2. Addressing is controlled by ram_ctrl while the load sd and
update_sd controls are asserted by data_ctrl.

Soft output, Lall, is generated in line 29 where the log-likelihood ratio, //r, is encoded as
either a positive or negative fixed-point value. This is done through a twos-complement
block with bypass capability.

5.4 Data Control

The data_ctrl block is a finite state machine (FSM) which manages data flow through the
processor. The top level FSM is shown in Figure 21.

resi=10' SINIT <=1,
T 1_int <= (others => ') .
. " Notiates et = O (D~ hi_states int =0
L /77 i states,_int <= 1.

- en_acs <="1%
S hi_states_int <="0",

-/‘

P
4
't int < NUM _BITS

7
A LA <=4 intH:}

z

" RDY acs='1'and bl states int="1'

["sel_earty_cru_int <= 1",

{ addr_rxsigret_offset <= "10";
| hi_states_int <=0";

| atan_ND_crw <="1";

[chk_blk_bounds,_cnu <=1

sel early chu int='1’
addr_rxsigref_offset <= 00"
sel_early_cnu_int <= '0';

Get an early start calculating
0 atan(Mx_im/Mx_re)
Pt

Figure 21. Finite state machine for data control block

Upon inspection, this resembles

-46-

Systematic and
Parity Symbols

Trace forward ‘ Traceback | _ SOVA Delta

E Add-Compare Despread i i
: Select Symbols* b
' {8-states) (8-states) H

\: l: 1
r i i i
" I '

i Correlate* Update Delay % ; i : :

: and Update and Phase iy Maxlikelihood] i p| MinPath | iy Soft

3 Block Bounds "l Estimates 1 Path I Difference ! tout
(8-states) (16-states) ' i i i outpul

: For each bit forward ' For each bit backward |1 For each bit forward

*Complex Multiply and Accumulate hardware shared fordespreading symbols and early and late correlators

Figure 12 in data flow. When the finite state machine is enabled, the Despread Symbols
process is done for lower states, hi_states_int = ‘0, and then for higher states,
hi_states_int = ‘1’. The sel ds rxrefsignal is asserted and selects RxRef outputs from
on-chip memory for despreading symbols.

Despread symbols for all states in the trellis must be ready (RDY _acs) before the
add_compare_select component can be enabled. Once enabled (en_acs), there is a 3
clock latency for selecting the metric for the best possible path to the next state in the
trellis. The Add-Compare-Select process is done for lower states and then for higher
states. The se/ ds rxref'signal at this point has already been de-asserted for RxRef
outputs used in the following Correlate and Update stage. The atan_ ND_cnu signal
enables the arctan hardware in Section 5.3.4 to begin operating on new PLL accumulator
values, MX im and MX re. The arc tangent is a CORDIC implementation using Xilinx’s
Core Generator. There is a 22 clock cycle latency for the computation, but this can be
absorbed into the system’s latency which is dominated by complex multiplies. The
Correlate and Update stage itself completes 2 sets of complex multiplies, which require
Nsamp iterations each.

The sel_early cnu_int and addr_rxsigref offset assignments entering the Correlate and
Update process set up memory writes for symbol summations (SymSumRe in Code
Excerpt 3) and memory reads for RxRef. Early correlations are done first, followed by
late correlations.

After repeating the Correlate and Update process for lower and upper states, the DLL
and PLL can be updated. The chk blk bounds cnu enables the correlate_n_update
block to determine whether or not the next iteration falls on a block boundary, i.e. is a
multiple of 5. If so, ram_ctrl is enabled to update RxRef buffers.

47-

The Update Delays and Sums process sets up values for the next iteration in the trace-
forward loop. The update4next_t signal propagates symbol summations, path metrics,
delays, and phase summations to the next state. 7 _int is incremented for NUM_BITS
iterations through the trace-forward loop.

The Traceback loop control is implemented in the traceback state in the FSM. It is
hierarchical and hides the loop in its child FSM. The sova_delta state, which implements
the Sova Delta Loop in the FSM, is also hierarchical and hides a double-nested loop in
its child FSM. These child FSMs, along with those for Despread symbol and correlate
states are described in the next sections.

5.4.1 Despread_symbol FSM

The Despread_symbol state machine is pictured in Figure 22. The FD_despread_sym
and ND_despread sym signals control the multiply and accumulate block in the
despread_symbol hardware. The rd_RxSigRef signal enables another FSM in the
ram_ctrl block for accessing the RxRef buffer in on-chip RAM. The complex multiply
iterates for Nsamp cycles and has a 12 clock cycle latency. The RDY despread sym
output of the data_proc block indicates that the computation is done. The
wr_despread_sym_res signal is asserted for ram_ctrl to write systematic and parity
results to on-chip RAM.

| Entry|
FD_despread_sym <='1", |
rd_RxSigRef <="1", |
b addr_rxsigref_offset <= "01*; |
ent <= (others => '0’); |
cnt < Nsamp ND_despread_sym <="1",

[etemcnts 1] s Riiohel <= ¥,

ke = N e

Feeds RxSigs to despread 1st, 2nd,
and 3rd signals. (1 ;r-é-}

‘._ BDY =

[wr_despread_sym_res <='1';]

Figure 22. Finite state machine for despread_symbols

5.4.2 Correlate and Update FSM
The child FSM for the Correlate and Update process is pictured in Figure 23.

-48-

Entry{ FD_despread_sym <= 1|
rd_RxSigRef <= '1"; i
cnt <= (others =>'0"); |

-

S

['ND_despread_sym <= 1%
| rd_RuSigRet <="1;

¢

Ol
cnt < Nsamp
ent<=¢ent+ 1))

S RDY despread sym='1'
k . |update_symsums_cnu <=1, |

RET

Figure 23. Finite state machine for correlation

The early and late correlators reuse the complex multiply hardware used in despreading
symbols. Only the addressing to the RxRef buffers is different. The addr_rxsigref offset
of “107, “017, “00” addresses an early, middle, or late RxSigRef signals, respectively.
More details are offered in Section 5.6.3. The se/_early _cnu_int signal (at the parent
FSM level) toggles between designating an early estimate and late estimate for storing
summations in the appropriate summation registers when update symsums_cnu 18
asserted.

The comparison in lines 4-7 of Code Excerpt 4 determines how RxSigRef buffers will be
updated for the next block of iterations (refer to Section 5.6.3: RxRef_ctrl). Correlation
should take 2*(Nsamp+14) clock cycles.

5.4.3 Traceback FSM
Control for the Traceback loop is shown in Figure 24.

-49-

Im ' FD_traceback <='1';]
Sy

t_int <= conv_std_logic_vector(NUM_BITS, 9);

. ift_int >= NUM_BITS - SOVA_DELTA then E
' load_SD <="1",
else l
load_SD <='0';
end it o |

N ! k=1

, _
i

/ L ck
o=

2

Lint>0
e

I t_int<=t_int- 1; | \
| ND_traceback <=1, |

hED

Figure 24. Finite state machine for traceback loop

This takes
t

traceback
cycles to complete. Time to select best metric takes loga(NUM_STATES) cycles, or 4
clock cycles. This selection is done before the first iteration of Traceback and is
asserted by FD_traceback. Each iteration takes tiaceback €ycles, which is 3 clock cycles.
At the end of every iteration, ND_traceback, indicates new systematic and parity symbols
can be stored to memory. Another cycle is added for setup of the Sova Delta Loop.
During this stage of data flow we also want to load the Mdiff pipe that is needed in the
Sova Delta Loop. This is loaded (load _SD) during the last SOVA_DELTA iterations of
the Traceback process as the needed values become available.

= log,(NUM _STATES)+ NUM _BITS *1,,, +1

vop

5.4.4 Sova Delta Loop FSM
Data control for the Sova Delta Loop is pictured below.

[int <=1_int+ 1| b
i

int < NI BT — _‘,1,, b_ —
=,

2}

h=

Figure 25. Finite state machine for Sova Delta loop

-50-

The Sova Delta Loop, as mentioned in Section 5.3.7, is a double-nested loop. Data_ctrl,
however, only handles the outer-level iterations from 1 to NUM BITS + 1. Control for
the inner loop is summarized in Section 5.3.7. After each iteration, /al/ is written to
external memory or another device for further processing.

5.5 On-Chip Memory

On-chip memory provides local memory access for data processor. Memory blocks may
be implemented in the Virtex-1I Block RAM or distributed RAM. Block RAM consists
of dedicated memory resources that can be implemented as single or dual-port RAMs or
ROMSs. Alternatively, memory can use distributed resources utilizing LUTs.

In this implementation, block RAMs are used for each memory except for rxref buf3,
which are implemented using LUTs. Memories used on the chip are listed in Table 10.

size Description
SysSymMat 32 x 16Kbits - |Systematic symbol generated in
' - . |despread_symbols

ParSym1Mat 32 x 16Kbits |Parity symbol generated in

s : despread_symbols :
ParSym2Mat 32 x 16Kbits For unpunctured Turbo-code, second parity

. _ - ' symbol generated in despread symbols
DespreadSyms |96 x 1Kbits |Final systematic and parity symbols (3 per
i : . address) generated in traceback loop

est bits |1 x 1Kbits. Estimated bits from add compare_select

mdiff 16 x 32 x 1Kbits For each state, metric differences
G corresponding to each bit in message

rxref buf3 16 x 3 x 24 x 1026 bits |

: - |For each state, 3 buffers corresponding to
look-ahead, look-behind, and current
correlations. Each buffer location contains 3
~ |8-bit RxSigRef values from external memory
for each systematic or parity symbol. The
address depth of 1026 covers Nsamp
iterations of a complex multiply plus extra
locations at either end for first early-estimate

s values and final late-estimate values.

beststate 4 x 1Kbits State corresponding to best path for every
location in message

Table 10: On-Chip Memory Block

5.6 Memory Control

The purpose of this module is to handle data transfers to and from memory while
minimizing clock cycles from data control. If a block of memory needs updating and
data is available, then the process may be enabled with a single control signal from
data_ctrl. Memory control, implemented in ram_ctrl, is needed for reading and writing
despread symbols SysSymMat, ParSymiMat, and ParSym2Mat; shift-registers est_bits,
beststate, and Mdiff for Sova Delta Loop computations; and RxRef values for complex
multiplies.

-51-

5.6.1 Despread Symbols Memory Control

SsN=0' [state <= (others =>'0"; |

2 1 DY despread sym='1"

DONE traceback="1"

up ck 2
WE_despreadsyms <='1", state <NUM STATES addr_symmat <= state & (;
addr_despreadsyms <= addr_tb; WE SymMat <="1"
WE_SymMat <= 0'; 1 = —
addr_symmat <= beststate_prev & addr_tb,;

Figure 26. Finite State Machine for writing systematic and parity symbols and
being despread

In the control pictured in Figure 26, the writes being handled in the write_ds_res state in
the FSM are

SysSymMat|[state] [t]=symlre;
ParSymlMat [state] [t]=symire;
ParSymZ2Mat [state] [t]=sym3re;

This is from despreading symbols in line 21 of Code Excerpt 1, which is similar for first
and second parity symbols. By default, addressing to these memories (addr_symmat) is
set up for reads. The enable signal, RDY despread sym, from data_ctrl starts the write.
The top 4 bits of addr_symmat is then set to state=0 for the first state of the current
iteration, ¢, in the trace-forward loop. The SysSymMat, ParSymiMat, and ParSym2Mat
memories, which are 32x16Kbit, are then sequentially written for the following states in
the current iteration. This takes NUM STATES*3 clock cycles. The state signal is sent
to a multiplexer to select the appropriate longword to be written to memory since symire,
sym2re, and sym3re are produced for 8 states in parallel.

In the update_traceback state of the FSM, SysSymMat, ParSymIMat, and ParSym2Mat
(for non-punctured Turbo codes) are read in Code Excerpt 5 and written to
DespreadSyms. The DespreadSym memory (Table 10) is 96 bits wide and all 3 32-bit
symbols can be addressed by addr_tb (equivalent to ¢-1). Beststate_prev is the state for
the estimated path at ¢-1 and makes up the 4-MSBs of the SymSymMat, ParSymIMat, and
ParSym2Mat addresses. It determines the 3 symbols to be transferred to DespreadSyms.

5.6.2 Est_bits, beststate, and Mdiff memories

In Section 5.3.7, the sova_delta_i blocks required special handling for inputs for
SOVA DELTA computations. Shift registers are used to implement 30-deep pipes for
est_bits, beststate, and Mdiff memories. The FSM for control is shown below.

.57

WWE_est_bits <=1}
addr_est_bits <= addr_TB,
WE_beststate <=1,
addr_beststate <= addr_TB;

ROY acs="1"
state <= (others == '0%, |

WE_Mcliff =="1"
adldr _Miff <=1,
WE_est_bits <= "1,
addr_est_bits <=1,
WE_beststate <= '0"
addr_beststate <=t;

VE_Mdliff <=1}
acdr_Miff <=1,

WWE_Mdiiff == '08;
addr_Miff <= addr_sd;
WE_est_bits <=0,
addr_est_bits <= addr_sd;
WE_beststate <= '0",
addr_beststate <= addr_sd;

Figure 27. Reading and writing est_bits, beststate, and Mdiff memories

Est_bits 1s written in line 22 of the Traceback loop in Code Excerpt 5. Beststate is
written in lines 15, 24, or 26. The enable signal DONE_traceback from data_ctrl puts
the state machine in the update traceback state where writes are enabled for the esz_bits
and beststate memories.

Mdiff, however, is written earlier, in the Add-Compare-Select stage. The RDY acs
signal from data_ctrl indicates when the FSM should be in the wr_mdiff state to enable
writes to Mdiff memory. Although Mdiff for all 16 states are ready, the values are written
sequentially to memory.

Loading of 30-deep pipe for est_bits, beststate, and Mdiff is handled in the last iterations
of the Traceback loop. This is done by the load_pipe state of the FSM when data_ctrl
sends a load_sd signal to ram_ctrl. Est_bits and beststate memories must be of the Read-
Before-Write type so that values can be read and shifted down the pipe in the same clock
cycles as they are being written. Mdiff needs to be addressed and read along with esz_bits
and beststate in the last 30 iterations of the Traceback loop. The Traceback FSM in
Figure 24 produces the /oad sd signal for entering this /oad pipe state where the shift-
registers for est bits, beststate, and Mdiff are initialized.

After each iteration for the Sova Delta Loop, data_ctrl sends an update sd signal to
ram_ctrl and puts the FSM in its update_pipe state. This sets up address and write
signals to read the next est_bits, beststate, and Mdiff longwords to be updated in memory.
The address, addr_sd, for this new longword corresponds to t++SOVA DELTA after ¢ has

-53-

been incremented for the next iteration. Data_ctrl asserts update_sd after each iteration
of the Sova Delta Loop.

5.6.3 RxRef ctrl

In the Turbo algorithm, the RxRef buffer must be accessed for early, middle, and late
correlations.

Code Excerpt 7. Despreading systematic symbol
for (i=0, symlre=symlim=0 ; {

rel = RxSigRe[indexl+i] 3 +D
iml = RxSigIm indexl+i] index1*0s+D+1%0
symlre += rel*re2-iml*im2; // terml = xL * x2 (complex)
symlim += rel*im2+re2*iml;

}

Index2 and Index3 are used for parity symbols. For early and late estimations,

Code Excerpt 8. Early gate sum for systematic symbol

for (i=termlre=termlim=0 ; i< Nsanp; i++) {
rel = RxSigRe[indexl+i] ® RxRef [indexl*Cs+DiM
iml = RxSigIm[indexl+i] * RxRef [index1*Cs+B
cermlre += rel*re2-iml*im2;
termlim += rel*im2+re2*iml;

}

Code Excerpt 9. Late gate sum for systematic symbol

for (i=termlre=termlim=0 ; i< Nsamp; ++) {
rel RxSigRe [index1+i] * RxRef[index1*Os+DiE
iml RxSigIm indexl+i] ® RxRef [index1*Os+DIMESDE
termlre += rel*reZ2-iml*im2;
termlim += rel*im2+re2*iml;

H

Bl 1705 ;
+i*0s];

Note the different address schemes for RxRef in each example. RxSigRe and RxSiglm are
not state dependant, so all 16 states can access the same memory locations. RxRef,
however, has state dependency buried in D and D_ML.

For delay, D, in the first example in Code Excerpt 7, we have

D = DelayEst[state]
from line 3 in Code Excerpt 1. Since we want to compute 8 states in parallel, we need a
buffer for each state that will cover Nsamp values for the complex multiply. To do this,
we want to re-organize external memory onto the FPGA so that all 3 symbols can be

accessed cycle by cycle.
RxRef[index1*0s+D+i*0s] = RxRef[0s* (indexl+i}-+D]

Since Os is constant (oversampling rate of 8 times) and index!, index2, and index3 are
constants, RxRef can then be sequentially accessed with i as with RxSigRe and RxSigim.
One such buffer is needed for each state with its individual offset, D.

In the second and third examples, which occur in the Correlate_n_Update stage, bit ‘0’
or ‘1’ has been estimated to determine whether

D ML = DelayEst[prevstate0] Oor b ML=DelayEst [prevstatel].
This relates D ML to D used for the first correlation, where prevstate() is equivalent to
the previous state for an input of ‘0, and prevstatel is the previous state for an input of
“1°. For these two possibilities, we need to map the delay, D_ML, to the appropriate

-54-

RxRef buffer for bit ‘0’ or bit ‘1’. The trellis used for propagating from the current state
to the next is shown in Figure 11. This corresponds to an array where:

prevstare0={0 8 1 9 2 10 3 11 12 4 13 5 14 6 15 7}
prevstatel={8 0 9 1 10 2 11 3 4 12 5 13 6 14 7 15}

Thus, a ‘1’ input in statel 5 would stay in statel5 for the next iteration since
prevstatel(15) = 15. A ‘0’ input would propagate to state!4 since prevstateO(14) = 15.

A multiplexer at the output of each RxRef block can assign D ML. The signal, se/ ds,
selects the middle case for the Despread Symbols stage. For the Correlate and Update
stage, the signal sel rxreffstate) selects one of the two other cases for an information bit
of ‘1’ or “0°.

Dout 7)|
RxRef Daout 15
block Dout_15

sel_rxref(1 _
Dout_15)
RxRef Dour 14

block

Dout 7y,

sel rxrefil s
DouL_fi 4|
RxRef Dout 13
block

Dout_14 |

sel rxref(]

RxRef
block

Figure 28. Assign RxRef for despreading symbol and propagating input bits of ‘1’
or ‘0’

Now, extending into the case where early and late estimates are made, the RxRef buffer
should also allow for the +DeltaDIl values in Code Excerpt 8 and Code Excerpt 9. Since
DeltaDIl = Os,

RxRef [index1*0Os+D MLiDeltaDll+ i*Os] = RxRef[Os* {index1+itl)+D ML].
Again, RxRef can be sequenced by the counter ;. By loading in bytes offset by a constant
index1, index2 and index3, our local RxRef buffer can be addressed from —Os + D to
Nsamp*Os + D as in Figure 29.

-55-

index3 index2 indexl

24 16 15 8 7 0
Addr0 « -Os+ D
Addrl « D
Addr2 « Os+ D
Addr3 « 20s+D
A7 A%
AddmN « Nsamp*Os+ D

Figure 29. Mapping of RxRef in external memory to on-chip memory

Moreover, at each block boundary of length 5, the delays are incremented or decremented

astep:
if (SymSumRe [0] [state] > SymSumRe[2] [state]) // assume PLL pulled in
DelayEstNext [state] = D_ML+dll step; // retard delay
else
DelayEstNext [state] = D_ML-dll step; // advance delay

The interval, dli step, is a unit step, as opposed to DeltaDLL, which steps by 8 units.
Timing becomes an issue since the SymSumRe[0] and SymSumRe[2] values are not ready
until just before this update in the Correlate_n_update stage. The new RxRef values
corresponding to the new DelayEstNext, however, are needed immediately for the next
iteration, in the Despread Symbols stage. By triplicating the memories in Figure 29 for
each state, we could assign a “look-behind” buffer for the case of D_ML-dll_step as well
as “look-ahead” buffer for D_ML+dll_step. When the DLL is ready to be updated, the
RxRefbuffers for all states can be updated in parallel. Using Read-Before-Write
memories keep data from being corrupted. Putting a second Read-Only port on the main
(middle) buffer allows the Despread Symbol stage to process without added latency
during the update. The structure of each RxRef block in Figure 28 is illustrated in Figure
29.

-56-

Ext Rxref

RxRef —
Dual-port Dout_RxRef

RAM

Ext Rxref

Figure 30. RxRef blk implementation

A read-only port off the main buffer accesses Dout RxRef. A read-write port on the same
buffer is used to update the main buffer while transferring previous data to look-ahead or
look-behind buffers.

In the case of advancing delay, the look-ahead buffer gets data from the middle buffer.
The middle buffer simultaneously gets data from the look-behind buffer. The DLL
update takes Nsamp+2 clock cycles, roughly the length of the Despread Symbol stage
where new data is immediately used. At this point, main buffers have been updated from
local memory at the block boundary. But now either the look-ahead or look-behind
buffer of each state needs to be updated from external memory. This update would also
take Nsamp+2 clock cycles. Since each iteration while tracing forward takes at least
6*Nsamp cycles (8-states executed at a time for middle, early, and late correlations),
there are enough clock cycles to update about 6 of these look-ahead or look-behind
buffers in an iteration. With 5 iterations until buffers are needed for the next update,
there are plenty of clock cycles to update 16 states can be sequentially updated with
access to external memory.

5.7 SOVA2 implementation

The standard soft-output Viterbi decoder, as mentioned before, is not nearly as complex
as the SOVAI1 implementation. It shares the same sova_delta_top block and a similar
recursive structure to the traceback function. Although it also has an iterative trace-
forward computation, it does not require any complex multiplies for each information bit,
as with SOVAI1. Consequentially, the SOVAZ2 block is expected to contribute a small
percentage to the Turbo decoders final latency and area. Synthesis results are
summarized in the following section.

-57-

5.8 SOVAI and SOVA?2 size and speed results
Results from synthesis are as follows:

Table 11. Synthesis results for SOVA implementations
Module

#Flip Flops #LUTs #BRAMs #MULT18x18 Max speed{(MHz)

SOVA1 Top e G637 | 158 Ma L - B3
Data Processor | 47,152 55,377 0 144 73.0
Despread Symbols 11272 12232 0 144 126.6
Add Compare Select 7056 11448 0 0 85.1
Correlate and Update 21016 26200 0 0 73.0
Update Delay and Sums 5271 1184 0 0 241.5
Traceback 535 1032 0 0 150.6
Sova Delta Loop 2447 4729 0 0 98.6
Data Control 53 74 0 0 151.9
On-Chip Memaory 27 6,990 158 0 174.9
Memory Control 49 176 0 0 180.8
SOVA2 Top T - 0 o

Sum SOVA1 and SOVA2 50,456 69,254 158 144

Xilinx Virtexll 2v8000 93,184 93,184 168 168

The number of flip-flops and LUTs used in the top-level SOVA2 and SOVA1 modules
and sub-modules are listed in Table 11. The sum total of these top-level component
resources is then compared those available on the largest Xilinx Virtex-II part, the
XC2V8000. According to these numbers, enough resources exist on this FPGA to
implement both decoders on the same part. An interleaver and control unit for the
SOVA1 and SOVA2 loop should fit on the remainder of the chip, although
implementation of the entire Turbo decoder is not covered here.

The Data Processor, which makes up the bulk of the logic in SOVAI, is broken down
further into sub-modules. The despread_symbols, add_compare_select, and
correlate_n_update modules have been adjusted to reflect 8 instantiations of each. Note
that the sum of the sub-module resources does not necessarily match those of the parent.
Optimizations visible at higher levels in the design hierarchy allow the synthesis tool to
minimize area. On the other hand, there may also be structures wrapped around sub-
modules that add overhead resources to the parent.

Synthesis also estimates speed based on longest data paths within the design. Since
resources have not been placed and routed, interconnect delay is not properly represented.
The higher the utilization of the FPGA, the more significant this routing delay can
become, thus the speed estimate is considered an upper bound. During verification,
speed optimizations can be made along critical paths for improved timing performance.
The maximum speeds for the SOVA1 and SOVA2 modules indicate that SOVA1 will be
the bottleneck for the algorithm. With ideal routing, the part should run at 63 Mhz, but
since this is hardly ever the case, we can expect the part to run slower. The design in its
current form does not route using Xilinx’s Project Navigator tools. Verification and

-58-

additional constraints will be necessary for computer-aided place and routing and final
timing analyses. For our estimates, we use a clock speed of 50 Mhz.

Latencies for the SOVA1 and SOVA2 hardware implementations are summarized below.

Table 12. Clock cycle latencies for SOVA implementations

Data processor module #clock cycles

Despread Symbols . 2, 080 288

Add Compare Select 10,040

Correlate and Update - 4,170,617
setup complex mult 2,008
despread early estimate 2,080,288
update symbol sums 2,008
reset addresses 2,008
setup complex mult 2,008
despread late estimate 2,080,288
update symbol sums 2,008
chk block bounds 1

Update Delay and Sums : 1,004

Traceback i : : 2,008

Sova Delta Loop Ben . B3.256

SOVA2 top 70284

Traceforward

Traceback

Sova Delta Loop

Interleavers (approx

Latency #cycles per 10 iterations

Bit rate @ 50 Mhz(bps)
Chipping rate @ 50 Mhz (Mcps)

The overall latency of 64M clock cycles is the sum of latencies for SOVA1, SOVA2, and
interleavers multiplied by 10, which is the number of times that the algorithm iteratively
refines its output. Since the entire Turbo decoder and its interleavers have not been
implemented, the interleaver and top-level latencies are approximate. Using a 50 Mhz
clock a 1000 bit message can be calculated in 1.3 seconds. If 1000-bit messages were
received back-to-back, 785 bps could be processed without overrunning the SOVAL
decoder. This would correspond to a 1.2 Mcps chipping rate.

The SOV A1 is shown to contribute to most (98.9%) of the overall latency for the Turbo
decoder. The following trade-off analysis is done in terms of the SOVAI top latency.

SOVAI top latency is dominated by complex multiplies in the trace-forward loops of the

data flow. Data and memory controls occur in parallel and do not contribute to overall
latency. The latency of the complex multiplies grows with Nsamp:

-59-

Latency

i b = 6 * (Nsamp + Latencymumph.m,) * NUM BITS .

The latency in the multiplier, Latencymipiier, in this case is 12 cycles. Complex
multiplies are performed once during Despread Symbols and twice for early and late
estimations during Correlate and Update stages. Each of these stages are repeated for

each iteration.

The latency for hardware not dependant on Latencycompy mu 1 86,349 clock cycles. The
higher Nsamp is, the closer it approximates the entire latency of the SOVA1 algorithm.
Since Nsamp is 1024 (512 chips per symbol and 2 samples per chip), the latency for
complex multiplies in this implementation comprises 98.6% of SOVAI _top latency.
Halving Nsamp saves roughly half (48.7%) the overall SOVAI_top latency. Doubling
Nsamp would nearly double (197%) SOVAI_top latency. In this case, however, :
additional off-chip memory may be needed since the depth of RxRef buffers also depend
on Nsamp.

Increasing Nsamp by increasing the number of chips per symbol may also require
increasing maximum bus width allowed for signals. More multiply-accumulates means a
greater chance of causing an overflow in the final result and a larger multiply-
accumulator may be necessary. Other hardware and memory blocks would also need to
accommodate the larger bus widths.

Latencycomp mu, furthermore, depends on NUM_BITS. Raising the number of bits from
1000 to 10000 would increase latency another order of magnitude. Increasing number of
bits per message would increase memory requirements in Table 10 and available BRAM
on the Xilinx device may become a limiting factor. Thus, custom interfaces to off-chip
RAM will likely be needed for messages longer than 1000 bits.

Changing constraint length would also affect the latency of the system. Constraint
length, K, determines the number of states in a trellis. In this implementation, K=5 was
chosen to target the largest Xilinx Virtex-1I device. With this implementation, however,
not all 16 states could be computed at once with resources on an FPGA. Lowering the
constraint length to 3 would create a trellis of 4 states, and despread_symbol,
add_compare_select, and correlate_n_update blocks could be instantiated 4 times
instead of 8 for K=5. Not only would this save space on the FPGA, but all states could
then be computed in parallel. This would lower overall SOVAI_top latency by 49.4%.

Another way to decrease the latency by 33% is to compute early and late summations for
correlation in parallel. Even if reducing the number of dedicated 18x18 multipliers
required for each complex multiply to 4 from 6, however, 192 multipliers would still be
needed to compute 6 symbols in parallel for correlation. This number of multipliers is
still not available on Xilinx parts, and again, there are not enough LUTs available on the
chip to implement the extra multiplies. If we expect the Turbo decoder to operate on
punctured code most of the time, however, we could achieve the same savings by
implementing complex multipliers for just the first and second symbols. This would
require only 128 dedicated 18x18 multipliers. But, if codes are not punctured, the
savings are lost.

-60-

Presented here is essentially a “paper” design since no part of this design has yet been
simulated and verified. The design, however, is written in synthesizable VHDL and
therefore is ready to be tested against the algorithm written in C. Software should be
modified to use fixed-point representations for verification with hardware. The software
should also be modified to generate test vectors in intermediate points in the program for
module-by-module verification. Having a bit-accurate software model would also
simplify tradeoff analyses and allow design decisions to be made at a higher level before
implementing a new hardware design. Using an environment such as SystemC would co-
simulate hardware and software implementations. This would enable module by module
testing of the hardware using a C-based testbench and speed up simulation and
verification times.

This design targets the largest Xilinx Virtex-Il FPGA available, the XC2V8000, which is
equivalent to 8 million system gates. Its data rates target the region where the Turbo
algorithm has demonstrated its strongest gains for 3 to 5 dB in Ey/N, over typical systems
used today. Using constraint length of 5, a code rate of 1/3, message length of 1000 bits,
and 512 chips per symbol, we were able to synthesize a design on a single FPGA that
would operate at a bit rate of 785 bps and a chipping rate of 1.2 Mcps.

-61-

6 Software Implementation

6.1 sova_dpllc

The function sova_dpll is a soft output (and soft input) Viterbi algorithm (SOVA) decoder with
integrated delay and phase lock loops for decoding convolutionally encoded (possibly as a con-
stituent code in a Turbo code) spread spectrum BPSK signals. The encoder shift register connec-
tions are set in header file scenario.h as are other parameters such as constraint length, K, the
number of data bits, the number of spread spectrum chips per symbol, the number of A/D samples
per chip, etc. The decoder operation is effected by the boolean function parameter TurboMode,
which indicates a turbo code or a simple convolutional code. Sova_dpll can be called by main in
the file run_sova_dll.c with TurboMode set False or main in run_turbo_dll.c, via turbo_dpll,
with the TurboMode flag set True. Note that the Turbo code can be punctured or not punctured
(set in scenario.h) giving a rate 1/2 or a rate 1/3 Turbo code respectively, but the two constituent
convolutional codes are fixed rate 1/2 codes. The convolutional encoders are recursive systematic
convolutional (RSC) encoders meaning that the input data bit is one of the output channel sym-
bols, called the “systematic” symbol, while the parity symbol is computed with the recursive
structure shown in Figure 31, showing a binary shift register and mod-2 adders.

The RSC encoder block diagram is shown in Figure 31. In the file encode_rse.c the initial state of
the encoder is set to 0, i.e. all registers are cleared. The feedback bit, F}, is the mod-2 sum of the
state of the encoder after shifting in the input bit, 0 or 1, and-ed with the register connection vec-
tor, g;. This mod-2 sum is computed by using the result of the and as an index into Partab. This
table performs the mod-2 sum by mapping all indices whose binary expansions have an odd num-
ber of 1’s to an output of 1 and all indices with an even binary representation to an output of 0. For
example indexes of 1 and 2 are 01 and 10 in base 2 respectively and map to 1 while an index of 3,
which is 11, maps to 0. The F), bit replaces the input bit to create state2 which is and-ed with g; to
produce the parity bit output for this input bit. If the Terminate flag is True the last K-1 data bits
are changed to values that force F), to O thereby driving the final state to the 0 state. Since the tail
bits can be overwritten no data is ever put there, the tail bits are initially all 0. The even outputs are
simply the input bits, called the systematic symbols, and the odd outputs are the parity symbols.

-62 -

— systematic
‘ output
data /
s ——»(+) A A
in
parity
> output

Figure 31. RSC encoder block diagram (K=3 example with g;= 111 and g, = 101)

The function encode_turbo calls encode_rsc twice as shown in Figure 32. The data is shown
passing through the RSC1 block because a terminating tail is added to the data by RSC1 as
described above. The data and tail are then interleaved by the block marked “o” and are encoded
by RSC2. Note that the tail terminates RSCI1 to the 0 state, but not RSC2, since interleaving
scrambles the data and tail bits. The data bits (with tail), d;, and the parity outputs from RSC1, p;,
and RSC2, g, are then multiplexed into a single stream. If the Puncture flag is False then the mul-
tiplexer output is d;, py» q» da, P2, Q7 ... or if the Puncture flag is True the multiplexer output is d,
Pp dy G2,d3 p3 dy gy ... , in other words all the data bits, or systematic symbols, are sent but
only half of the parity symbols are sent. Figure 32 also shows the direct sequence spread spectrum
(DSSS) chip sequence being generated and multiplied onto the encoder channel symbols.

sig

2 out
?rf‘ta > RSCI e — (?—"

_, o | —»| RSC2 ‘T DSSS

sig gen

Figure 32. Turbo encoder

The binary signal leaving Figure 32 is impressed on an RF carrier (BPSK modulated) which is
then received, converted to baseband and passed to the decoder shown in Figure 33. If soval_dpll
is processing simple RSC encoded data, so that TurboMode is False, indicating that encode_rsc

-63 -

was called directly by main rather than by encode_turbo the tail may be either terminating or
nonterminating, and the appropriate decoder is just the Enhanced SOVA1 block.

La Lc ol La Le

Enhanced 3 3 SOVA 2
sig —») SOVA 1 espread syms . L, -

n ‘ output
DSSS reference function

Figure 33. Turbo decoder with integrated phase and delay tracking loops in SOVA 1

4q;

For comparison, in Figure 34, we give the block diagram for a standard Turbo decoder that could
be used following a standard “‘external” delay and phase locked loop (DPLL), as implemented in
run_dpll_then_turbo.c and the functions that this main calls. In this decoder the phase-cor-
rected, time-aligned, despread channel symbols are demultiplexed sending the sytematic bits, d; ,
and RSCI parity bits, p; , to decoder 1. The systematic bits are passed through an interleaver to
put them in the order in which they were presented to RSC2 in Figure 32. The parity symbols are
already in the interleaved order so they are passed to SOVA2 directly. The extrinsic information,
L. , generated by SOVA?2 is deinterleaved to match the bit order for SOVA1 which is then used as
a priori information, L, . Extrinsic information computed by SOVA1 is interleaved for SOVA2
which works with interleaved data.

l—> o
L, L, > o >| La Le |—
S)ir;ns —» |demux |__ SOVA 1 W._) SOVA?2 .
—_
‘ ' Syms j - output
W systematic syms

Figure 34. Standard Turbo decoder

Figure 33 has all of the elements in Figure 34 plus the additional DPLL functionality inside
SOVAL. The symbol demultiplexing occurs after the spreading code removal which is part of the

- 64 -

DPLL function so the demultiplexing must occur within (can not precede) SOVA1 as well. The
additional line running from SOVA2 to SOVAL, labeled g, , represents the hard parity symbol

estimates that SOVA2 produces during the decoding process. These hard parity symbol estimates
from SOVA2 are used by the “data-aided” tracking loops in SOVA1 along with hard parity and
hard systematic symbol estimates from SOVAL itself. (Hard symbols are +1 or -1, as opposed to
soft symbols which are noisy.)

With all of the foregoing background material we are now ready to look at the coding of the
enhanced SOVA decoder in the file sova_dpll.c. We assume a preamble detector has given us the
initial DLL delay, InitDelayEst, and put the beginning of the signal squarely in the I (in-phase)
channel. Keep in mind that in TurboMode there will be parity symbols from RSC2 that the Viterbi
algorithm in SOVAL1 will not use but the despreading and loop algorithms will use.

On the first call to sova_dpll the function gen_tables is called. This function generates the previ-
ous state and previous symbol tables, which for a given state and a given data bit, gives the previ-
ous state and the parity symbol associated with the transition between these two states. In
gen_tables cach state defines a bit pattern in the shift register to which both possible bit inputs, O
and 1, are shifted. The feedback bit, F, is the mod-2 sum of the state of the encoder after shifting

in the input bit, O or 1, and-ed with the tap code vector, g;. The mod-2 sum is computed by using

the result of the and as an index into Partab. This table performs the mod-2 sum by mapping all
indices whose binary expansion has an odd number of 1’s to an output of 1 and all indices with an
even binary representation to an output of 0. The F, bit replaces the input bit to create state2
which is and-ed with g, to produce the parity symbol output for this initial state and input bit. The
nextstate for this initial state and input bit are stored too and used to generate the prevstate arrays.
The prevsym0 and prevsyml arrays give both the systematic symbol, which is the input data bit
itself, and the parity symbols calculated above. Adding the systematic bit that precedes the parity
bit is accomplished by adding 10 (binary) to parityl to give prevsyml.

The decoder begins by looping over the encoded bits, or equivalently the received symbol groups.
There are 2 symbols per group for a punctured Turbo code, 1 systematic and 1 parity symbol.
Recall the earlier description of the multiplexed output from encode_turbo where symbols
0,2,4... are sytematic symbols, while symbol 1,3,5... are parity symbols, alternately from RSC1
and RSC2. The punctured parity symbols are simply not transmitted, the RF energy is put into the
remaining symbols. (Punctured codes use less BW for a given data rate but provide less coding
gain.) There are three symbols per group in an unpunctured Turbo code, the systematic bit and the
parity from each of the two RSC encoders. If TurboMode is False the decoder expects a simple
rate 1/2 RSC code with each symbol group having 2 symbols, the systematic symbol and the
accompanying parity symbol.

For each bit (or symbol group) we calculate the index of the symbols, index!, index2, and index3,
if applicable. These indexes are directly used with RxSig and are multiplied by the reference over-
sampling factor, OS, and offset by DLL delay, D, for the reference function. Over sampling of the
reference allows the alignment of the signal and reference in the despreading correlators to be
adjusted in small steps. Smaller steps gives better alignment and less scalloping loss.

-65 -

We loop through each state despreading and phase unwrapping the signal. Note that the phase and
delay estimates are state dependent, as calculated below, except for the first bit (first time step)
where D is InitDelayEst for all states and ThetaFEst is 0 for all states. The result is despread soft
symbols that are saved in SysSymMat[state][t], ParSymIMat(state][t], and ParSym2Mat|state](t],
from which the best soft symbols will be recovered during the traceback when we are finding the
best path through the trellis. We also calculate and store the complex despread symbols for the
current time step. These are stored in DespreadSymRe|0-2][state] and DespreadSymIm[0-
2][state]. The first index gives the symbol number within the group, so DespreadSymRe[0][state]
is the systematic symbol and DespreadSymRe[1][state] is a parity symbol (RSC1 parity for
unpunctured or alternating RCS1/RSC2 for punctured). For an unpunctured Turbo code the RSC2
parity is stored in DespreadSymRe[2][state]. Think of state, the state at which we know D and
PhaseFst, as being the node to the left of the transitions in the trellis. This concludes this loop
over sfate.

Now in a second loop over state we do the “add-compare-select” operation, thinking of sfate now
as the nodes on the right side of the transitions in the trellis, i.e. these are the states that we are try-
ing to propagate parameters to. For each state we find which previous state, state(), we would have
come from if the current bit were a 0, and which state, statel, if the bit were a 1. Likewise we get
the hard symbol pairs, Syms0 and Syms{, associated with the transitions between these particular
states. Each of these holds exactly 2 symbols since the RSC encoders are rate 1/2 encoders. We
split the two symbols out of Syms0 and Syms! by masking with 2 (binary 10) and 1 (binary O1)
and setting sym{ and sym2 to | or -1. These hard symbols are used to multiply the despread soft
symbols to remove the BPSK modulation to give the transition metrics associated with the two
possible data bit values, O or 1. The transition metrics are stored in variables with a base name of
the form TranMet. We similarly remove the BPSK modulation from the RSC2 symbols using hard
symbol estimates from SOVA2 which are stored in s_hat[t] , storing the results in variables with a
base name of SovaZenergy. The variable s_hat is produced by SOVA2 for the enhanced SOVAI

and consists of the interleaved systematic symbol estimates and the parity symbol estimates, ¢, ,

which is shown in Figure 33. Only the parity symbol estimates in s_hat are used at present. The
TranMet variables are added to the previous state’s total path metric, PathMetric[stateO/state1][t],
plus the a priori info, La[t], to get the data-dependent total path metrics at the new state, m0 and
ml. These two quantities are then compared and the largest gives the assumed path into the new
state. The SovaZenergy variables are added to the transition metrics to form complex PLL integra-
tors, MX, that span all of the symbols in the group.

If m0 > m1 then the decision is that the current bit is a 0 and the path metric calculated for the path
associated with the 0 bit, m0, is stored in PathMetric[state][t+1]. The DLL delay, D_ML, is copied
from state(as are the PLL variables. The PLL accumulators, MX_re and MX_im, are updated
with the despread soft symbols after the BPSK modulation has been removed by multiplying
them by the hard symbol estimates sym/ and sym2. Else if m/ > m0 the current bit is decoded as a
1 and info from statel is propagated to the current state.

The next section of code are the early and late correlators. Here the spread spectrum signal and

reference are again multiplied and summed as in the first state loop above except that now the ref-
erence is shifted early and late by DeltaDIl. The all symbols in the Turbo code are included in the

- 66 -

integrators by using hard symbol estimates from both SOVA1 and SOVA2, s_hat. The soft symbol
outputs from the correlators and multiplied by the hard symbol estimates to remove the BPSK
modulation, before the products are added together.

The PLL and DLL quantities are propagated along these paths from previous state to current state
at time step ¢ so that the current states become the old states at #4+1. The DLL and PLL are updated
rather than just propagated when ¢ is divisible by BlockLen. At a block boundary the DLL delay
for this state is increased or diminished by 1 reference sample depending on whether the magni-
tude of the Early gate is larger or smaller than the magnitude of the Late gate. The PLL is also
updated at block boundaries: residual phase is measured and added to the summer #2, which is
added to the summer 3. The phase rate, Delta_phi, and model phase, phi_m, are then calculated.

The phase correction, phi_nco, is calculated as the model phase minus one half of the phase
change across a block (i.e. model phase is referenced to center of block) plus the phase rate per
sample times the sample number, ramp. Delta_phi is the phase rate per block so Delta_phi/
BlockLen is the phase rate per sample.

This ends the second loop over state.

The variable ramp, is the sample number in the block so is reset when r==BlockLen and incre-
mented otherwise.

This ends the loop over ¢, the forward pass through the RSC code trellis.

We trace back through the trellis to find the max-likelihood path and transmitted data. The
Enhanced SOVA decoder will have a terminating tail in a Turbo code scheme. If the boolean flag
Term is true we know that the transmitted symbols drove the encoder state to 0 at the end of the
message. Hopefully the 0 state has the largest PathMetric at the final time step but may not due to
noise. If Term is true we set beststate[NUM_BITS] = 0, otherwise we search through the final path
metrics looking for the state with the largest path metric. From there we trace backwards using the
prev_bit array, and knowing this we can get the previous state. The previous bit for each state was
stored in bit packed form in a 64-bit integer at each time step. (There are 64 states in a constraint
length 7 code so this is the maximum constraint length for this code at this time.) When the data
bit decision was for a 1, a | was or-ed into the integer at the correct bit position for the current
state and this was repeated for each state. After packing an integer in this fashion at each time step
we have prev_bit[t] from which we can extract our bit decisions using the mask bitmap which was
used to or the bits into position. bitmap|state] has a single bit set at the bit position state. To
unpack a bit decision at the state beststate we and prev_bit with a mask which has a single bit in
the beststate position and then right-shift the result into the LSB. Given the current state and the
previous bit decision we get the previous state and continue to trace back through the trellis mak-
ing the array of bit decisions. We also collect the despread soft symbols that go with the bit deci-
sions. Some of these will be processed by SOVA2 in a Turbo code.

The final section of code finds the minimum path metric difference between the ML path and any

other path that produces an opposite bit decision. For each bit decision we check all possible paths
back as far SOVA_DELTA, from scenario.h, time steps. At each stage the path deviation is found

-67 -

by choosing the incorrect bit i.e., the opposite bit from the ML path from esz_bits and beststate.
Path metric differences were stored in Mdiff as they were computed in the forward trace. The final
line of code in this module assigns a polarity to the minimum path metric that is based on the bit
value, i.e. we create soft bipolar decisions from the hard bit decisions.

6.2 Code listing

Although many other files are required to build the executable images, listings of only the
following files, specifically discussed in Chapters 5 or 6, are included in this section:

e scenario.h

* sova_dpll.c

* turbo_dpll.c

* encode_rsc.c

» gen_tables.c

* encode_turbo.c
* run_turbo_dll.c

* turbo.c
* sova.c
* dpllc

« run_dpll_then_turbo.c

- 68 -

/f scenario.h

)

// simulation parameters and constants that determine array sizes, etc that
// must be fixed at compile time

i

// Richard C. Ormesher, Jeff Mason, SNL dept. 2344, 5/1/02

/{ #include <limits.h> Jf for INT_MAX =231 -1

#define min(a,b) (((a)<(b)) 7 (a) : (b))
#define round(a) (floor(0.5+(a))) // like Matlab for a=0.5, not for a=-0.5

#if 1 // choose fixed or floating point
#define NUMTYPE double

#else
#define NUMTYPE int
#define FIXED

#endif

#define CONSTRAINT_LENGTH 5 // max of K=7 for long long prev_bit
#define PUNCTURE 0 /f set to 0 for R=1/3, set to 1 for R=1/2

#define NUM_INFO 1000 // num of data bits before tail is added

#define NUM_CHIP_PER_SYM 127 // set chiping rate relative to sym rate
#define NUM_SAMP_PER_CHIP 3 // A/D sample rate

#define REF_OVER_SAMP 8 //reference function oversampling factor
#define TAIL_SYM 10 // allows for DLL movement & E-L gate overhang

// The following constants are used by the sova decoder and are not scenario
// dependent. They are currently set to match sovaO.m for now.

#define SOVA_DELTA 30

#define BIG_NEG (-1000000)

// #define BIG_POS INT_MAX

#define BIG_POS 1000000 // give same results as Matlab for all SOVA_DELTA

/f *** derived constants - no changes are necessary below this line *#%

/f RSC_G_1 is the tap code for the feedback bit in the Recursive Systematic
// Convolutional encoder and RSC_G_2 is the tap connection vector for the

// parity output. The LSB is the input so RSC_G_1 must be an odd number, ie
// g11=1 or the input data is not used immediately.

#if CONSTRAINT_LENGTH ==7

#define NUM_STATES 64 I 2MK-1)
#define RSC_G_1 0x73 /f code 1, used by decoder
#define RSC_G_2 0x59 /f code 2, used by decoder
#elif CONSTRAINT_LENGTH ==
#define NUM_STATES 16 /1 27K-1)
#define RSC_G_1 0x19 /i CCSDS
#define RSC_G_2 0x1b // CCSDS
/f #define RSC_G_1 0x1f // Sklar “Digital Communications”
/f #define RSC_G_2 0x11 // Sklar 2nd Ed. pg. 496

#else // CONSTRAINT_LENGTH ==

_ 60 -

#define NUM_STATES 4 11 2MK-1)

#define RSC_G_1 0x7 /f code 1, used by decoder
#define RSC_G_2 0x5 /I code 2, used by decoder
#endif

#idefine NUM_BITS (NUM_INFO+CONSTRAINT_LENGTH-1) // includes tail bits

#if PUNCTURE

#define NUM_SYM_PER_BIT 2 /I R=1/2
#else

#define NUM_SYM_PER_BIT 3 /I R=1/3
#endil

#define CODE_RATE (1.0/(double)NUM_SYM_PER_BIT)

#define NUM_SYMS (NUM_BITS*NUM_SYM_PER_BIT) // num channel syms in msg

#define NUM_SAMP_PER_SYM (NUM_SAMP_PER_CHIP*NUM_CHIP_PER_SYM)

#define NUM_SAMP_IN_REF_TAIL (TAIL_SYM*NUM_SAMP_PER_SYM*REF_OVER_SAMP)
#define NUM_SAMP_IN_SIG (NUM_SYMS*NUM_SAMP_PER_SYM)

#define NUM_SAMP_IN_REF
(REF_OVER_SAMP*NUM_SAMP_IN_SIG+NUM_SAMP_IN_REF TAIL)

#define NUM_STATES_2 (NUM_STATES/2) /1 half the states

=T e

/1 sova_dpll.c

i

/' soft output Viterbi decoder with integrated DLL and PLL
I

/I' Richard C. Ormesher, Jeff Mason, SNL dept. 2344, 9/5/02

#include <stdio.h>

#include <stdlib.h> M for exit()

#include <math.h> /f for M_PI, cos, sin, atan2
#include “scenario.h” // simulation constants
#include “gen_tables.h”

#include “sova_dpll.h” /{ make sure proto is up to date

#ifdef MATLAB_MEX_FILE
#include “mex.h” /! for mexPrintf()
#endif

static NUMTYPE MX_re[NUM_STATES];

static NUMTYPE MX_im[NUM_STATES];

static NUMTYPE MX_prev_re[NUM_STATES];

static NUMTYPE MX_prev_im[NUM_STATES];

static NUMTYPE (2[NUM_STATES], t2Prev[NUM_STATES];

static NUMTYPE t3[NUM_STATES], t3Prev[NUM_STATES];

static NUMTYPE phi_m[NUM_STATES], phi_mPrev[NUM_STATES],
static NUMTYPE Delta_phi[NUM_STATES], Delta_phiPrev[NUM_STATES];
static NUMTY PE DespreadSymRe[3][NUM_STATES];

static NUMTYPE DespreadSymIm[3|[NUM_STATES]|;

static NUMTYPE SymSumRe[3][NUM_STATES];

static NUMTYPE SymSumPrevRe[3][NUM_STATES];

static NUMTYPE ParSym1Mat/NUM_STATES|[NUM_BITS];

static NUMTYPE ParSym2Mat[NUM_STATES]|[NUM_BITS];

static NUMTYPE SysSymMai|[NUM_STATES|[NUM_BITS];

static NUMTYPE Mdifff[NUM_STATES][NUM_BITS+1];

static NUMTYPE PathMetricCurrf[NUM_STATES];

static NUMTYPE PathMetricNext[NUM_STATES];

static int prevsymO[NUM_STATES]:

static int prevsym1[NUM_STATES];

static int prevstateO[NUM_STATES];

static int prevstate |[NUM_STATES];

static int beststate[NUM_BITS+1], beststate_tb;

static int tables_ready = 0;

static int SymVal[4][2] = { {-1,-1}, {-1,1}, {1.-1}, {1,1} };

static unsigned char est_bits[NUM_BITS+1], error_bit;
static unsigned long long prev_bit{fNUM_BITS+1]; // non-portable ?

static unsigned long [ong bitmap(NUM_STATES]; // non-portable 7

int sova_dpll{ NUMTYPE #*RxSigRe, NUMTYPE *RxSiglm, NUMTYPE *La,
NUMTYPE *Lall, int Term, NUMTYPE *RxRef, int InitDelayEst,
int BlockLen, NUMTYPE *DespreadSyms, int *s_hat,
int TurboMode, int dll_step, int pll_flag, NUMTYPE *pll_params)

-71 -

int i, j, t, state, state(, state1;

int Syms0, Syms1, SymsML, SymML1, SymML2, SymML3=0;
int Puncture = PUNCTURE;

int Nsamp = NUM_SAMP_PER_SYM;
int Nstates = NUM_STATES;

int Nbits = NUM_BITS;

int Os = REF_OVER_SAMP;

int DeltaDll = REF_OVER_SAMP;

int DelayEstiNUM_STATES];

int DelayEstNext[NUM_STATES];

int D, D_ML, stateML;

int index1, index2, index3=0, ramp=0);
int index3Max;

int syml, sym2;

NUMTYPE m0, ml, llr, bestmetric;

NUMTYPE ThetaEst;

NUMTYPE TwoPi = 2.0 * M_PI, // from math.h

NUMTYPE phi_nco[NUM_STATES];

NUMTYPE delta_phi[NUM_STATES];

NUMTYPE symlre, symlim, sym2re, sym2im, sym3re=0, sym3im=0;
NUMTYPE termlre, termlim, term2re, term2im, term3re, term3im;
NUMTYPE rel, iml, re2, im2; // working variables for doing complex ops
NUMTYPE TranMetORe, TranMetOIm, TranMet 1 Re, TranMet1Im;
NUMTYPE SovaZenergyORe=0, SovaZenergy0lm=0;

NUMTYPE SovaZenergy 1Re=0, Sova2energy 11m=0;

NUMTYPE K1=pll_params[0];

NUMTYPE K2=pll_params|[1];

NUMTYPE K3=pll_params[2];

/l FILE *fpdebug;

/I open debug file
/I tfpdebug=fopen(“debugfile” ,"w”);
// fprintf(fpdebug, “%d \n”, RxSig[50]);

if (0) {
printf(** RxSigRe[0]=%f \n", RxSigRe[0]);
printf(** RxSigIm[0]=%1\n", RxSiglm|0]);
printf("* RxSigRe[End]=%T1 \n", RxSigRe[NUM_SAMP_IN_SIG-1]);
printf(*** RxSiglm[End]=%f \n", RxSigim[NUM_SAMP_IN_SIG-1]);
printf(** La[0]=%f \n”, La[0]);
printf(*** La[Nb]=%f \n", La[Nbits]);
printf(** Term=%d \n", Term);
printf("** RxRef[0]=%f \n”, RxRef[0]);
printf(** RxRef[End]=%f \n", RxRef[NUM_SAMP_IN_REF-1]);
printf(** InitDelayEst=%d \n", InitDelayEst);
printf(*** BlockLen=%d \n”, BlockLen);
printf(*** s_hat[0]=%d \n”, s_hat[0]);
printf(** TurboMode="%d \n”, TurboMode);
printf(** dll_step=%d \n”, dll_step);

-72 -

printf(** pll_flag=%d \n”, pll_flag);
printf(*“* K1=%f, K2=%f, K3=%f\n", K1, K2, K3);
}

if (TurboMode && !Puncture)
index3Max = 3*Nsamp*Nbits;
else
index3Max = 2*Nsamp*Nbits;

if (index3Max > NUM_SAMP_IN_SIG) {
printf(“sova_dpll: index3 will over-run array RxSig -- abortingn™);
exit(1);

}

if (index3Max*Os+InitDelayEst > NUM_SAMP_IN_REF) {
printf(**sova_dpll: index3 will over-run array RxRef -- aborting\n™);
exit(2);

}

if (!tables_ready) { // init bitmap on first call
tables_ready=1;
gen_tables(prevstate(), prevstatel, prevsym0, prevsym1);
for (i=0, bitmap[0]=1; i<NUM_STATES-1; i++)
bitmapli+1] = bitmap[i] << I;

}

// initialize vars
for(state = 0; state<NUM_STATES; state++)
{
PathMetricCurr[state] = BIG_NEG; // set to large neg number
DelayEst[state] = InitDelayEst; // init delay for all states
phi_nco[state]=0;
SymSumPrevRe[0][state] = 0;
SymSumPrevRe[1][state] = 0;
SymSumPrevRe[2][state] = 0;
MX_prev_re[state]|=0;
MX_prev_im[state]=0;
t2Prev(state]=0;
t3Prev[state]=0;
phi_mPrev[state]=0;
Delta_phiPrev[state]=0;
}

PathMetricCurr[0] = 0; /* start with state 0 */
/* Trace forward for t = 0 to NUM_BITS */
for (t=0; t<Nbits; t++)
{
M printf(“ %ed \n”,t+1);
// calculate indexes into RxSig and RxRef for the t-th bit’s symbols

if (TurboMode && !Puncture) {
index1 = 3*Nsamp*t;

-73 -

index2 = index 1+Nsamp;
index3 = index2+Nsamp;
} else {

index1 = 2*Nsamp*t;
index2 = index | +Nsamp;

}

for (state = 0; state < Nstates; state++) [
D = DelayEst[state]; // get projected delay estimate for this state

if (pll_flag)
ThetaEst = TwoPi*phi_nco[state];
else
ThetaEst = 0; // turn PLL off, assume sig is real

/I printf(*“ThetaEst=%1 \n", ThetaEst);
re2 = cos(ThetaEst); im2 = -sin(ThetaEst); // pre-compute for loops

/I despread first symbol

for (i=0, symlre=sym1im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index 1+i] * RxReflindex [*Os+D+i*0s];
im1 = RxSiglm[index1+i] * RxRef[index]1*0Os+D+i*0s];
symlre +=rel*re2-im1*im2; / terml =x1 * x2 (complex)
symlim +=rel*im2+4re2*iml;

1
SysSymMat([state][t|=symIre;

// despread second symbol

for (i=0, sym2re=sym2im=>0 ; i< Nsamp; i++) {
rel = RxSigRe[index2+i] * RxReflindex2*Os+D+i*Os];
iml = RxSiglm[index2+i] * RxRef[index2*Os+D+i*0s];
sym2re += rel*re2-im*im2;
sym2im += rel *im2+re2*im1;

}
ParSym1Mat|state][t]=symZ2re;

if (TurboMode && !Puncture) { // despread third symbol
for (i=0, sym3re=sym3im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index3+i] * RxRef[index3*0Os+D+i*0s];
im1 = RxSigIm[index3+i] * RxRef[index3*0Os+D+i*0s];
sym3re += rel*re2-im[*im2;
sym3im += rel*im2+re2*im1;
}
ParSym2Mat[state][t]=sym3re;
}

/f save despread sym, each state has its own delay and phase estimates
DespreadSymRe[0][state] = sym1re;

DespreadSymIm[0][state] = symlim;
DespreadSymRe[1][state] = symZre;

_74 -

DespreadSymIm[1][state] = sym2im;
if (TurboMode &é& !Puncture) |
DespreadSymRe[2][state] = sym3re;
DespreadSymIm|[2][state] = sym3im;,
}

}

/* for stage 1+1 set all bits at each state to zero */
prev_bit[t+1] = 0;

for (state = 0; state < Nstates; state++) {

{1 #%%* perfrom add-compare-select operation for SOVA # 1 *#*
// first compute metrics for a 0 data bit

state() = prevstateQ[state]; // get prev state associated with info bit=0
Syms0 = prevsymQ[state]; // get sym pair associated with info bit=0

syml = (Syms0&2) 7 1 : -1; sym2 = (Syms0&1) ? 1 : -1; // split out syms

symlre = DespreadSymRe[0][state0]; // get 1st despread sym from state(
symlim = DespreadSymIm[0][state0];
sym2re = DespreadSymRe[1][state0]; // get 2nd despread sym from stateQ
sym2im = DespreadSymIm[1][state0];
if (TurboMode && !Puncture) {

sym3re = DespreadSymRe|2][state0];

sym3im = DespreadSymlm|2][state0];
}

if (TurboMode) {
if (Puncture) {

if (t%2) { // parity punctured
TranMetORe = sym 1 * symlre;
TranMetOIm = sym1 * symlim;
SovaZenergyORe = s_hat[2*t+]1]*symZ2re;
SovaZenergyOIm = s_hat[2*t+1]*sym2im;

} else { // parity is available
TranMetORe = sym1 * symlre + sym2 * sym2re;
TranMetOlm = sym1 * symlim + sym2 * sym2im;
SovaZenergyORe = 0;
Sova2energyOlm = 0;

}

} else { // unpunctured, third sym is parity for SOVA #2
TranMetORe = sym1 * symlre + sym2 * symZ2re;
TranMetOIm = sym1 * symlim + sym2 * sym2im;
SovaZenergyORe = s_hat[2*t+1] * sym3re;
SovaZenergyOIm = s_hat[2¥t+1] * sym3im;

}

} else { // not a Turbo code, simple conv code only
TranMetORe = sym|1 * symlre + sym2 * symZ2re;
TranMetOIm = sym1 * symlim + sym2 * sym2im;
SovaZenergyORe = 0;

SovaZenergy(OIm = (;

-75 -

}

// next compute metrics for a 1 data bit

state]l = prevstate][state]; // get prev state associated with info bit=1
Syms1 = prevsyml[state]; // get sym pair associated with info bit=1

syml = (Syms1&2) 7 1 :-1; sym2 = (Symsl&1)? 1 :-1;

symlre = DespreadSymRe[0][statel]; // get 1st despread sym from statel
symlim = DespreadSymlIm[Q][statel];
sym2re = DespreadSymRe][1][state1]; // get 2nd despread sym from statel
sym2im = DespreadSymIm[1][state];
if (TurboMode && !Puncture) {

sym3re = DespreadSymRe[2][state1];

sym3im = DespreadSymIm([2][state1];

}

if (TurboMode) {
if (Puncture) {

if (t%2) { // parity punctured
TranMetlRe = sym1 * symlre;
TranMetlIm = sym1 * symlim;
SovaZenergy1Re = s_hat[2*t+1]*sym2re;
SovaZenergy 1Im = s_hat[2*t+1]*sym2im;

} else { // parity is available
TranMetlRe = sym1 * symlre + sym2 * symZ2re;
TranMetlIm = sym1 * symlim + sym2 * sym2im;
SovaZenergy 1Re = ();
SovaZenergy 1Im = 0;

}

} else { // unpunctured, third sym is parity for SOVA #2
TranMet1Re = sym| * symlre + sym2 * sym2re;
TranMetlIm = sym1 * symlim + sym2 * sym2im;
SovaZenergy 1Re = s_hat[2*t+1] * sym3re;
SovaZenergy 1Im = s_hat[2¥t+1] * sym3im;

}

} else { // not a Turbo code, simple conv code only
TranMetlRe = sym1 * symlre + sym2 * sym2re;
TranMet!Im = sym! * symlim + sym2 * sym2im;
SovaZenergylRe = 0;

SovaZenergy | Im = 0;

}

// update the path metric for the 2 possible paths into this state
m0 = TranMetORe + PathMetricCurr[state0] - La[t]/2;
ml = TranMet1Re + PathMetricCurr|statel] + La[t]/2;

I if(t==12)printf(“TranMetORe=%f, TranMet 1 Re=%f\n"", TranMetORe, TranMet | Re);
I if(t==12)printf(“m0=%f, m1=%f\n"",m0,m1);

// select best path based on current path metric m0O or m1

if(mQ > ml)
{ /! decide bit==0

-76 -

PathMetricNext[state] = m(;
Mdiffstate][t+1] = mO-m1;

SymsML = Syms0; /f symbol pair for ML path
D_ML = DelayEst[state0]; // propagate delay for ML path
if (t==-1)

printf(** *** 1=%d, D_ML+1=%d\n",t, D_ML+1);
stateML=state0;
MX _re[state] = MX_prev_re|[state0] + TranMetORe + SovaZenergyORe;
MX_im[state] = MX_prev_im[state0] + TranMetOIm + SovaZenergyOIm;
(2[state] = t2Prev[state(];
t3[state] = t3Prev|state(];
phi_m(state| = phi_mPrev[stateQ];
Delta_phi[state] = Delta_phiPrev[state0];
}else {
PathMetricNext[state] = m1;
Mdiffstate][t+1] = m1-m0;
SymsML = Symsl;
prev_bit[t+1] |= bitmap[state]; // set bit at bit position “state” to |
D_ML = DelayEst[state1]; /f propagate delay for ML path
if (t==-1)
printf(“ *** t=%d, D_ML+1=%d\n"t,D_ML+1);
stateML=statel;
MX _re[state] = MX_prev_re[state1] + TranMet1Re + Sova2Zenergy 1 Re;
MX_im[state] = MX_prev_im[statel] + TranMet1Im + Sova2energy 1Im;
t2[state] = t2Prev][statel|;
t3[state] = t3Prev[statel];
phi_m{[state] = phi_mPrev[statel];
Delta_phi[state] = Delta_phiPrev[statel];
}

// If we are doing a punctured Turbo code we substitute the hard parity
// symbol estimate from SOVA #2 so E/L gate correlators can integrate
// all of RxSig (systematic bits plus parity bits for both decoders). If

// unpunctured Turbo then integrate across all three symbols. If SOVA
// only there are just the 2 symbols from this SOVA.

SymML1=SymVal[SymsML][0]; /I systematic symbol
if (TurboMode)
if (Puncture) {
if (t%32) // odd time step
SymML2=s_hat[2*t+1]; // parity symbol from SOVA #2
else

SymML2=SymVal[SymsML][1]; // SOVA 1 parity symbol
} else {
SymML2=SymVal[SymsML][1]; // SOVA | parity symbol
SymML3=s_hat[2%t+1]; /{ parity symbaol from SOVA #2
)

else
SymML2=SymVal[SymsML][1]; // SOVA 1 parity symbol

/f printf(“C: %d %d %d\n”,SymML1,SymML2,SymML3);

// Sum RxSig over block length L for use in DLL, first sum Early Gate

-77 -

re2 = cos(ThetaEst); im2 = -sin(ThetaEst);

for (i=termlre=term1im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index 1+i] * RxRefindex|*0Os+D_ML+DeltaDIl+i*Os];
iml = RxSigIlm[index1+i] * RxRef[index1*Os+D_ML+DeltaDll+i*Os];
termlre += rel*re2-im1*im?2;
termlim += rel*im2+re2*iml;

}

for (i=term2re=term2im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index2+i] * RxRef]index2*0s+D_ML+DeltaD11+i*Os];
im! = RxSiglm[index2+i] * RxRef[index2*0s+D_ML+DeltaDI1l+i*Os];
term2re += rel*re2-im1*im2;
term2im += rel ¥im2+re2*iml;

)

if (TurboMode && !Puncture) {

for (i=term3re=term3im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index3+i] * RxRef[index3*0s+D_ML+DeltaDll+i*Os];
iml = RxSigIm[index3+i] * RxRef[index3*0Os+D_ML+DeltaDl1+1*Os];
term3re += rel*re2-im1*im2;
term3im += rel *im2+re2*iml;

)

SymSumRe[0][state] = SymML1*termlre + SymML2*term2re +
SymML3*term3re + SymSumPrevRe[0][stateML];

} else {

SymSumRe[0][state] = SymMLI*termIre + SymML2*term2re +
SymSumPrevRe[0][stateML];

'
// Sum for Late Gate

for (i=termlre=term lim=0 ; i< Nsamp; i++) {
re] = RxSigRe[index 1+i] * RxRef[index1#*0s+D_ML-DeltaD1l+i*Os];
im1 = RxSiglm[index1+i] * RxRef[index | *Os+D_ML-DeltaDII+i*Os];
termlre += rel*re2-im1*im2;
term lim += rel *¥im2+re2*iml;

)

for (i=term2re=term2im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index2+i] * RxRef[index2*0s+D_ML-DeltaDll+i*Os];
iml = RxSiglm[index2+i] * RxRef|index2*Os+D_ML-DeltaDIl+i*Os];
term2re += rel*re2-im1*im2;
term2im += rel *im2+re2*iml;

J

if (TurboMode && Puncture) {

-78 -

for (i=term3re=term3im=0 ; i< Nsamp; i++) {
rel = RxSigRe[index3+i] * RxRef[index3*Os+D_ML-DeltaDI1+i*Os];
im]1 = RxSigIm[index3+i] * RxReflindex3*Os+D_ML-DeltaD11+i*Os];
term3re += rel*re2-im1*im?2;
term3im += rel *im2+re2*iml;

}

SymSumRe[2][state] = SymML1*termlre + SymML2*term2re +
SymML3*term3re + SymSumPrevRe[2][stateML];

} else {

SymSumRe[2][state] = SymML1*termIre + SymML2*term2re +
SymSumPrevRe[2][stateML];

}

// update DLL and PLL if at block boundary
if((t+1) % BlockLen ==)
{

if(SymSumRe[0][state] > SymSumRe[2][state]) // assume PLL pulled in
DelayEstNext[state] = D_ML+dll_step; /f retard delay

else
DelayEstNext[state] = D_ML-dIl_step; /f advance delay

// reset to 0 and integrate over next block
SymSumRe[0][state] = 0;

/I SymSumRe[1][state] = 0;
SymSumRe[2][state] = 0;

delta_phi[state] = atan2(MX_im([state], MX_re[state])/TwoPi;
2[state] = t2[state] + delta_phi[state];

3[state] = t3[state]+t2[state];

Delta_phi[state] = K1*delta_phi[state] + K2*2[state] + K3*t3[state];
phi_m[state] = phi_m[state| + Delta_phi[state];

} else {
// Propagate Delay Estimate for use in next iteration
DelayEstNext[state] = D_ML;

}

} /* end state loop */

/f update PathMetric, Delay and symbol sum for next time iteration
for(state = 0; state< Nstates; state++)
{

PathMetricCurr|state |=PathMetricNext[state];

DelayEst[state] = DelayEstNext|state];

SymSumPrevRe[0][state] = SymSumRe[0][state]; // early
SymSumPrevRe[1][state] = SymSumRe[|][state]; // middle
SymSumPrevRe[2][state] = SymSumRe[2][state]; // ate

MX_prev_re[state] = MX_re[state];
MX_prev_im[state] = MX_im[state];

-79 -

t2Prev[state] = (2[state];

(3Prev(state]| = t3[state];
Delta_phiPrev|[state] = Delta_phi|state];
phi_mPrev[state] = phi_m[state];

)

if((t+1) % BlockLen == 0) {
for(state=0); state<Nstates; state++) {
MX_prev_re[state] = 0; MX_prev_im(state] = 0,
}
ramp =(;

}

for(state=0; state<Nstates; state++) {
phi_nco[state] = phi_m{[state] - Delta_phi[state]/2 +
ramp*Delta_phi[state]/BlockLen;

}
ramp = ramp+1; // ramp linear phase correction across the block

} // end trace forward, t

/1 if Term = 1 trace back from zero state
//if Term = 2 trace back from state with higest metric */
if (Term==1)
beststate[NUM_BITS] = 0;
else
{
// find best metric
bestmetric = PathMetricCurr[0];
beststate[NUM_BITS] = 0;
for (i=0; i<NUM_STATES; i++)
{
if (PathMetricCurr[i] > bestmetric)
{
bestmetric = PathMetricCurr][i];
beststate[NUM_BITS] = 1;
}
1
1

for ((=NUM_BITS: t>0; t--)
{

est_bits[t] = (prev_bit[t] & bitmap| beststate[t]]) >> beststate[t];

if(est_bits[t])

beststate[t-1] = prevstate 1 [beststate[t]]; // est bit 1
else
beststate[t-1] = prevstateO[beststate[t]]; /f est bit 0

if (TurboMode && !Puncture) {
DespreadSyms[3*t-3]=SysSymMat[beststate[t-1]][t-1];
DespreadSyms[3*#1-2]=ParSym1Mat|beststate[t-1]][t-1];
DespreadSyms[3*t-1]=ParSym2Mat|beststate[t-1]][t-1];
} else {

- 80 -

4

DespreadSyms[2#1-2]=SysSymMat|beststate[t-1]][t-1];
DespreadSyms[2*t-1]=ParSym1Mat[beststate[t-1]][t-1];
}
t

// Find the minimum path metric diff that corresponds to an error path with
// different information bit estimation. For each bit in est(t) check all

/f possible paths up to Delta stages. At each stage the path deviation is

// found by choosing the incorrect bit i.e., the opposite bit from the

// chosen path. The path and bit is indicated in the arrays beststatel[]

// and est_bits[].

for (t=1; t«kNUM_BITS+1; t++) // for each bit find Le

{
lIr = BIG_POS; /I set log-likehood ratio to large number
for (i =0; i<=SOVA_DELTA; i++)
{
if(t+1 < NUM_BITS+1) // do not go past end
{
error_bit = 1-est_bits[t+i]; // force an error at begining of path
beststate_tb = beststate[t+i];
// trace back from bit error
for (j=i; j>0; j--)
{
if(error_bit)
beststate_tb = prevstate | [beststate_tb]; // est bit 1
else
{
beststate_tb = prevstateQ[beststate_tb]; //est bit 0
}
error_bit = (prev_bit[t+j-1]& bitmap[beststate_tb]) >> beststate_tb;
}
/{ after tracing back check if incorrect decision at stage t+1
/f resulted an bit error at stage t.
if (error_bit = est_bits[t])
1Ir = min(lIr, Mdiff] beststate[t+i]][t+1]);
}
}

/f calculate Lall for bit at stage t
/f recall that llr is stored at t-1 while decoded bit is at t
Lall[t-1] = (2*(int)est_bits[t] - 1)*1lr;

1

return(Q);

-81 -

// turbo_dpll.c

I

// call sova_dpll & sova to make turbo decoder with an integrated DLL/PLL
/I

/! Richard C. Ormesher, Jeff Mason, SNL dept. 2344, 9/5/02

#include <stdio.h>

#include “scenario.h” /f simulation constants
#include “turbo_dpll.h” // make sure proto is up to date
#include “sova_dpll.h” /I for sova_dpll_K3 proto
#include “sova.h” /I for sova_K3 proto

#ifdef MATLAB_MEX_FILE
#include “mex.h” /f for mexPrintf()
#endif

int turbo_dpll(NUMTYPE *Lall, NUMTYPE #*RxSigRe, NUMTYPE *RxSiglm,
NUMTYPE *RxRef, int *alpha, int niter, int BlockLen,
int InitDelay, int *TxBits, int dll_step,
int pll_flag, NUMTYPE *pll_params)

/f Lall -- returned log-likehood ratio for estimated bit, sign of Lall
i indicates bit value

// RxSig -- samples of spread spectrum signal

/f alpha -- interleave pattern for decoder 2.

// niter -- number of iterations for sova decoder.

// RxRef -- reference function used to despread symbols

{

NUMTYPE DespreadSyms[NUM_SYMS];
NUMTYPE La[NUM_BITS];

NUMTYPE Le[NUM_BITS];

NUMTYPE SoftSyms 1 [NUM_BITS*2];
NUMTYPE SoftSyms2[NUM_BITS*2];
NUMTYPE TempV[NUM_BITS];

int s_hat[NUM_BITS*2];
int TurboMode; // tell sova_dpll it is part of a turbo code

inti, j, k;
int status, Nerrl, Nerr2;
int Term; /f flag indicating whether trellis is terminated or not

int Puncture=PUNCTURE;
/f printf(“InitDelay=%d \n”, InitDelay);
/{ init extrinsic info and SOVA #2 hard sym estimates for 1st sova_dpll call
for (i=0; i<NUM_BITS; i++)
Le[i]=0;

for (i=0; i<kNUM_BITS*2; i++)
s_hat[i]=0;

-82-

//' loop through niter iterations before decoding data
for (i=0; i<niter; i++)
{
// Decoder 1
// Deinterleave extrinsic info for decoder 1
for (j=0: j<NUM_BITS; j++)
La[alphal[j] | = Le[jl/2; // Le growth control

/if (i==1) for (j=0; j<2*NUM_BITS; j++) printf(“%d\n”,s_hat[j]);

// call sova_dpll

status = sova_dpll(RxSigRe, RxSiglm, La, Lall, Term=1, RxRef, InitDelay,
BlockLen, DespreadSyms, s_hat, TurboMode=1, dll_step,
pll_flag, pll_params);

/f count the bit errors after sova_dpll
Nerrl1=0;
for(j=0; j<NUM_BITS; j++) {
 printf(**%1.8f\n”, Lall[j]);
k= (0O<Lall[j]) ?1:0;
if (k!=TxBits[j])
Nerrl++;

}

// demultiplex the despread symbols that sova_dpll just produced
if (Puncture) {
for (j=0; j<NUM_BITS; j++) {
SoftSyms1[2*j]=DespreadSyms[2*]]; /! systematic bits
SoftSyms2[2*¥j]=DespreadSyms[2*alpha[j]];: // systemalic bils
it (j%2) {

SoftSyms1[2%j+1]=(0; /f punctured bits
SoftSyms2[2*j+1]=DespreadSyms[2*j+1]; M/ parity bits
} else {
SoftSyms1[2*j+1]=DespreadSyms[2*j+1]; // parity bits
SoftSyms2[2#j+1]=0; // punctured bits
}
}
} else {
for (j=0; j<NUM_BITS; j++) {
SoftSyms1[2¥j]=DespreadSyms|[3%j]; /I systematic bits
SoftSyms2[2*j]=DespreadSyms[3*alpha[j]]; // systematic bits
SoftSyms1[2*j+1]=DespreadSyms[3#j+1]; // parity bits
SoftSyms2[2*j+1]=DespreadSyms[3*j+2]; /I parity bits
}

}

for(k=0; k« NUM_BITS; k++) {

Le[k] = Lall[k] - 2*SoftSyms1[2*k] - La[k]:

N oprintf(“% 1.8 %1.8f %1.80\n", Le[k], Lall[k], La[k]);
}

// Decoder 2
// interleave extrinsic info for decoder 2
for (j=0; j<<NUM_BITS; j++) {

-83 -

La[j] = Le[alphalj]];
}

/I call sova
status = sova(SoftSyms2, La, Lall, s_hat, Term=2);

for(k=0; k< NUM_BITS; k++)
Le[k] = Lall[k] - 2*SoftSyms2[2*k] - La[k];

// de-interleave the soft syms in order to count the bit errors
for (j=0; j<NUM_BITS; j++) {

TempV[alpha[j]] = Lall[j];

i printf(*“Lall[%d]=%15.5f, s_hat[%d]=%3d\n", j, Lall[j], j, s_hat[j]);
}

// count the bit errors this iter
Nerr2=();
for(j=0; j<NUM_BITS; j++) {
/ printf(“ %2d, TempV[j]l=%0n", j, TempV/[j]);
k= (0<TempV[jD) 71 : 0;
if (k!=TxBits[j])
Nerr2++;

)

printf(** iter %2d, Lall[0]=% | .6f, Nerr1=%d, Nerr2=%d\n",
i+1, TempV[0], Nerrl, Nerr2);

if (Nerr2==0) break; // cheat to save simulation time

}

/I Estimate data bits from sign of Lall, use Le as temp array to deinterleave
for (j=0; j<NUM_BITS; j++)
Le[alpha[j]] = Lall[j];

for (j=0; j<NUM_BITS; j++)
Lall[j] = Le[jl;

return(0);

_84 -

// encode_rsc.c

//

/! void encode_rsc(int *data,

/! int *codeword,

1 int Terminate)

1

/1 ABSRACT -- used to recursive systematic convolve (RSC) info bits
1 contained in data, up to a constraint length of 7

i

/{ INPUT

// data -- infomation bits, each int in the array contains a 1 or 0.

I Length of data must include room for K-1 tail bits if

I Terminate is True.

/{ Terminate -- boolean, if set indicates to Terminate encoder state to 0.
I Tail bits are added to the data such that the encoder

I ends with all zeros in shift register.

I

/I RCO, JIM 10/16/02

#include “encode_rsc.h” // this guarantees that the proto is up to date
#include “scenario.h” // for NUM_BITS and g1 & g2
#include <stdio.h>

// Partab is a LUT for the binary output of a 7 input mod-2 adder, the 7
// inputs are packed to form the index into table. Note max index is 2"7=128
/{ to accomodate K=7, K=3 only could be just the first row.

static unsigned char Partab[] = {
0,1,1,0, 1,0,

0,1
1,0,0,1,0,1, 1,0,
1,0,0,1,0, 1, 1,0,
0,1,1,0,1,0,0,1
1,0,0,1,0,1, 1,0,
0,1,1,0.1,0,0,1,
0,1,1,0,1,0,0,1,
1,0,0,1,0,1, 1,0,
1,0,0,1,0,1, 1,0,
0,1,1,0,1,0,0, 1,
0.1,1,0,1,0,0,1
1,0,0,1,0,1, 1,0,
0,1,1,0,1,0,0, 1,
1,0,0,1,0,1,1,0,
1,0,0,1,0,1, 1,0,
0,1,1,0,1,0,0,1

f—

void encode_rsc(int *data,
int *codeword,
int Terminate)

{
int e,i;
int Ntail=CONSTRAINT_LENGTH-1;
int Nbits=NUM_BITS;

-85 -

int g1=RSC_G_1, g2=RSC_G_2; //defined in scenario.h
int Fb, state2, state=0;

for(i=0;i<Nbits;i++)

{

if (i > Nbits-Ntail-1 && Terminate)

{
// Terminate to zero state by changing tail bits so that Fb will be zero.
data[i] = Partab[state & gl];

}

if(data[i] == 0)
{
// info bit = 0, bit 0 of state remains zero
Fb = Partab[state & g1]; // feedback symbol
codeword[2*i] = 0; // info bit
}
else
{
/! info bit = 1, bit O of state is set to 1
Fb = Partab|(state+1) & g1]; // Fb is the feedback symbol for gl input

codeword[2*1] = 1; /f info bit

}
state2 = state | Fb; /f input Fb into the shift register
¢ = Partab[state? & g2]; // get parity generated by g2
codeword[2*i+1] = e; // parity bit

state = 2*state2; // update state, gl & g2 will mask out old bits

-86 -

// use code from Sergio Benedetto, IEEE Tran on Comm, Vol 46 No 9, Sept 1998

/f return prevstate(, prevstatel, prevsym(& prevsyml
/"

/f gen_tables.c
i

"

/I RCO, JIM

// for CONSTRAINT_LENGTH, NUM_STATES. G1 and G2

// make sure proto is up to date

#include “scenario.h”

#include “gen_tables.h”

// Partab[n] is the mod 2 sum of the binary digits of n

D Ll R e e e]
S R L R R R R R - R
S-S SddS-diS -~~~ S-S SSSSS
R L e e R R R e R e e R R]
S-S SddSSdd S ASSSSSSdSSds=SSSSSS~
SN SSSddASdSddSd S-S IS SSSSS S-S
S d-S i8S S5-I S-S dSSSSSSSSS =SS
SIS S-SSd-SdS-SS S8 -SgS S-S S SSSH

static unsigned char Partab

——

int gen_tables(int *prevstate(), int *prevstatel, int *prevsymO, int *prevsyml)
p p p P

int e, i, Mask=0,

int gl

RSC_G_2, Fb, state2;

RSC_G_l ’ g2=

- 87 -

}

int nextstateQ]NUM_STATES], nextstate | [NUM_STATES];
int parityO[NUM_STATES], parity | [NUM_STATES];

for (i=0;i<CONSTRAINT_LENGTH-1;i++)
Mask=(Mask<<1)[0x1;

for(i=0;i<NUM_STATES;i++)
{

/* 1 is the state of the shift reg, 2*i shifts a zero in lsb */

/* info bit = 0 %/
Fb = Partab[2*i & gl]; /* Fhb is the feedback symbol for g2 input */

state2 = 2*i | Fb; /#input for second operation with g2 */
e = Partab[state2 & g2]; /* get parity for feedback with g2 */
parityO[i] = e; /* parity bit */

nextstateO[i] = ((i<<1)|Fb)&Mask; /* shift Fb into state register®/

/#info bit= 1 */
Fb = Partab[(2%i+1) & gl]; /* Fb is the feedback symbol for g2 input */

state2 = 2*i | Fb; /* input for second operation with g2 */
e = Partablstate? & g2]; /* get parity for feedback with g2 */
parityl[i] = e; /* parity bit */

nextstate1[i] = ((i<<1)|Fb)&Mask; /* shift Fb into state register */

}

/I get previous state given current state and sym
for (i=0; i<NUM_STATES; i++)
{

prevstate0[nextstateO[i] | =1;

prevstatel[nextstatel[i] | =i:

}

for (i=0; i<NUM_STATES; i++)
prevsymO[i]=parityO[prevstateO[i]];

for (i=0; i<NUM_STATES; i++)
prevsym | [i]=2+parity | [prevstate 1[i]];

return(0);

-88 -

=

{{ encode_turbo.c

"

/1 int encode_turbo(int *TxSym, int *Data, int *Alpha)

1/

// ABSRACT

/"

// Generate 1/2 or 1/3 Rate turbo code using Alpha as interleaver.
{/ Results are in TxSym. Turbo encoder uses two RSC encoders.
i

// INPUT

/)

/I Data -- data bits to be encoded - length must include room for tail,
/I i.e. length is NUM_BITS, which is defined in scenario.h

/

/{ Alpha -- interleave pattern, i.e. random indices, length NUM_BITS
"

/ OUTPUT

/"

/- TxSym -- encoded symbols

"

/' For Punctured code

" TxSym = [dl, s11, d2 822, d3, s13, d4 524 ..

/{ For non-punctured code

1t TxSym = {d1, s11,s21,d2, 512,522, d3, 513,523, d4 ...

"

I where d1, d2, ... are info bits; s11, s12, .. are parity symbols

7 from first encoder; and s21, s22 are parity from second encoder.
"

/ RCO, IIM 4/30/02

#include <stdio.h>

#include “encode_turbo.h™ // this guarantees that the protos are up to date
#include “encode_rsc.h”
#include “scenario.h” // for NUM_BITS and g1 & g2

/f declare working arrays for encoding
static int codeword [[NUM_BITS*2];
static int codeword2[NUM_BITS*2];
static int data_int[NUM_BITS];

int encode_turbo(int *TxSym, int *Data, int * Alpha)
{

int i, Nbits=NUM_BITS;

int Puncture=PUNCTURE;

int Terminate;

/I get codeword from first encoder and add tail to Data
encode_rsc(Data, codeword], Terminate=1);

/{ interleave data bits
for (i=0; i<Nbits; i++)

-89 -

data_int{i] = Data[Alpha[i}];

/I get codeword for second encoder

encode_rsc(data_int, codeword2, Terminate=0);

// create complete codeword
if(Puncture)
{
{1 Create punctured rate = 1/2 code
for (i = 0; i<Nbits; i=i+2)
{
TxSym[2*i] = Datali];
TxSym[2*i +1] = codeword [[2*i+1];
1
for (i = 1; i<Nbits; i=i+2)
{
TxSym[2#i] = Datali];
TxSym[2*i +1] = codeword2[2*i+1];
}
)
else
{
/I create non-punctured rate 1/3 code
for (i=0; i<Nbits; i++)
{
TxSym[3%*i] = Data[i];
TxSym[3*i +1] = codeword 1 [2¥i+1];
TxSym([3*i +2] = codeword2[2¥i+1];
)
}

return{0);

-90 -

-

/{ run_turbo_dll.c

/f

/I call gen_turbo_sig() and turbo_dll()
i

/{ JIM, RCO 5/7/02

#include <stdio.h>
#include <stdlib.h> /I for exit
#include <math.h> // for M_PI, sin, cos, sqrt

#include “scenario.h”
#include “gen_turbo_sig.h”
#include “turbo_dlIl.h”
#include “turbo_dpll.h”
#include “indexx.h”
#include “rng.h”

#include “turbo_dpll.h”
NUMTYPE RxSigRe[NUM_SAMP_IN_SIG];
NUMTYPE RxSigim[NUM_SAMP_IN_SIG];

NUMTYPE RxChips[NUM_SAMP_IN_SIGJ;
NUMTYPE RxRef[NUM_SAMP_IN_REF];

int main()

{

double EbNOdB = 1.0;

double TxClockError = 5e-6;

double A=1;

double CodeRate = CODE_RATE;
double EbNO, EsNO, SNR, Sigma, Noise;

int BlockLen=20; // number of symbols integrated for each PLL and DLL step
int dll_step=1; // have dll step this many reference samples at a time
int Niter=10; // max number of turbo algorithm iterations

NUMTYPE La[NUM_BITS];
NUMTYPE Lall[NUM_BITS];

/I NUMTYPE pll_params[3]={0.5463, 0.1768, 0.02470}; // under-damped 0.4 BLT
NUMTYPE pll_params[3]={0.3599, 0.06842, 0.005269}; // under-damped 0.2 BLT

int TxBitsNUM_BITS];
int RxBits[NUM_BITS];
int Alpha[NUM_BITS];
int TxSyms[NUM_SYMS];

int NumBits = NUM_BITS; /I info plus tail bits
int NumSyms = NUM_SYMS;

int Nspc = NUM_SAMP_PER_CHIP;

int OS = REF_OVER_SAMP;

int K = CONSTRAINT_LENGTH;

int Lsig = NUM_SAMP_IN_SIG;

-9] -

int Lref = NUM_SAMP_IN_REF;
int Ns=NUM_SAMP_PER_SYM,;
int Nc = NUM_CHIP_PER_SYM;
int Puncture = PUNCTURE;

int i, n, Nerror;

int NumBlocks;

int delta_clock;

int Nf=0OS*8;

int InitDelayEst=Nf+5-1; // hand tweak group delay

double Pi = M_PI;
double RxPhase;
double t=0, dt, delta_tot_phase;

int pll_flag=1; // 0 turns PLL off, Gam should be 0 for this case
double Gam=5; //linear phase rate

printf(“size of NUMTYPE = %d bytes\n”, sizeof(NUMTYPE)),
printf(“Ninfo = %d \n”, NUM_INFO);

printf(“K = %d\n”, K);

printf(“Puncture = %d, CodeRate = %g \n”, Puncture, CodeRate);
printf(*NumBits = %d \n”, NumBits);

printf(“NumSyms = %d \n”, NumSyms);

printf(*Nec = %d \n”, Nc);

printf(“Nspc = %d \n”, Nspc);

printf(*OS = %d \n”, OS);

printf(*gl = %#0x, g2 = %#0x\n”, RSC_G_1, RSC_G_2);
printf(*“dll_step = %d \n”, dll_step);

printf(“pll_flag = %d\n” pll_flag);

printf(“InitDelayEst = %d \n”, InitDelayEst);
printf(“Niter=%d\n",Niter);

printf(*K1=%f, K2=%f, K3=%1\n",pll_params[0],pll_params[1],pll_params[2]);

/{ Print the number of reference samples of clock drift over the signal, this

// is the no. of clicks the DLL must move, and must be less than NumBlocks.
NumBlocks=ceil((double)NumBits/BlockLen);
delta_clock=ceil(TxClockError*Nc*NumSyms*Nspc*0S);
printf(“BlockLen = %d \n”, BlockLen);

printf(“delta_clock = %d\n”,delta_clock); // units are reference samples
printf(“NumBlocks=%d\n",NumBlocks);

// Print clock drift as the fractional rate, eg chips/chip, and in terms of
// the number of chips of adjustment that will be required of the DLL.
printf(“TxClockError=%g\n”, TxClockError);

printf(*delta_clock = %1.1f chips\n”,(double)delta_clock/(Nspc*0O8S));

if (delta_clock>NumBlocks*dll_step) {
printf(“decrease BlockLen, there are not enough blocks™);
return(2);

}

// RNGs are set both here for sig_gen and further below for some particular
// iteration from run_turbo_dll.m

-92 -

set_useed(0); set_nseed(0);
printf(“sig gen seeds: %u, %u\n”, get_useed(), get_nseed());

gen_turbo_sig(TxClockError, Nf, Alpha, TxBits, TxSyms, RxChips, RxRef);

EbNO=pow(10,EbNOdB/10);

EsN0=CodeRate*EbNO;

SNR = EsNO/Ns; // Input SNR at A/D bandwidth; Es/NQ - Gain
Sigma = A/sqrt(2*SNRY);

printf(“EbNO=%g dB\n”,EbNOdB);

printf(“Lsig = %d, Lref = %d\n”, Lsig, Lref);

printf(“Gam = %f\n”,Gam);

delta_tot_phase=Gam/2; // total cycle of phase, assume sig is 1 sec long
dt=1.0/Lsig; // time step, use this for now

printf(“delta_phase = %f cycles\n”, delta_tot_phase);

printf(“delta_phase = %f cycles/block\n”, delta_tot_phase/NumBlocks);

set_useed(0); set_nseed(0);
printf(“iteration seeds: %u, %u\n”, get_useed(), get_nseed());

for (i=0; i<NumBits; i++)
La[i] = 0;

for (n=0; n<Lsig; n++) {
RxPhase=Pi*Gam*t*t;
t+=dt;
Noise=Sigma*gasdev();
RxSigRe[n] = A*RxChips[n]*cos(RxPhase)+Noise:
Noise=Sigma*gasdev();
RxSiglm[n] = A*RxChips[n]*sin(RxPhase)+Noise;

turbo_dpll(Lall, RxSigRe, RxSiglm, RxRef, Alpha, Niter, BlockLen,
InitDelayEst, TxBits, dll_step, pll_flag, pll_params);

/f for(n=0; n<NumBits; n++) {
/- printf(*%20.14e \n”, Lall[n]);
i}

Nerror=0;
printf(“Error Indices: “);
for(n=0; n<NUM_BITS; n++) {
RxBits[n] = (O<Lall[n]) 7 1 : 0;
if (RxBits[n]!=TxBits[n]) {
Nerror++; /{ which bits were in error ?
printf(“%d “,n+1); // number bits from | to compare to Matlab
1

}
printf(“\n”);

printf(*“Nerror=%d\n",Nerror);

return{0);

-93 -

- 94 -

/ sova.c

1

/1 soft output viterbi algorithm decoder

/

/1 adapted from Yufei Wu’s sova0.m and Phil Karn’s C-code
I

// Richard C. Ormesher, Jeff Mason, SNL dept. 2344, 9/5/02

#include <stdio.h>

#include “scenario.h”

#include “gen_tables.h”

#include “sova.h” /1 include proto to guarantee its consistency

#ifdef MATLAB_MEX_FILE
#include “mex.h”
#endif

static int prevsymO[NUM_STATES];
static int prevsym1[NUM_STATES];
static int prevstateO[NUM_STATES];
static int prevstate | [NUM_STATES];

/I i -- current state
/I sym0 -- symbol weight for info bit =0
/' syml -- symbol ewight for info bit =]
#define BUTTERFLY (i,sym0, sym1) {\
s0 = prevstateO[i]; \
sl = prevstatel[i]; \
mO = pathmetric_curr[s0] + mets[sym0] - La[t]/2; \
m1 = pathmetric_curr[s1] + mets[sym1] + La[t]/2; \
ift m0>mij {}
pathmetric_next[i] = mO;\
Mdiff[i][t+1] = m0O-m1; /* bit at state i defaults to 0 */\
A
else {\
pathmetric_next[i] = m1;\
Mdiffli][t+1] = m1-mO; \
if 1 <NUM_STATES_2)\
prev_bit_lo[t+1] |= bitmap[i]; /* set bit at state i to 1 */\
else\
prev_bit_hi[t+1] |= bitmap[i-NUM_STATES_2]; \
M\
1

static NUMTYPE mets| NUM_STATES], m0, m1, lIr, bestmetric;
static NUMTYPE pathmetric_currffl NUM_STATES];

static NUMTYPE pathmetric_next{NUM_STATES];

static NUMTYPE Mdifff NUM_STATES][NUM_BITS+1];

static unsigned prev_bit_lo|[NUM_BITS+1];

static unsigned prev_bit_hi[NUM_BITS+1];

static unsigned char est_bitsINUM_BITS+1], error_bit;

static unsigned bitmap[NUM_STATES]; static int tables_ready = 0;
static int beststate[NUM_BITS+1], beststate_tb;

static int SYMVAL[4]{2]={ {-1, -1}, {-1, 1}, {I,-1}, {1, 1}};

- 95

int sova(NUMTYPE *symbols, NUMTYPE *La, NUMTYPE *Lall,
int *s_hat, int termination)

int1i, j, t, state, s0, s1 ;

if (!tables_ready) { // init tables on first call
tables_ready=1;
gen_tables(prevstate(, prevstate |, prevsym(, prevsym1);
for (i=0, bitmap[0]=1; i<KNUM_STATES-1; i++)
bitmap[i+1] = bitmap[i] * 2;
}

// Initialize path metric
for(state = 0; state<NUM_STATES; state++) {
pathmetric_curr[state] = BIG_NEG; // setto large neg number

1
pathmetric_curr[0] = 0; /{ start with state 0

// init prev_bit

for(t=0; t<NUM_BITS; t++) {
prev_bit_lo[t] = 0;
prev_bit_hi[t] =0;

}

/f Trace forward for t =0 to NUM_BITS

for (t=0; t<NUM_BITS; t++) {
/{ calculate transistion metric to t+1
/{ this means that decoded bits start at t=1
mets[0] = -symbols[2*L] - symbols[2¥t+1];
mets| 1] = -symbols[2*t] + symbols[2¥t+1];
mets[2] = +symbols[2¥t] - symbols[2*t+1];
mets[3] = +symbols[2*1] + symbols[2*t+1];

/f for stage t+1 set all bits at each state to zero
prev_bit_lo[t+1] = 0;
prev_bit_hi[t+1] = 0;

// calcuate metric at next state
for (state=0; state<NUM_STATES; state++)
BUTTERFLY((state, prevsymO[state], prevsym1[state]);

for (state=0; state<NUM_STATES; state-++)
pathmetric_curr|state]=pathmetric_next[state];

} // end trace forward
// if termination = | trace back from zero state
// if termination = 2 trace back from state with highest metric

if (termination == 1)
beststate[NUM_BITS] = ();

- 96 -

else {
// find best metric
bestmetric = pathmetric_curr[0];
beststate[NUM_BITS] = 0;
for (1=0; i<NUM_STATES; i++) {
if (pathmetric_curr[i] > bestmetric) {
bestmetric = pathmetric_curr(i];
beststate[NUM_BITS] =1;
}
}
}

/f trace back for end and get estimated bit value at each interval
for (t=NUM_BITS; t>0; t--) {

if (beststate[t] < NUM_STATES_2)
est_bits[t] = (unsigned char)
((prev_bit_lo[t] & bitmap[beststate[t]]) >> beststate[t]);
else
est_bits[t] = (unsigned char)
((prev_bit_hi[t] & bitmap[beststate[t]- NUM_STATES_2]) >>
{beststate[t]-NUM_STATES_2));
if (est_bits[t]) {
beststate[t-1] = prevstate 1 [beststate[t]]; /{ est bit 1
s_hat[2*t-2] = 1, /1 systematic bit
s_hat[2#t-1] = SYMVAL[prevsym1[beststate[t]]][1]; // parity bit
} else {
beststate[t-1] = prevstateO[beststate[t]]; /{ est bit O
s_hat[2*t-2] = -1; /I systematic bit
s_hat[2*t-1] = SYMVAL[prevsymO[beststate[t]]][1]; // parity bit
}
1

// Find the minimum SOVA_DELTA that corresponds to an error path with
// different information bit estimation. For each bit in est(t) check all

// possible paths up to Delta stages At each stage the path deviation is

// found by chossing the incorrect bit i.e., the opposite bit {rom the

/f chossen path. The path and bit is indicated in the arrays beststate[]

// and est_bits[].

for (t=1; t<NUM_BITS+1; t++) { // for each bit find Le

lIr = BIG_POS; /1 set log-likehood ratio to large number
for (i =0; i<=SOVA_DELTA; i++) {
if(t+i < NUM_BITS+1) { / do not go past end

error_bit = 1-est_bits[t+i]; / force an error at begining of path
beststate_tb = beststate[t+i];

// trace back from bit error
for (j=i; j>0; j-) {
if(error_bit)
beststate_tb = prevstate I [beststate_tb]; // est bit |
else {

-97 -

beststate_tb = prevstateO[beststate_tb]; //est bit 0
}
if(beststate_tb < NUM_STATES_2)
error_bit = (unsigned char)
((prev_bit_lo[t+j-1]& bitmap[beststate_tb]) >> beststate_tb);
else
error_bit = (unsigned char)
((prev_bit_hi[t+j-1]& bitmap[beststate_tb-NUM_STATES_2]) >>
(beststate_tb-NUM_STATES_2));
1
/f after tracing back check if incorrect decion at stage t+i
/f resulted an bit error at stage t.
if (error_bit !'= est_bits[t])
lIr = min(lIr, Mdiff] beststate[t+i]][t+i]);

1/ end if
} end fori

// calculate Lall for bit at stage t
// recall that llr is stored at t-1 while decoded bit is at t
Lall[t-1] = (2*(int)est_bits[t] -1)*1lr;

} #/ end for t

return(0);

- 08 -

/! turbo.c
I
/I RCO, IIM 4/30/02

#include <stdio.h>

#include “scenario.h”

#include “turbo.h” // make sure proto is up to date
#include “sova.h”

#ifdef MATLAB_MEX_FILE
#include “mex.h”
#endif

int turbo(NUMTYPE *Lall, NUMTYPE *RxSym, int *alpha, int niter, int * TxBits)
// Lall -- returned log-likehood ratio for estimated bit, sign of Lall

I indicates bit value, length NUM_BITS

// RxSym -- soft symbols for decoders: ui, pli, p2i, ui+1 ... length NUM_SYMS

/f alpha -- interleave pattern for decoder 2, length NUM_BITS

// niter -- number of iterations for sova decoder.

// TxBits -- the binary data bits that were transmitted, used only to print

I the number of bit errors at each turbo iteration, length NUM_BITS

{

static NUMTYPE rec_s_1[NUM_BITS*2];
static NUMTYPE rec_s_2[NUM_BITS*2];
static NUMTYPE La[NUM_BITS];

static NUMTYPE Le[NUM_BITS];

static NUMTYPE TempV[NUM_BITS];

int puncture=PUNCTURE;
int i, j, k, status=0;

int Nerrl, Nerr2;

int s_hat[NUM_BITS*2];

/I get symbols for decoder | and decoder 2
if (puncture == 1)
{
/I if puncture == 1 then code is 1/2 rate
for (i=0; i<NUM_BITS; i++)

{
rec_s_1[2*i] = RxSym[2*i]; // info bit for encoder 1
rec_s_2[2*i] = RxSym[2*alphali]]; // interleave info bits for encoder 2
if (i%2) {
rec_s_1[2*i+1]=0; // punctured sym gets a 0
rec_s_2[2%i+1] = RxSym[2*i+1]; // copy parity sym
1 else {
rec_s_1[2*i+1] = RxSym[2*i+1]; // copy parity sym
rec_s_2[2*i+1]=0; /f punctured sym gets a
}
}
}
else

-909 .

{
/1 if punture ~=1 then code is 1/3 rate
for (i=0; i<kNUM_BITS; i++)
{
rec_s_1[2%i] = RxSym[3*i]; /{ info bits
rec_s_2[2*i] = RxSym[3*alpha[i]]; //interleave info bits for encoder 2

rec_s_1[2*i+1] = RxSym[3*i+1]; / symbols from encoderl
rec_s_2[2*i+1] = RxSym[3*i+2]; // symbols from encoder 2
}
}

J/ Initialise extrinsic information to zero
for (i = 0; i<NUM_BITS; i++)
Le[i] = 0;

/1 loop trough niters iterations before decoding data
for (i=0; i<niter; i++)

{

/f Deinterleave extrinsic info for decoder |
for (j=0; j<NUM_BITS; j++)
La[alphalj]] = Le[j1/2; /l Le growth control

/f call sova
status = sova(rec_s_1, La, Lall, s_hat, 1);

// count the bit errors after sova 1
Nerrl=(0,
for(j=0; j<NUM_BITS; j++) {
k = (O<Lall[j]) 7 1: 0;
if (k!=TxBits[j]}
Nerrl++;

)

for(k=0; k< NUM_BITS; k++)
Le[k] = Lall[(k] - 2*rec_s_1[2¥k] - La[k];

// Interleave extrinsic info for decoder 2
for (j=0; j<NUM_BITS; j++)
La[j] = Le[alphal[j]l;

/f call sova
status = sova(rec_s_2, La, Lall, s_hat, 2);
for(k=0; k< NUM_BITS; k++)

Le[k] = Lall[k] - 2*rec_s_2[2*k] - La[k];

/f de-interleave the soft syms in order to count the bit errors
for (j=0; j<NUM_BITS; j++)
TempV| alphalj] | = Lall[j];

// count the bit errors this iter

Nerr2=0;
for(j=0; j<NUM_BITS; j++) {

- 100 -

k = (0<TempV[j}) ? 1 :0;
if (k!=TxBits[j]) {
/ printf(*™ %2d, TempV[j]=%f\n", j, TempV[j]);
Nerr2++;
}
}

#ifdef FIXED

/1 printf(* iter %?2d, Lall[0]=%d, Nerr2=%d\n", i+1, TempV[0], Nerr2);
#else

/! printf(* iter %2d, Lall[0]=%e, Nerr1=%d, Nerr2=%d\n",

I i+1, TempV([0], Nerrl, Nerr2);
#endif

if (Nerr2==0) break; // cheat to save simulation time

}

/f Estimate data bits using sign of Lall
/! return deinterleaved Lall, use Le as temp array

for (j=0; j<NUM_BITS; j++)
Le[alphalj]] = Lall[j];

for (j=0; j<NUM_BITS; j++)
Lall[j] = Le[jI;

return(status);

- 101 -

/f dpll.c

"

/I C implementation of dpll.m, a plain old DLL/PLL
"

/I RCO, JIM 10/23/02

#include <stdio.h>

#include <math.h> // M_PIL, cos, sin, atan2
#include “scenario.h” // simulation constants
#include “dpll.h” // make sure proto is up to date

void dpll{ NUMTYPE *SoftSyms, int pll_mode, int init_delay,
NUMTYPE #*RxSigRe, NUMTYPE *RxSiglm, int dll_step, NUMTYPE *RxRef,
int Nacq, NUMTYPE K1, NUMTYPE K2, NUMTYPE K3, NUMTYPE K4, int OS)

int m, n, k, D=init_delay;

int NumSyms=NUM_SYMS;

int Ns=NUM_SAMP_PER_SYM;
int maxi, SigIndex, Reflndex;

NUMTYPE TwoPi =2.0* M_PI; // from math.h

NUMTYPE ys_re, ys_im;

NUMTYPE maxv, phi_nco;

NUMTYPE phi_m[NumSyms];

NUMTYPE phi_start{[NumSyms];

NUMTYPE DELTA_phi[NumSyms];

NUMTYPE DTPP, delta_phi;

NUMTYPE rel, iml, re2, im2; /f working variables for doing complex ops
NUMTYPE EML[3][2]; /I E.M,L correlators (summers)
NUMTYPE v[3],

NUMTYPE t2=0), t3=0, t4=0;

phi_m[0]=0;
phi_start[0]=0;
DELTA_phi[0]=0;

/f init Early, Middle and Late gate summers
for (k=0; k<NumSyms; k++) {

DTPP = DELTA_phi[k]/Ns; // calculate DELTA_phi per sample point
for (m=0; m<3; m++)

for (n=0; n<2; n++)

EML[m][n]=0; // init E,M,L correlators (summers}

for (n=0; n<Ns; n++) {

phi_nco = phi_start[k] + DTPP*n; // phase units of cycles

Siglndex = k*Ns+n; /f calculate index into signal

rel = RxSigRe[Siglndex];

iml = RxSigIm[SigIndex];
re2 = cos(TwoPi*phi_nco);

- 102 -

7

im2 = sin(-TwoPi*phi_nco);

ys_re = rel*re2 - im1%im2;
ys_im = rel*im2 + re2*im1;

Reflndex = SigIndex*0S+D; // calculate index into reference function

EML[0][0] += RxRef[RefIndex-OS]*ys_re; // early real
EML[0][1] += RxRef[Reflndex-OS]*ys_im; // early imag
EML][1]]0] += RxRef[Reflndex]*ys_re; // middle real
EML[1][1] += RxRef[RefIndex]*ys_im; // middle imag
EML[2][0] += RxRef[RefIndex+OS]*ys_re; // late real
EML[2][1] += RxRef[Reflndex+0S]*ys_im; //late imag

}

v[0]=EML[0][0]*EML[O][0]+EML[O][1]*EML[O][1]; // early mag sqr
v[1]=EML[1][0]*EML[1][0]+EMLI[1][1]*EML[1][1]; // middle mag sqr
v[2]=EML[2][0]*EML[2][0]+EMLI[2][1]*EMLI[2][1]; //late mag sqr

for (maxv=maxi=n=0; n<3; n++) { // find max value and index
if (v[n] > maxv) {
maxv=v[n];
maxi=n;
}
}

// calc delta phi over last symbol, use the max val so that PLL pulls in
delta_phi = atan2(EML[maxi][1], EML[maxi][0]) / TwoPi;

/f Use the middle value because its the best guess at where the signal is.
// We assume that the DLL has pulled in by the time data modulation begins.
SoftSyms[k] = EML[1][0]/sqrt(v[1]);

{f Compute the BPSK Data and flip phase if Data is a -1 (recall delta_phi is
/1 in cycles per sym). Perform 0/pi demod after the Nacq preamble symbols,
/ this keeps delta_phi in quadrants 1 and 4, ie -0.25 <= delta_phi <= 0.25
if (k+1 > Nacq) {

if (delta_phi > 0.25)
delta_phi -= 0.5:

if (delta_phi < -0.25)
delta_phi +=0.5;

}
// compute next DLL step, delta_t
if (v[0] > v[2])

D -=dll_step; // retard delay

else
D +=dll_step; //advance delay

- 103 -

/f Compute terms for pll filter
12 += delta_phi;

3 +=t2;

t4 +=t3;

// estimate phase-rate in cyc/symbol
DELTA_phi[k+1] = K1*delta_phi + K2%t2 + K3*t3 + K4*4;

/f update next midbit phase estimate and calculate next starting NCO phase
if (pll_mode == 1) {
// model phase is computed but not used in rate only feedback
phi_m[k+1] = phi_m[k] + (DELTA_philk] + DELTA_phi[k+1])/2;
phi_start[k+1] = phi_start[k] + DELTA_phi[k];
} else if (pll_mode == 2) {
/ update model phase and find start phase given rate and midbit value
phi_m[k+1] = phi_m[k] + DELTA_phi[k+1];
phi_start[k+1] = phi_m[k+1] - 0.5*DELTA_phi[k+1];
} else {
printf(*“dpll.c: invalid pll_mode/n™);
}

- 104 -

1¢]

{{ run_dpll_then_turbo.c

/

/f call gen_turbo_sig(), dpll() and turbo()
/7

/1 IIM, RCO 5/7/02

#include <stdio.h>
#include <stdlib.h> /f for exit
#include <math.h> /{ for M_PI, sin, cos, sqrt

#include “scenario.h”
#include “gen_turbo_sig.h”
#include “dpll.h”

#include “rng.h”

#include “turbo.h”

NUMTYPE RxSigRe[NUM_SAMP_IN_SIG];
NUMTYPE RxSiglm{NUM_SAMP_IN_SIG};
NUMTYPE RxChips[NUM_SAMP_IN_SIG];
NUMTYPE RxRef[NUM_SAMP_IN_REF];

int main()

{

double Gam = 10;

double EbNOdB = 4;

double TxClockError = le-5,

double CodeRate = CODE_RATE;

double EbNO, EsNQ, SNR, Sigma;

double Pi = M_PI, RxPhase;

double A=1, t=0, dt, delta_tot_phase;

double K1=0.04996, K2=0.001133, K3=9.72¢-6, K4=0;

int pll_mode=2; // mode 2 is phase and phase-rate

int dll_step=1; // have dll step this many reference samples at a time
int Niter=10; // max number of turbo algorithm iterations

int Nacq =0; // no acq symbols to track

NUMTYPE La|[NUM_BITS];
NUMTYPE Lall[NUM_BITS];
NUMTYPE SoftSyms[NUM_SYMS];

int TxBits| NUM_BITS];
int RxBits| NUM_BITS];
int Alpha[NUM_BITS];
int TxSyms[NUM_SYMS];
int RxSyms[NUM_SYMS];

int NumBits = NUM_BITS; // info plus tail bits
int NumSyms = NUM_SYMS;

int Nspc = NUM_SAMP_PER_CHIP;

int OS = REF_OVER_SAMP;

int K = CONSTRAINT_LENGTH;

- 105 -

int Lsig = NUM_SAMP_IN_SIG;
int Lref = NUM_SAMP_IN_REF,
int Ns=sNUM_SAMP_PER_SYM;
int Nc = NUM_CHIP_PER_SYM;
int Puncture = PUNCTURE;

int 1, n, Nerror;

int delta_clock;

int Nf=0OS8*8§;

int InitDelayEst=Nf+7-1; // hand tweak group delay

float Noise;

/{ RNGs are set both here for sig_gen and further below for “iters”,
// to give same results as run_dpll_then_turbo.m

set_useed(0); set_nseed(0);

printf(“Ninfo = %d \n”, NUM_INFO);
printf(“K = %d \n”, K);

printf(*“Puncture = %d, CodeRate = %g \n”, Puncture, CodeRate);
printf(*“NumBits = %d \n”, NumBits);
printf(“NumSyms = %d \n”, NumSyms);
printf(“Nc = %d \n”, Nc);

printf(“Nspc = %d \n”, Nspc);

printf(*OS8 = %d \n”, OS);

printf(**dll_step = %d \n”, dll_step);
printf(“pll_mode = %d \n”, pll_mode);
printf(“InitDelayEst = %d \n”, InitDelayEst);
printf(“Niter=%d\n" Niter);

delta_clock=ceil(TxClockError*Nc*NumSyms*Nspc*0S);
printf(“delta_clock = %d ref samps\n”,delta_clock);

// Print clock drift as the fractional rate, eg chips/chip, and in terms of
// the number of chips of adjustment that will be required of the DLL.
printf(“TxClockError=%g\n”, TxClockError);

printf(“delta_clock = % 1.1f chips\n”,(double)delta_clock/(Nspc*OS));

gen_turbo_sig(TxClockError, Nf, Alpha, TxBits, TxSyms, RxChips, RxRef);

EbNO=pow(10,EbNOdB/10);

EsNO=CodeRate*EbNO;

SNR = EsNO/Ns; // Input SNR at A/D bandwidth; Es/NO - Gain
Sigma = A/sqrt{2*SNR);

printf(“EbNO=%g dB\n”,EbNOdB);

printf(“Lsig = %d, Lref = %d\n”, Lsig, Lref);

printf(*Gam = %f\n”,Gam);

delta_tot_phase=Gam/2; // total cycle of phase, assume sig is 1 sec long
dt=1.0/Lsig; /f time step, use this for now

printf(“delta_phase = %f cycles\n”, delta_tot_phase);

printf{ “delta_phase = %f cycles/sym\n”, delta_tot_phase/NumSyms);

- 106 -

3

for (i=0; i<NumBits; i++)
La[i]=0;

set_useed(0); set_nseed(3614762644UL); // set RNGs for some particular iter

for (n=0; n<Lsig; n++) {
RxPhase=Pi*Gam**t;
t += dt;
if (EbNOdB<100) {
Noise = Sigma*gasdev();
RxSigRe[n] = A*RxChips[n]*cos(RxPhase)+Noise;
Noise = Sigma*gasdev();
RxSiglm[n] = A*RxChips[n]*sin{RxPhase)+Noise;
} else {
RxSigRe[n] = A*RxChips[n]*cos(RxPhase);
RxSiglm[n] = A*RxChips[n]*sin(RxPhase);
1
}

dpll(SoftSyms, pll_mode, InitDelayEst, RxSigRe, RxSiglm, dll_step,
RxRef, Nacq, K1, K2, K3, K4, OS);

/f for (i=0; i<NumSyms; i++)
/1 printf(*“%f\n”,SoftSyms|i]);

Nerror=0;
printf(“symbol error indices: *);
for(n=0; n<NumSyms; n++) {
RxSyms[n] = (0<SoftSyms[n]) 7 1 : -1;
if (RxSyms[n]!=TxSyms[n])} {
Nerror++; /f which syms were in error
printf(*%d “,n+1); // number syms from 1 to compare to Matlab
}
}
printf(*\n”");
printf(“Nerr=%d, SER=%f\n",Nerror, (double)Nerror/NumSyms);

turbo(Lall, SoftSyms, Alpha, Niter, TxBits);

/i for(n=0; n<5; n++) {
/I printf(*Lall[%d] = %20.14e \n”, n, Lall[n]);
")

Nerror=0;
printf(“*bit error indices: *);
for(n=0; n<NumBits; n++) {
RxBits[n] = (O<Lall[n]) ? 1 : 0;
if (RxBits[n]!=TxBits[n]) {
Nerror++; /f which bits were in error ?
printf(**%d “,n+1); // number bits from 1 to compare to Matlab
}

}
printf(*\n”);

- 107 -

printf(“Nerr=%d, BER=%f\n" Nerror, (double)Nerror/NumBits);

return(0);

- 108 -

]

DISTRIBUTION

Unlimited Release

1

N LN o e et e e

p—

N e e

[

[

—_— D) =

MS 0505
MS 0505

MS 0509

MS 0519
MS 0519
MS 0519
MS 0519
MS 0519
MS 0519
MS 0519

MS 0529
MS 0529

MS 0529

MS 0529
MS 0529
MS 0529
MS 0529
MS 0529

MS 0529
MS 0529

MS 0965

MS 0972

MS 0980
MS 0980
MS 0980

MS 1155
MS 1155

MS 9018
MS 0899
MS 0323
MS 0161

S. M. Becker

V. Guzman Kammler

M. W. Callahan

L. M. Wells

J. T. Cordaro
A. W. Doerry
B. D. Guess

G. B. Haschke
J. J. Mason

R. C. Ormesher

B. L. Remund
B. L. Burns

W. H. Hensley

M. B. Murphy
A. Martinez

C. W. Ottesen
K. W. Plummer
D. A. Wiegandt

K. W. Sorenson
D. F. Dubbert

J. A. Heise
C. A. Boye
R. Mata

R. M. Axline
T. D. Atwood

J. A. Ramos
D. D. Cox

Central Technical Files
Technical Library

LDRD Office

Patent and Licensing Office

2341
2341

2300

2344
2344
2344
2344
2344
2344
2344

2340
2340

2348

2346
2346
2346
2346
2346

2345
2345

5711

5710

5711
5711
5711

5532
5532

8945-1
9616
1011
11500

	LDRD Office

