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Abstract 
This report summarizes the results of a three-year LDRD project on prognostics and 
health management. 
system failure over some future time interval (an alternative definition is the capability to 
predict the remaining useful life of a system). Prognostics are integrated with health 
monitoring (through inspections, sensors, etc.) to provide an overall PHM capability that 
optimizes maintenance actions and results in higher availability at a lower cost. Our goal 
in this research was to develop PHM tools that could be applied to a wide variety of 
equipment (repairable, non-repairable, manufacturing, weapons, battlefield equipment, 
etc.) and require minimal customization to move from one system to the next. Thus, our 
approach was to develop a toolkit of reusable software objects/components and 
architecture for their use. 

We have developed two software tools: an Evidence Engine and a Consequence Engine. 
The Evidence Engine integrates information from a variety of sources in order to take 
into account all the evidence that impacts a prognosis for system health. The Evidence 
Engine has the capability for feature extraction, trend detection, information fusion 
through Bayesian Belief Networks (BBN), and estimation of remaining useful life. The 
Consequence Engine involves algorithms to analyze the consequences of various 
maintenance actions. The Consequence Engine takes as input a maintenance and use 
schedule, spares information, and time-to-failure data on components, then generates 
maintenance and failure events, and evaluates performance measures such as equipment 
availability, mission capable rate, time to failure, and cost. 

This report summarizes the capabilities we have developed, describes the approach and 
architecture of the two engines, and provides examples of their use. 

“Prognostics” refers to the capability to predict the probability of 
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inis report summarizes the rehffs-of a three-year LDRD project on prognostics and 
health management (PHM). 
probability of system failure over some future time interval so that appropriate actions 
can be taken. An alternative definition of prognostics is the capability to predict the 
remaining useful life of a system. Prognostic algorithms are integrated with health 
monitoring (through inspections, sensors, etc.) to provide an overall PHM capability that 
optimizes maintenance actions and results in higher availability at a lower cost. Our goal 
in this research was to develop PHM tools that could be applied to a wide variety of 
equipment (repairable, non-repairable, manufacturing, weapons, battlefield equipment, 
etc.) and require minimal customization to move from one system to the next. Thus, our 
approach was to develop a toolkit of reusable software objects/components and 
architecture for their use. 

We have developed two software tools: an Evidence Engine and a Consequence Engine. 
The Evidence Engine integrates information from a variety of sources in order to take 
into account all the evidence that impacts a prognosis for system health. The 
Consequence Engine involves algorithms to analyze the consequences of various 
maintenance actions. This report summarizes the capabilities we have developed, 
describes the approach and architecture of the two engines, and provides examples of 
their use. 

“Prognostics” refers to the capability to predict the 

1.1. Motivation for PHM 

The motivation for Prognostics and Health Management comes from the Dept. of Energy 
and the Dept. of Defense under huge pressure to reduce operation and support (OSrS) 
costs of large military or industrial systems while maintaining or increasing the 
availability of these systems. Many reports document the need for prognostics. 
DARPA’s interest in developing “self-aware” systems is outlined in [Christodoulou, 
20021. Dr. Vachtsevanos at Georgia Tech has a c o m e  in diagnostics and prognostics 
which details many of the current approaches and algorithms [Vachtsevanos, 20021. The 
Applied Research Laboratory at Pennsylvania State University has been working in the 
area of condition-based maintenance and machinery health monitoring for many years. 
They have developed many tools and approaches relating to PHM [Banks and Maynard, 
20011. The Society for Machinery Failure Prevention Technology (a division of the 
Vibration Institute) runs an annual meeting each year. This year, the title of the meeting 
was “Impact of Prognostics on Organizational Success”, emphasizing the critical role of 
prognostics in equipment development and support [Society for MFPT, 20031. 

We have based our PHM approach on existing reliability analysis tools developed at SNL 
over many years. Thus, our PHM approach starts with a reliability model at its core (e.g., 
a fault tree or block diagram model). The reliability model, a set of functionally related 
failure modes and associated Time-to-Failure distributions (TTF), is what we modify as 
health monitoring activities provide an updated picture of the health of a system. The 
architecture of our PHM approach is shown in Figure 1.1.  



Malntenan 
nario! 

Figure 1.1. PHM Functional Architecture 

1.2. PHM Functional Architecture 

In our PHM architecture, a reliability model of a system is created, including a FMECA 
(Failure Modes Effects and Criticality Analysis). The reliability model identifies what 
failure modes are in the system, how they are functionally related, and useful sensors. 
Raw sensor data is usually high bandwidth data that must be reduced to ‘‘features” such 
as statistical moments, weighted moving averages, spectral density functions, etc. These 
features then go through an interpretation stage such as a simple threshold routine (e.g., 
has a feature crossed a threshold) or more complex schemes such as neural networks 
which classify the type of the failure mode based on some combination of sensor 
features. Once some “evidence” has been observed, either through sensors or through 
inspectionhepair logs, the health of the failure modes and components is updated. This 
means that each failure mode and component is given a probability of being in a “good”, 
“bad”, and “intermediate” states (for example). The updating of the probability of being 
in various states may be done using a Bayesian belief network or another trend analysis 
method. Once these probabilities are updated, the time-to-failure distributions for each 
component are also updated. The TTF distributions give us a picture of component and 
system health at a particular time. These updated distributions are then sent to the 
Consequence engine, which runs simulations of various maintenance scenarios to 
determine optimal maintenance actions. The PHM architecture we show in Figure 1.1 is 
specific to our concept, but the steps involved (feature extraction, failure mode health 
updating, etc.) are fairly general and included in other architectures [Banks and Maynard, 
2001; Vachtsevanos, 20021. 
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1.3. PHM Technology Needs 

Prognostics have developed, in part, from Health Usage Monitoring Systems (HUMS), 
primarily used to monitor military helicopters [Hess and Hardman, 19991. Nuclear power 
plant on-line monitoring has been another research area for the development of PHM 
systems [NERI, 20021. The success and failure of these efforts directed some of the 
current research in PHM. There are several capabilities or technologies needed to 
perform prognostics. These include: 

Sensor feature extraction: A “feature” is a characteristic of a sensor data stream, 
such as hourly average, peak value, RMS, or dominant frequency. Methods to 
perform sensor feattux extraction include time synchronous averaging, statistical 
analysis, peak and level-shift detection, etc. These methods currently exist. 

Sensor fusion: Sensor fusion involves combining multiple sensor features to draw 
conclusions. Methods to perform sensor fusion include neural networks, 
Bayesian belief networks, and data fusion algorithms [Roemer, Kacprzynski, and 
Orsagh, 20011. Several sensor fusion methods currently exist. However, all of 
these methods rely heavily on having a large knowledge database to help them 
learn when the data may indicate a potential problem. In a new program, it may 
be very difficult to know enough about sensor signatures in advance to provide a 
rich enough database to seed the prognostics algorithms. 

Component health estimation: To estimate a component’s remaining useful life 
(RUL) or Time-to-Failure (TTF), one needs to have models which relate the 
available evidence (sensor data, maintenance and/or inspection data, flight 
recorder parameters, etc.) to component TTF. [Engle et al., 2000; Kacprzynski et 
al., 20021. Methods to do this will include trend analysis (taking sensor feature 
data, identifying a “bad” threshold and determining how long it will take the 
sensor data to reach that threshold given past history) and model-based or case- 
based reasoning (e.g., IF the altitude is X and the speed is Y and the sensor 
reading is Z and the maintenance status is W, then the component time to failure 
is V.) Such an expert system is likely to be huge and unwieldy. 

Component health estimation is a very difficult problem, and the science is 
not yet available to accurately predict TTF for many critical components. 

We do not understand how to integrate various types of evidence about a part 
(such as age, condition, current flight parameters, etc.) to update the effective age. 
Physics-of-failure models have been highly touted yet they usually are at a micro- 
level of analysis, not at an LRU level, and there is not yet a good bridge freom the 
micro-level models to components. Finally, we do not understand quantitatively 
how load variations (in terms of running different types of missions) impacts 
lifetime. Aircraft parts are usually rated for a given mission profile, and a PHM 
system needs to be able to update TTF estimates if the aircraft sees a harsher or 
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easier environment than the rated standard. Such algorithms generally do not 
exist because they need to be based on a rich set of historical data. In this work, 
we have created a framework for updating state probabilities and component TTF 
that allows the use of fairly simple rules (e.g., if the operating condition is in state 
X, increase the failure rate by a percentage Y). The structure can allow more 
complex algorithms as we obtain data to develop and justify it. 

System health: Once component lifetimes are determined, it is fairly 
straightfonvard to input these to a system reliability model to determine overall 
system availability, downtime, and projected costs. 

Determination of consequences and optimal strategies. Once component and 
system health are determined, the capability to simulate potential scenarios and 
choose the optimal strategy is needed (e.g., what happens if the part is not 
replaced at all, if it is replaced immediately, or at the next scheduled 
maintenance.) The Consequence Engine analyzes possible scenarios accounting 
for projected TTF, parts availability, planned equipment use schedule, and 
mission profile. We are the only group that we know of developing a simulation- 
based approach for consequence analysis. The only other “consequence analysis” 
we are aware of is a cost-benefit PHM model developed by Impact Technologies 
[Kacprzynski, Roemer, and Hess, 20021. 

LDRD Focus 
We have learned much about the state of prognostics and various applications. Over the 
course of this LDRD, we have changed emphasis somewhat and have put more of our 
efforts in developing the Consequence Engine and less on developing the Evidence 
Engine, for two reasons: 

1) The Consequence Engine utilizes Sandia’s strengths in reliability analysis and 
simulation. Also, the Consequence Engine is a general tool applicable to a 
wide range of PHM applications. 

2) There are limits to the extent that general-purpose tools can be designed for 
feature extraction and evidence integration since these functions tend to be 
very system-specific. For this reason, additional algorithms (or a 
customization of what we already have) will need to be developed to update 
failure mode state probabilities and TTF distributions for specific applications. 

During the first year of this LDRD, we designed object models for each of the Engines, 
and developed algorithms and approaches. In the second year, we continued 
implementation and added functionality. During this third year, we have added 
optimization and a spares modeling capability to the Consequence Engine, and we added 
some additional signal processing and feature classification capabilities for Evidence 
integration. 

This report is divided into two large sections: The Evidence Engine and the Consequence 
Engine. Since the first year report (Final Report, LDRD 01-0329) documents the object 
models and computer code behind both software engines extensively, we have chosen not 
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to duplicate all of that information here. The second year report (Final Report, LDRD02- 
1277) outlines the Bayesian Belief Network approach in detail, presents the “success 
path” modifications to cut sets that allow calculation of various operational states in the 
Consequence Engine, and presents a peak finding algorithm for vibration analysis. This 
report refers to the previous two reports when appropriate, but we have tried to replicate 
some of the material above so that this can be a stand-alone final report for this LDRD 
project. 
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Evidence Engine 
The Evidence Engine integrates information from a variety of sources in order to take 
into account all the evidence that impacts a prognosis for system health. We have 
developed a prototype Evidence Engine. We have also developed some modular 
s o h a r e  objects that perform a “step” in the evidence integration stage (such as taking 
the value of a sensor feature and translating it to failure mode state probabilities). 
Finally, we have developed some examples to demonstrate the usefulness of various 
techniques. The outline of this section of the report is as follows: first, we discuss 
Bayesian Belief networks and feature classification using Kohonen self-organizing maps 
(SOMS). These are two methods useful to evidence integration. We also discuss some 
work in the area of vibration analysis, since some of the current application interest is in 
the area of rotating equipment. Then, we present an overview of the evidence engine 
s o h a r e  and some of the modular objects developed as part of this effort. Finally, we 
discuss our approach for updating Time-to-Failure distributions. 

1.5. Bayesian Belief Networks 

1.5.1. Bayesian Belief Networks - Background 
A Bayesian Belief Network (BBN is a graphical network that represents probabilistic 
relationships among variables. BBNs enable reasoning under uncertainty. With BBNs, it 
is possible to articulate expert beliefs about the dependencies between different variables 
and to propagate consistently the impact of evidence on the probabilities of uncertain 
outcomes, such as ‘future system reliability.’ 

A BBN is a special type of diagram (called a graph) together with an associated set of 
probability tables. The graph is made up of nodes and arcs where the nodes represent 
uncertain variables and the arcs the causalhelevance relationships between the variables. 
The main use of BBNs is in situations that require statistical inference: in addition to 
statements about the probabilities of events, the user knows some evidence, that is, some 
events that have actually been observed, and wishes to infer the probabilities of other 
events, which have not as yet been observed. A BBN uses conditional probability tables 
to calculate the probabilities of various possible causes being the actual cause of an event. 
[Jensen, 20011 

A major benefit of Bayesian inference over ‘classical statistical inference’ (which deals 
with confidence levels rather than statements of probability) is that it explicitly describes 
the fact that observation alone cannot predict the probability of unobserved events. In the 
Bayesian interpretation, a probability describes the strength of the belief which an 
observer can justifiably hold that a certain statement of fact is true (subjective 
probability). The subject, after observing the outcome of an ‘experiment’ (i.e., collecting 
new data), updates the belief held before the experiment (the ‘prior probability’), 
producing a ‘posterior Probability’. The need to assume prior beliefs is a key part of 
Bayesian inference. The conditional probability tables must be filled in with reasonable 
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estimates, and it is not always easy to obtain sensible prior probabilities, even from 
domain experts. 

Until recently, the computation necessary to calculate the posterior probabilities for a 
BBN were quite difficult to implement, even for small problems. The general problem 
of performing such computations is known to be intractable (formally, it is known to be 
an NP-hard problem). The 1990s has seen the development of many tools which 
incorporate fairly efficient solution algorithms for BBNs. We are using one such tool 
called HUGIN, for “Handling Uncertainty in Generalized Inference Networks.” 

1.5.2. Bayesian Belief Network - Example 
We developed a Bayesian Belief network of an Accessory Drive Gearbox (ADG) on a 
military aircraft. This is an important system for prognostics, since it is a flight critical 
system. Maintenance currently requires ADG replacement at a certain number of flight 
hours. Condition of the gearbox at overhaul indicates that there is much useful life 
remaining, but to extend the time change, a system must be in place to monitor 
operational life and mitigate premature catastrophic failures. 

We are starting to get data about wear mechanisms and failure modes of the ADG. The 
best example to focus on for the ADG is oil contamination, since the current inspection 
practices examine three things which might indicate metal chips in the oil: the magnetic 
chip detector, the “delta-p” indicator on the oil filter (which is a differential pressure 
sensor across the filter), and visual inspection of the oil filter. 

A simple BBN is shown in Figure 2.1. Note that the node labels have prefles: S- 
indicates a sensor node (sensor nodes may also involve tests), C indicates a condition, 
and F- indicates a fault. The top node in this BBN is the fault condition of metal chips in 
the oil. This BBN does not indicate what type of failure modes may have caused the 
metal chips to be present - this will be presented later. 

: OIL FlLT CL 

Figure 2.1. Bayesian Belief Network Example for ADG Fault: Metal Chips in Oil 
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The following tables present the data that was used to populate the BBN. Note that this 
data may not be representative of an actual gearbox: the idea was to test the BBN and 
make sure that the updated distributions were consistent with the assumptions. This 
example will give the user a feel for the amount of conditional probability estimates 
necessary for this type of analysis. 

First, the prior probabilities of having metal chips in the oil are needed. The 
F-METAL-CHIPS node has three states, with the following initial probabilities: 

Prob. (Normal) = 0.9 
Prob. (Intermediate) = 0.08 
Prob. (Severe) = 0.02 

Thus, in absence of any information, we assume that there is a 90% chance that the oil 
will have a “normal” amount of chips, an 8% chance it will show an intermediate amount 
of chips, and a 2% chance that there will be enough chips indicating a severe amount of 
wear. 

The conditional probability table for the magnetic chip detector is given in Table 2.1. 
This reads as follows: The magnetic chip node will be in the “clean” state with a 95% 
probability, given that the underlying metal chips fault state (F-METAL-CHIPS) is 
normal. The magnetic chip node will have a few chips with a 4% chance if the 
underlying metal chips state is normal, and will have many chips with a 1% chance given 
the underlying metal chips state is normal. 

Table 2.1. Conditional ProbabiUty(S-MAG-CHIP-DETlF-METAL-CHIPS) 
Prob(S MAG CHIP DETlF METAL CHIPS) Normal Intermediate Severe 
Clean .95 .os .05 
Few Chips .04 .8 .1 
Many Chips .01 .15 .85 

Likewise, the C-OIL-FILT-CLOG node is conditioned on whether there are metal chips 
in the oil. For example, if there are a severe number of chips, there is a 95% probability 
that the oil filter would be fully clogged. The conditional probability table is Table 2.2: 

Table 2.2 Conditional Probability(C-OIL-FILT-CLOG IF-METAL-CHIPS) 

Prob(C OIL FILT CLOGIF METAL CHIPS) Normal Intermediate Severe 
Clean .9 .1 
Partial Clog .1 .8 .05 
Full Clog .1 .95 

Finally, it is necessary to specify what states the visual inspection and the pressure drop 
(delta-p) indicator would be in, conditional on the states of the oil filter. These are given 
in Tables 2.3 and 2.4. For example, the probability that one would have a popped delta- 
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p indicator (excessive pressure drop across the oil filter) if the filter were partially 
clogged is 60%. 

Table 2.3. Conditional Probability: Prob(S-VIS-INSP IC-OIL-FILT-CLOG) 

Prob(S-VIS-INSPIC-OIL-FILT) Clean Partial Full Clog 

No Problem .95 .3 .05 
Problem .05 .7 .95 

Clog 

Table 2.4. Conditional Probability: Prob(S-DELTAP-IND IC-OIL-FILT-CLOG) 

Prob(S DELTAP INJllC OIL FILT) Clean Partial Clog Full Clog 

Pop .02 .6 .98 
The following examples show how Bayesian networks may be used to “propagate 
evidence” from the “leaf nodes”, in this case the sensor nodes, to the “root node”, in this 
case the fault condition of metal chips. Figure 2.2 shows the “baseline” BBN with no 
additional evidence gathered. In this case, the probability of the F-METAL-CHIPS node 
being in a normal, intermediate, or severe state is 90%, 8%, or 2% respectively (these 
were the “prior” or initial probabilities). These probabilities are then combined with the 
conditional tables above to determine the probabilities of being in various states for the 
other nodes. For example, the magnetic chip detector has an 86% chance of being in a 
normal state, a 10% chance of having a few chips, and a 4% chance of having many 
chips. 

No Pop .98 .4 .02 

1 7 5 0  Pmblam 

Figure 2.2. Baseline BBN, No Evidence Propagated 
If some evidence is gathered, this can be used to “update” the BBN to calculate the 
posterior probabilities on the state for F-METAL-CHIPS. Look at the example in 
Figure 2.3. Ifwe see many chips in the chip detector (so the probability of being in the 
state “many chips” is 100% for the S-MAG-CHIP-DET node, as indicated by the red 
line on the leR hand side of the picture), the probability of metal chips being in a severe 
state goes up from the baseline 2% to nearly 45%. To understand how this is calculated, 
we use Bayes rule: Prob(A/B) = P (AB)/P(B). 
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The probability of the magnetic chip detector node being in the “many chip” state is: 
Prob(S MAG- CHIP DET = “Many chips”) = 
C (F’r~i S-MAG-CHIP-DET = “Many chips/ F-METAL-CHIPS) * 
Prob(F METAL-CHIPS = “normal, intermediate, or severe”) 
= 0.01<9 + 0.15*.08 + .85*.02 = ,038 

where the sum is over all states of the F-METAL-CHIPS node. Then, the conditional 
probabilities are reversed by marginalizing the probability (F-METAL-CHIPS = severe) 
from the joint probability: P(AB)/P(A) = P (B/A). In this case, the joint probability is: 

(S-MAG-CHIP-DET=Many chips AND F-METAL CHIPS = severe)= 
0.85*.02=.017. 

We then obtain the conditional probability: 

Prob(F METAL-CHIPS = severelS-MAG-CHIP-DET = Many chips) = 
.017/.0%3 = .447 = 45%. 

This example shows how “evidence”, in this case the sighting of many chips on the 
magnetic chip detector, can be propagated in a Bayesian belief network to update one’s 
“prior” beliefs about the underlying state of nature. In this example, if we see many chips 
in the chip detector, our “posterior” belief in the state of metal chips in the lubricant goes 
from a prior of 2% to a posterior estimate of 45%. 

Figure 2.3. BBN with Evidence from the Magnetic Chip Detector 

To extend the BBN updating example, see Figure 2.4. Here we have gathered 
information from all three pieces of evidence: the delta-p indicator is popped, there are a 
few chips on the chip detector, and visual inspection indicates that there is a problem. In 
this case, the updating procedure is more complex, because there are multi-variate joint 
distributions. The BBN has to calculate many sets of distributions involving P(A/B,C) = 
P(A,B/C)/P(BIC), etc. In the example shown in Figure 4, the updated belief about the 
state of metal chips in the lubricant shows an 89% probability of being in an intermediate 
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state, a 6% probability of being in a severe state, and a 5 % probability of being in a 
normal state. Note that the large posterior probability for the intermediate state is 
influenced by the high probability of the magnetic chip detector being in the few chips 
state given the intermediate state of the metal chips (Table 2.1). 

Figure 2.4. BBN Updating with Evidence from all three evidence sources 

Figure 2.5 shows the same situation as Figure 2.4, only the evidence from the chip 
detector now shows many chips instead of few chips. This raises the posterior 
probability of the lubricant being in a severe state from 6% to nearly 73%. The 
importance of this example is to demonstrate how important the conditional probabilities 
are in determining the posterior distribution during updating. 

I 

Figure 2.5. BBN Updating with Evidence from all three sources in “worst” states 

Finally, the example in Figure 2.6 shows that the prior probabilities also play an 
important role in the calculation of the posteriors. Figure 2.6 shows the same example as 
Figure 5, except that the priors on the “F-METAL-CHIP” state have been changed. The 
prior probability of normal is still 90%, but the probability of being in an intermediate 
state of degradation was decreased from 8% to 5%, and the probability of severe number 
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of chips in the oil has increased from 2% to 5%. The result of this is that the updating 
yields a much higher posterior probability of being in a severe state: it has risen from 6% 
to 18%, while the probability of being in an intermediate state has decreased from 89% to - 
74%. 

Figure 2.6. BBN Updating with Prior Distribution changed 
The examples presented in Figures 2.1-2.6 show how the BBN is updated, and the 
importance of both the prior distributions and the conditional probabilities in the updating 
process. 

After doing this initial analysis, we decided to make the Bayesian network more realistic 
and informative. The purpose of using a BBN in a prognostic or diagnostic application is 
to update the probabilities of a particular failure mode occurring. In the example for the 
state of lubrication of the accessory drive gearbox, metal chips in the oil may indicate a 
wide variety of potential failure modes, such as gear wear, bearing wear, metal 
contaminants remaining from the manufacturing process, or seal wear. A priori, we do 
not have much information about which of these failure modes would be more likely. 
We created a BBN to represent these failure modes influencing the state of particles in 
the oil. A simple BBN just to explore the concept of two failure modes influencing one 
fault state is shown in Figure 2.7: 

I 

I 
Figure 2.7. BBN showing influence of two failure modes on metal chips in oil 
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Here the baseline probabilities for both bearing failure and gear failure are given as 0.01 
failure, 0.99 no failure. The conditional probability table for F-METAL-CHIPS is given 
in Table 2.5. 

Table 2.5.Conditional Probability(F-METAL-CHIPSIBEARING and GEAR FAIL) 
GEAR FAIL YES NO 
BEARING FAIL YES NO YES NO 
Normal 0 0 0 1 
Intermediate 0 .2 .4 0 
Severe 1 .8 .6 0 

Note that these probabilities are not symmetric: if there is gear failure but not bearing 
failure, the probability of a severe state of metal chips in the oil is SO%, while if there is 
bearing failure but not gear failure, the probability drops to 60%. The question is: If 
someone “observes” severe metal chip conditions in the oil, what are the probabilities 
that the gears or bearings have failed? To determine this, we use the compound Bayes 
rule: P(AJBC) = P(ABC)/P(BC). We take the conditional probabilities in Table 2.5 and 
multiply them by P(BC) to get the joint distribution P(ABC). Then, we divide the joint 
probability table by P(A) to obtain P(BCIA), then finally sum over the individual 
distributions to get P(B/A) and P(C1A). First we need to construct the joint probability 
table shown in Table 2.6. Note that: 

P(BC) = Prob (GearFail = BearFail = YES, GearFaikYES and BearFail = NO, 
GearFail = NO and BearFail = YES, GearFail = BearFail = NO) 
= (.Mol, .0099, .0099, ,9801). 

Table 2.6. Joint Probability (F-METAL-CHIPS and BEARING and GEAR FAIL) 
GEAR FAIL YES NO TOTAL 
BEARING FAIL YES NO YES NO P(METAL CHIPS) 
Normal 0 0 0 ,9801 ,9801 
Intermediate 0 .00198 .00396 0 ,00594 
Severe .0001 .00792 .00594 0 ,01396 
Thus, to perform the conditioning to determine P(BCIA), we take Table 2.5 and divide 
the joint probabilities by the marginal probability of A given in the last column. We get 
Table 2.7. 

- 

Table 2.7. Conditional Probability (BEARING and GEAR 
FAILIF-METAL-CHIPS) 

State of METAL CHIPS Normal Intermediate Severe 
GearFail = YES, BearFail = YES 0 0 ,0072 
GearFail = YES, BearFail = NO 0 .333 ,5673 
GearFail =NO, BearFail= YES 0 ,667 .4255 
GearFail = NO, BearFail = NO 1 0 0 
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Thus, if the condition observed is a severe. state of metal chips, the probability that there 
is gear failure is the sum of the first two rows of the last column, where gear failure = 

I I 
Figure 2.8. Simple BBN with Evidence propagated back to two Failure Nodes 

Notice in this example, because the conditioning in Table 2.5 is not symmetric, the 
posterior probabilities of each failure mode occurring are different: in this example 
where F-METAL-CHIPS is in a severe state, gear failure will occur with probability 
57% but bearing failure will occur only with a probability of 44%. If we had made the 
conditional probabilities symmetric, then the posterior probability of each failure mode 
occumng would be equal. 

Finally, we made a detailed and realistic example incorporating both the ideas of 
evidence in Figures 2.1-2.6 and the idea of determining likely causes in Figures 2.7-2.8. 
To make the example more realistic, we partitioned the chip types into ferromagnetic and 
non-ferromagnetic chips. The new BBN is shown in Figure 2.9. 
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Figure 2.9. Full BBN for Lube Problems (Metal and Nonmetal chips) in ADG Oil 

Figure 2.9 shows four failure modes influencing the presence of ferromagnetic or 
nonferromagnetic chips (carbon) in the oil: gear failure, bearing failure, seal failure, and 
manufacturing process failure. Bearing and seal failure influence the nonferromagnetic 
chip level, since there are carbon bearings and seals in the ADG. Bearing, gear, and 
manufacturing failures influence the ferromagnetic chip level (it is our understanding that 
there are both metal and carbon bearings). The gates “MED-1-FAIL” and 
“MED-2-FAIL” are mediating gates that act as “OR” gates: if one of the failure modes 
has occurred, the FAIkTRUE happens with probability of 1, otherwise FAIIrFALSE 
occurs with probability of 1.  The baseline probabilities of the four failure modes are all 
identical, with a failure probability of 0.01. The probabilities of the evidence sources 
propagating up to F-FERRO-CHIPS are basically the same as those presented in Tables 
2.1-2.4, except that the probability of the oil filter being in a clogged condition is now 
dependent on both the ferromagnetic chip node and the non-ferromagnetic chip node. 

Figures 2.10-2.12 show the types of analysis that can be done on this full BBN. If there 
is no evidence propagated, the baseline normal probabilities of having ferromagnetic or 
nonferromagnetic chips are both near 88%. If visual inspection shows a problem and the 
delta-p indicator pops indicating an oil filter clog, the failure probabilities on all the 
failure modes increase (Figure 2.1 1). For example, the seal failure mode probability 
increases to 5.5%. If, in addition, the magnetic chip detector has many chips, the failure 
probabilities on the three failure modes feeding into ferromagnetic chips increases. For 
example, gear failure increases to 25%. However, the seal failure probability decreases, 
in this case to 1.4%, because it is less likely to be seal failure if the magnetic chip 
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detector indicates many chips (Figure 2.12). This is the type of analysis that can be 
performed with a BBN. Bayesian networks are quite usehl as a method to fuse sensor 
data and update beliefs about the likelihood of a failure cause. BBNs do have their 
limitations, the primary one being the difficulty of specifying accurate prior and 
conditional distributions. We feel that BBNs, along with other methods such as neural 
networks, regression analysis, and AI expert system tools, have an important role to play 
in prognostics. 
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Figure 2.10. Baseline probabilities for the Full BBN. 
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Figure 2.11. Updated probabilities 
with two evidence sources 

Figure 2.12. Updated probabilities 
with three evidence sources 
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1.6. Self-organizing Maps 

1.6.1. Background on Self Organizing Maps 
Self Organizing Maps (SOMs) were developed by Teuvo Kohonen, in the early 1980’s. 
SOMs are similar to neural networks, in that they are used in pattern recognition and 
classification. Unlike neural networks, SOMs are based on the principle of competitive 
learning. Over the course of training, by means of positive and negative lateral 
interactions, one cell becomes sensitized to a region of input signal values, and 
suppresses the sensitivity of the cells around it to the same input [Kohonen, 20011. Thus, 
each cell in the network is activated by a different constellation of sensor input values. 
The Selfin Self Organizing Maps refers to the fact that the network trains itself, without 
any preconceived ideas of what the final outcome should be (unlike many neural 
networks). 

Much of the SOMs power lies in its ability to reduce the dimensionality of an input 
vector space, while still retaining the distance relationships within that space. For 
instance, it is possible to reduce a 50 dimensional space down to two dimensions, and 
still be able to classify the data using a SOM. For this reason, SOMs generally do not 
provide a 1-1 mapping, with the result that more than one combination of inputs will 
activate the same output cell. However, if one wants to use a SOM for classification, this 
does not present a problem. In a classification application, one generally wants to have 
many inputs be represented as a single, or at most a small cluster, of outputs. 

A SOM, in and of itself, provides a mapping from and input to output space. It does not 
classify data. However, any standard clustering algorithm can be implemented in a post- 
processing phase to achieve data classification by placing labels on cells. The 
computational costs of a SOM and clustering algorithm are incurred in the training phase, 
with very little computation required to classify new data as it becomes available. Thus, 
SOMs are suitable for near real time applications. 

In the following sections, an analysis of gearbox data is undertaken using SOMs. In the 
first section, classification is performed using actual data: healthy system data, and data 
representing one failure mode. In the next section, available documentation on 
diagnostics is utilized on healthy system data to simulate additional failure modes. A 
different SOM is trained in the classification of the simulated data. 

1.6.2. SOM Analysis of Available Data 
The first SOM generated in this project was used to examine actual gearbox data. Six 
data files were available which contained instances when the system was fkctioning 
normally. In addition, nine data files were used which demonstrated the operating 
conditions of the system during an oil leak. In all cases, data used represented 4096 
samples, or 85.3ms. 

The development portion of the SOMiclustering analysis was performed using the 
software package MATLAB. A free version of a MATLAB SOM toolbox, developed by 
the students of the SOM inventor, was available to download without licensing 
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restrictions at Helsinki University of Technology www.cis.hut.fi/DroiecWso rntoolboa. The 
Helsinki SOM toolbox was found to be adequate for the scope of this project. An 
additional clustering algorithm, based on the k-means clustering technique, was created 
on-site to work with the SOM toolbox. 

Due to the small amount of actual data that was available, two data files each of the 
normal data and oil leak data were used to train the SOM. The remaining data was 
retained for testing the trained network. Each data file was split into two pieces, and 49 
time samples from each half were extracted. This created a total of 8 vectors of49 
samples each. A final element in each vector was the mean value of the magnitudes of 
the FFTs of the original files. Thus, from 4 data files, a total of 8 training vectors were 
created, each SO points in length, with 2 training vectors being constructed from each data 
file. 

Based on the eigenvalues of the available data, the SOM map size was selected to be 8x2. 
The SOM was allowed to train without knowledge of which data vectors represented 
good and bad data. In this phase of development, a basic k-means clustering algorithm 
was applied to the resulting map, with the request that there be only two resulting classes. 
The results are shown in the figure below. On the left, one resulting output of the SOM, 
the uniform distance matrix, or U-matrix, is displayed. Blue areas represent where the 
data is close together in feature space, red colors represent data that is far apart. Note 
how the dimensionality of the U-matrix is greater than 8x2. Since the U-matrix 
represents distances between cells, its dimension is (2*8-1)x(2*2-1). 

I 1 I’ 

1 5  

1 

Figure 2.13: U-matrix (left) and resulting output of clustering algorithm (right). 
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The results of the clustering algorithm are displayed on the right. There are two classes: 
l(blue), and 2(brown). If the algorithm is successful, these should represent the two 
conditions of the input data. 

I 
I 

Figure 2.14 shows the locations of the training data on the clustered map. The mapped 
locations of the files are superimposed upon the background. The pink cells represent the 
locations of normal data vectors, black cells represent the locations of oil leak data 
vectors. A comparison with the figure above shows the data is correctly separated into 
two classes. Note how there were four training vectors for each state of the data, but 
there are only three colored cells representing each. Recall from the previous section that 
a SOM, due to its ability to compress the dimensionality of a feature space, does not 
necessarily create a 1-1 mapping. In this case, on two separate occasions, there are two 
data vectors which are mapped to the identical cell. 

I 
I 
I 

Figure 2.14: The cluster map with locations of training points for normal data 
(pink), and oil leak data (black). 

Ultimately, the test is to see how well the SOM can do on data for which it was not 
trained. Four normal and seven of the available faulty data files were retained for this 
purpose. The testing data were processed in the same way as the training data and their 
locations are displayed on the figure below. Again, the data files are correctly plotted to 
two separate classes. 
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Figure 2.15: Locations on the SOM of testing data for normal data (pink), and 
faulty oil leak data (black). 

The SOWclustering algorithm combination had little trouble distinguishing between 
normal and faulty oil leak data files when actual data was employed. The classification 
of the testing data requires processing it through a matrix. It is nearly instantaneous when 
graphical display methods are not utilized. Thus, the algorithm could be programmed to 
produce a single digit output corresponding to a particular class and the algorithm could 
be used in near real time applications. 

1.6.3. SOM Analysis of Simulated Faulty Data 

It was desired to apply the SOM technique in the diagnoses of other types of faults. 
Unfortunately, in the case of the gearbox data we had, no other data showing actual 
examples of faults was accessible. However, a diagnostic chart demonstrating examples 
of faulty data signatures was available [Berry, 20031. Based on the best available 
knowledge of what various faults should look like, the available normal data files were 
manipulated to resemble faulty data files in the following way. 

Gear misalignment: This fault is manifested by the excitation of harmonic frequencies of 
the gear mesh frequency. No data was given in [Berry, 20031 concerning to what extent 
the harmonics are excited. Based on an examination of the frequency domain graph 
given in the reference, the gear misalignment simulation data were created by taking an 
FFT of the normal data files and boosting the I -3 harmonics by a factor of 1.5. No 
other modifications were made. 

st rd 
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Tooth wear: This fault is manifested by the excitation of sidebands on either side of the 
gear mesh frequency. The document contained no information on how much the 
sidebands were excited, but based on an examination of the plot provided, it was decided 
to excite the sidebands to no more than 60% of the amplitude of the gear mesh frequency. 
Each created sideband was five frequency bins in width and tapered. The sidebands were 
placed the minimum distance from the gear mesh frequency to allow them to be separable 
at the sampling frequency used in the normal data files. No further modifications were 
made to the normal data files. 

The use of the simulated data presented a particular challenge for the SOM. A faulty data 
set was created by making only slight modifications to a normal data set, and both would 
he required for training. Thus, it was necessary for the SOM to make distinctions 
between data sets that contain 4096 frequency bins and may differ in as little as three. 
Under these conditions, the SOM would likely map normal and faulty data to the same 
cell, and thus they would have an identical classification. In order to get past this hurtle, 
it was necessary to make an assumption about the data. It was assumed that the gear 
mesh frequency could be known to within loHz of its true value. If an FFT is performed 
on the actual data provided, the frequency resolution is 11.7 Hz. Since lOHz is less then 
11.7 Hz, we could assume the gear mesh was known to within one frequency sample. 
The assumption allowed for the generation of extra data points created by calculating the 
ratio of values between the gear mesh frequency and its harmonics. Such a calculation 
could be a great asset in detecting gear misalignment. 

The data used in the SOM training phase consisted of eight files: the four files from the 
previous SOM, two files created by corrupting two normal files to simulate gear 
misalignment, and two files created by corrupting two normal files to simulate tooth 
wear. Data input vectors to the SOM were created in the following way. First, an FFT 
was performed on all the input files. To reduce the size of the vectors, the frequency 
content was averaged over a length of 40 bins and only magnitudes were included. Next, 
three parameters relating to the frequency ratios of the harmonics to the fundamental 
attached. Finally, a magnification calculation on the gear mesh frequency side bands was 
performed. The calculation was executed by averaging frequency bins over 5 samples, 
instead of 40 samples, for the area of frequency surrounding the gear mesh fundamental 
frequency. The total length of each input vector created from each data file was 45. 

In order to classify a wider variety of data, the dimensionality of the SOM was increased 
to 10x9. To properly label the data, the clustering algorithm was ordered to set its 
dimensionality such that each input vector on the map belonged to a different cluster. 
Later, the clusters were combined to allow training vector to be classified together if 
needed (Le., the two normal training files should be in the same cluster). 

Below are the results of the SOMiclustering algorithm for the combination 
actuaVsimulated data set. Again, the uniform distance matrix (U-matrix) is displayed on 
the left. 
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Figure 2.16: U-matrix (left) and output of clustering algorithm (right). Class 1 (dark 

blue) represents oil-leak classification. Class 2(light blue) represents tooth wear. 
Class 3 (green) denotes normal data files. Class 4 (orange) represents gear 

misalignment. Class 5 (brown) is undesignated. 

In this case, five different classes were observed, but the data only contained four classes 
of interest. Class 5 (brown) is undesignated. Compare the brown region on the class 
assignment map with the same area on the U-matrix. Recall that the U-matrix represents 
the distance in feature space between adjacent cells. The gear misalignment and tooth 
wear data were simulated by making slight modifications to normal data files, so one 
would expect them to be close together in feature space (classes 2,3,4), while the oil leak 
data (class 1) was actual data. One would expect it to be quite different from the normal 
data. Hence the active cells on the boundary between the oil leak region, and the region 
that can be considered as “close to normal.” This transitional area results in an extra 
class, which can be ignored for the purposes of this exercise. 

Figure 2.17 displays the locations of the training data on the clustered map. In this case, 
the algorithm was successful in clustering the training data. 
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Figure 2.17: Clustered map with locations of training data vectors: oil leak (black), 
normal (pink), tooth wear (red), gear misalignment (cyan). Compare with figure 

2.16. 

Next, the trained SOM was given data that it had not seen. The extra data files 
represented the seven additional oil leak and the four additional normal files described in 
the previous section, plus simulated misalignment and tooth wear examples created from 
the four additional normal files. The results of this test are plotted below. 
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Figure 2.18: Clustered map with locations of testing data vectors: oil leak (black), 
normal (pink), tooth wear (red), gear misalignment (cyan). Compare with Figure 

2.16. 

In this test, the algorithm correctly classified all the oil leak data, the normal data, and the 
gear misalignment data. However, it misdiagnosed one tooth wear file (red cell in 
bottom, center) as normal, while correctly identifying the remaining three. On the other 
hand, the network did correctly classify 94% of the testing files it was presented. Eight 
files containing four different states is a very small amount of data for a SOM to use in 
training. Such artifacts as misidentification of tooth wear data could likely be remedied 
with the acquisition of additional training data in the form of additional normal files to 
manipulate, or ideally, actual tooth wear data. Another solution would be to apply a 
confidence measurement to map locations, where files near class borders would be issued 
a lower confidence number. 

This exercise demonstrated that a Self Organizing Map could be a useful tool in PHM 
classification. Although the map did not correctly identify every new data file presented 
to it, it was able to achieve a near perfect score based on very little training data. 
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1.7. Vibration Analysis 

As part of the Evidence Engine work, we have looked at algorithms for vibration 
analysis. Vibration analysis is a critical component of prognostics for gearboxes, turbines, 
motors, etc. There is a wide body of literature on this subject [Wowk, 19911. A quick 
summary is given below. 

The analysis of sensor readings from vibration sensors involves many signal processing 
steps: signal conditioning, various types of filtering, enveloping, time synchronous 
averaging (TSA). TSA involves using data from a tachometer to correctly identify which 
sample points correspond to a revolution (for example, if the vibration sensor is recording 
at lOkHz, and the speed of the driving shaft is 250 Hz, then 40 samples would be taken 
every second. However, due to various problems, sometimes 38 samples may correspond 
to one revolution, sometimes 41 samples, etc.) TSA involves interpolating and averaging 
the raw data to obtain a better estimate of the “true” signal. 

1.7.1. Time Domain Methods 
There have been many signal processing “features” that have been developed over the 
years. In the time domain, the following statistics of the time domain signal are often 
used for early detection of bearing and gear damage: 

RMS - Root Mean Square 
Skew - Third moment of the distribution, measures the symmetry of the distribution 
Kurtosis - Fourth moment of the distribution, measures flatness or peakedness of the 
distribution as compared to a normal. 
Crest Factor - Ratio of the PeakLmel of the signal to RMS. 

1.7.2. Frequency Domain Methods 
In the frequency domain, the following analysis techniques are used to detect changes in 
the frequency spectrum that may indicate component failure: 

FFT Fast Fourier Transform. Analyzes the frequency content of the signal. 
Cepstrum Analysis. Measures the intensity of the harmonic content. Is an inverse 

Enveloping. Used to monitor high-frequency structural responses to periodic impacts 
FFT of the log spectrum of a regular Fourier Transform. 

such as gear or bearing faults. Involves pre-processing the signal with high or 
band-pass filter, than using an envelope detector. 

the carrier, such as gear mesh frequencies. 

frequencies, such as data between gear mesh harmonics). 

Demodulation. Identifies periodicity and amplitude differences in the modulation of 

Interstitial. Involves processing the noise floor data (data between two peak 

Comblet - Comb filters remove harmonically related noise from signals. 
Wavelet transform - like a FFT, but with a finite basis function 
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Specific features have been developed for gearbox diagnostics and prognostics. They are 
listed in Table 2.8 [Society for Machinery Failure Prevention Technology, Gear 
Diagnostic Parameters]. The Applied Research Laboratory (ARL) at Penn State 
University has developed a MATLAB toolbox which implements many of these features 
[Banks and Maynard, 20011. 

Table 2.8. Summary of spectral features for vibration analysis of gearboxes 

Feature I M e t h o r n h a t  it detects 
FMO I Detects major changes in gear meshing patterns. 

Ratio of peak to peak amplitude of TSA and 
amplitude of gear mesh frequencies. 
Sideband level factor, detects a bent or damaged 
shaft. Ratio of the first order sideband level divided 

SLF 

I by standard deviation of TSA. 
Sol, SO2 I Detects shaft imbalance or damage. TSA amplitude 

corresponding to first (second) order shaft frequency. 
Developed to detect onset of damage. 
Detects changes in vibration pattern resulting from 

NA4 
FM4 

I damage on limited number of teeth. 
M 6 4  I Detect surface damage 

NB4 I Detect onset of damage , 

Many of the features developed for prognostics look at a very small subset or section of 
the data. We were interested in developing an analysis technique for closely following 
the progression to failure. Thus, we developed an algorithm to compare the frequency 
content of any two signals. This algorithm is outlined below. 

1.8. Frequency Domain Algorithm for Signal Comparison 

To compare sets of vibration data, we have developed an algorithm to statistically 
compare the frequency content of any two signals. The overall approach allows one to 
identify differences in magnitudes at particular frequencies, and see what characteristics 
are changing in the FFT spectrum over time. This algorithm may be useful to detect an 
impending failure in rotating equipment such as gearboxes. We have designed the 
algorithm using vibration data from gearboxes, and this application is discussed below. 
However, since this algorithm can compare frequency content of signals, it potentially 
can be used in other applications such as voice identity checking and speech recognition. 

Current military aircraft gearboxes are manufactured to exacting tolerances and when 
properly serviced, have a wear-out period that is much longer than that of non-precision 
equipment such as an automobile transmission. It is very difficult, if not impossible, to 
accurately trend the slow degradation of such a high-precision piece of equipment. 
However, we do believe it is possible to detect when the cumulative degradation has 
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reached a statistically significant level or when a sudden change occurs, such as a broken 
gear tooth or cracked bearing. 

1.8.1. Approach 
The approach of this algorithm is to establish a baseline signal under fault-free 
conditions, establish a comparison signature, and perform hypothesis tests at each 
resolved frequency in the frequency domain. If one or more frequencies in the 
comparison signature are statistically significantly different than those in the baseline 
signature, the algorithm will indicate that there are differences. Graphically, these steps 
are shown in Figure 2.19. These steps will be explained in the next section. 

Establish Baseline 
Signature under fault-free 
conditions 

Establish Comparison 
Signature 1 
Conduct Hypothesis Tests 
to determine existence of 
fault 

Figure 2.19 Steps in the Frequency Domain Signal Comparison Algorithm 

To implement this approach, a vibration sensor must be rigidly mounted on a gearbox (or 
other piece of equipment) in an ideal location. The optimal placement will be chosen 
such that all frequencies within the gearbox are well represented. 

We initially conjectured based on observation that the autospectrum would be the ideal 
starting point from which to perform our hypothesis testing. When a gearbox is operating 
under constant load at a constant speed, we have observed that the auto-spectrum has a 
very stable plot. Figure 2.20 shows a waterfall plot of the auto-spectrum with time along 
the z-axis. The data was taken from a Wilcoxon accelerometer magnetically mounted on 
an accessory drive gearbox during a motoring test. Keep in mind that this particular 
mounting condition is far from optimal. Nonetheless, the data is extremely consistent. 
The auto-spectrum is basically an FFT with all the white noise removed without any loss 
of signal. The auto-spectrum is actually the FFT of the auto-coplation. The auto- 
correlation is simply the signal multiplied by a time shifted version of itself, where time 
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is the independent variable. This efficiently removes white noise from the signal while 
preserving the signal itself. 

A 

, ~,.clo00 

Figure 2.20. Waterfall Plot of Auto-Spectrum 

While the autospectrum is more stable than the FFT, a sample of the amplitude values at 
any given frequency tend to have a skewed distribution. A standard FFT, on the other 
hand provides amplitude distributions that are much more Gaussian in shape. While the 
autospectrum does tend to get rid of noise, it is overkill to do so because averaging over 
many frames already produces the desired effect of averaging out noise. 

When one performs an FFT on a signal, the result is a list of complex-valued numbers. 
At this time, no information has been lost because the FFT is invertible back to the time 
domain. Ordinarily, we only plot the absolute value of the FFT. We will enhance our 
ability to detect persistent variations in the signal by averaging over many frames of the 
frequency spectrum. The only requirement for doing so is that the signal content remains 
relatively stable during the timeframe of interest. For a gearbox, this means no 
significant RPM or load changes and no significant transient events occur during the 
period of measurement. 

To baseline a particular gearbox, one would need to collect 100 consecutive frames of the 
auto-spectrum while the gearbox is in good working order, installed in an aircraft, and 
running at a defined constant speed and load. Each frame is based on 256 (or a similar 
power of 2) consecutive samples from the time domain. For each frequency value, we 
compute summary statistics (i.e. average and standard deviation) of the associated 
amplitude. We have seen in our gearbox data that the amplitudes appear to be normally 
distributed, but we can accommodate any sort of distribution once it has been determined. 

37 



Currently, it is not possible to establish a baseline signature which applies to all 
gearboxes. The slightest differences in mounting, non-critical gearbox variations, or the 
sensor itself would cause significant signal variations among different gearboxes. 
However, with exceptional quality control on sensors, gearbox manufacturing and sensor 
installation, it may eventually become possible. While it may be possible to establish the 
baseline signature at the factory, we currently believe that the best time to establish the 
baseline signature is after installation on the designated aircraft and before flight testing. 

The baseline signature can be defined as a table with three columns: frequency, average, 
and standard deviation. The table would have 128 rows given 256 time domain samples. 
Assuming double precision arithmetic, the entire baseline signature would occupy only 3 
kilobytes of memory. Because the memory and computation requirements of the 
algorithm are low, we could create and store a multitude of signatures under a wide 
variety of operational regimes. The entire signature can be collected and statistics 
calculated in less than a second. 

Once a baseline signature has been established for a particular gearbox, we can repeat the 
above process to define a signature at any point in the future while the aircraft is running 
under the prescribed conditions. This new signature is referred to as the “real-time 
signature”. 

We then perform a series of hypothesis test on the comparison of two means at each point 
in the frequency domain, using a very low alpha. The null hypothesis for each test would 
be that the mean amplitude of the real-time signature is within a specified percentage of 
the mean amplitude of the baseline signature. Alpha is defined as the risk of falsely 
rejecting the null hypothesis (a false positive). Alpha must be chosen such that the 
probability of a false positive for the entire test is very low (<1 in 1000). 

Equation 2.1 is the inequality relating the overall false positive probability (p) to alpha. 
If the tests were statistically independent, the expression would become an equality. 

p I 1 - (1 -a)“, where n is the number of hypothesis tests performed. (2.1) 

For example, to have a false positive rate of less than 1 per thousand sorties, assuming 
that we perform 8192 hypothesis tests in a comparison of real-time versus baseline 
signature, we need to test at an alpha level of l . 2 2 ~ l O - ~ .  This may seem like an 
extremely low level, but because we are using 100 samples, the power of the test remains 
high. For example, suppose at a particular frequency, an average amplitude of 0.5 
appears where it had previously been zero. Suppose that in both cases, the standard 
deviation was also 0.5. At an alpha level of l . 2 2 ~ l O - ~ ,  the power of the test on a single 
frequency would be about 95%, meaning that there is only a 5% chance that we wouldn’t 
detect the anomaly in the gearbox signature. In the event that an impending gearbox 
failure presented itself in multiple frequencies, the overall sensitivity of the algorithm 
would be greatly increased. 
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The primary output of the algorithm is the minimum p-value. Each individual hypothesis 
test at a given frequency produces a p-value. P-values that fall below the threshold 
indicate that a statistically and a practically significant change has occurred at a given 
frequency. The steps shown in Figure 2.19 demonstrate this algorithm. At each resolved 
frequency in the FFT, the average amplitude is plotted (yellow line on top two figures), 
and the average amplitude f two standard deviations is plotted (blue area in the top two 
figures). The red area has been drawn to show where the lower interval is not zero. At 
these frequencies, the lower limit is given by the red line. The bottom graph shows the p- 
value at each resolved frequency. Note that smaller p-values are worse, meaning there is 
a higher chance the spectra are different. Note at the end of the spectra, around 2200Hz, 
the p-value is the most negative and the signals look the most different. 

The hypothesis testing alone will detect statistically significant differences indicating 
significant wear or impending failure in the gearbox. Seeded fault testing can be used to 
obtain estimates of remaining useful life based on the magnitude of the signal differences. 
In the rare event when a positive identification of impending failure is detected during the 
aircraft start-up sequence, further inspection may warrant aborting the flight plans. 
However, a second opinion can quickly be gathered simply by repeating the preflight 
gearbox test sequence. If the second test again shows an impending failure, the flight 
should be aborted and the gearbox removed from the aircraft for further analysis. If the 
false positive rate for a single test were set at 111000, the chances of two sequential false 
positives would be roughly 
Most likely, the problem would be with the gearbox, but it could also be that the sensor 
or associated cabling goes bad, or that excessive engine vibration is being transferred into 
the gearbox. All of these scenarios would warrant taking the aircraft out of service. 

meaning that a real problem almost certainly exists. 

1.8.2. Implementation 
The algorithm has been coded using Visual Basic with a full user-friendly GUI and 
graphical output and several other features which allow the user to become quickly 
acquainted with one of more signals, allowing them to make inferences about signal 
content and differences. Due to the simplicity of the algorithm, it could easily be 
implemented in hardware. The hardware requirements would be minimal by today’s 
standards due to the low processing and memory storage requirements. Many 
commercially available Digital Signal Processors (DSPs) could perform the bulk of the 
number-crunching. 

1.8.3. Possible Modifications 
There is quite a bit of fine-tuning that we can perform on our algorithm. Everything boils 
down to a trade-off between sensitivity and specificity of the test. High sensitivity means 
we have a low false-negative rate, while high specificity means we have a low false- 
positive rate. Ideally, we would like to tailor the algorithm to achieve an optimal 
combination of high specificity and sensitivity. Of course the final fine-tuning would 
depend upon the application requirements. 
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1.8.3.1. 
Our initial analysis was performed using 256 points in each frame of the frequency 
domain. This is a fairly low value which yields coarse resolution in frequency. In 
general, using a large number of points increases our ability to detect defects. However, 
because aircraft engine speed can vary from the desired value, we may be forced to use a 
smaller number of points to maintain the desired level of specificity. One caveat, 
however, is that by using a smaller number of points, we can test at a higher alpha level, 
which allows us to compensate somewhat for the loss of sensitivity. We can also input 
more frames in the same timeframe, which helps both sensitivity and specificity. 

1.8.3.2. Number ofFrames to Average 
In the initial algorithm testing, 100 frames of data were used to establish the distribution 
of amplitudes at each frequency. At 256 points per frame, it takes less than a second to 
collect this much information. Statistically, there is only a marginal benefit in using 
more frames. Depending upon the normality of  the distribution, we may be able to 
reduce the number of  frames without any significant effect upon sensitivity and 
specificity. We looked at some extremely high frequency data and found that we could 
establish stable signatures with as many as 15,000 frames at the expense of a few seconds 
of lGHz processor time. 

1.8.3.3. Number ofPoinis at which a Hvuothesk Test is Performed 
Performing a hypothesis test at every frequency would yield maximum sensitivity and 
minimal specificity. Through seeded fault testing, we can learn which frequencies are the 
ideal candidates for testing. One possible approach is to reduce the number of hypothesis 
tests by targeting the key frequencies of interest along with a systematic sampling of 
remaining frequencies. The general idea is that we can increase specificity without any 
appreciable loss of sensitivity. 

Number o f  Points in the Freauencv Domain 

At this time it appears that the inherent specificity o f  the test is already high enough to 
allow us to proceed with the “exhaustive” method of testing at every frequency. This 
specificity can be tuned by adjusting the statement of the hypothesis test to allow for an 
acceptable percentage of variability. We’ve found that with a +/- 10% allowance for 
variability, we do not produce any false positives on the real gearbox and valve leak data 
that we have examined. This allowance is a measure of practical significance as opposed 
to statistical significance. This particular allowance was chosen based on the anectodal 
evidence presented in [Wowk, 19911. This reference states that two supposedly identical 
machines from a given manufacturer often have an overall vibration energy level which 
can vary by up to a factor of 10. Because an aircraft gearbox is designed and built to the 
most exacting specifications, with the highest quality components, we made the initial 
judgment that a 10% change in amplitude at any particular frequency under tightly 
controlled conditions would indicate an internal problem with the gearbox. Setting the 
allowance much lower than 10% will not properly allow for amplitude fluctuations due to 
external noise. 
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1.8.4. Initial Results 
We obtained some vibration data from a gearbox running on a test stand. During the 
baseline test,an unexpected oil leak occurred. The signal comparison algorithm 
described above was able to identify that the signals were significantly different. The 
algorithm detected anomalous signals several minutes before the experienced test stand 
operator noticed the problem. The p-value from this test as a function of time since oil 
leak started is shown in Figure 2.21. The baseline signature was established with an FFT 
using 128 frames, 256 points per frame, and a Hanning window, with the p-value 
threshold value set at 7.8e06 to yield overall false positive rate of 1/1000. 

JFS Motoring Test During Oil Leak 
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Figure 2.21. Example Results from Signal Comparison Algorithm 

To summarize this section, we have developed a frequency domain signal comparison 
algorithm which looks promising at detecting statistically significant change in 
amplitudes of frequency spectra. This type of algorithm may prove useful for prognostics 
of gearboxes and other equipment. 
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1.9. Evidence Engine Software 

We have developed an object-oriented architecture for the Evidence Engine. Algorithms 
in the Evidence Engine include feature extraction, trend analysis, and Bayesian Belief 
networks. Objects (major classes) include a Sensor class, a Sensor Feature class, a 
Distribution class, a Failure Mode class, and a BBN class. Methods within these classes 
include statistical moments, Fourier transform, polynomial regression, propagation of 
chance nodes updating a BBN, etc. We have implemented our software in the Visual 
Basic programming environment, since it is popular tool for object-oriented 
programming on a Windows platform. 

Initially, we want to demonstrate some capability in all of the areas covered by the 
Evidence engine: sensor feature extraction and trend analysis, data fusion and evidence 
integration by the Bayesian belief network, and updating a time to failure estimate for a 
component based on its projected state of health. We created a prototype software 
program to perform these functions. The goal of the PHM prototype was the following: 

1. Allow user to specify a particular failure mode from a list of failure modes on a 
system, and bring up the parameters relating to that failure mode: 

a. Age of the failure mode 
b. Time To Failure distribution parameters (mean, standard deviation, etc.) 
c. Method of updating the TTF distribution (by sensor data or a BBN) 

2. If the failure mode information is updated via sensor data, the user should: 
a. Choose a sensor From a set of sensors relating to that failure mode 
b. Read in sensor data files or sensor feature files relating to the failure mode 
c. If “raw” sensor data is read from files, the user should specify a feature 

extraction method (such as calculate the mean, variance, skew, EWS, etc. 
of each batch of data) 

d. Plot a particular batch of data by specifying the date 
e. Plot the feature history of the entire set of data: plot the feature for each 

batch in the data set. 
f. Specify a threshold where the sensor feature signals imminent failure, and 

specify a feature extrapolation method (such as linear or higher order least 
squares) to determine when it is likely the feature will cross the critical 
threshold. 

g. Use the time between the current time and the time when the feature will 
cross its critical threshold as an estimate of mean remaining useful life 
(RUL). 

h. Use this RUL estimate to update the TTF distribution information (go to 
Step 4). 

a. Have the BBN for that failure mode loaded in an “outline” format, where 
chance nodes and their baseline probabilities are displayed on the screen. 

b. Update the BBN by clicking on the various probabilities and changing 
them to “0” or “1” to reflect the evidence. For example, if the baseline 
probabilities for the oil viscosity being a bad state is 0.2 and a good state is 

3. If the failure mode information is updated via a BBN, the user should: 
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0.8, but the evidence indicates that the oil is bad, the probabilities of being 
in bad and good states would change to 1 and 0, respectively. 

c. Propagate the evidence in the BBN to recalculate the Time To Failure 
distribution for the failure mode. Update the remaining useful life 
estimate, and use the RUL estimate to update the TTF distribution (go to 
step 4). 

4. The user should see the impact of the updated remaining useful life estimates in a 
concise, graphical format. Specifically, the user should be able to obtain: 

a. The original estimate of remaining useful life and the updated estimate, 
based on either sensor data or a BBN 

b. The conditional probability of failure X hours from now, given that the 
failure mode has lasted to the current time and has a Time To Failure 
distribution that was shifted (reduced mean and in some cases reduced 
variance) by the evidence. 

c. Probability density functions (PDF) of both the original TTF distribution 
and the updated TTF. 

The following screen shots show Steps 1-4 as implemented in the current prototype 
version of the Evidence Engine. We expect that these steps and the algorithms 
underlying them will change, perhaps significantly, if we customize this software for 
particular applications. However, the current prototype has been designed to easily and 
quickly examine the impact of different methods and algorithms for updating failure 
mode health information. We believe it will prove a valuable testbed for that. After the 
screen shots are presented below, the objects and classes designed in this software will be 
discussed. 

The user starts the application and is presented with a File menu that has standard tasks 
(open, close, exit). The user clicks on “Open” and is presented with the dialog box 
shown in Figure 2.22. The user clicks on the file that contains the setup information for 
this run. In this example, ProgDemol.txt contains the setup information. The setup 
information points to two files: a file that contains the list of failure modes for this 
system and their related information such as TTF distributions and update methods 
(FMl.txt) and a file that contains the list of sensor data files and BBN data files 
(FM1Aux.txt). 
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Figure 2.22. Initialization file for Evidence Engine Demo 

After the setup file is loaded, a tabbed form with various tabs corresponding to Steps 1-4 
outlined above is displayed. The first tab is shown in Figure 2.23. This form presents the 
user with a drop-down list of failure modes. When the user clicks on one, the 
information pertaining to its TTF distribution parameters and current age are shown, as 
well as a PDF of its TTF. 

Figure 2.23. Selection of failure mode and display of parameters, PDF 
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Once the failure mode is selected (Step I), if it is updated by sensor data, the second tab 
is entered to obtain sensor data, perform feature extraction, and trend extrapolation (Step 
2). This form is shown in Figure 2.24. The user enters the sensor type, the feature 
extraction method, the critical threshold for that feature, and an extrapolation method for 
trend analysis (in this case, linear least squares). The user can also select a particular 
batch date from all the batch data and view that particular batch of data. In the example 
shown on the form, we have shown the plotting of the feature (in this case, the mean of 
each batch) over time (green line) as well as the estimate of the feature (blue line). The 
white line shows the feature threshold and the red diamond shows the date where the 
feature is projected to hit the critical threshold, in this case, on January 22. 

Figure 2.24. Feature ExtractiowTrend Projection 

If the failure mode is updated by maintenance or inspection information that is modeled 
by a BBN, the user will enter the tab shown in Figure 2.25 instead of the form in Figure 
2.24. Figure 2.25 shows two BBNs: the one on the left side is the BBN with the baseline 
probabilities, in this case the baseline probability of viscosity, oil pressure, and oil 
temperature being normal, high, or low. On the right side is the same BBN, but the user 
can modify the probabilities on this BBN to reflect current inspection evidence. For this 
example, the evidence indicated the viscosity and pressure were high but temperature was 
low. These new probabilities are then propagated in the BBN when the user hits the 
center “Recalculate BBN probabilities” button, and the probabilities of the failure mode 
are then updated. In this example of lube failure, the initial probability of being in a bad 
state is 0.05, but that is updated based on this evidence to be nearly 0.58. 
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Figure 2.25. BBN Updating 

Finally, whether the Failure Mode is updated by sensor data or a BBN, the updated 
remaining usehl life estimate is presented to the user on the last tabbed form as shown in 
Figure 2.26. This form shows the original and updated RUL. The user can enter the 
number of hours from the current time at which she wants to obtain an estimate of the 
probability of failure. This conditional probability of failure (conditioned on the failure 
mode lasting to the current time and the updated TTF estimates) is given in the box on 
the lower right side of the form, and the PDFs of both the original TTF distribution (in 
green) and the updated TTF distribution (in red) are shown. 
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Figure 2.26. Results of updated TTP distribution 
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1.10. Object Model for the Evidence Engine 

The prototype Evidence Engine presented above has been programmed in Visual Basic 
6.0. The classes and class hierarchy used in this program include: 

BBN class. The BBN class is an object shell for containing a Hugin Bayesian 
belief network. The class allows one to load a BBN model, compile it, identify 
chance, decision, or utility nodes, modify the values of these nodes, and propagate 
updated values through the BBN. 

Distribution class: The distribution class is quite large, with a number of 
properties and methods for calculating cumulative distribution values for a variety 
of distribution types. The distribution class has an enumerated type of 
distributions, consisting of the following: Fixed, Wearout, Exponential, Uniform, 
Triangular, Normal, and Weibull. 

Sensor class. Sensors is a collection class for sensor. The sensor class allows 
one to read in continuous sensor data or batch sensor data. 

Sensor Feature Class: The SensorFeatures class is a collection class. The Sensor 
Feature class allows one to process sensor data, extract sensor features from the 
input sensor data, and extrapolate or project the sensor feature history to a 
threshold value. The Sensor Feature class holds both sensor input as well as the 
feature history, though if the sensor input is in batch form, the sensor feature class 
only holds the current batch of sensor data since it only processes the feature on 
one batch at a time. There are many feature extraction methods in this class and 
we expect to develop more complex feature extraction methods. The current 
extraction methods are: mean, higher moments (variance, skew, and kurtosis), 
and RMS. Each extraction method extracts one feature value per sensor batch. 
For example, if the extraction method is variance and there are 20 batches of data, 
the feature history will hold 20 variance values. Once the feature history is 
populated by an extraction method or by directly reading in sensor feature values, 
extrapolation of that sensor feature to a threshold may be performed. Currently 
the extrapolation methods are linear or polynomial regression. 

Failure Mode Class: The FailureModes class is a collection class. The failure 
mode class contains information about a failure mode: its ID, Time-to-Failure 
distribution, the state the failure mode is in (operational, under repair, etc.) The 
PHM prototype does not use all of the properties of the failure mode class - 
primarily we use the SensFeatures property to identify the sensor features 
associated with the failure mode, the TTF distribution, the age of the failure 
mode, and the update method (is the failure mode health updated via sensor data, 
a BBN, or age alone?) 

Combined Distribution Class: The combined distribution class allows one to 
input three failure mode state probabilities and associated TTF distributions, and 
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updates the overall TTF distribution for the failure mode based on an approach 
explained in the next section. The inputs to this class are the TTFs of the three 
states, the probabilities of the three states at a particular time, and the conditioning 
time for each state. The result is a combined TTF distribution (CDF value) and 
the inverse of the combined CDF value. Because it bears the same properties and 
functions, the Combined Distribution class is completely interchangeable with the 
existing Distribution class. 

BBN Fusion Class. The BBNFusionClass allows one to take sensor feature 
values, a sensor feature “partition map”, and a Bayesian Belief Network and 
output the state membership probabilities of being in various failure mode states. 
The major methods involved include get/set functions for various nodes in the 
BBN, an initialization method which reads in the BBN and the feature partition 
map, and a “fuse” method. The fuse method calculates the state membership 
probabilities for the sensor features, enters this information as findings in the 
BBN, then propagates this information to obtain updated beliefs about the state 
probabilities for the failure modes. 

Appendix A outlines in more detail the types of properties and methods that are part of 
each class. 

1.11. Updating Time-to-Failure Distributions 
A critical part of the Evidence Engine is updating the Time-to-Failure distributions. A 
TTF is defined for each failure mode. A failure mode can be in a variety of states. The 
following approach assumes that the probability of a failure mode being in a particular 
state has been defined or calculated (for example, from a BBN or SOM). 

Suppose we had three TTF probability density functions each associated with a given 
state (normal, intermediate or severe). We can refer to these functions as h((t)and to the 
states as Si where i = 1,2, or 3. 

Given that a particular component has already attained a certain age, by some means we 
can compute the Remaining Time to Failure (RTTF) distributions associated with each. 
(Interestingly, for a function with a constant failure rate the RTTF distribution is no 
different than the TTF distribution). We can refer to these functions as r, ( 1 )  and the 
current time as t,,, . Here is the formula for RTTF for state i: 

&,OW 

The act of updating a distribution to reflect elapsed time is called “conditioning”. Now 
we have three distributions that actually represent the conditional probability that the 
part will continue to last a specified period of time (with respect to a given failure mode) 
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given a certain state. A probability for each state is determined by condition monitoring 
algorithms. Symbolically, we define: 

s, := P(State = S, ) .  

To compute the conditional probability that the remaining time to failure falls within the 
timeframe a<tcO, we would integrate the appropriate density function. In symbols, we 
have: 

b 
P(n < RTTF < b [State = S i )  = r,(t)dt 

We have three possible states, each with its own probability distribution. We essentially 
have a situation where we h o w  P ( A  IBj) and the P(Bi) for all i. Thus, we can 
compute P(A)  by the following general formula: 

P ( A )  = T P ( B , ) . P ( A  15;) 
i=l 

Applying this to our topic, the unconditional probability that the RTTF lies in the 
timeframe a<t<b can be computed as follows: 

P(a < RTTF < b)  = Tsirl ; ( t )dt  

Dividing by b-a and taking the limit, we can derive the formula for the overall probability 
density function of RTTF, which we will call g(t). 

i=l a 

n 
:.g(t)=Cs; 'p;(t) 

i=l 

So, perhaps not surprisingly, the correct a posteriori distribution under our assumptions is 
simply a weighted average of the RTTF distributions. 

The next logical step was to see this approach in practice with somewhat meaningful 
distributions. Three empirical distributions were created in Excel and the state 
probabilities were varied. A wear-out distribution was used for the normal state and 
exponentially decreasing distributions were used for the intermediate and severe states. 
Results are shown in Figure 2.27. The cyan curve is the result of weighting each 
distribution with equal probability. The combined distribution seems to behave in a way 
that makes sense. As the probability is increased for a given state, while necessarily 
lowering the probability for the remaining states, the overall distribution assumes the 
shape of the dominating distribution. 
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1.11.1. Software Description 
In the software implementation, we use the cumulative distribution function (CDF) rather 
than the PDF described above. Moving the integral inside the sum, the appropriate 
formula becomes: 

n f  
:. G(t)  = xsz .Il;.(z)dz 

i=l 0 

In the algorithm, we also allow this distribution to be conditioned by a specified elapsed 
time. A detailed description of the “Combined Distribution” class is found in Appendix 
A. 

1.11.2. Examples of Resulting TTPs 
We have created an example to demonstrate the TTF updating by combining 
distributions. Figure 2.28 shows the PDF for a failure-mode exhibiting the weaxout 
distribution while in the normal state 
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igure 2.28. Normal State PDF 
Let’s suppose that the equipment has operated without this failure for 8 years. The 
resulting PDF is shown in Figure 2.29. The median time to failure is 1.349 years. 

Figure 2.29. Normal State PDF Conditioned 8 Years 

Let’s suppose that in the intermediate state, the PDF is defined by an exponential 
distribution with a constant failure rate of 1.0 per year as shown in Figure 2.30. 

1 

I I I I I 
2 4 5 6 7 

Figure 2.30. Intermediate State PD 
In the severe state, the PDF is defined by an exponential distribution with a constant 
failure rate of 5.0 per year, shown in Figure 2.31. 
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Figure 2.31. Severe State PDF 

If we assume equal state probabilities, the result is shown below in Figure 2.32. The 
median time to failure is 0.494 years. 

Figure 2.32. Combined State PDF, Probabilities = 0.333,0333,0.333 
If we assume state probabilities of 0.1,0.5,0.4 for normal, intermediate and severe states, 
the median time to failure is now 0.361 years (Figure 2.33). 

Figure 233. Combined State PDF, Probabilities = 0.1,0.5,0.4 
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As the severe state probability increases, the predicted median time to failure decreases 
further. For example with state probabilities of 0.1,O.l and 0.8, we have a median time 
to failure of 0.181 years (Figure 2.34). 

I I I I I I I 1 :  
7 E 

.rigure 2.34. Combined State PDF, Probabilities = 0.1, 0.1,O.S 
We can get a better picture of the effect the state probabilities have on the expected 
median time to failure by looking at a 3D plot of median TTF versus the normal and 
intermediate state probabilities. In Figure 2.35, the severe state probability is implied, 
since all three probabilities must sum to unity. The picture below on the left is the result 
when the wearout distribution is not conditioned. The picture on the right is the result of 
conditioning the wearout distribution by 8 years. 

Normal State Unconditioned Normal State Conditioned 8 yrs  

Figure 2.35. Predicted Median TTF versus Normal and Intermediate State 
Probabilities 

Referring to the leftmost graph above, when the normal state distribution is still 
predicting a lot of life in the component and the normal state probability is high, the 
predicted median TTF is high. However, as the normal state probability decreases, there 
is a rather rapid reduction in predicted TTF. Regarding the graph on the right, the normal 
state distribution has been conditioned by 8 years to reflect the age of the equipment. 
The intermediate state PDF predicts only a slightly lower TTF than the conditioned 
normal state distribution, as indicated by the low asymmetry of the graph &om le& to 
right. In both graphs, points near the origin have the lowest TTF values because of the 
high severe state probability. 
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Consequence Engine 

1.12. Introduction 
1.12.1. Objectives 
This section outlines the design for the Consequence Engine (CE). The purpose of the 
Consequence Engine is to predict the effect that repairhplacelinspectlwait strategies will 
have on the system if that action is taken. This “consequence analysis” part of the 
problem must be performed in such a way that the expected benefit from performing each 
alternative can be calculated. Then, given a set of alternatives each with an expected 
costhenefit, the alternative (or subset of alternatives) can be chosen that maximizes the 
expected benefit for the minimum cost. 

The Consequence Engine supports Prognostic Health Monitoring in two ways: First, 
when the Evidence Engine identifies a pending equipment failure, it must recommend an 
appropriate action. Possible actions might be to shut down immediately and repair the 
problem, ignore the problem and deal with the failure when it occurs, or schedule 
maintenance at an appropriate time in the future. For the operator or maintenance 
personnel to make the best decision, they need to know the consequences of all the 
possible actions. Consequences might be measured in terms of expected outage time or 
cost. The Consequence Engine provides a capability to quickly evaluate alternate 
actions and estimate the consequences of each. 

The second way in which consequence analysis supports PHM is to provide a capability 
for rapid evaluation of the potential effectiveness of a PHM system. PHM systems, no 
matter how well designed, may either fail to detect a pending problem (false negative) or 
report a problem when none exists (false positive). False positives can result in 
unnecessary (and expensive) maintenance. False negatives can allow failures to occur 
that should have been caught. If important decisions are based in part on PHM 
predictions, the costs of a false negative can be very high. For example, the decision may 
be made that military equipment is “good to go” for a mission when a pending failure has 
gone undetected by the PHM system. The Consequence Engine can help understand the 
costhenefit trade-offs for a PHM system depending on its error rates. 

The outline of this section is as follows: Section 3.2 gives an overview of the 
Consequence Engine architecture and discussion of the current version. Section 3.3 
presents the object models and simulation modules behind the Consequence Engine, 
Section 3.4 presents a case study example using the Consequence Engine, and Section 3.5 
presents results of sensitivity and optimization analyses. 

1.13. Overview 

The Consequence Engine takes the system health predictions from the Evidence Engine 
and develops projections into the future: what will be the overall impact on the system if 
a certain action is taken. Simulation is used to model the long-term impact of possible 
maintenanceiinspection strate 11 system performance 
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and cost. We chose simulation as the basis for the Consequence Engine because of its 
flexibility. The simulation mimics the reliability behavior of equipment in terms of 
simulated equipment failures, repairs, scheduled maintenance, and inspections. The 
simulation is based on user-definable maintenance and inspection schedules and a 
reliability model with time-to-failure and time-to-repair distributions for all failure 
modes. A spares model is included since the availability of spares may be a major factor 
in decision-making when a pending failure is identified. By running repeated 
simulations, the Consequence Engine can be used to calculate performance metrics such 
as mean time between failures (MTBF), mean time to repair (MTTR), availability, 
maintenance cost, downtime cost, etc. Thus, by running the simulation with different 
maintenance schedules, it can be to examine the consequences of alternative equipment 
maintenance scenarios. 

A graphic depicting the architecture of the simulation is shown in Figure 3.1. The 
simulation integrates and drives several modules: a schedule module, a cost module, a 
reliability module, and a spares module. The simulation is a discrete-event simulation. It 
works by examining the schedule of preventive maintenance actions and failure and 
repair events (events are generated by drawing from Time-to-Failure and Time-to-Repair 
distributions). A “master clock” looks at each event, calculates the state the system is in 
given that event, and then finds the next event that will happen. For example, when a 
failure event occurs, the system goes into a “failed” state. If the repair is scheduled to 
take 4 hours and no other events happen before that, then the system will return to an 
“operational” state after 4 hours. If, however, the repair time is 72 hours and a plant 
shutdown is scheduled 30 hours From now, the simulation will transition the equipment to 
the appropriate shutdown state 30 hours from now and correctly account for the repair 
time. At the end of the simulation, statistics on system performance measures such as 
system MTBF, availability, downtime, and cost are calculated and presented to the user. 
If desired, the user can view the history of events in the simulation. 
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Figure 3.1. Consequence Engine Architecture 

1.14. Approach 
Figure 3.1 provides an overview of the Consequence Engine architecture and its major 
modules. This section describes each of the Consequence Engine modules. 

1.14.1. Schedule Module 
Equipment failures are, by definition, unplanned and are interruptions of the planned use 
for the equipment. Simulation of equipment reliability behavior can be viewed as 
creating a chronology of equipment state changes and must begin with the planned use 
for the equipment. An example of such a chronology is shown in Table 3.1. 

Table 3.1. Example Equipment State Chronology 

Date Equipment State Status 
01/01/00 12:oo AM Operational Scheduled 
01/06/00 09:34 AM Standby Scheduled 
01/08/00 02:40 PM Operational Scheduled 
02/10/00 09: 1 1 PM Failed Unscheduled 
02/11/00 03:42 PM Operational Scheduled 
04/23/00 08:OO AM Preventive Maintenance 1 Scheduled 

The scheduling module provides the means to specify the planned equipment usage 
schedule so that component aging, simulated failures, maintenance, etc. can occur in the 
context of the planned schedule. 

Setting up an equipment schedule involves the following steps. 

1. Identify speciulperiods. Special periods are time intervals during which the 
equipment is scheduled to be in a state other than its default state. Special periods do 
not include scheduled maintenance. For example, the equipment may be shut down 
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for two weeks in July. A start date and time and an end date and time, as well as an 
equipment state define such intervals. 

2. Specify preventive maintenance (PA@ schedules. For each preventive maintenance 
activity, the failure modes to be addressed are identified and the schedule is specified. 

The details of setting up a schedule, preventive maintenance activities, and the associated 
failure modes are described in Appendix D. 

1.14.2. Reliability Module 
The reliability model is based on a collection of equipment failure modes. The 
possibility of redundancy or non-critical system elements is treated through the use of 
success paths. The model contains reliability data including time-to-failure and time-to- 
repair distributions for the failure modes. Details of the failure mode specification are 
found in Appendix E. The success path concept is described below: 

1.14.2.1. Success Paths 
A success path is a collection of elements (failure modes, components or subsystems) 
that, if all are operating, determine the operational state of the system. For example, 
consider the following simple block diagram model. 

. 
r l n  h 

w 
Figure 3.2 Simple Block Diagram Model 

In Figure 3.2, elements A, B, C and F are in series while D and E are in parallel. If the 
functionality of the system in Figure 3.2 is unaffected by whether D or E or both are 
operating, then two success paths would be needed to characterize the system. They are 
ABCDF and ABCEF, both of which support full functionality. On the other hand, if the 
functionality of the system in Figure 3.2 is reduced by the failure of either D or E, then 
three success paths are needed. Success path ABCDEF supports full functionality while 
ABCDF and ABCEF support reduced functionality. Of course, series elements do not 
need to be included in any specific success path since they are, by definition, included in 
all success paths. 

Success paths are defined by a collection of references to failure modes in the reliability 
model and a reference to the operational state that results from the success path. When a 
success path is active, the system is in an operational state (note that the user must define 
these operational states and the groups of failure modes that lead to various operational 
states). 

Operational states may differ from the default operational state in terms of the effect on 
the system being simulated. For example, a helicopter maneuvering at low altitude is 
subject to more stress than one flying straight and level at higher altitude. During 
intervals of increased (or decreased) operational stress, selected components and 
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subsystems may effectively age more or less rapidly than normal. Alternate operational 
states provide a means to treat such effects. Operational states are characterized by a 
collection of affected failure modes and an “acceleration factor” which causes the failure 
mode to age more or less rapidly than normal during the alternate operational state. For a 
more complete description of success paths and operational state definitions, see 
Appendix E. 

1.14.3. Spares Module 
The spares module treats the spares inventory that is available to the system being 
simulated. If a failure mode fails during the simulation, the spares inventory is queried to 
see if a spare part that fixes that component exists, and if it does, how long it take to 
acquire the spare. The spares inventory is a collection of spare parts each of which has 
uroDerties such as restock time, withdraw time, purchase cost, storage cost, reorder level, -~ 
usage rate, etc. Details of the sp 

1.14.4. Cost Module 
The cost module assumes that the cost of downtime can be characterized by a function 
that is piecewise constant. The downtime cost function is characterized by a start date, an 
end date, and the downtime cost per hour. 

In addition to downtime costs, each event (scheduled or unscheduled) can incur a cost. 
Each failure mode has an optional cost property. Each scheduled maintenance includes a 
cost to perform the maintenance, which is added to the cost to repair any failure modes 
addressed by the maintenance. The cost specification is found in Appendix G. 

1.14.5. Simulation Engine 
A simplified flowchart of the Consequence Engine simulation logic is shown in Figure 
3.3. The first step in preparing the simulation is to set up the planned schedule. The first 
event in the planned schedule is always the simulation itself. The simulation event’s start 
and end dates define the period to be simulated. Other types of events in the planned 
schedule might include preventive maintenance (PM), scheduled shut down periods, etc. 

The Consequence Engine maintains the planned schedule (which is not changed during 
the simulation), the actual schedule (which is the result of the simulation), and a 
collection of current events. The actual schedule initially contains only the simulation 
event: other events are added during the simulation. The current events collection 
contains events that started prior to the current date but have not yet ended. These events 
are allowed to overlap. 

At any time during the simulation there are three possibilities for the next system state 
change: 1) the end of a current event, 2) the occurrence of a failure mode, or 3) the 
beginning of a planned event. The Consequence Engine determines which of these 
occurs next and takes the appropriate action. If the next event is a failure mode or a 
planned event, the event is added to the actual schedule and to the current events 
collection. If the end of a current event causes the next state change, that event is 
removed from the current events collection. Time is then advanced to the next state 
change and the process continues. The simulation is complete when no events remain in 
the current events collection. 
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Figure 3.3. Flowchart of the Consequence Engine Simulation Logic 
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1.14.6. Input and Output Descriptions 
The Consequence Engine currently reads input data from a text file and does not provide 
any on-screen input editing capability. However, a utility program has been developed to 
allow the Consequence Engine to be used for uncertainty calculations and optimization 
analysis. The utility program makes it relatively easy to use the Consequence Engine for 
uncertainty analysis using sampled input data from Sandia’s SUNS software or to couple 
the Consequence Engine to the GO optimization driver. Appendix H describes the 
baseline Consequence engine input as well as the procedures for using the Consequence 
Engine in uncertainty and optimization analysis. 

In the current version of the Consequence Engine, output results are simply appended to 
the end of the input file. The results are presented in a way that makes it simple to paste 
them into a spreadsheet for analysis. Details of the results specification are found in 
Appendix 1. 

1.15. Consequence Example 
The purpose of this example is to test the reliability simulation capability of the 
Consequence Engine and to provide a limited validation of its simulation algorithms. 
The next section presents the example data set and the assumptions required to use the 
data as Consequence Engine input. Subsequent sections present results of the example 
analysis and an illustration of the use of the Consequence Engine in scenario evaluation. 

1.15.1. Example Input Data 
The example application is based on data from pressurized water reactors (PWRs) in the 
United States during the period of 1990 - 1995 [INEL, 19961. The applicable data was 
summarized in an MIT report in 1998 [Golay and Kang, 19981. This data (Table 3.2) 
identifies the power plant components most responsible for forced outage time. While 
the data in Table 3.2 provides the basis for the example application, several assumptions 
were required before this data could be used. These assumptions are summarized below. 
In examining these assumptions, keep in mind that the purpose of this application is not 
to make predictions about the performance of nuclear power plants. The purpose is to 
provide a test and a limited validation for the Consequence Engine. 

1) The outage time attributable to Other in Table 3.1 was not presented in reference (2) 
but was calculated from the percentages. 

2) The number of failures attributable to Other was assumed to be 100. 

3) The number of PWRs operating in the US during the period 1990 - 1995 was 69. 
4) Each PWR required four weeks of scheduled outage time every 18 months for 

refueling. 
To proceed with the simulation, it is necessary to know the total operational time of the 
PWRs represented by the data in Table 3.2. The following equation shows this 
calculation. 
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hours 
year 

PotentialOp.Hours Per Plant = 6 yearSx8,760- + 24 hours 

= 52,584Hours 

The above equation accounts for 6 years of data plus an extra day for the leap year 
(1992). The total potential operating hours for all plants is then 

hours 
PotentialOp.Hours All Plants = 69Plantsx52,584- 

plant 
= 3,628,296Hours 

To get the actual operating hours, we need to subtract forced and scheduled outage time 
from the total potential operating hours for all plants. Scheduled outage time can be 
calculated from assumption 4 above. 

Months 1 Outage 
Year 18Months 

Scheduled Outages Per Plant = 6 Yearsx 12 

= 4Outages Per Plant 

The total scheduled outage time is then given by 

Outages 672 Hours 
Plant Outage 

Scheduled Outage Time = 69 Plants x 4 

= 185,472 Hours 

The total operational time can be calculated by subtracting scheduled and unscheduled 
outage time from the total potential operating hours. Scheduled outage time is given in 
Equation (3.4) and unscheduled outage time is found in Table 3.1. 

TotalOperationalTime= 3,628,296-185,472-135,742.3 
= 3,307,081.7hours 

With the results of Equation (3.5) and information in Table 3.1, we can estimate the 
MTBF and MTTR for the PWRs represented in the data set. 

=417Ohours Total Operational Hours - 3,307,08 1.3 hours 
Number of Failures 793 failures 

MTBF = - 
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= 17 Total Forcedoutage Hours - 135,742.3 hours 
Number of Failures 793failures 

MTTR = - 

Results of the Consequence Engine simulation should compare with the MTBF and 
MTTR values in Equations (3.6) and (3.7). The results should also reproduce the 
systdcomponent ranking given in Table 3.2. 

Table 3.2. Ranking of PWR Systems/Components Responsible for Forced Outage 
Time 
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The following assumptions were used to create the CE input data set: 
1. Each of the systemskomponents in Table 3.2 was treated as a single failure mode. 
2. The wearout distribution (see Appendix B) was used for the time-to-failure (TTF) 

distribution. 
3. The bum-in or infant mortality period was assumed to be 1% of the mean life and the 

probability of failure during the bum-in period was assumed to be 0.5%. 
4. The probability of a failure after bum-in but before the onset of the wear out portion 

of the TTF distribution was assumed to be 0.5%. 
5. The mean life of components that reach the wear out portion of the TTF distribution 

was assumed to be the total operational hours of the system divided by the number of 
failures for that component. 

6 .  The standard deviation of the wear out portion of the TTF distribution was assumed 
to be 15% of the mean life. 

7. The mean time to repair for each component was calculated as the total outage time 
attributable to that component divided by the number of failures for that component. 

8. The time-to-repair distribution was assumed to be a triangular with the minimum set 
at 50% of the mean, the most likely equal the mean, and the maximum set to 150% of 
the mean. 

The time-to-failure distribution data was developed from the data in Table 3.2 using the 
above assumptions. The results are presented in Table 3.3. Time-to-repair distribution 
data is presented in Table 3.4. 
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Table 3.3. Time-To-Failure Distribution Data 
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Table 3.4. Time-to-Repair Distribution Data 

Performance Measure PWR Data 

MTBF 4170 Hours 

MTTR 171 Hours 

Simulation Results Percent Difference 

4154 Hours 0.4 

172 Hours -0.6 
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For both'MTF3F and MTTR, the simulation results are within 1% of the original data. We 
also compare the outage time attributable to each system or component in the analysis. 
These results are shown in Figure 3.4. 
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Figure 3.4. Comparison of Outage Times by SystedComponent 
The comparison results presented above demonstrate that the Consequence Engine has 
accurately recreated the historical reliability behavior of the PWRs represented by the 
data in Table 3.2. 

1.15.3. Example Scenario 
This section illustrates the use of the Consequence Engine in evaluating alternative 
scenarios that could be considered in response to an HMS notification of a pending 
equipment failure. The basis for selecting the preferred scenario will be the cost of 
electricity not generated as a result of a scheduled or forced outage. 

, Cost calculations assume a 1300 MW plant and use a wholesale electricity price forecast 
provided by Reliadigm, a subsidiary of Public Service Company of New Mexico. Daily 
average forecast prices for 2002 are shown in Figure 3.5. As shown in the figure, daily 
average wholesale prices are forecast to range from less than $2O/mwh to about 
$13O/mwh. It is clear from Figure 3.5 that the timing of a plant outage can have a 
dramatic effect on the cost of lost generation. 
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Figure 3.5. Daily Average Wholesale Electricity Price Forecast for 2002 
The example scenario postulates that on June 10, 2002, HMS vibration sensors indicate 
that a turbine failure appears likely to occur in 1 to 2 weeks. In this case, excessive 
vibration would be expected to cause the turbine to trip. The Consequence Engine was 
then run for two cases. The first case assumes that we let the turbine run to failure (trip) 
and the second case assumes that turbine maintenance is scheduled within a day of the 
warning indication. We assume that the time-to-repair distribution when turbine 
maintenance is scheduled is the same as the time-to-repair distribution for the run-to- 
failure case. The two cases are compared based on the cost of lost electricity generation 
using the wholesale price projections in Figure 3.5. The results for the two cases are 
shown in Figure 3.6. The expected cost of lost electricity generation for the run-to-failure 
scenario is about $6.7M whereas the expect cost when maintenance is scheduled 
immediately is about $2.9M. 
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To illustrate the effect of maintenance timing on the cost of lost electricity generation, a 
series of calculations was performed in which the timing of the scheduled maintenance 
was varied. Specifically, the maintenance was scheduled from 1 to 7 days aRer the HMS 
indicating that a turbine failure was expected. Results are shown in Figure 3.7. 
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Pigure 3.6. Cost Comparison for Two Maintenance Scenarios 
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Figure 3.7. Cost of Lost Electricity Generation vs Days Delay in Maintenance 
The increase in cost as a function of the delay in scheduling maintenance is a result of the 
projected increasing wholesale electricity cost for the next few days after the HMS 
warning. If the warning should occur at a time when electricity cost was projected to 
decline, it might be more cost effective to delay maintenance subject to the expected 
timing of the failure. 
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1.16. Maintenance Optimization 
To illustrate the use of the Consequence Engine (CE), an optimization analysis has been 
performed on an Accessory Drive Gearbox (ADG) for a fixed wing aircraft. The purpose 
of the analysis is to optimize both the scheduling of maintenanceiinspection activities as 
well as the spares inventory that supports ADG maintenance. Optimization variables for 
the spares inventory include reorder levels, restock times, and withdrawal times. 
Maintenance variables include maintenance intervals and inspection false positive and 
false negative rates. In total, some 65 variables were considered. Assume that the 
variables are discretized into an average of 10 levels each. Then the number of possible 
combinations is 

N, = 1 0 ~ ~ .  

While this creates a rather large optimization problem, it can certainly be attacked using 
evolutionary algorithms if there is sufficient structure in the output space. However, if 
several of the input variables have little or no effect on the performance measures of 
interest, then the output space may be quite flat which can create a difficult or impossible 
optimization problem. For example, suppose that as many as 30 of the input variables 
have negligible effect on problem output. Then the true problem size should be 

N, 

As a result, any output structure will be lost in about 30 orders of magnitude of excess 
combinations. For this reason, the optimization was preceded by a sensitivity analysis to 
eliminate unimportant input variables. As with the power plant example, the gearbox 
analysis is only meant to be representative of a complex system and to provide a test and 
limited validation for the Consequence Engine. 

1.16.1. Accessory Drive Gearbox 
The Accessory Drive Gearbox performs two functions on the aircraft. The first is a main 
engine starting capability on the ground or in flight. The ADG has mounting pads for a 
hydraulic start motor, and a gas turbine Jet Fuel Starter (JFS). On the ground, or in the 
event of an engine flameout in-flight, ADG provides power to start the aircraft engine. 
The second is providing power from the JFS or aircraft engine to the accessories. To 
accomplish this the accessory drive gearbox has mounting pads for two hydraulic pumps 
and a generator. When the aircraft engine is operating, the accessory drive gearbox 
transfers power from the aircraft engine through the power take-off shaft to the hydraulic 
pumps and the generator. The ADG contains 29 gears, four lube pumps, one torque 
converter, three clutches, and other parts. It is a complex piece of equipment (see Figure 
3.8) 

70 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 



I 
I 
I 
1 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 3.8 Accessory Drive Gearbox (ADG) for a Fixed-Wing Aircraft 
For the consequence engine simulation, time-to-failure (TTF) and time-to-repair (TTR) 
distributions are needed for each failure mode. The wearout distribution, developed at 
Sandia, was used to characterize TTF for all failure modes. The “Wear-Out” is a three- 
part distribution developed for use as a timeto-failure distribution. Its three parts are 
burn-in, normal life, and end-of-life. During the bum-in period, the failure rate is 
assumed to be linearly decreasing. During the normal life, a constant failure rate is 
assumed. In the end-of-life portion of the distribution, the time-to-failure distribution is 
assumed to be normal. The wear-out distribution requires five parameters as follows: 

Burn-In Fraction 
This parameter determines the fraction of failures that occur during the bum-in period. 

Burn-In Duration 
This parameter sets the duration of the burn-in period. Its units are hours. 

Random Fraction 
This parameter sets the fraction of failures that are assumed to occur during th 
component’s normal life. 

Mean 
This is the mean of the normally distributed end-of-life portion of the distribution. Its 
units are hours. 

Standard Deviation 
This is the standard deviation in hours of the normally distributed, end-of-life portion of 
the distribution. 
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Table 3.6 shows the TTF distribution for the 15 failure modes that were considered in the 
analysis. 

Table 3.6. ADG Failure Modes with TTF Distributions 

EAK SENSOR, SPEED, JFS 32,100 5,000 0.1 1,605 0.05 
EAL SENSOR, SPEED, PTO 67,200 6,000 0.1 3,360 0.05 
EAM VALVE, SOLENOID 46,600 5,000 0.1 2,340 0.05 
EAP CHECK VALVE, AIR BLEEDER, ADG 100,200 10,000 0.1 5,010 0.05 
EBA SHAFT, POWER TAKEOFF (TCl) 1,500 100 0.1 75 0.05 

Parameters for the TTF distributions were developed by first estimating the mean life and 
standard deviation for components that do not experience bum-in or random failures. 
Then it was assumed that each component had a 10% chance of failing during bum-in 
and a 5% chance of failing randomly following burn-in but before the onset of end-of- 
life. Finally, the bum-in duration was assumed to be 5% of the mean life. 

Table 3.7 shows downtime distributions for the 15 component failure modes used in the 
analysis. The downtimes are assumed to be normally distributed with the means and 
standard deviations shown in Table 3.7. In each case, the mean TTR includes an 
assumed 3-hour administrative time in addition to the actual time to repair the failed 
component. All times are in hours in Tables 3.6 and 3.7. 
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Table 3.7. ADG Failure Modes with TTR Distributions 

Table 3.8 shows cost information used in the optimization analysis. The non-parts cost is 
primarily labor but may include testing and other costs. The spares cost column shows 
the cost to purchase spares needed for the repair. The scheduled repair cost is just the 
sum of the non-parts and spares costs and is used when the maintenance is scheduled. 
The unscheduled-repair cost column shows the cost when the component actually fails. 
In this case, the cost is assumed to be double the cost of doing the same maintenance 
before the failure actually occurs. The extra costs are intended to account for additional 
damage that is often incurred when a part fails. 

Table 3. 8 ADG Failure Modes with Cost Data 
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The following two tables show data used to model the spares inventory in the analysis. 
Table 3.9 shows spares purchase, holding, and shipping costs. The purchase cost is the 
spares cost repeated from Table 3.8. The normal shipping cost is the cost incurred when 
a replacement part is added to the inventory with normal shipping. When a part is needed 
that is not in the inventory, an emergency order is placed which incurs the emergency 
shipping cost in Table 3.9. Finally, the annual holding cost is assumed to be 10% of the 
purchase cost and is intended to include storage and administrative costs as well as time- 
value of money. 

Table 3.9. Parts Cost Data 

Table 3.10 shows withdrawal and restock times for the parts used in the analysis. The 
location column indicates whether the part is stocked locally or whether, when needed, it 
must be acquired from a parts depot. The withdrawal time is the time required to obtain 
the part from the inventory when the part is in stock. The restock time column shows the 
normal time required to order and restock a part for the inventory. The emergency 
restock time is the time required to obtain a part for the inventory when the part is out of 
stock and is needed immediately. All times are in hours. 
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Table 3.10. Parts Withdrawal and Restock Times 
lthdrawal Restock Emergency 

ime Restock Time 
bepot 164 720( 60 

Table 3.1 1 shows the maintenance and inspection schedule for the ADG. The interval 
column is the number of flight hours between the scheduled activities. The column 
labeled “components replaced” shows which components will be inspected and/or 
replaced by the scheduled activity. Refer to Table 3.10 to identify these components. The 
cost column includes labor but not the cost of parts, which can be found in Table 3.9. A 
normal distribution is assumed for the time to perform the maintenance or inspection with 
the means and standard deviations given in the last two columns of Table 3.11. For the 
routine and phase inspections, it is assumed that the components are examined and, if it is 
concluded that the component will likely fail before the next scheduled inspection, the 
component is replaced. The probability of false positive is the likelihood that the 
inspection will conclude that a failure is imminent when it is not. Similarly, the 
probability of a false negative is the probability that the inspection will conclude that a 
component will perform successfully until after the next inspection when in fact, it will 
fail. 

Table 3.11. Scheduled Maintenance and Inspections 



1.16.2. Sensitivity Analysis 
The purpose of the sensitivity analysis is to determine which variables most influence 
performance of the ADG as measured by its annual maintenance cost, scheduled 
downtime, and unscheduled downtime. Results of the sensitivity analysis will be used to 
eliminate variables that have negligible effect on these performance measures in order to 
simplify the optimization analysis. 

1.16.2.1. Variable Definitions and Ranges 
The sensitivity analysis evaluated the following variable areas: 

Maintenance and inspection intervals, 

Inspection false-positive probability, 

Inspection false-negative probability, 

Spares restock time, 

Spares withdrawal time, and 

e Spares reorder level. 

Ranges used in the sensitivity analysis for these variables are presented in the following 
tables. 

Table 3.12 shows the variable ranges used for maintenance and inspection intervals. The 
sensitivity analysis sampled intervals from a triangular distribution with the nominal 
interval serving as the most likely value. Note that the routine and phase inspections 
have been separated by component failure mode. The intervals for the two routine 
inspections (EAC and EM) are highly correlated so that they continue to be inspected 
together. Similarly the phase inspections are also highly correlated to keep them on the 
same schedule. However, separating them allows their false positive and false negative 
probabilities to be evaluated independently (see Tables 3.13 and 3.14). 

Table 3.12. Variable Ranges for Scheduled Maintenance and Inspections 

Table 3.13 shows the variable ranges used for inspection false-positive probabilities. The 
nominal false-positive probability is shown for reference. In each case the false-positive 
probability is sampled from a triangular distribution with the most likely set to the 
nominal value. 
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Table 3.13. Variable Ranges for Inspection False-Positive Probabilities 

Variable ranges for inspection false-negative probabilities are given in Table 3.14. For 
each inspection, the false negative probability is sampled from a triangular distribution 
with the nominal value as the most likely. 

Table 3.14. Variable Ranges for Inspection False-Negative Probabilities 

Variables used to evaluate the effects of the spares inventory on ADG performance are in 
Tables 3.15 through 3.17. Table 3.15 shows the variable ranges used for spare restock 
times. All times are in hours. 

Table 3.15. Variable Ranges for Parts Restock Times 
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Table 3.16 shows variable ranges for spares reorder levels. The reorder level is the 
stocking level that, when reached, triggers an order for additional parts. In each case, the 
reorder level is sampled from a triangular distribution with the nominal used as the most 
likely value. Note that the ADG parts inventory is intended to support 500 aircraft. 

Table 3.16. Variable Ranges for Parts Reorder Levels 

Table 3.17 shows variable ranges for spares withdrawal times. The withdrawal time is 
the time required to obtain the spare from the inventory to the point where it is needed 
when the spare is in stock. The times are in hours. 

Table 3.17. Variable Ranges for Parts Withdrawal Times 
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1.1 6.2.2. Sensitivitv Analvsis ResulaS 
The sensitivity analysis was performed using Sandia's SUNS software. A Latin 
Hypercube sample of size 200 was analyzed. All the input variables were sampled from 
triangular distributions using the parameters given in the above tables. The outputs of the 
consequence engine simulation were cost, scheduled downtime, and unscheduled 
downtime. The cost calculation included the annual cost of inspections, repairs, and parts 
(purchase, storageholding cost, and shipping costs) and was normalized to one aircraft. 
Scheduled downtime includes time spent on scheduled maintenance and inspections 
while unscheduled downtime results from repairing equipment failures. Both downtime 
calculations were annualized. 

It is important to note that these results should not be interpreted as representing actual 
variability in the metrics calculated (cost, scheduled and unscheduled downtime). The 
sensitivity analysis was performed to determine which inputs, if they could be modified, 
would most influence the output results. The sensitivity analysis will provide a basis for 
determining which inputs should be considered in the optimization analysis. 

Figure 3.9 shows a histogram of annual cost results. The average annual cost is about 
$1 1,500 with a range (5" to 95" percentile) of $8,750 to $12,850. 

Figure 3.9. Histogram of Annual Cost Results 

Figure 3.10 shows the annual scheduled downtime. The average value is about 94 hours 
with a range (5'h to 95'h percentile) of 65 to 138 hours. 
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Figure 3.10. Histogram of Annual Scheduled Downtime 

Figure 3.1 1 shows annual unscheduled downtime. The range for unscheduled downtimes 
is from 43 to 120 hours with an average of 74 hours. Figures 3.10 and 3.11 show clearly 
that the primary means of avoiding unscheduled downtime is through an extensive 
program of scheduled inspections and replacements. 

Figure 3.11 Histogram of Annual Unscheduled Downtime 

We will use partial rank correlations to identify the input variables that are the largest 
contributors to the output variables in Figures 3.9, 3.10 and 3.1 1.  A partial correlation 
measures the strength of a relationship between two variables, while controlling the effect 
of additional variables. The partial correlation on ranks replaces the raw values of input 
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and output variables with their ranks. Ranks are assigned by sorting the values in 
ascending order then assign each value its rank from 1 to N where N is the number of 
values. In the case of ties, the tied values are assigned their average ranks. 

Partial rank correlations for input variables with cost are shown in Figure 3.12. Only the 
top 9 partial rank correlations are shown. 

Figure 3.12. Partial Rank Correlations of Input Variables with Annual Cost 

A naming convention was applied to the input variables so that the consequence engine 
could interpret and properly apply the sampled values. In this convention, the first two 
characters identify the input variable category. For example, SP refers to the spares 
inventory. The second sequence of two characters identifies the specific variable (e.g., 
SP-RO refers to the reorder level for a spare). The remaining characters identify the 
spare or component failure mode to which the variable is applied. For example, SP-RO- 
PTO Shaft refers to the reorder level for PTO Shaft spares. Table 3.18 shows the naming 
convention used for the input variables. Ussbased maintenance refers to maintenance 
and inspections that are scheduled based on flight hours. 

Using Table 3.18, Figure 3.12 shows that the highest partial rank correlation for annual 
cost is with the time-change interval for the PTO shaft. The correlation is positive 
because the sensitivity analysis range (800 to 1500 hours; see Table 3.12) extends to the 
mean life (1500 hours; see Table 3.6). As the replacement interval for the PTO shaft is 
increased, the probability increases for a failure to occur before the replacement. The 
second variable in the Pareto of Figure 3.12 is the time-change interval for the ADG. In 
this case, the correlation is negative because the sensitivity analysis range does not extend 
very close to the expected life. As a result, fewer scheduled replacements occur with little 
increase in the probability of a failure. 

The third and fourth highest correlations with annual cost belong to routine inspection 
intervals for E M  (Chip Detector Plug) and EAC (Oil Filter). It is interesting that even 
though these variables are highly correlated, their partial rank correlations with cost are 
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0.21 and -0.21. Their simple correlations with annual cost are positive and small with 
the simple raw correlations being about 0.02 and the simple rank correlations being about 
0.001. 

Table 3.18. Input Variable Naming Convention 

Figure 3.13 shows graphically the strength of the relationship between the PTO Time 
Change and the annual cost where a strong positive correlation is apparent. 

Figure 3.13. Scatter Plot of PTO Time Change Interval vs. Annual Cost 
Figure 3.14 shows a Pareto of partial rank correlations between input variables and the 
annual scheduled downtime. Here the top input variable is the time change interval for 
the PTO shaft with a partial rank correlation of -0.54. Increasing PTO Shaft time change 
intervals will necessarily decrease scheduled downtimes. The second and third variables 
relate to ADG spares with better availability (larger reorder levels) decreasing scheduled 
downtimes while larger withdrawal times increase’scheduled downtimes. It is interesting 
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that the probability false positives on several inspections are among the top contributors 
to scheduled downtime because false positives result in unnecessary maintenance. 

Figure 3.14. Partial Rank Correlations of Input Variables with Annual Scheduled 
Downtime 

Figure 3.15 is a scatter plot of the PTO Shaft time change interval vs. the annual 
scheduled downtime. While one can see a negative correlation between the variables 
(partial rank correlation -0.54), the relationship does not appear as strong as that shown 
in Figure 3.13. 

Figure 3.15. Scatter Plot of PTO Shaft Wme Change Interval vs. Annual Scheduled 
Downtime 
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Figure 3.16 shows partial rank correlations of input variables with annual unscheduled 
downtime. It is interesting that the top four variables relate to the PTO Shaft. They can 
be understood from the fact that increasing the time interval for PTO Shaft changes 
increases the probability of PTO Shaft failures and thereby increases unscheduled 
downtime. This can be seen fiom variable 2 in the Pareto of Figure 3.16. With increased 
probability of PTO Shaft failures, reorder level for parts (variable 1) needs to be higher 
while the withdrawal and restock times (variables 3 and 4) need to be reduced. 

Figure 3.16. Partial Rank Correlations of Input Variables with Annual Scheduled 
While the above figures provide interesting insight into the influence of individual input 
variables on the three output variables (annual cost, annual scheduled downtime, and 
annual unscheduled downtime), it is difficult to determine which variables are most 
important overall. Table 3.19 provides this insight by presenting partial rank correlations 
for all input variables with all three outputs. The table is sorted by the absolute value of 
the maximum correlation of the variables with any of the three outputs. 
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Table 3.19. Partial Rank Correlations Sorted by Maximum Absolute Value 

SP-RT-Oil Filter 
SP-RT-Pump Assy JFS 
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Table 3.19 (Cont’d). Partial Rank Correlations Sorted by Maximum Absolute Value 

The results in Table 3.19 will be used to reduce the size of the optimization problem by 
eliminating all variables having maximum partial rank correlation less than 0.22. The 
scatter plot of the routine inspection interval for the chip detector plug (EAJ) vs. annual 
cost (Figure 3.17) illustrates the reason for choosing this cutoff. While the partial rank 
correlation between these two variables is 0.21, it would be hard to discern any 
relationship by examining the scatter plot. Applying this cutoff will eliminate 46 of the 
65 input variables from the optimization analysis. This will reduce the number of 
possible combinations by a factor of at least IO4 and will greatly increase the possibility 
of find an optimal or near optimal solution. 
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Figure 3.17. Scatter Plot of ADG Pump Assembly Restock Time vs. Annual 
Unscheduled Downtime 

1.16.3. Optimization Analysis 
The optimization analysis considered the top 19 variables in Table 3.19. The 
optimization analysis used Sandia’s GO optimization software, which is based on a fairly 
standard genetic algorithm. Each optimization run used 100 simulations and results were 
averaged over the 100 simulations. Performance measures optimized were the average 
annual cost, the average annual scheduled downtime, and the average annual unscheduled 
downtime. 

Because of time constraints, the optimization was only run for 24 g e n d o n s .  The 
population size was 100 -that is, 100 different input combinations were evaluated on 
each generation. Input combinations that did not change from one generation to the next 
were not reevaluated. In the c o r n  of the optimization analysis, approximately 1700 
different input combinations were evaluated; each of them was run for 100 simulations. 
The fitness history for the optimization is show in Figure 3.18. 
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Figure 3.18 fitness History for the Optimization Analysis 

While the optimization could have used more generations to fmd a better answer, it is 
clear that progress was made on finding a good result. 

Figure 3.19 shows the annual cost history over the 24 generations of the optimization 
analysis. 

Figure 3.19 Annual Cost History for the Optimization Analysis 

Notice that there was an increase in annual cost over the last few generations of the 
analysis. This is explained by the fact that the annual scheduled downtime decreased 
considerably at the same time (see Figure 3.20). That is, increased cost was traded for 
decreased scheduled downtime. 
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Figure 3.20 Annual Scheduled Downtiae History for the Optilnlzstion Analysis 

Finally, Figure 3.21 shows the history for annual scheduled downtime. 

Figure 3.21 Annual Unscheduled Downtime Hietory for the Op~mizPtion Annlysis 

The results of the optimization, in terms of inspection intervals, spares reorder levels, etc. 
are summarized in Table 3.20. 
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Table 3.20 Results of Optimization Analysis 

Because the optimization analysis needed more generations to develop the best solutiotl 
that it could, the results in Table 3.20 have to be viewed cautiously. Nevertheless, some 
results are obvious. For example, reducing false positives on inspections would 
obviously decrease costs. Similarly, reducing spares withdrawal times would obviously 
decrease both scheduled and unscheduled downtime. Finally, it is interesting that the 
PTO time change interval was shortened by the optimization analysis while the ADG 
time change interval was left unchanged. 

1.16.4. Analysis of Time-Change Interval 
One of the uses of the Consequence Engine is to analyze the benefits of various types of 
maintenance actions. For complex military equipment, critical items are usually replaced 
on a Time-Change Interval (TCI). This means that they are replaced when a certain 
number of operating hours has been reached: for example, replace an item after it has 
1000 operating hours. 

To demonstrate the analysis of the Time-Change Interval, we consider an Accessory 
Drive Gearbox (ADG). For the purposes of this analysis, we have assumed that the ADG 
is one unit. We did not model components such as gears, bearings, and clutches then roll 
that data up to an ADG system level, though that might be the next step. We assumed 
that the ADG had a wearout distribution with 5% probability of bum-in failure during the 
first 100 hours, 10% probability of failure between bum-in and onset of wearout, and the 
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end-of-life characterized by a normal distribution with a mean of 4000 hours and a 
standard deviation of 500 hours. 

The Consequence Engine has very detailed logic to simulate preventive maintenance 
actions and inspections. For preventive maintenance actions, the user can specify 
whether to repair or replace an item. The user also specifies the “percent renewal” on 
that item if repaired or replaced. For example, if an item is replaced, its clock is usually 
set back to zero with 100 percent renewal. However, if an item is repaired, it may not be 
completely renewed. So, for example, its expected life might be set to 70% of the original 
life estimate. For this simulation, we assumed that if the ADG failed, it would be 
replaced with 100% renewal. 

For inspections, the simulation looks ahead to the next scheduled inspection and 
generates a probability that the component will fail before the next inspection. For 
example, if the inspections are every 300 hours and the clock time on the gearbox is 600 
hours, the probability of a failure between 600 and 900 hours is calculated from the TTF 
distribution, a random number is generated, and if it falls within the probability, a failure 
event is generated. 

If a failure would occur before the next inspection, there is a probability that the current 
inspection does not detect this impending failure. We take as input a “false negative” 
probability. For example, if the false negative probability is 30%, and random sampling 
from the TTF distribution indicates that there would be a failure before the next 
inspection, there is a 30% chance that the inspection at 600 hours will not detect the 
pending failure. In that case, the component will not be repaired as a result of the 
inspection and the component will fail before the next inspection. If the inspection 
correctly identifies a pending failure (with a 700? chance in this example), then the ADG 
will be replaced at 600 hours. 

If the inspection indicates that the component will not fail before the next scheduled 
inspection, then we see if a false positive result has occurred, meaning that the inspection 
indicated a pending failure when there was none, and the component was replaced 
prematurely. We use a 1% false positive rate in this analysis. 

We use the inspection feature in the Consequence Engine combined with the false 
positive/false negative rates to model a PHM system. Note that we are not modeling a 
continuous PHM system, since we are only checking the inspection results every 300 
flight hours, but we could reduce the inspection interv 
represent a prognostic system operating continually. 

The results of this analysis are shown in Figure 3.22. This graph has the probability of a 
false negative on the X-axis. Larger numbers mean that the inspection (i.e. prognostics) 
is not that good at detecting onset of failure. On the Y-axis, we have the probability of 
ADG failure per year, per aircraft. The different lines show the results of the analysis, 
parametrically varying the time-change interval Tc from 2500 hours to 4000 hours. 
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Figure 3.22. Annual ADG Failures per A/C per Year 

Look at the lowest line first. This shows that with the current replacement interval of 
about 2500 hours, there is approximately a 0.3% chance of failure per aircraft per year, 
assuming a perfect inspection (this is the baseline failure rate primarily due to bum-in 
failures that occur before an inspection is scheduled.) Even with a false negative rate of 
40%, the probability of ADG failure is still under 1% because the time change is at the 
30 limit on the wearout portion of the assumed time-to-failure distribution (4000-3*500). 
As the time change interval is lengthened, the probability of ADG failure increases. 
However, the assumption that many of the failures are caught at the 300 hour inspections 
means that overall, the ADG failure rate does not increase significantly. In the worst case 
scenario, with a 40% false negative rate and a time change at 4000 hours, the failure 
probability is around 2.2% per aircraft per year. 

This graph can be used to determine the required precision of a prognostic system to 
maintain a certain reliability level. If, for example, an annual failure probability for the 
ADG per aircraft was desired to be 0.5% or less, the accuracy of a prognostic system with 
a 3500 hour time change interval would require a false negative probability of around 
3%. If an annual failure probability for the ADG per aircraft was desired to be 1% or 
less, the accuracy of a prognostic system with a 4000 hour time change interval would 
require a false negative probability of approximately 13%. 

We have performed some validation on this analysis, and run the simulation long enough 
to get good statistics. Each dot in Figure 3.22 represents five million flight hours, or 
approximately 16,667 aircraft years. We have analytically calculated the number of 
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failures expected during bum-in and the number of failures that will not be caught by the 
inspection due to the false negatives, and these numbers come very close to the failure 
rates shown in Figure 3.22. Note that if there were no inspections and no time changes, 
the possible number of failures could be as high as 7.5%/year, assuming the 4000 hour 
mean life. The field failure data indicated that there were 8 1 remove and replace actions 
on the ADG that were not time changes over a two year period, with data from 11 84 
aircraft. That translates to 40/year or about 3.5% of the fleet per year. It is difficult to 
say, however, how many of these remove and replace were true failures - many of them 
may have been incidents where maintenance personnel thought something was not quite 
right and sent the ADG for replacement (or the ADG could have been removed and 
replaced though another component such as the JFS was the culprit). It is also not clear 
at this point how good the current inspection at the 300 hour phase is at predicting failure 
over the next 300 hours, given that maintenance personnel currently can only check the 
magnetic chip detector and the oil filtedoil level. The current inspection probably has 
some PHM capability, but does it predict more than 50% of impending failures? We 
need to collect more data to determine that. The point to remember is that the results in 
Figure 3.22 do assume that many of the failures are caught by the 300 hour inspection, so 
the overall y of failure numbers are lower than would be in absence of a PHM 
capability. 
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Summary 
Given the state-of-the-art in prognostics, we suggest the following as a roadmap for 
developing a PHM system for a particular component or system: 

1.  Create a reliability model of the system. 
2. Determine the critical components and failure modes, in terms of cost, frequency, 

3. For each critical component, identify what factors could help update the remaining 
and severity. 

useful lifetime estimate. This may include: 
Sensor data 
Operational usage such as flight parameters, environmental parameters 
Previous maintenance/inspection data 
Component age 

4. For each component, determine how these factors (sensor data, operational usage, 
maintenance records, etc.) will be used to estimate the remaining useful life. 
Specifically, identify potential algorithms given an understanding of the data 
streams. This is the hard part, the “science” of prognostics. It may involve 
significant experimental setups to test under a variety of regimes so that enough 
data is available to develop prognostic algorithms with some factor of confidence. 

5. Develop methods for analyzing the consequence of potential part failures and how to 
schedule maintenance that will prevent this. 

6 .  Determine how PHM will integrate with the logistics and maintenance program. 

The concept of machine prognostics as a means of increasing reliability and decreasing 
maintenance costs has spurred considerable research and development into prognostics but much 
remains to be done to have a highly accurate, operational system. A very important factor for 
ensuring success of PHM on a particular system will be to take a systems analysis approach and 
simulate the likely behavior of various prognostics approaches. 
understand how uncertainty in failure rates, in bad “threshold” values, in order and repair times, 
and most importantly in the prognostic accuracy will affect the performance of PHM. Proper 
sensitivity analyses of reliability models and maintenancehestocking models will help one 
understand which prognostics methods will be cost effective and what cost improvements one 
can realistically expect (trade studies). 

This report has summarized the results of PHM algorithms and software tools developed 
as part of an JDRD project. The Evidence Engine integrates information from a variety 
of sources in order to take into account all the evidence that impacts a prognosis for 
system health. The Evidence Engine has the capability for feature extraction, trend 
detection, information fusion through Bayesian Belief Networks (BBN), and estimation 
of remaining useful life. The Consequence Engine involves algorithms to analyze the 
consequences of various maintenance actions. The Consequence Engine takes as input a 
maintenance and use schedule, spares information, and time-to-failure data on 
components, then generates maintenance and failure events, and evaluates performance 
measures such as equipment availability, mission capable rate, time to failure, and cost. 
The capabilities represented in both the software tools and algorithms described in this 
report provide a foundation for prognostic system development at Sandia in the future. 

This will be critical to 
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Appendix A: Software Objects in Evidence Engine 
BBN class: The BBN class is an object shell for containing a Hugin Bayesian belief 
network. The class allows one to load a BBN model, compile it, identify chance, 
decision, or utility nodes, modify the values of these nodes, and propagate updated values 
through the BBN. The BBN class does not allow the user to modify the topology of the 
BBN model: that is taken as fixed from the BBN model file. 

Chance node: contains a number of properties relating to the node, such as node 
index, node label, number of states of the node, node “belief’ value, and “finding” 
value (evidence). 

Decision Node: contains a number of properties relating to the node, such as 
node index, node label, number of states of the node, node value (expected 
utility). 

Utility Node: contains a number of properties relating to the node, such as node 
index, node label, number of states of the node, node value (expected utility). 

Table A.1 Properties of the BBN Class 

Property Type Description 
BBNFileName string Return the BBN File Name 
ChanceNodes ChanceNodes Define the chance nodes for the BBN 
DecisionNodes DecisionNodes Define the decision nodes for the BBN 
UtilityNodes UtilityNodes Define the utility nodes for the BBN 

Table A.2 Methods of the BBN class 

Method Description 
LoadNetwork 

Compile Compiles a BBN network 
Propagate 
SaveNetwork 

Loads a BBN network in the HUGIN format, returns an integer 
specifying file open success or problem 

Propagates evidence (changed node values) through the BBN Network 
Save the network to the BBNFileName 

Distribution class: The distribution class is quite large, with a number of properties and 
methods for calculating cumulative distribution values for a variety of distribution types. 
The distribution class has an enumerated type of distributions, consisting of the 
following: Fixed, Wearout, Exponential, Uniform, Triangular, Normal, and Weibull. 
The class has an indexed property, Pars(), which is used to store the parameters of the 
various distributions. The class has a function DistVal which returns a value from the 
specified distribution. If a particular cumulative probability value is not input, DistVal 
returns a randomly sampled value. Otherwise, it retums the value corresponding to the 
input probability. If a minimum x is included, the value returned is conditioned on x > 
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Minx. Another important function is ProbVal, which returns the cumulative probability 
value from the distribution for a particular X value. ProbVal also can be conditioned on 
x>MinX. 

Methods for calculating the normal, uniform, fixed, weibull, triangular, and exponential 
distribution are coded into this class. The wearout distribution is a special case since it is 
really a piecewise continuous set of three distributions: a bum in period, an constant 
failure rate period, and a normal distribution around the end of life. Hazard rate(s) and 
Tempwearout are classes that support the calculation of the wearout distribution values. 

Hazard Rate 

Tempwearout 
Hazard Rates (a collection class) 

Table A.3 Properties of the Distribution Class 

Property Type Description 
DistType An enumerated value that specifies the type of distribution 

(exponential, weibull, etc.). 
Pars( ) Single An indexed property that contains distribution parameters 

(e.g., shape, location, and scale parameters for a weibull) 

Integer 

Table A.4 Methods of the Distribution class 

Method Description 
Clone 
DistVal 

DistProb 

Create an exact copy of the distribution object. 
Returns a randomly sampled value of the dependent variable conditioned 
on the variable being greater than a specified value. 
Returns the probability associated with a value of the independent 
variable conditioned on the variable being greater than a specified value. 

Sensor class: The sensors class is a collection class. The sensor class allows one to read 
in batch or continuous data. The data must be in the following format: 

Continuous datu: The first line contains the name of the sensor in quotation marks, 
followed by the number of samples in the data set. Subsequent lines contain the actual 
data, each line containing a date, value pair. The dates are given in the format of double 
precision numbers on these lines. 

" Accelerometerl",lOOO 
36707.5,1.09273267388344 
36707.5416666667,.865884444713592 
36707.5833333333,1.08909636855 125 
36707.625,.882708888053894 
36707.6666666667,1.0783764564991 
36707.7083333333,1.00310837030411 
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36707.75,1.10995877146721 
36707.7916666667,1.1375 1914024353 
36707.8333333333,.976753317117691 
36707.875,1.23455493688583 
36707.9 166666667,1.05088762640953 
36707.9583333333,1.02392691135406 
36708,l. 10494699597359 

Batch datu: The first line contains the name of the sensor in quotation marks, followed 
by a comma and the number of batches. Each batch must be started by the line “Batch 
#”. The line following the batch number has the date (written in date format), followed 
by the number of data points in that batch. The succeeding lines are followed by lines 
with the actual data, each line containing a date, value pair. The dates are given in the 
format of double precision numbers on these lines. When the batch is complete, a line 
with “” is written. See the example below, where there are 20 batches of viscosity data, 
each with 10 values per batch: 

“VISCOSITY “,20 
“Batch 1” 
#200 1-01 -01 0 1 :oo:oo#, 10 
36892.041 6666667,1.1469273507595 1 
36892.0833333333,.927204222679138 
36892.125,.950925608873367 
36892.1666666667,.98735544443 1305 
36892.2083333333,.931533955335617 
36892.25,1.08984436988831 
36892.2916666667,1.16862528443336 
36892.3333333333,1.07239606618881 
36892.375,1.0169931447506 
36892.4166666667,1.16672363758087 

“Batch 2” 
#2001-01-01 11:00:00#,10 
36892.4583333333,1.27085157838963 
36892.5,l. 1759623 1007654 
36892.5416666667.1.34218597678053 
36892.5833333333,1.32196277753258 
36892.625,1.20795990548392 
36892.6666666667,1.32205858898001 
36892.7083333333,1.34908635850683 
36892.75,1.333 198249862 1 1 
36892.7916666667J.39589663496587 
36892.8333333333,1.46082323394113 

t l l l  
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Table A S  Properties of the Sensor Class 

NumBatches 
NumDataValues 
Datevalueso 
Datavalues0 
BatchDates 
FileName 

Property I Type I Description 
DataType I Enumerated I An enumerated type specifying batch (0) or continuous (1) 

data 
Long Number of batches 
Long Number of data values 
Double 
Single 
Date Array of batch dates 
String 

Array of date values (holds one batch) 
Array of sensor data values (holds one batch) 

File Name containing sensor data 

ReadBatchData 
ReadContinuousDat 

Table A.6 Methods of the Sensor class 

methods below, depending on data type. 
Reads batch data 
Reads continuous data 

Method 1 Description 
ReadFile I Reads data from the file named FileName - forks to one of the two 

Property 
NumHistory 
NumPoints 
FeatureDateO 

Type Description 
The number of sensor feature values 
The number of points in the raw sensor data array 
The date associated with the current feature value (indexed 

Long 
Long 
Date 

Sensor Feature Class: The SensorFeatures class is a collection class. The Sensor 
Feature class allows one to process sensor data, extract sensor features from the input 
sensor data, and extrapolate or project the sensor feature history to a threshold value. The 
Sensor Feature class holds both sensor input as well as the feature history, though if the 
sensor input is in batch form, the sensor feature class only holds the current batch of 
sensor data since it only processes the feature on one batch at a time. There are many 
feature extraction methods in this class and we expect to develop more complex feature 
extraction methods. The current extraction methods are: mean, higher moments 
(variance, skew, and kurtosis), and RMS. Each extraction method extracts one feature 
value per sensor batch. For example, if the extraction method is variance and there are 20 
batches of data, the feature history will hold 20 variance values. 

Once the feature history is populated by an extraction method or by directly reading in 
sensor feature values, extrapolation of that sensor feature to a threshold may be 
performed. Currently the extrapolation methods are linear or polynomial regression: one 
can specify the order of the polynomial in the LeastSquaresProj method. 

- I from 1 to NumHistory) 
I The sensor feature value associated with the current feature FeatureHistory() I Double 
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(indexed from 1 to NumHistory) 
Value of the sensor data (indexed from 1 to NumPoints) SensorInput() 

ID String String that uniquely identifies the sensor feature 
Double 

Table A.8 Methods of the Sensor Feature Class 
Method Description 

Clone 
ReadFeatureData 

TimeToThreshold 

Create an exact copy of the current model object. 
Read feature data (data that has already been processed, so extraction 
does not need to be performed) 
Calculates the time at which the current sensor feature history array 
will cross the critical threshold 
Calculates the Root Mean Square for a set of sensor data 
Calculates the mean for a set of sensor data 
Calculates the variance, skew, and kurtosis for a set of sensor data 
Calculates the least squares regression for the data in the Feature 

RMS 
Mean 
HigherMoments 
LeastSquaresProi 

History array. The number ofcoefficients desired in the regression is 
input, and the coefficient values are output. 

Failure Mode Class: The FailureModes class is a collection class. The failure mode 
class contains information about a failure mode: its ID, Time-to-Failure distribution, the 
state the failure mode is in (operational, under repair, etc.) The PHM prototype does not 
use all of the properties of the failure mode class - primarily we use the SensFeatures 
property to identify the sensor features associated with the failure mode, the TTF 
distribution, the age of the failure mode, and the update method (is the failure mode 
health updated via sensor data, a BBN, or age alone?) 

Table A.9 Properties of the Failure Mode Class 

Property Type Description 
ID String A unique string that identifies a failure mode. 
Description String A brief description of the failure mode. 
TotTime 

RelUtil 

Single 

Single 

The total time in hours since this failure mode was 
repaired or replaced. 
The utilization of this component or failure mode relative - 
to the equipment utilization 
The cost of the equipment failing by this failure mode. cost 

TTFDistribution Distribution The time-to-failure distribution for this failure mode. The 
Single 

Distribution object is described below. 
FailProb This is a read-only property giving the probability this 

failure mode will occur in a specified time interval. 
FailTime Single A read-only property giving a randomly sampled time 

until the next occurrence of this failure mode. 
NominalDT The nominal time the equipment is off line when this 

failure mode occurs. 

Single 

Single 
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Combined Distribution Class: The combined distribution class allows one to input 
three failure mode state probabilities and associated TTF distributions, and updates the 
overall TTF distribution for the failure mode based on an approach explained in the next 
section. The inputs to this class are the TTFs of the three states, the probabilities of the 
three states at a particular time, and the conditioning time for each state. The result is a 
combined TTF distribution (CDF value) and the inverse of the combined CDF value. 
Because it bears the same properties and functions, the Combined Distribution class is 
completely interchangeable with the existing Distribution class described above. 

One must assign 3 input distributions and 3 state probabilities to create a well-defined 
Combined Distribution object. The state probabilities should sum to unity or a warning 
message is generated (calculation is allowed to proceed). One has the flexibility to 
independently condition each input distribution with the ElapsedTime properties. 
The x-value reported in the DistVal function behaves the same way with respect to 
conditioning as in the Distribution class. However, if the input distributions are 
conditioned, those x-values are not added to the output since they might not all be the 
same. There may be valid reasons to have different conditioning times for each input 
distribution. 

Note that state probabilities are not explicitly named severe, intermediate or normal. 
They are simply indexed. It is up to the user of the class to be consistent with the indices 
for the input distributions and their corresponding state probabilities. 

Table A.10 Properties of the CombinedDistribution Class 

Property Type Description 
DistType An enumerated value that specifies the type of distribution 

(exponential, weibull, etc.). 
Pars( ) Single An indexed property that contains distribution parameters 

(e.g., shape, location, and scale parameters for a weibull) 
Probability of being 
in States 1 , 2 , 3  
Conditioning Time 
for States 1,2,3 

Integer 
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Appendix B: Enumerations used in the Consequence Engine 

B.l Equipment States 
Possible system states are enumerated as follows: 

Operational = 1 
Operational1 = 2 
Operational2 = 4 
Other Up Time = 8 
Scheduled Down = 16 
Unscheduled Down = 32 
Shut Down = 64 
Nonscheduled Time = 128 

Overational 
This is the normal operational state for the equipment. 
Overationall 
This is an additional operational state characterized by accelerated (decelerated) aging of 
specified failure modes and increased (decreased) performance metrics. This state must 
be scheduled and acceleration factors and performance-metric-multipliers can be 
specified for each scheduled occurrence (not yet implemented). 
Ouerational2 
This is an additional operational state characterized by accelerated (decelerated) aging of 
specified failure modes and increased (decreased) Performance metrics. This state cannot 
be scheduled but can be transitioned to. For example, a specific failure mode might leave 
the equipment in a partially up state. The acceleration factors and performance-metric- 
multipliers can be specified only once (not yet implemented). 
Other Uv Time 
This state is for times when the equipment is operating but not performing its intended 
function. An example might be equipment being tested. This is a scheduled state. 

Scheduled Downtime 
This is the equipment state when maintenance is scheduled. 

Unscheduled Downtime 
This is the equipment state when it has failed. This state can be transitioned to when a 
failure mode occurs. 

Shut Down 
Time when the equipment is powered down without having failed. This is a scheduled 
state. 

Non-Scheduled Time 
This is the equipment state when it is not scheduled for use. 
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B.2 Event Types 
The enumerated values for event types are as follows: 

Failure Mode Occurs = 0 
Preventive Maintenance = 1 
Simulation = 2 
Workday Segment = 3 
Special Period = 4 
Other Scheduled = 5 

B.3 Time Units 

Day = 0 
Week= 1 
Month = 2 
Year= 3 

The enumerated values for time units are as follows: 

B.4 Failure Mode States 
Allowed failure mode states are enumerated as follows: 

U p = l  
Incipient = 2 
Failed = 3 
Scheduled Down = 4 

B.5 Preventive Maintenance Action 
Enumerated values for preventive maintenance action are: 

Repair = 0 
Replace = 1 

B.6 Preventive Maintenance Decision 
Enumerated values for preventive maintenance decisions are: 

None = 0 
Inspect = 1 
Test = 2 
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Appendix C: Distributions available in the Consequence 
Engine 

The following distribution types are available in the Consequence Engine. 

Fixed = 0 
Wear-out = 1 
Exponential = 2 
Uniform = 3 
Triangular = 4 
Normal = 5 
Weibull = 6 

These distributions and their parameters are described in the following sections. When 
entering parameter values, they must be entered in the order shown here. 

C.l Fixed 
The fixed distribution returns the same value every time it is sampled. 

This is the single value to be returned when the distribution is sampled. Its units are 
hours. 

C.2 Wear-out 
The “Wear-out” is a three-part distribution developed for use as a time-to-failure 
distribution. Its thr& parts are bum-in, normal life, and wear out. During the bum-in 
period, the failure rate is assumed to be linearly decreasing. During the normal life, a 
constant failure rate is assumed. In the wear out portion of the distribution, the time-to- 
failure distribution is assumed to be normal. The wear-out distribution requires- five 
parameters as follows: 

Bum-In Fraction 
This parameter determines the ffaction of failures that occur during the bum-in period. 

Bum-In Duration 
This parameter sets the duration of the bum-in period. Its units are hours. 

Random Fraction 
This parameter sets the fraction of failures that are assumed to occur during the 
component’s normal life. 

This is the mean of the normally-distributed wear-out portion of the distribution. Its units 
are hours. 

Standard Deviation 
This is the standard deviation in hours of the normally-distributed wear-out portion of the 
distribution. 
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C.3 Exponential 
Using an exponential distribution for time-to-failure is equivalent to assuming a constant 
failure rate. 

Failure Rate 
This single parameter specifies the constant failure rate (failures per hour) that 
characterizes the exponential distribution when it is uses for timeto-failure. If you use 
the exponential distribution as a time-to-repair distribution, the parameter is repair rate 
(repairs per hour). 

The uniform distribution treats every value within the specified range as equally likely. 

Minimum 
The lower bound of the range of values to be sampled (hours). 

C.4 Uniform 

Maximum 
The upper bound of the range of values to be sampled (hours). 

C.5 Triangular 
The triangular requires the following three parameters. 
Minimum 
The lower bound of the range of values to be sampled (hours). 

Most Likelv 
The most likely value must fall between the minimum and maximum values. Its units are 
hours. 

Maximum 
The upper bound of the range of values to be sampled (hours). 

The normal distribution requires two parameters. 
C.6 Normal 

This is the average value in hours of the range to be samuled. See any introductory w I 

statistics text for more information on the normal distribution. 

Standard Deviation 
The standard deviation is a measure of the spread of the distribution. The units in this 
case are hours. See any introductory statistics text for more information on calculating 
the standard deviation. 

C.7 Weibull 
There are several different published forms for the Weibull distribution [Tobias and 
Trindade, 19951. The form used in the Consequence Engine for cumulative probability is 
given in the following equation. 
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= O  Otherwise 
Shave Parameter 14) 
This parameter defines the shape of the distribution (dimensionless) 

Scale Parameter (a1 
This parameter determines the scale of the distribution (hours). 

Location Parameter 16) 
This parameter locates the distribution on the time scale (hours). 
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Appendix D. Schedule Module 
The following sections describe the elements of the planned schedule. 

D.l Special Periods 
Special periods allow the user to identify periods, other than scheduled maintenance, 
where the equipment is scheduled to be in a state other than its default state. For 
example, during a military mission, there may be an interval in which equipment is 
expected to operate at a higher rate of use (higher speed, rougher terrain, etc.) than its 
normal operational state. During such intervals, equipment components may age more 
quickly than normal or random failure rates may increase. Special periods allow such 
Gteraals to be included in a simulation scenario. 

Start Date 
The date and. time at which the special p 

End Date 
The date and time at wh 

Eauiument State 
The scheduled state of 
include special operational states such as higher or lower intensity use. See Section D.2 

for the special period. The 

for a discussion of operational states. 

Event Grow 
Special periods may be grouped together for purposes of defining a simulation scenario. - -  
For example, equipmencuch as anaircraft may be subjected toseveral intervals of use 
that are different from each other but also different from the default use represented by 
normal operation. A sequence of different but stressful maneuvers might be an example. 
This property is used to tie a group of related intervals together. 

Can Be Delaved 
This property determines whether this special period (and any others in its group) can be 
delayed if necessary. For example, a siquence of stressful intervals is scheduled to begin 
at say 10 AM but maintenance is not yet complete. If this property is set to True, the 
special period , and any others in its group may be moved to a later time in the schedule 

Del# Time 
This property determines the maximum time that this special period may be delayed 
before it is simply removed from the schedule. 

Perform During States 
This bitwise-summed parameter indicates all system states during which this special 
period can occur. See Appendix B for an enumeration of possible system states. 

Event Cost 
If this special period incurs a cost, this property should reflect that cost. 

D.2 Preventive Maintenance 
Setting up the preventive maintenance (PM) schedule is more complicated than setting up 
the special periods schedule. Each PM identifies the failure modes that it addresses and 
is performed on a specified schedule. The PM schedule mav be based on elansed time 
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(e.g., every quarter) or on equipment usage (every 1000 hours of use). The time required 
to perform the PM can be either fixed or variable (specified by a probability distribution). 
The Consequence Engine may combine PMs when they are scheduled close together. 
The following inputs determine whether and how PMs are combined: 

Combine Time Interval 
The combine interval, together with the combine interval units, determines whether two 
PMs will be combined. For example, if the combine interval is 3 and the combine 
interval unit is 0 (days), then two PMs will be combined if they are scheduled within 3 
days of each other. 

Combine Interval Time Units 
The time units to be applied to the combine interval. The enumerated values for time 
units are given in Appendix B. 

The following information is needed for each PM: 

- ID 
A string that uniquely identifies the current preventive maintenance. 

Start Date 
The date within the simulation schedule at which this PM is first performed. 
property is only used if the PM schedule is based on elapsed time. 

This 

Start Ape 
The comuonent age at which this PM is first uerformed. This mouertv is only used if the " - .  - 
PM schedule is based on usage time. Because of this property, a usage-based PM must 
specified for each component whereas PMs based on elapsed time can group several 
component failure modes into a single PM. 

PM Interval 
A value that specifies how often the PM is performed. 

Svstem State 
The system state while the PM is underway. This is normally scheduled downtime. 
Possible states are listed in Appendix B. 

Perform Durinp States 
This is a summed value representing all the system states during which the PM can be 
performed. For example, if the PM can be scheduled while the system is operational 
(state = l),  shut down (state = 64), or non-scheduled (state = 128), the appropriate value 
is the sum of these or 193. If operational is one of the states during which this PM can 
be scheduled, it does not mean that the system remains operational while the PM is 
performed. Rather, it means that system operation can be interrupted to perform this PM. 

Can Be Delaved 
This property determines whether this PM can be delayed if necessary. For example, this 
PM is normally performed every 1000 hours of operation but when the PM is due, the 
system is in a special operational state that cannot be interrupted. If this property is set to 
True, the PM may be moved to a later time in the schedule. 

110 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Delav Time 
This property determines the maximum time that this PM may be delayed before it is 
simply removed from the schedule. 

- cost 
This the cost incurred when this PM is performed. This does not necessarily include 
parts or labor cost which can be included with input on the failure modes that the PM 
addresses. 

Downtime 
This is the time required to perform the PM. To allow for uncertainty, the user can 
specify a distribution (see Appendix C for the available distribution types and their 
parameters). 

D.3 Failure Modes Addressed by the PM 
The following information is required to describe each failure mode addressed by a PM. 

Failure Mode ID 
The ID of a failure mode being addressed by the PM. This ID must match the ID of a 
failure mode in the model h u t  (see Section 2.1.4). . .  
Decision 
This enumerated value determines the basis for performing the Options are 
none, inspect, and test. If the decision is none; the maintenance is performed each time 
without regard for condition of the component being maintained. If the decision is to 
inspect, the component failure mode is examined to see if it is likely to fail before the 
next scheduled maintenance. The examination is performed by sampling randomly from 
the time-to-failure distribution. If the sampled time-to-failure is less than the time the 
next scheduled maintenance, the repair or replacement is performed. If the sampled time- 
to-failure is greater than the time to the next scheduled maintenance, maintenance is not 
performed. If the decision is to test, the component is examined to see if it has failed. If 
so, it is repaired. See Appendix B for more information on these decision options. 

A- 
This enumerated value determines which of two possible actions is taken - repair or 
replace. Repair means that the failure mode is not fully renewed and replace means that 
it is fully renewed. See Appendix B for details. 

Test Cost 
The cost of performing any test associated with this failure mode. This input is only used 
if the decision is set to test. 

Reuair Cost 
The cost to repair the failure mode or replace the associated part 

Renewal Fraction 
If the chosen action is repair, this value specifies the renewal fraction for the failure 
mode. 

Probabilitv ofFalse Positive 
If the decision choice is to inspect, this provides the probability that the inspection will 
result in a false Dositive 
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Probubilitv ofFulse Negutive 
If the decision choice is to inspect, this provides the probability that the inspection will 
result in a false negative. 

The Consequence Engine maintains three collections that, in addition to equipment 
failures and repairs, result in the actual chronology of events that the simulation creates. 
These collections are: 

1.  Special periods. Special periods are simply read into a collection and sorted 
chronologically. 

2. Scheduled maintenance. Preventive maintenances that are based on elapsed time are 
used to create a collection of scheduled PM events. All PM events that should occur 
during the simulation are placed in a collection, sorted chronologically, and those that 
are scheduled within a combine time interval of each other are combined. 

3. Usage-based PMs are simply maintained in a collection. No attempt is made to 
estimate when they might occur during the simulation time since they are based on a 
component’s cumulative age. 
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Appendix E. Reliability Module 

E.l Failure Modes 
The failure modes that make up the reliability model are characterized by the following 
information: 
Failure Mode ID 
A string that unique1 

Failure Mode Name 
A short, but more descriptive name for the failure mode. Both a name and an ID are used 
because many reliability analysts use a hierarchical code to identify the failure mode. 
Hierarchical codes are helpful in relating the failure mode to a specific component in the 
system being analyzed. However, such codes can be somewhat cryptic so the name 
urovides a short but more descriutive identifier for the failure mode. 

Descriution 
The description is optional bu 
failure mode. 

vide additional information about the 

& 
The current age of the component failure mode. This must be initialized to the age of the 
component failure mode at the start of the simulation. 

Time In State 
The time that the failure mode has spent in the current state. This property is not 
currently used. 

Relative Imvortance 
A value that indicates the relative importance of having this failure mode occur. These 
values are used to rank the occurrence of different failure modes. 

- cost 
This is the cost of having this failure mode occur. The cost might include parts and labor 
necessary to repair the failure. 

Failure Mode State 
The current state of the failure mode. 
enumerations. 

Nominal Downtime 
The nominal amount of time required to return this failure mode to its up state when a 
failure occurs. This value is used when no time-to-repair distribution is provided. 

Ape Durinz States 
This is a summed value representing all the system states during which this failure mode 
ages. For example, if the failure mode ages during Operational (state = l), Operationall 
(state = 2), Operational2 (state = 4), and Other Up Time (state = 8), the value is the sum 
of these or 15. 

See Appendix B for failure mode state 
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Repair During States 
This is a summed value representing all the system states during which this failure mode - - 
can be repaired. For example, if the only time maintenance personnel are not available is 
when the system is shut down, the value would be the sum of all system state values 
except system shut down. Not currently used. 

Detect During States 
This is a summed value representing all the system states during which this failure mode 
can be detected. Not currently used. 

Relative Utilization 
Not all failure modes age at the same rate. For example, a particular component might be 
utilized only half the time that the system is operational. If the time-to-failure 
distribution is based on full-time utilization, the relative utilization provides a means to 
account for partial utilization. 

Initial State 
The state of the failure mode when the simulation starts. 

Time- To-Reuair Distribution 
The distribution that will be sampled to determine the time-to-repair when a failure 
occurs. See Appendix C for available distribution types. 

Time- To-Failure Distribution 
The distribution that will be sampled to determine the probability that the failure mode 
occurs in a given time interval. See Appendix C for available distribution types. 

E.2 Success Paths 
A success path is a collection of elements (failure modes, components or subsystems) 
that, if all are operating, determine the operational state of the system. For example, 
consider the following simple block diagram model. 

F . - Y H T P *  
E 

Simple Block Diagram Model 
In the figure, elements A, B, C and F are in series while D and E are in parallel. If the 
functionality of the system is unaffected by whether D or E or both are operating, then 
two success paths would be needed to characterize the system. They are ABCDF and 
ABCEF, both of which support full functionality. On the other hand, if the functionality 
of the system is reduced by the failure of either D or E, then three success paths are 
needed. Success path ABCDEF supports full functionality while ABCDF and ABCEF 
support reduced functionality. Of course, series elements do not need to be included in 
any specific success path since they are, by definition, included in all success paths. 
Success paths are defined by a collection of references to failure modes in the reliability 
model and a reference to the operational state that results from the success path. 
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Failure Mode IDS 
This is a collection of references to failure modes in the reliability model. Each failure 
mode ID refers to a member of the success oath. 
Ooerational State ID 
This string identifies the operational state that results when this success path is active. 

E.3 Operational States 
The user is able to specify operational states that may differ from the default operational 
state in terms of its effect on the system being simulated. For example, a helicopter 
maneuvering at low altitude is subject to more stress than one flying straight and level at 
higher altitude. During intervals of increased (or decreased) operational stress, selected 
components and subsystems may effectively age more or less rapidly than normal. 
Alternate operational states provide a means to treat such effects. 
Operational states are characterized by the following properties: 
- ID 
A string that uniquely identifies the operational state. 

Affected Failure Modes 
This is a collection of failure modes that are affected by the alternate operational state. 
Each of these affected failure modes includes the following information. 
Failure Mode ID 
This identifies a failure mode in the reliability model's collection of failure modes. 
Acceleration Factor 
This factor, which must be greater than 0, causes the failure mode to age more or less 
rapidly than normal during the alternate operational state. 
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Appendix F. Spares Module 
The spares module treats the spares inventory that is available to the system being 
simulated. If a failure mode fails during the simulation, the spares inventory is queried to 
see if a spare part that fixes that component exists, and if it does, how long it will to fix it. 
The spares inventory is a collection of spare parts each of which has the following 
properties: 

- ID 
This property uniquely identifies the spare. 
Location 
The location is used for information only. The effect of a spares location should be 
reflected in its withdrawal time, restock time, etc. 
Restock Time 
This is the time required to restock this spare part in the inventory when additional spares 
are needed. 
Ernerpencv Order Time 
This is the time required to obiain a spare for the inventory when there are none in stock 
and a spare is needed quickly. 
Purchase Cost 
This is the cost to purchase the spare part. 
Lot Size 
The lot size is the number of this spare that is purchased in each order. This defaults to 1. 
Storaae Cost 
This is the annual cost, per unit, to store this spare. Storage cost should include the actual 
cost for storage space and may also include depreciation or time value of money 
considerations. 
Shinning Cost 
This is the cost to ship the part (or a lot size) when restocking the spare. The shipping 
cost is added to the purchase cost. 
Emerpencv ShiDDinP Cost 
This is the cost to ship the spare (or lot of spares) when an emergency order must be 
placed. 
Reorder Level 
When the number of spares in the inventory falls to or below this level, an order is placed 
for additional spares. 
Usape Rate 
Because a realistic spares inventory usually supports multiple systems, this property . .. 

allows the simulation to account for draws from the parts inventory for systems not being 
simulated directly. The usage rate should represent the rate at which systems, other than 
the one being simulated, withdraw spares from the inventory. 
Withdraw Time 
This is the time required to withdraw a spare from the inventory when the spare is in 
stock. This time is-typically added to the system downtime when a part fails and must be 
replaced. 
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Appendix G. Cost Module 

The cost module assumes that the cost of downtime can be characterized by a function 
that is piecewise constant. The downtime cost function is characterized by a start date, an 
end date, and the downtime cost per hour. The cost module requires the following 
information: 

Start Date 
The date and time at which the current downtime cost begins. 

End Date 
The date and time at which the current downtime cost ends. 

Downtime Cost 
The cost per hour for equipment downtime in the current time interval. 

In addition to downtime costs, each event (scheduled or unscheduled) can incur a cost. 
Each failure mode has an optional cost property. Each scheduled maintenance includes a 
cost to perform the maintenance, which is added to the cost to repair any failure modes 
addressed by the maintenance. 
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Appendix H. Input Description for the Consequence Engine 
The Consequence Engine currently reads input data from a text file and does not provide 
any on-screen input editing capability. However, a utility program has been developed to 
allow the Consequence Engine to be used for uncertainty calculations and optimization 
analysis. The utility program makes it relatively easy to use the Consequence Engine for 
uncertainty analysis using sampled input data from Sandia’s SUNS software or to couple 
the Consequence Engine to the GO optimization driver. This section describes the 
Consequence Engine input and the procedures for using the Consequence Engine in 
uncertainty and optimization analysis. 

H.l The Consequence Engine Uncertainty and Optimization 
Utility 
The Consequence Engine uncertainty and optimization utility program allows the 
Consequence Engine to perform multiple simulations for uncertainty or optimization 
analysis. The main form for the utility is shown in Figure H.l below. 

Figure H.1 The Consequence Engine Uncertainty and Optimization Utility Main 
Form 

The utility q u i r e s  two input files for uncertainty analysis and three input files for 
optimization. The first file (labeled Population File) is contains either 1) a set of input 
vectors representing statistically sampled input values for uncertainty analysis or 2) a 
population of chromosomes representing the next generation of input values for an 
optimization analysis. 

The second file (labeled Variable Defs. File) is only needed for optimization analysis. 
When the utility is used for uncertainty analysis, the sampled input values represent 
actual data values that can be used directly and no variable definitions are needed. 
However, when the utility is used for optimization analysis, the input values in the 
population file are in the form of integer gene levels that must be interpreted into actual 
input variable values. The Variable Definitions File provides this interpretation. 

The third input file (labeled Baseline Input File) contains the baseline CE input data set. 
This baseline data set represents the system simulation input prior to any input changes 
imposed by the uncertainty or optimization analysis. 
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The form shown in Figure H. 1 allows the Consequence Engine to analyze a single set of 
sampled input vectors (for uncertainty analysis) or a single generation of input values for 
optimization analysis. Because optimization analysis generally required several runs as 
repeated generations of input values are created, the utility can also retrieve the file 
names from a command line. When the utility is run from a command line, the command 
line should contain the three file names (with paths) separated by the forward slash (0. 
The order for the files in the command line is 1) population (or input vectors) file, 2) the 
baseline data set, and 3) the variable definitions file. 

The contents of these three files are described in the next three sections. 

H.l.l  Population File 
The contents of this file depend upon whether uncertainty or optimization analysis is 
being performed. For uncertainty analysis, the file should contain sampled input values 
such as provided by Sandia’s SUNS sensitivity and uncertainty analysis program. For 
optimization analysis, the file should contain a population of chromosomes such as 
provided by Sandia’s GO optimization driver. 

Uncertaintv Analvsis 
If the utility is used for performing uncertainty analysis, the population file (vectors file) 
should have a “.vec” extension. The input in the file is comma separated and should be 
as follows: 

Number ofInout Vectors 
This is an integer that indicates the sample size. The actual data set (described below) 
will contain this many lines. 
Number o f h u t  Variables 
This integer is the number of CE input variables that will be varied in the uncertainty 
analysis. The actual data set (described below) will contain this many columns as input 
to the uncertainty analysis. 
Number of Output Variables 
This is the number of outputs that the CE will calculate. There is a specific set of outputs 
that the CE can currently calculate for uncertainty and optimization analysis. These are 
discussed below. After the utility program is used with the CE for uncertainty analysis, 
the VEC file will contain the original input vectors with the calculated outputs appended 
to the end of every vector. 

&& 
Inout Variable Names 
The second line contains names for each input variable in the order that their sampled 
values will appear in the input vectors. There are Number ofInput Variables names 
separated by commas. The naming convention for inputs that can be varies in uncertainty 
or optimization analysis is illustrated in Table H. 1. For example, SP-RO-PTO Shaft is 
the reorder level for spare PTO shafts. 
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Table H.l. Uncertainty and Optimization Variable Naming Convention 

or Maintenance 

Outnut Variable Names 
The list of input variables is followed by Number of Output Variables names of output 
variables on the same line of input. Currently available output variables are; 1) Annual 
Cost, 2) Annual Scheduled Downtime, 3) Annual Unscheduled Downtime, and 4)Annual 
Total Downtime. 

Lines 3 ... 
Following line 2 which provides names for all input and output variables, there are 
Number of Input Vectors lines where each line represents one input vector - that is, each 
line contains a sampled value for every input variable in the same order as the input 
variable names in Line 2. 

When the uncertainty analysis is complete, each input vector will have appended to it the 
calculated values for the four output variables described above (Line 2). 

Ootimization Analvsis 
If the utility is used for performing optimization analysis, the population file should not 
have a “.vec” extension. The input in the file is comma separated and should be as 
follows: 

Line 1 
Number ofPonulation Members 
This is an integer that indicates number of population members (input data sets) to be 
analyzed. 
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Number o f h u t  Variables 
This integer is the number of CE input variables that will be varied in the optimization 
analysis. The actual population members (described below) will contain this many 
columns as input to the uncertainty analysis. 
Number o f  Outvut Performance Measures 
This is the number of outputs that CE will calculate. There is a specific set of outputs 
that the CE can currently calculate for uncertainty and optimization analysis. These are 
discussed below. After the utility program is used with the CE for optimization analysis, 
the population file will contain the original population members with the calculated 
performance measures and constraints appended to the end of every population member. 
Number o f  Outvut Constraints 
This is the number of constraints that the CE will calculate. In the current version, no 
constraints are calculated so 

Line 2 
Inmt Variable Names 
The second line contains names for each input variable in the order that their sampled 
values will appear in the input vectors. There are Number ofInput Variables names 
separated by commas. The naming convention for inputs that can be varies in uncertainty 
or optimization analysis is illustrated in Table H.l. 
Fitness 
This entry on line 2 is simply the word “Fitness”. This is required by the GO software 
and is used in case the application that calculated performance measures and constraints 
also calculates a fitness value. 
Performance Measure Names 
The next entries on line 2 should be Number of Output Performance Measures names of 
performance measures. Currently available output variables are; 1) Annual Cost, 2) 
Annual Scheduled Downtime, 3) Annual Unscheduled Downtime, and 4) Annual Total 
Downtime. 
Constraint Names 
Since no constraints are currently calculated, no names are required. 

Lines 3 ... 
Following line 2 which provides names for all input and output variables, there are 
Number of Population Member lines where each line represents one set of input 
modifications corresponding to a desired optimization run. Each line will contain Number 
ofInput Vuriables integers, comma separated, each representing a gene level setting for 
the corresponding input variable. Following these integers will be Number of Output 
Performance Measures + 1 real values. On entry to the simulation utility, these will 
normally be 0. On return, the performance measure values will be the calculated results 
for each simulation. 

H.1.2 Variable Definitions File 
The variable definitions file is only needed for an optimization analysis. This file 
provides the defmitions, for each input variable, of the actual variable values 
corresponding to the gene levels. 
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Line 1 
Number of Outions 
This is an integer that indicates number of options (genes) in the variable defmitions file. 
Number of Costs 
This integer is the number of costs or constraints associated with each option or gene. In 
the current version of the CE, this should be 0. 

The following lines are repeated Number of Opfions times. 

Line 2 
Ovtion Name 
This string uniquely identifies the option (gene). 
Number of Variables in This Oution 
A given gene may influence multiple variables. This specified the number of variables 
modified by this gene. In the current version, this should be 1. 
Number of Gene Levels 
The number of levels or values this gene can assume. For each gene level, each variable 
affected by the gene must have a specific value. 

The following lines are repeated Number of Variables in This Option times. 

Line 3 
Variable Name 
This string identifies an input variable to be modified by this option. 

Lines 4 through Number of Gene Levels + 3 
The next Number of Gene Levels lines give values for Variable Name - one value for 
each gene level. 

H.1.3 Baseline Input File 
This file contains the baseline Consequence Engine simulation input data set. “Baseline” 
means that the data set describes the simulation input without any of the changes that will 
be imposed by variable changes for uncertainty analysis or modification options for 
optimization analysis. 

Schedule Inout 
The [Schedule] segment currently contains only one input value, which is the system 
default state. See Appendix B for an enumeration of system states. 

Svecial Periods 
The [Special Periods] segment describes scheduled intervals in which the system may be 
in a state other than the default state. 

Line 1 
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Number ofSnecial Period 
This integer is the number of special periods in the input me. 

Lines 2... 
One line of input containing the following information is required for each special period 

Start Date /Date1 
The date at which the current special period begins. Note that the date format surrounds 
the date by pound signs such as #06/19/02#. 

End Date Date) 
The date at which the current special period ends. Note that the date format surrounds 
the date by pound signs such as #06/19/02#. 

EauiDment state flnteperl 
The scheduled state of the equipment for the special period. 
enumerated values for the equipment state. 

See Appendix B for 

Onevatinp State Reference 
This string references a scheduled system operational state that will be active during this 
special period. If no special operational stak is involved, this 
Operational state input is described below. 
Event GI-OUD 
This string identifies the special period as belonging to a group of scheduled intervals. 
The significance of event groups is that if the special period needs to be delayed or 
canceled, the entire group (all special periods with the Same event group identifier) will 
be delayed or cancelled. 
Can Be Delaved 
This is a Boolean variable that specified whether the special period is allowed to be 
delayed in case it cannot occur at the time specified. 

The maximum amount of time that the special period is allowed to be delayed if delays 
are allowed. 
Delav Units 
The time units to be applied to Delay. See Appendix B for time unit enumeration. 
Event Cost 
If this special period incurs a cost, this real value specifies the amount 
Perform Durinp States 
This bitwise-summed value determines system states that can be interrupted for this 
special period to take place. If the system is not in one of these states when this period is 
scheduled, the special period (and all others in the same group) will be delayed up to the 
maximum Delay specified above. If it still cannot occur, the special period, and all other 
special periods in the same group will be cancelled. 

&?& 

Scheduled Maintenance 
The [Scheduled Maintenance] segment describes preventive maintenance and inspections 
that are scheduled based on elapsed (calendar) time rather than on usage time. 
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Line 1 
Combine Time Interval (Sinale) 
This input specifies the time interval to be used for combining preventive maintenances. 
Combine Interval Time Units (Integer) 
This input determines the time units to be applied to the combine time interval. See 
Appendix B for enumerated values of acceptable time units. 

Line 2 
Number ofpreventive Maintenances (Integer) 
This input specifies how many preventive maintenance procedures will be read in. The 
following lines of input data are repeated for each preventive maintenance. 

Line 3 
ID (Strind 
The ID uniquely identifies the preventive maintenance procedure. 

Start Date (Date) 
This input sets the date within the simulation schedule when this PM will be performed 
for the-first time. Note that the date format surrounds the date by pound signs such as 
#06/19/02#. 

Time Units for PMInterval Ilnteaer) 
This input specifies time units that will be applied to the PM interval. See Appendix B 
for enumerated values of time units. 

PM Interval fSinzlel 
The PM will be performed on this interval. 

Time Base 
For scheduled maintenance, this value should be 1 

Nominal Downtime (Sinale) 
This is the downtime that will be incurred by this PM if the downtime distribution is not 
sampled. The units are hours. 

Cost (Sinde) 
The cost is incurred every time the PM is performed. The cost does not necessarily 
include the parts and labor cost associated with a specified repair or replacement as those 
costs can be included in failure mode costs. 

Svstem State Ilnteaer) 
This is the system state when the PM is being performed. Normally this is scheduled 
downtime (system state 16). See Appendix B foran enumeration of system states. 

Perform Durinz States flnteper) 
This is a summed value that represents all the system states in which this PM may be 
scheduled. Identify all such states from the enumeration of system states in Appendix B 
then add their values. 

124 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 

Overatinp State Reference 
This string references a scheduled sys 
special period. If no special operational state is involved, this entry should be blank. 
Operational state input is described below. 
Can Be Delaved 
This is a Boolean variable that specified whether the special period is allowed to be 
delayed in case it cannot occur at the time specified. 

ill be active during this’ 

&&y 
The maximum amount of time that the special period is allowed to be delayed if delays 
are allowed. 
Delav Units 
The time units to be applied 

Line 4 

endix B for time unit enumeration. 

Downtime Distribution Tvve flnteper) 
This identifies the type of downtime distribution to be used for this PM. See Appendix C 
for available downtime distributions. 

Number of Downtime Distribution Parameters flnteperj 
The number of parameters required by the specified downtime distribution. 
Appendix C for distribution details. 

Line 5 
Parameter Values fSinple) 
On this line enter Number ofDowntime Distribution Parameters values. See Appendix C 
for the parameters that define the available distributions. 

Line 10 
Number ofFailure Modes Addressed bv this PM flnteper) 
This input determines the number of failure modes to be addressed by this PM. 

Line ll... 
This line of input must be repeated for each failure mode addressed by this PM. 

See 

Failure Mode ID IStrind 
The ID of the failure mode addressed by this PM. This ID must match one of the failure 
mode ID’S in the Model segment (see below). 

Decision flnteper) 
This enumerated value determines the basis for performing the maintenance. Options are 
none (0), inrpect (I ) ,  and test (2). See Appendix B for more information on these 
decision options. 

Action flnteper) 
This enumerated value determines which of two possible actions is taken - repair (0) or 
replace.( 1) See Appendix B for details. 

Test Cost /Sinple) 
The cost of performing any test associated with this failure mode. This input is only used -~ 
if the decision is set to test. 
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Revair Cost (sinde) 
Enter the cost to repair the failure mode or replace the associated part. 

Renewal Fraction (Sinde) 
If the chosen action is repair, this value specifies the renewal fraction for the failure 
mode. (This input is not yet used.) 

Probabilitv ofFalse Positive (Single) 
If the decision choice is to test, this provides the probability that the test will result in a 
false positive. (This input is not yet used.) 

Probabilitv ofFalse Nerative C h d e )  
If the decision choice is to test, this provides the probability that the test will result in a 
false negative. (This input is not yet used.) 

Lines 3 through 11.. . must be repeated for every PM. 

Use-Based Maintenance 
The [Use-Based Maintenance] segment describes preventive maintenance and inspections 
that are scheduled based on equipment usage time. 

Line 1 
Number o f  Use-Based Maintenances Ilnterer) 
This input specifies how many preventive maintenance procedures will be read in. The 
following lines of input data are repeated for each preventive maintenance. 

Line 3 
ID (String) 
The ID uniquely identifies the preventive maintenance procedure. 

Start Are fSinnle) 
This input sets the component age when this PM will be performed for the first time. 
After the first occurrence of this PM, the maintenance will be repeated according to the 
value of the PM interval (below). 

Time Units for PMInterval (Integer) 
This input specifies time units that will be applied to the PM interval. See Appendix 
B for enumerated values of time units. 

PM Interval (Single) 
The PM will be performed on this interval measured in usage time of the component. 

Time Base 
For scheduled maintenance, this value should be 2 

Nominal Downtime (Sinale) 
This is the downtime that will be incurred by this PM if the downtime distribution is not 
sampled. The units are hours. 

Cost (Single) 
The cost is incurred every time the PM is performed. The cost does not necessarily 
include the parts and labor cost associated with a specified repair or replacement as those 
costs can be included in failure mode costs. 
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Svstem State flntererl 
This is the system state when the PM is being performed. Normally this is scheduled 
downtime (system state 16). See Appendix B for an enumeration of system states. 

Perform During States (Intezer) 
This is a summed value that represents all the system states in which this PM may be 
scheduled. Identify all such states from the enumeration of system states in Appendix B 
then add their values. 

Oueratinp State Reference 
This string references a scheduled system operational state that will be active during this 
special period. If no special operational state is involved, this entry should be blank. 
Operational state input is described below. 
Can Be Deluved 
This is a Boolean variable that specified whether the special period is allowed to be 
delayed in case it cannot occur at the time specified. 

D& 
The maximum amount of time that the special period is allowed to be delayed if delays 
are allowed. 
Delav Units 
The time units to be applied to Delay. See Appendix B for time unit enumeration. 

Line 4 
Downtime Distribution Tvve /Integer1 
This identifies the type of downtime distribution to be used for this PM. See Appendix C 
for available downtime distributions. 

Number ofDowntime Distribution Parameters (Integer) 
The number of parameters required by the specified downtime distribution. 
Appendix C for distribution details. 

Line 5 
Parameter Values (Single1 
On this line enter Number ofDowntime Distribution Parameters values. See Appendix C 
for the parameters that define the available distributions. 

Line 10 
Number ofFailure Modes Addressed bv this PM (Integer) 
This input determines the number of failure modes to be addressed by this PM 

Line ll... 
This line of input must be repeated for each failure mode addressed by this PM. 

See 

Failure Mode ID (Strind 
The ID of the failure mode addressed by this PM. This ID must match one of the failure 
mode ID’S in the Model segment (see below). 
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Decision fIntes?er) 
This enumerated value determines the basis for performing the maintenance. Options are 
none (0), inspect (I ) ,  and test (2). See Appendix B for more information on these 
decision options. 

Action (Tnteper) 
This enumerated value determines which of two possible actions is taken - repair (0) or 
replace.( 1) See Appendix B for details. 

Test Cost (Sinelel 
The cost of performing any test associated with this failure mode. This input is only used 
if the decision is set to test. 

Renair Cost 6 i n d e i  
Enter the cost to repair the failure mode or replace the associated part. 

Renewal Fraction (Sinde) 
If the chosen action is repair, this value specifies the renewal fraction for the failure 
mode. (This input is not yet used.) 

Probabilitv o f  False Positive (Sinplel 
If the decision choice is to test, this provides the probability that the test will result in a 
false positive. (This input is not yet used.) 

Probabilitv ofFake Nepative (Sinde) 
If the decision choice is to test, this provides the probability that the test will result in a 
false negative. (This input is not yet used.) 
Lines 3 through 1 1.. . must be repeated for every PM. 

Normal Ouerational State 
The [Normal Operation] segment provides information on the normal operational state of 
the system (See Appendix B for system state enumeration). The purpose of operational 
state defmitions is to allow different operational states to stress failure modes differently 
and to permit the system to perform at different levels. For example, the airframe of a 
military aircraft may age more rapidly during periods of high aerodynamic stress than 
when the plane is flying straight and level. 

Line 1 
Number of Onerational States 
For the Normal Operation segment, this should be 1. 

Line 2 
Onerational State ID 
This is a string that uniquely identifies this operational state. In this segment, the ID 
should be “Normal Operation.” 
Number ofAffected Failure Modes 
This integer is the number of failure modes that will age more or less rapidly during this 
operational state. For normal operation, this should be 0. 
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Line 3 
Number o f  Condition Performance Measures 
This integer is the number of condition performance measures. As this feature is not yet 
implemented, this entry should be 0. 

Line 4 
Number o f  Ouantitv Performance Measures 
This integer is the number of quantity performance measures. As this feature is not yet 
implemented, this entry should be 0. 

Ouerationul State 1 
The [Operationall] segment provides information on the operational state of the system 
other than the normal operational state (See Appendix B for system state enumeration). 
The purpose of operational state definitions is to allow different operational states to 
stress failure modes differently and to permit the system to perform at different levels. 
For example, the airframe of a military aircraft may age more rapidly during periods of 
high aerodynamic stress than when the plane is flying straight and level. Operational 
State lmust be scheduled and failure mode acceleration factors can be specified for each 
scheduled occurrence. 

Line 1 
Number o f  Onerationall States 
This integer is the number of different Operationall states to be used in the simulation. 

The following lines must be repeated for every Operationall state. 
Line 2 
Ooerationall State ID 
This is a string that uniquely identifies this Operationall state. 
Number ofAffected Failure Modes 
This integer is the number of failure modes that will age more or less rapidly during this 
operational state. 

The following lines must be repeated for every failure mode affected by this operational 
state. 
Line 3 
Failure Mode ID 
This string identifies a failure mode in the reliability model. 
Acceleration Factor 
This real value is applied as an aging acceleration factor and must be positive. When the 
system is in this operational state, the referenced failure mode will age at a rate that is 
normal elapsed time multiplied by this factor. 

The information in line 3 must be repeated for every failure mode that is affected by this 
operational state. Following input on the affected failure modes, there should be two 
lines, each with 0 as the only input. 
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Onerational State 2 
The [Operational21 segment provides information on operational states of the system that 
differ from the normal operational state (See Appendix B for system state enumeration). 
The Operational2 state cannot be scheduled but can be transitioned to. 

Line 1 
Number o f  Onerational2 States 
This integer is the number of different Operational1 states to be used in the simulation. 

The following lines must be repeated for every Operational2 state. 
Line 2 
Onerational2 State ID 
This is a string that uniquely identifies this Operational2 state. 
Number ofAffected Failure Modes 
This integer is the number of failure modes that will age more or less rapidly during this 
operational state. 

The following lines must be repeated for every failure mode affected by this operational 
staie. 
Line 3 
Failure Mode ID 
This string identifies a failure mode in the reliability model. 
Acceleration Factor 
This real value is applied as an aging acceleration factor and must be positive. When the 
system is in this operational state, the referenced failure mode will age at a rate that is 
normal elapsed time multiplied by this factor. 

The information in line 3 must be repeated for every failure mode that is affected by this 
operational state. Following input on the affected failure modes, there should be two 
lines, each with 0 as the only input. 

Success Paths 
The [Success Paths] segment provides the information required to determine whether the 
system is operational at a given point in time and, if so, the applicable operational state. 

Line 1 
Number ofseries Failure Modes 
This is the number of failure modes that are in series in the reliability model. Series 
failure modes, if they occur, cause the system to fail. 

Number o f  Success Paths 
This integer is the number of success paths to be read. 
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Line 2 to N 
Failure Mode ID 
This string is the ID for a failure mode in the reliability model. There should be Number 
of Series Failure Modes lines of these Failure Mode Ids. 

The following lines are repeated Number of Success Path times. 

Line N + 1 
Ouerational State Reference 
This string identifies the operational state (Normal Operation or Operational2) that the 
system will be in when this success path is operative. 
Number ofFailure Modes 
This integer is the number of failure modes in this success path. 

Lines N+2 to M 
Failure Mode ID 
This string references a failure mode in the reliability model. This collection of Number 
of Failure Modes strings makes up a success path such that, if all series failure modes and 
all failure modes in this success path are true (not failed), then the system is in the 
referenced operational state. The success paths should be entered in hierarchical order 
with the highest operational state first. 

Reliabilih, Model 
The reliability model segment ([Model]) defines the reliability model used as a basis for 
the simulation. 

Model Name (String) 
Enter a descriptive string for the reliability model. This input is not currently used but 
will be used & an outpuclabel in later versions. 

Start Date (Date) 
This is the start date for the simulation. Note that the date format surrounds the date by 
pound signs such as #06/19/02#. 
Simulation Duration ( S i d e 1  
The simulation will be performed for this time period where the time units are defined 
below. 

Number o f  Simulations flnteper) 
This is the number of times the simulation will be repeated. 

Duration Time Units flnteper) 
The time units to be applied when dete 
options are enumerated in Appendix B. 
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Descriution fltrine) 
This input describes the simulation. While this input is not currently used, it will be used 
to labei output results in a later version. 

Randomize Initial Age (Boolean) 
This input determines whether the initial ages of the failure modes is the same in each 
simulation or is randomized. If you want to perform repeated simulations to get adequate 
statistics on a specific simulation scenario, you may want to set this value to #FALSE# so 
that the same scenario is repeated each time. On the other hand, if you want to simulate a 
long time period, it may be faster to run several simulations for a shorter duration and set 
this value to #TRUE#. 

Randomize Seed (Boolean) 
If set to #TRUE#, a new seed will be selected randomly for each simulation. 

Number ofFailure Modes flntezer) 
This determines the number of failure modes that will be read in. 

&& 
Failure Mode ID (String,! 
This string uniquely identifies the failure mode. The ID must be different for each failure 
mode. 

Failure Mode Name (String1 
This is a short, but more descriptive name for the failure mode. Both a name and an ID 
are used because many reliability analysts use a hierarchical code to identify the failure 
mode. Hierarchical codes are helpid in relating the failure mode to a specific component 
in the system being analyzed. However, such codes can be somewhat cryptic so the 
name provides a short but more descriptive identifier for the failure mode. A value must 
be entered but it can be a blank string (that is “”). Failure mode names will be used as 
graphics labels in a later version. 
Descrbtion (String) 
The description can be used to provide more detail on the failure mode. A value must be 
entered but it can be a blank string (that is “”). 
Failure Mode Age (Sinelel 
This is the age (in hours) of the failure mode at the start of the simulation. 
Time-In-State (Sinelei 
This is the time (in hours) that the failure mode has been in its initial state (see input 
below) at the start of the simulation. This would normally be the same as the Failure 
Mode Age. 

Relative Imuortance (Single1 
This input indicates the relative importance of having this failure mode occur. Relative 
importance is used to rank the occurrence of different failure modes. 
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Nominal Cost (Singlel 
This input specifies the cost of having this failure mode occur. The cost might include 
parts and labor necessary to 

Failure Mode State (Integer) 
This is the initial state of the failure mode. Possible failure mode states are Up, Incipient, 
Failed, and Scheduled Down. See Appendix B for failure mode state enumeration. 

Nominal Downtime (Single) 
The nominal amount of time required to return this failure mode to its up state when a 
failure occurs. 

Age During States flntener) 
Enter a summed value representing all the system states during which this failure mode 
ages. See Appendix B for enumeration values of system states. 

Revair During States (Integer 
Enter a summed value representing all the system states during which this failure mode 
can be repaired. See Appendix B for enumeration values of system states. 

Detect During - States (Integer) 
This is a summed value representing all the system states during which this failure mode 
can be detected. See Appendix B for enumeration values of system states. Not currently 
used. 

Relative Utilization (Single) 
Enter a value greater than 0 and less than or equal 1 to represent the utilization of this 
component failure mode relative to the system. 

Initial State (Integer) 
The state of the failure mode when the simulation starts. 

Time-To-Revair Distribution Tvve (Integer) 
Specify the type of distribution to be used for the time-to-repair distribution. 
Appendix C for available distribution types. 

Number of Time-to-Revair Distribution Parameters (Interer) 
Indicate the number of distribution parameters to be read. The number of parameter 
values and their meaning depends on the distribution type. See Appendix C for details. 

See 

&& 
Time-to-Revair Distribution Parameters (Single) 
Enter the number of values specified in line 5. The available distributions and the 
meaning of their parameters can be found in Appendix C.  
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L A 7  
Time- To-Failure Distribution Tvuellnteper) 
Specify the type of distribution to be used for the time-to-failure distribution. 
Appendix C for available distribution types. 

Number o f  Time-to-Failure Distribution Parameters flnteper) 
Indicate the number of distribution parameters to be read in. The number of parameter 
values and their meaning depends on the distribution type. See Appendix C for details. 

See 

Lineg 
Time-to-Failure Distribution Parameters lSindel 
Enter the number of values specified in line 5 .  The available distributions and the 
meaning of their parameters can be found in Appendix C .  

Number of Snares 
This integer is the number of spares that can be used to repair this failure mode. In the 
current version, this should be 0 (no spare needed) or 1. 

Line 10 
Snare ID 
The name of the spare needed to repair this failure mode 
Lines 3 through 10 must be repeated for every failure mode in the model. 

Snares Innut 
The [Spares] segment provides the input required to describe any spares inventory to be 
used in the simulation. 

@&g 
Number ofsnares 
This integer is the number of spares that will be in the inventory. 

Random Seed 
This long integer is a random seed used to initialize the spares inventory model. 

Last &date 
This date value specifies the last date upon which the spares inventory was updated. This 
would normally be the start date of the simulation if you assume that the spares inventory 
was up-to-date at simulation start. 

Number ofSvstems 
This integer specifies the number of systems (not including the one being simulated) that -~ 
the spares inventory will support. This input helps to establish a realistic inventory since 
it is difficult to create a realistic spares inventory for a single system. 

The remaining lines are repeated Number of Spares times 
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Lines 3 
Snare ID 
This string uniquely identifies the spare part. 
Location 
This string is used for information only and identmes me location of the spare. 
Lot Size 
This integer determines how many of this spare are ordered at a time. 
Restock Time 
The time reauired to receive a normal order for this spare. 

. .  Restock Timi Units .. . 
The time units used to interpret the Restock Time. ' 

Emernencv Order Time 
The time required to receive an emergency order for this spare. Emergency ordering 
occurs when a spare is demanded that is not in stock. 
Emernencv Order Time Units 
The time units used to interpret the Emergency Order Time. 
Purchase Cost 
The cost per unit to purchase this spare 
Storage Cost 
This is the annual c 
cost for storage spac 
considerations. 
Shiminn Cost 
This is the cost to ship the part (or a lot size) when restocking the.spare. The shipping 
cost is added to the purchase cost. 

Emerpencv Shin Cost 
This is the cost to ship the part (or a lot size) when placing an emergency order for the 
spare. The shipping cost is added to the purchase cost. 
Reorder Level 
When the number o 
for additional spare 
Units In Stock . .  

This integer is the number of units in stock at the start of the simulation. 
Usape Rate 
Because a realistic spares inventory usually supports multiple systems, this property 
allows the simulation to account for draws from the parts inventory for systems not behg 
simulated directly. The usage rate should represent the rate at which systems, other than 
the one being simulated, withdraw spares from the inventory. 
Usage Rate Time Units 
This is the unit of time used to interpret the usage rate. 
Withdraw Time 
This is the time required to withdraw a spare from the inventory when the spare is in 
stock. This time is typically added to the system downtime when a part fails and must be 
replaced. 

Id include the actual 
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Withdraw Time Units 
This is the unit of time used to interpret the withdrawal time. 

Line N + 1 

Number ofExisting Part Orders 
This is the number of unfilled part orders at the beginning of the simulation. If the last 
update date is at the start of the simulation, this should be 0. 

The following line should be repeated Number ofExisting Part Orders times. 

Line N+2 

Date Order was Placed 
This is the date that the order was placed. 
Date Due 
This is the date the part order is due to be received. 
Number Ordered 
This is the number of parts ordered. 

Cost Function Segment 
This segment allows the user to set up a timadependent cost function to be applied to 
scheduled and unscheduled downtime. 

-1 
Indicate the number of cost and date values to be provided to set up the downtime cost 
function. 

Line2 ... 
Start Date /Date1 
Enter the date at which the current cost-per-hour becomes applicable. Note that the date 
format surrounds the date by pound signs such as #06/19/02#. 

Cost ver Hour [Sinde) 
Enter the cost of downtime (scheduled or unscheduled) in dollars per hour that is to be 
applied from the current start date to the start date of the next interval. 
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Appendix I. Output Description for the Consequence Engine 
In the current version of the CE, output results are simply appended to the end of the 
input file in a segment labeled [Results]. The results are presented in a way that makes it 
simple to paste them into a spreadsheet for analysis. 

1.1 Simulation Summary 
This portion of the output summarizes the results by simulation run. It is preceded by a 
header row that provides column headers if you elect to paste the results into a 
spreadsheet. The number of rows following the header row is equal the number of 
simulations. Each row contains the following information: 
Simulation Number 
The ordinal number of the simulation summarized by this row of output. 
Number ofFailures 
The number of failures that occurred in this simulation. 
Ouerational Time 
The total amount of time (hours) that the svstem went in the ODerational state. 
Ouerationall Time 
The total amount of time (hours) that the system spent in the Operational1 state. 
Ouerational2 Time 
The total amount of time (hours) that the system spent in the Operational2 state. 
Cost 
The total cost incurred by the system during this simulation. 
Unscheduled Downiime 
The total unscheduled downtime (hours) incurred by the system during this simulation. 
Scheduled Downtime 
The total scheduled downtime (hours) incurred by the system during this simulation. 
Non-Scheduled Time 
The total time (hours) that the system spent in the non-scheduled state. 

1.2 Number of Failures by Failure Mode 
This block of output presents the number of times each failure mode occurred by 
simulation. The first row provides column headers consisting of failure mode ID’S. Each 
successive row contains the following information: 
Simulation Number 
The ordinal number of the simulation summarized by this row of output. 
Number ofFailures 
The number of times each failure mode occurred in the current simulation. 

1.3 Cost by Failure Mode 
This block of output presents the cost incurred for each failure in the simulation. The 
first row provides column headers consisting of failure mode ID’S. Each successive row 
contains the following information: 
Simulation Number 
The ordinal number of the simulation summarized by this row of output. 
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&t 
The cost attributable to each failure mode in the current simulation. 

1.4 Unscheduled Downtime by Failure Mode 
This block of output presents the unscheduled downtime incurred for each failure in the 
simulation. The first row provides column headers consisting of failure mode ID’S. Each 
successive row contains the following information: 
Simulation Number 
The ordinal number of the simulation summarized by this row of output. 
Unscheduled Downtime 
The unscheduled downtime attributable to each failure mode in the current simulation. 

1.5 Other Output 
Time-to-failure and cost statistics are available when the CE is used as a component in 
another application. These results are accessed by instantiating the appropriate objects as 
follows: 
Dim oCostStatS As SummaryStats 

Dim OTTFStatS As SummaryStats 

Set oCostStats = CE.CostStats 

Set oTTFStats = CE.TTFStats 

The SummaryStats class provides the following properties: 
Mean 
The mean value of the cost or time-to-failure results from repeated simulations. 
SldDW 
The standard deviation of the cost or time-to-failure results from repeated simulations. 
PTile I 
The first percentile of the cost or time-to-failure results from repeated simulations. 
PTile 5 
The fifth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 10 
The tenth percentile of the cost or time-to-failure results from repeated simulations. 
PTile I5 
The fifteenth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 20 
The twentieth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 25 
The twenty-fifth percentile of the cost or time-to-failure results from repeated 
simulations. 
PTile 30 
The thirtieth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 35 
The thirty-fifth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 40 
The fortieth percentile of the cost or time-to-failure results from repeated simulations. 
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PTile 45 
The forty-fifth percentile of the cost or time-to-fai 
PTile 50 
The fiftieth percentile of the cost or time-to-failure results from repeated simulations. 

simulations. 

PTile 55 
The fiftv-fifth oercentile of the cost or time-to-failure results from reueated simulations. 
PTile SO 
The sixtieth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 65 
The sixty-fifth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 70 
The seventieth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 75 
The seventy-fifth percentile of the cost or timeto-failure results from repeated 
simulations. 
PTile 80 
The eiehtieth uercentile of the cost or time-to-failure results from raeated simulations 
PTile 85 
The eighty-fifth percentile of the cost or timeto-failure results from repeated simulations. 
PTile 90 
The ninetieth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 95 
The ninety-fifth percentile of the cost or time-to-failure results from repeated simulations. 
PTile 99 
The ninety-ninth percentile of the cost or time-to-failure results from repeated 
simulations. 
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Distribution 
Unclassi..;d - Internal Distribution only 

1 MS 9018 Central Technical Files 8945-1 
2 MS 0899 Technical Library, 9616 
1 MS 1176 James E. Campbell, 15312 
1 MS 1176 Robert M. Cranwell, 153 12 
1 MS 1176 Kelly S. Lowder, 15312 
1 MS 1170 RussellD. Skocypec, 15310 
1 MS 1176 Laura P. Swiler, 921 1 
1 MS 0323 Donna L. Chavez, LDRD Office, 1010 

141 


	Abstract
	Table of Contents
	Table of Figures
	1 Introduction
	1.1. Motivation for PHM
	1.2. PHM Functional Architecture
	1.3. PHM Technology Needs
	1.4. LDRD Focus
	1.5. Bayesian Belief Networks
	1.6. Self-organizing Maps
	1.7. Vibration Analysis
	1.8. Frequency Domain Algorithm for Signal Comparison
	1.9. Evidence Engine Software
	1.10. Object Model for the Evidence Engine
	1.11. Updating Time-to-Failure Distributions
	1.12. Introduction
	1.13. Overview
	1.14. Approach
	1.15. Consequence Example
	1.16. Maintenance Optimization

	Summary
	References
	Appendix A: Software Objects in Evidence Engine
	Appendix B: Enumerations used in the Consequence Engine
	Appendix C: Distributions available in the Consequence Engine
	Appendix D. Schedule Module
	Appendix E. Reliability Module
	Appendix F. Spares Module
	Appendix G. Cost Module
	Appendix H. Input Description for the Consequence Engine
	Appendix I. Output Description for the Consequence Engine
	Distribution

