

SANDIA REPORT

SAND2003-3501
Unlimited Release
Printed November 2003

Automation Tools for Flexible
Aircraft Maintenance

William Drotning, David Kozlowski, Clifford Loucks, William Prentice,
and Peter Watterberg

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 2

mailto:reports@adonis.osti.gov
http://www.doe.gov/bridge
mailto:orders@ntis.fedworld.gov

SAND2003-3501
Unlimited Release

Printed November 2003

Automation Tools for Flexible Aircraft Maintenance

William Drotning, David Kozlowski, Clifford Loucks,
William Prentice, and Peter Watterberg
Intelligent Systems and Robotics Center

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1007

Abstract

This report summarizes the accomplishments of the Laboratory Directed Research and Development
(LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four
DoD depots that support extensive aircraft maintenance in order to understand critical needs for
automation, and to identify maintenance processes for potential automation or integration opportunities.
From the visits, the team identified technology needs and application issues, as well as non-technical
drivers that influence the application of automation in depot maintenance of aircraft. Software tools for
automation facility design analysis were developed, improved, extended, and integrated to encompass
greater breadth for eventual application as a generalized design tool. The design tools for automated path
planning and path generation have been enhanced to incorporate those complex robot systems with
redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance
facility. A prototype force-controlled actively compliant end-effector was designed and developed based
on a parallel kinematic mechanism design. This device was developed for demonstration of surface
finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector
tool was positioned along the workpiece by a robot manipulator, programmed for operation by the
automated planning tools integrated for this project. Together, the hardware and software tools
demonstrate many of the technologies required for flexible automation in a maintenance facility.

 3

1. Introduction

One of the goals of DOE's Robotics and Intelligent Machines Roadmap was to identify classes of
processes that could be automated. The Roadmap identified the automation technology bases that underlie
non-contact, contact and multi-processes. A Laboratory Directed Research and Development (LDRD)
project was begun in FY01 to develop technology aimed at automation for classes of processes. The goals
of this particular project were to develop advanced design tools for flexible robotic workcells, to apply
these tools for analysis of an automation-intensive maintenance facility for a class of complex systems,
and to demonstrate use of the analysis on a key process technology. In addition, the project set an
additional goal of developing new hardware technology to support automation of this key process in
maintenance operations. The eventual expected benefits of this effort are the increased utilization of
facilities and capital equipment, and reduced cost in automation programming, leading to reduced overall
maintenance and operations costs.

We envision a facility that is designed for automated operations and can accommodate an entire class of
complex systems, including weapon systems, so that the cost can be amortized over multiple systems and
processes. The facility will have multi-process automation equipment to reduce maintenance staffing
requirements. Figure 1 below shows many of the issues associated with adding flexibility to a
maintenance facility. Multiple processes and multiple aircraft within size groups comprise the
maintenance spectrum. The initial target environment for this work is military aircraft maintenance,
although the resulting tools will be applicable to the design of robotic workcells for other complex
systems.

Size compatible groups
C-130
C-17
B-1
P-3...
C-141
C-5
B-52...

F-15
F-16
F-18...

AH-64A Apache
H-60A Black Hawk
CH-47D Chinook

...

 Processes
Assembly
Disassembly
Inspection
Material removal
Cleaning
Machining
Surface prep
Coating...

 Metrics
Facility cost
Equipment utilization
Schedules & Cycle Time
Impact of equipment failure
Amortization
Process Quality
Labor cost...

Equipment Models
Fanuc
PaR
Motoman
Adept
ABB...

A

B

C

D

...

...

...

Figure 1. Considerations for a flexible aircraft maintenance facility.

Elements of this vision have been realized for the aircraft painting/coating process and for nuclear
weapon component spray cleaning. In developing advanced painting/coating/cleaning systems, we have
discovered the need for more advanced design tools; development of such tools was a principle focus of
this project. These tools will be targeted at environments requiring many changes in task or workpiece.
The tools will allow rapid analysis of a workcell configuration, including both commercial and custom

 4

hardware, for operations on any of a class of systems. The tools will integrate modeling and simulation,
automated path planning and generation, and minimization methods to support analysis of workcell
architectures. They will allow assessment of designs with variable workpiece position. These tools will
use automated methods to minimize the number of robot positions that must be specified by the operator.

The initial task of the current project was a system study of military aircraft depot maintenance to identify
high-payoff automation opportunities and to gain an understanding of aircraft maintenance operations.
The project team visited aircraft maintenance depots to understand critical needs for automation, and to
identify maintenance processes for potential automation or integration opportunities. In the second phase,
the task was to continue the process of identifying technology and integration needs, and to identify
automation design tool enhancements to fill these needs. The goal was to develop automation design
tools for flexible maintenance facilities. The focus was on multiple aircraft size groups, and multiple
maintenance operations and processes. In the third phase of the project, a significant maintenance process
was selected for technology development and pilot demonstration, showing application of the analysis
and design tools.

This report summarizes the accomplishments of the LDRD project 26546 at Sandia, during the period
FY01 through FY03. All of the original goals of LDRD project 26546 were met and are reported here. In
addition, the identification of a particular technology need, namely automation control during in-contact
operations, led to a challenging hardware development effort, also described in this report. The major
section headings of the report reflect the three major phases of the project. In section 2, the survey of
U.S. military aircraft depots is summarized from the site visits. The third section describes the
accomplishments in enhancing and integrating software modeling and analysis tools that led to design
analysis of flexible automation facilities for aircraft maintenance. Section 4 demonstrates the application
of these software tools for design analysis of a flexible automation workcell for aircraft maintenance
operations. From needs identified by the depot site visits and an understanding of the technology gaps
hindering the expansion of automation for maintenance, a hardware technology employing automated in-
contact operations was selected for early development. Together, the developed hardware system and
software analysis tools combined into an integrated demonstration, described in the section 5.

2. Depot Maintenance Survey

In FY02, we completed the task to study maintenance operations of U.S. military aircraft, as related to
flexible automation capabilities, needs, and opportunities. The work performed in FY01 had developed a
comprehensive compilation of information on the military logistics centers and depots. This information
was reviewed and evaluated to select sites for staff visits, based on the types of aircraft served,
maintenance processes employed, and technologies in place. In addition, a comprehensive set of
questions was developed to guide the site visit teams in the technology surveys. By the end of FY01, the
project team had visited three DoD depots that support extensive aircraft maintenance. The three depots
visited were Warner Robins Air Logistics Center WR-ALC (Warner Robins, GA); Naval Aviation Depot
NADEP-Jax, Jacksonville, FL; and Ogden Air Logistic Center OO-ALC, Ogden, UT. Due to the military
activities following the September 11th attack, the team's visit to the Corpus Christi Army Depot CCAD,
Corpus Christi, TX, was postponed until FY02. This last visit allowed the team to observe and discuss
maintenance operations at another branch of the military, and to expand the scope of flexible automation
concepts to rotary wing airframes (helicopters).

The four DoD depot visits resulted in some modification to the original proposal hypothesis that
automation technologies are severely underutilized. Generally, existing automation systems are utilized

 5

often, but as expected, these systems are very aircraft-type-specific and do not contain features that
support flexibility.

A number of common trends and experiences were observed during the depot visits. Programmatic and
political drivers have historically influenced the assignment of specific types and sizes of aircraft to
depots. Thus, an efficient grouping of automation processes for size classes of aircraft is often superseded
by non-technical drivers. Automation drivers tend to be environmental, productivity, quality, and
manpower needs; in any case, a business case with a strong ROI is essential for successful
implementation at the depots. Efficiency and efficacy of operation is critical; for example, improving the
automated depaint coverage on an airframe from 80% to 90% can be an essential achievement for
retaining an automation process. A continuing challenge facing maintenance staff is to reduce the process
turn-around time (TAT) in order to improve military systems availability. Workforce issues, such as job
skill grades, manpower levels, system maintenance staff, system programmer staff, and operator training
are all important considerations for the successful introduction of automation systems into depot
maintenance tasks.

On the technical side, there is a common need for addressing the path and task planning, motion, and
location of automation systems for maintenance operations on large aircraft. For larger structures, the
maintenance automation system may likely be moved around the aircraft, as opposed to statically
occupying a large workcell footprint. It is clear that, especially for automation operations on larger
aircraft, the reachability analysis tool and tools for automated path generation and registration are needed
and will benefit broad process areas such as cleaning, coating, surface preparation, finishing, decoating,
sealing, fastener removal/insertion, and inspection. To optimize efficiency, a reachability analysis for the
automation system is essential to minimize movement around the aircraft. Once an operational location
has been selected, the system must be moved into the selected position, and its location registered with
respect to the aircraft. The reachability analysis and robot-to-aircraft registration methods require new
technology development to meet the needs seen in the field.

Another theme that was heard at a number of the depot sites is that automation of processes is inhibited
by the wide variety of parts to be handled in a process. If the number of part variations and types is high,
and the quantity of each part is not large, then the costs for automation -- mostly programming and system
maintenance - often are too high to justify automation. Some examples observed were the painting of a
variety of smaller parts; preparing aircraft hydraulic tubing systems with customized, multiple bends; and
the overhaul of a wide variety of wheel brake assemblies, to name a few. This is clearly an opportunity
for development and deployment of the types of advanced automation concepts that Sandia has been
developing but that are not yet available in the marketplace. Flexible workcells that perform automated
programming of the robot system, based on inputs from part models and sensors, can bridge this
technology gap and provide automation solutions for a much broader variety of maintenance operations.

A number of automation and robotics systems for large structures were observed at the depots. Some
examples included an automated aircraft wing rework system, a robotic gantry ultrasonic scanner,
FlashJet® depaint heads on a mobile platform and a robotic end-effector, a laser automated decoating
system, robotic media blast depaint systems, and robotic painting systems.

The depot site visits revealed that the originally-proposed hardware demonstration concept, that of an
automated de-rivet and rivet operation that would be used for skin replacement on wings, for example,
was not a suitable choice for LDRD laboratory development. This technology is already commercially
available, and is in use at Warner-Robins ALC in Georgia.

However, several Sandia automation technologies in development are applicable to depot maintenance
needs. Reachability analysis software tools use 3D models to determine the dexterous working volume

 6

and optimize workcell layout. This will reduce setup and programming time, increase coverage on the
aircraft, and reduce process duration. Automated path generation methods create task paths and robot
motions from 3D models and process rules and constraints. This results in reduced programming time,
optimized robot motions, and minimized process cycle times. Sensor systems can be used for robot-to-
aircraft registration, and for in-contact operations, where compliance is achieved through feedback to the
sensor-based motion control of the robot or its tool. Actively compliant force-controlled tools, for
example, lead to improved process quality for in-contact operations on curved surfaces. For operations
on large aircraft, use of mobile robot platforms has the advantage of not requiring the expensive
movement of aircraft during processing at the depot.

From the depot survey and prior experience, a list of aircraft maintenance operations was generated.
Figure 2 lists many of the processes amenable to automation, grouped by whether the maintenance tool is
in contact, in proximity to, or not in contact with the workpiece. Many of the non-contact operations have
been successfully automated. There is a need for improved automation control for in-contact operations,
which comprise a broad spectrum of required maintenance processes.

• Coating/de-coating
• Corrosion control

• Cleaning
• Inspection

• Fastener removal/insertion
• Surface preparation
• Seam filling/caulking
• Disassembly/assembly
• Precision manipulation of large work pieces

Non-contact
Operations

Contact
Operations

Figure 2. Processes for a flexible automation workcell

A candidate process technology was selected for development and demonstration. The process of
precision surface finishing and preparation appears to be an important and broadly needed technology
where automation has been hindered by lack of advanced technology. It is also representative of a wide
variety of in-contact processes that may employ model-based position analysis, sensor-based workpiece
characterization, robot motion control, and process monitoring/feedback. Development of a hardware
demonstration of this technology will be described in section 5.

In early FY02, the results of the depot site visits and technology assessment were presented at the Defense
Manufacturing Conference, DMC'01.

 7

3. Software Tools for Maintenance Facility Analysis

Software tools for design analysis were improved and extended to encompass greater breadth for eventual
application as a generalized design tool. The design tools for automated path planning and generation
have been enhanced to incorporate those complex robot systems with redundant joint configurations,
which are likely candidate designs for a complex aircraft maintenance facility. By employing advanced
inverse kinematic solution methods and optimization techniques, the prior design tools for automated path
generation have been enhanced to provide greater flexibility and generality, as well as improved
performance for complex robotic systems. As a by-product, the results of this current work were
implemented in the F-117 and F-22 coatings projects.

The development of flexible automation design analysis tools focused on integrating and enhancing the
automated reachability analysis tool and the automated path generation and optimization tools. The goal
was to build these into a framework that is accessible to engineers in a more robust and generalized
analysis tool, and eliminates the ad hoc nature of past implementations of these tools. To this end, the
project team integrated these tools into Umbra [GOTTLIEB-2001], an application framework for
advanced controls, simulation, and visualization. From prior tools, the robot-specific knowledge needed
to be separated from application knowledge, so that new robot objects can be rapidly implemented
without modification to the process application or user interface software. The final product is a
demonstration of the integrated design tool, which shows the flexibility of the tool for analysis of
maintenance operations. The demonstration will comprise the analysis of an automation facility (robot
workcell) containing two different workpieces (e.g., P-3 and B-2 aircraft) for operation with two different
processes, such as sanding (contact) and RAM coating (non-contact).

The software analysis algorithms that this project has developed fall into three different areas: collision-
free path planning, task planning and reachability analysis. In collision-free path planning, the software is
given starting and ending configurations for a robot from which a path is computed for the robot to follow
that gets from one to the other while avoiding all known obstacles in the workspace. The task planning
part of the software computes a path for the robot to follow that accomplishes a specific task such as
sanding or painting a given surface geometry. The reachability software displays a volume which can
represent either where the robot can be placed to accomplish a given task or (if the robot is fixed) where
the object might be placed so the robot can reach all necessary parts. These three parts will be described
in detail below.

All three of these software components are based on previous ad hoc software that had been developed
for specific projects. The challenge for this project was to see if the software could be generalized so that
it could be readily used for any robot and for any geometry. Further, it was important that each package
could all use the same robot and geometry descriptions so as not to have to reformulate the data to use
different components.

The first step was to isolate the robot specific functions of each of the three modules from the generic
algorithms. Looking at all the required robot functionality, the solution to the common interface problem
was to create a C++ class to describe a basic robot. This class instantiated most of the functionality that a
robot class needed to provide for the three modules. Any individual robot simply inherits from this class
and adds a few routines and parameters necessary to complete the functionality to support the three
primary modules. This class will be described in a later section. Each of the three main components was
then rewritten to use this general robot class.

The idea of a generalized, independent, C++ class that can represent robots for projects across the entire
Intelligent Systems and Robotics Center has been around for a long time among various groups. The class

 8

developed for this project has stimulated the discussion of what that class should look like. It is currently
filling that role for several projects at this time and will probably serve as the basis for such a center-wide
class.

3.1 Collision-Free Path Planning
The central algorithm for this task was implemented from a paper by Kuffner and LaValle for ICRA 2000
[KUFFNER-2000]. It is called RRT for rapidly expanding, random tree. In brief, the algorithm tries to
explore the space around the start location and the goal location. It grows a tree at each that describes
where the robot can move and not collide with anything. At each step in the iterative algorithm, it picks a
random point in the robot’s configuration space (the space of all its possible joint values) and attempts to
go there from either the start tree or the goal tree. It finds the closest point in the existing tree and tests to
see if it can move in a direct line from the tree to the random point. As it steps along toward the random
point, it adds the points at which there is no collision to the tree it is trying to expand. From the farthest
point it reaches (possibly all the way to the random point) it tries to connect to the closest point in the
other tree. If it fails, it then tries to grow the other tree. RRT is wonderful in its robustness and its
simplicity relative to previous algorithms. Either in spite of or because of its simplicity, it is also
significantly faster than previous algorithms. Its advantage grows exponentially as the number of degrees
of freedom of the robot increases.

RRT requires only four interface routines with the generic robot class. First, it needs to know if the robot
is in collision at a given set of joint values. Second, it needs to have the robot provide random points in
configuration space. Third, it needs the robot to provide a trajectory from one point to another. And
finally, it needs the robot to tell it how far it is between two points in configuration space. If we restricted
the planner to work with only with robots that have Euclidean spaces and trajectories that are linear in the
space, the planner would only need the collision routine. The rest could be calculated by the planner and
are provided as a default. However, this would eliminate non-holonomic robots and robots for which the
optimum trajectory is not linear in configuration space. For normal robots, these routines are implemented
once in the generic parent class and are only modified if there are abnormal constraints.

3.2 Task Planning
Task planning is the process of creating a series of locations and orientations (call it a coordinate frame,
control frame, tag or just frame) in world space that will cause a task to be accomplished if the robot
moves from one to the next while some tool (e.g. a sander or paint gun) attached to the robot is turned on.
The task planner for this project is designed to cover a surface area that is not highly curved with such
frames. There are many parameters that can be adjusted to suit the desired process requirements.
Precursors to this algorithm have been used for painting and spraying cleaning solvent. It is currently
being used to do sanding tasks as well and is expected it to handle most generic tasks where area coverage
is required.

The task planner can be controlled via its parameters. One parameter controls how far off the surface the
tool is placed. For spraying and blasting operations, this can be whatever is appropriate for the given task.
For contact operations like sanding, it is set to zero. The control frames are placed along the surface in
stripes. Stripe spacing can be set. The distance between frames along a stripe can also be set. One area for
improvement would be to have the planner only put out tags along the stripe when the surface has curved
a certain amount. The amount of curvature required to trigger a new frame would be a settable parameter.

When the operation in question is a non-contact operation such as painting, it is generally optimal for the
tool to be directly over the point on the surface to which the spray is being directed. However, in tight
corners, this may not be possible and the tool will have to be offset so as not to collide with surrounding
objects. How close the tool is allowed to get to surrounding objects is a settable parameter. In addition,
the maximum offset allowable is settable. If the tool cannot be placed without exceeding the maximum

 9

offset, an unavoidable collision is detected and the planner aborts. This requires a change of parameters or
surrounding geometric constraints and a replanning.

The primary direction of each stripe with relation to the surface is calculated by default but can be
changed if desired. In addition, each stripe can be offset a given distance from the place it would
nominally cover. This allows planning multiple passes, each slightly offset from the previous. This can be
useful in ensuring that the coverage for painting or sanding is more uniform.

In some operations such as painting, it is necessary to make sure the tool has moved completely off the
surface before the tool is turned off, moved in another direction, or slowed down. This distance is called
the kick distance and is added to each end of a stripe. It can even be made negative if it is desired that no
part of the tool ever leave the surface. Generally, it is desired that the tool move at a constant velocity.
When changing from one stripe to the next or before the first or after the last, it is necessary to accelerate
or decelerate the tool off the stripe so that it is moving with the desired velocity as it engages the stripe or
does not speed up or slow down until it has left the stripe. There is a parameter that sets how many frames
are placed off the ends of the stripe to bring the tool to a halt or get it moving. This can be zero if needed.

One of the main improvements to the task planner that must be addressed in the future is the ability to
track surfaces of high curvature. At the moment, the orientation for each stripe is the same and based on
the orientation of the surface as a whole. If the surface is highly curved, this orientation becomes
inappropriate as the surface curves away and distortions or coverage gaps may ensue. Algorithms have
been identified to address this shortcoming and can be implemented subject to future funding.

3.3 The Reachability Tool
This is one of the main advances to promote flexibility in design and use of robot workcells. Once a task
plan is completed, all the frames are placed that will get the task accomplished. But whether the robot can
reach them or not hasn’t been taken into account. The task plan is useless if the robot cannot execute it.
The reachability tool computes and shows graphically the volume of space in which the robot can be
placed and reach all the task frames. If the robot is fixed, it can show the volume of space in which the
surface can be placed at a given orientation and have the robot reach everything. This is a critical function
in getting the most out of the robot and workcell.

This tool may be even more useful in the design process for creating flexible workcells. As stated above,
it can show where to place things but what is more important to the designer, it can show how the
reachable volume is effected by changes in tool design or robot kinematic design, or even robot selection.
This can make a dramatic difference in the usefulness of the workcell. Or, it can help pinpoint what parts
of the system need to have more options such as the set of tools and their capabilities or the length of
track that the robot might move on.

3.4 The Generic Robot Class
As mentioned above, to support the three software components, a generic robot C++ class was created.
The functions that need to be provided by the generic class and those classes that represent actual robots
will be discussed here. To support the RRT path planner, a robot class must provide functions to return a
random point in configuration space, a trajectory between two points in configuration space, the distance
between two points and whether or not the robot is in collision at a point. The task planner has an option
to check whether the robot can reach a given frame. To support this, a robot class must provide an inverse
kinematics routine. This is also the only routine that is required for the reachability tool. The generic base
class provides default routines for random point, distance and trajectory functions for robots whose
configuration spaces are Euclidean spaces with fixed limits in each dimension. This is true for most
standard robots. Hence, a specific robot could be implemented for these tools by writing only three
routines. There must be an initialization routine that sets the number of degrees of freedom (dimensions

 10

of configuration space) and the limits of travel of each joint. There must also be a routine that checks for
collision at a given point. (The generic class manages the list of obstacles that might cause collisions.)
And there must be an inverse kinematics routine.

Writing these three routines would be all that’s necessary to support the analysis tools described here.
However, the entire package of tools and robots is embedded in a larger system, Umbra, and to make the
robots really usable, a few more functions should be provided. The users of the system will want to see
the robot displayed in their world. So, a VRML file describing the geometry of the robot should be
provided. Since some representation of the geometry of the robot is usually needed to do the collision
checking, this is virtually always present already. It just needs to be read into Umbra’s scene graph. A
generic function is provided for this and all the specific robot class must do is provide the file name. A
function to change the displayed model’s joint values should be provided to visually display the current
configuration of the robot. Most robots are used in conjunction with various tools mounted on the last
joint. As a convenience, a mount function is written so the user simply states what Umbra model is to be
attached.

4. Application of Software Design Analysis Tools to an Aircraft
Maintenance Process

4.1. Flexible Maintenance Software Tool Design and Implementation
The software tool functionality was developed to include the ability to have a variety of robots do a
variety of work on a variety of aircraft parts (which could be expanded to any type of part). This would
necessitate the use of many of the Intelligent Systems and Robotics Center’s key technologies. The
objective was to then bring them together into one functioning group. The challenge was to find or
design an environment that allowed these key technologies to be integrated together in a relatively simple
and timely way.

The environment chosen was Umbra, a software tool developed in the Center. The gains from using
Umbra were many. First, Umbra is an application framework that allows for the rapid development and
testing of reusable software modules. It also is a powerful graphics program that facilitates the rendering
of the simulation models and work functions that the tool has to perform. Lastly, it was used as the
foundation of the GUI that the software tool is built under.

One of the key developments was that of the Umbra COTS robot class. Up to this point, robots in the
Umbra environment were complex mechanisms made up of separate modules that communicate using
connectors. We saw the need for an integrated Umbra robot class that would contain common attributes
and functionality of a robot such as geometry, joints, and inverse kinematics, along with others. We also
wanted this robot class to be easily loadable from a user selection so that the tool could accommodate a
variety of COTS robots. This new class was designed and implemented, and became the foundation of
the software design and implementation within the Umbra framework. In addition to the robots used in
the present project, these robot classes have also been applied to a funded Mobile Robots project. We
were able to model their mobile robot and build in the appropriate functionality to allow them to quickly
substitute this robot class into their Umbra project and gain the added functionality provided.

Once the robot class was defined, many of the other necessary technologies such as reachability and work
(collision-free path) planning were incorporated into its functionality. Various test parts were then
modeled and saved as VRML part files. The user interface was designed such that the operator had the
option of loading a variety of developed COTS robots along with a variety of test parts. With the use of

 11

process parameters for the task and path planning functions, different types of work can then be planned
on the parts, such as painting and sanding, simply by changing key parameters.

Umbra works from the concept of reusable modules that can stand-alone or communicate using standard
connector classes. It also uses the popular scripting language Tcl as its front end to instantiate,
parameterize, and connect modules. This allowed for our modules to be developed rapidly, and for
testing and integration to be a dynamic process.

4.2. Software Tool GUI Description
At the center of the GUI is the Umbra scene graph. At the top are menus that allow for the loading of
robots and parts, along with various other functions such as reachability and work path editing. On the
right side are areas that list the major pieces as they are brought into and displayed in the Umbra scene
graph. This area consists of a list of devices which includes each robot that has been loaded, a list of each
test part that has been loaded, and tag series and points for work paths that have been planned.

A key feature of the GUI is to allow the operator maximum flexibility in configuring and reconfiguring a
workcell. Once a workcell is configured, the operator can plan a work path on the workpiece and do
reachability analysis on robot placement. Any of these major elements can be replaced or repositioned for
a new analysis, as described below.

4.3. Workcell Analysis Process Example
When the system first comes up the operator is presented with an empty scene containing only the world
coordinate axes. Typically the first step is the loading of a robot to be analyzed. Opening the file menu,
where the operator is presented with various submenus including “Load Robot”, does this. Once “Load
Robot” is selected, a standard file browser dialog is presented allowing the operator to go to the directory
where robot VRML files are stored. Once the desired robot is selected, the Umbra robot module is
created and the robot model is displayed in the scene as shown in Figure 3 for the Fanuc S430iW used in
our sanding demonstration.

The Umbra scene is a true three-dimensional representation of the workcell. As such, the scene can be
rotated and viewed at any angle, along with zoom in and out, using mouse bindings. At the top right of
the screen is position and rotation information of the currently selected (highlighted) item. The item’s
position and rotation can also be changed using other key/mouse bindings to allow for maximum
flexibility.

 12

Figure 3. Fanuc S430iW robot model in Umbra scene.

The next step typically is to load a workpiece using the same File main menu and selecting the “Load
VRML Part” submenu. Once the part is loaded, it appears in the active workcell scene as well as its name
in the parts list. The same manipulation options apply to the part as to the robot. The aircraft part
used in the sanding demo is shown loaded in Figure 4 (it actually appears as three parts: a main part and
two sanding areas). The currently selected (highlighted) part is show in yellow in the workcell scene.

 13

Figure 4. Workpiece part added to Umbra scene.

A work path can now be planned on the desired workpiece. If the path edit function is enabled using the
Path menu, key parameters can be changed to allow for various work paths to be generated and the
desired one chosen. The “Plan Part Path” button in the Parts frame is used to generate the work path.
Once the path has been generated, a tag representation is displayed on the workpiece, as shown in Figure
5. Note that a new tag series with individual tags are now displayed in the “Tag Series” and “Tag” lists,
respectively.

 14

Figure 5. Tag points showing the work path on the workpiece.

A reachability analysis can now be done on the work path tag series for the current robot using the
“Reach Tag(s)” button in the Tags frame. A reachability cloud is generated as a default, or, by turning
restricted Z on under the Reachability menu, only a surface representing a slice of the reachability volume
is generated at the robot’s current base Z position, as shown in Figure 6.

 15

Figure 6. Surface generated from reachability analysis.

The robot’s inverse kinematics are used to generate the reach volume.

A collision-free robot joint path can now be generated for robot approach, departure, and work motion.
These paths can be viewed in the simulation workcell using the “Motion On” checkbox to track tags. The
robot's sequence of joint positions is also saved to disk for future downloading to the robot controller.
Figure 7 shows the robot at a mid-path sanding pose while executing the sanding work path in simulation.

 16

Figure 7. Test in simulation of the generated sanding work path.

After checking all robot motion using simulation, the robot sanding work path is run on the actual robot
sanding the real aircraft workpiece. The aircraft workpiece is secured in a fixture so that its position
relative to the robot matches that of the model. As previously mentioned, the joint path file is saved in a
format compatible to the R-J3 controller so that it can be executed. The current programmatic, online
interface with the R-J3 controller is only compatible with the Visual Basic language, and cannot be linked
with our tool. We would like in the future for either Fanuc to make their interface compatible with the
C++ environment, or to have a Visual Basic interface to the R-J3 controller written so that the joint path
can be streamed down to the robot and run online. Our communication method at this time is to use the
Fanuc PC File Services to download the saved joint path program, as described in another section.

4.4 Future Tool Enhancements
Other key technologies exist in the Center that should be integrated into the Flexible Maintenance Tool’s
environment, many of which have already been integrated into the Umbra environment and are available
as Umbra modules. We have demonstrated flexibility in three areas. The first is the ability to bring
multiple robots into the work environment for analysis and comparison. The second is the ability to do
multiple work functions with those robots (painting, sanding, etc.) using our configurable work path
planning. The third is the ability to load different workpieces into the system for rapid processing.

At the present time, the workpieces have to be modeled offline and then loaded into the system. We
currently have Umbra technology in place that will use laser scanning (structured lighting) to scan a
workpiece and then create its model geometry in the Umbra scene. The dynamically created workpiece
model will also contain accurate positional information to be used with the work path planners. This

 17

would allow for a workcell to have the flexibility to bring new workpieces in and have the system
recognize and dynamically configure itself to process the new piece.

5. Development of an Automation Tool for Aircraft Surface
Preparation

For this project, a surface finishing ("sanding") device with active compliance was developed as an end-
effector for a robot manipulator arm. Active compliance was achieved by attaching a portable sanding
tool to a 6-DOF parallel kinematic manipulator, called the "hexapod". Section 5.1 describes the hexapod
design, while 5.2 describes the implementation of the hexapod tool with the robot manipulator arm as an
integrated demonstration.

5.1. Analysis of the 6-DOF Hexapod

5.1.1 Introduction
A serial manipulator consists of several links connected in series by various types of joints, typically
revolute or prismatic. Although the positional workspace can be large for these types of manipulators,
maneuvering appropriate sized payloads can only be accomplished by the use of gear trains on the motor
drives. This presents a myriad of other technical problems when the serial robotic device attempts to
“interact” with the environment, as discussed below.

Conversely, a parallel manipulator typically consists of a distal moving platform that is connected to a
fixed base by several limbs. For example, a parallel manipulator with an n-DOF platform is connected to
a fixed base through n independent kinematic chains each having a single actuated joint. Parallel
manipulators possess the advantage of high stiffness, low inertia, and large payload capacity. These come
at the expense of relatively small workspace, hardware design difficulties, and difficult control issues. In
addition, the only closed form forward kinematics solution that has been reported in the literature is for
special mechanical forms of the Stewart-Gough platform. The general Stewart-Gough platform forward
kinematics solution requires numerical techniques.

Historically, in 1949 Gough [GOUGH-1962] developed the first full 6-DOF parallel structure (a six-linear
jack system for use as a universal tire testing machine). In 1965 Stewart [STEWART-1965] popularized
it for use as a flight simulator for pilot training, and his name is now associated with this device. Since
that time many variants [MERLET] of the Stewart Platform have been researched, but industrial
application has been fairly limited to machine tools, flight simulators, and micromanipulators. On the
other hand, their serial link chain counterparts have seen widespread growth and are now applied to many
industrial applications. Yet, other than “guarded moves”, the implementation of contact sensor
information to serial mechanisms for compliant control contact problems has not matured. There are
several reasons for this, with the most prominent listed below.

• Large geared serial manipulators present a myriad of other force control issues such as coulomb
and viscous friction, backlash, large moving mass, etc.

• Implementation of a force control loop around a position controlled robot leads to slow and
sluggish performance; poor assembly cycle times result. In addition, contact instability is
common if control gains are too high.

• Elegant solutions for teaching and assembly search strategies are required for effective use on the
factory floor.

 18

5.1.2 Kinematics
The number of degrees of freedom that the distal platform exhibits, and the type of limb configuration,
typically define a parallel manipulator. The numbers of degrees of freedom that a manipulator exhibits
are typically given by Grubler’s formula described below [TSAI-1999]:

(1) i

i

F n jλ= − − + f∑
 (1)

F: degrees of freedom of a mechanism.
fi: degrees of relative motion.
j: number of joints in a mechanism, assuming that all the joints are binary.
n: number of links in a mechanism, including the fixed link.
λ: degrees of freedom of the space in which a mechanism is intended to function.

Limb configurations of parallel manipulators are typically made up of a combination of revolute (R),
prismatic (P), or spherical (S) joints attached together to make up a kinematic chain (an assembly of links
connected together by joints). The numbers of degrees of freedom for each of the above joints are 1, 1,
and 3 respectively (a Hooke, or universal, joint is made up of 2 R joints).

Thus, for a typical 6-DOF Stewart-Gough parallel manipulator we have 6 links made up of an R-R-P-S
type of configuration. Plugging this into Grubler’s formula (1) yields

6(14 18 1) (6 3 6 2 6) 6F x x= − − + + + = . (2)

For the ParaDex [KOZLOWSKI-2002] type manipulator currently under investigation, we have the exact
same equation.

 ˆ pz

ˆ
px

ˆ py

ˆbzˆbx

ˆby

pi
er

bi
rr

ˆi bl z

bpr

bi
L
r

Figure 8: ParaDex 2 kinematics, I =1-6.

 19

The inverse kinematic solution can be derived from the drawing in Figure 8 and simple vector arithmetic
as seen below

ˆ
i ib p b i b bp e r l z L

i
+ = + +

rr r r
 (3)

where is the actuator position. ˆi bl z

Rearranging equation (3) and transforming

iper into the base frame yields,

ˆ
i i i

b
b b p p b i bL p Re r l= + − − z
r r r r

 (4)

ˆi ic l zb= −
r

 (5)

where and
i

b
i b p pc p Re r= + −
r r r r

ib
b
p R is the 3x3 direction cosine matrix relating the platform to the base

frame. Taking the inner product of (5) yields

2 2 2

2 2 2

()i ix iy iz i

iz i i ix iy

2L c c c l

c l L c c

= + + −

− = − −

2 2 2
i iz i ix iyl c L c c= − − − (6)

Thus, given a desired platform position and orientation, the active link length vectors of the actuator are
uniquely determined.

5.1.3. Jacobian Analysis
For an arbitrary parallel manipulator, the Jacobian is defined as [TSAI-1999]
 l J x=& &

%

or,

2

3

4

5

6

1

b

b

b

x

y

z

xl
yl
zl

J
l
l
l

ω
ω
ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

& &

& &

& &

&

&

&
 (7)

where l& is the actuator velocities and x& is a column vector of linear and angular velocities of the

platform relative to the base frame (the dual definition for the serial manipulator is x Jθ= &&
%

 where θ& is a
vector of joint velocities and x& is as before). This can be derived for the ParaDex style parallel
manipulator by differentiating equation (3) relative to the base frame.

ˆ i ib b pi b bl z L p eω+ = + ×
ur ur ur r

& & & (8)

Since ibL
ur

 is of fixed length, we know 0.i ib bL L• =
urur
& Thus, taking the dot product of equation (8) with

ibL
ur

 yields

 () ()ˆ i i ib b b pi b bl z L p L e Lω• = • + × •
ur ur ur ur r ur

& & ib

or

 20

()(1
ˆ i ii

i

b bpi b
bb

l L p e L
z L)bω

⎛ ⎞
= • + ×⎜ ⎟

•⎝ ⎠
•

ur ur r ur ur
& ur & (9)

Equation (9) can be rearranged such that l Jx=& & (l and are defined above), and & x&

()
,

ˆ ˆ
ii

i

i i

TT
bpb

i
b b

e LLJ
z L z L

⎡ ⎤×⎢ ⎥= ⎢ ⎥• •
⎢ ⎥⎣ ⎦

r urur

ur ur (10)

is the ith row of the Jacobian.

Since the Jacobian matrix (along with its inverse and transpose) is a mapping that relates forces and
velocities between the actuator space and the end effector, it is a natural starting point for analyzing the
“dexterity” of a manipulator design. There are many optimization design criteria for Jacobian analysis
[TSAI-1999, STOUGHTON-1993, ST.-ONGE-1996], but the main design parameter involves the
condition number of the Jacobian. The condition number of an arbitrary matrix A (denoted) is
defined as the ratio of the maximum to minimum singular values. Thus,

()Aκ
()Aκ is a measure of a

manipulator’s ability to generate velocities and forces independent of direction [STOUGHTON-1993].
The desired for a Jacobian is to be as close to unity as possible over the entire working volume of
the manipulator for the above condition to occur (the last 3 rows of the above Jacobian must be scaled by
the radius of the platform for appropriate results). At singular positions for a parallel manipulator, the
device gains one or more degrees of freedom and loses stiffness completely; in this case, the scaled

()Aκ

()Aκ
approaches a very large value. Thus, the inverse of the Jacobian does not exist.

5.1.4. 5-DOF and 6-DOF Implementations
Utilizing the above formulation of the Jacobian, the original idea was to develop a 5 degree of freedom
parallel manipulator (5 active links), with a constraint on the platform roll axis essentially freezing a
degree of freedom of the manipulator. For processes that do not require roll axis manipulation (such as
for a rotary sanding tool), the reduction from 6-DOF to 5-DOF can result in a significant saving in tool
weight. (A technical advance (TA) has been submitted for the 5-DOF variant of the hexapod.) Thus,

optimization analysis was done on a 5x5 Jacobian, with a 5x1 vector, and

since
il

T

x yx x y z ω ω⎡ ⎤= ⎣ ⎦& & & &

0zω = for all time (constrained). This is summarized below:
1. initialize the radius of the platform, and the radius of the base
2. constrain the attachment points (base and platform) of one passive link, which also constrains the

passive link length
3. utilizing Monte Carlo methods, allow the rest of the link attachment points to “float,” and

calculate for each “design”, storing all design information for ()Aκ () 2Aκ < at the home
position of the manipulator

4. throw out all designs not feasible
5. test over the central workspace region for feasible designs ()Aκ

Due to the kinematic coupling between the links and the platform roll axis, this design procedure yielded
a 5-DOF platform with a singularity at the home position. Thus, the original analysis was flawed. While
reasons for this result (discussed below) were researched, the platform was modified to add a sixth linear
actuator making the final system a 6-DOF parallel platform -- a known stable configuration.
The original 5x5 Jacobian that was used in the above analysis was modified to include the effects of zω ,
and by adding a fictitious rotational motor whose only “function” is to control the center tool roll axis.
Thus, the Jacobian now takes on the form shown below:

 21

1

2

3

4

5

6

x

y

z

xl
yl
zl

J
l
l

ω
ω
ωθ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

& &

& &

& &

& %

&

&

1

2

3

4

5

6

J
J
J

J
J
J
J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%

()

[]
[]6

,
ˆ ˆ

1,2,3,4,5

0 0 0 0 0 1

iii

i i

TT
bpb

i
b b

e LLJ
z L z L

i

J

⎡ ⎤×⎢ ⎥=
⎢ ⎥• •
⎣ ⎦

∋

=

r urur

ur ur

 (11)

An analysis of the above Jacobian does indeed show the singularity of the 5-DOF device, as was
well above 1e06 for the device as originally built. In order to confirm that a 5-DOF design solution does
exist, the above Jacobian optimization analysis was run, with results shown below.

()Aκ

Figure 9: Different base and link attachment points versus condition number for link 2.

Figure 9 and Figure 10 illustrate how the condition number of the Jacobian changes for different base and
platform passive link attachment points of a 5-DOF parallel manipulator. (Link 5 is symmetric to link 2;
link 3 is symmetric to link 4. The link attachment points are shown in Figure 11.) The best condition
number achieved for this optimization analysis was 3.6 (with 1 being the optimum).

 22

Figure 10: Different base and link attachment points versus condition number for link 3.

Y

X

2pφ

2bφ

3bφ

3pφ

+
5pφ

4pφ

4bφ

5bφ

1 0bφ =

1 0pφ =

Figure 11: 5-DOF base and platform link attachment point definitions.

 23

Thus, the updated optimization analysis for the 5-DOF parallel manipulator yielded design parameters
shown in the following table:

Passive link
number

Passive link length
(mm)

Base Attachment Angle
(degrees)

Platform Attachment
Angle (degrees)

1 88.22 0 0
2 108.40 62 92
3 96.93 148 167
4 96.93 -148 -167
5 108.40 -62 -92

Base radius Platform radius

145.71 mm 101.6 mm

Table 1. 5-DOF parallel manipulator optimization analysis results.

5.2. Robotic Workcell with Hexapod End-effector
A robotic workcell was developed using an actively compliant in-contact tool mounted on the robot
manipulator. Together with the software analysis tools for path planning, the workcell demonstrates the
application of the analysis tools to generate a path, which was then used by the robot to drive the
movement of the force-controlled in-contact tool on a demonstration aircraft workpiece.

5.2.1. Robot Workcell
The robot workcell was built around a Fanuc S-430iW robot and is shown in Figure 12.

Figure 12. Robot workcell, showing robot, hexapod end-effector, and workpiece.

 24

This large, six-axis robot is designed for material handling and welding tasks. The robot is a typical serial
link manipulator design with 6 axes. It has a 360 lbs. working load and a reach (to the faceplate) of 104
in. The specified repeatability is 0.012 in.

The controller is the R-J3 model from Fanuc with version 5.2 of Fanuc’s operating system and Karel
programming language. The controller is responsible for interpreting the sanding paths, specified as tool
positions in a Cartesian coordinate frame, and solving the inverse kinematic equations to compute the
required joint positions to get the tool to these poses. The controller also uses digital I/O signals to enable
the sanding head and to tell the hexapod when to begin and end its contact force-controlling mode.

The hexapod sanding end-effector is carried by the robot. The current system divides the sanding tasks
into two parts. The robot is used to drive the head through the sanding path, while the end-effector
adjusts the contact force of the sanding head against the part. The robot thus performs the gross
positioning while the hexapod compensates for part curvature and positioning errors. These errors come
from robot inaccuracy, uncertainty in the model of the workpiece, and part fixturing errors.

5.2.2. Downloading and Running a Sanding Path
The Fanuc R-J3 controller includes an ethernet interface. A Windows-based utility called PC File
Services is available to perform tasks such as backing up the controller software (including user
programs) to a PC and transferring files from the PC into the controller’s memory.

The sanding path is created by the path planning software on the PC and output to a text file as a sequence
of points, defined by X, Y, Z, Yaw, Pitch, Roll in a World coordinate frame. Through a manual point and
click operation, we send this file into the robot controller’s RAM disk memory. (This manual operation
could be automated through an Active X interface on the PC. However, we used the manual technique
since there is not currently a path from the Umbra environment to the Active X level.)

With the file in the robot controller’s memory, a robot program is executed to move the sanding head
along the path. This program, written in Fanuc’s Karel programming language, begins by setting up the
motion parameters for the robot, such as tool tip speed, using linear interpolation between path points, and
blending of the path segments together with constant speed through each point. It then opens the file and
reads the first line, which specifies the number of points in the file. Next it reads the first point and
executes an approach move toward that point and stops there. This allows the robot to get in a starting
position that is the same pose as the first point on the path.

The hexapod controller now reads the values from the six load cells and uses those readings as offsets so
that the gravity loading (which varies with tool orientation) is biased to zero. In the current configuration,
we are limited to sanding paths with no change in tool Pitch (i.e. no change in gravity loading). We have,
however, left provisions to incorporate a 3-axis accelerometer into the hexapod that will allow gravity
compensation.

With the hexapod ready to go, the operator signals the robot to continue. The robot now drives to the first
point in the path. Just before the robot reaches that point, the sander is turned on and the hexapod begins
its contact force control mode. The robot now continues reading subsequent points from the file and
moving through them in a smooth, continuous motion.

When the last point in the path is reached, the hexapod is signaled to stop its force control mode and the
sanding tool departs from the surface and the sander is turned off. The robot is then driven to a “safe
position” and halted.

 25

5.2.3. The Hexapod Sanding End-effector and Controller
The sanding end-effector, shown in Figure 13, is a parallel kinematic mechanism design commonly
referred to as a Stewart platform. In this 6-DOF design, there are six parallel linear actuators who’s
individual motions are coordinated to produce the desired motion (or static force) of the platform. The
sanding head is a commercially available, pneumatic, random-orbital unit from Dynabrade. It has a 5 in.-
diameter sanding pad, to which various grit sanding disks are adhered.

The linear actuators are a package (motor, encoder, and slide) from Trilogy, using their moving coil
design and Linear Encoder Modules. Each actuator has 3.4 in. of travel and is capable of 10 lbs. of force.
This design places the six actuators parallel to each other and uses passive links to connect the motor
slides to the platform. Traditional Stewart platforms use the linear actuators as the links themselves. We
chose the current design to help keep the end-effector more compact. The passive links have universal

Figure 13. Two views of the hexapod sanding end-effector.

joints at each end. A thrust bearing is also incorporated into the platform so that the links have 3 degrees
of freedom at the platform and 2-DOF at the motor slide. The u-joints and bearings are off-the-shelf
models available through McMaster-Carr. The range of motion of the sanding head on the moving
platform is approximately 3 inches vertically, a lateral motion of about 2 inches, and pitch and yaw angles
of ±12 degrees.

To measure the contact force on the sander (and therefore the platform), each link includes a load cell
from Entran. These are strain gauge based units packaged as small, flat disks with 10x32 studs. With the
2- and 3-DOF mounting of the passive links, the links are in pure tension or compression. The cells
measure this load, which can then be converted into the net loading on the sanding head using the
Jacobian of the parallel kinematic mechanism. Amplification and filtering electronics are mounted to the
base of the hexapod. The conditioned signals then to go an A/D converter and then on to the PC.

 26

Servo control loops are closed around each motor by UMAC axis controllers from Delta Tau and
amplifiers from Western Servo Design. Using the encoder for feedback, the Delta Tau boards command
the motor velocities through sinusoidal commutation of the motor’s 3 phases.

A PC with both Windows and QNC boot partitions sits at the top of the hexapod control hierarchy.
Windows is used for software development while QNC, a real-time UNIX variant, is used when running
the hexapod. A fiber-optic link connects the PC with the Delta Tau controllers and A/D boards. All
control and feedback signals are multiplexed through this link.

5.2.4. Integrated Robotic Workcell
The sanding path generated by the path planning system includes the tool position and surface normal at
each path point. The robot controller drives the tool through each point in succespsion and uses the
surface normal to orient the tool at each point. But the robot’s inaccuracy and errors in modeling and
positioning of the workpiece will result in both force and torque errors at the sanding head.

To control the net force on the sanding head (typically 2 pounds of force normal to the surface), the
tension/compressions measurements in each link are converted into the net force of the platform (and
sander) using the Jacobian of the structure. The Jacobian is a 6x6 matrix formed from the kinematic
equations of the parallel mechanism. The Jacobian relates the six motor velocities to the platform
velocity. The transpose of the Jacobian relates the six motor forces to the net platform force. Once the
net force is known, the error from the desired force is computed. The inverse of the Jacobian transpose is
then used to compute the forces needed from each motor. These calculations are repeated for each update
cycle.

The net torques around the axes of the tool coordinate system at the platform are also calculated along
with the net forces along the tool axes. The reaction to the spinning sanding disk produces a torque
around the tool Z-axis. This torque is monitored but no compensation is done on it explicitly. Any net
torque around the tool X or Y axes means that the sander is not normal to the surface being worked. By
driving these torques to zero, the sander can be maintained normal to the surface.

The position of the platform within its own working volume must also be monitored. With a parallel
mechanism, freedom of motion is greatly reduced as the platform moves away from its central (or Home)
position. Sanding force compensation means that the platform must be driven away from its Home. If
this drift becomes too great, it would be desirable to have the robot offset it’s path to compensate. While
this capability will not be very difficult to implement, it is beyond the scope of this demonstration project.

 27

6. Conclusion

The project team visited four DoD depots that support extensive aircraft maintenance in order to
understand critical needs for automation, and to identify maintenance processes for potential automation
or integration opportunities. From the visits, the team identified technology needs and application issues,
as well as non-technical drivers that influence the application of automation in depot maintenance of
aircraft.

Software tools for automation facility design analysis were developed, improved, extended, and
integrated to encompass greater breadth for eventual application as a generalized design tool. The design
tools included automated path planning and path generation, integrated into a single application
framework for interaction, design, analysis, and control.

An actively compliant 6-DOF tool was designed, analyzed, and developed based on a Stewart platform
design. A 5-DOF concept was also designed, optimized, and analyzed. A robotic workcell was
developed using the 6-DOF actively compliant in-contact tool mounted on the robot manipulator.
Together with the software analysis tools for path planning, the workcell demonstrates the application of
the analysis tools to generate a path, which was then used by the robot to drive the movement of the
force-controlled in-contact tool on a demonstration aircraft workpiece.

From this investigation, several areas for follow-on research were identified. These include: 1) extension
of the design analysis tools in order to automatically extract geometric sections and patches from
workpiece models for process-based path planning; 2) integration of optical scanning methods for input of
workpiece surface geometry; 3) advanced kinematic tools that perform stability analyses for parallel
mechanisms; 4) incorporation of accelerometer sensors in the 6-DOF hexapod to implement gravity
compensation for the tool’s response; 5) sensory feedback to implement process control of sanding
effectiveness (e.g. area of coverage on curved surfaces).

 28

7. Bibliography

[GOTTLIEB-2001] Gottlieb, E., R. Harrigan, M. McDonald, F. Oppel, and P. Xavier, The Umbra
 Simulation Framework, SAND2001-1533. Sandia National Laboratories, Albuquerque, NM, June
 2001 (UNCLASSIFIED).

 [GOUGH-1962] Gough, V.E. and S. G. Whitehall, “Universal tire test machine”, Proc. 9th Int. Tech.
 Congr. F.I.S.I.T.A., May 1962, p. 117.

[KOZLOWSKI-2002] Kozlowski, D. M., R. S. Stoughton, R. Hebbar, and W. S. Newman, “Automated
 Force Controlled Assembly Utilizing a Novel Hexapod Manipulator”, Proc. World Automation
 Congress, 2002.

 [KUFFNER-2000] Kuffner, J. J. and S. M. LaValle, RRT-Connect: An Efficient Approach to Single-
 Query Path Planning, Proceedings of the 2000 IEEE International Conference on Robotics and
 Automation (ICRA), San Francisco, CA, 2000, pp. 995-1001.

 [MERLET] Merlet, J-P, INRIA, http://www-sop.inria.fr/coprin/equipe/merlet/Archi/archi_robot.html.

 [ST.-ONGE-1996] St.-Onge, B. M., and C. Gosselin, “Singularity Analysis and Representation of
 Spatial Six-DOF Parallel Manipulator,” in Recent Advances in Robot Kinematics, pp. 389-398,
 1996.

 [STEWART-1965] Stewart, D., “A Platform with Six Degrees of Freedom”, Proc. Inst. Mech. Engrs.,
 Vol. 180, No. 15, 371-386, 1965.

 [STOUGHTON-1993] Stoughton, R. S., and T. Arai, “A Modified Stewart Platform Manipulator with
 Improved Dexterity”, IEEE Transactions on Robotics and Automation, Vol. 9, April 1993.

 [TSAI-1999] Tsai, L.W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators,
 John Wiley & Sons, New York, N.Y.

 29

Distribution:

1 MS0323 D. L. Chavez LDRD Office
1 MS1002 S. Roehrig 15200
1 MS1004 R. Harrigan 15221
1 MS1004 P. Watterberg 15221
1 MS1007 L. Shipers 15272
3 MS1007 W. Drotning 15272
1 MS1007 C. Loucks 15272
1 MS1007 W. Prentice 15272
1 MS1007 D. Kozlowski 15272
1 MS9018 Central Technical File 8945-1
2 MS0899 Technical Library 9616

 30

	Abstract
	1. Introduction
	2. Depot Maintenance Survey
	3. Software Tools for Maintenance Facility Analysis
	3.1 Collision-Free Path Planning
	3.2 Task Planning
	3.3 The Reachability Tool
	3.4 The Generic Robot Class

	4. Application of Software
	4.1. Flexible Maintenance Software Tool Design and Implementation
	4.2. Software Tool GUI Description
	4.3. Workcell Analysis Process Example
	4.4 Future Tool Enhancements

	5. Development of an Automation Tool for Aircraft Surface Preparation
	5.1. Analysis of the 6-DOF Hexapod
	5.1.1 Introduction
	5.1.2 Kinematics
	5.1.3. Jacobian Analysis
	5.1.4. 5-DOF and 6-DOF Implementations

	5.2. Robotic Workcell with Hexapod End-effector
	5.2.1. Robot Workcell
	5.2.2. Downloading and Running a Sanding Path
	5.2.3. The Hexapod Sanding End-effector and Controller
	5.2.4. Integrated Robotic Workcell

	6. Conclusion
	7. Bibliography
	Distribution:

