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ABSTRACT

Existing paper-based site characterization models of salt domes at the four active U.S. Strategic 
Petroleum Reserve sites have been converted to digital format and visualized using modern computer soft-
ware. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jef-
ferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome 
in Cameron Parish, Louisiana.

A new modeling algorithm has been developed to overcome limitations of many standard geologi-
cal modeling software packages in order to deal with structurally overhanging salt margins that are typical 
of many salt domes. This algorithm, and the implementing computer program, make use of the existing 
interpretive modeling conducted manually using professional geological judgement and presented in two 
dimensions in the original site characterization reports as structure contour maps on the top of salt. The 
algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the spe-
cific implementation of the algorithm described in this report and the resulting output files are tailored to 
the modeling and visualization software used to construct the figures contained herein, the algorithm itself 
is generic and other implementations and output formats are possible.

The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are 
believed to be major improvements over the previously available two-dimensional representations of the 
domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical 
mesh files produced by this modeling activity are available for import into and display by other software 
routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple 
ASCII format is included on a PC-based compact disk.
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INTRODUCTION

This report presents the results of three-dimen-
sional computer modeling of the outer margins of 
salt domes at the four currently active (2003) U.S. 
Strategic Petroleum Reserve (SPR) sites in the 
Gulf Coast region of Louisiana and Texas. These 
models are presented in numerical form for poten-
tial use in other applications, and they are visual-
ized for reference purposes using a variety of 
graphical representations. 

These models are essentially direct transfor-
mations of the paper-based existing site-character-
ization models, or understandings of the external 
geometries, of the four active SPR salt domes to a 
computer-graphical format. This model conversion 
has been undertaken as-is, with the full realization 
that the existing site characterization reports are 
modestly dated and the interpretations therein are 
one to two decades old (Hogan, 1980a, 1980b; 
Whiting et al., 1980; Hart et al., 1981; Magorian 
and Neal, 1988; Magorian et al., 1991; Neal et al., 
1993, 1994). 

The geologic description and interpretation of 
the four salt domes and their contained Strategic 
Petroleum Reserve sites is being updated sepa-
rately as a part of ongoing SPR Project site charac-
terization activities. These newest updates will be 
published over the course of the next one to three 
years. The geology will be updated and evaluated 
critically in light of new (approximately post-1990) 
data including new drilling and hydrocarbon devel-
opment activities, cavern-operational experience, 
seismic exploration data, and other information 
that may have been acquired or otherwise made 
available since the completion of the older formal 
site-characterization update reports. Additionally, 
inconsistencies recognized via fully three-dimen-
sional modeling of the older data, which may have 
been difficult or impossible to recognize in a two-

dimensional compilation environment, will be 
identified, described, and reconciled through new 
interpretations and/or model-construction 
approaches.

MODELING

Computer-based numerical modeling inevita-
bly is closely tied to the modeling software 
employed in the task. The models described in this 
report were generated using the 3-D modeling 
capabilities of Mining Visualization System 
(MVS)1, a high-end geologic modeling software 
product marketed by C-Tech Development Corpo-
ration, of Huntington Beach, California. MVS 
originated as an environmental-modeling product, 
but has undergone substantial expansion of capa-
bilities during the past 5-6 years. Additional infor-
mation regarding C-Tech Development 
Corporation and its software products may be 
accessed over the internet at 
http://www.ctech.com.

DATA SOURCES 
The fundamental sources of data used to gener-

ate the three-dimensional representations of the 
four SPR salt domes are the original site-character-
ization reports and the corresponding update 
reports as listed in table 1. No new data have been 
used. Also, reinterpretation of the existing data and 
models has been minimal and restricted to the 
cases where some additional interpretation was 
required simply to generate the necessary data for 
the model conversion. 

1 The use of trade, product, industry, or firm 
names is for descriptive purposes only and does 
not imply endorsement by Sandia National Labo-
ratories or the U. S. Government.

Three-Dimensional Representations 
of Salt-Dome Margins at 

Four Active Strategic Petroleum Reserve Sites
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MODELING TECHNIQUES
The natural geometry of salt domes presents 

certain problems for many, if not most, general-
purpose geological modeling software programs. 
Specifically, the generic geometry of a salt dome is 
a quasi-cylindrical mass with steeply dipping 
flanks that may exhibit local overhanging configu-
rations. In addition, the crest, or upper surface, of a 
salt dome is typically near horizontal because of 
dissolution of the salt mass over geologic time by 
laterally moving near-surface ground waters. Sub-
tle variations in the specific dissolution conditions 
at a particular site may cause local complexities in 
this upper surface. The consequence of the occur-
rence of salt domes as vertically extensive steeply 
dipping features with an upper boundary at nearly 
90 degrees to the dome flanks is that numerical 
modeling of these differing geometric features, in 
effect, requires two separate approaches.

Confounding the mechanics of numerical mod-
eling is that, in most instances, the spatial arrange-
ment of data available from which to develop the 
model is one of near-vertical �strings� of measure-
ments or observations: i.e., data obtained from drill 
holes such as oil and gas wells. Although the flat-
lying upper surface of most salt domes is readily 
described by vertical penetrations of the top-of-salt 
surface, the flanks of a salt dome are rarely well 
defined except in locations of closely spaced drill-
ing. Although many such regions of �close� drill-
ing are associated with hydrocarbon development 

in the upturned sediments along the flanks of 
numerous salt domes, the extent of such drilling is 
not necessarily uniform around the circumference 
of a given dome. This irregular spacing of well 
control may induce artifacts into surfaces gener-
ated by numerical algorithms. Because seismic 
data was not available at the time that the original 
site characterization reports were compiled, the 
geometry of the SPR salt domes as originally char-
acterized was constrained solely by drill hole infor-
mation.

The suite of numerical algorithms generally 
available in geologic modeling software is particu-
larly ill-suited for the representation of near-verti-
cal surfaces. Typically, the principal interest of 
many geologic studies is sedimentary basins and 
other environments in which the geometry of the 
geologic units is �layer-cake� in nature and rela-
tively uncomplicated structurally. More specifi-
cally, structural overhangs of salt pose severe 
difficulties because most modeling algorithms are 
predicated upon a single-valued (�functional�) 
relationship of the surface in two-dimensional 
(plane) space. Interpolation-type algorithms are 
designed to move �smoothly� from the observed 
elevation at one x,y position to the observed eleva-
tion at another x,y position along a grid of x,y loca-
tions at which the elevation of the geologic surface 
is unknown. Typically this is accomplished by 
weighting the different nearby measured elevation 
values in some manner that produces a visually 

Table 1.  Geologic Site Characterization Reports for the Strategic Petroleum Reserve

SPR Site, version Report Number Citation Structure Contour Map 
(figure in original report)

Bayou Choctaw original SAND80-7140 Hogan (ed.), 1980a Figure 6.19

update SAND92-2284 Neal et. al., 1993 Figure 6b

Big Hill original SAND81-1045 Hart and others, 1981 Figure 5-1

update SAND88-2267 Magorian and Neal, 1988 Figure 1

Bryan Mound original SAND80-7111 Hogan (ed.), 1980b Figures 6-1, 6-2

update SAND94-2331 Neal et. al., 1994 Figure 4b

West Hackberry original SAND80-7131 Whiting (ed.), 1980 Figure 4.9

update SAND90-0224 Magorian et. al., 1991 Figure 7
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pleasing resultant surface. The introduction of the 
possibility of multiple elevations at a single 
(known or unknown) 2-D spatial position leads to a 
complete breakdown of the computational algo-
rithm and further processing is either impossible 
(leading to system crashes) or produces absurdly 
impossible representations of the geology.

Modeling of the Salt Dome Flanks
One method to deal with the problem of geo-

logical overhangs and multiple elevation values for 
a given horizontal position associated with the geo-
metric �flank� of a salt dome is to abandon (par-
tially; see below) the assumptions inherent in most 
geological modeling software and to adopt the spa-
tial principles involved in engineering finite-ele-
ment meshes. An engineering mesh, as that term is 
used in this report, involves the complete three-
dimensional spatial specification of nodes and an 
explicit specification of how those nodes are con-
nected together to form the mesh. Although most 
computational meshes are �three dimensional� and 
involve the specification of volumetric elements, 
the bounding surface of a salt dome may be fully 
specified by a two-dimensional (surface) mesh in 
three spatial dimensions.

Conceptually, the transition from a near-verti-
cal geologic surface with potential recumbent over-
hangs to a 2-D finite-element-type surface mesh in 
three dimensions is straightforward. The difficulty 
in actually constructing such a mesh comes in that 
� unlike the classical engineering application of 
mesh construction in which the geometry and con-
nectivity of the mesh is pre-specified by the numer-
ical analyst � the application of these techniques 
in the geologic environment involves inference of 
the unknown full geometry and connectivity from 
sparse, spatially scattered measurements. This is 
precisely the reason that the generally available 
modeling algorithms adopt the implicit connectiv-
ity specified by the interpolation-onto-a-horizon-
tal-grid approach.

All that is required to generate a 2-D surface 
mesh representing the margins of the salt domes is 
the spatial positions of a large number of points on 
that bounding surface and a means of knowing how 
those points should be connected to define a num-
ber of polygons to approximate that geologic con-
tact. The interpretive structure contour maps drawn 
on the top-of-salt surface and presented in the vari-

ous site characterization reports for the Strategic 
Petroleum Reserve project (table 1) provide 
exactly this mechanism. 

Although a structure contour map is a strictly 
two-dimensional representation on a flat piece of 
paper, it represents a three-dimensional object: a 
model. The vintage of the site-characterization 
reports (late 1970s and published in 1980 and 
1981) strongly suggests that the models repre-
sented by the contour maps were constructed by 
hand using geological judgment constrained by the 
available distribution of observations of the salt-
sediment interface in the boreholes existing at that 
time. Nevertheless, two-dimensional contours can 
be discretized (digitized) and converted to a large 
number of points in 3-D space by calibrating the 
horizontal position of each discrete point to some 
reference grid and assigning a z-value equal to the 
indicated elevation/depth of the specific contour 
line. Maintaining a sequential order of digitization, 
complemented by a depth-ordering of individual 
sequences of digitized points representing the dif-
ferent contour lines allows us to specify the con-
nections between 3-D points defining the outer 
surface of the salt dome. All digitization work for 
this modeling effort was conducted in the state 
plane coordinate system (NAD-27) appropriate to 
the location of the salt dome in question.

In practice and for convenience in automated 
numerical construction of the actual meshes, the 
process described in the preceding paragraph is 
slightly adapted, as follows. This logic is imple-
mented numerically in program ctr2evs. The 
source code for this program is presented in 
Appendix A, and the Fortran code itself in straight-
forward ASCII format is contained on the compact 
disk included with this report.

1.Each structure contour drawn on the top-of-salt 
surface is digitized sequentially at a horizontal 
interval that allows the resulting line segment 
to approximate the original contour line [fig. 
1(a)]. Each x-y spatial position along the closed 
contour is assigned the indicated z- (elevation-) 
value. Manipulation of open contours is not 
currently supported.

2.The resulting sequential arrays of x-y-z coordi-
nates are sorted by elevation (z) value, main-
taining the internal sequential order in x-y.
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Figure 1.  Conceptual representation of the procedure involved in creating a mesh from digitized struc-
ture contours. Reentrant contours add significant complexity and have been omitted from this simplis-
tic explanation.

(a) Example of a digitized structure contour. The 
digitized points are numbered sequentially 
(beneath the center of the number) and they 
are connected by straight-line segments.

(b) A number of rays at a constant angular incre-
ment (here, 15 degrees; typically 2 degrees 
in practice) are passed from the centroid of 
the discretized contour to intersect the line 
segments defined by the digitized points. 

(c) The intersection points defined by the rays in 
the previous step form the new nodal points 
of the modeling mesh. Note that additional 
nodes may need to be defined if a ray has 
multiple intersections with a discretized con-
tour (of any elevation). In this illustration, 
nodes numbered 8 through 13 have been 
modified because of multiple intersections 
on one or more other contours. Note also 
that the nodes have been renumbered for 
consistency starting from due east.

(d) A second structure contour at some elevation 
below the current contour has been pro-
cessed in the same manner and added to 
the illustration. The modeling mesh is gener-
ated by connecting correspondingly num-
bered nodes, as indicated. The process is 
repeated for all available closed contours. 
One method of creating the top of the salt 
dome is simply to connect the nodes of the 
highest elevation contour to the contour cen-
troid (black dot); see discussion in text.
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3.Each digitized contour is first resampled at a 
constant angular increment, as measured from 
the centroid of the closed contour [fig. 1(b)]. In 
effect, a ray is projected from the centroid until 
it intersects the appropriate discrete line seg-
ment. Multiple intersections of the same angu-
lar ray with other line segments are identified 
and tracked. The resolution of the output mesh 
is determined to a first order by the angular 
increment selected at this stage.

4.The contour line with the greatest number of 
ray intersections is identified, and a second res-
ampling of the original line segments is per-
formed to generate an identical number of 
spatial nodes for each contour digitized; these 
nodes are identified in counter-clockwise (trig-
onometric-angular sequence) from 1 through N 
[fig. 1(c)].

5.A mesh describing the geometry of the portion 
of the salt dome represented by the structure-
contour map is then constructed very simply 
by connecting sequential nodes for one contour 
with the corresponding sequentially numbered 
nodes for the contours immediately �above� 
and �below� in elevation [fig. 1(d)].

6.The resulting nodal values and connectivity 
definitions are written to an ASCII text file in 
the format desired for use (visualization) by a 
specified software package, here MVS.
Note that because of the typical geometry of a 

salt dome as a flat-topped, steeply dipping quasi-
cylindrical mass, the uppermost structure contour 
is generally located relatively close to the near-ver-
tical margins of the salt. The modeling algorithm 
described above, being limited to the vertical 
extents of the interpreted structure contours, thus 
produces an open-ended quasi-cylindrical surface 
representing the flanks of the dome. Some struc-
ture contour maps may utilize a vertically varying 
contour interval near the top of the dome for 
increased resolution (i.e, 500 ft vertically over 
most of the extent of the dome supplemented by 
100-ft contours near the top surface). However, the 
usual situation is that the very top of the dome is 
not well represented by the structure contours.

Modeling of the Salt Dome Crest
To provide a more precise representation of the 

geometry of the top portion of the salt domes, drill 

hole penetrations of the nearly flat-lying top-of-salt 
surface can be modeled using a conventional geo-
logical modeling software package. The MVS 
modeling software uses a proprietary variant of the 
standard ordinary kriging algorithm (Journel and 
Huijbregts, 1978) to model subhorizontal or gently 
dipping geological surfaces, and the software out-
puts the resulting undulating surface in a specific 
variant of the finite-element mesh format (nodal 
coordinates plus explicit connectivity among 
nodes). The MVS software provides capabilities 
for merging two or more sets of meshes for direct 
visualization within the MVS environment. The 
software can also be programmed to write-out a 
file containing the combined meshes. If the crest 
and flanks of the dome are modeled properly and 
filtered to avoid overlapping mesh nodes and sur-
faces, the final output file will consist of a com-
plete salt dome representation in which the two 
component surfaces merge essentially as a single 
surface.

For situations where either a �quick-look� is 
desired or where existing well control is suffi-
ciently sparse or poorly located that the kriging 
approach seems inappropriate, an alternative mod-
eling approach for the flat-lying top-of-salt surface 
on the crest of the dome was developed. This meth-
odology simply involves determining the centroid 
of the highest-elevation digitized structure contour, 
identifying the difference in elevation between that 
contour and the next lowest, and closing the con-
nect-the-dots mesh described in item (5), above, to 
the uniform central point [see also fig. 1(d)]. The 
elevation assigned to this single point of closure is 
arbitrarily assigned as one-half of the difference in 
elevation between the two highest structural con-
tours. The justification for this value is that the 
actual elevation should be no higher than the full 
contour-elevation difference (or there should have 
been another contour represented in the paper 
model). This alternative approach is coded into the 
ctr2evs program, and is selected as an option at 
run time.

Discussion of Alternative Modeling 
Approaches. Conceptually and theoretically, it is 
apparent that the preferred mechanism for model-
ing the top of a salt dome would be to use actual, 
measured elevations for the relevant contact(s) and 
interpolate/model these in some manner. Such 
measured elevations will generally be stratigraphic 
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tops from drilling (well logs, etc.), but might also 
include depth-converted stratigraphic picks from 
seismic (2-D or 3-D). Only seismic data are likely 
to be sufficiently abundant (if they exist at all) to 
provide high-resolution modeling of the dome 
crest. Well spacings on top of salt masses, absent 
site-specific drivers such as the presence of sulphur 
deposits or Strategic Petroleum Reserve caverns, 
are generally quite wide. Additionally, wells that 
were drilled in an attempt to delineate the simple 
positions of salt domes are generally quite old 
(straight wildcat drilling for salt having been sup-
planted by other exploration techniques early in the 
twentieth century), and the data from these early 
drilling efforts may be rather unreliable.

Clearly, the more spatially distributed data val-
ues that are available from which to create a model, 
the more geologically accurate will be the resulting 
model, all else remaining equal. The precise shape 
of the salt dome crest � and certainly of the top of 
caprock � may yield important information 
regarding the interaction of faulting or other evi-
dence of differential movement of salt spines at 
depth with the subject surface(s). Only approaches 
using actual geologic data can reveal these types of 
features and insights. The requirement for �densely 
spaced� data to identify subtle features is a princi-
pal driver toward the use of seismic, and particu-
larly 3-D seismic data. However, seismic data were 
not available during site characterization for the 
Strategic Petroleum Reserve, and hence, were not 
used in constructing any of the four site character-
ization models

The secondary method for modeling the top-
of-salt surface described above, was developed and 
is presented here as an option for two principal rea-
sons. First, it was extremely simple to implement 
and it allows a numerical model to be developed 
based solely on the interpretive contour maps and 
without reference to any drill hole data. By itself, 
this latter attribute may be desirable in future 
potential applications of the modeling methodol-
ogy. Second, there may be downstream applica-
tions of these salt dome models that focus on the 
flanks, as opposed to on the crest of the dome. In 
such applications (for example, investigation of the 
closest approach of a cavern to the salt-sediment 
interface at depth), the precise configuration of the 
top-of-salt surface may be irrelevant and thus not 
worth the investment of effort in modeling. Note 

that the actual elevation differences implied 
between the two modeling approaches are gener-
ally very small as a fraction of the modeled vertical 
extent of the salt domes.

Because the additional logistical and numerical 
complexity of modeling the top surface of a salt 
dome in detail is nontrivial, and because the result-
ing numerical model must necessarily be larger 
(simply in terms of file size) to contain that detail, 
the simplistic method of simply closing the top sur-
face to an arbitrary-but-representative location may 
be an attractive alternative. Additionally, future 
updated modeling of SPR and other salt domes (as 
envisaged for the SPR project) will probably 
require the use of interpretive structure contour 
techniques. The closure-to-centroid modeling algo-
rithm will allow rapid visualization of potentially 
many such interpretive models and the selection 
(based upon expert judgment) of the one(s) that 
presumably reflect the actual subsurface geology. 
A detailed (kriged) model of the top-of-salt surface 
may then be substituted for the arbitrary crestal 
configuration once the best representation of the 
salt dome flanks has been determined.

RESULTS
This section presents the results of modeling 

the existing salt-dome models as captured in the 
original site characterization reports and in selected 
updates to those original site characterization 
investigations. Reasons for converting or not con-
verting a specific model are discussed in the rele-
vant section for each SPR site.

The presentation of results by site is somewhat 
involved. First, in general there are models corre-
sponding to both the original characterization 
report and an update characterization report, dated 
roughly 10 years later (table 1). Second, there are 
two methods available for modeling the upper-
most, crestal portion of the salt dome, as discussed 
in the section on Modeling of the Salt Dome Crest. 
Although in the larger scheme of things, the 
amount of relief on the flat-lying portion of a salt 
dome is minimal in comparison to the total amount 
of structural relief exhibited by the known extent of 
the diapir, the two different modeling approaches 
yield rather different detailed configurations of the 
top of salt. Both methods are typically presented 
for illustrative purposes. Unless there are compel-
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ling reasons otherwise, the �best� model should 
always be considered to be the one that makes use 
of the maximum geologic data.

The salt dome models are presented in a con-
sistent manner and to a common depth across all 
sites, with additional illustrations and discussion as 
appropriate to local conditions. Note, however, that 
the West Hackberry salt dome is significantly 
larger than the other three domes in horizontal plan 
view. The views for this dome are affected accord-
ingly. Four principal views are presented: one each 
nominally from the east, south, west, and north. 
The views are perspective in nature, and reflect a 
consistent viewer elevation of 20 degrees above the 
horizontal. To assist in conveying the perspective 
view, the actual angle of the view associated with 
each cardinal direction is actually from 15 degrees 
less (in azimuth) than the nominal direction. Thus, 
the southerly view is actually from an angle of 
180�15 = 165 degrees. Structure contours have 
been placed on the salt surface at selected depth 
increments to aid in the visualization.

BAYOU CHOCTAW SITE

The principal configuration of the Bayou 
Choctaw salt dome is presented in figures 2 and 3. 
The model is based upon the original site charac-
terization report (table 1: Hogan, 1980a). Figure 2 
presents the salt-dome top as modeled using actual 
drill hole data, whereas figure 3 presents the model 
generated simply by closing the top of the dome 
arbitrarily to the centroid of the highest structural 
contour. 

The graphical visualizations of the Bayou 
Choctaw dome represent the salt diapir as a rela-
tively cylindrical mass that gradually expands lat-
erally at depths below approximately 5,000 ft. The 
dome exhibits overhangs on the southern and west-
ern sides. Data are available to delineate the dome 
to a depth of roughly 9,000 ft below sea level, 
although Hogan (1980a) presents partial structure 
contours to a markedly greater depth on the north-
western flank of the dome. These depths are gener-
ally below the zone of SPR interest. Departures 
from a mostly circular plan view are minimal at 
shallow depths, but the dome exhibits a somewhat 
elongated, rounded point to the south at depths 
greater than 7,000 ft below sea level. A slight reen-

trant is also evident on the western flank of the 
dome beginning at approximately this same depth.

The highest structural levels of the Bayou 
Choctaw dome exhibit somewhat more complex 
contour patterns, suggestive of shallow �valleys� 
on the top of salt (see Hogan, 1980a, fig. 6-1) on 
both the northwestern and southeastern margins of 
the top of salt. Because these features were pre-
sented by Hogan as supplemental structure con-
tours at 100-ft vertical intervals, they have been 
captured and are represented in the numerical mod-
els of the Bayou Choctaw dome in both figures 2 
and 3. Hogan�s figure 6-1 indicates sufficient well 
control from the numerous caverns developed in 
this dome to suggest that these are likely to be real 
geologic features. 

Differences in the detailed form of the dome 
between the two alternative modeling methods 
(merged-surfaces vs. closure-to-centroid) are mini-
mal because of the high-resolution structure con-
tours and because the highest two contours are 
separated by a mere 100 ft. vertically. Reference to 
figure 3 suggests that the closure on the highest 
portion of the dome is somewhat more circular in 
form than indicated by the modeling of the many 
actual well penetrations. These differences are 
inferred to be of little practical consequence at this 
time, given that we have not evaluated the spatial 
configuration of the available well control nor the 
quality of the �picks� for the top-of-salt surface. In 
a more thorough remodeling and evaluation of the 
Bayou Choctaw dome, the �valleys� suggested in 
figure 2, plus the elongation of the uppermost 
closed contour may be interpretable in terms of dif-
ferential salt movements (see also next paragraph).

Note that only the salt dome model corre-
sponding to the original site characterization report 
(table 1: Hogan, 1980) has been included in this 
document. Neal et al. (table 1: 1993) presented a 
slightly revised structure contour map of the Bayou 
Choctaw salt dome (their fig. 6B). However, the 
differences concerning the main vertical extent of 
the dome are virtually negligible, with most of the 
variation involving the introduction of faulted dis-
placements of the top-of-salt surface. Because 
introduction of discontinuities in a modeled surface 
creates various numerical problems in an interpola-
tion-type algorithm, we decided not to pursue cre-
ation of an updated numerical representation at this 
time, given the relatively small changes in the con-
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Figure 2.  Four representative views of the Bayou Choctaw salt dome, as generated by the two-part, 
merged-surface technique for the original site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation.
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Figure 3.  Four representative views of the Bayou Choctaw salt dome, as generated by the one-part, 
closed-to-centroid technique for the original site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation.
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figuration of the top of salt between the two char-
acterization reports. Rather, effort has been 
dedicated to creating an original and an updated 
numerical model for those sites where the overall 
configuration of the salt dome changed to a larger 
degree in the site characterization update report. 
Resolution of these additional details regarding 
implications for faulting on the top of the Bayou 
Choctaw dome is beyond the scope of this report. 
Additionally, a primary driving factor in the prepa-
ration of this report was documentation of the mod-
eling algorithm itself, together with presentation of 
representative illustrations of the algorithm�s 
results.

BIG HILL SITE
The geologic configuration of the Big Hill salt 

dome is presented in figures 4 and 5. The models 
are based on the original site characterization 
report (table 1: Hart et al., 1981), but selected 
information from the site characterization update 
report (table 1 (Magorian and Neal,1988) have 
been incorporated as described below. The model 
generated by creating and merging two separate 
geologic surfaces is shown in figure 4, and the 
model constructed simply by closing the top of the 
dome to the centroid of the highest structural con-
tour is presented in figure 5. 

These visualizations present the Big Hill salt 
dome as a mass of relatively circular plan view, but 
one for which the cylindrical shape is tilted 
strongly towards the south. Significant salt over-
hang exists on this southern margin, along with a 
rather pronounced smaller protuberance to the 
south. This particular portion of the Big Hill dome 
is relatively well characterized by numerous well 
penetrations in a well developed oil field.

In contrast to the well-characterized nature of 
the southern and southwestern flanks of the Big 
Hill dome (some 50-plus wells locally), the top of 
the salt mass is defined essentially only by wells 
associated with the 14 SPR caverns, the remainder 
of the few wells (perhaps a dozen) over the top of 
the dome having been shallow sulphur exploration 
tests that typically did not penetrate to the depth of 
the top of salt. A consequence of this relatively 
sparse but locally concentrated well coverage in 
the model shown in figure 4 is that the top of salt 
on the dome is represented as a very shallow basin 

(fig. 4). In other words, the salt penetrations 
observed in the cavern wells indicate the top of salt 
at a slightly greater depth (between roughly 20 to 
50 feet) than the elevation of the highest structural 
contour inferred in the site characterization report 
(at 1,500 ft below sea level). Whether this is an 
accurate reflection of the actual geology is 
unknown because the structure-contour map is 
interpretive, but in any event the central �depres-
sion� implied by the inferred structure contour and 
the Big Hill cavern wells is quite shallow.

The precise opposite effect is visualized in fig-
ure 5, wherein the top of salt is generated by identi-
fying the centroid of the �1500-ft structural 
contour and simply (and arbitrarily) closing the 
modeled surface to this location and at an elevation 
one-half of the last contour interval higher. In this 
case because of the coarse structure-contour inter-
val used in the site characterization report of Hart 
et al. (1981), the dome-top elevation is represented 
at 1,250 ft below sea level, in contrast to the known 
cavern intersections of the top-of-salt surface in 
roughly the same horizontal locations of some 

 to �1,600 ft. The implication is that the 
-ft dome-top elevation is purely an artifact 

of the simplified, non-geology-based modeling 
technique, and that it is preferable to use the 
approach based on actual geologic data when it is 
available (see next paragraph). Figure 6 shows the 
differences in the configuration of the top-of-salt 
surface produced by the two different techniques. 
For both cases, however, the broad geometric 
forms suggest that the top of the Big Hill dome is 
not particularly well characterized for details. 
Compare, either of figures 4 or 5 to the inferred 
more detailed configuration of the Bayou Choctaw 
dome in figure 2. 

It is important to note that the 14 SPR caverns 
at the Big Hill site were leached after publication 
of the original site characterization report of Hart 
and others (1981). Therefore, the 14 �picks� for the 
top of salt in the center of the Big Hill dome (actu-
ally, there are 28 physical wells, because each cav-
ern comprises two closely space drilled holes) that 
were used to produce the model of figure 4 were 
not available to generate the paper model of Hart 
and others. Thus, the only possible conversion of 
the Hart and others model is that represented by 
figure 5, which was generated by closing the crest 
of the dome to the centroid of the uppermost pub-

1,550–
1,250–
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Figure 4.  Four representative views of the Big Hill salt dome, as generated by the two-part, merged-sur-
face technique for the original site characterization data. (a) azimuth = 75°; (b) azimuth = 165°; (c) azi-
muth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exaggeration.



18 Big Hill Site September 2003

N

N

N

N

Figure 5.  Four representative views of the Big Hill salt dome, as generated by the one-part, closed-to-
centroid technique for the original site characterization data. (a) azimuth = 75°; (b) azimuth = 165°; (c) 
azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exaggeration.
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lished structure contour. A geologically based 
model of the dome crest (i.e., fig. 4) is possible 
only for the site-characterization update model 
based on the additional information contained in 
Magorian and Neal (1988). This is one example of 
the utility of and necessity for the short-cut algo-
rithmic approach described on page 11. 

This difference illustrated by the two different 
modeling approaches for the Big Hill dome is 
probably a generally relevant conclusion. Mea-
sured data incorporated into a model should take 
precedence over an arbitrary assumption. Excep-
tions to this rule may occur if the specific locations 
of the �measured data� on the crest of a salt dome 
are sufficiently biased spatially that numerical arti-
facts result from the �blind� application of a partic-
ular mathematical algorithm. For this reason, it is 
good practice to examine the configuration of the 
top-of-salt surface generated by both approaches 
and to judge the geological relevance of both mod-
els.

BRYAN MOUND SITE
The geometric configuration of the Bryan 

Mound salt dome is presented in figures 7 through 
10. Figures 7 and 8 represent the structural model 
contained in the original site characterization 
report (table 1: Hogan, 1980b), whereas figures 9 
and 10 capture the updated model contained in the 
site characterization update report by Neal et al. 
(table 1: 1994). There are a number of differences 
between the models, not the least of which is that 
the updated version (figs. 9 and 10) extends the 
depth extent of the salt diapir 2,000 additional feet 
to a total depth of 7,000 ft below sea level. Figures 
7 and 9 represent the merged, two-surface model-
ing approach, whereas figures 8 and 10 represent 
the simpler closure of the dome top to the centroid 
of the highest available structure contour.     

Comparison of the drill-hole-based domal top-
of-salt surfaces shown in figures 7 and 9 illustrates 
the apparent differences in domal configuration. 
Because the highest reliable structure contour 
available in the site characterization model was at 

 ft, a fairly large portion of the areal extent 

Figure 6.  Comparison of mid-crest cross sections produced by the two alternative modeling tech-
niques for the Big Hill salt dome. The blue profile is cut through the two-step, merged geologic sur-
faces model, shown completely in figure 4, and shown in the ghostly transparent shape. The red profile 
is cut at the same location through the single-step, closure-to-centroid geologic model, shown com-
pletely in figure 5. The �basinal� configuration of the model in figure 4 vs. the �domal� configuration of 
the model in figure 5 is clearly represented. The elevation shown as blue profile is always below that of 
the red profile.

1,500–
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Figure 7.  Four representative views of the Bryan Mound salt dome, as generated by the two-part, 
merged-surfaces technique for the original site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation.
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Figure 8.  Four representative views of the Bryan Mound salt dome, as generated by the one-part, 
closed-to-centroid technique for the original site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation.
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Figure 9.  Four representative views of the Bryan Mound salt dome, as generated by the two-part, 
merged-surfaces technique for the updated site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation.
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Figure 10.  Four representative views of the Bryan Mound salt dome, as generated by the one-part, 
closed-to-centroid technique for the updated site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation.
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of the dome was modeled using well control (and 
the digitized points lying along the �1500-ft con-
tour to ensure accurate matching of the two sur-
faces). For the updated model, shown in figure 9, 
the highest reliable structure contour was judged to 
be the �1200 ft contour, which is located signifi-
cantly inboard of the �1500-ft contour in the earlier 
model. Thus, essentially the only well control used 
to model the crestal portion of the dome in the 
updated site characterization model are the various 
cavern wells (plus the digitized �1200-ft contour 
points). In contrast, for the original site character-
ization model, the upper �flat� top-of-salt surface 
is much less well controlled, given that the same 
cavern-well salt elevations are available, and the 
resulting model appears much more strongly domi-
nated by the points associated with the minus-
1,500-ft structure contour.

Comparison of the two arbitrary-closure mod-
els of figures 8 and 10 reflect the obvious limita-
tion of this particular modeling technique. 
Particularly in comparison to the well-contact-
based models of figures 7 and 9, the arbitrary clo-
sure of the dome to the centroid of the last avail-
able structure contour inevitably places the highest 
point on the dome at essentially the center of the 
near-circular salt mass. This is a quite different 
configuration than that suggested by the modeling 
of the actual top-of-salt penetrations in the avail-
able wells, which suggest an irregular basinal con-
figuration in the original site characterization 
model and an ill-defined elevated region in the 
northwestern portion of the dome in the site char-
acterization update model. Again, the configura-
tion and reliability of the geologic data used to 
create the kriged top-of-salt surfaces for both the 
original and updated site characterization models 
has not been evaluated as part of this modeling 
effort. Nevertheless, the suggestion of subtle geo-
metric features � and the differences between 
those features as illustrated by figures 7 and 9 � 
indicates that updated geologic data and more 
refined future modeling may contain important 
information regarding possible differential internal 
salt movements in the Bryan Mound dome.

A comparison of the �footprint� of the Bryan 
Mound salt dome at various depths for both the 
original and updated site characterization models is 

presented in figure 11. The comparison is in the 
form of a series of level plans at elevations of 
1500, 2500, 3500, and 4500 ft below sea level. 
This is essentially the vertical zone of overlap of 
the two models. Comparisons at depths shallower 
than about 1500 ft below sea level would empha-
size only the differences in the methods used to 
generate the top of salt. In contrast, the differences 
in the horizontal positions of the near-vertical salt-
dome flanks represent the major differences 
between the original and the updated models 
(table 1: Hogan, 1980(b), Neal et al., 1994).

The differences in the salt outlines near the top 
of the dome are quite minor and represent rela-
tively small interpretive differences between the 
two site characterization reports. The fact that the 

-ft contour for the original site-character-
ization model [shown in blue in fig. 11(a)] is indi-
cated by an intermittent line reflects an artifact that 
this contour is precisely at the position of the 
merger between the two different surfaces used to 
generate the model itself. 

The differences in position of the salt dome 
flanks at the �3500 and �4500 ft levels are more 
significant � from approximately 200�500 ft [fig. 
11(c)] to as much as 1,000 ft laterally [fig. 11(d)]. 
Because we did not investigate precisely what 
additional control(s) were used to influence the 
interpretive modeling for the site characterization 
update report [the contours shown in red in figs. 
11(c) and (d)] as part of this modeling effort, it is 
not possible to make definitive statements regard-
ing the degree of confidence that can be placed in 
either model at these greater depths. A systematic 
reevaluation of the drilling control used to con-
struct the site-characterization models (and their 
updates) was not undertaken as part of this model-
conversion exercise. Clearly, however, the precise 
position of the salt-sediment interface for the 
Bryan Mound salt dome is quite uncertain at depths 
corresponding to the approximately lowermost 
extent of the oil-storage caverns. The newer site-
characterization update studies that are now being 
undertaken (in fiscal years 2003 and beyond) will 
address the type(s) (e.g., drill-hole based vs. seis-
mic) and extent of geologic control available to 
constrain the margin of the salt mass at various 
depths and horizontal positions.

1,500–
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WEST HACKBERRY SITE

Visualizations of the salt dome hosting the 
West Hackberry SPR site are presented in figures 
12 through 15. The original site characterization 
model versions (table 1: Whiting, 1980) are pre-
sented in the first two figures, numbered 12 and 13; 
figures 14 and 15 are associated with the updated 
version of Magorian et al. (table 1: 1991). The 
sequence of presentation of the modeling method-

ologies for the top of the salt dome is similar, with 
figures 12 and 14 representing the two merged sur-
faces and figures 13 and 15 representing the clo-
sure-to-centroid approach.    

A major difference between the West Hack-
berry salt dome and the domes at the other SPR 
sites is that the dome that hosts West Hackberry 
represents a much larger mass of salt. In fact, the 
east-west dimension of the West Hackberry dome 
is almost twice as large as any of the others. The 

(a)

Figure 11.  Comparison in plan view of the original (blue) and updated (red) site characterization models 
for the Bryan Mound salt dome. Elevations shown are below sea level. Note the increasing discordance 
between the two models at greater depths where there is greater uncertainty as to the precise position of 
the salt margin. View is from directly overhead.

(b)

(c)
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Figure 12.  Four representative views of the West Hackberry salt dome, as generated by the two-part, 
merged-surfaces technique using the original site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation. Note the change in horizontal dimensions from the views of the other salt domes.
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Figure 13.  Four representative views of the West Hackberry salt dome, as generated by the one-part, 
closed-to-centroid technique using the original site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation. Note the change in horizontal dimensions from the views of the other salt domes.
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Figure 14.  Four representative views of the West Hackberry salt dome, as generated by the two-part, 
merged-surfaces technique using the updated site characterization data. (a) azimuth = 75°; (b) azimuth = 
165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exagger-
ation. Note the change in horizontal dimensions from the views of the other salt domes.



September 2003 West Hackberry Site 29

(a)

N

(b)

N

(c)

N

(d)

N

Figure 15.  Four representative views of the West Hackberry salt dome, as generated by the one-part, 
closed-to-centroid technique using the updated site characterization data. (a) azimuth = 75°; (b) azimuth 
= 165°; (c) azimuth = 255°; (d) azimuth = 345°; view is from 20° above the horizontal. No vertical exag-
geration. Note the change in horizontal dimensions from the views of the other salt domes.
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West Hackberry dome is also far less circular in 
plan view, being almost twice as long as it is wide. 
The flanks of the West Hackberry dome, at least 
according to the original site characterization 
report, are much more irregular than those of any 
of the other SPR salt domes. These vertical crenu-
lations are much reduced in the updated version; 
compare figure 12 versus figure 14, for example. 
The dome also lacks salt overhangs, according to 
both the original site characterization and site char-
acterization update interpretations.

The upper, flat-lying top-of salt for this dome 
is different in detail between the models con-
structed using the merged-surfaces approach and 
the closure-to-centroid approach, as expected. 
However, the absolute differences implied in the 
elevation of the top of the salt are minimal. 

Figure 16 presents a comparison of the original 
and updated site characterization models of the 
flanks of the West Hackberry salt dome, similar to 
the comparison of figure 11 for the Bryan Mound 
site. Only selected structure contours at 1,000-ft 
depth increments are presented. However, for the 
West Hackberry site, the dome has been modeled 
during both phases (table 1) of the site character-
ization to a depth of 8000+ feet. 

In similar fashion to the Bryan Mound dome, 
the salt outlines of the two different-vintage mod-
els at the West Hackberry site are generally more 
similar at shallower depths and more divergent at 
greater depths where the intensity of drilling is 
less. However, there are two major differences 
between the two models. First, the original site 
characterization model (table 1: Whiting, 1980) 
appears to have attempted to represent a greater 
degree of complexity in the margin of the salt, 
whereas the updated site characterization model 
(table 1: Magorian et al., 1991) appears to have 
been modeled either on a much more generalized 
basis or with an overt effort to filter what may have 
been believed to be noise in the data. The overall 
shape of the updated dome, as shown in red in fig-
ure 16, exhibits a relatively smooth outline, 
whereas the original model, shown in blue, exhibits 
much more surface complexity. Second, the sharp 
eastern extension of the dome � which is, in fact, 
substantially east of the SPR facilities of primary 
interest � has been revised extensively. The more 
recent interpretation of Magorian et al. (1991), the 
extreme eastern �tip� of the West Hackberry dome 

points consistently east-northeast instead of being 
�bent� towards the southeast as in the earlier inter-
pretation. No attempt has been made during this 
model-conversion process to evaluated the well 
control and data underlying this difference. How-
ever, this difference appears to be one of the more 
potentially significant deviations between the orig-
inal site-characterization reports and the updated 
versions.

DISCUSSION OF 
VISUALIZATION TECHNOLOGY

Computer technology has changed signifi-
cantly the ability to visualize a three-dimensional 
model. Examples of such visualizations are shown 
in the figures presented in the Results section of 
this report for the four active SPR salt domes. The 
computer-based visualization technology allows 
viewing of the identical model from many different 
perspectives, as well as the extraction of only por-
tions of the model, such as the plan-view outlines 
presented, for example, in figure 16. 

However, a computer-based three dimensional 
model may be �viewed� in the same manner as a 
more classical paper-based geologic model. For 
example, consider figure 17. Part (a) of the figure 
reproduces (via a scanned image) the structure con-
tour map of the top-of-salt horizon presented in 
Magorian and others (1993, fig. 7) for the West 
Hackberry salt dome. This representation is essen-
tially �the� model of the West Hackberry dome. 
Part (b) of figure 17 is the same type of view � a 
structure contour map on the top of salt � 
extracted (visualized) by the current computer soft-
ware. Comparison of the two illustrations indicates 
that the computer model has reproduced the origi-
nal figure/model essentially as-is.

That the computer version of the structure con-
tour map for the West Hackberry SPR site is essen-
tially identical to the original paper version is not 
surprising, as the digitized structure contours from 
figure 17(a) are, in fact, the raw material from 
which the model of figure 17(b) was constructed. 
However, alternative visualization of the same 
model, such as the four different views shown in 
figure 15, more intuitively present the subtleties of 
the flanks of the West Hackberry salt dome in a 
way not possible from the straightforward structure 
contour map of the original.
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Figure 16.  Comparison in plan view of the original (blue) and updated (red) site characterization models 
for the West Hackberry salt dome. Elevations shown are below sea level. View is from directly overhead.

~2000 ft

5000 ft
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The advantages of computer-generated visual-
izations over a simple paper model are inferred to 
be more significant as the geometry involved in a 
specific model becomes more complex. The West 
Hackberry dome is a relatively simple �mound� of 
salt. However, the Bayou Choctaw salt dome (fig. 
2) exhibits a pronounced structural overhang on the 
western and northwestern margins. The precise 
spatial configuration of the Bayou Choctaw dome 
is somewhat obscure in the structure-contour visu-
alization of the dome, presented in figure 18 as a 
scanned (and reduced) replicate of the paper-report 
figure. This is regardless of whether those structure 
contours are the original paper model [fig. 18(a)] 

or generated from the computer version [fig. 
18(b)]. In contrast, the flexibility provided by the 
alternative visualizations in figure 2 clearly � and 
more intuitively � display the �real� geometric 
configuration of the overhang.

SUMMARY AND CONCLUSIONS

The existing site characterization models of the 
salt-dome margins at the four active Strategic 
Petroleum Reserve sites have been converted to 
digital format and visualized using modern com-
puter software. A new modeling algorithm has 
been developed to overcome limitations of many 

(a)

(b)

Figure 17.  Comparison of visualizations of the West Hackberry salt dome. (a) Scanned bitmap image of 
the structure contour map showing the top of salt from site-characterization update report (Magorian and 
others, 1991). (b) Identical visualization of MVS model showing structure contours.
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geological modeling software packages in order to 
deal with structurally overhanging salt margins that 
are typical of many salt domes. This algorithm, and 
the implementing computer program, make use of 
existing interpretive modeling conducted manually 
using professional geological judgement and pre-
sented in two dimensions in the site characteriza-
tion reports as structure contour maps on the top of 
salt. The algorithm makes use of concepts of finite-
element meshes of general engineering usage. 
Although the specific implementation of the algo-
rithm described in this report and the resulting out-
put files are tailored to the modeling and 
visualization software used to construct the figures 
contained herein, the algorithm itself is generic and 
other implementations and output formats are pos-
sible.

The graphical visualizations of the salt domes 
at the four SPR Sites, Bayou Choctaw (La.), Big 
Hill (Tex.), Bryan Mound (Tex.), and West Hack-
berry (La.) are believed to be major improvements 
over the previously available two dimensional rep-
resentations of the domes via conventional geo-
logic drawings (cross sections and contour maps). 
The newer computer renditions are more intuitive 

and explicit than the older paper drawings. Note 
that a sequence of level plans, such as those illus-
trated in figures 11 and 16, can be combined and 
presented on a single figure, thus essentially pro-
ducing the same type of paper structure contour 
drawing as conventionally used to display geologic 
features. Additionally, the numerical mesh files 
produced by the current modeling activity are 
available for import into and display by other soft-
ware routines. Although the mesh data are not 
explicitly tabulated in this report, an electronic ver-
sion in simple ASCII format is included on a CD-R 
(Appendix B).

The Bayou Choctaw dome is shown to be a 
generally cylindrical mass, with a slight elongation 
toward the east, and a significant structural over-
hang on the southern and western sides. Essentially 
the only differences between the original and 
updated site characterization models is the detailed 
configuration of the top-of-salt surface. The 
updated model (table 1: Neal et al., 1993) was 
developed to present a modestly complex pattern 
of small-scale faulting on the top of salt. We did 
not attempt to capture this faulted geometry.

Figure 18.  Comparison of visualizations of the Bayou Choctaw salt dome. (a) Scanned image of the struc-
ture contour map showing the top of salt from site-characterization update report (Neal and others, 1993). 
(b) Identical visualization of MVS model showing structure contours.
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The Big Hill dome, as originally modeled dur-
ing initial site characterization, is shown to be an 
irregularly cylindrical mass that is tilted strongly 
toward the south. The site-characterization update 
model (table 1: Magorian and Neal, 1988) did not 
attempt to change the overall configuration of the 
salt dome. Instead, this update report attempted to 
describe some of the internal structure of the Big 
Hill dome based on data resulting from drilling and 
leaching of the 14 SPR caverns. Because initial 
characterization of the Big Hill site was conducted 
before construction of the 14 SPR caverns pro-
vided numerous reliable stratigraphic elevations 
for the top-of-salt surface, only the closure-to-cen-
troid modeling method (fig. 5) is possible using 
strictly the original information (table 1: Hart and 
others, 1981). Construction of the merged-surface 
model (fig. 4) is only possible through incorpora-
tion of cavern-well data from the update report 
information of Magorian and Neal (1988). 

Visualizations have been produced for both the 
original site characterization model and an updated 
version of the Bryan Mound salt dome. The models 
are generally similar in representing an essentially 
upright, irregularly circular, cylindrical mass of 
salt. Potentially significant differences in the 
geometry and lateral position of the salt margins at 
depth exist between the two versions, and it is 
apparent that considerable variation in our under-
standing of the precise position of the salt-sediment 
interface exists at present. The lateral positions of 
the salt-sediment interface may vary by distances 
of up to approximately 1000 ft for the deepest 
(modeled) portions of the salt mass.

Two different versions of the West Hackberry 
salt dome were also modeled and visualized. The 
West Hackberry dome is shown to be a quite ellip-
tical body, elongated east-northeast to west-south-
west. There are numerous differences in the details 
of the salt flanks between the original site charac-
terization report and the updated model. Some of 
these differences may be of potential significance 
to the SPR program, whereas others involve por-
tions of the salt dome far removed from the West 
Hackberry SPR facilities.

A full-scale remodeling of the Strategic Petro-
leum Reserve salt domes has not been performed 
as part of this algorithm-development and model-
conversion activity. Neither has an evaluation of 
the data and interpretations contained in the origi-

nal vs. updated site characterization reports (table 
1) been attempted. The converted models, particu-
larly those that rely on geologically based top-of-
salt surface to represent the crest of the salt domes, 
are suggestive that potentially meaningful geologic 
information regarding internal salt movements may 
exist and might be usefully extracted by yet-
another characterization update. 

For some sites (e.g., Big Hill; see Rautman, 
2001), it is known that significant new geologic 
data (specifically three dimensional seismic data) 
have been obtained since completion of the first 
site characterization update report (Magorian and 
Neal, 1988). Other geologic data � seismic, drill 
hole, and other � may have become available both 
at Big Hill and for the other SPR salt domes. 
Therefore, this report, and particularly the model-
ing algorithm and approaches described herein, 
should be considered as part of a future planned 
program of updated site characterization.
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INTRODUCTION

This appendix contains a listing of the Fortran program, ctr2evs, that was written to read digitized 
contours and to convert them into a two-dimensional mesh suitable for input into Mining Visualization 
System (or any of the other C-Tech Development Corporation�s) geologic modeling and visualization soft-
ware packages. The program is written using generally Fortran-90 conventions and using structured pro-
gramming techniques. The program has been successfully compiled and executed using Microsoft 
Corporation�s �Fortran Powerstation 4.0�� running under Microsoft�s Windows 2000� operating sys-
tem. The original ASCII text source code is included on the CD-R that is part of this report.

The program consists of a main program segment that reads the digitized data and performs most of 
the operations necessary to produce the output mesh file, including computation of the initial ray-intersec-
tions for resampling the digital contours. The program uses Fortran-90 dynamic array allocation proce-
dures; array specifications are contained in a separate module file and storage is allocated at runtime to 
meet the requirements of the data. The actual array allocation, as well as computation of a number of fre-
quently used customized function calls are contained in a separate functions file. A major subroutine, 
named trace, deals with multiple ray intersections for the same angular increment, and it literally 
�traces� the various line segments involved for all contours and distributes the required number of points 
equally along that trace. 

Note that although care has been taken to ensure proper formatting of the Fortran source code that fol-
lows, it is possible that the conversion of the original ASCII text to a word-processing format may have 
resulted in the loss of original tabs or word-wrapping of lines longer than the width of this page. Such non-
allowable Fortran occurrences will cause compile errors if the following source code is simply copied and 
pasted into a Fortran-type editor and compiled. First, there is no need for such a procedure to use this com-
puter program as the original Fortran source files are included in digital form on the included CD-ROM. 
Second, any such errors should be quite evident to an experienced Fortran programmer and correctable 
quite easily.
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FORTRAN MAIN PROGRAM LISTING

program ctr2evs
!program to create a �UCD� format file of a �surface� enclosing a set of contour lines
!  contours must be closed, as for a salt dome; written for SPR purposes.
!  produces EVS quadrilateral elements with equal numbers of points around 
!  the circumference.

!written by Chris Rautman, SNL 6113                            13 May 2001
!  modified to deal with re-entrant contours                   15 June 2001
!  note: there is still some sort of bug that causes array deallocation
!  failures for certain angular increments; Fortran is not trapping errors
!  as advertised and the source of this error is unknown --    15 June 2001
!  major modifications by Chris Rautman, SNL 6113              22 November 2001
!    subroutine trace rewritten to deal with �cross-over� situations where
!    there are multiple intersections (re-entrant contours) at the ray-angle
!    equal 360 degrees/ray number 1 boundary
!    also mods to main program to restructure contour line-segment array to
!    number all line segments from x-axis through center of contour
!    (may have corrected problem of 15 June 2001)
!  modified by CAR to provide for output of absolute or        10 December 2001
!     relative coordinates; relative coords are centered at 
!     (0,0) of overall bounding box for all contours.
!  modified by CAR to provide automatic closure to center of   26 April 2002
!     uppermost contour at elevation 1/2 above last two contours
!     fixed bust in writing elements for the �not closed� case  9 May 2002

!******************************************************************************
!                       Input Variables
!fname      filename with digitized contour data in (x,y,z) triplets
!v2         contour z-value read from file for counting number of contours.
!vr()       contour points (x,y,z) triplets as read from file: fname
!x(),y(),z()   assigned coordinate values of contour points
!incr       angular increment on which to compute rays
!ans        character answer to input question(s)
!dbg        debugging flag; must be set via data statement at compile time

!                       Output Variables
!px(),py()     points of intersections of rays from center of contour with perimeter
!z()        elevation of nodal coordinates
!nodes      number of intersection points; nodes for EVS
!elem       number of quadrilateral elements defined by the nodes, for EVS

!                       Internal Variables
!fname2     synthesized filenames for debugging files
!v1         comparison variable for counting number of contours contained in file
!nj         number of contours identified from input
!ni         count of number of contour points in each contour polyline
!nimax      maximum number of points across all contour polylines, used to 
!            allocate arrays; also redefined to count number of records for EVS
!dist       distance from last point on a contour to the first point; used
!            to determine existence of a closed contour polyline
!sumd       sum of distances around contour; used to estimate closed or open contour
!nmiss      number of non-closed contours omitted from calculations
!n(j)       number of contour points for contour j
!nn         placeholder for n(j) in call to subroutine trace to prevent resetting
!npts()     number of points to be inserted by subroutine trace for each ray
!cx(),cy()  center points of closed contours, from which rays radiate
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!minx,miny  values of the bounding box for the closed contour, from
!maxx,maxy   which cx() and cy() are calculated
!bbminx,bbminy    values of the bounding box for the entire structure; similar
!bbmaxx,bbmaxx     to minx,maxx, etc.
!maxj1,maxj2   indices of the highest and second-highest contours (z-values)
!segno()    number associated with each line segment (currently not used)
!seg0       line segment number for positive x-axis intercept, used to 
!            determine sense of line numbering for ccw() 
!b_ray,e_ray   starting and stopping line segment numbers in call to trace
!ni()       number of intersections for a particular ray, k, for contour j
!nintsect() number of intersection points for a contour, j
!nk         number of angular rays to use; computed from incr
!factor     used in computing EVS node indices
!m1, m2     slopes of the ray and line segment, used to calculate intersection
!d()        distances from ends of line segment to px,py, and total line segment
!Ix,Iy      points of intersection before being identified as within line segment
!presvrX()     set equal to Ix, Iy, Seg0 for the very first ray intersection;
!presrvY()      used to restore a starting intersection in subroutine trace for cases
!presrvSeg()    in which px,py are undefined because of multiple intersections on ray 1
!temp       used to store a temporary value of Iy prior to final assignment
!indx()     index of final intersections points, px(),py(), accounting for 
!            multiple intersections [nintsect()]
!maxnodes   maximum number of intersection points; first of any contour, reset
!            later to be across all contours for writing UCD file
!tempx(),tempy()  temporary arrays used to resort line segments for ccw ordering
!zprime()   temporary array to resort contour depths in descending order
!i,j,k,jj,m index variables: i-line segments,j-contours,k-rays; also generic
!iperm()    array of indices for sorted array, z(); original order
!ierr       return error value from various Fortran calls
!flag       generic logical indicator
!ccw(j)     logical indicator of line-segment numbering counter-clockwise 
!closed()   logical indicator of closed contours
!probray()  logical indicator for a ray with multiple intersections
!epsilon    �small� value for comparison of values for match
                        
!                       External Routines 
!dsvrgp()   sorts a double precision real vector and returns the permutation 
!             vector (IMSL)
!cosd       cosine function in degrees (intrinsic)
!dtand      double-precision tangent (intrinsic)
!Dpy        double-precision pythagorean function (custom)
!angle      double-precision 360-degree angle determination from slope (custom)
!define_arrays    module to allow run-time allocation of certain arrays, specifically
!                  x(),y(),z(),px(),py(),segno(),presvrX,presrvY,presrvSeg;  (custom)

!******************************************************************************
use msimsl
use msflib
use define_arrays
implicit none
logical flag,dbg,test
logical,allocatable::closed(:),probray(:),ccw(:)
character fname*40,ans*1,fname2*40
integer i,j,k,jj,nj,nk,nimax,maxnodes,nn,ierr,seg0,maxj1,maxj2
integer nmiss,nodes,elem,factor,b_ray,e_ray
integer,allocatable::n(:),ni(:,:),nintsect(:),iperm(:),npts(:)
real*4 incr,ang,minx,miny,maxx,maxy,bbminx,bbmaxx,bbminy,bbmaxy,sumd
real*8 vr(4),v1,v2,epsilon,m1,m2,dist,d(5),Ix,Iy,temp,Dpy
real*8,allocatable::cx(:),cy(:),tempx(:),tempy(:),zprime(:)



42 Appendix A: Fortran Program ctr2evs September 2003

                                   
data epsilon /1e-6/ , dbg /.false./
data bbminx,bbminy,bbmaxx,bbmaxy /1.0e21,1.0e21,-1.0e21,-1.0e21/

!******************************************************************************
!get file name and open files; user input            
flag = .false.
do while( .not. flag )
   write(*,�(//,a,\)�)� Enter name of the file with the contour data: �
   read(*,�(a)�) fname
   inquire(file=fname,exist=flag)
end do
write(*,*)
write(*,�(a,\)�)� Enter the angular increment to use, in degrees: �
read(*,*) incr

open(2,file=fname,action=�read�)
open(21,file=�documentation.txt�)
if(dbg) open(35,file=�temp.dat�)
!open(45,file=�ChemDataFormat.csv�)

!------------------------------------------------------------------------------
!start documentation file for debugging purposes if needed
write(21,�(2a,/)�)� Opening contour data file: �,fname
write(21,�(a,f6.3,a,/)�)� Angular increment is:�,incr,� degrees�
if( mod( 360.0,incr ) .ne. 0 ) then
   write( *,�(a)�)� Warning: angular increment does not give even number of rays�
   write(21,�(a)�)� Warning: angular increment does not give even number of rays� 
end if
nk = int(360.0/incr)
write( *,�(a,i4,a,/)�)� Computations will be performed with�,nk,� rays�
write(21,�(a,i4,a,/)�)� Computations will be performed with�,nk,� rays�

!******************************************************************************
!determine number of contour levels and maximum storage required
v1=0.0
nj=0
nimax=0
write(21,�(a)�)� Contours in original input-file sequence:�
do while( .not. eof(2) )               
   read(2,*) (v2,k=1,3)
   !write(*,�(2f8.1)�) v1,v2
   if( v2 .ne. v1 ) then
      nj = nj+1
      v1 = v2
      i = 1
      write(21,�(i3,f10.1)�) nj,v2
   else
      i = i + 1
      nimax = max(nimax,i)
   end if
end do
rewind(2)
v1=0.0
write( *,�(2(a,i5),/)�)� No. of contours = �,nj,�; Maximum number of points = �,nimax
write(21,�(2(a,i5),/)�)� No. of contours = �,nj,�; Maximum number of points = �,nimax
write(21,*)

!------------------------------------------------------------------------------
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!note use of �nimax+1� in array allocation to allow for closing of contours by 
!  program; allocation of certain  arrays performed in subroutine: allocate_arrays
allocate( probray(nk),closed(nj+1), stat=ierr )
if( ierr .ne. 0 ) stop �Array allocation error 1�
allocate( iperm(nj+1),nintsect(nk),ni(nk,nj+1),npts(nk), stat=ierr )
if( ierr .ne. 0 ) stop �Array allocation error 2�
allocate( cx(nj+1+1),cy(nj+1+1),n(nj+1),ccw(nj+1), stat=ierr)
call allocate_arrays(nimax,nj+1,nk)
if( ierr .ne. 0 ) stop �Array allocation error 2�
x = -999.0;y = -999.0;z = -999.0

!------------------------------------------------------------------------------
!read and store all the data for each contour, j
write(21,�(a)�)� Checking for duplicate records....�
v1=0.0               
nimax = 0            !nimax used here to count total number of records for MVS file
flag = .false.
do j=0,nj                                 
   v2=0.0
   do while( .not. eof(2) )
      read(2,*) (vr(k),k=1,3)
      !write(*,*)(vr(k),k=1,3)
      if( vr(3) .ne. v1 ) then            !first record for a new contour
         backspace(2)
         v1 = vr(3)
         flag = .true.
         exit                             !this step increments j
      else if( flag .eqv. .true. ) then   !read the first record for a contour
         i=1   
         x(i,j) = vr(1)                   !store data for first record of this contour
         y(i,j) = vr(2)
         z(j)   = vr(3)
         !nimax = nimax + 1
         write(21,�(a,i3,a,f10.1)�)� Contour�,j,� elevation:�,z(j)
         flag = .false.
      else                             !read all remaining records; delete exact dupli-
cates
         if( vr(3) .ne. v1 ) exit      !identify new contour
         if( vr(1) .eq. x(i,j) .and. vr(2) .eq. y(i,j) ) then
            write(21,�(5x,a,i3,2i5,a)�) � Duplicate records, contour�,j,i,i+1,&
             �;  deleting the second ...�
            v2 = v2 + 1                !keep count of deleted records      
            cycle
         end if
         i=i+1                         !store all remaining records for this contour
         x(i,j) = vr(1)                
         y(i,j) = vr(2)
         if( z(j) .ne. vr(3) ) then
            write(*,�(4i5,6f10.1)�) j,i,nimax,nimax+int(v2),x(i,j),y(i,j),z(j),&
             vr(1),vr(2),vr(3)
            stop �>>> Irresolvable problem with depth values�
         end if
         v1 = vr(3)
         segno(i,j) = i
         n(j) = i
         nimax = nimax + 1             !nimax used here to count records for MVS file
      end if
   end do
   if( j .gt. 0 ) then
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      write(21,�(2(a,i3,a,i5,/))�) � Original number of nodes in contour�,j,�:�,&
       n(j)+nint(v2),�   Number of unique nodes in contour�,j,�:�,n(j)
   end if
end do
close(2)             !close input file

!summarize input information
if(dbg) open(41,file=�points.dat�)
write(21,�(/,a,/,a)�) � Number of unique points per contour:�,� Contour  Elevation 
Npts�
do j=1,nj
   write(21,�(i6,f8.1,i6)�) j,z(j),n(j)
   if(dbg) write(41,�(a,i4,f8.1,i5)�) � Contour�,j,z(j),n(j)
   if(dbg) then 
      do i=1,n(j)
         write(41,�(i5,3f12.2)�) i,x(i,j),y(i,j),z(j)
      end do
   end if
end do
write(21,*)
close(41)

!------------------------------------------------------------------------------
!check for relict duplicate points along contour
!write( *,�(a,/)�)� Checking for remaining near-identical points�
write(21,�(a)�)  � Checking for remaining near-identical points�
flag = .false.
do j=1,nj
   do i=1,n(j)-1
      if( abs(x(i,j)-x(i+1,j)) .lt. epsilon) then
         write(21,�(a,i3,a,2i5,a)�) � j=�,j,�   i=�,i,i+1,�  X-coordinates are identi-
cal�
         write(21,�(t10,2f12.4)�) x(i,j),x(i+1,j)
         flag = .true.
      end if
      if( abs(y(i,j)-y(i+1,j)) .lt. epsilon) then
         write(21,�(a,i3,a,2i5,a)�) � j=�,j,�   i=�,i,i+1,�  Y-coordinates are identi-
cal�
         write(21,�(t10,2f12.4)�) y(i,j),y(i+1,j)
         flag = .true.
      end if
   end do
end do
if( flag .eqv. .true. ) then
   write(*,�(/,a,/,a,//)�)� Duplicate points have been found; cannot continue.�, &
   �   Check file: documentation.text for errors�
   write(21,�(/,a,//)�)� Near-duplicate points have been found; cannot continue.�
   stop
end if               
write( *,�(a,/)�) � Checking duplicate points: Done�
write(21,�(a,/)�) � Checking duplicate points: Done�

!------------------------------------------------------------------------------
!check for closed contours
!note that this makes the first and last points in a contour identical <<<<<
write( *,�(/,a)�)  � Checking for closed contours...�
write(21,�(/,a,/)�)� Checking for closed contours; last distance should be zero�
nmiss = 0            !nmiss is the number of non-closed contours
do j=1,nj
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   closed(j) = .true.
   !if the distance between first and last points = 0, contour is already closed
   dist = Dpy( x(1,j),y(1,j),x(n(j),j),y(n(j),j) )
   write( *,�(a,i3,f12.1a,f12.2)�) � For contour�,j,z(j),�, the last distance =�,dist
   write(21,�(a,i3,f12.1a,f12.2)�) � For contour�,j,z(j),�, the last distance =�,dist
   if( dist .ne. 0.0 ) closed(j) = .false.
   if( closed(j) ) then
      write(21,�(a,/)�) �     assuming contour is closed and continuing...�
   else
      !if last distance <> 0, find out if user wants to consider the contour closed
      ! but just lacking a duplicate last point, based on similarity of last distance
      ! to the average or �typical� segment-length distance
      sumd = 0.0
      do i=1,n(j)-1
         dist = Dpy( x(i,j),y(i,j),x(i+1,j),y(i+1,j) )
         sumd = sumd + dist
      end do
      dist = sumd/float(n(j))
      write( *,�(a,f8.2)�)�     The average segment length is =�,dist
      write(21,�(a,f8.2)�)�     The average segment length is =�,dist
      write(*,�(a,\)�)�        Assume that this contour is closed? (y/n): �
      read(*,�(a)�) ans
      if( ans .eq. �y� .or. ans .eq. �Y� ) then
         write( *,�(a,i3,a,/)�)�     ... closing contour�,j,� ...�         
         write(21,�(a,i3,a,/)�)�     ... closing contour�,j,� ...� 
         !add a �final� point equal to the first point and increment n(j) for consis-
tency                
         n(j) = n(j) + 1
         x(n(j),j) = x(1,j)
         y(n(j),j) = y(1,j)
         closed(j) = .true.
      else
         !leave line as NOT closed and write all line-segment data for debugging
         nmiss = nmiss + 1
         do i=1,n(j)-1
            dist = Dpy( x(i,j),y(i,j),x(i+1,j),y(i+1,j) )            
            if(dbg) write(21,�(a,i5,a,f8.2,a,3(f10.1,a))�) � Distance�,i,� =�,dist,&
             �:   �,x(i,j),�,�,y(i,j),�,�,z(j)
         end do
         write(21,�(a,i3,f10.1,a,/)�)� Contour:�,j,z(j),� not closed; omitting�
         write( *,�(a,i3,f10.1,a,/)�)� Contour:�,j,z(j),� not closed; omitting�
         write(21,*)
      end if
   end if
end do
write(*,�(a,/)�)�    Checking closed contours: Done�
      
!------------------------------------------------------------------------------
!set up a file for MVS Map_Spheres without duplicate points
open(43,file=�UniqueContourPts.csv�)
write(43,�(2a)�)�#Unique contour data points from file: �,fname 
write(43,�(a)�)� 1�
write(43,�(i6,a)�) nimax,�,1�       !number of records and variables for MVS
fname2=�                                  �
do j=1,nj
   if( dbg ) then          !only if seriously debugging  
      !also write individual contour files with synthetic names for debugging
      !if( closed(j) .eqv. .false. ) cycle
      i=len_trim(fname)
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      write(fname2(1:i-3),�(a)�) fname(1:i-3)
      write(fname2(i-2:i+2),�(i5.5)�) -nint(z(j))
      write(fname2(i+3:i+6),�(a)�) �.dat�
      !write(*,�(a,i3,2a)�) � writing debugging file for contour�,j,�: �,fname2
      open(33,file=fname2,status=�unknown�)
      do i=1,n(j)-1           !omit the duplicate of the starting point
         write(33,�(3(f15.3,a))�) x(i,j),�,�,y(i,j),�,�,z(j)
      end do
      close(33)
   end if   
   do i=1,n(j)-1           !omit the duplicate of the starting point
      write(43,�(4(f15.3,a))�) x(i,j),�,�,y(i,j),�,�,z(j),�,�,z(j)
   end do
end do
test=commitqq(43)
close(43)
write(21,�(a,/)�)� Have successfully written EVS Map_Spheres file: UniqueCon-
tourPts.csv�
write( *,�(a,/)�)� Have successfully written EVS Map_Spheres file: UniqueCon-
tourPts.csv�
write(*,*)
test=commitqq(21)

!------------------------------------------------------------------------------
!find approximate center points for radial computations
! bounding-box x- and y-values initialized using a data statement
write( *,�(a)�)� Finding approximate centers of each valid contour...�
write(21,�(a)�)� Finding approximate centers of each valid contour...�
do j=1,nj
   if( closed(j) .eqv. .false. ) cycle 
   !find max and min x- and y-values
   maxx = -1e+21
   maxy = -1e+21
   minx =  1e+21
   miny =  1e+21
   do i=1,n(j)
      maxx = max( maxx,x(i,j) )
      maxy = max( maxy,y(i,j) )
      minx = min( minx,x(i,j) )
      miny = min( miny,y(i,j) )
   end do
   cx(j) = minx + (maxx - minx)/2.0    !approximate center as midpoint
   cy(j) = miny + (maxy - miny)/2.0
   !write( *,�(a,i3,a,2f10.1)�)� Center of contour�,j,�:�,cx(j),cy(j)
   write(21,�(a,i3,a,2f10.1)�)� Center of contour�,j,�:�,cx(j),cy(j)
   write(21,�(a,2f10.1,5x,2f10.1)�)� Bounding box: �,minx,miny,maxx,maxy

   !determine sense of line-segment numbering (cw vs. ccw)
   m2 = 0.0                            !for angle = 0 (positive x-axis)
   do i=1,n(j)-1                       !iterate over all line segments of this contour
      if( x(i,j) .gt. cx(j) ) then     !work only with x-values to right of center
         !compute the slopes of the line segments, m1
         m1 = ( y(i+1,j) - y(i,j) )/( x(i+1,j) - x(i,j) )
         if( abs(m1 - m2) .lt. epsilon ) cycle
         !compute the point of intersection
         Ix = ( y(i,j)-m1*x(i,j)+m2*cx(j)-cy(j) ) / (m2-m1)
         Iy = y(i,j) + m1*Ix - m1*x(i,j)
         !determine if intersection point falls between line segment ends
         ! if intersection is within this line segment, d(1) + d(2) = d(3) +/- epsilon
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         d(1) = Dpy( x(i,j),y(i,j),Ix,Iy )
         d(2) = Dpy( x(i+1,j),y(i+1,j),Ix,Iy )
         d(3) = Dpy( x(i,j),y(i,j),x(i+1,j),y(i+1,j) )
         !THIS is the critical test for intersection
         if( (d(1) + d(2) .le. d(3) + epsilon) .and. (d(1) + d(2) .ge. d(3) - epsilon) 
) then
            if( y(i+1,j) - y(i,j) .gt. 0 ) ccw(j) = .true.
            if(dbg) write( *,�(a,i3,a,l1)�)� Contour�,j,� runs counter-clockwise: 
�,ccw(j)
            write(21,�(a,i3,a,l1,/)�)� Contour�,j,� runs counter-clockwise: �,ccw(j)
            !seg0(j) = i                  !preserve the x-axis intercept segment no.
            exit
         end if
      end if
   end do

   !find the overall center of the bounding box for all contours
   bbmaxx = max( bbmaxx,maxx )
   bbmaxy = max( bbmaxy,maxy )
   bbminx = min( bbminx,minx )
   bbminy = min( bbminy,miny )
end do

!------------------------------------------------------------------------------
!need to invert line segment order for clockwise contours
do j=1,nj
   if( closed(j) .eqv. .false. ) cycle
   if( ccw(j) .eqv. .true. ) cycle
   write(21,�(a,i3,a)�)� inverting x- and y-values for contour�,j,�;  now ccw�
   allocate( tempx(n(j)),tempy(n(j)) )
   do i=1,n(j)
   !write(*,�(3i5)�) n(j),i,n(j)-i+1
      tempx(n(j)-i+1) = x(i,j)
      tempy(n(j)-i+1) = y(i,j)
   end do
   do i=1,n(j)
      x(i,j) = tempx(i)
      y(i,j) = tempy(i)
   end do
   deallocate( tempx,tempy)
   test=commitqq(21)
end do
write(21,*)

!------------------------------------------------------------------------------
!write( *,�(/,a,2(2f10.1,3x))�)� Overall bounding box is:�,bbminx,bbminy,bbmaxx,bbmaxy
write(21,�(/,a,2(2f10.1,3x))�)� Overall bounding box is:�,bbminx,bbminy,bbmaxx,bbmaxy
!note use of index �nj+1� to store bounding-box center                   
cx(nj+1) = bbminx + (bbmaxx - bbminx)/2.0
cy(nj+1) = bbminy + (bbmaxy - bbminy)/2.0
!increase bounding box by 20 percent for chem-data-type calculations along rays
bbminx = bbminx - (bbmaxx - bbminx)*0.20
bbmaxx = bbmaxx + (bbmaxx - bbminx)*0.20
bbminy = bbminy - (bbmaxx - bbminx)*0.20
bbmaxy = bbmaxy + (bbmaxx - bbminx)*0.20
if(dbg) write( *,�(/,6x,a,2f10.1)�)� Overall center is:�,cx(nj+1),cy(nj+1)
if(dbg) write( *,*)
write(21,�(/,6x,a,2f10.1)�)� Overall center is:�,cx(nj+1),cy(nj+1)
write(21,*)
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test=commitqq(21) 

!------------------------------------------------------------------------------
!this code reorganizes the x and y arrays so that x(1),y(1) is at end of x-axis
write( *,�(a)�)� Restructuring contour line segments ...�
if(dbg) open(55,file=�newarray.dat�)
do j=1,nj
   if( closed(j) .eqv. .false. ) cycle
   if(dbg) write(55,�(a,i3,a,f8.1a,i5)�)� working on contour�,j,� elevation:�, &
    z(j),� # points:�,n(j)
   allocate( tempx(n(j)+10),tempy(n(j)+10) )
   tempx = -999.; tempy=-999.
   !find +X-axis intercept
   do i=1,n(j)
      if( x(i,j) .lt. cx(j) ) cycle       !work only to +X side of center
      if( (y(i,j) .le. cy(j)) .and. (y(i+1,j) .ge. cy(j)) ) then
         seg0 = i
         exit
      end if
   end do
   k = 0
   write(21,�(a,i3,a,i5)�)� Restructuring contour�,j,� starting at segment�,seg0
   write(*,*)�Segment Zero =�,seg0, �  contour�,j,�  n(j)=�,n(j)

   do i=seg0,n(j)-1
      k = k + 1
      tempx(k) = x(i,j)
      tempy(k) = y(i,j)
      if(dbg) write(55,�(2(i5,2f12.2))�) i,x(i,j),y(i,j),k,tempx(k),tempy(k)
   end do
   do i=1,seg0-1
      k = k + 1
      tempx(k) = x(i,j)
      tempy(k) = y(i,j)
      if(dbg) write(55,�(2(i5,2f12.2))�) i,x(i,j),y(i,j),k,tempx(k),tempy(k)
   end do
   !now refill the original arrays
   do i=1,n(j)
      x(i,j) = tempx(i)
      y(i,j) = tempy(i)
      !write(*,�(2(i5,2f12.2))�) i,x(i,j),y(i,j),k,tempx(k),tempy(k)
   end do
   x(n(j),j) = x(1,j)
   y(n(j),j) = y(1,j)
   !write(55,�(3f12.2,a)�) x(i,j),y(i,j),z(j),� end of data�

   !do i=1,n(j)
   !  write(55,�(3f12.2)�) x(i,j),y(i,j),z(j)
   !end do
   deallocate( tempx,tempy )
   if(dbg) test = commitqq(55)
end do
if(dbg) close(55)
write(21,�(a,/)�)�     done renumbering contours from the east�
test=commitqq(21)
  
write(*,*)
pause �   >>>  Data input complete; press <Enter> to continue�
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!******************************************************************************
!compute and assign the intersection points for rays with line segments

maxnodes = 0                  !maxnodes is the total (maximum) number of nodes required
                              ! for equalization of numbers across all contours
!initialize probray() array   !all rays are OK initially
do k=1,nk
   probray = .false.
end do                                             
do j=1,nj                     !iterate over all contour levels
nintsect(j) = 0                              
if( closed(j) .eqv. .false. ) cycle    !skip non-closed contours �
if( dbg ) then                !only if seriously debugging
   fname2=�RayIntersects.dat                    �
   i=len_trim(fname2)
   write(fname2(i-2:i+2),�(i5.5)�) -nint(z(j))
   write(fname2(i+3:i+6),�(a)�) �.dat�
   write( *,�(/,a,i3,2a)�) � writing ray-intersection file for contour�,j,�: �,fname2
   write(21,�(/,a,i3,2a)�) � writing ray-intersection file for contour�,j,�: �,fname2
   open(33,file=fname2,status=�unknown�)
end if
do k=1,nk                        !iterate over all angles
   !compute angle and slope of the radial line, m2
   ang = float(k)*incr  
   if( ang .eq. 90.0 .or. ang .eq. 270.0 ) then
      flag = .true.
      !write(*,�(i3,a,i4,a,f10.5,a,\)�) j,� angle** =�, k,�  m2 =�,ang, �  no slope�
   else
      flag = .false.
      m2 = dtand(dfloat(ang))
      !write(*,�(i3,a,i4,a,2f10.5,/)�) j,� angle   =�, k,�  m2 =�,ang, m2
   end if

   ni(k,j)=0                           !ni(k,j) is number of intersections for this ray
   do i=1,n(j)-1                       !iterate over all line segments of this contour
      !compute the slopes of the contour-line segments, m1
      m1 = ( y(i+1,j) - y(i,j) )/( x(i+1,j) - x(i,j) )
      if( abs(m1 - m2) .lt. epsilon ) then
         !lines are parallel; no intersection
         write(21,�(a,i4,f10.5)�) � line segment delta slope:�, i,  m2-m1
         write(*,�(a,i5,a,2f10.5)�) � line segment: �,i,� -- lines are parallel�,m1,m2
         pause
         Ix = cx(j)              !if parallel, set intersection to center
         Iy = cy(j)
      else
         !compute the point of intersection; use of cosine keeps track of quadrant
         if( flag .eqv. .false. ) then
            Ix = ( y(i,j)-m1*x(i,j)+m2*cx(j)-cy(j) ) / (m2-m1)
            if( Ix .ge. cx(j) .and. cosd(ang) .ge. 0.0 ) then
               Iy = y(i,j) + m1*Ix - m1*x(i,j)
            else if( Ix .le. cx(j) .and. cosd(ang) .le. 0.0 ) then
               Iy = y(i,j) + m1*Ix - m1*x(i,j)
            else
               cycle    
            end if
         else                    !ang=90 or 270 where tan(ang) undefined
            Ix = cx(j)
            Iy = y(i,j) + m1*Ix - m1*x(i,j)
            if( ang .eq. 90.0 .and. Iy .le. cy(j) ) then
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               temp = Iy
               cycle
            else if( ang .eq. 270.0 .and. Iy .ge. cy(j) ) then
               Iy = temp
            end if
         end if
      end if
      !determine if intersection point falls between line segment ends
      ! if intersection is within this line segment, d(1) + d(2) = d(3) +/- epsilon
      d(1) = Dpy( x(i,j),y(i,j),Ix,Iy )
      d(2) = Dpy( x(i+1,j),y(i+1,j),Ix,Iy )
      d(3) = Dpy( x(i,j),y(i,j),x(i+1,j),y(i+1,j) )

      !THIS is the critical test for intersection
      if( d(1) + d(2) .le. d(3) + epsilon .and. d(1) + d(2) .ge. d(3) - epsilon ) then  
         !Ix,Iy is a true intersection of the ray and the line segment
         !now ASSIGN the intersection location for storage
         px(k,j) = Ix                  !preserve the nodal locations
         py(k,j) = Iy
         segno(k,j) = i                !track line segment associated with intersection
         ni(k,j)=ni(k,j)+1             !count the number of intersections for this ray
         nintsect(j) = nintsect(j) + 1 !count the total number of intersections
         if( (k .eq. 1) .and. (ni(k,j) .eq. 1) ) then
            !preserve very first intersection in case of problems later
            presrvX(j) = Ix
            presrvY(j) = Iy
            presrvSeg(j) = i
            write(21,�(a,2f12.1,2(a,i4))�)� Preserving first intercept: (�,&
             presrvX(j),presrvY(j),�)�,presrvSeg(j),�  contour�,j
         end if
         if( ni(k,j) .gt. 2 ) then
            write(21,�(a,f8.1,a,f5.0,2(a,i4))�)�    >>> contour�,z(j),� angle�,ang, &
             � ray�,k,� has multiple intersections:�,ni(k,j)
            write(*,�(a,f8.1,a,f5.0,a,i3)�)� contour�,z(j),� angle�,ang, &
             � has multiple intersections:�,ni(k,j)
            probray(k) = .true.
            px(k,j) = -999.               !replace intersection with dummy coordinates 
            py(k,j) = -999.
            segno(k,j) = -9
         end if         
         maxnodes = max( maxnodes,nintsect(j) )!nkement count of maximum number of nodes
         if( y(i+1,j) - y(i,j) .gt. 0 ) ccw(j) = .true.
         !write list of rays and intersections for debugging
         if(dbg) write(35,�(2f10.1,f5.0,i5,f8.0,i5,l1,4i5,2f10.1)�) Ix,Iy,ang, &
           j,z(j),k,probray(k),indx(j),i,ni(k,j),segno(indx(j),j),x(i,j),y(i,j)
         !write files with intersection points for debugging using Sigma Plot
         if( dbg ) then       !serious debugging output
            write(33,�(2f12.1)�) cx(j),cy(j)
            write(33,�(2f12.1,i5,f8.0)�) Ix,Iy,k,z(j)
            write(33,*)
         end if
      end if
   end do
end do
write(21,�(a,f8.1,a,i5)�)� Contour�,z(j),�,  total no. of intersections:�,nintsect(j)
write( *,�(a,f8.1,a,i5)�)� Contour�,z(j),�,  total no. of intersections:�,nintsect(j)
close(33)
end do
write(*,*)
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flag=commitqq(21)
flag=commitqq(35)

write(21,�(/,a)�)� Preserved first segment numbers and intersection points�
write(21,�(a)�)� Contour Segment   X        Y�
do j=1,nj
   if( closed(j) .eqv. .false. ) cycle
   write(21,�(2i5,2f12.1)�) j,presrvSeg(j),presrvX(j),presrvY(j)
end do
write(21,*)

!------------------------------------------------------------------------------
!list sense of structure for each contour
!do j=1,nj
!  if( closed(j) .eqv. .false. ) cycle
!  write( *,�(a,i3,a,l1)�)� Contour�,j,� runs counter-clockwise: �,ccw(j)
!  write(21,�(a,i3,a,l1)�)� Contour�,j,� runs counter-clockwise: �,ccw(j)
!end do
!write(*,*)

!------------------------------------------------------------------------------
!determine the number of evs nodes to insert for each angular increment (if any)
do k=1,nk                  !initialize
   npts(k)=0
end do
maxnodes = 0
i=0
do k=1,nk                  !count needed nodes
   if( probray(k) .eqv. .true. ) i = i + 1
   do j=1,nj
      if(closed(j) .eqv. .false. ) cycle
      npts(k) = max( npts(k),ni(k,j) )
   end do
   maxnodes = maxnodes + npts(k)
end do
write( *,�(/,a,i5,/)�)� Number of required points per contour:�,maxnodes
write(21,�(/,a,i5,/)�)� Number of required points per contour:�,maxnodes

!------------------------------------------------------------------------------
!write a temporary file with the identified intersection points for debugging only
if( dbg ) then                   !serious debugging only
   open(42,file=�nodes.dat�)
   write(42,�(a)�)�k  Intersection_pX   Intersection_pY  Contour_Z   segno  ProbRay   
npts�
   do j=1,nj
      if( closed(j) .eqv. .false. ) cycle    !skip non-closed contours
      do k=1,nk
         write(42,�(i4,3f15.3,i5,5x,l1,i3)�) k,px(k,j),py(k,j),z(j),&
          segno(k,j),probray(k),npts(k)
      end do
      write(42,�(17x,a,i5,/)�) �Total number of line segments = �,n(j)
   end do
   close(42)
   write( *,�(a,/)�)� Have successfully written nodal-point file: nodes.dat�
   write(21,�(a,/)�)� Have successfully written nodal-point file: nodes.dat�
end if

!------------------------------------------------------------------------------
!find intersections before and after problem rays; compute fill-in points
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if(dbg) open(44,file=�finaldata.dat�)
if( .not. dbg ) open(44)
do j=1,nj
   if( closed(j) .eqv. .false. ) cycle
   k = 1
   b_ray = k
   do while( k .le. nk )
      if( probray(k) .eqv. .false. ) then
         write(44,�(3f15.3,2i5,3x,l1)�) px(k,j),py(k,j),z(j), j,  k,probray(k)
         !write( *,�(3f15.3,2i5,3x,l1)�) px(k,j),py(k,j),z(j), j,  k,probray(k)
         b_ray = k
         k = k + 1
      else
         i = 0
         do while( k .le. nk )
            if( probray(k) .eqv. .true. ) then
               i = i + npts(k)
               k = k + 1
            else
               e_ray = k
               exit
            end if
         end do
         if( (k .ge. nk) .and. (probray(nk) .eqv. .true.) ) then     
            !the final ray had a problem; wrap-around case
            e_ray = 1               
            !note: e-ray is set to one because problem rays from 1 on 
             !have already been dealt with at the beginning of this section
             !i.e., ray 1 (pX(1),pY(1)) will ALWAYS be an anchor point
            write(*,�(a,2i5,a,i5)�)� >>> Wrap-around situation with rays:�, &
             b_ray,e_ray,� >>> j =�, j
         end if
         write(21,�(a,i3,a,f8.1,a)�)� ***************  generating�,i,&
          � new points for contour�,z(j),�  ***************�
         if(dbg) write(*,�(a,i3,a,f8.1)�)� generating�,i,� new points for contour�,z(j)
         nn = n(j)         !avoid resetting n(j)
         if(dbg) write(*,�(2(a,i4))�)� calling subroutine trace:  Beginning ray 
=�,b_ray,&
          �;  Ending ray =�,e_ray
         call trace( j,b_ray,e_ray,i,nn,dbg )
         if(dbg) write(*,*)�back from subroutine trace�
      end if
   end do
   test=commitqq(21)
end do
!write(*,*)�rewinding file�
rewind(44)
!write(*,*)�   file rewound; beginning deallocation�

!------------------------------------------------------------------------------
!release unused memory
ierr = -999
deallocate( probray,ccw,n,ni,nintsect,npts,segno,x,y,indx, stat=ierr )
if( ierr .ne. 0 ) stop �Array allocation error�

deallocate( px,stat=ierr )
if( ierr .ne. 0 ) stop �Array allocation error�
!write(*,*) �deallocated px�
!write(*,*)�deallocation error code:�, ierr
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!flag = allocated(py)
!write(*,*)�py flag = �,flag
deallocate( py,STAT = ierr )
if( ierr .ne. 0 ) stop �Array allocation error�
!if( ierr .ne. 0 ) stop �Array DEallocation error�
!write(*,*)�deallocation error code:�, ierr
!write(*,*)�   successful deallocation�

!reallocate storage for final EVS nodes
allocate(px(maxnodes,nj),py(maxnodes,nj),stat=ierr )
if( ierr .ne. 0 ) stop �Array allocation error�

write(*,�(//,a)�)� Rereading temporary file�
do j=1,nj
   if( closed(j) .eqv. .false. ) cycle
   if( dbg ) then                   !for serious debugging only
      fname2 = �finaldata.dat               �
      k=len_trim(fname2)
      write(fname2(k-2:k+2),�(i5.5)�) -nint(z(j))
      write(fname2(k+3:k+6),�(a)�) �.dat�
      open(33,file=fname2,status=�unknown�)
   end if
   do i=1,maxnodes
      read(44,*) px(i,j),py(i,j)
      if(dbg) write(33,�(3f15.3)�) px(i,j),py(i,j),z(j)
   end do
   close(33)
end do
write(*,�(a)�)� have reread the finaldata array �
test=commitqq(21)

!******************************************************************************
!sort z-array by increasing depth so that UCD file is written in vertical sequence
! note that ALL references to �(i,j)� from here on out MUST be to �(i,iperm(j)))�
! in order to make use of rearranged z-array

do j=1,nj                        !must first initialize iperm
   iperm(j) = j
end do
!sort the depth (z-value) array
!create a dummy z-array to avoid messing up z; all we want is the permutation vector
allocate( zprime(nj) )
call dsvrgp(nj,z,zprime,iperm)
deallocate( zprime )
write(21,�(/,a)�)� Have resorted the array of contours�
write( *,�(/,a)�)� Have resorted the array of contours�

!need to invert iperm array order for UCD output; sort bottom to top
allocate( tempx(nj) )
do i=1,nj
   tempx(nj-i+1) = iperm(i)
   !write(*,�(2(i5,f10.1))�) i,z(i),iperm(i),z(iperm(i))
end do
do i=1,nj
   iperm(i) = tempx(i)
end do      
deallocate( tempx )
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do j=1,nj
   !write( *,�(2i5,f10.1,3x,l1)�) j,iperm(j),z(iperm(j)),closed(iperm(j))
   write(21,�(2i5,f10.1,3x,l1)�) j,iperm(j),z(iperm(j)),closed(iperm(j))
end do
write(21,�(a,/)�)� Depth array sorted OK�
write( *,�(a,/)�)� Depth array sorted OK�
write(*,*)

!find two highest contour z-values
do j=1,nj
   if( closed(iperm(j)) .eqv. .false. ) cycle
   maxj1 = iperm(j)
   exit
end do
do j=2,nj
   if( closed(iperm(j)) .eqv. .false. ) cycle
   maxj2 = iperm(j)
   exit
end do
write(*,�(/,a,2f10.1)�)� The two highest-elevation contours are:�, &
 z(maxj1),z(maxj2)
write(*,�(24x,a,2i5)�)�Contour indices:�,maxj1,maxj2
write(21,�(/,a,2f10.1)�)� The two highest-elevation contours are:�, &
 z(maxj1),z(maxj2)
write(21,�(24x,a,2i5)�)�Contour indices:�,maxj1,maxj2

flag = .false.
do while( .not. flag )
   write(*,�(a,/,2(3x,a,/))�)� Write UCD file in�,�1. absolute or�,�2. relative coordi-
nates?�
   write(*,�(a,\)�)� Enter (1) or (2): �
   read(*,*) nn
   if( nn .eq. 1 .or. nn .eq. 2 ) flag = .true.
end do
write(*,*)
write(*,�(a,\)�)� Close the salt-dome shell to the centroid? (y/n): �
read(*,*) ans

!******************************************************************************
!NOW write the UCD mesh file
write(*,�(a,/)�)� Writing final unstructured-mesh data file...�
i= len_trim(fname)
write(fname(i-3:i),�(a)�)�.inp�
open(50,file=fname)
write(50,�(2a)�)�#ucd mesh file generated from file: �,fname
if( nn .eq. 2 ) then
   write(50,�(2(a,f12.3))�)�#Note: RELATIVE coordinates: Xcen=�,cx(nj+1),�  
Ycen=�,cy(nj+1)
   write(50,�(a)�)�#Note: Z-coordinates increase DOWNward for use by DirecX�
else
   write(50,�(2(a,f12.3))�)�#Note: ABSOLUTE coordinates: Xcen=�,cx(nj+1),�  
Ycen=�,cy(nj+1)
end if
if( ans .eq. �y� .or. ans .eq. �Y� ) then
   write(50,�(a)�)�#ucd shell is closed to overall centroid�
end if

nodes= maxnodes*(nj-nmiss)
elem = maxnodes*(nj-nmiss-1)
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if( ans .eq. �y� .or. ans .eq. �Y�) then
   write(*,�(a,i10)�)�      Total number of nodes    =�,nodes + 1
   write(*,�(a,i10)�)�      Total number of elements =�,elem + maxnodes
   write(50,�(2i10,a)�)nodes+1,elem+maxnodes,� 1 0 0�
else
   write(*,�(a,i10)�)�      Total number of nodes    =�,nodes
   write(*,�(a,i10)�)�      Total number of elements =�,elem
   write(50,�(2i10,a)�)nodes,elem,� 1 0 0�
end if

!------------------------------------------------------------------------------
!write the coordinates of each node
jj=0
do j=1,nj
   if( closed(iperm(j)) .eqv. .false. ) cycle         !skip non-closed contours
   jj = jj + 1
   do k=1,maxnodes
      if( nn .eq. 1 ) then
         write(50,�(i10,3f15.3)�) k+(jj-1)*maxnodes,px(k,iperm(j)), &
          py(k,iperm(j)),z(iperm(j))
      else
         write(50,�(i10,3f15.3)�) k+(jj-1)*maxnodes,px(k,iperm(j))-cx(nj+1), &
          py(k,iperm(j))-cy(nj+1),-z(iperm(j))
      end if
   end do
end do
!write the centroid for closure
if( ans .eq. �y� .or. ans .eq. �Y�) then
   write(50,�(i10,3f15.3)�) k+(jj-1)*maxnodes,cx(maxj1),cy(maxj1),z(maxj1) &
    + (z(maxj1)-z(maxj2))/2
end if

write(21,�(//,a,7x,f15.3)�)� Z-max elevation is:�,z(maxj1)
write(21,�(a,f15.3)�)� Z-second-max elevation is:�,z(maxj2)
write(21,�(a,5x,f15.3,//)�)� Closure elevation is:�,z(maxj1) &
    + (z(maxj1)-z(maxj2))/2 

!------------------------------------------------------------------------------
!compute & write the element descriptions: element #, material #, element type, node #s
do j=1,nj-nmiss - 1
   do k=1,maxnodes
      if( k .eq. maxnodes ) then
         factor = maxnodes
      else
         factor = 0
      end if
      elem= k+(j-1)*maxnodes
      write(50,�(i10,a,4i10)�) elem,� 5 quad �, &
       k+(j-1)*maxnodes, &
       k+j*maxnodes,&
       k+1+j*maxnodes - factor, &
       k+1+(j-1)*maxnodes - factor
   end do
end do
do k=1,maxnodes
   if( k .eq. maxnodes ) then
      factor = maxnodes
   else
      factor = 0
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   end if
   if( ans .eq. �y� .or. ans .eq. �Y� ) then
      elem= k+(nj-nmiss-1)*maxnodes
      write(50,�(i10,a,4i10)�) elem,� 5 tri  �, &
       k, &
       k+1-factor, &
       (nj-nmiss)*maxnodes +1
   end if
end do   
      

!------------------------------------------------------------------------------
!write �data values� for each node (use elevation of contour for now) 
write(50,�(a)�)�1 1�
write(50,�(a)�)�Elevation, ft�
jj = 0
do j=1,nj
   if( closed(iperm(j)) .eqv. .false. ) cycle
   jj = jj + 1
   do k=1,maxnodes
      if( nn .eq. 1 ) then
         write(50,�(i10,f15.3)�) k+(jj-1)*maxnodes,z(iperm(j))
      else
         write(50,�(i10,f15.3)�) k+(jj-1)*maxnodes,-z(iperm(j))
      end if
   end do
end do
!write the centroid for closure
if( ans .eq. �y� .or. ans .eq. �Y�) then
   write(50,�(i10,f15.3)�) maxnodes+(jj-1)*maxnodes+1, &
    z(maxj1) + (z(maxj1)-z(maxj2))/2
end if

close(50)
write(21,�(/,3a)�)� UCD file: �,trim(fname),� written successfully�
write( *,�(/,3a)�)� UCD file: �,trim(fname),� written successfully�
write(*,*)

!******************************************************************************
close(21)
deallocate( px,py,z,cx,cy,iperm, stat=ierr)
if( ierr .ne. 0 ) stop �Deallocation error at end�
stop
end

ARRAY-DECLARATION MODULE

module define_arrays
   !part of program ctr2evs
   !written by Chris Rautman, SNL, 6113
   !defines certain arrays dynamically for use across main program and subroutine
   !                 Variables (see also main program)
   !x(),y(),z()   coordinates of line segments defining contours 
   !px(),py()  coordinates of intersections of line segments with angular rays
   !segno() identifier of line segment associated with px and py
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   !indx()     ??used only in initial debugging???
   !--------------------------------------------------------------------------
   integer,allocatable,save::segno(:,:),indx(:),presrvSeg(:)
   real*8,allocatable,save:: presrvX(:),presrvY(:)
   real*8,allocatable,save::x(:,:),y(:,:),z(:),px(:,:),py(:,:)
end module define_arrays 

FUNCTIONS

!miscellaneous functions and small subroutines for program �ctr2evs�
!written by Chris Rautman, SNL 6113                      11 June 2001

!****************************************************************************** 
subroutine allocate_arrays(nimax,nj,nk)
   !provides for dynamic allocation of various arrays; requires �module�
   !note use of nimax+1 to allow closing of contours within program
   use define_arrays
   integer nimax,nj,nk
   allocate( x(nimax+1,nj+1),y(nimax+1,nj+1),z(nj+1),segno(nk,nj+1) )
   allocate( px(nk,nj+1),py(nk,nj+1),indx(nj+1) )
   allocate( presrvX(nj),presrvY(nj),presrvSeg(nj) )
end subroutine allocate_arrays

!******************************************************************************
real*8 function Dpy( x1,y1,x2,y2 )
!uses Pythagorean Theorem to find a distance, Dpy
!                    Variables
!x1,y1   starting coords of line segment
!x2,y2   ending coordinates of line segment
implicit none
real*8 x1,y1,x2,y2
Dpy = dsqrt( (y2-y1)*(y2-y1) + (x2-x1)*(x2-x1) )
end function

!******************************************************************************
real*8 function angle( m,x,x1)
!computes a 360-degree angle from a slope, m, and
! corrects for quadrant.  arcsine function [-pi,+pi]
!                    Variables
!m    slope value
!x,x1 starting and ending coordinates of contour line segment intersecting
!       the positive x-axis. Function REQUIRES ccw numbering of segments
!datand  double-precision arctangent function in degrees (intrinsic)
implicit none
real*8 m,x,x1

!perform some error checking
if( x1 .eq. x ) then       
   write(*,�(a,f15.3)�)� points X and X1 are identical; =�,x
   write(*,�(a)�)� Implicit no-slope m passed to function: angle�
   write(*,*) �m = �, m
   stop
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end if
if( m .eq. 0.0 ) stop �Explicit no-slope m passed to function: angle�

!compute the angle
!write(*,�(a,f8.3)�)� base angle =�,datand(m)
if( m .ge. 0 ) then
   if( x1 .gt. x ) angle = datand(m)            !1st Quadrant
   if( x1 .lt. x ) angle = datand(m) + 180.0    !3rd Quadrant
else
   if( x1 .gt. x ) angle = datand(m) + 360.0    !4th Quadrant
   if( x1 .lt. x ) angle = datand(m) + 180.0    !2nd Quadrant
end if

end function

SUBROUTINE TRACE

subroutine trace( ctr,istart,istop,npts,n,dbg)
!written by Chris Rautman, SNL 6113
!  major modifications by CAR  11/22/2001
!  to account for �problem� (i.e., multiple-intersection) rays at the
!  start of the ray-processing sequence (angle = 0 degrees trigonometric)
!  issues with �wrap-around� or �cross-over� of line-segment numbering fixed
!part of program ctr2evs

!****************************************************************************** 
!                 Input Variables
!ctr     index of the current contour
!istart  last no-problem intersection node
!istop   next no-problem intersection node
!npts    number of new nodes to generate
!n       total number of nodes on this contour
!dbg     debugging flag (controls amount of output)
!segno() line-segment numbers; passed through define_arrays
!x(),y(),z()   line-segment coordinates; passed through define_arrays
!px(),py()  intersections of rays with the contour; passed through define_arrays
!            starting and stopping points for trace calculations
!presrvX()  very first intersection point on the contour with ray 1; substituted
!presrvY()   for undefined ray-intersection point when ray 1 has multiple intersects
!presrvSeg()   line-segment number assoc. w/ PresrvX,PresrvY; passed via define_arrays
 
!                 Output Variables
!ptX,ptY,ptZ() new nodal coordinates; written to file for later use
!               by main program (not passed in memory)

!                 Internal Variables
!ist, isp   starting and stopping line-segment numbers
!nsegs   number of line segments involved
!d()     distances along each line segment
!dtarget required distance between new nodal points
!dist    cumulative distance along contour to reach dtarget
!m       slope of a given line segment
!ang     angle in [0,360] associated with slope, m
!hyp     hypoteneuse distance for computation of dx, dy
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!dx,dy   delta-x and -y from current line-segment starting point, used to
!          compute ptX, ptY
!flag    generic logical indicator
!xover   logical flag indicating cross-over of the line-segment numbering boundary
!         (positive x-axis intercept from center of contour bounding box)

!                 External Routines
!Dpy     Pythagorean distance function (custom)
!angle   determines ang in [0,360] from slope m based on starting and ending
!          points of the line segment (custom)

!******************************************************************************
use define_arrays
use msflib
implicit none
logical flag,xover,dbg
integer i,j,n,ctr,istart,istop,ist,isp,nsegs,npts
real*8 dist,dtarget,Dpy,m,ang,dx,dy,ptX,ptY,angle,hyp
real*8,allocatable::d(:)
xover = .false.

!******************************************************************************
write(21,�(2(a,i5),/,a,f8.1,a,i5)�)� Trace;  starting ray:�,istart, &
  �,  ending ray:�,istop,�    Contour�,z(ctr),�  Total # line segments in contour =�,n
if( istop .lt. istart ) then
   write(21,�(a)�)� >>> Possible problems: ending ray is lower number than starting ray�
   write(21,�(3(a,i3))�)�     Contour:�,ctr,�     istart=�,istart,�    istop=�,istop
end if
ist = segno(istart,ctr)
if( ist .lt. 1 ) then               !undefined, use original first intersection
   ist = presrvSeg(ctr)
   px(istart,ctr) = presrvX(ctr)
   py(istart,ctr) = presrvY(ctr)
   write(21,�(a,i4,a,2f12.1,a)�)� restoring preserved first intercept for ISTART:�, &
    ist,�  (�,presrvX(ctr),presrvY(ctr),�)�
end if
isp = segno(istop,ctr)
if( isp .lt. 1 ) then               !undefined, use original first intersection
   isp = presrvSeg(ctr) 
   px(istop,ctr) = presrvX(ctr)
   py(istop,ctr) = presrvY(ctr)
   write(21,�(a,i4,a,2f12.1,a)�)� restoring preserved first intercept for ISTOP:�, &
    isp,�  (�,presrvX(ctr),presrvY(ctr),�)�
end if
nsegs = isp - ist + 1
if( nsegs .lt. 0 ) then
   !write( *,�(a)�)�      warning: have crossed line-segment array boundary�
   write(21,�(a)�)�      warning: have crossed line-segment array boundary�
   !we have crossed over the end of the line-segment array
   xover = .true.                   !for this call only!
   nsegs = n-ist+isp
end if
allocate( d(nsegs) )

!*******************************************************************************
IF( xover .eqv. .false. ) THEN               !NO CROSS-OVER IS INVOLVED
!*******************************************************************************
!This section of the subroutine is for no-crossover normal processing
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!list the lengths of all involved line segments for comparison and reference
write(21,�(/,a,i5,a,2i5,3x,l1)�)� there are�,nsegs,� line segments; ist,isp:�,ist,isp, 
xover
if(dbg) then
   do i=ist,isp
      dist = Dpy( x(i,ctr),y(i,ctr),x(i+1,ctr),y(i+1,ctr) )
      write(21,�(a,i5,f12.3)�)�    Total line-segment length: segment�,i,dist
   end do
end if

!-------------------------------------------------------------------------------
!compute total distance along contour from last non-problem point to next non-problem 
point
dist = 0.0
!first find the total distance along line segments from starting point to stopping point
if(dbg) write(21,�(/,2(a,2i5))�)� checking between intersections, rays:�,& 
  istart,istop,�;  line segments:�,ist,isp

!compute the distances available for reallocation of points on contours
if( nsegs .eq. 1 ) then                      
   !distance between starting and stopping points that are on same line segment
   d(1) = Dpy( px(istart,ctr),py(istart,ctr),px(istop,ctr),py(istop,ctr) )
   dist = d(1)
   if(dbg) write(21,�(3x,a,f8.3)�)� total distance between starting and stopping points 
is�,dist
else if( nsegs .eq. 2 ) then
   !starting and stopping points are on two successive line segments
   !distance from first point to end of associated line segment
   d(1) = Dpy( px(istart,ctr),py(istart,ctr),x(ist+1,ctr),y(ist+1,ctr) )
   if(dbg) write(21,�(3x,a,2f10.1,a,i4,f8.3)�) �distance from (�,px(istart,ctr), &
     py(istart,ctr),�) to end of segment�,ist,d(1)
   dist = d(1)
   !distance from line-segment boundary to stopping point
   d(2) = Dpy( x(ist+1,ctr),y(ist+1,ctr),px(istop,ctr),py(istop,ctr) )
   if(dbg) write(21,�(3x,a,i4,a,2f10.1,t60,a,t65,f8.3)�)� distance from start seg-
ment�,&
     ist+1,� to (�,px(istop,ctr),py(istop,ctr),�)�,d(2)
   dist = dist + d(2)
else if( nsegs .gt. 2) then
   !starting and stopping points are on line segments with intervening whole segments
   !compute distance from starting point to end of first line segment
   d(1) = Dpy( px(istart,ctr),py(istart,ctr),x(ist+1,ctr),y(ist+1,ctr) )
   if(dbg) write(21,�(3x,a,2f10.1,a,t60,i4,t65,f8.3)�)� distance from 
(�,px(istart,ctr),&
     py(istart,ctr),�) to end of segment�,ist,d(1)
   dist = d(1)
   !measure along all full line segments
   do j=2,nsegs-1
      d(j) = Dpy( x(ist+j-1,ctr),y(ist+j-1,ctr),x(ist+j,ctr),y(ist+j,ctr) )
      if(dbg) write(21,�(3x,a,t60,i4,t65,f8.3)�)� length of full line segment�,ist+j-
1,d(j)
      dist = dist + d(j)
   end do
   !compute distance from beginning of associated line segment to stopping point
   d(nsegs) = Dpy( x(isp,ctr),y(isp,ctr), px(istop,ctr),py(istop,ctr) )
   if(dbg) write(21,�(3x,a,i5,a,2f10.1,a,t65,f8.3)�)� distance from segment�,isp,� to 
(�,&
    px(istop,ctr),py(istop,ctr),�)�,d(nsegs)
   dist = dist + d(nsegs)
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else  
   write(21,*)�Non-crossover processing: bad NSEGS number; should never get here�
   flag = commitqq(21)
   stop �Abnormal termination, check documentation file�
end if

write(21,�(a,f12.3)�)� Total linear distance from start to stop = �,dist
!allocate total distance to incremental distances between required points
dtarget = dist/float(npts+1)
write(21,�(a,f12.3,a,i3,a,//)�)� Individual distances  = �,dtarget,�  times�,&
  npts+1,� new intervals�

!*******************************************************************************
ELSE                                         !CROSS-OVER PROCESSING
!*******************************************************************************
!This section of the subroutine is for CROSSOVER processing

!list the lengths of all involved line segments for comparison and reference
write(21,�(/,a,i5,a,2i5,3x,l1)�)� there are�,nsegs,� line segments: ist,isp�,ist,isp, 
xover
if(dbg) then
   do i= ist,n-1                    !complete the �normal-sequence� listing of segments
      dist = Dpy( x(i,ctr),y(i,ctr),x(i+1,ctr),y(i+1,ctr) )
      write(21,�(a,i5,f12.3)�)�    Total line-segment length: segment�,i,dist
   end do
   do i = 1,isp                     !generate list from first line-segment to end of 
problem 
      dist = Dpy( x(i,ctr),y(i,ctr),x(i+1,ctr),y(i+1,ctr) )
      write(21,�(a,i5,f12.3)�)�    Total line-segment length: segment�,i,dist
   end do
end if

!-------------------------------------------------------------------------------
!compute total distance along contour from last non-problem point to next non-problem 
point
dist = 0.0
if(dbg) write(21,�(/,2(a,2i5),a,i5)�)� checking between intersections, rays:�,& 
  istart,istop,�;  line segments:�,ist,n-1,� and line segments    1�,isp

if( nsegs .eq. 1 ) then             !crossover cannot be an issue on one line segment              
   !distance between starting and stopping points that are on same line segment
   d(1) = Dpy( px(istart,ctr),py(istart,ctr),px(istop,ctr),py(istop,ctr) )
   dist = d(1)
   if(dbg) write(21,�(3x,a,f8.3)�)� total distance between starting and stopping points 
is�,dist
else if( nsegs .eq. 2 ) then        
   !starting and stopping points are on successive line segments that cross line-number-
ing bdry
   !compute distance from first point to end of the last-numbered line segment
   d(1) = Dpy( px(istart,ctr),py(istart,ctr),x(ist+1,ctr),y(ist+1,ctr) )
   if(dbg) write(21,�(3x,a,2f10.1,a,t60,i4,t65,f8.3)�) � distance from 
(�,px(istart,ctr), &
     py(istart,ctr),�) to end of segment�,ist,d(1)
   dist = d(1)
   !compute distance from first-numbered segment boundary to stopping point
   d(2) = Dpy( x(1,ctr),y(1,ctr),px(istop,ctr),py(istop,ctr) )
   if(dbg) write(21,�(3x,a,i4,a,2f10.1,a,t65,f8.3)�)� distance from start segment�,&
     1,� to (�,px(istop,ctr),py(istop,ctr),�)�,d(2)
   dist = dist + d(2)
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else if( nsegs .gt. 2) then
   !compute distance from starting point to end of first line segment
   d(1) = Dpy( px(istart,ctr),py(istart,ctr),x(ist+1,ctr),y(ist+1,ctr) )
   if(dbg) write(21,�(3x,a,2f10.1,a,t60,i4,t65,f8.3)�)� distance from 
(�,px(istart,ctr),&
    py(istart,ctr),�) to end of segment�,ist,d(1)
   dist = d(1)
   !measure along all full line segments
   do j=2,nsegs-1
      if( ist+j .le. n ) then    !this is for the �normal� part of the processing
         d(j) = Dpy( x(ist+j-1,ctr),y(ist+j-1,ctr),x(ist+j,ctr),y(ist+j,ctr) )
         if(dbg) write(21,�(3x,a,t60,i4,t65,f8.3)�)� length of full line segment�,ist+j-
1,d(j)
         dist = dist + d(j)
      else                          !this is for processing the crossover and later 
segments
         d(j) = Dpy( x(ist+j-n,ctr),y(ist+j-n,ctr),x(ist+j+1-n,ctr),y(ist+j+1-n,ctr) )
         if(dbg) write(21,�(3x,a,t60,i4,t65,f8.3)�)� length of full line segment�,ist+j-
n,d(j)
         dist = dist + d(j)
      end if
   end do
   !compute distance from beginning of associated line segment to last point
   d(nsegs) = Dpy( x(isp,ctr),y(isp,ctr), px(istop,ctr),py(istop,ctr) )
   if(dbg) write(21,�(3x,a,i5,a,2f10.1,a,t65,f8.3)�)� distance from segment�,isp,� to 
(�,&
    px(istop,ctr),py(istop,ctr),�)�,d(nsegs)
   dist = dist + d(nsegs)
else  
   write(21,*)�CROSSOVER processing section: bad NSEGS number; should never get here�
   flag = commitqq(21)
   stop �Abnormal termination, check documentation file�
end if

write(21,�(a,f12.3)�)� Total linear distance = �,dist
!allocate total distance to incremental distances
dtarget = dist/float(npts+1)
write(21,�(a,f12.3,a,i3,a,//)�)� Individual distances  = �,dtarget,�  times�,&
  npts+1,� new intervals�

!*******************************************************************************
END IF
!*******************************************************************************

!------------------------------------------------------------------------------
!now compute individual distances to reach the required target distance and 
! generate the new point(s) equally distributed along the original contour
j=1            !j tracks the number of line portions between required points
!               called �segments� but different than contour �line segments�
flag = .false.
do i=1,npts
   dist = 0.0
   !document initialization of distance tracking
   if(dbg) write(21,�(a,i3,28x,a,f12.3)�)� point�,i,� cumulative distance =�,dist

   do while( j .le. nsegs )
      if( dist + d(j) .lt. dtarget ) then    !dtarget is the required distance between 
points
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         !we are not yet to the next point; add the current line-segment distance to 
�dist�
          !and iterate to next line segment
         dist = dist + d(j)               !cumulative distance along contour
         if(dbg) write(21,�(2(a,i3),a,f8.3,a,f12.3)�)� point�,i,� segment�,j,�    d =�,&
           d(j),�   cumulative distance =�,dist
         j=j+1
         flag = .false.
      else
         !solve for a point on current line segment
         hyp= dtarget - dist              !this is the remaining distance on this line 
portion
         if( (x(ist+j,ctr)-x(ist+j-1,ctr)) .eq. 0.0 ) then     !trap no-slope lines
            write(21,�(a,i5)�) � >>> line segment with no slope: segment�,ist+j-1
            write(21,�(a,2f12.1)�) �     starting point:�,x(ist+j-1,ctr),y(ist+j-1,ctr)
            write(21,�(a,2f12.1)�) �     ending point:  �,x(ist+j,ctr),  y(ist+j,ctr)
            dx = 0.0
            dy = hyp 
         else                                                  !we have a valid slope
            if( (ist + j) .le. n ) then                        !this is �normal� processing
               if(dbg) write(21,�(2(a,i4))�) �ist+j-1 =�, ist+j-1,�, ist+j =�, ist+j
               m = (y(ist+j,ctr)-y(ist+j-1,ctr))/(x(ist+j,ctr)-x(ist+j-1,ctr))
               ang = angle(m,x(ist+j-1,ctr),x(ist+j,ctr))
            else                                               !this is �crossover� 
processing
               if(dbg) write(21,�(2(a,i4))�) �ist+j-n =�,ist+j-n,�, ist+j+1-n 
=�,ist+j+1-n 
               m = (y(ist+j+1-n,ctr)-y(ist+j-n,ctr))/(x(ist+j+1-n,ctr)-x(ist+j-n,ctr))
               ang = angle(m,x(ist+j-n,ctr),x(ist+j+1-n,ctr))
            end if
            if(dbg) write(21,�(a,f8.3,a,f8.3)�)� slope: �,m,�,  angle: �,ang !,x(ist+j-
1,ctr),x(ist+j,ctr)
            dx = hyp*dcosd(ang)
            dy = hyp*dsind(ang)
         end if

         if( (j .eq. 1) .and. (flag .eqv. .false.) ) then               
            !working from P(start)
            ptX = px(istart,ctr) + dx
            ptY = py(istart,ctr) + dy
            flag = .true.
         else if( flag .eqv. .false. ) then  
            !working from start of preceding line segment
            if( ist+j .gt. n ) then     !crossover of line-segment numbering boundary
               ptX = x(ist+j-n,ctr) + dx
               ptY = y(ist+j-n,ctr) + dy
            else
               ptX = x(ist+j-1,ctr) + dx
               ptY = y(ist+j-1,ctr) + dy
            end if
         else
            !working on the same segment as previously
            ptX = ptX + dx
            ptY = ptY + dy
         end if
         !reset the available line-segment length
         d(j) = d(j) - hyp
         if(dbg) write(21,�(2(a,i3),a,f8.3,a,f12.3)�)� point�,i,� segment�,j,�  hyp =�,&
           hyp,�   cumulative distance =�,dist+hyp
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         if(dbg) write(21,�(a,i3,a,2f10.3)�)� point�,i,� dx,dy:�,dx,dy
         if(dbg) write(21,�(a,i3,a,2f10.1,2(a,f8.3),/)�)� point�,i,� is (�,ptX,ptY,&
          �); dist available = �,d(j),�; hypoteneuse dist used =�,hyp
         if( .not. dbg) write(21,�(a,i3,a,2f10.1,2(a,f8.3))�)� point�,i,� is 
(�,ptX,ptY,&
          �); dist available = �,d(j),�; hypoteneuse dist used =�,hyp
         write(44,�(3f15.3,i5,a,i3,a)�) ptX,ptY,z(ctr),ctr,� (�,i,�)�
         flag = .true.
         exit
      end if
   end do
end do
      
!------------------------------------------------------------------------------
deallocate(d)
flag = commitqq(44)
write(21,�(a,/)�)� end subroutine trace�
flag = commitqq(21)
return
end
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INTRODUCTION

The CD-ROM included with this report con-
tains simple ASCII files produced by the MVS 
modeling software that describe the surface meshes 
defining the margins of the four SPR salt domes. 
These files should be viewable using any standard 
ASCII text editor, or be importable into a standard 
word processor. 

Two different sets of files are included. First 
are the open-ended, quasi-cylindrical files pro-
duced by the software program ctr2evs directly 
from the digitized structure contour maps of the 
site characterization reports. These files demon-
strate the output of the computer code implement-
ing the newly developed modeling algorithm. The 
second set of files are the �final,� or complete 
models of the various SPR salt domes. These files 
were generated by combining the ctr2evs output 
files describing the salt-dome flanks with a crestal 
surface generated by one or the other of the two 
algorithmic variants (page 11) for generating the 
upper portion of the salt dome in question. The two 
separately generated surfaces have been trimmed 
and merged using the capabilities of the MVS soft-
ware, prior to be written-out as a single file con-
taining the full representation of the salt-dome 
margin. It is these latter files that may be of great-
est utility for use in other SPR project software to 
visualize the salt-dome geometries as modeled dur-
ing site characterization.

The format of these files is a variant of a fairly 
typical finite-element-mesh description. Specifi-
cally, an initial section gives the spatial coordinates 
of the nodes of the mesh and each node is num-
bered. A second section of the file contains a 
description of the connectivity of those nodes 
(node 1 is connected to node 2, which is connected 
to node 3, which is connected to node 4, etc.). Only 
the node numbers forming a mesh element (here a 
quadrilateral) need be specified in this manner. 
Each mesh element is also given a unique number. 
A third section contains the numerical �property 
values� that are associated with each nodal posi-
tion. Various interspersed lines specify the number 
of nodes, the number of mesh elements, and the 
names and units of measure for the material prop-
erty values.

Because this report is concerned only with the 
shape of the dome-margin mesh, the material-prop-
erty section of the files is somewhat superfluous. 
Accordingly, the only entries present in this section 
of the included files are the node number (refer-
enced back to the nodal coordinates in section 1) 
and the elevation of those nodes. Thus the format 
of the mesh files is complete even though the ele-
vation values in the material property section are 
redundant with the z-coordinate of the nodes them-
selves. Conceivably other material properties of 
interest could be included associated with the nodal 
locations (or with the polygonal mesh elements) 
for visualization.

The material that follows is the description of 
the unstructured-cell-data (UCD) file format, taken 
directly from the MVS software system�s �help� 
files. The interested reader is also referred to the 
dome-margin UCD files that are included on the 
CD-ROM, although as �real� files, these are rather 
lengthy for illustrative purposes.
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UCD FILE FORMAT1

The format of UCD files is very similar to that commonly employed by node-based finite element 
models.  Essentially, UCD files contain three different sections with a header line that describes the type 
and amount of data that is contained in each section.  A UCD file cannot contain blank lines or lines with 
leading blanks.  Comments can be present at the top of the file, but are not allowed in other parts of the file.  
Leading comment lines must begin with the �#� symbol. An example UCD file is presented below, with 
explanation lines describing the contents of the lines (which can not be present in actual UCD files) placed 
in brackets �{}� shaded differently, and italicized...... This UCD file consists of one hexahedral cell with 
8 nodes, and each node has a single scalar data value.

***** Begin Example UCD File *****

# Lines with leading "#" characters in a UCD file can be comments.
# The user can include any number of comment lines.

{The first section of data in the file begins with a header line, which describes the number of 
nodes in the model, the number of cells in the model, the number of nodal data components, the 
number of cell data components, and the number of model data components (cell and model data 
components are not currently used in EVS). The first section of the file looks like this:}

8 1 1 0 0    {8 nodes, 1 cell, 1 nodal data component, 0 cell data, 0 model data}
   1  0.000   0.000   1.000  {node 1, xcoord = 0, ycoord = 0, zcoord = 1]
   2  1.000   0.000   1.000  {node 2, xcoord = 1, ycoord = 0, zcoord = 1]
   3  1.000   1.000   1.000  {node 3, xcoord = 1, ycoord = 1, zcoord = 1]
   4  0.000   1.000   1.000  {and so forth for the 8 nodes in this hexahedron]
   5  0.000   0.000   0.000  
   6  1.000   0.000   0.000
   7  1.000   1.000   0.000
   8  0.000   1.000   0.000

{The second section of the file contains the list of elements in the model, the material type (or 
layer) of each element, the type of element (EVS usually uses quads and hexahedrons), and the 
nodes that make up the vertices of the element, listed in order of connectivity starting from the 
upper left vertex, and progressing counterclockwise for each layer of vertices in the element (see 
the diagram below). Remember these lines starting with brackets are for explanation only and 
cannot actually be present in the file.}

1  1   hex 1 2 3 4 5 6 7 8{Element 1, Material 1, Hexahedral Element Type,Node numbers 
for nodes at vertices of element. This element has 8 vertices, at nodes 1 through 8. 
Note that the nodes were identified by number in the first section of the file, and 
along with their X, Y, Z, coordinates}

{The third section of the file contains a first line that lists the number of data components for each 
node, and then a list of the number of properties belonging to each component. Most EVS mod-
ules output �scalar� properties, which by definition have only one property per data component. 

1 This entire section is taken virtually verbatim from the MVS help system, 1994-2002 C Tech Develop-
ment Corporation, under the topic �UCD File Format.� It has been edited only slightly to fit the current cir-
cumstances. Some text has wrapped to a second or additional lines. Remember that blank lines are not allowed 
in an actual UCD file.
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However, the MT3D model outputs a vector component describing the velocity of fluid flow at the 
model nodes, which has the three properties of X, Y, Z velocity present in one data component. An 
example of this type of �vector� data component is presented below.}

   1 1 {One data component, One property in the first component, �a scalar� The next 
n lines of the third section of the file contain text entries separated by commas, that 
describe the name and units of the property in each data component.  There are as many 
of these text lines as there are data components.}
stress, lb/in**2  {Data Component 1 is the Stress property, Units are lb/in**2}

{The last n lines in the third section of the file list the node numbers, and the values for the prop-
erties in each data component. There are as many lines as there are nodes in the model.}

   1  4999.9999      {Node 1, 4999.9999 (Stress Property Value in lb/in**2)}
   2  18749.9999 {Node 2, 18749.9999 (Stress Property Value in lb/in**2)}
   3  37500.0000    {Node 3, and so on …}
   4  56250.0000 
   5  74999.9999 
   6  93750.0001 
   7  107500.0003 
   8  5000.0001   
{The last node number and list of data component property values is the last line of the file.}

***** End Example UCD File *****

A more complex example of a UCD file is provided below. … Note that this UCD file has no header 
lines, and has a vector property in the last nodal data component (in the third section of the file). Again, 
some explanations of the file structure are provided, which are enclosed in brackets �{}� and colored 
magenta. These are not in the actual UCD file.

***** Begin Example UCD File *****

22134   10500      12       0       0    {Line 1 of Section 1; 22134 nodes, 10500 
elements, 12 nodal data components}

     1  9625.112 10786.380     6.275  {Node 1, 9625.112 X Coord, 10786.380 Y Coord, 
6.275 Z Coordinate}

     2  9714.992 10742.550     6.367
     3  9804.871 10698.710     6.581
     4  9894.751 10654.870     6.939
     5  9984.630 10611.030     7.581
{Data lines for nodes 6 through 22130 omitted from this example}
22131 12534.330  6029.657   -62.443

 22132 12624.210  5985.820   -62.879
 22133 12714.090  5941.983   -63.324
 22134 12803.970  5898.146   -63.318  {Node 22134 is last in model}

1   0 hex      1    52    53     2  1582  1633  1634  1583{Line 1 of Section 2; 
2   0 hex      2    53    54     3  1583  1634  1635  1584 Element 1, Material 0, 
3   0 hex      3    54    55     4  1584  1635  1636  1585 Hex Elem., Nodes at 
4   0 hex      4    55    56     5  1585  1636  1637  1586 the vertices of element
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5   0 hex      5    56    57     6  1586  1637  1638  1587 1 are 1,52,53,2,1582,
1633,1634,1583}

Data lines for elements 6 through 10494 omitted from this example}
10495   6 hex  20496 20547 20548 20497 22077 22128 22129 22078

 10496   6 hex  20497 20548 20549 20498 22078 22129 22130 22079
 10497   6 hex  20498 20549 20550 20499 22079 22130 22131 22080
 10498   6 hex  20499 20550 20551 20500 22080 22131 22132 22081
10499   6 hex  20500 20551 20552 20501 22081 22132 22133 22082

 10500   6 hex  20501 20552 20553 20502 22082 22133 22134 22083  {Element 10500, 
Material 6...
Last in model}

10 1 1 1 1 1 1 1 1 1 3  {Line 1 of Section 3; 10 Data components, Comp.1 through 9 have 
1 property, Comp 9 has 3}

head, feet  {First data component is head in feet (a scalar property)}
drawdown, feet  {Second data component is drawdown in feet}
thickness, feet  {Third data component is layer thickness in feet}
Geolayer, number  {Fourth data component is Geolayer number, which specifies which 

element material it beongs to}
Elevation, feet  {And so forth...}
Conductivity, feet/day
Storage, unitless or 1/feet
Concentration, M/L^3
Change in Conc, M/L^3
Velocity, L/t  {Velocity has three components, Vel in X, Vel in Y, Vel in Z, in 

L/t, a vector data component}
1  .890  .000  19.1  0  6.28  15.0  .250  .742E-07  .000      .000      .750E-02  .000  

{Node 1, properties as listed above}
2  .890  .000  19.6  0  6.37  15.0  .250  .000      .000      .000 .590E-02 .000
3  .895  .000  20.6  0  6.58  15.0  .250  .286E-03 -.143E-03 -.750E-02 .115E-01 .000
4  .900  .000  21.2  0  6.94  15.0  .250  .341E-03 -.314E-03  .000 .111E-01 .000
5  .900  .000  21.2  0  7.58  15.0  .250  .756E-05 -.171E-03  .000 .101E-01 .000

Data lines for nodes 6 through 22129 omitted from this example}
22130 .735 .000 3.77  6 -63.0 105. .100E-05 .295E-02 -.667  -.525E-01 -.732E-01  .000

 22131 .740 .000 3.85  6 -62.4 105. .100E-05 .504E-03 -.947   .000     -.330E-01  .000
 22132 .740 .000 4.14  6 -62.9 105. .100E-05 .352E-06 -.733   .000      .501E-02  .000
22133 .740 .000 4.44  6 -63.3 105. .100E-05 .000     -.644   .000      .525E-01  .000

 22134 .740 .000 4.45  6 -63.3 105. .100E-05 .000     -.643   .000      .525E-01  .000 
{Node 22134, last in model}

***** End Example UCD File *****
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