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Abstract 
 

 
The present study is a numerical investigation of the propagation of electromagnetic 
transients in dispersive media. It considers propagation in water using Debye and 
composite Rocard-Powles-Lorentz models for the complex permittivity. The study 
addresses this question: For practical transmitted spectra, does precursor propagation 
provide any features that can be used to advantage over conventional signal propagation 
in models of dispersive media of interest? A companion experimental study is currently 
in progress that will attempt to measure the effects studied here.   
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1.0  INTRODUCTION 

 
Asymptotic analysis of pulsed electromagnetic wave propagation in dispersive media 
using the Lorentz model has shown that precursors propagate through the media with a 
rate of decay of peak amplitude and energy density that is algebraic rather than 
exponential (Oughstun and Sherman 1994). This could have important implications in the 
choice of signal waveforms for applications such as ground-penetrating radar (Brock and 
Patitz 1993) and foliage-penetrating radar (Loubriel, Zutavern et al. 1994). Roberts 
(2002) has cautioned, however, that this algebraic decay can be observed only for signals 
that have spectral energy content near zero frequency, which, of course, cannot be 
radiated efficiently from small platforms. His numerical examples, however, are 
potentially obscured by the use of ideal, non-causal frequency domain filters. The filters 
themselves exhibit precursors that can obscure the precursors due to the medium. 
 
The present study is a numerical investigation of the propagation of electromagnetic 
transients in dispersive media. It considers propagation in water using Debye and 
composite Rocard-Powles-Lorentz models (Laurens and Oughstun 1999) for the complex 
permittivity. To avoid the problem mentioned above, standard filter design techniques are 
used to derive frequency domain filter transfer functions that are causal. The study 
addresses this question: For practical transmitted spectra, does precursor propagation 
provide any features that can be used to advantage over conventional signal propagation 
in models of dispersive media of interest? A companion experimental study is currently 
in progress that will attempt to measure the effects studied here.   
 
The following sections discuss the calculational approach taken and the numerical results 
for Debye and Rocard-Powles-Lorentz models of electromagnetic transient propagation 
in water. The results indicate that for water using these models at UHF and below, 
precursors form at the leading and trailing edges of gated sinusoidal pulses. They are 
more strongly excited when the transient signal contains broadband energy at frequencies 
below the carrier. The energy in wideband signals including low frequency content 
decays algebraically with depth. The low frequency content does not need to include dc, 
but if it does not, a depth will be reached where the energy does decay exponentially. 
Narrowband signals decay exponentially with depth until the energy in the spectrum 
below the carrier begins to dominate the total energy. At that point, the behavior is that of 
the wideband signals discussed above. 
 
Three points should be emphasized: 1. The rate of decay of energy with depth is 
important, but the actual value of energy remaining is more important. 2. As Roberts 
points out, real systems have a noise floor. If the energy that makes it through the 
medium is less than the noise spectral density, the signal is not useful (unless it can be 
coherently integrated over multiple pulses). 3. Since the media under consideration are 
linear (although dispersive), energy is not transferred from one part of the spectrum to 
another. For greatest penetration, the energy in the initial signal should be concentrated in 
the passband of the medium. 
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2.0  Calculational Approach 

 
A dispersive dielectric is assumed to fill the half-space x ≥ 0. The electric field to be 
propagated is calculated in the time domain at x = 0. It is assumed to exist within the 
dielectric medium — no reflection loss at the interface at x = 0 is included. Propagation 
of time-harmonic plane waves in the x-direction is given by the factor 
 

e xktj )( ⋅−ω  
 
A well-known potential source of confusion is the difference between the physics and 
engineering literature in the form of the propagation factor. Many authors, especially in 
physics (eg. Jackson 1975), use the propagation factor 
 

e txki )( ω−⋅  
 
This difference affects the expressions for the complex dielectric and propagation 
constants, frequency domain expressions for filter transfer functions, etc. In this report, I 
have converted all expressions to the ejωt time-harmonic convention. 
 

2.1 Complex Relative Dielectric Permittivity and Wavenumber  

For comparison with other studies, the dielectric is assumed to be water. Initially, the 
Debye model was used. The Debye model describes the rotational alignment of the 
dipole moments of the polar water molecules using one or more relaxation times. A 
conduction term has been added to the model to account for the conductivity of the water 
sample used. In this model, the relative complex dielectric permittivity is given by 
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The dc to microwave response of water is well modeled by these parameters (Blaschak 
and Franzen 1995): 
 
 ε0 = 8.854 · 10-12  F/m,  
 εr∞ = 5.5 ,  
 σs = 1 × 10-5 S,  
 τ = 8.1 · 10-12 s, and  
 δε = 74.6. 
 
In the Lorentz model, the complex permittivity is given by (Oughstun and Sherman 
1994) 
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The polarization resonances that the Lorentz model is normally applied to are typically 
electronic polarizations, which occur at infrared frequencies. They do not model the 
rotational resonances in the microwave range. Laurens and Oughstun (1999) publish the 
parameters for a composite Rocard-Powles-Lorentz model of triply distilled water. They 
model the rotational polarization component of the dispersion by a first-order correction 
to the Debye model known as the Rocard-Powles component. The resonance polarization 
component, important for frequencies above 1013 Hz, is accounted for by the Lorentz 
component of the model. Since the frequencies where the Lorentz component is 
important are so high compared to the frequencies of interest in this study, the results for 
the two models are expected to be very similar. In the composite model, the complex 
permittivity is given by (Laurens and Oughstun 1999)  
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Again, a conductivity term has been added to their model, to better match the low 
frequency response of the deionized, but not triply distilled, water used in our 
measurements. In addition, a0 in the composite model was increased from 74.1 to 76.1 to 
give a better match of the real part of the relative dielectric constant. An overlay of the 
real and imaginary parts of the complex permittivity shown in Figures 1 and 2 illustrate 
that the two models (as modified) are very similar in the frequency range of interest – 
microwaves and below. In the computations that follow, the only difference between the 
results for the two models was slightly higher attenuation for the composite model, 
especially at high frequencies. The results shown will be for the Debye model. 
 
For both dielectric models, the complex wavenumber is computed as  
 

rc
ωk ε=  
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Figure 1. Real Part of Relative Dielectric Constant for Debye (solid) and Composite (dotted) Models. 

 

1 .10 5 1 .10 6 1 .10 7 1 .10 8 1 .10 9 1 .10 10
14

12

10

8

6

4

2

0

Frequency, Hz

Im
(R

el
at

iv
e 

Pe
rm

itt
iv

ity
)

 
Figure 2. Imaginary Part of Relative Dielectric Constant for Debye (solid) and Composite (dotted) Models. 
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2.2 Filter Design 

To obtain causal filter responses, standard analog filter design techniques were applied 
(Daryanani 1976). A Butterworth 3rd order low-pass prototype was chosen due to its 
reasonably well-behaved impulse response and good stopband performance. The lowpass 
prototype was then transformed into a bandpass filter with the desired band edges using 
the lowpass to bandpass transformation. 
 
Two filter bandwidths were used in this study. The frequency responses of these filters 
are shown in Figure 3. The goal of using the filters was to limit the bandwidth of the 
signal propagating through the dielectric without appreciably changing the signal pulse 
shape. Thus, most of the pulse energy needed to lie within the filter bandwidth. Both 
filters were centered on 435 MHz. A 10 MHz wide filter simulates the bandwidth of a 
radar-like signal of pulse width τ of 100 ns or greater. A 200 MHz wide filter simulates 
the extent of frequency content of a wideband or ultrawideband (UWB) signal, assuming 
that the RF carrier is in the VHF or UHF bands. The 10 MHz wide filter was designed to 
have less than 0.5 dB loss in the passband of 430 to 440 MHz and greater than 20 dB loss 
below 415 MHz and above 455 MHz. It exceeded the design requirements. The 200 MHz 
filter was designed to have less than 0.5 dB loss in the passband of 335 to 535 MHz and 
greater than 20 dB loss below 232 MHz and above 770 MHz. It met the design 
requirements in the passband. The stopband attenuation was slightly low — 16.8 dB at 
both points. A higher order filter could achieve both design goals, but this filter’s 
performance was considered adequate for the purpose of these calculations.  The 
Appendix shows the frequency domain transfer function of both filters. 
 
Figures 4 and 5 show the impulse responses of these two filters in the time domain. (The 
impulses occur at t = 10 ns so that the leading edge of their response could be seen 
clearly.)  Note slow rise corresponding to their bandwidth, slight overshoot, and small 
after-ringing. The filters are causal with appropriate time delays. Their effect on the 
actual probe signals used in the study will be shown in the next section.  
 
To address some of the concerns about low frequency content mentioned by Roberts 
(2002), it is desirable to have the same behavior in the simulation as frequency 
approaches zero as one would expect from a signal radiated from a realistic airborne 
antenna (Yaghjian 2003). Low frequency content depends upon the output spectrum of 
the transmitter and the ability of the antenna to radiate the longer wavelengths. Unless the 
transmitter is intended for ultrawideband operation (Taylor 1995), frequency content both 
above and below band will be suppressed by design.  If nothing else, the transmitter 
output power spectrum falls off at least as ω2 = (2πf)2 for ω → 0 if the stages are ac 
coupled. All antennas become electrically small at some point as frequency decreases. An 
antenna is considered electrically small when it can be contained in a sphere of radius a = 
λ/2π (Wheeler 1975). The limitations and behavior of small antennas have been studied 
extensively (Wheeler 1975; Hansen 1981; Wheeler 1983; Wheeler 1984; McLean 1996). 
The power radiated by a small antenna falls off as ω3 for ω → 0.  
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Since the pulse width of the gated sinusoids used in this study are not constrained to be 
an integral number of periods of the carrier, the unfiltered probe signals may have a dc 
component. For carriers widely separated from zero frequency in terms of the reciprocal 
of the pulse width, this component will be small compared to frequencies near the carrier. 
The filtered probe signals have had this component removed. As can be seen from the 
expressions for the filter transfer functions, both filters fall off as ω3 for ω → 0. 
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Figure 3. 10 MHz (dotted) and 200 MHz (solid) Bandpass Filter Frequency Responses 

 
An equal delay filter, such as the Bessel filter approximation, is potentially better than the 
Butterworth filter in this application; performance in the stopband is not as good, but the 
equal delay of frequency components in the passband and especially in the transition 
band would minimize distortion of the dispersed pulse shape (Blinchikoff and Zverev 
1976). In addition, a digital filter implementation could be used rather than simply 
calculating an analog transfer function. Future work may explore the use of these filters. 
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Figure 4. Impulse response of 10 MHz wide filter. 
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Figure 5. Impulse Response of 200 MHz wide filter 
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3.0 Results 

3.1 Probe Signals 

Two different signals were used to probe the response of the dielectric, corresponding to 
the two filter bandwidths. The signals were gated sinusoids — an RF carrier turned on at 
the beginning of the pulse and turned off at the end. The phase of the gated signal was not 
synchronous with the gate — the filter provides smoothing of the waveform at these 
points. The RF carrier frequency was chosen to be 435 MHz, at the center of both filter 
passbands. The long pulsewidth was chosen to be 1 µs. Most of its energy is contained 
within a 1 MHz bandwidth, so the 10 MHz filter has little effect on its pulse shape. The 
short pulsewidth was 10 ns long. Most of its energy was contained within a 100 MHz 
bandwidth. The 200 MHz filter changed its shape slightly. Figures 6 and 7 show the 
effect of the filters alone on the gated carriers.  In all of the following figures, the 
ordinate is time in microseconds, and the abscissa is the signal amplitude. The amplitude 
can be considered to be volts in a water-filled TEM transmission line, or volts per meter 
in water with a propagating TEM wave, unless otherwise noted. 
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Figure 6. 1 us signal filtered by 10 MHz (upper) and 200 MHz (lower) filters. Waveforms are offset by +/- 1.5 V. 
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Figure 7. 10 ns signal filtered by 200 MHz filter. 

 
 

3.2 Pulse Shapes at Various Depths 

Because the frequency components of the gated sinusoids travel at different velocities 
and are attenuated at different rates as they penetrate the medium, the pulse shape 
changes with depth. Figure 8 and Figure 9 show the leading edges of the 1 µs signal at 
depths of 1, 3, and 5 m in water, and Figure 10 shows the trailing edges. The lower 
sidebands of these signals contain energy that becomes an increasingly larger fraction of 
the total as depth increases. This is why the overshoot at the leading edge and the 
undershoot at the trailing edge increase as depth increases. (These signals also contain a 
small dc component, and, thus, could not be radiated exactly as shown. They are plotted 
for comparison with the following filtered results.) Analogous 10 MHz wide filtered 
signals are shown in Figure 11, Figure 12 and Figure 14. Precursors, although present, 
are not apparent on this scale, since the filter attenuates the low frequency energy that 
produces them relative to the main signal carrier. Figure 13 overlays the filtered and 
unfiltered leading edges at 5 m depth for comparison.   
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Figure 8. Leading edge of unfiltered 1 us signal at various depths. Baselines offset for clarity. 
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Figure 9. Closeup of leading edge of unfiltered signal at 5 m depth. 
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Figure 10. Trailing edge of unfiltered 1 us signal. Baselines offset for clarity. 
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Figure 11. Leading edge of filtered 1 us signal at various depths. Baselines offset for clarity. 
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Figure 12. Closeup of  leading edge of filtered signal at 5 m depth. 
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Figure 13. Comparison of filtered and unfiltered signals at 5 m depth. Baselines shifted for clarity. 
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Figure 14. Trailing edge of filtered 1 us signal. Baselines offset for clarity. 

 
Figure 15 shows the leading edge of the filtered signal after it has penetrated to a depth of 
20 m. The precursor is clearly visible, but its peak field value is extremely low – 
approximately 1.5 ·10-8 V/m. The pulse eventually reaches a steady value of 5 ·10-8 V/m.  
Notice that the period of oscillation of the precursor is longer than the driven oscillations 
at the carrier frequency later in the pulse. At 40 m, as shown in Figure 16 the carrier has 
disappeared, leaving only precursors at the leading and trailing edges. Again, these 
signals are at extremely low amplitude compared to the initial incident signal. No attempt 
was made here to include realistic noise levels, although that could certainly be done 
given the properties of the specific receiving system and noise environment. 
 
Figures 17 through 20 show similar results for the unfiltered and 200 MHz wide filtered 
10 ns pulse. In this case, the leading and trailing edges are both visible on the same plot. 
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Figure 15. Precursor on filtered signal at 20 m depth. 
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Figure 16. At 40 m, carrier has disappeared, leaving only precursors at leading and trailing edges. 
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Figure 17. Unfiltered 10 ns signal at various depths. Baselines offset for clarity. 

5 5.02 5.04 5.06 5.08 5.1 5.12 5.14 5.16 5.18 5.2

0.5

0

0.5

1

1.5

1 meter
3 meters
5 meters

Water, filtered signal

 
Figure 18. Filtered 10 ns signal at various depths. Baselines offset for clarity. 
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Figure 19. Closeup of 10 ns filtered pulse at 5 m depth. 
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Figure 20. Overlay of filtered and unfiltered 10 ns pulses as 5 m depth. 
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3.3 Energy Decay with Depth 

A function proportional to the total energy in the pulse versus depth can be calculated by 
summing the squared amplitudes of the frequency components at each depth. By 
Parseval’s theorem, this is the same as integrating the squared voltage as a function of 
time — the energy delivered to a 1-Ω resistor. This is sometimes called the 1-Ω energy. 
  
For the calculation of energy decay with depth, a third probe signal was used in addition 
to the two gated sinusoids discussed above. A unit impulse was synthesized in the 
frequency domain by assigning each frequency component the value 1 + j0, times a linear 
phase shift exp(-jωtd) to add a time delay td.  This signal cannot be radiated, of course, 
but it illustrates the x-1/2 depth dependence.  Two curves overlay in Figure 21: The 
calculated relative energy decay (solid), and an x-1/2 curve fit. The agreement is excellent.  
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Figure 21. Decay of 1-Ohm Energy of Unit Impulse. 

 
The 1-µs pulse is quite narrow band compared with the frequency dependence of the 
propagation factor. Thus, we would expect the energy decay with depth to be exponential 
— a straight line when plotted in dB — until the energy in the main spectral lobe 
becomes attenuated when compared to the low frequency sidelobes. At this point, the 
signal looks broadband, although it has been attenuated to a low level.  Figure 22 
illustrates the process. The attenuation is quite linear in dB (exponential in ratio) down to 
about 45 dB at 6 m depth. The rate of decay then slows considerably, reaching only 56 
dB at 20 m.   Figure 24 shows the spectrum at 8.5 m depth, near the knee of the curve. 
Because of the low-pass nature of the medium, the low frequency amplitudes are now 
comparable to the main signal. The energy content at low frequencies, that is, the integral 
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with frequency, is now higher since they occupy a broad spectral region at comparable 
amplitude. Thus, the low frequencies, with their lower attenuation, begin to dominate the 
response. 
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Figure 22. Energy Decay of 1 us signal, no filtering. 

 
Figure 23 shows the same plot for the unfiltered 10 ns signal. The knee of this curve 
occurs at a lower attenuation and shallower depth, since the signal is more broadband to 
start with. 
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Figure 23. Energy Decay of 10 ns signal, no filtering. 
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Figure 24. Spectrum of unfiltered 1 us pulse at 8.5 m depth. 
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Figure 25. Energy Decay of 1 us signal, with 10 MHz filtering. 

 
Notice in Figure 25, which is the 1 µs signal filtered by the 10 MHz bandpass filter, that 
the energy decay remains exponential, rather than algebraic, down to 20 m depth. 
Because of the filtering before propagation, the low frequency sidelobes have been 
supressed relative to the mainlobe at 435 MHz. Figure 26 shows the spectrum at the same 
depth and on the same scale as the unfiltered signal spectrum of Figure 24.  
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Figure 26. Spectrum of 10 MHz filtered 1 us pulse at 8.5 m depth. 
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4.0 Summary and Suggestions for Further Work 

 
This study investigated the propagation of electromagnetic transients in dispersive media 
numerically. It considered propagation in water using Debye and composite Rocard-
Powles-Lorentz models for the complex permittivity. In the microwave region and below, 
these models gave results that were both qualitatively and quantitatively similar. Standard 
filter design techniques were used to derive frequency domain filter transfer functions 
that were causal in order to avoid obscuring precursors due to the media by filter 
precursors. 
 
The results indicate that for water using these models with signals at UHF and below, 
precursors form at the leading and trailing edges of gated sinusoidal pulses. They are 
more strongly excited when the transient signal contains broadband energy at frequencies 
below the carrier. The energy in wideband signals including low frequency content 
decays algebraically with depth. The low frequency content does not need to include dc, 
but if it does not, a depth will be reached where the energy does decay exponentially. 
Narrowband signals decay exponentially with depth until the energy in the spectrum 
below the carrier begins to dominate the total energy. At that point, the behavior is that of 
the wideband signals discussed above. 
 
Three points should be emphasized: 1. The rate of decay of energy with depth is 
important, but the actual value of energy remaining is more important. 2. As Roberts 
points out, real systems have a noise floor. If the energy that makes it through the 
medium is less than the noise spectral density, the signal is not useful (unless it can be 
coherently integrated over multiple pulses). 3. Since the media under consideration are 
linear (although dispersive), energy is not transferred from one part of the spectrum to 
another. For greatest penetration, the energy in the initial signal should be concentrated in 
the passband of the medium. 
 
Further work could usefully include equal-delay filters to reduce distortion of the 
transient pulse, especially in the transition band. The filters used in this work, although 
causal and designed so that most of the energy was in the passband, did distort the probe 
signals slightly, as shown in Figures 6 and 7. As models for heterogeneous materials 
become available, transient propagation through these materials could be predicted. 
Finally, detection limits could be predicted by adding the appropriate noise levels to the 
calculated voltages.   
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