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Abstract 

This document describes a general protocol (involving both experimental and data analytic 
aspects) that is designed to be a roadmap for rapidly obtaining a useful assessment of the 
average lifetime (at some specified use conditions) that might be expected from cells of a 
particular design. The proposed experimental protocol involves a series of accelerated 
degradation experiments. Through the acquisition of degradation data over time specified by the 
experimental protocol, an unambiguous assessment of the effects of accelerating factors (e.g., 
temperature and state of charge) on various measures of the health of a cell (e.g., power fade and 
capacity fade) will result. In order to assess cell lifetime, it is necessary to develop a model that 
accurately predicts degradation over a range of the experimental factors. In general, it is difficult 
to specify an appropriate model form without some preliminary analysis of the data. 
Nevertheless, assuming that the aging phenomenon relates to a chemical reaction with simple 
first-order rate kinetics, a data analysisprotocol is also provided to construct a useful model that 
relates performance degradation to the levels of the accelerating factors. This model can then be 
used to make an accurate assessment of the average cell lifetime. The proposed experimental 
and data analysis protocols are illustrated with a case study involving the effects of accelerated 
aging on the power output from Gen-2 cells. For this case study, inadequacies of the simple 
first-order kinetics model were observed. However, a more complex model allowing for the 
effects of two concurrent mechanisms provided an accurate representation of the experimental 
data. 
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Experimental Design and Analysis for 
Accelerated Degradation Tests With Li-Ion Cells 

1. Introduction 

The purpose of this document is to provide a protocol for rapidly obtaining a useful assessment 
of the average lifetime (at some specified use conditions) that might be expected from cells of a 
particular design. Emphasis is placed on understanding typical cell behavior rather than 
quanti@ing the variation in performance from cell to cell. An understanding of cell-to-cell (or 
battery-to-battery) variation would be critical with regard to the development of warranty 
policies. However, one would need to test actual production cells to effectively develop such 
warranty policies. Thus, the focus here is on the capability of the cell design rather than the 
ability to produce homogeneous cells in large quantities. 

Due to the expected relatively long cell life and the need to rapidly assess cell lifetime, it is 
necessary to use accelerated degradation experiments as the means to estimate the average cell 
lifetime at normal operating conditions. Through the acquisition of appropriate degradation data 
over time, an unambiguous assessment of the effects of accelerating factors (e.g., temperature, 
charge/discharge cycles and state of charge) on various measures of the health of a cell (e.g., 
power fade and capacity fade) will result. Furthermore, it may be possible to construct a useful 
model that relates performance degradation to the levels of the accelerating factors. A good 
working model can be used to make an accurate assessment of the average cell lifetime. 

In one important sense, the assessment of the effects of aging rechargeable cells is more 
straightforward than with primary cells. In the case of primary cells, it is not possible to obtain a 
baseline performance measurement of a cell to be aged. Hence, one is only able to relate the 
performance of an aged cell to some distribution of baseline performance (see e.g., Weigand and 
Thomas (2002)). In the case of rechargeable cells, one can relate the performance of an aged cell 
directly to its own baseline performance. This is extremely valuable when the variability in 
baseline performance is non-trivial when compared to aging effects. 

It is important to have an effective and efficient experimental strategy for assessment of aging 
effects and developing accelerated degradation models. The experimental strategy 
recommended here involves a number of sequential stages. Initially, experiments might be 
performed to select viable accelerating factors. Follow-on experiments involving the selected 
factors would be used to obtain an accurate assessment of cell lifetime. 

In order to make an accurate assessment of average cell lifetime it is necessary to couple the 
experimental protocol with effective data analysis and modeling. The emphasis here is on 
accurate prediction rather than mechanism identification. The development of a good working 
model often depends on the skill of the modeler who is analyzing the degradation data. In 
general, there will be at best incomplete knowledge of the specific degradation mechanisms that 
are involved. Thus, a modeler must often construct empirical models. Such models should be 
relatively simple (meaning few parameters). The approach here is to rely on the experimental 
data to help specify a model form. The model form needs to provide a good representation of the 
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experimental data. Thus, some effort must be used to establish the quality of the model form. If 
the degradation phenomenon is related to a chemical reaction with first-order kinetics, it is 
possible to prescribe a data analysis protocol that is useful for making a prediction of cell 
lifetime with an associated estimate of uncertainty. 

1.1 Organization of the Document 

The remainder of this document provides details regarding the proposed experimental and data 
analysis protocols. Section 2 provides a summary overview of the protocols. A flowchart is 
used to indicate the sequence of activities that are needed to obtain useful estimates of cell life. 
Section 3 contains a detailed description of the various stages of the overall experimental 
protocol: screening experiments, primary aging experiments, and secondary aging experiments. 
Section 4 describes the proposed data analysis protocol. The protocol contains procedures for 
estimating the parameters of an accelerated degradation model based on first-order reaction 
kinetics. Methods for assessing model adequacy and estimating cell lifetime are also presented. 
Section 5 illustrates the use of experimental and data analysis protocols with a case study 
involving accelerated degradation of Gen-2 cells. Section 6 discusses future research activities 
that might improve the experimental and data analysis protocols. 

2. Summary Overview of Accelerated Life Test Protocol 

The purpose of this section is to provide a summary overview of the proposed protocol as well as 
a roadmap for using this document. The protocol is comprised of a number of activities that are 
summarized in the form of a list. Each activity is briefly described and referenced to the 
appropriate sections in the document that have relevant details. Accompanying this list is a 
flowchart (Figure 2.1). 

1. Design Screening Experiment to Identify Accelerating Factors - The purpose of 
performing a screening experiment is to select one or more factors (fi-om a candidate pool 
of factors) to be used as accelerating factors in the more extensive primary aging 
experiments that follow. This step is not needed if accelerating factors are known. See 
Section 3.1.1, 

2. Perform Screening Experiment to Identify Accelerating Factors 

3. Analyze Results from Screening Experiment - Select accelerating factors based on 
experimental data. See Section 3.1.2. 

4. Design Primary Aging Experiment - The objectives of primary aging experiments are 
to determine empirically the effects of the accelerating factors on cell performance and to 
provide useful empirical models of these effects over a local region of the accelerating 
factors. The empirical models developed from the primary aging experiments provide 
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5. 

6.  

7. 

8. 

9. 

the means to obtain a basic assessment of cell lifetime. Elements of the design process 
include selecting test levels for the accelerating factors and the number of cells to test at 
each experimental condition. See Sections 3.2 and 5.1. 

Perform Primary Aging Experiment 

Develop Accelerated Degradation Model - Develop a model relating the observed 
degradation over time of the selected performance metric(s) to the levels of the 
accelerating factors. The model should be able to extrapolate accurately in time at levels 
of the accelerating factors that are representative of use conditions. This process is 
generally iterative where each iterative cycle involves model specification, model fitting, 
and model validation. See Sections 4,4.1, 4.2, 5.1, 5.2, and 5.3. 

Predict Cell Lifetime Using Degradation Model - Using the degradation model, 
predict the point in time at which the performance of cells under some specified use 
conditions is degraded beyond a minimal acceptable level. See Sections 4.3, and 5.2.1. 

Assess Precision of Lifetime Prediction - See Section 5.2.1 

Design Secondary Aging Experiment - The general objective of secondary aging 
experiments is to clarify results from the primary aging experiments via additional testing 
and analysis. For example, if the prediction of mean cell lifetime is not sufficiently 
precise, then it may be necessary to age (and test) additional cells in order to improve 
precision. Additional testing could also be used to validate accelerated degradation 
models developed by using the data from the primary aging experiments. Se Sections 
3.3, and 4.4. 

10. Perform Secondary Aging Experiment 

11. Update Degradation Model and Life Predictions With Additional Data - Refine 
and/or modify degradation model. See Sections 4,4.1,4.2, 5.1, 5.2, and 5.3. 
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4 Analyze Screening Data - 3.1.2 
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Figure 2.1 - Flowchart for Assessing Cell Life Through Accelerated Degradation Tests 
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3. Experimental Protocol 

The overall experimental strategy could involve up to three sequential stages: screening 
experiments, primary aging experiments, and secondary aging experiments. The purpose of the 
screening experiments (which may or may not be required) is to select viable accelerating 
factors. One might opt to use screening experiments in cases when the cell desigdchemistry is a 
radical departure from existing designs such that accelerating factors are unknown. The primary 
aging experiments represent the kernel of the experimental strategy. These experiments involve 
known accelerating factors and provide the means to obtain a basic assessment of cell lifetime. 
The secondary aging experiments (which may or may not be needed) are used to improve the 
basic assessment of cell lifetime as well as validate accelerated degradation models that were 
developed from the primary aging experiments. If necessary, the precision associated with 
estimates of average cell lifetime may be improved by augmenting the primary experimental 
design with additional testing involving more cells and/or continued agingkesting of cells 
associated with the primary experimental design. 

Each of the three stages of the overall experimental strategy involve design and analysis issues. 
Many of these issues overlap across the three stages. For example, prior to proceeding with any 
experimentation, it is necessary to select a set of response variables that relate to the performance 
measures of interest (e.g., power and capacity). The set of response variables that is measured 
should be consistent over all stages of the experimentation. 

It is also important to understand the measurement capability of each of the response variables 
that is chosen. For example, in the case of benign storage conditions, there might be only a 
slight degradation in a cell’s performance over time. However, it is important to have the ability 
to resolve small changes in performance over time in order to develop accurate accelerated 
degradation models. Thus, it is critical that the measurement system be accurate, precise, and 
stable over time. Prior to beginning the aging experiments, it is necessary to have an 
understanding of the measurement capability associated with each of the response variables. 
This understanding can be acquired via a measurement capability study (see e.g., Speitel 1982). 

Finally, it is important to understand the degree to which the measurement of cell performance 
affects the degradation status of the cell. Ideally, the measurement should not contribute at all to 
cell degradation. In practice, however, the measurement process itself will inevitably cause 
some degradation. In general, a more aggressive performance test will lead to more degradation. 
On the other hand, a more aggressive performance test may provide a more sensitive measure of 
the degradation status of the cell. This tradeoff between sensitivity and degradation of the 
measurement process should be used to influence the selection of the particular performance test 
to be used. 

The rest of this section describes each of the three stages of the proposed experimental protocol 
in terms of specific objectives and desigdanalysis issues. 



3.1 Screening Experiments 

The purpose of performing a screening experiment is to select one or more factors (from a 
candidate pool of factors) to be used as accelerating factors in the more extensive primary aging 
experiments that follow (see next sub-section). The intent is to accomplish this with a minimal 
expenditure of resources. That is, a limited number of cells are to be aged for a relatively short 
period of time. One might opt to use screening experiments in cases when the cell 
desigdchemistry is a radical departure from existing designs. Otherwise, in cases where the 
important acceleration factors have been identified, one does not need to conduct screening 
experiments. 

3.1 .I Designing Screening Experiments 

Designing the screening experiment involves a number of considerations. Given that suitable 
response variables have been selected, the first goal is to select a candidate pool of factors. A 
good way to accomplish this is via a brainstorming session with a group of subject-matter 
experts. Criteria for selecting a factor for the candidate pool include the factor's perceived 
ability to accelerate performance degradation as well as the experimenter's ability to control the 
factor. It may not be necessary to include certain factors (such as storage temperature) in the 
candidate pool if it is known that they will be involved in the primary aging experiments. Once 
the candidate pool of factors has been fixed, it is necessary to select two level settings for each 
factor (denoted least and most accelerating). For the least accelerating level, one should choose 
a benign use condition. For the most accelerating level it is important to choose a level far 
enough away from the benign level such that there is a reasonable chance for observing 
accelerated performance degradation in a relatively short period of time. 

The literature contains a number of plans that specify the number and particular pattern of 
experimental conditions to be studied when the goal is to screen factors (e.g., see Box and 
Draper (1 987) and Box, Hunter, and Hunter (1 978)). These plans are often referred to as main 
effects plans. Two general families of plans are recommended here: fractional factorial designs 
and Plackett-Burman designs. Fractional factorial designs are recommended when there are 
seven or fewer factors in the candidate pool. Otherwise, in the rare instances where there are 
more than seven factors in the candidate pool, Plackett-Burman designs are recommended. 
Appendix A provides tables of fractional factorial designs for cases with three to seven candidate 
factors. Appendix B provides a Plackett-Burman design that can be used in cases where there 
are up to eleven candidate factors. 

Each table provides a list of experimental conditions. Each experimental condition is defined in 
terms of the settings of each of the factors ('-' denotes the perceived least accelerating level, 
while '+' denotes most accelerating level). In the case of the Placket-Burman design, to be used 
when there are from 8-1 1 factors in the candidate pool, an experimental condition is defined by 
using columns F1-F8 (8 factors), F1-F9 (9 factors), F1-F10 (10 factors), and F1-F11 (1 1 factors). 
It is recommended that at least two cells be randomly assigned to each experimental condition. 
The cells should be from a homogeneous production lot. 
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Following a sufficient time allocated for aging the cells, they should be removed from storage 
and tested. Separate analyses of the experimental results for each response variable are used to 
select accelerating factors to be used in the more extensive primary aging experiments. 

3.1.2 Analysis of Screening Data 

Using hypothetical results from a three-factor design with r replicates per experimental condition 
(see Table 2.1.1), the steps of analyzing the effect of a specific factor on an individual response 
variable are illustrated as follows. 

Table 2.1 .I - Hypothetical Results from Three-factor Experiment 

Experimental Factor#l Factor#2 Factor##3 Average Standard Deviation 
Condition 

1 + M1 S1 

2 + M2 s2 

3 + M3 s3 

4 + + + M4 s4 

of Response Response 
- - 

- 

1. Compute a pooled estimate of cell-to-cell standard deviation (within treatment) 
1 "  

n 1=1 

Spool = /-. S; , where n is the number of experimental conditions 

2. Estimate the main effect of each factor. Find the average difference between the response 
variable when a specific factor is at high level (+) versus low level (-). 

Factor#l : M.E.(l) = M? +M4 44 + M A  
2 

Factor#2: M.E.(2) = M2 + M ,  -(MI +M3)  
2 

MI + M ,  - (4 + M ? )  Factor#3: M.E.(3) = 
2 

3. Compute the least significance difference (LSD) for assessing factor effects. 

* 

, where r is the number of replicates (cells) per experimental 

condition. 
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4. Compare each estimated main effect with LSD. A main effect is statistically significant if it 
exceeds the LSD. 

5. Rank the statistically significant main effects. 

A list of the top ranked statistically significant factors should be developed for each response 
variable. If the lists are consistent across response variables, then the top ranked factors should 
be considered for use in the primary aging experiments. If the lists are inconsistent, some 
prioritization of the responses will be necessary. 

3.2 Primary Aging Experiments 

The objectives of primary aging experiments are to determine empirically the effects of the 
accelerating factors on the response variables of interest and to provide useful empirical models 
of these effects over a local region of the accelerating factors. The area of statistical 
methodology that relates to these objectives is response surface methodology (e.g., see Box and 
Draper (1987)). The empirical models developed from the primary aging experiments provide 
the means to obtain a basic assessment of cell lifetime. 

Designing the primary aging (response surface) experiment involves a number of considerations. 
Accelerating factors are selected based on the results of screening experiments or basic subject- 
matter knowledge. The levels of the accelerating factors also need to be selected. In general, it 
is recommended that 3 levels be selected for each accelerating factor. The levels should be 
uniformly spaced over an interval that is sufficiently wide to observe differences in effects 
between levels while not so wide such that the response is highly nonlinear across the levels of a 
factor. It is also assumed that the degradation mechanism is consistent across the range of factor 
levels and the use conditions of the cell. The least accelerating level of each factor should be 
chosen to be close to the target-use condition of the cell. The most accelerating level of each 
factor should be chosen to provide the maximum acceleration without changing the mechanism 
for degradation. In there is some question regarding where the mechanism change occurs, one 
might select four levels where the fourth level is used to explore in the vicinity of where the 
mechanism is perceived to change. 

Once the accelerating factors and associated factor levels have been determined it is necessary to 
specify the set of experimental conditions to be examined. With fewer than 4 accelerating 
factors, full factorial designs are recommended. Full factorial designs involve every possible 
combination of factor levels. For example, suppose that there are 2 factors each involving 3 
levels. Then there are 32 or 9 possible experimental conditions. In unusual cases where there are 
4 or more factors, other more complex designs are recommended. Chapter 15 in Box and Draper 
(1 987) provides a number of possible designs with a minimal number of experimental conditions 
to consider when the number of factors exceeds four. 

Once the experimental conditions have been specified, cells need to be allocated to each 
experimental condition. It is recommended that at least two (and preferably three) cells be 
allocated to each experimental condition. If available, 5-  10 additional cells should be allocated 
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to the least-accelerating conditions (perhaps representing use conditions) in order to help resolve 
small changes in performance over time. Such cells could be kept on test indefinitely to serve to 
validate predictions of cell life. Another important design issue is to select the times at which 
cells are removed from storage and tested. In order to minimize resource expenditures 
associated with testing, we recommend testing at intervals that are uniformly spaced in log time. 
For example, in the case of a 64-week study, we would recommend measuring cell performance 
at the following time points: 

(0 weeks (initial pre-aging), 2 weeks, 4 weeks, 8 weeks, 16 weeks, 32 weeks, 64 weeks} 

However, some flexibility to adapt the schedule should be maintained. For example, if after 8 
weeks it is determined that cells are aging more rapidly than expected one would want to 
measure cells more frequently. Conversely, a reason to measurehest cells relatively infrequently 
is that the testing (itself) may degrade cells (see Section 5.3). 

All cells should be measured prior to aging (0 weeks). However, it is not necessary to measure 
all of the cells at all of the other time points. For example, in the case of cells that are exposed to 
benign aging conditions it may not be particularly informative to acquire measurements early in 
the experiment since the degree of degradation may not even be detectable. Also, once a cell has 
degraded substantially beyond a certain performance level that reflects its useful life (see Section 
3.3), its continued degradation may be affected by unrelated degradation mechanisms. Hence, 
such additional data may not be useful for assessing cell lifetime. 

3.3 Secondary Aging Experiments 

The general objective of secondary aging experiments is to clarify results from the primary aging 
experiments via additional testing and analysis. For example, if the uncertainty limits associated 
with mean cell lifetime are not sufficiently precise, then it may be necessary to age (and test) 
additional cells in order to improve precision (see Section 4.4). Additional testing could also be 
used to validate accelerated degradation models developed by using the data from the primary 
aging experiments. Furthermore, one could use additional testing to assess whether performance 
degradation of a cell beyond its current performance state depends only on its current state and 
not how it reached that state (see Section 4.3). 

3.3.1 Improved Precision of Cell Life Estimate 

If the objective is to improve precision of the estimate of cell life, then it may be necessary to 
augment the primary aging data with data from additional cells to be aged. Section 4.4 gives a 
method for assessing the expected effect of agingkesting additional cells (under some specified 
aging conditions) on the uncertainty interval associated with mean cell lifetime. First, however, 
one needs to evaluate the current uncertainty of lifetime estimates and establish the needed level 
of uncertainty. 

Once the required level of uncertainty is established, the design issues relate to selecting 
experimental conditions at which to accelerate the aging of the additional cells. In general, the 
number of experimental conditions associated with the additional cells should be minimized. 
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The current model form should be used to guide the selection of levels associated with the 
accelerating factors. It is recommended that the secondary aging experiments follow a 2k full 
factorial design where there are k accelerating factors that are deemed to be important. The low 
level of acceleration used for each factor should correspond to the lowest level used in the 
primary aging experiment. The high level of acceleration used for each factor should correspond 
to the highest level used in the primary aging experiment that is consistent with the developed 
model, associated data, and perceived mechanism. In some cases, an intermediate acceleration 
level for a factor could be considered when a quadratic term is used for that factor in the 
developed model. 

Once the experimental conditions have been selected it is necessary to specify the testing 
scenario given by the number of cells to test at each experimental condition as well as their 
respective storage timedmeasurement intervals. Assuming that cell degradation approximately 
follows first-order rate kinetics with a single mechanism in a single aging environment, the 
method described in Section 4.4 can be used as a tool to evaluate various testing scenarios. 
Various scenarios can be compared with the tool. Once a satisfactory scenario has been found 
that will satisfy the precision requirement, it is selected for use in the actual experiment. 

3.3.2 Other Objectives 

1. Continue surveillance of cells under benign aging conditions to validate model. 

2. Start new cells under benign aging conditions to validate model, 

3 .  Modify storage conditions of current cells and monitor performance to assess whether 
performance degradation of a cell beyond its current performance state depends only on its 
current state and not how it reached that state (see Section 3.3). 

4. Some cells might be kept in reserve for validating the various aging models (or resolving 
inconsistencies) that result from the primary aging experiment. Such cells could be put on 
test any time after the initiation of the primary aging experiment. 
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4. Modeling and Data Analysis 

In general, a model relating the observed degradation of the response variables to the 
accelerating factors is needed in order to estimate the average cell lifetime. In order to provide a 
valid estimate of cell lifetime, the model should be able to extrapolate accurately in time at levels 
of the accelerating factors that are representative of use conditions. In general, a trained analyst 
who is familiar with the subject matter best performs the modeling process. This process is 
generally iterative where each iterative cycle involves model specification, model fitting, and 
model validation. The process is complete when the analyst is satisfied that the current model is 
sufficiently accurate for the conditions for which it is to be used. 

The general analysis process can be summarized as follows. 

1. 

2. 

3. 

4. 

5.  

Conduct pre-modeling exploratory analysis to identify structure and anomalies in data. 

Develop simplest model that adequately fits experimental data over the widest range of 
experimental conditions. 

Estimate model parameters with data restricted to experimental region that produces a 
consistent response to experimental conditions. 

Validate model and check for model inaccuracy with various diagnostics. 

Use fitted model to estimate mean cell lifetime (with estimates of uncertainty). 

It is important to emphasize that the validity of the results derived from the modeling process 
depends on assumptions that might be difficult to verify. While small deviations from the 
assumptions could have minor effects on the validity of results, large deviations could have a 
major impact. We are not concerned about small deviations from the assumptions as our 
ultimate goal is to have a useful working approximation of cell behavior. 

4.1 Accelerated Degradation Model 

In this document, it is not possible to enumerate all possibilities regarding accelerated 
degradation models. Rather, we choose to focus on a single model formulation that is general 
enough that it could be useful in a number of battery applications. Following Castellan (1 971), 
we assume a chemical reaction, A + Reaction Products, where the reaction is first-order with 

respect to A. Thus, the rate law is = k . [A], where [A] is the concentration of A, k is the 

rate constant, and t is time. If log(k) = Po + PI . - , where Tis the absolute temperature and p0 

and 

dt 
1 
T 

are parameters, then the Arrhenius model follows. That is, 
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,& is often referred to as the pre-exponential factor while the activation energy (EA) is given in 
t emsof f i  (i.e., E, =-Re/?,). 

In accelerated degradation experiments we might observe some measure of performance (such as 
capacity or power) over various storage temperatures and time. Let P(X; t )  denote a generic 
performance metric at X = T-’ and time, t. Following the Arrhenius model, we have 

There are a number of ways that this basic equation could be generalized with respect to the 
effects of time and additional accelerating factors. If we assume that there are “q” accelerating 
factors ( X ,  , X ,  , . . . , X ,  ) , we might consider models of the form 

4 4 

where,forexample, . f . (X~,X, ,  ..., x,)=Po+CpJ . X J  + C P J k - X J  . X k + z P J J  -XJ’. 
J=1 J +k J = I  

Here, f ( - )  is a quadratic response surface that can provide a useful approximation to any smooth 
function of the arguments of f ( - )  over some local region of interest. This approach is very 
common and useful when developing empirical models from experimental data (see e.g., Box 
and Draper (1 987)). 

The general form of the model can be re-expressed as 

where Z(.) is the value of the performance metric relative to its value at t = 0 .  By assuming that 
0 I P(X,  ,X2 , .  . ., X,; t )  I P ( X ,  , X ,  ,. . .,X,;O) , 0 I Z(X,,X,,. . . ,X,;t)  51.  Further, note that 

Z(X,,X, ,..., X,; t  = 0)  = 1 and Z(X,,X, ,..., X,;t  = a) = 0 .  

Further re-expression of equation (4) leads to 

Re-expressing equation (2) in this way leads to 

Re-expressing equation (3) leads to 



For a fixed value of p, the above re-expressions lead to models that are linear in the remaining 
parameters (p s). This is useful as linear regression with its associated theory and methods is 
applicable and can be used to make inference concerning the p s. 

4.2 Analysis of Accelerated Degradation Data 

The general model described in equation (7) of the previous section is used as a template for 
developing a specific model that represents the experimental data associated with a particular 
cell design. In order to develop a useful specific model, a number of issues need to be addressed. 
Foremost among these issues is the need to identify which of the potential predictor variables 

{ X j  , X ,  Xk , X ;  } 
Other issues include the estimation of p and the pS as well as defining the range of applicability 
of the model. 

contributes significantly to explaining variation in cell performance. 
J=l ...q; J<k 

The joint estimation of p and the pS is complicated, since the model is not linear in p. However, 
a simple two-step process can be used to resolve this complication. First, it is assumed that a 
valid metric for “fit quality” exists across values of p. For a fixed value of p, the pS can be 
estimated directly by linear regression. For each case of p (and the implied estimates of the pS), 
the “fit quality” can be obtained. Thus, one can compare model fits across values of p and select 
a value for p based on that metric. With p selected, the estimated ps are determined by linear 
regression. 

One natural metric for “fit quality” is 2 (kf - 2, , where 2, is the observed value of the 

normalized performance metric for the ith observation, and 2, is the predicted value of the 
normalized performance metric for the ith observation. For example, in the case of equation (6), 

1=1 

iL =exp [ -exp [ pO+pl.- * A L) t: ] , where BO, Bl, and pare  the parameter estimates, and T, and tl 

are the storage temperature and aging time associated with the ith observation. 

4.2.1 Accelerated Degradation Data 

At designated points in time (t), cell performance is measured. The experimental data consist of 
these performance data. It is assumed that the levels of the accelerating factors (XI, X ,  , . . . , X ,  ) 
are constant for a given cell, but vary from cell to cell. Let the initial measurement of the cth cell 
be denoted by P, (XI, X ,  , . . . , X ,  ;O) . Subsequent measurements of the cth cell at tl , t ,  ,.. . , tn(c) are 
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denotedby e , ( X l , X ,  ,..., X,;t,),P,(X,,X, ,..., X,;t2),..,,Pc(Xl,X, ,..., Xq;tn( , ) ) .  The 
performance of the cell at time t relative to when it was measured prior to aging is 

Assuming that better Performance corresponds with a larger value for the performance measure 
P, one would expect that 
1 > z, ( X I ,  X, , . . . , X ,  ; t,) > z, (X, , x, , . . . , X ,  ; t, 1, . . . , > z, (X, , x, , . . . , x, ; ) . 

For the analysis that follows, it is imperative that 2, ( X ,  , X ,  , . . . , 27,; t )  < 1 for all values o f t  that 
exceed 0. Observations where 2, ( X , ,  X ,  , . . . , X,; t )  2 0 are excluded from analysis. If no 
observations are excluded there are N = n(1) + n(2) + . . . + n(C) observations from C cells. So for 
the ith observation, the summary information consists of the cell (e,), the aging time (tJ, the levels 
of the accelerating factors (XI , ,XI2 , .  . . , X l q )  , and the 

4.2.2 Generalized Least-Squares Regression 

The computational aspects of linear regression are well known and can be found, for example, in 
Draper and Smith (1 98 1). Here, a generalization of linear regression (generalized least-squares 
regression, e.g., see Ripley 1981) is used to estimate the model parameters. This generalization 
is needed to accommodate the particular error structure that is present in the re-expressed aging 
data. 

To continue, refer to equation (7) and assume a value for p has been selected. Then 

Y (X,,  x,, . . . , X ,  ) = log factors out the effect o f t  resulting in 
tP 

To put this context of the experimental data set some additional notation is required. Let X,  be 
the level of thejth experimental factor for the ilh observation and let Y,  be the associated response. 
Then, 

* 
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where E, is a random error term that is added to represent variation due to cell-to-cell effects and 
measurement error associated with the ifh of N observations. Note than equation (8) represents 
the full quadratic model in the accelerating factors. In most cases, relatively few of the model 
terms will be used (e.g., see Section 5) .  Empirically, we have found that the variance of 

. The relative importance of cell-to-cell effects will depends on 2, via Vir(&,) = q2 cc ~ 

likely vary from experiment to experiment. That can be modeled by considering the covariance 
between 
not the ifh and hth observations are from the same cell. If the ifh and hth observations are not from 
the same cell, then COV(F, , E ~ )  = 0 .  If the ifh and hfh observations are from the same cell, then 
COV(E,, E,,) = il .ol . oh , where 0 I il I 1 . Let L2 consist of the N x N matrix with diagonal 

1 

l0g(Z1 ) 

and &h ( Cov(c,,ch)), where i f h . The form for COV(E,,E,,) depends on whether or 

when the ith and hth 
1 and off-diagonal elements Q,,, = il . ~. elements ~ 

1 / ) lodzh ) log(Z, ) 
observations are from the same cell and zero otherwise. The generalized least-squares estimate 
of the model parameters is given by the ( p  + 1) x 1 vector B = (X: !X1 Xfl)-' . X: . R-' Y , (9) 

where Xu is a N x ( p  + 1) augmented matrix of explanatory variables and Y is a N x 1 vector of 
responses. The first column of Xu is a vector of ones. Each of the otherp columns of Xu 
correspond to other model terms. Possible model terms include any of the q linear terms 

( X J > ,  * (' 2 - ') interactive terms ( X J  X, ), and q quadratic terms ( X: ) in equation (8). Thus, 

p L 2 . q +  

only a few of the model terms will be used. For example, if the X, term is included in the 
model, then one column ofX, is (Xll,X2, ,. . . , X N l ) 7  . 

(' - ') . Note that in many cases p will be much smaller than that upper limit as 
2 

It is advisable to iterate the estimation process once, where L2 is reconstructed with 

, where il = exp{- exp(x, /?inif)- t f}  , xi is the ith row of Xu and sifiif is the 
1 a) Val"(&,) = 0,' cc 

initial estimate of /?. The final estimate of P, based on (9) with the reconstructed L2 is Bfi,,, . 
Assuming that L2 is proportional to the unknown error covariance matrix, the covariance of 

Bflnfll is estimated to be Cov(8fi,,,) = (Xu' . E' . Xfl)-' - , where 

Note that in order to produce stable estimates of the model parameters it may be useful to center 
all columns (except the first) of Xu. This is particularly true if quadratic terms are used in the 
model (see, e.g. Draper and Smith (1981) pp. 488-489). 
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4.2.2.1 Analysis of Cell-to-Cell Effects 
In order to produce valid estimates of the uncertainty in the model parameters, i2 must be 
constructed with a value for A that is supported by the experimental data. A simple procedure to 
find a representative value for A is as follows. 

A 

X J - T  1. Compute normalized prediction errors over all observations: NPE, = 

2. Compute the standard deviation of the NPEi: oNpE(overaN) 

3. Compute the standard deviation of the NPE within each cell: oNpE(,) : c = 1 : numcells 

4. Compute overall within-cell standard deviation of NPE: 

2 - 2 
gNPE(overall) oAF'E-wrthni 

2 
Nf'E(overall/ 

5. Estimate A : = 

4.3 Estimate of Mean Lifetime 

It is assumed that the lifetime of a cell (denoted by trif) is the point in time at which its relative 
performance has degraded to a certain minimal acceptable level. Meeker, Escobar, and Lu 
(1 998) refer to this situation as a soft failure. This threshold level of performance will likely be 
application dependent. Here, for discussion, we assume that the threshold is defined in terms of 
Z from equation (4) as Zthresh. Then, for a static set of conditions associated with the 

- Xs-aP > I -  - log(zthre~h , x2 , * * ., xq)) 
t;e 

accelerating factors defined by x, = (XI, X 2  , . . . , X q  p, log 

where x,-= is the @+l) - dimensional vector of model terms derived from x,. An estimate of the 
mean cell lifetime at the specified set of aging conditions is given by 

log(- log(Zth'esh )I- . Taking p to be fixed, a measure of the uncertainty of 
P 

f,@ = exp 

the estimated lifetime is its approximate variance given by V ~ Y ( & ~ )  = Cfe xfa Cov(bpnal). xS-= . 
A 

If the estimation errors in PpnaI are assumed to be normal, then an approximate 95% confidence 

interval for the mean cell lifetime is f 2 . ,/-. 

The current experimental design and data analysis protocols can provide lifetime assessments 
that relate to the degradation of cells that age in a constant environment. In its actual use, a cell 
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may experience a wide range of environments. Thus, it is of interest to characterize cell 
degradation in a dynamic environment. For example, consider aging in a dynamic environment 
where T ( z )  and SOC(z) are the aging temperature and state of charge at time z. Let's assume 
that the performance degradation of a cell beyond its current performance state depends only on 
its current state and not how it reached that state (memoryless degradation). Also, let 
R(r; T ( z ) ,  SOC(z), 0) be the estimated rate of degradation (of relative power) at time z, where 
0 are the model parameters relating the rate of degradation to temperature and SOC. Following 
Chan and Meeker (200 I), the cumulative degradation at time t is predicted by the model to be 

5(t; T[O, t ]  , SOC[O, t ]  , 0) = fk(z; T(z) ,  SOC(z), 0) d z  , where T[O, t ]  and SOC[O, t ]  represent the 

paths of temperature and SOC over the time interval [0, f] . Therefore, the predicted relative 

power is i ( t ;  T[O, t ]  , SOC[O, tD = 1 - b(t; T[O, t ]  , SOC[O, f] , 0) . In the case of the model 

developed using data from static aging conditions, k(z; T(z) ,  SOC(z)) = ~ 2(z; T ,  SOC) . To 

assess whether the model developed for static aging is valid for dynamic environments, one 
would compare the power degradation that is observed experimentally over a variety of dynamic 
aging environments with the model predictions based on those same aging environments: 
b(t; T[O, t ]  , SOC[O, t ]  ,0) . Currently, methods for selecting the dynamic aging environments to 
be used for developing andor validating degradation models are unavailable and thus could be 
the subject for some valuable research. 

0 

d 
d z  

4.4 Augmentation of Primary Aging Data - Design Considerations 

If the uncertainty of mean cell lifetime is larger than desired, then it may be necessary to 
augment the primary aging data with data from additional cells to be aged (see Section 3.3). In 
this section we present a method for assessing the expected effect of agingkesting additional 
cells (under some specified aging conditions) on the uncertainty interval associated with mean 
cell lifetime. For this discussion some additional notation is needed. 

Let Xprimaly be the N x ( p  + 1) matrix of exploratory variables associated with the primary 
experiment. Each column of Xprimaly captures the N values of each model term. Let Xs,,,,daly be 
the A4 x ( p  + 1) matrix of exploratory variables associated with a proposed secondary experiment. 

In the case of the primary experiment, Var(f&) = f &  e XI. . COV(/?~~,). xza , where 

The expected outcome of augmenting data from the primary experiment with data from the 
proposed secondary experiment is to reduce the uncertainty in the model parameters and hence 
by association uncertainty in the mean cell lifetime. Let Xall be the ( N  + M ) x  ( p  + 1) matrix of 
exploratory variables associated with the primary and proposed secondary experiments. Let 
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pau(r) = exp{- exp(Xflll(q bBafll)-t$(,)}. For cells to be tested in the proposed secondary 

experiment f a / / ( i )  represents the proposed level of aging. Construct 52,, as 

a (N + M ) x  ( N  + M )  matrix with diagonal elements &I and off-diagonal elements 

when the ith and hth observations are from the same cell and zero 

otherwise. Then, 

F ' a ~ ( f ~ , ~ ~ )  = f& xzu * ((X: 52;; - X ,  j' &:e,5)* xfU. One can evaluate Var(f&) to assess whether or 
not the precision requirement is met. 

4.5 Other Modeling and Data Analysis Methods 

The modeling approach that is discussed here involves transforming the degradation data to be 
compatible with a linear model in the accelerating factors. The advantage of this approach is that 
it allows for the use of standard statistical linear models theory and methods for estimation and 
inference. There are a number of other approaches for modeling degradation data that are 
described in the literature. See, for example, Meeker and Escobar (1 998), Meeker, Escobar, and 
Lu (1 998), and Boulanger and Escobar (1 994). Often, maximum likelihood methods are used to 
estimate model parameters when a linear model is not plausible (see e.g., Meeker, Escobar, and 
Lu (1 998)). Bootstrap resampling methods can be used to develop confidence limits for model 
parameters and lifetime predictions in cases when the modeling process is complex (see Efron 
and Tibshirani (1 993)). 

5. Case Study - Gen2 Cells 

In conjunction with the Partnership for a New Generation of Vehicles (PNGV), the Advanced 
Technology Development (ATD) Program was initiated in 1998 by the U.S. Department of 
Energy Office of Advanced Automotive Technologies to find solutions to the barriers that limit 
the commercialization of high-power lithium-ion batteries for hybrid electric vehicle (HEV) 
applications. In 2003, this program was superseded by the FreedomCAR (Freedom Cooperative 
Automotive Research) program that seeks to develop fuel cell based hybrid-electric vehicles. As 
part of this effort, the ATD Program is supporting the PNGV in the development of lithium-ion 
batteries for hybrid electric vehicles (HEVs). A major goal of this work is to determine the 
mechanism(s) of power fade and develop methods for predicting the life of lithium-ion batteries 
in the HEV environment. The ATD Program has been evaluating the performance of lithium-ion 
cells in support of this goal. Experiments were performed to investigate the effects of 
accelerating factors on the performance of 18650-size cells. 

Here, we discuss the primary aging experiment only. A screening experiment of the type 
described in Section 3.1 was not performed (temperature and state of charge were identified as 
the accelerating factors). [The effects of cycling on cell performance degradation was not 
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included in this test due to insufficient number of cells.] Based on the results of the primary 
aging experiment, it was concluded that a secondary aging experiment was unnecessary. 

Two analyses are described here (the first in Section 5.2 and the second in Section 5.3). The first 
analysis (based on aging data that were acquired within the first 32 weeks of the study) uses the 
model framework and methods that were described in Section 3.2 and is based on aging data that 
were acquired within the first 32 weeks. The second analysis seeks to correct inadequacies 
apparent in the first analysis as well as incorporate additional aging data (acquired through 44 
weeks). The second analysis involves a model that allows for two concurrent degradation 
mechanisms. 

5.1 Experimental Design (Primary Aging Experiment) 

The primary aging experiment involved two accelerating factors (storage temperature and state 
of charge). The experiment involved four levels for storage temperature and three levels for state 
of charge. Four levels of storage temperature were selected, as it was not clear (before the 
experiment was performed) at what point the degradation mechanism changes. A full factorial 
design involving all possible twelve experimental conditions was selected. The amount of 
replication varied from 3-5 cells per experimental conditions (see Table 5.1). Use conditions are 
well represented by the 25OC @ 60% state of charge condition. Here, more replication was 
introduced at the most highly accelerated conditions. Note that in future experiments we would 
opt to have more replication at the least highly accelerated conditions. 

Table 5.1 Replication at Each Experimental Condition 

25 degrees C 35 degrees C 45 degrees C 55 degrees C 

60% State of Charge 3 3 3 3 

80% State of Charge 3 3 3 5 

100% State of Charge 3 3 5 5 

5.1.1 Testing Details 

Prior to being placed in the isothermal temperature chambers, baseline performance tests were 
conducted on each cell. These reference performance tests (RPTs) were used to quantify the 
capacity, resistance, and power of each cell (PNGV Battery Test Manual, 2001). During aging, 
the cells were clamped at an open-circuit voltage corresponding to 60%, 80%, or 100% SOC and 
underwent a once-per-day pulse profile. These RPTs were repeated every four weeks and the 
experiment continued up to 44 weeks. Measurement of cells that had experienced 50% or more 
power degradation (e.g., 55OC @ 100% state of charge) was discontinued prior to 44 weeks. 
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The Low Current Hybrid Pulse Power Characterization (L-HPPC) test consists of a constant- 
current discharge and regeneration pulse (to simulate capture of energy by “regenerative 
braking” of automobile) with a 32-s rest period in between, for a total duration of 60-s. The 18-s 
constant-current discharge pulse is performed at a 5A rate. The 10-s regeneration pulse is 
performed at 75% of the discharge rate (i.e., 3.75 A). This profile is repeated at every 10% 
depth-of-discharge (DOD) increment, with a 1 -hour rest at OCV at each DOD increment to 
ensure that the cells have electrochemically and thermally equilibrated. All of the L-HPPC 
testing was performed at 25°C regardless of the aging temperature. The power fade metric used 
was derived from the HPPC test results and projects the power capability at the 300 Wh available 
energy value. 

The PNGV minimum power goal for HEV batteries is 25 kW at 300 Wh available energy. This 
equates to about a 23% cell power fade when the appropriate power margins and scaling are 
applied. Thus, a cell’s lifetime is defined to be the point at which 77% of the cell’s original 
power remains. 

5.2 First Data Analysis - Following 32 weeks of Aging 

The analysis of the experimental data generally follows the discussion in Section 4.2. Here two 
model forms were considered. First, a global model that depends on the two accelerating factors: 
storage temperature and state of charge was considered. That is, 

Y ( X 1 , X 2 ) = p 0 + p I . X I + p ? . X 2 ,  where 

XI = T-’ (Tis the storage temperature in degrees Kelvin), X2 is the state of charge (SOC), and 

It was determined that the global model inadequately 

represented the experimental data. Thus, local models (specific to each state of charge) were 
developed. These models are of the form 

Y ( X )  = Po + pl . X , where X = T-’ . Following the procedure outlined in Section 4.2, the effect 
of varying p on the quality of the model fit was investigated. Here we don’t iterate the 
estimation process and we assume that A =O (see Section 4.2.2). Figures 5.1, 5.2, and 5.3 show 
how the overall model fit varies as a function of p. Thefit quality was examined at 101 
uniformly spaced values of p from .5 to 1.5. The ‘optimal’ values for p were found to be 1.08, 
1.00, and .88 for the 6O%, 80%, and 100% SOC cases, respectively. From a statistical 
perspective none of these values are significantly different than that obtained with p = 1. Thus, 
for simplicity, the additional analyses described here use p = 1 and the model 

Using the method described in Section 4.2.2.1 there was very little correlation detected among 
prediction errors from same cell. Thus, we disregard the minor correlation by setting A = 0 in a. 
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Table 5.2 presents the parameter estimates and associated standard errors of the paramete1 
estimates in parenthesis for each of the three cases: 60%, go%, and 100% SOC. 

0 
0.5 1 

P 

r'igure 5.1 -Fit Quality versus p for 60% State of Charge 
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Figure 5.2 - Fit Quality versus p for 80% State of Charge 
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Figure 5.3 -Fit Quality versus pfor 100% State of Charge 



Table 5.2 Estimates of Model Parameters (with standard errors) 

Estimated Activation 
Energy: &A = -R . a, bo (;Bo) bl 

I I I 

60% SOC 10.85 (.21) I -4 .83~10~ (1.5~10’) I 9.7 kcal per mole 
I I I 

80% SOC 15.72 (.56) -6.26~10’ (1 3x1 0’) 12.5 kcal per mole 
I I I 

100% SOC 12.13 (.40) -4.99~1 O3 (1 .3x102) 10.0 kcal per mole 

Figures 5.4,5.5, and 5.6 illustrate how the data in terms of =log -logjf(X1))}, relate to the 

fitted model 
{ 

= bo + 4 . X ,  , where X ,  = q-’ for each state of charge. A solid straight line 
denotes the fitted model. An asterisk denotes each experimental observation. In general, the 
models represent the experimental data reasonable well. An exception is the apparent 
inconsistent performance of the cells stored at 45 degrees C storage in the case of 80% SOC. 

Figure 5.4 - Composite Arrhenius Plot for 60% State of Charge 

29 



(Degrees K)-I x 1 0 ' ~  

Figure 5.5 -Composite Arrhenius Plot for 80% State of Charge 

Figure 5.6 -Composite Arrhenius Plot for 100% State of Charge 
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Figures 5.7,5.8, and 5.9 illustrate how well the observed relative power (Z,) relates to the fitted 

model that gives predicted relative power (2, = exp - exp Po +a, .- .t, ) for each state of 

charge. Different symbols are used to denote the storage temperature associated with each 
observation. The solid line ofidenti@ is used to facilitate the comparison of observed and 
predicted relative power. 

Some deviations from the models are apparent. For example, in Figure 5.7 (60% SOC), the 
predicted relative power for each storage temperature seems to exhibit a parabolic pattern about 
the line of identity. That is, predictions associated with early time (e.g., week 4) and late time 
(e.g., week 32) generally exceed the actual power that is observed. On the other hand, the 
predictions associated with mid time (e.g., 20 weeks) are generally less than the measured 
relative power. This effect is consistent for cells stored at each of the four storage temperatures 
(particularly in the case of the 55 degree C data). Despite this effect, the model relates 
reasonable well to the experimental data and is useful for obtaining a good estimate of mean cell 
life. 

{ i '  3 1 

Also, in Figure 5.8 (80% SOC), it is clear that the 45 degree C data are inconsistent with the 
model and the data associated with the other storage temperatures. Perhaps the poor fit 
illustrated in Figure 5.8 relates to the inconsistent estimate of activation energy in the 80% SOC 
case. 
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Figure 5.7 - Predicted versus Observed Relative Power for 60% State of Charge 
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Figure 5.8 -Predicted versus Observed Relative Power for 80% State of Charge 
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Figure 5.9 -Predicted versus Observed Relative Power for 100% State of Charge 
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5.2.1 Estimate of Mean Cell Lifetime 

Here the method for estimating the mean cell lifetime (descrihed in Section 4.3) is applied to the 
GEN-2 accelerated degradation data. The threshold performance is defined to be Z,,, = .77. 
The target storage temperature and SOC are 25O C and 60%, respectively. Thus, we use. the 
model specific for SOC=60% with x = [l (273 + 25)-']and p = 1. The estimated mean cell 

. x r  .Covkfim,). x = 3.7, so that an approximate 95% confidence interval for the 

mean cell lifetime is ?l# f 2.4-j = 55.1 f 3.7 weeks. On a related note, Figure 5.10 
presents the estimated average power fade versus time with associated 95% confidence limits. 

It is interesting to construct a model with p = 1.08. Then an approximate 95% confidence 
interval forthe meancell lifetime is 

there is very little to distinguish these two cases of p in terms of quality of fit. This unaccounted 
for uncertainty in p means that the uncertainty limits are narrower than they should be. 

* 2 . ~ ~ ) = 5 1 . 1 + 3 . 4 w e e k s .  BasedonFigure 5.1 

Tirne(weeks) 

Figure 5.10 -Estimated Power Fade versus Time (with 95% confidence limits), 60% State 
of Charge, 25' C ( ~ ~ 1 . 0 0 )  
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5.2.2 Augmenting With Additional Cells 

In the case of this experiment, the uncertainty in cell lifetime is sufficiently small such that no 
additional cells were needed. Note that one could use the methodology described in Section 3.4 
to evaluate the potential benefit in testing additional cells to reduce the uncertainty of the average 
cell lifetime. 

5.3 Second Data Analysis - Following 44 weeks of Aging 

The various predictive models that were developed were applied to the additional power fade 
data. Figure 5.1 1 displays the 25' C / 60% SOC model (red solid line) overlaid with the 
observed power fade measurements through 44 weeks of aging (blue asterisks). Power fade 
measurements taken after 32 weeks did not influence the model building. It is clear that these 
later measurements are not predicted particularly well by the model. This provides the 
motivation for additional modeling efforts regarding the SNL data. However, it is important to 
note that the power fade model displayed in Figure 5.1 1 proved to be reasonably accurate 
(through 52 weeks of aging) in the case of Gen2 cells aged at 25O C and 60% SOC at INEEL. 
Evidently the reference performance tests conducted at SNL were somewhat more degrading 
than the tests conducted at INEEL. 

Time (weeks) 

Figure 5.11 -Estimated Power Fade and Observed Power Fade versus Time, 60% State of 
Charge, 25' C ( ~ ~ 1 . 0 0 )  
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With the additional data through 44 weeks it is clear that the model defects discussed in Section 
4.2 are important. Therefore, the second modeling effort is concerned with those defects. The 
overriding philosophy of this modeling effort is to seek a single model that operates over a wide 
(and clearly understood) range of temperature and SOCs. Desired characteristics of the model 
include simplicity (few model parameters) and high fidelity in regions where high fidelity is 
required. High fidelity much beyond the point of degradation that defines cell lifetime (23% 
power fade) is not a high priority. 

The model building process included the following steps. First, the time dependence of power 
fade was investigated. In particular, graphical analyses were performed in order to determine a 
transformation of time (via a time exponent) that linearizes the relationship of power fade with 
transformed time. The slope and intercept of the linear relationship were estimated for each 
aging condition as determined by temperature and SOC. Next, the estimated intercept and slope 
were modeled as a function of temperature and SOC. Regions in the temperature / SOC plane 
where the estimated slope and intercept are consistent with simple models were identified, 
Finally, a global model of power fade (as a function of temperature and SOC) was developed 
based on forms of the slope and intercept models and the experimental data within the consistent 
regions in the temperature / SOC plane. 

5.3.1 Time Dependence of Power Fade 

Figure 5.12 illustrates the relationship between relative power and time in the case of 60% SOC 
for the various aging temperatures. Graphical analysis, investigating various fractional powers 
of time as potential transformations, was used to determine a transformation of time (0 that 
linearizes the relationship of power fade with transformed time for all aging conditions. This 
analysis led to the selection of p = 3/2 as a useful transformation. Figures 5.13, 5.14, and 5.15 
illustrate the utility of t3'* as a linearizing transformation over all states of charge and 
temperatures. Although this relationship breaks down when the power fade exceeds 40%, good 
model fidelity is maintained well beyond the point of degradation that defines cell lifetime. For 
purposes of visual reference, solid lines are overlaid on the data to indicate the quality of the 
linearizing transformation. 
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Figure 5.12 - Relative Power versus Time (60% State of Charge) 
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Figure 5.13 - Relative Power versus Time3'* (60% State of Charge) 
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Figure 5.14 - Relative Power versus Time3” (80% State of Charge) 
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Figure 5.15 -Relative Power versus Time3” (100% State of Charge) 
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5.3.2 Generalized Model of Power Fade 

Motivated by the observed time dependence, a general model form for power fade is 
Z(t;T,SOC) = A(T,SOC) - B(T,SOC).t”*, where Z(t;T,SOC) is the relative power of a cell 
(compared to its initial state) after aging the cell at temperature (2) and state of charge (SOC) for 
time t 2 4weeks. Appropriate forms for A(T,SOC) and B(T, SUC) were determined by the 
analysis that follows. By d e f ~ t i o n ,  Z(O;T,SOC) = 1 .  The difference between Z(O;T,SOC) and 
A(T,SOC) , represents the cumulative effect of a relatively rapid degradation process that 
depends on T and SOC. Apparently, this rapid degradation is nearly complete within 4 weeks. 
Concurrently, there is a second degradation process that is operating at a much slower rate. The 
relative power lost in this second process is represented by - B(T,SOC) . t3” .  

In order to make this model form useful, we need to develop models that reflect how the 
intercept (A)  and the slope (B)  vary over the aging conditions given by temperature and SOC. 
For each aging condition (and limited to cases where the observed power fade is less than 40%), 
a robust regression procedure was used to estimate the slope and intercept of the observed time 
dependence. The robust regression procedure is based on minimizing the SM of the absolute 
value of deviations about the fitted line rather than minimizing the sum of the squared deviations 
about the fitted line (least squares). Thus it is relatively unaffected by discordant experimental 
data. Figures 5.16 and 5.17 illustrate transformations of the estimated values of the intercept and 
slope versus the various aging conditions. 

5~ ! 

1 . 5 3 ~  3.1 3.2 3.3 3.4 

(Degrees K)-’ x 1 O3 

Figure 5.16 - Logit(A) versus UTemperature and SOC 

38 



-7.5 ~ 
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Figure 5.17 - Log (B) versus UTemperature and SOC 

As seen in Figure 5.16, the logit transformation provides a useful means to represent the 
relationship between the estimated intercept (A) and the various aging conditions. The logit ofA 

is log( A). A useful property of the logit transformation (that facilitates the modeling 

process) is that it maps an input (like relative power) that varies in the interval (0,l) to the real 
line (- 00,oo). In general, the estimated intercepts associated with the 60% SOC and 80% SOC 
data relate well to the model that is represented by the solid line in Figure 5.16. That is, 

log( L) = a, +a ,  .- . The clear exception is the 35' C data (which exhibit some behavior 

that is not understood - see the staircase degradation in Figures 5.13, 5.14, and 5.15). 
Nevertheless, it is considered that all of the 60% and 80% data are consistent in the modeling 

1 
1 -A T 

exp a, +al .- 

1 + exp( a, + a, . +) sense. Note that the inverted logit transform is A = ( 3 
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In terms of the estimated slope ( B ), a useful model is given by log(B) = bo + bl . - + b2 . SOC , or 

B = exp bo + bl - + b2 - SOC . Figure 5.17 illustrates the utility of this model for the portion of 

the temperature / SOC plane that is within the dashed rectangle. The parallel lines (one per 
SOC) added for visual perspective and superimposed on the B s indicate that the effect of 
temperature on the B s is consistent across SOCs. The fact that the parallel lines are roughly 
equidistant supports the linear dependence on SOC that is provided through b2. 

1 1 L 

Substituting the expressions for A and B into Z(t;  T ,  SOC) = A(T, SOC) - B(T, SOC) . t3'2 yields 

This global model, involving five parameters (ao, U I ,  bo, bl, and bz), is valid within the region 
defined by 60% SOC (25'C to 55OC), 80% SOC (25'C to 45'C), and 100% SOC (25OC to 
35OC) and for t 2 4 weeks. . The model parameters were estimated by robust nonlinear 
regression using data within the aging conditions identified and further restricted such that 
observations with power fade exceeding 40% were omitted. Estimates of the model parameters 
are: 8, =-21.01,8, =7.585x1O3,i0 =4.0387,6, =-3.547xlO3,andi2 =.01331. 

Figures 5.18 and 5.19 illustrate the degree to which the model (solid line) represents the 
observed % power fade (symbols). Note that %Power Fade = 100 - (1 - Z) . 
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Figure 5.19 - YO Power Fade versus Time: 80% SOC 
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Statistical analysis of the additional power fade data has led to the development of a general 
power fade model (involving dual concurrent degradation mechanisms) that is applicable over a 
range of aging conditions. Degradation associated with the first mechanism is relatively rapid 
and appears to be substantially complete within four weeks. For SOCs between 60% and 80%, 
the degradation is very consistent and appears to be driven solely by temperature. At 100% 
SOC, the degradation is more severe and has a different temperature dependence. The second 
mechanism exhibits degradation that is proportional to t i ~ n e ~ ' ~ .  [Note that it was also observed 
that the area specific impedance (for a fixed aging condition), on which the power calculation is 
based, is also proportional to time3/2.] This mechanism appears to be consistent within the region 
defined by 60% SOC (25OC to 55OC), 80% SOC (25OC to 45OC), and 100% SOC (25OC to 
35OC), i.e., over 75% of the test conditions. The global model that was developed provides a 
very accurate representation of the observed power fade data to the point where 60% of the 
original power remains for all 60% SOC and 80% SOC aging conditions except for 55OC at 80% 
SOC. Beyond 60% power fade, the model does not predict well. This could be due to 
consumption of reactants. In any event, there is little current interest in understanding power 
fade beyond 60%. A similar approach could be applied to capacity fade or any other metric of 
cell performance. 

As illustrated in Figures 5.18 and 5.19, the model applies to degradation beyond 4 weeks of 
aging. The time dependence of this early degradation is unknown based on the absence of RPTs 
between 0 and 4 weeks. The following experiment could provide some significant insight 
regarding the nature of the rapid temperature-dependent degradation of Gen2 cells that was 
observed. 

Choose a single SOC (60% or 8O%), three aging temperatures (say 
25C, 40C, and 55C), and 3 cells per temperature. After measuring the 
power of the nine fresh cells, subject them to isothermal aging and re- 
measure the power after (0, .5, 1,2,4} weeks of aging. Analysis of 
the aging data would provide the time dependence of power fade 
during the first 4 weeks of aging. 

6. Summary and Future Work 

This document discusses experimental design and data analysis protocols for accelerated 
degradation experiments in the context of Li-ion cells. These protocols should provide the 
necessary tools for a scientist to estimate (at a practical level) the average cell life that might be 
expected from a new design so long as cell degradation approximately follows first-order rate 
kinetics with a single mechanism in a single aging environment. While the experimental 
protocols are generally applicable, the data analysis protocols do not necessarily relate to other 
degradation kinetics. 

Motivated by inadequacies of the simple first-order rate model when applied to data through 44 
weeks, an improved model with two concurrent degradation mechanisms was developed. While 
the general applicability of this model has not been determined, the method by which it was 
developed should have general use for predicting life of rechargeable batteries of various 
chemistries. 
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We plan to expand this work to include protocols for other kinetics models. It would be useful to 
explore the other effects that multiple mechanisms might have on the observed degradation data. 
It then would be useful to develop experimental protocols and other diagnostic procedures that 
would allow an analyst to detect the presence of multiple mechanisms. Finally, it would be 
useful to further develop protocols (experimental design and modeling) that facilitate modeling 
multiple mechanisms. 

The current experimental design and data analysis protocols can provide lifetime assessments 
that relate to the degradation of cells that age in static environments. In its actual use, a cell will 
experience a wide range of environments. 
degradation of a cell beyond its current performance state depends only on its current state and 
not how it reached that state may be overly simplistic and grossly incorrect. Thus, it is of interest 
to characterize cell degradation over dynamic aging conditions. Currently, methods for selecting 
the dynamic aging environments to be used for developing andor validating degradation models 
are unavailable and thus could be the subject for valuable research. Furthermore, if degradation 
in dynamic aging environments is found to be complex, additional effort will be required to 
develop useful degradation models. 

In addition, assumptions that the performance 
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8. APPENDIX A - Fractional Factorial Designs 
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Treatment 
Combination 

Factor#l Factor#2 Factor#3 Factor#4 

1 - - - 

3 
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- I +  - I +  

6 

7 

8 

+ - + - 
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+ + + + 



Table 8.3 - 5 Factor Design 

Treatment Factor#l Factor#2 Factor#3 Factor#4 
Combination 

1 - + 

4 - + + 
5 + - - - 

6 + - + - 

7 + + - + 
I I I I 

8 + + + + 

Factor#5 

+ 

+ 

Table 8.4 - 6 Factor Design 

+ - + - + 6 

7 + + + - - 

8 + + + + + + 
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Table 8.5 - 7 Factor Design 

- I  
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9. APPENDIX B - Plackett-Burman Design 

Treatment 
Combination 

Table 9.1 - Plackett-Burman Design 

F 1 T T F4 F5 F6 F7 F8 F9 
, 

-I- + + + + 
+ + 

+ 

+ 
+ I +  3 + 

1 -  4 + + 'ir If 6 + + 

t + 
+ 

I -  9 t t t 

I -  10 + t + + 
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1 -  12 
+ I -  - t t + 
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