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Abstract 

This report is  a  collection of documents written by the group  members of the Engineer- 
ing Sciences  Research  Foundation (ESRF), Laboratory Directed  Research and Development 
(LDRD) project titled “A Robust,  Coupled  Approach to Atomist,ic-Continuum Simulation”. 
An  essential  requirement of this project is to develop  definitions  for  continuum quantities 
that can be evaluated  locally  within an atomistic region. We are developing  physical  mea- 
sures of stress, deformation  and temperature that  are calculable  in an atomist,ic simulation 
and have  well-defined  meanings  when evaluated  in the continuum  limit. During the course 
of FY02, we reviewed  many  articles  presenting the use of definitions of stress in atomistic 
simulation. The key articles were  identified and summarized  via internal documents. 

Keywords: stress; atomistic simulation;  continuum  mechanics;  virial  theorem; crystal; free 
surface;  Cauchy stress. 
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Chapter 1 

Introduction 

This  report is a collection of documents written by the group members of the Engineer- 
ing Sciences Research Foundation (ESRF), Laboratory Directed Research and Development 
(LDRD)  project titled “A Robust, Coupled Approach to Atomistic-Continuum Simulation”. 
With  the growing focus on predictive modeling and  simulation,  Sandia  must develop the 
capability to model deformation and failure in multiple scale settings. We are developing 
a  robust  approach to coupled atomistic-continuum simulation,  capable of both quasi-static 
and finite temperature/dynamic analyses. Sandia  currently does not have this simulation 
capability. Our methodology will simulate systems at finite temperatures correctly, which 
involves the transfer of energy from the continuous spectrum of vibrations in the atomistic 
region to  the  separate modes of a scalar temperature field and long elastic waves  in the 
continuum. Current schemes  in the  literature make no attempt  to differentiate between 
the exchange of thermal  and elastic energy. A comprehensive framework is being created 
to relate the dynamic motion of atoms  with the kinetics of a  continuum.  Our approach 
will introduce high-fidelity physics to capture nano-scale processes, while using continuum 
mechanics to model the elastic deformation for the majority of a  system  with micro-scale 
dimensions. 

An essential requirement of our work is to develop definitions for continuum quantities 
that can be evaluated locally within an atomistic region. Currently,  continuum variables 
are only defined in terms of equilibrium thermodynamics. The  instantaneous, individual 
atomic  contributions to these averages do not have the same physical interpretation  as  the 
corresponding point-wise continuum quantities. We are developing physical measures of 
stress, deformation and  temperature  that  are calculable in an atomistic simulation and have 
well-defined meanings when evaluated in the continuum limit. 

The first task required for the success of this project was a  thorough study of current 
definitions of stress, deformation and  temperature used in atomistic calculations. During the 
course of FY02, many  articles were  reviewed, and  the key  ones  were identified and summa- 
rized via internal  documents.  This  report is a collection of those  documents.  Chapter 2 draws 
a correspondence between the atomistic  and continuum viewpoints of defining a  boundary 
value problem. Chapter 3 presents a critical review of the virial theorem, the first defini- 
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CHAPTER 1. INTRODUCTION 

tion of stress for an atomistic  system that has physical meaning within a thermo-mechanical 
continuum. The theorem was simultaneously developed  by Clausis [l] and Maxwell [2, 31 
to quantify the stress or pressure field applied to fixed  volume of energetically-interacting 
particles. Chapter 4 discusses the article by Cheung and Yip [4], a notable  paper that pre- 
sented the consequences of misusing the virial theorem to define a local measure of Cauchy 
stress.  Chapter 5 summarizes the works  by Lutsko [5] and Cormier et al. [6]. These articles 
attempted  to define continuum fields  in terms of atomistic variables, albeit  with  moderate 
success. Chapter 6 reviews the formulation of Robert J. Hardy, who makes a similar attempt 
as Lutsko and Cormier et dl. This formulation was found to be preferable to all previous 
works, although the  current version cannot  be used  for all types of interatomic  potentials. 
The project group members are in the process of determining if combining Hardy’s method 
with Eringen’s micropolar elasticity [7] would generalize its usage. Chapter 7 reviews Erin- 
gen’s methodology for completeness. 
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Chapter 2 

Correspondence of atomistic  and 
cont inuurn boundary value problems 

2.1 Describing  material  motion 
A “motion” is a Lagrangian construct where a fixed  reference configuration is  mapped by a 
time-dependent  function xt, the  “motion”,  to  the configuration at any time t. A “flow”, on 
the other hand, is an Eulerian construct where any configuration at time s is mapped  to  the 
configuration at  time t by the function 4t,s called the “flow”. If the motion is invertible a flow 
can be  constructed 4t,s = xt o x;’. Likewise, a motion for which the reference configuration 
is the initial configuration is obtained by Xt = +t,o 

In  a  continuum, the mapping function xt can  be applied to a reference position vector 
anywhere within the domain, and  maps  it to some new  value in the continuous deformed 
configuration. For a  particle assemblage, the position vectors can only take on  discrete values 
corresponding to particle positions for both  the reference and deformed configurations. 

2.2 Correspondence of continuum  and  atomistic bound- 
ary value problems 

Let’s examine three nested classes of motions: 

Class A. Globally polynomial : 

where C ,  is an  nth order constant  tensor, 

Class B. Smooth : 
no Burger’s vectors and all derivatives akx, i = 1 ,2 ,  .. exist, 
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CHAPTER 2. CORRESPONDENCE OF ATOMISTIC AND CONTINUUM 
BOUNDARY  VALUE PROBLEMS 

Class C. General 

Any  homogeneous deformation of a body is an example of a first order Class A motion i.e. 
C, = 0, n > 1. “Pure”  beam  bending is an example of a second order Class A motion. Given 
a  bounded  domain  and the Stone-Weierstrass theorem, Class B motions can  be  approximated 
by Class A motions using, say, a Taylor  series. Question : can Class B boundary  value 
problems (BVPs)  be  approximated by Class A problems? 

Although it is not clear how to compare stresses in continuum to forces in an  atomistic 
simulation, it is always possible to compare the corresponding motions. This leads to  the 
idea of “equivalent” problems, where the same motion results given the same prescribed dis- 
placement boundary  conditions, side-stepping the atomic force-continuum stress  relationship 
for the moment. A plausible conjecture is that only problems with no length-scale and self- 
similarity with scaling would  have “equivalent” continuum and  atomistic  representations.  A 
further conjecture is that all of the problems in Class A fall into  this category, i.e. they have 
“equivalent” representations. 

So why do we care?  First of all, we would  like to have an idea of when a continuum 
solution is also a atomistic  solution  and we would  like to make a correspondence between 
atomistic  material behavior and continuum constitutive models. 

To get a sense of what forces are  generated by the deformation induced by a motion 
governed  by the balance laws (typically balance of linear and  angular  momentum  and con- 
servation of mass),  an  atomistic model of material looks at  the relative motion of atoms 
currently neighboring a particular  atom; on the  other  hand, a continuum model of mate- 
rial looks at the derivatives of the motion at a point of interest  (in fact only certain parts 
of the derivatives affect the stress e.g. local rotations  do  not change the  strain energy of 
a hyperelastic material). These models can be seen to  be  extracting similar information. 
For example, both formulations are insensitive to zeroth order Class A  motions, i.e. rigid 
displacements. Furthermore, nearest neighbors lead to finite difference, i.e. discrete approx- 
imations, of the gradient of the local motion and, conversely,  higher order gradients of the 
motion carry more information about  the neighboring deformation state i.e. torsion  as well 
as  rotation  and  stretch of material (as well as smoothness requirements). 

There  are  distinct differences between the models too. In atomistic models the use of 
nearest neighbors leads to  the definition of a (non-local) region surrounding the point of 
interest from which information is drawn.  Without information from neighbors in a region 
of a certain minimum size, the particles cannot  interact  and response of the particles  as 
a  material  cannot  be modelled. This is  unlike a continuum point for  which the limit as 
a neighborhood shrinks to a point  exists, at least for classical theories like hyperelasticity. 
Nevertheless, in both paradigms a first order approximation of the motion in the constitutive 
model relating  deformation to force  is  sufficient to generate higher order motions e.g. classical 
linear elasticity which only depends on the (symmetric part of the) first order gradient  admits 
pure bending and more complicated global motions. 

For atomistic models, we can expect convergence of kinematic (and hopefully kinetic) 
measures, e.g. strain,  as  the neighborhood shrinks for smooth enough (i.e. Class A) motions 
up  to  to a minimum neighborhood where not enough information is being sampled (which 
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2.2. CORRESPONDENCE OF CONTINUUM AND ATOMISTIC BOUNDARY VALUE 
PROBLEMS 

usually corresponds to  the neighborhood over  which the force interactions  are defined). The 
polynomial order of motion for the particular  BVP  together  with the  type representation 
used  for the kinematic measure determine the  rate  and limit convergence. In an analogy 
with finite elements (which are effectively discrete chunks of material), we  see  for pure 
beam  bending  with linear elements convergence to  the exact solution but  with  quadratic 
elements an exact  representation of the motion determined by the BVP. So if the atomistic 
kinematic measure incorporates enough neighbors to reconstruct the global motion in that 
neighborhood and  the forces generated  depend  on that deformation, it can be  then  put into 
correspondence with some continuum material model for a  material region undergoing an 
equivalent motion. Note that  this hypothetical kinematic measure might have no effect  on 
the solution of the atomistic  BVP and, like  most that we’ve seen, may be merely a post- 
processing of the atomistic solution. 

So, the measure/s we choose to make the correspondence between the atomistic  and 
continuum BVPs, if it is not the motion, will determine how the corresponding constitutive 
models are  related.  In this vein we discussed the various types of continuum  constitutive 
models used to represent metals: 

0 Point: only local information (and first derivatives) are used to determine  material 
response e.g. elasticity. 

0 Neighborhood: inhomogeneous  fields in neighborhood are sampled for the constitutive 
response, but no dislocations are modelled. 

0 Discrete dislocation: sufficiently low populations of dislocations exist so that there  are 
not enough to generate  a reasonable “density” of dislocations, and dislocations are 
individually represented. 

0 Dislocation density : a  net Burger’s vector for the neighborhood exists and phenomeno- 
logical dislocation dynamics are employed. 

Phenomenological : e.g. classical plasticity with  “plastic” gradient to represent irre- 
versible motions. 

The idea being that  the correspondence between atom  and  continuum might require using 
an continuum model with more information than  the classical “Point”  type.  This may not 
be true for motions restricted to Class A. 
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Chapter 3 

A Critical Review of the Virial 
Theorem 

3.1 Mean  stress  theorem 

For a continuum body occupying region fl and  in equilibrium : 

where CT is the Cauchy stress, p is the mass density, b is the body force, and 8, = &. The 
mean  (Cauchy)  stress, a, is  given  by 

by  way  of the divergence theorem and  the definition t = un, where n is the outward unit 
normal. A similar but more complicated expression can be derived for a continuum body 
that is not in equilibrium 

where the first term  can  be recognized as twice the tensor Kn whose trace is the kinetic 
energy K, for the region. 
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CHAPTER 3. A  CRITICAL  REVIEW OF THE VIRIAL THEOREM 

3.2 Virial  theorem 
The equations of motion (Newton's Law)  for a system of particles { a = l . .N} are 

where m" is the particle's mass, x" is its position and F" is the force acting on it.  With 
manipulation (3.3) becomes 

After  taking a (long) time average for the set { a  = 1,2,  ..., N }  

where (g maz (2" €4 x") 
d T N  d ) := lim $1 Em"% (x" @xx") d t  = 0 

T-+W 
ff=l 

is assumed. This  assumption is based on constant  particle masses and  the idea that  the 
system will  have a bounded total momentum-position dyad E:==, m"x" @ x" far in the 
future (as  it does in the beginning t = 0) so that 

Practically  speaking, the size of the time  interval [0, T ]  must be much larger than  the differ- 
ence  in the  total momentum-position dyad at the end-points for this to  be  true. 

Now, with forces split  into  those  internal to  the system and  those  external, (3.5) becomes 

I N  \ I N  \ 

after recognizing the LHS as twice the tensor K N  whose trace is the kinetic energy, K N ,  of 
the system. The  internal forces result from the interatomic  potentials and  can  be  written 
F:nt = - d x a U ~ ,  where U, is the potential energy for the system (which depends  on the 
configuration of the system and  the inter-atomic  potential).  Equation (3.6) is known as  the 
dyad form of the classical virial theorem. Clausius' original work [l] used the  dot product 
instead of the dyad product,  and connected the  time average term containing the  external 
forces to a measurable pressure used to contain a volume of gas at finite temperature.  The 
dyad form appearing in (3.6) was first done by  Maxwell [2, 31 at approximately the same 
time  as  Clausius' effort. 
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3.2. VIRIAL  THEOREM 

Assuming that all Fezt results from continuum surface tractions (i.e. b = 0) and  the 
same argument regarding total momentum-position dyad holds for (3.2), it is possible to 
compare (3.6) 

with a reduced form of (3.2) 

(Vas) = 2 (KO) + (i, @ xdu) 

Now, formally at least, d F  = t,da and so it's possible to relate  terms in the atomistic  and 
continuum expressions. If the naive correspondence between the kinetic energies' 2 (KN) FZ 

2 (Kn) is made, and  the external forces are considered comparable x,"=, F:z!32t @ x") FZ 

It follows that 
\ 

\ a=l 
This  departs from traditional derivations which  seem to have the obvious inconsistency that a 
dynamic version of Newton's momentum balance is used for the particles but a static version 
of the linear momentum balance is  used  for the continuum. (This  disparate  treatment may 
be justified, in part, by the fact that  an atomistic  system  has  momenta associated with 
the continuum  quantity  "temperature".) Also this derivation obviates the  quandary of the 
type of boundary condition seeming to define the stress  quantity being measured e.g. with 
frictionless boundaries only spherical stress  tensors  result. Clearly, the  boundary conditions 
do still affect the motions but in actuality  the material response due  to U N ,  which can be 
interpreted as  strain energy, determines the mean  stress. 

Now, say the same procedure was not applied to  an impermeable material region but  to 
a  spatially fixed "box". Unfortunately, 

is not necessarily zero since and 2 do not commute. However, recognizing this ex- 
pression as  the  "(internal) generatlon" term of a discrete transport theorem : 

total change in set = generation within set + flux into  set . (3.8) 

'This correspondence may be scale dependent  and require modification to distinguish macroscopic kinetic 
motion from microscopic thermal  motion, see Chapter 6.  
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CHAPTER 3. A CRITICAL  REVIEW OF THE VIRIAL  THEOREM 

Since no acceptable densities can be defined, a  rate form of (3.8) is  difficult to construct; 
consequently 

makes sense, where (Fmp> is the long time average of the flux of momentum-position dyads 
m" (x" €3 x"), but a flux rate Fmp has only a formal definition. For bounded systems, the 
left hand side of equation (3.9) equals zero. So, the creation of momentum within the  spatial 
region, i e .  a non-zero  value  for (C,,, ma$ (x" €3 x")), has to be balanced by the flux 
- (.Tmp>. With  this in hand, 

results. 

3.3 Comments 
The virial theorem provides the oldest,  and most frequently used, expression for relating 
forces and motion within an atomic system to a continuum stress. As we have noted in 
this  chapter,  it does contains several deficiencies. The virial theorem only relates continuum 
properties to time and ensemble  averages of system properties; the stress expression devel- 
oped has no clear physical meaning at a  arbitrary point in space and  time. Some ambiguity 
exists with regard to how boundary conditions affect the form of the derived stress expres- 
sion. Also, the naive correspondence between atomic and continuum kinetic energies  may 
be scale dependent  and may be problematic for a dynamic continuum at finite temperature. 
Nevertheless, the virial theorem remains the yardstick by  which other expressions for stress 
are measured. All other derived formulations for stress will be expected to yield the virial 
theorem's behavior for the  appropriate limits of space and  time averaging. 
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Chapter 4 

Stress Expression of Cheung  and Yip 

4.1 Cauchy's tetrahedron 

'By a simple geometric argument, Cauchy derived a  stress  tensor 0 from a surface traction 
vector t ( t  is admitted a priori). 

Take the integral  statement of the balance of linear momentum for a tetrahedral material 
region 7 

L p ( v  - b)dV = tdA s,, 
where p is mass density, v is  velocity and b is body force. Orient 7 so that three of the 
faces  have outward normals in the cardinal directions ei, i = 1..3 and  the  fourth face has  an 
outward normal n, so that 

where S is the  area of the face with normal n ( and tn denotes the  traction vector on the 
surface S with normal n). To be brief, as  the  tetrahedron is made smaller the LHS of 
(4.1) remains bounded since all functions are assumed continuous and limiting expression is 
obtained 

where (e)* represents the mean value of the respective integrand  and h is the height of the 
tetrahedron  to  the S face.  Recalling a @J b c = a(b . c ) ,  it follows that 

i i i j  

lThe development in this section follows class notes from the course taught by P.M. Naghdi at U.C. 
Berkeley. 
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CHAPTER 4. STRESS  EXPRESSION OF CHEUNG AND YIP 

where crij are  the components of u, which can be shown to be tensorial i.e. transform 
correctly with change of coordinates. Clearly, Equation (4.3) is the familiar t = un  and, 
furthermore, it shows that  the stress tensor u can be represented by the  traction vectors on 
three independent (in this case orthogonal) planes. 

4.2 Cheung  and  Yip’s  stress  expression 
Seemingly  in the spirit of Cauchy’s construction,  Cheung and Yip [4] develop an expression 
for stress based on the “time rate of change of momentum flux across a  surface”.  This surface 
is  fixed in space unlike the material surfaces in (4.1) and  Cheung and Yip’s expression for a 
stress measure 

r 

is immediately restricted to pair potentials.  (Spatial regions are a necessity  given that 
material surfaces are  hard to define in particle systems.) The expression (4.4) appears 
without a derivation and a  number of oddities are  embedded in it. First of all, it refers to 
a single surface S ,  not  three as in Cauchy’s developments, with outward normal n and area 
A. Second, the first term in (4.4) is summed over the set of particles C that cross S over a 
time interval of length At and  the second term is summed over different set of particles P ,  
(unique) pairs that have  force interactions across S at a unspecified time. The sets C and P 
can be  very  different depending on the magnitude of v nAt versus the typical interaction 
distance. (In  fact, for some of Cheung  and Yip’s examples C is empty.) The first term is 
obviously  some measure of momentum flux and  the second term  can be recognized as 

where F,p is the pair force  between atoms Q and p. Cheung  and Yip explain the - 
coefficient as a term  that gives the contribution of F,p the same  sign as Fop relative to  the 
outward normal n. In essence, the second term of (4.4) is 

(..,P)€P+ 

where the sum is  now  over the set P+ of oriented pairs, composed of atoms Q on the inward 
side of the surface that have pair interactions with atoms ,B on the outward side. 

If At is  allowed to go to its infinitesimal limit, and  the assumption is made that  the set 
C coincides with the set P+, the expression takes the form 

r 1 
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which, after employing Newton's 2"d and 3'd laws,  becomes 

1 
2A 

(7 = -- 

This is an  odd result indeed, 
surface are  counted with a -1 

r 1 

for no other reason than  the forces  for pairs  straddling  the 
factor and all the others  with -4 factor 

A more rational expression could be derived by  employing Cauchy's methodology for a 
finite tetrahedral region 77 in the atomistic particle system. There is a  small concern since 
material surfaces such as  the boundaries of 7 7  are  not easily definable in  the particle system; 
however, at any instant  a  spatial surface coincides with some material surface. So, the mean 
value  in the finite tetrahedral region of a Cauchy-like stress u could be  related to  the traction 
vectors derived from  solely from the sources of momentum i.e. the  potential forces 

on the  three  orthogonal bounding surfaces Si, with related  sets F':, using u = tei €3 ei; 
however, it's doubtful that  this measure would transform tensorially with change of basis ei. 

4.3 Comments 
Although the effort exerted by Cheung and Yip to derive an expression for stress based ' 

on considerations of internal forces and  momentum flux is admirable, the end product, 
equation (4.4), is ill-suited for the point-wise calculation of stress  within an atomic system 
during molecular dynamic or static simulation. For such a  calculation, the  spatial planes 
discussed are difficult to define. The construction of their expression is ad-hoc and does not 
conform to any standard continuum formulation. In  addition, the factor of "1/2" used  for 
the momentum term in (4.4) is suspect as  its origins are not explained, and  the factor is 
missing in earlier work  by Tsai [8]. 
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Chapter 5 

Atomistic-Continuum  Formulation of 
Lutsko and  Cormier et al. 

5.1 Particle mechanics 

For a system of N particles with positions x" and  momenta p a ,  the Hamiltonian, or total 
energy, 

H = -pa p a  + @(X") 
1 

2ma 
cy 

is composed of the usual kinetic and  potential energies. The resulting  equations of motion 
are 

1 
ma 

X" =z aPmH = -p" (5.1) 
0" = -a ,=~=  -axma 

the second of which  is identical to Newton's First Law or Lagrange's formulation for a system 
of particles. Note that  the superposed dot represents the time derivative of the  quantity for 
the particle, not  a position in space. 

Implicit in this formulation is a (trivial) conservation of mass 

for the whole system, and  (redundant) balance of angular momentum 

xa x ( p a  + a,=@) = 0 

for individual particles. So there  are no natural analogues to  the corresponding balances in 
a  continuum. 
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5.2 Cormier's  formulation 
Cormier [6] and Lutsko [5] choose to define the momentum of the system  as 

p = p"6(x - x") 
a 

where &(x) is the Dirac delta "function". Its  spatial Fourier transform, i.e. transform from 
x space to k wave vector space, is 

dx  exp(zk. x)p = pa exp(zk. x") 
" 

where s2 is the  extent of the whole system  and should be infinite for a classical Fourier 
transform. An integral  transform is necessary for any manipulation  due to  the  delta  function; 
alternate  integral  transforms exist e.g. the wavelet transform.  The  time derivative of p is 

p = p a  exp(zk x") + pa exp(zk. x")zk. x". 
cy 

Substituting  Hamilton's  equations of motion (5.1) for the particles and factoring out  the 
exponential function  leads to 

--axa@ + (zk. 
ma 

With  the assumption that  the system potential is composed of pair potentials 

where x@ is defined as  the magnitude of 

the first term in (5.2) becomes 

dq5"P  dx"P dx7@ exp(zk - xY) = -- 
dx"P dx? 

exp(zk e xY) 
Y Y ff PZ" 

- - (exp(zk x") - exp(zk xP)) . 
dxaP x"P " P#" 

Now since 
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expression (5.2) becomes 

(Y 

Cormier et al. and Lutsko make a formal statement of the balance of linear momentum, 
ignoring body forces, for the "continuum" composed of the system of particles 

where u corresponds to  the Cauchy stress  and p is the material time derivative of p i.e. 
p = &plXa the derivative following the particles not &PI, the  partial holding the position 
in space fixed. (In the continuum 

1 

where 8,p is a second order tensor acting,  i.e. a 8 b c = a (b - c ) ,  on the vector Ip. This 
clearly begs the question: what is the density p for the system of particles. ) 

P 

In the transform  domain {k, t } ,  this balance becomes 

Proceeding under the assumption that  the (non-linear) convective term of the material 
derivative is negligible, i.e. small motions, it is possible to match  terms  with (5.3) and 
get an expression for the Fourier transform of stress 

+ (exp(zk. xa:)-por 1 8 pa) . 
CY 

ma 

(The necessity of this assumption to derive the above expression escapes both Lutsko and 
Cormier.) Transforming back to  the  spatial domain {x, t }  requires a trick. Following  Cormier 

exp(zk - x") - exp(zk. xp) 1 ) = & / dk { 1 ds exp(-zsk. x"') exp(-zk (x - x")) zk * xffP 

r l  
= - jo ds S(x - xQ - sx"') 
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The  interpretation of (5.4) is a function that is  only  non-zero  on a line segment connecting x" 
and x b .  Interestingly enough this is an  artifact of the Fourier  inversion trick, other contours 
are possible as suggested by  Schofield and Henderson [9]. So the stress in the  spatial domain 
is 

1 

0 = (z -*zap (1 ds S(x - xff - SX"~))  8 e) (5.5) 
dx@ Xffb x"b 

This "local" expression for stress  still suffers  from singularities due to  the Dirac delta 
and non-local character  due to  the integral. So an average stress is put forward based on a 
averaging volume, say a  ball BT of radius T ,  

where l a p  is the fraction of the pair bond, i.e. fraction of the line segment between x" and 
x p ,  inside the ball B, . Literally, 

1 

= Lv 1 ds S(x - xQ - sxUb) 

which  is similar to expression formed  by other  authors, notably [lo]. 

energy expression 
Lutsko goes  on to make the  statement  that  the "local" stress (5.5) is derivable from an 

1 1 1 

e(x) = -pa p"S(x - x") + $"p (1 ds  S(x - X" - S X " ~ )  
2m" 

a a P#" 0 

by means of 
a = & e  

where E seems to correspond to  the (continuum) Lagrange strain tensor.  This is a formal 
claim at best,  due to  the fact that  the deformation gradient for the atomistic system is not 
given a complete definition and it is the second  Piola-Kirchhoff stress, and not the Cauchy 
stress, that is dual to  the Lagrange strain. 
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5.3 Comments 
Lutkso’s derivation of continuum stress for an atomistic  system is noteworthy because it 
connects atomic  properties of mass and  momentum  directly to a standard formulation of 
continuum mechanics and derives an expression for continuum  stress that is  defined at  an 
instant  in  time for either a specific point in space or a localized volume centered at such a 
point. The shortcomings of his  work  were not in the concept, but  rather  in  the implementa- 
tion. He used an incorrect form  for the balance of linear momentum, p = 8, u. Even the 
most optimistic  interpretation of this expression as &p = 8, u results in a expression that 
is not truly equivalent to Cauchy  stress u, but  rather  the combined quantity of CT - pv @ v. 
In addition, his use of Dirac delta functions and Fourier space require that  the continuum 
exist  over all physical space, making the validity of the resulting stress expression question- 
able for a  bounded  system. Cormier et al. [6] note this feature as well, but  do not suggest 
alternatives  during the derivation of their own stress expression. One such alternative is the 
approach by Hardy, to be discussed in the next chapter. 
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Chapter 6 

Atomistic-Continuum  Formulation of 
Robert J. Hardy 

6.1 Review of continuum mechanics 
We can consider a  continuum  body B to go from some original, reference configuration at 
time zero, Bo, to a new configuration at a  later  time t ,  Bt. A  material point on Bo is described 
by the vector X ,  and  its location on Bt at a later  time t is  given  by the transformation 
x = x (X ,   t ) .  Any property of the system  can be described by a field variable which  is 
dependent upon time and  the  material point at which it is being evaluated.  Either the 
reference position of the material point or the current position can  be used. The choice of 
the former is the Lagrangian or Material description. For a field variable A, A = A(X,   t ) .  
The  time variation of the variable A is expressed as  a  time derivative: 

. dA BA(X,t) 
dt at 

A=- -=  

Alternatively, the field variable can be expressed as  a function of time and  the current position 
of the material  point, A = A(x(X,  t),  t )  = A(X,   t ) .  This description of the  material is  known 
as  the Eulerian or Spatial description. Since the  spatial position x is  itself a  function of time, 
the time derivative can only be  obtained using the chain-rule: 

2 d A  dA(x,  t)  dA(x,  t)  dx A=-- -= 
dt 

. -  
at + ax a t .  

The  quantity is the velocity v of the material point at x ,  and so 

where 
d 

r- 
x - ax' 
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In  some of the  literature, $ is  known as the  partial  time derivative while $ is  known as  the 
full  or material  time derivative and is  also often expressed as E. One example of the above 
expression is the calculation of the acceleration a of the material  point at x, 

. d v  d v  
d t  d t  

a = v = - = -  4- v * axv 

One property of the body B that does not change with  time is its  total mass mB = m B o  = 
mBt. This fact can be used to relate the density of the body in the reference configuration 
po with the current  density p.  Consider, 

Here, d V  is the volume  for a differential element in the reference configuration while d V  is 
the  the volume  for the same element in the current configuration. They  are  related by the 
relation d V  = J d V ,  where J is the determinant of the deformation  gradient  tensor F = E. 
Thus, 

and 
Po = PJ.  

This  relation  can be used to express the conservation of  mass at a point in B. Since po = 

Po (X) , 
- -o=--  dPo - d ( P J )  dP d J  
d t   d t   d t   d t  

- -J + p-. 

Using equation (6.1) , 

It can be  shown that (g + v . & J )  z (ax . v)  J ,  so the above expression becomes 

and since J cannot be equal to zero, then 

dP 
- + a x  * ( p v )  = 0. at 

Equation (6.6) can also be stated  as 

dP - + p d x . v = O  
d t  
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using equation  (6.1). 

A similar mathematical exercise can be used to derive Reynold’s transport theorem, 
which states  that for any quantity I(t) which describes some aspect of the body Bt and is 
defined as  the integration of some density $(x, t) over the body’s volume, 

the time derivative of I can be shown to be 

d l  
- = / (5 + 8, -(#v)) dV. 

84 
dt Bt 

We observe that for the case  where I = mBt  and 4 = p, equation (6.6) is recovered. 

We can also consider the linear momentum of B,  making I = JBt pvdV and qi = pv.  The 
material  time derivative of the linear momentum of a  body is, by Newton’s 2”d law, the sum 
of all forces acting  on that body. Thus, 

EF = Lt (y + 3, -(pv 8 v)) dV. 

For the continuum  body B, the forces exerted on that body come in the form of body forces 
b acting per unit  mass and  traction  acting on the surface of the body, 

(6.10) 

where rt is the surface that encloses the volume Bt. Applying the divergence theorem to  the 
second  half of the RHS of equation (6.10) yields 

which, when combined with  equation  (6.9), produces 

(6.11) 

As  in the case for mass density, in order to insure a balance of momentum  density for any 
material  point  in Bt, the above equation becomes 

(6.12) 
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Using equation (6.1), the material point-wise balance of linear momentum is more commonly 
expressed as 

dv 
p t = a X * ~ + p b .  (6.13) 

A similar analysis can  be performed on the time derivative of the  total energy of the 
system Et. This  total energy is comprised of body  integration of potential energy ii, kinetic 
energy and  thermal energy t^ densities, 

(6.14) 

The  quantity Et is only altered by the work done by surface traction  and  body forces, and by 
the flux of heat  into or out of the body’s surface. By applying Reynold’s transport theorem 
and reducing the resulting expression to a point-wise balance of energy, one gets 

Performing the same analysis on the balance of angular  momentum does not result in 
another differential relationship, but  rather  the property of symmetry of the  stress  tensor, 
u = oT. This  and  the previous derivations do  not assume the existence of couple stresses, 
and reformulation of the balance laws  is required to include them. 

6.2 Hardy’s  formulation 
Hardy’s work  uses the balance equations for mass (6.6), linear momentum  (6.12)  and energy 
(6.15) derived above. He considers the body Bt to  be  the system of N atoms which are 
interacting  with each other  through some interatomic  potential energy formulation. Each 
atom Q is characterized by its mass ma, its current position xa, and  its velocity va = s. 
Note: For the benefit of those familiar with continuum mechanics notation, a superscripted, 
lower-case  Greek letter will denote a property associated with an  atom, e.g. mass ma, 
momentum pa, etc., whereas a subscripted, lower-case Roman letter will denote the Cartesian 
coordinate components of vector quantities. For example, vi” denotes the  i-th component of 
the velocity vector of atom a. 

6.2.1 Densities and Localization 
The best way to understand Hardy’s work  is to consider that  there  are two views of the 
material  system. One perspective is the continuum, where quantities  are point-wise functions 
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of time and position. These  quantities include mass density p(x, t ) ,  momentum density 
p(x,t), and energy density Eo(x,t). The other perspective is that  the  material system 
contains atoms, each of which has  its own mass, momentum,  potential energy and kinetic 
energy. In order to connect the two  views, Hardy uses a localization function $ which spreads 
out the properties of the atoms, and allows all atoms to contribute to a  continuum  property 
at a specific position and time. His three key relations are: 

N 

ff=l 

EO(x,t) = -ma + $(x" - x). 
ff=l {: 1 

(6.16) 

(6.17) 

(6.18) 

A few things to note: 

0 From the above equations, it is apparent that  the localization function $(r) is NOT 
dimensionless, but has dimensions of inverse volume, 

In effect, this  states  that  at  the continuum position x, the properties of mass, momen- 
tum  and energy densities are influenced by all the  atoms within some  characteristic 
volume, and  the weight of each atom's  contribution is  governed  by the functional form 
of $. 

0 The velocity  field v is not determined in the same fashion as mass and  momentum, 
but is  defined  by the expression 

(6.19) 

0 In equation  (6.18), the  total potential energy density of the system is expressed as the 
summation of individual atomic  potential energies, 

Hardy establishes a few rules with regard to  the localization function $. They  are: 

1. $(r) is a normalized function,  thus 

(6.20) 
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2. The  spatial  gradient of the localization function, &$(x" - x) = ax , is equivalent 
to  the  the negative of the gradient of $ with respect to  it's argument, 

aqxa -x) 

For r = x" - x, this becomes 
- W(r> - - -- W(r> 
ax dr ' 

This relation can be used to show that 
d$(x" - x) - 

at 
- -v" * ax$(x" - x ) .  

3. A Bond function B"p(x) between atoms a! and ,D is  defined  by the expression 
1 

B " P ( X )  = 1 ?+h(XXolP + x p  - x) dX, 

(6.21) 

(6.22) 

where x@ = x" - x p .  By taking the derivative of $(Ax@ + x p  - x) with respect to 
X, 

a?+!) (Ax@ + x p  - x) 
aX - - -X"P ax$(Axap + x p  - x) , (6.23) 

and  then integrating from X = 0 to X = 1, one obtains 

,$(x" - x) - ?+h(XP - x) = -x*p * axB"P(X). (6.24) 

6.2.2 Energy and Force Assumptions 
Note: The forces discussed in  this subsection do not include body forces acting on the  atoms 
fZ&, = m b . 0 1 0 1  

Hardy makes  four  key assumptions about  the forms of the energies  of, and forces on, 
the atoms in the system. The first is that  the  total potential energy of the system, a, can 
be considered to be the summation of individual potential energies of each atom within the 
system, 

N 

a = 4". (6.25) 

Although this is not always the case, it is usually assumed true for simulations of systems 
governed  by empirical potentials. 

The second assumption is that  the force  on any atom can be expressed by the summation 
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This  statement  can always be  made,  although  it is not always clear what  the physical mean- 
ing of F"P is. When @ is the summation of pair potentials, @ = f x,",, @p (xap) where 
zap = IIx"pII, or  for the Embedded Atom Method, F"p obviously means the force exerted on 
atom a from atom p. However,  for  some multi-body potentials, such as  the 3-body term in 
the Stillinger-Weber potential [ll], the meaning is not so straight-forward. 

The  third assumption Hardy makes  is that  the atomic  potential energies depend only  on 
interatomic  distances, 4" = (xap, x"Y, . . . , ,BY), so 

(6.27) 

This expression includes the possibility that Q = y. Again, radially-symmetric  potentials 
such as Lennard-Jones and EAM qualify for this assumption, but  it is unclear whether po- 
tential energies that depend on bond  orientations  do. 

The  fourth  assumption  made is that each atomic potential energy depends only on the dis- 
tances between the  atom under consideration and all other  atoms, 4a = g5a (zap ,  xaY, . . . , xaN)  
Thus,  the force between atoms a and ,8 can  be expressed as 

(6.28) 

Clearly, while pair potentials and EAM qualify for this assumption, the 3-body potential of 
Stillinger-Weber does not. 

6.2.3 Hardy's balance laws 
Conservation of Mass 

Using Hardy's expression for density (6.16) and  the time derivative of $ (6.21), 

N a$(x" - x) 
= Ern. at 

CY=l 
N 

= -ax [ Crnav"$(xa - x) ] = -ax + p. 
\a=l 1 

This shows that Hardy's use of the localization function to define expressions for continuum 
mass density and momentum  density satisfies the continuum conservation of mass. 
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Balance of Linear Momentum 

Starting  with  Hardy's expression for momentum density (6.17), 

N 
= [ (Fa  + maba)  $(xa - x )  + mava (-v". ax$(xa - x) )]  

CY=l 

The force term on the RHS of the above expression can be combined with  Hardy's second 
force assumption to  obtain, 

N N N  

F"$(x" - X )  = FaP$(xa - X ) .  

Since a and ,O run over all atoms in the system,  they  are considered dummy indices and can 
be switched. By doing this,  and using Newton's 3'd law, FaP = -FPa, one obtains 

Combining this  with expression (6.24), the time derivative of the momentum  density becomes 

N 

= fl: { FaP (-xap - axBaP(x)) + maba$(xa - x )  + mava (-v" &$(xa - x ) )  at 
ff=l P f a  

(6.29) 

Comparing equation (6.29) with the continuum balance of momentum  (6.12), we observe 
that in order for these expressions to be consistent with one another, 

1 
2 

N N  N 
-0 + p v  g~ v = - xaP 8 F ~ P B " P ( x )  + mava B va$(xa - x ) ,  (6.30) 

a=l Pfa a= 1 

and, 
N 

p b  = m"b"lC,(x" - x) .  
a=l 

36 

(6.31) 



6.2. HARDY'S  FORMULATION 

Equation (6.31) can be rearranged to define the continuum body-force field, 

(6.32) 

It is important to note for equation (6.30) that we cannot yet separate out the stress  and 
momentum flux terms on the RHS. This is because the continuum velocity field v does NOT 
include atomic motion characterized as  thermal motion, hence the continuum term pvv is 
not equal to the second term on the RHS of equation (6.30), but only a  portion of it. 

Balance of Energy 

Starting with  Hardy's expression for the system energy (6.18), 

-=:{${; -ma ( 2 q 2  + $ff } $(x" - .)} dEO 
at at 

N 
= [ { mff (g vff) + $(x" - x) + { ;mff + $"} at- x)] 

W(x" 
ff=l 

By imposing the second and  third force assumptions, Hardy combines the F" and  terms 
into 

N N 
- = dEO at [ d b "  vff$(xff - X)] + a, - (x [ 2 [ 2 (-- ax"? a@ X"Y x"? . v") ~ ~ f l & ~ ( ~ ) ] ] )  

Cr=l a=l Pfa rfff 
N 

CX=l 

(6.33 

By comparing equation (6.33) with (6.15), we see that 

N 

- { amff + 4ff} V"$(X" - x), 
ff=l 

and 

13 * V Q  

N 
pb - v = mffbff - v"$(x" - X). 

ff=l 

(6.34) 

(6.35) 

As before, expressions (6.34) and (6.35) are  in  their simplest forms  since we have not yet 
addressed the issue of atomic motion versus continuum motion and  thermal energy flow. 
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6.2.4 Macroscopic Flow and Microscopic Motion 

In order to separate  atomic motion into continuum dynamics and  thermal energy, Hardy 
splits the atomic velocities va into  the continuum velocity v(x, t )  and a reEative velocity 
ua (x, t )  , 

va = v(x, t )  + uyx, t )  . (6.36) 

As Hardy shows, this relative velocity field has zero net  momentum. Hardy now goes on to 
reformulate the balance laws  for momentum and energy in terms of v and ua. 

Balance of Linear Momentum - Revisited 

Starting  with  equation (6.30), 

cU=l 

N 

As stated previously, the net momentum of the relative velocity  field is zero  by the definition 
of v, found in (6.19). This makes the  third  and fourth  terms on the RHS of the above 
expression both equal zero. Also, we can re-use Hardy's definition of the mass density field 
( 6 W ,  

-0 + pv 8 v = xap 8 FapBap(x) + maua 8 ua+(xa - x) + pv 8 v. (6.37) 
Y 

ff=l pfa  (Y=l 

Obviously, we can now isolate the expression for the stress  tensor, 
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Balance of Energy - Revisited 

Starting with  equation(6.34), 

N 

ff=l 

a@ x"? (8 XffP 

Rearranging terms on the RHS of the above expression, we obtain 

(6.39) 

The second term on the RHS of (6.39) can be simplified  by  using the Hardy's definition of 
mass density  (6.16), and  the zero net momentum  property of the relative velocity  field is 
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used to simplify the  fourth  term.  The resulting expression is 1 

N 
- {;ma (ua)2 + ..} U a $ ( X a  -x).  

ff=1 
(6.40) 

The first term on the RHS of equation (6.40) does APPEAR to match  up  with  the continuum 
term of u v, provided that for atom a, 

N N  aqp x"Y @ ,ffP 1 - ~ ~ C x a P @ F a P B a P ( x )  2 = [x- dX"Y xf fy BaP(x) . (6.41) 
cY=1 @#a a=l P#a ?#CY 

This is the reason for Hardy's  fourth force assumption, which restricts  the value of p to equal 
only a or y to provide non-zero terms on the RHS of the above expression. It follows that, 

N N  

a=1 Pfa 

(6.42) 

The last line shown above confirms that  the two expressions are equivalent by equation  (6.28). 
As stated previously, this restriction is violated for empirical potentials such as Stillinger- 
Weber [ll]. S-W has a 3-body energy term  that gets  split  three ways among the  interacting 
atoms,  but is a function of all three interatomic distances. As such, a non-zero term will 
occur for p + a, y. 

' 

By comparing the second term in (6.40) with the definition of continuum energy density 
e found in (6.14), we can isolate the potential energy density, 

N 

fi = +"?/!(x" - x ) ,  
a=l 
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and  the  thermal energy density, 

N 1 
2 

t^ = -ma (u")2 $(x" - x). (6.44) 
Cr=l 

Finally, the remaining third  and  fourth  terms comprise the heat flux per unit volume q, 

aqP x"Y 8 X"P 
N 

(6.45) 
This relation can  be simplified  by Hardy's  fourth  assumption, 

One remaining task is to revisit the body force term derived during  the balance of energy 
in equation  (6.35). Starting with this equation, we obtain 

N 
pb v = mffbff . vQ$(xff - x) 

ff=l 
N 

= Cm*ba * (u" + V) $(X" - X) 

CY=l 

LY=l \ff=l / 
N 

= maba * u"$(x~ - X) + pb - V. 
cU=l 

Clearly this is only true if 
N 

mabm ucY$(xo - X) = 0. (6.47) 
Cr=l 

This does NOT  automatically seem to be satisfied. However,  for the case of the same body 
force  on each atom, b1 = b2 = . . . = bN, the zero net  momentum  property of the relative 
velocity  field does make it  true.  This  extra  term  can  be  thought of as "fine scale work" 
done by the body force  field on the relative atomic velocity  field that is neglected by the 
continuum formulation. 

41 



CHAPTER 6. ATOMISTIC-CONTINUUM FORMULATION OF ROBERT J. HARDY 

6.3 Comparison of Hardy’s  method  with Moving Least 
Squares 

6.3.1 Moving Least  Squares (MLS) particle  methods 

A group of methods for representing  a continuum with  computational  points or “particles” 
variously named : Smooth  Particle Hydrodynamics (SPH) [12], Moving Least Squares (MLS) 
[13], Element Free Galerkin Method (EFG) [14] and Reproducing Kernel Particle  Method 
(RKPM) [15] , fall into a common framework. All the methods  are derived from the linear 
transformation of a field u(y) 

u h  = s, %(X, x - Y)U(Y)dY (6.48) 

through convolution with a smoothing (or kernel) function (ph(x, x - y). The function ( ~ h  

is sometimes called a ‘window’ function since it typically approaches zero as  the magnitude 
of the second argument  approaches  a  characteristic  distance h, i.e. as y gets  further than h 
away from the center point x. Various authors propose a number restrictions on the form of 
the kernel function: 

1. compact support, (P~(x ,  x - y) = 0 outside a finite region that includes x, 

2. positiveness, (P~(x ,  x - y) 2 0 everywhere, 

3. centeredness, (P~(x ,  x - y) monotonically decreases as IIx - y 1 1  increases, 

4. Dirac delta property, limh,o (P~(x ,  x - y) approaches the Dirac delta, 

5. normality, S, (P~(x,  x - y)dy = 1 

Item 1 is useful  for computational reasons, much  like  how most implementations of atomistic 
potentials have a finite interaction  distance.  The  other  properties  regulate  the behavior of 
the transformation, but  item 5 is the only property that is necessary for the transformation 
(6.48) to be able to reproduce  (constant) fields. 

For illustration, examine the  RKPM window functions 

(Ph(X, x - Y) = b(x) . P ( X  - Y)Ph(X - Y>,  

here b(x).  P(x- y) forms a multiplicative correction to  the simple window function (Ph . The 
quantity P(x) is a vector of polynomial basis functions (in one dimension, a basis of order k 
would  be P’(x) = (1, x, x2, ..., xk) ) and b is a vector whose components are  determined by 
the consistency condition, which, with  manipulation, is equivalent to 

P(0) = b(x) P ( X  - Y ) P h ( X  - Y ) P ( X  - Y)dY s (6.49) 
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. 
(6.50) 

This consistency condition allows the  RKPM  to represent signals u up  to  the order of the 
polynomial basis P(x) exactly. Notice that  the first equation of the system of equations 
(6.49) is  precisely the normality condition. For a uniform grid in one dimension the correction 
function only differs  from unity at  the boundary of the domain; however,  for a non-uniform 
distribution of particles, the function b(z) P(x - y) needs  values  away from unity almost 
everywhere in order to correct the simple window function P ~ ( X  - y).  To see the difference 
between a MLS representation of a linear field  using corrected RKPM kernels and uncorrected 
kernels examine Figure 6.1. 

2 4 6 8 10 

Figure 6.1: MLS representations of a linear field. 

By evaluating the integral in equation (6.48) with quadrature,  an  approximation 

u h  = b(x) - P(x - X I ) ( P ~ ( X  - XI)U(XI)A& = (P~(x ,  X - xI)A&uI = @ I ( x ) u I  
I I I 

(6.51) 
to  the original field u can be made. This  approximation relies on the existence of the inverse 
in equation  (6.50), which, in turn, requires that  the  quadrature involve enough points in the 
support of cp(x, x - XI) so that  the  matrix being inverted has  full  rank. With  this in hand, 
it is possible to identify the approximant functions 
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6.3.2 Comparison of Hardy’s  atomistic  method  and MLS methods 
To  make a meaningful comparison between Hardy’s continuum interpretation of atomistic 
particle methods  and MLS continuum particle methods, first the positions XI of the inte- 
gration points of the MLS method need to be identified with the positions x, of the atoms. 
Although, in some sense, they carry different information: the MLS quadrature  points  are 
samplings of what is assumed to  be  an underlying continuum field, whereas the atoms’ infor- 
mation is inherently discrete in space.  Basically this is what Hardy is trying to resolve;  his 
method is  giving a prescription of how to take the so-called “continuum limit” where there 
are enough particles in  the region being examined to construct  a continuous field  from the 
discrete values. 

For his analysis, Hardy chooses density, momentum  and energy to be his primary fields, 
which are derived from the fundamental  atomistic  quantities of particle mass mor, particle 
position x,, and  the time derivatives of its position. To  see the correlation between MLS 
and Hardy, consider u in equation (6.51) to be linear momentum 

Hardy’s  expression  is 
P = mIvr+(x - XI), 

I 

where +(x - XI) is  his  window function. Clearly, in the continuum the (reference) density 
is  known a priori and in the atomistic  system the particle masses are known at  the  outset. 
This leads to a volume  weighted versus a mass  weighted quadrature where either X I  AVI 
equals the volume of the body or X I  mI equals the mass of the system. With  tributary 
volumes  assigned to Hardy’s atomic quadrature  i.e. 

its easy to see that cp(x, x - XI) and +(x - XI) do essentially the same job. So, if one wanted 
Hardy’s method to represent linear (as in a  patch test) or  higher order fields  well, it would 
require the use of corrected RKPM window functions. 

It is interesting that in Hardy’s formulation other fields  like  velocity and  stress  are defined 
in a way that makes them consistent with the continuum balance of linear momentum. Unlike 
MLS,  where a smoothing approximation would be applied first and then a constitutive law 
based on the continuum displacement or  velocity  would be applied to obtain  stress, Hardy 
derives  his stress  ultimately from the interatomic energy potentials  and the atomic velocity 
trajectories.  It seems that Hardy’s method is a post-processing step,  but given that he  makes 
his  derived quantities consistent with continuum balance laws, an outside observer  could not 
tell whether continuum quantities were derived from atomistic balance of linear momentum 
(Newton’s 2nd law) or the continuum version (perhaps with internal  variables).  This is ideal 
for atom-continuum coupling. 
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6.4 Evaluation of Continuum  Stress in Atomistic Sirn- 
ulation 

In this section, we compare  stress for atomistic systems as described by the virial theorem 
to results  obtained using an expression for the Cauchy stress derived by R.J. Hardy. As a 
function of increasing cutoff radius for the stress analysis volume, the Hardy description of 
stress displays a quicker  convergence to values expected from continuum  theory than volume 
averages of the local virial stress.  Furthermore, the behavior of Hardy’s expression near a 
free surface is consistent with the mechanical definition for stress. 

6.4.1 Stress in a crystal at zero temperature 

For our simulations, we used the embedded  atom  potentials for  Ni and Cu by  Foiles,  Baskes 
and Daw  [16] and  a  constant localization function within  a spherical volume of radius R,. 
With  this choice of $, BCYP has the simple geometric interpretation of the fraction of bond 
length between atoms a! and p (normalized by ;.irR:) that lies within the localization volume. 

Our first simulations were quasi-static for a bulk Cu  lattice comprised of 3,072 atoms 
with periodic boundary conditions on all sides at zero temperature  and pressure. The size of 
the computational  box was 8x8~12 unit cells. For this system, the stress at any  spatial point 
should equal zero.  However, this was not observed, as shown in Figure 6.2. Figure 6.2 shows 

0.002 I I I I I 

Hardy 
Virial .-.-... 

m- 
5 
5 0 -__.... 4.. 
7 

b- 
I 

-0.002 I I I I I 
2 4 6 8 10 12 14 

Figure 6.2: Virial and Hardy stress for an atomic  system at zero temperature  and pressure. 

that  the Hardy  stress  evaluated at a randomly chosen point contains a small fluctuation that 
diminishes in magnitude  as R, increases. Figure 6.2 also shows the volume average of the 
local virial stress for a spherical volume of radius R,. This volume average can be expressed 

45 



CHAPTER 6. ATOMISTIC-CONTINUUM FORMULATION OF ROBERT J. HARDY 

by the relation 

(6.52) 

where V,  = !pRZ and  the symbol r is  used to denote the local virial stress in order to 
differentiate it from the Hardy expression for stress. For quasi-static analysis, the second 
term in the above expression vanishes. Figure 6.2 shows that  the value of ?ill is exactly zero 
for all  values of R,, an expected result since all local virial stresses me zero for this case. 
We attribute  the behavior of the Hardy stress to differing amounts of force contribution for 
each interacting  atomic pair as the localization volume changes. As the averaging volume 
increases, the bond function B changes its value  only  for those atomic  pairs that have at 
least one of the atoms lying outside the volume.  As R, increases, the magnitude of these 
force contributions become much less  significant than  the force contributions from atomic 
pairs interior to  the volume. In fact, since the number of bonds lying completely within the 
volume increases as R: and  the number that partially contribute to  the stress increases as 
Rz, one  would expect the amplitude of fluctuations to decay as roughly R;l. Hardy, Root 
and Swanson [17] themselves noticed the correlation between fluctuations in stress and  the 
size of the localization volume. 

The curve shown in Figure 6.2 was  for the normal stress evaluated at a single spatial point 
chosen at random. Examination of the mean of this curve  averaged  over many such randomly 
chosen points, shown in Figure 6.3, reveals that  the magnitude of these  fluctuations becomes 
vanishingly small as the number of averaging points increases. The  fluctuations decrease in 
magnitude by a factor of 10 when stress is  averaged  over 10 or 100 points, and decrease by a 
factor of 50 or greater when stress is  averaged  over 1000 points.  This behavior is consistent 
with the mathematical definition of the Hardy stress,  equation  (6.38). As more spatial points 
are used  for averaging, we are, in-effect, integrating (6.38) over all space. This  integration 
results in recovery of the expression for the virial stress for the system, which  is  zero  for this 
case. We can also examine the variance of these averaging distributions, shown in Figure 6.4. 
The variance, or standard deviation, is  defined  by the relation 

(6.53) 

where Np is the number of spatial points averaged  over.  Not  only does Figure 6.4 show that 
this variance approaches zero as R, increases, but  it also  reveals that  the behavior of the 
variance as a function of R, is virtually the same whether 100 or 1000 spatial points are used 
for averaging. This may indicate some limiting behavior in the functional dependence of the 
variance on R, as Np + 00. 

The  impact of these  fluctuations is  less  significant  for  cases of non-zero  values of stress, 
as  shown in Figure 6.5  for a system under 2% uniaxial strain.  The Hardy stress  fluctuates 
around the expected value of 0.02 eV/A3, with the magnitude of the fluctuation decaying 
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Figure 6.3: Mean of the Hardy stress averaged  over many  spatial  points. 
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Figure 6.4: Variance of the Hardy stress averaged over many  spatial  points. 
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Figure 6.5: Virial and Hardy stress for an atomic system at zero temperature  and 2% uniaxial 
strain. 

with increased R,. The error is acceptably low,  only 4% at R, = 6 A. The virial stress 
also fluctuates about  the expected value due to  the minor changes in volume that alter all 
continuum densities. The error in the averaged virial stress does not decay as quickly as for 
the Hardy stress,  and is  significant  even up to distances of 8 A. 

6.4.2 Stress  in a crystal  at finite temperature 

Stress within a  system at finite temperature was  also evaluated. Figure 6.6 shows the stress 
for a system that was equilibrated to be at zero pressure at room  temperature,  then uniaxially 
strained by 5%. Only the force-term portion of the stresses is  shown in Figure 6.6, as  the 
kinetic term is the same for both Hardy and virial expressions and contributes less than 10% 
of the  total stress.  In Figure 6.6, all data points are calculated for a localization volume 
centered at  the same particular  spatial point at a given instant in time. While both Hardy 
and virial stresses show oscillations that converge to  the same limit, 0.0738 eV/A3,  the 
Hardy formulation smoothes the fluctuations more  effectively than  the virial. Notice that 
the magnitude of these  thermal fluctuations overwhelms those noticed at zero temperature. 

6.4.3 Stress  in a crystal  with a free surface 
Differing causes of fluctuations for the two stresses impacts  stress evaluation for  regions with 
inhomogeneous structure, such as  at a free surface. Figure 6.7 shows the stress within a 
crystal as a function of distance from a free surface for  two  values of R,, 6 and 10 A. Within 
a distance R, of the  top atomic layer, the magnitude of fluctuations is comparable for both 
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Figure 6.6: The force-term portions of the Virial and  Hardy stresses for an atomic system 
at room temperature  and 5% uniaxial strain. 

expressions. However, the wavelength of the virial fluctuation is clearly tied to  the size of the 
averaging volume, ie. it equals twice the value of R,. This result shows a ‘smearing’ of the 
oscillation in  local virial stress noticed by Cheung  and Yip [4]. In  contrast,  the wavelength 
for the Hardy  stress  fluctuations is considerably smaller than for the virial, and is  roughly 
the same for both values of R,. Also, the Hardy value decays within the region between the 
top atomic layer and  the “effective” surface of the  crystal,  located at a  distance equal to 
R,, while the virial stress increases in magnitude, only dropping to zero within 0.5 8, of the 
effective surface. 

We also examined the normal stress for directions parallel to  the free surface, i e .  the 
planar  stress that normally corresponds to residual surface stress.  This is shown in Figure 6.8 
for the same atomic  system discussed above. We observe that  the  stress distribution is 
virtually the same for both  the Hardy and virial expressions. Both display a build-up of 
finite stress below the surface, representing a material’s surface tension, and a drop-off to 
zero at  the effective surface of the solid. 

6.4.4 Remarks 

Our analysis has shown that  the definition for Cauchy stress in an  atomic system developed 
by Hardy does a better job than  the expression based on the virial theorem.  In general, 
fluctuations in the Hardy stress  are lower in  magnitude  and decay faster  with increasing 
averaging volume  size.  Also, the behavior of the Hardy expression for stress near a free 
surface is consistent with the mechanical definition of stress. 
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Figure 6.7: Virial and Hardy stress for an atomic system at zero temperature  and pressure 
with a free surface. The heavy, dashed line denotes the position of the  top layer of atoms, 
both  at zero, while the heavy,  solid  line denotes the effective position of the free surface of 
the crystal. 
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Figure 6.8: The normal stresses for the cubic directions parallel to  the free surface for the 
system shown in Figure 6.7. 

6.5 Extending Hardy’s  formulation to non-central po- 
tent ials 

Section 6.2.2 discussed the four assumptions  made by Hardy regarding the form of the inter- 
atomic potential energies and  interaction forces. In this  section, we revisit these assumptions 
and challenge the ones that require that Hardy’s formulation be applied only to “central” 
potentials, e.g. pair potentials and  the embedded  atom  method. We will present revisions 
that allow Hardy’s method to be applied to certain non-central potentials, such as 3-body 
potentials like the Stillinger-Weber potential for  silicon [ll]. However, these revisions  will 
also be accompanied by caveats regarding symmetry of the Cauchy stress  tensor. 

6.5.1 Bonds,  Energies and Forces  in Atomistic  Mechanics 
Configurations and Invariance 

For a finite system of N particles a set of their positions 

K = {X“, QI = l . .N} (6.54) 

with their masses ma constitutes a ‘configuration’ in a static  setting  (momenta p” or  veloc- 
ities v” are necessary to describe a configuration in a dynamic setting).  The energy of the 
system @ depends on the configuration 

@ = @ ( K )  = @({x”}) ; (6.55) 
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however, a basic symmetry  rule, invariance under superposed rigid body  motion or change in 
coordinate  frame,  restricts how the energy depends on the configuration. Invariance requires 
that 

@+ := @({X"+}) = @({x"}) =: (6.56) 

where 
xa+ = Qx" + a, Q E Orths (6.57) 

i.e. that  the energy cannot change with rigid rotations  and  translations of the configuration. 
This implies that  the energy cannot depend directly on the particles' positions. 

Bonds and  Energy 

Every atomistic  system of particles has a substructure  made  up of bonds B,  so that  the  total 
energy can  be decomposed as: @=E& (6.58) 

KEB 

The energy of an individual  bond  depends only on a subset of the configuration, e.g. two 
{x", xp} or three {x", xp,  x-f } or  four atoms {x",  xp, xy, x6}. By applying the invariance 
principle, it is clear that 4' can only depend on invariants like a distance 

I d  = ~ ~ x a p ~ ~  where xap := X" - X" , (6.59) 

a cosine of an angle 

an area 
Is = IIX"P x x q  , 

I ,  = [XP", x-f", XJ"] := (X+ x XT") X6" , 

or a volume 

(6.60) 

(6.61) 

(6.62) 

In all these invariants the difference  in positions removes the dependence on the rigid trans- 
lation a and  the inner product or  cross product removes the dependence on the rigid rotation 
Q. 

Forces 

If forces are defined to  be conjugate to changes in particle positions (they could be defined 
to be  conjugate to  other kinematic variable, e.g. the invariants Ii), then 

-6@ = F"6x" + F" = -axe@ . (6.63) 

so 
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where the  sum over bonds  can be restricted to only the bonds that involve particle a without 
loss in generality. For a pair bond dependent on relative distance  a  contribution to  the force 
F" would  be a4K 3 r d  a 4 K  1 -- = -- xap . 

81, ax" aid IIxap 1 1  
For a  triplet  bond,  the angle dependence would lead to contributions 

(6.65) 

(6.66) 

for particle a and 

for particle p, the 'center'  atom. So the bonds that depend on basic arguments like x@ lead 
to contributions along those directions. These contributions  can  be grouped by  their vector 
components, x"p, xpy, etc.,  and  those associated with, say x"p, can  be  named 'FOP' but  this 
force  is not,  in general, a derivative of an energy function. Recall that  the force F" is a  sum 
over relevant bonds of the  partial derivative of the bond energy holding the positions of all 
the other involved atoms fixed and can be  interpreted  as the force on a due to  the system. 
Except for the simple case of pair bonds where the ad hoc assumption that  the bond energy 
is divided between the two atoms in some  fixed ratio  can  a force F"p be derived from a 
potential involving only x" and xp, as in 

(6.68) 

6.5.2 Hardy's Assumptions Revisited 
Assumption 1 - Individual  Atomic Potential Energy 

The first assumption by Hardy states  that  the  total  potential energy of the system @ can be 
divided into individual atomic potential energies 4", 

N 

@ = C4". (6.69) 
(Y=l 

As discussed above, the system energy @ is composed of the energetic contributions  due to 
bonds between atoms.  In general, this energy can be expressed by the following expansion 

@(X",XP , . . . ,  x") = > : > : 2 ( X * , X P ) + ~ > , ~ V 3 ( X " , X  P r  , x )  
ff p>a P>ffr>P (6.70) 

+ . . . + 0" (x", xp, . . . ,x"), 
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where v k  represents the  potential energy  for a unique k-body interaction. We have omitted 
the v1 term of the expansion since that  term violates the invariance of <p already mentioned. 
Equation 6.70 can always be  rewritten  as 

(6.71) 

where w k  is the a reformulated version of v k  in terms of the interatomic vectors. It is 
important  to note that each w k  represents the  total interaction energy from the unique 
combination of the  atoms involved. For example, w 3  is the  total interaction energy between 
atoms a,  ,8 and y. The use of the factorial symbol (!) compensates for over-counting the 
contributions, e.g. a = 1, p = 2, y = 3  and a = 1, ,8 = 3, y = 2, but  it is essential to realize 
that w3 equals the same value  for all distinct combinations. The individual atomic  potential 
q5ff from equation (6.69)  can now be identified as 

q5ff = 

The use of equation 

1 1 
2 
-x w2 (x"P) + w 3   ( X f f P ,  xar, XP') + * ' ' + 

P#ff PZff 'ZPfff 

- . * * W N   ( X a P , .  . . , X Q N ) .  
1 

NI 

(6.72) 

(6.69) is somewhat misleading, since the energy itself  lies within the 
bonds, and is not localized to  the positions of the atoms themselves. However, the use of 
these expressions is mathematically valid and equally distributes the system energy among 
all its  constituent  atoms. 

Assumption 2 - Dividing up the force on an  atom 

Hardy's second assumption states  that  the  total force  on any atom, Fa, can  be divided into 
pair-wise  forces between atoms, 

(6.73) 

The assumption is a perfectly valid  one as long as  there  are more atoms than  spatial dimen- 
sions. Equation (6.73) merely states  that  the  total force on each atom is broken up  into N -  1 
different contributions, in some fashion. However, it does not necessarily dictate how that 
division  is performed, nor does it necessarily  provide a physical meaning for the expression 
FffP .  
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Assumption 3 - Functions of interatomic  distances only 

This  assumption states  that all potential energy functions should only be functions of inter- 
atomic  distances, @ = $" (xa@, xaY, . . . , xP7), so that 

(6.74) 

This  assumption is clearly not true for  all potentials. However, it is true  that all interatomic 
energies can be expressed as functions of the interatomic vectors, 4" = 4" (x"@, x"Y, . . . , x@?), 
and  thus, 

At this  point,  it might be  tempting to say that 

(6.75) 

(6.76) 

however, this definition of F"P will not necessarily satisfy the balance of linear momentum 
within Hardy's formulation. 

Assumption 4 - Defining the  quantity F"P 

Hardy's fourth assumption states  that each atomic potential energy depends only on the dis- 
tances between the  atom under consideration and all other  atoms, 4" = 4" ( P P ,  s a y ,  . . . ) xaN) .  
Thus,  the force between atoms Q and /3 can be expressed as 

(6.77) 

Clearly, this is a false statement for any arbitrary  potential. However, a  broad range of 
potentials exist such that  the  potential energy for  each atom will depend only on interatomic 
vectors between the  atom under consideration and all other  atoms, 

= #" (X"P) xa7, . . . , X f f N )  . (6.78) 

An example of this  type of potential is 3-body portion of the Stillinger-Weber interatomic 
potential for  silicon [ll]. The expression for this 3-body energy is 

(6.79) 
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where E ,  X, y, o and a are  fitted  material  parameters.  This energy represents the angular 
bond that exists between atoms a, p and 6, where a is considered the "center" atom and a 
non-zero energy results whenever the angle 

deviates from an angle of 109.47". Please note that (6.79)  can  be re-cast into a form that 
depends only on the interatomic distances between atoms,  thus satisfying Hardy's third 
assumption. However, this new form would violate the  fourth assumption since it would 
have the energy function 4" dependent on the distance x@'. 

6.5.3 Using Hardy's method for 3-body forces 
The form of 4" in (6.78) suggests that  the expression for F"P should be 

(6.80) 

This expression seems to be the simple combination of evaluating (6.78) within  (6.75). How- 
ever, it is crucial to notice that  the functional form of each 4" must be  consistent  with  (6.78), 
and  cannot necessarily be expressed as  the original form of a?. As an example, consider the 
interaction of only 3  atoms (a, ,O and 6) and only a single 3-body potential energy term a?, 

a? = a?(xaB,xa'). (6.81) 

Using the relation  (6.72), the full energy is partitioned equally among the 3  atoms, 4" = 
@ = @ = $a?. However, before we start taking  partial derivatives of these individual 
energies  for equation  (6.80), we must express the functional dependency for each energy 
correctly. For atom a, the expression is trivial, 

cy 1 
3 

q5 =-a?( X@, xa') , (6.82) 

but for atoms p and 6, the expressions are, 

4' = @(X'", X'P) = p(x"6 1 + X'P, xa6) (6.84) 

In these relations, we have substituted x"P + xp' for x"' in the expression for @ since, 
according to equation  (6.78), it cannot  depend directly on x"'. Likewise  for the 4' term, we 
have substituted xa6+x6P for xap. Obviously, clarity requires that any expression that uses a? 
in a simple way must refer to  its original form  shown in (6.81). So, when partial derivatives 
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are  taken,  they must include terms  that may indirectly depend on certain variables. For 
example ) 

(6.85) 

Equation (6.85) is easily understood. The first term inside the parentheses  results from the 
derivative of Q, with  respect to x"P as it appears explicitly within the normal  functional form 
of @, but  the second term is present because Q, also depends on x"', which  itself depends on 
x@ through  the relation x"' = x"P + xp'. Since 

we can now calculate F f f P  from equation (6.80)' 

Similarly, for this example 

thus  the full  force on atom a is 

(6.86) 

(6.87) 

(6.88) 

(6.89) 

= - > . - = - - *  dX"9 ax" 
9=P,' 

It is interesting to note that  the expression for Fa@ in (6.87) involves derivatives with respect 
to interatomic vectors other than  just x"P, and that it is not necessarily collinear with x"P. 

It can be shown that equation (6.80) can be used just  as equation (6.77) t o  satisfy both 
the balance of linear momentum and the balance of energy. This produces an expression for 
the continuum stress  tensor, 

N N  N - = - {  1 E x a P  8 FQPBaP(x) + m"ua 631 u"$(x" - x) (6.90) 
2 

a=l P#" fY=l 
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Given this expression  for stress in terms of the vector derivatives of non-central interatomic 
potentials, the question remains as to whether (6.91) is a symmetric tensor. The continuum 
theory that Hardy's formulation is  based upon assumes this  to be true,  and  it certainly was 
true for central  potentials. However,  unless it can be proven to be a symmetric tensor, our 
new definition of stress is  no  longer consistent with standard local continuum theory, and 
an enhanced continuum theory of some kind must become the basis for a new definition of 
stress. 

We begin  by examining the simple  case  used  above of 3 atoms  interacting  through a single 
interaction energy term. For this case, we ignore the kinetic portion of the stress  tensor, 
which is inherently symmetric. Starting  with equation (6.90) and using equations (6.87) and 
(6.88), we obtain 

o(x, t )  = -f xaP @ FffPBffP(x) 
a=l P#a 

- - -X"@ @ FffPBffp(~)  - xffS €3 Fa6Bff6(x) - xP6 €3 FPdBP6(x) 
(6.92) 

The last line  shown above has used the result 

(6.93) 

which  was obtained in a similar manner  as  equations (6.87) and (6.88). The expression for 
stress can be slightly simplified to 

a(x, t )  = xffp @ 

1 a@ 1 a@ (6.94) 
+ {Xffb - XffP} €3 { 

however this cannot be shown to be symmetric because we have not yet identified a local- 
ization function and  thus, cannot combine the different terms. 
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One  result we can  obtain is the expression for the average stress, ii(t), for the entire 
volume V of the system.  Integrating  both sides of equation  (6.94), we obtain 

1 2 a@ 1 a@ 1 a@ 2 a@ o(t) = - x@ gl 
V ( { 3 3 a + s z F }  +x"% { ?d,cyp + --} 3 aXQ6 

(6.95) 

This result can  be shown to produce a  symmetric  tensor by using the fact that  the potential 
function @ must  depend  on the vectors x"P and x"' through  invariants, as discussed  in 
section (6.5.1). For the case of 3-body potentials, 

@ = Q, (x"P, xQ6) = &(Zap, x"&, cos e,,,) . (6.96) 

This is certainly the case for the Stillinger-Weber potential Ell], shown in (6.79). Using 
(6.96) to evaluate the  partial derivatives in (6.95), we obtain 

where ce represents cosBpaa. Substitution of (6.97) into  (6.95), along with simplification of 
terms,  results in the expression 

(6.98) 

Clearly, the average stress for the system is a  symmetric  quantity, but  it is not  apparent  that 
the local expression for stress,  equation  (6.94), is  also symmetric. Stress will be symmetric 
only if the  quantity B(x )  is a  constant for all contributing ( B  # 0) pairs of atoms. However, 
if the localization volume boundary  separates two interacting  atoms, B(x)  will not be  the 
same value as for all other  pairs, and stress  asymmetry may occur. This  situation may  imply 
that  the localization volume centered at a point contains a net moment. For such situations, 
it will be necessary to reformulate Hardy's  method using an enhanced continuum  theory 
that contains  asymmetric  Cauchy  stress  and couple stress tensors. One such theory is the 
micropolar elasticity  theory by Eringen [7], covered in the next chapter. 
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6.6 Comments 
Hardy’s method shows a definitive advantage over other expressions  for continuum stress 
presented in this  report.  Stress can be determined locally  in both  time and space, and is 
properly defined with respect to a  standard formulation of continuum mechanics. Hardy’s 
use of finite-valued, limited-range localization functions works  well in conjunction with the 
finite boundaries  and the boundary conditions typically used in atomistic simulations. Even 
with this  method, some shortcomings are  still present. The large fluctuations observed  for 
simple loading conditions lead  one to conclude that physical interpretation of the evaluated 
expressions requires averaging over a minimal span in both space, ie. a  minimum  character- 
istic volume, and time. The positive effect of spatial averaging has  already been observed, 
but  the effect of temporal averaging has yet to be evaluated. Also, Hardy’s technique can 
only be applied to particular  types of atomic interactions. A more generalized approach 
needs to be developed. 
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Chapter 7 

Eringen's  Micropolar  Continuum 
Forrnulat ion 

7.1 Motivation 
Our goal  will be  to perform a similar formulation to Hardy's for equating  a continuum 
with an atomistic  system, using a micropolar continuum instead of the  standard non-polar 
one. The purpose of this exercise  will be to derive expressions for continuum  quantities of 
stress, deformation and  temperature  that require fewer assumptions  about the form of the 
inter-atomic forces than  the assumptions Hardy himself makes [lo, 181. As pointed out in 
chapter 6, these  assumptions  constrain the inter-atomic  potentials to  be only certain  types, 
e.g. pair and EAM. Non-central potentials, such as  the 3-body Stillinger-Weber, did not 
qualify under  these  assumptions. It is our hope that  the addition of degrees of freedom to 
the continuum model will require less constraints on these  potentials. 

7.2 Kinematics of a micromorphic  continuum 
As in the  chapter 6, we consider a continuum body B to go from some original, reference 
configuration at time zero, Bo, to a new configuration at a  later  time t ,  Bt. A material point 
on Bo is described by the vector X, and  it's location on Bt at a  later  time t is given  by the 
transformation x = x(X, t ) .  A micromorphic continuum,  as  it is  called  by Eringen [19, 71, is 
a continuum in  which each material point x actually represents the center of mass of a small 
volume unit, nevertheless named  a macrovolume. This macrovolume  is composed of a finite 
number of microwolumes, each with it's own center of mass: 

N 
AV = U AV", 

a=l 

and each  microvolume (a  = 1 , 2 ,  . . . , N )  is designated by its own center of mass x". Here, 
we use the 'U' symbol to denote that all the microvolumes make-up the macrovolume, but 
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that  the  total  amount of macrovolume is not merely the sum of the individual microvolumes. 
Each  microvolume center of mass xa can  be expressed  in terms of the macrovolume's center 
of mass x and a relative position vector t", 

This  relation also holds at time zero, in the reference configuration, 

As before, the  transformation of X to x is determined by the deformation  gradient F = &, 
or in index notation, F ~ J  = 3, where i,J = 1,2,3. To transform the relative position vector 
of a microvolume from E" to t", Eringen assumes a homogeneous transformation, 

J 

where x is called the microdeformation gradient and, like F, is a tensor. 

mass terms plus relative motion terms. For example, 
The velocities and accelerations of the microvolumes can also be expressed as center of 

So, the velocity of microvolume Q is 

where u = x x-' is known as  the microgyration tensor. A similar procedure can  be done 
for the acceleration of a microvolume, resulting in the expression 

where a ri + u - v. 

7.3 Kinematics of a micropolar continuum 
At this  time,  it becomes desirable to express equations  (7.1) - (7.5) in index notation. As 
shown above for the deformation  gradient, we use  lower-case roman  letters for components 
in the current configuration and upper-case roman letters for components in the reference 
configuration. These  equations  are: 
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Recall, for expressions in which the same index appears twice, summation is implied: a k b k  

albl + a 2 b 2  + a s h .  

gradient x i J  represents a rigid body  rotation. Hence, 
A micropolar continuum is a micromorphic continuum in which the microdeformation 

This allows the microgyration tensor to take  a simpler form. Consider: 

X i J  ( X - ' ) J k  = X i J X k J  = Jik  

Taking the  time derivatives of both sides, 

This result shows that for a micropolar material, the microgyration tensor is skew-symmetric 
and can be represented by an equivalent vector, 

where w is  called the microgyration vector. The symbol Eijk is known as  the  permutation 
operator and has the properties, 

€123 = €231 = €312 = 1 
€132 = €321 = €213 = -1 

~ i j k  = 0 if i = j  or j = k or k = i 

The appearance of equation  (7.7) reveals  why index notation was used instead of direct 
vector notation.  Equation (7.7) can be used to simplify equations (7.4) and (7.5), 

va = vi + 2 l . f .  ff 
23 3 

23m m 3 
= vi - E . .  w <? 

= vi 4- € i m j w m q .  

Hence, 
vy = vi + EimjWm<; , VQ = v + w x I$? 

For the acceleration of microvolume a, 
D 

acy = a + - {w X tff} 
Dt 

= ~ + ~ x J ~ + w x ~ ~  

aa = a + b  x t " + w  x (w x E") (7.9) 
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7.4 Mass and inertia I 

As stated above each macrovolume consists of a finite number of microvolumes. Total mass 
of the macrovolume, m, is equivalent to  the summation of the masses of the microvolumes, 

N 

This expression  is true in either the reference configuration, 

N 
m = poAV = E p ; A V a ,  

ff=1 

or the current configuration, 
N ,  

m = pAV = p" AV" 
ff=l 

The  property of mass  is often called inertia, or resistance to translational motion when acted 
upon by a force.  Since each macrovolume has rotational degrees of freedom defined by the 
microgyration vector, they also  have rotational  inertia or moment of inertia. Eringen calls 
this  property micro-inertia and defines it as 

for the reference configuration and 

N 

(7.10) 

(7.11) 
ff=l 

for the current configuration. The relation between the micro-inertia tensors IKL and i,, is 
i,, = x,KIKLx,L. Eringen also  defines  two additional micro-inertia tensors, 

JKL IQQ~KL - IKL (7.12) 

(7.13) 

For our purposes, it will be necessary to consider the product of mass density and micro- 
inertia  as  a  separate  quantity known as mass-micro-inertia, defined in the current configu- 
ration as 
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As before, a secondary mass-micro-inertia can be defined as 

(7.15) 
Y Y  

Cr=l 

The use of the mass-micro-inertia tensors K and X will become evident when  these  inertia 
tensors are used within the framework of the Hardy formulation for atomistic  systems.  When 
the microvolumes are considered to be atoms, it makes more sense to consider the mass of 
a given atom  and  it’s  inertia  contribution to  the center of mass of a  group of atoms  rather 
than consider the “density” of the  atom. 

7.5 Balance laws 
For a micropolar continuum, there are five balance laws to  consider: mass, micro-inertia, 
linear momentum,  angular  momentum  and energy. The laws  for mass and linear momentum 
appear the same as before, 

aP a - + - ( p v k )  = 0 at d x k  

and 

(7.16) 

(7.17) 

For the balance of linear momentum expression, please note that  the Cauchy  stress  tensor, 
g j k ,  is  no  longer a  symmetric  tensor,  thus u j k , j  # g k j , j .  The Hardy formulation has the 
convention of labeling the  quantity pv as the (linear)  momentum  density p. When equating 
the continuum and atomistic regions, Hardy defines the meanings of p and p and calculates 

Eringen derives the balance of micro-inertia using the micro-inertia tensor j k l .  His  ex- 
v = PIP. 

pression  is 

This expression can be re-written by expanding the  material derivative = + u i z ,  and 
by adding the  quantity zero in the form of j k l  times  equation  (7.16). The final form of this 
relation is 

d 

a A k l  d - - - -- ( X k l u m )  - ( E k p r X l p  + E l p r A k p )  (7.18) at a x m  
Eringen derives the balance of angular momentum in the following form, 

The  quantity s k  is known as the intrinsic spin vector and s k  G jklwl. p l ] ~  is  known as 
the couple stress tensor and is representative of stresses inside a body  created by traction 
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moments applied to  the surface of the body, just as the Cauchy stress tensor is related to r 

traction forces applied to  the surface. This macrovolume may also be experiencing body 
couples, c k ,  just  as  it is subjected to body forces, b k .  It can be shown that 

and the balance of angular momentum can be re-cast as 

(7.19) 

To be consistent with the Hardy formulation, we can label the  quantity X w as  the angular 
momentum density f?. It will be our intention to define X and f? in terms of atomic  quantities 
and calculate the continuum field w (x, t )  as w = X-' a f?. 

The balance of energy is written by Eringen as 

In this expression, h is the internal source of heat per unit mass, q is the heat flux  per 
unit mass, E is considered the macrovolume's internal energy per unit mass, and K is the 
volume's kinetic energy per unit mass and is  defined as 

If  we redefine quantities to per unit volume, C p (E  + K )  = 6 + %p?&'uk + i W j A j k w k  + f, 
where ii is potential energy per unit volume and t^ is thermal energy per unit volume, then 
the energy balance law can be re-cast as 

(7.20) 

We  now have our five balance laws along with  three defined variables: 
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linear momentum density: p k  = p v k  

angular momentum density: f!k = x k q w q  

7.6 Preface to Hardy  formulation 
The only assumptions  made for the theory reviewed  in this write-up have been the as- 
sumption of micropolar behavior, i.e. the microvolume deformation consists of a rigid body 
rotation relative to  the center of mass of the macrovolume, and  that  the microvolumes do 
not have any rotational degrees of freedom about  their own centers of mass. For our pur- 
poses  where the microvolumes represent neutrally-charged atoms,  these degrees of freedom 
do not exist. The deformation behavior of the macrovolume  is generally nonlinear,  and no 
constitutive models  have yet been used. 

We defer the development of a Hardy-like formulation for a micropolar continuum to a 
future publication. However,  before such a formulation can be performed, it is important  to 
note the specific meaning of the independent variable x. For the macrovolume it represents, 
it is the center of mass of all the contributing microvolumes. Let us select a spatial position 
x’. Each atom has it’s own localization function 1c, (x“ - x’), which can also be considered a 
“window” function, i e .  within a sub-volume centered around x’, any  atoms for  which 1c, # 0 
influence continuum properties ‘measured’ at  that point. However, there is  no guarantee 
that x’ also corresponds to  the center of mass, x, of the set of atoms “visible” within that 
sub-volume. Hence, the balance laws shown above cannot be used directly to determine 
continuum fields at  the point x‘. Also, the quantities of X and k‘ must be re-calculated for 
positions that  are off the center of mass by using the parallel axis theorem. It is clear that 
we must proceed carefully when developing expressions using a Hardy-like approach. 

67 



CHAPTER 7. ERINGEN’S MICROPOLAR CONTINUUM  FORMULATION 

This page intentionally left blank. 

68 



Bibliography 

[l] R.J.E. Clausius. On  a mechanical theorem applicable to  heat. Philosophical  Magazine, 
40~122-127,  1870. 

[2] J.C. Maxwell. On reciprocal figures, frames and diagrams of forces. Transactions of 
the  Royal  Society  Edinborough, XXV1:l-43,  1870. 

[3] J.C. Maxwell.  Van der Waals on the continuity of the gaseous and liquid states. Nature, 
pages 477-480, 1874. 

[4] K.S. Cheung and S. Yip. Atomic-level stress  in an inhomogeneous system. Journal of 
Applied  Physics, 70(10):5688-5690,  1991. 

[5] J.F. Lutsko. Stress  and elastic constants in anisotropic solids: Molecular dynamics 
techniques. Journal of Applied  Physics, 64(3):1152-1154,  1988. 

[6] J. Cormier, J.M. Rickman, and T.J. Delph. Stress calculation in atomistic simulations 
of perfect and imperfect solids. Journal of Applied  Physics, 89(1):99-104,  2001. 

[7] A.C. Eringen. Microcontinuum Field  Theories I: Foundations  and  Solids. Springer- 
Verlag, New York,  1999. 

[8]  D.H. Tsai.  The virial theorem and stress calculation in molecular dynamics. J .  Chem. 
Phys., 70:1375-1382,  1979. 

[9] P. Schofield and  J.R. Henderson. Statistical mechanics of inhomogeneous fluids. Pro- 
ceedings of the  Royal  Society of London A,  379:231-240,  1982. 

[lo] R.J. Hardy. Formulas for determining local properties in molecular-dynamics simula- 
tions: Shock  waves. Journal of Chemical  Physics, 76(1):622-628,  1982. 

[ll] F.H. Stillinger and T.A. Weber. Computer simulation of local order  in condensed 
phases of silicon. Physical  Review B, 31:5262-5271,  1985. 

[12] R.A. Gingold and  J.J. Monaghan. Smoothed particle hydrodynamics: theory  and 
application to non-spherical stars. Monthly  Notices of the  Royal  Astronomical  Society, 
181~375-389, 1977. 

69 



BIBLIOGRAPHY 

[13] P. Lancaster and K. Salkauskas. Surfaces generated by  moving least squares  methods. 
Mathematics of Computation, 37:141-158,  1981. 

[14] T. Belytschko, Y.Y. Lu, and L. Gu. Element-free Galerkin methods. International 
- 

Journal  for  Numerical  Methods in Engineering, 37:229-256,  1994. 

[15] W.K. Liu and Y.  Chen. Reproducing kernel particle  methods. International  Journal 
for Numerical  Methods in Fluids, 20:1081-1106,  1995. 

[16] S.M. Foiles, M.I. Baskes, and M.S. Daw. Embedded-atom-method  functions for the 
fcc metals cu, ag, au,  ni,  pd,  pt,  and  their alloys. Phys.  Rev. B, 33:7983-7991,  1986. 

[17] R.J. Hardy, S .  Root,  and  D.R. Swanson. Continuum  properties from molecular sim- 
ulations.  In Shock  Compression of Condensed  Matter, Proceedings of the American 
Physical Society Topical Conference, pages 1-4. American Physical Society, 2001. 

[18] R.J. Hardy. Draft of a manuscript. 2002. 

[19] A.C. Eringen. Theory of micropolar elasticity. In H. Lubowitz, editor, Fracture, an 
advanced  treatise, volume 2, chapter 7, pages 621-728. Academic Press, London, UK, 
1968. 

[20] R.J. Hardy and A.M. Karo.  Stress and energy flux in the vicinity of a shock front. 
In Shock  Compression of Condensed  Matter, Proceedings of the American Physical 
Society Topical Conference, pages 161-164. American Physical Society,  1989. 

[all J.W. Mintmire, J.J.C.  Barrett, D.H.  Robertson,  and C.T.  White. Atomistic simulations 
of shock induced pore collapse in model materials. Chemical  Physics  Reports, 17(1- 
2):37-46,  1998. 

[22] J.W. Mintmire, D.H. Robertson, and  C.T.  White. Molecular-dynamics simulations 
of void collapse in shocked model-molecular solids. Physical  Review B, 49(21):14859- 
14864,  1994. 

[23) D.H. Robertson,  D.W.  Brenner,  and C.T. White. Split shock  waves from molecular 
dynamics. Physical  Review  Letters, 67(22):3132-3135,  1991. 

[24] M.A. Makeev and A. Madhukar. Simulations of atomic-level stresses in systems of 
buried  Ge/Si  islands. Physical  Review  Letters, 86(24):5542-5545,  2001. 

[25] 0. Vafek and M.O. Robbins. Molecular dynamics study of the stress  singularity at a 
corner. Physical  Review B, 60(17):12002-12006,  1999. 

1261 I.  Daruka, A.-L. Barab 'ai, S. J. Zhou, T.C. Germann, P.S. Lomdahl, and A.R. Bishop. 
Molecular-dynamics investigation of the surface stress  distribution in a Ge/Si quantum 
dot  superlattice. Physical  Review B, 60(4):R2150-R2153,  1999. 

70 



BIBLIOGRAPHY 

[27] 0. Kum,  W.G. Hoover, and C.G. Hoover. Temperature  maxima  in  stable two- 
dimensional shock waves. Physical  Review E, 56(1):462-465,  1997. 

- [28] W.G. Hoover. Isomorphism linking smooth particles and embedded  atoms. Physica 
A,  260~244-254,  1998. 

[29] W.G. Hoover. Nonequilibrium molecular dynamics. Annual  Review of Physical  Chem- 
istry, 34:103-127, 1983. 

[30] N. J. Ramer, E.J. Mele, and A.M. Rappe.  Theoretical  examination of stress fields in 
pb(zro.5tio.5)03. Ferroelectrics, 206-207:31-46,  1998. 

[31] Lord Rayleigh. On a theorem analogous to  the virial theorem. Philosophical  Magazine, 
S. 5., 50(303):210-213,  1900. 

[32]  Lord Rayleigh. On  the pressure of gases and  the  equation of virial. Philosophical 
Magazine, S. 6., 9(52):494-505,  1905. 

[33] Lord Rayleigh. On the momentum and pressure of gaseous vibrations, and on the 
connexion with the virial theorem. Philosophical  Magazine, 5'. 6., 10(57):364-374, 
1905. 

[34]  V. Vitek and T .  Egami. Atomic-level stresses in solids and liquids. Physics  Status 
Solidi (B), 144:  145-156,  1987. 

[35] R.G. Hoagland, MS. Daw, S.M. Foiles, and  M.I. Baskes. The  nature of crack tip 
fields in  atomic scale modelsof aluminum. In Atomic Scale  Calculations of Structure 
in Materials, volume 193 of Materials  Research  Society  Symposium  Proceedings, pages 
283-288. Materials Research Society,  1990. 

[36] S.Y. Hu, Y.L. Li, and K. Watanabe. Calculation of internal  streses  around cu  precipi- 
tates in the bcc fe matrix by atomic simulation. Modelling  and  Simulation in Materials 
Science  and  Engineering, 7:641-655, 1999. 

[37] M.F. Horstemeyer and M.I. Baskes. Atomistic finite deformation simulations: A dis- 
cussion on length scale effects  in relation to mechanical stresses. Journal of Engineering 
Materials  and  Technology / Transactions of the  ASME, 121:114-119,  1999. 

[38] G. Marc and  W.G. McMillan. The virial theorem. Advances in Chemical  Physics, 
58:209-361,  1985. 

[39] L.A. Zepeda-Ruiz, D. Maroudas, and  W.H. Weinberg. Theoretical study of the energet- 
ics, strain fields, and semicoherent interface structures in  layer-by-layer semiconductor 
heteroepitaxy. Journal of Applied  Physics, 85(7):3677-3695,  1999. 

[40] A. Machov 'a Stress calculations on the atomistic level. Modelling  and  Simulation in 
Materials  Science  and  Engineering, 9:327-337,  2001. 

71 



BIBLIOGRAPHY 

[41] J.A. Zimmerman. Continuum  and  Atomistic  Modeling of Dislocation  Nucleation  at 
Crystal  Surface  Ledges. PhD thesis,  Stanford University, 2000. 

[42] M. Baus and  R.  Lovett.  Stress-strain  relations in nonuniform equilibrium fluids. Phys- - 
ical  Review A,  44(2):1211-1218,  1991. 

[43] O.H. Nielsen and R.M.  Martin. Quantum-mechanical theory of stress  and force. Phys- 
ical  Review B, 32(6):3780-3791,  1985. 

[44] J.H. Irving and  J.G. Kirkwood. The  statistical mechanical theory of transport pro- 
cesses. iv. the equations of hydrodynamics. Journal of Chemical  Physics, 18(6):817- 
829, 1950. 

[45] J.G. Kirkwood and  F.P. Buff. The  statistical mechanical theory of surface tension. 
Journal  of  Chemical  Physics, 17(3):338-343,  1949. 

[46] R.J. Swenson. Comments on virial theorems for bounded  systems. American  Journal 
of Physics, 51:940-942,  1983. 

[47] S. Yip, J.  Li, M. Tang, and J. Wang. Mechanistic aspects  and atomic-level consequences 
of elastic  instabilities in homogeneous crystals. Materials  Science  and  Engineering A ,  
A317:236-240,  2001. 

[48] D.A. Faux, G. Jones, and  E.P. O’Reilly. Calculation of strain relaxation in strained- 
layer structures: comparison of atomistic  and continuum methods. Modelling  and 
Simulation in Materials  Science  and  Engineering, 2:9-20, 1994. 

[49] M.P. Allen and  D.J. Tildesley. Computer  Simulation of Liquids. Clarendon  Press, 
Oxford, 1987. 

[50] R.W. Smith  and  D.J. Srolovitz. Void formation during film growth: A molecular 
dynamics  simulation  study. J.  Appl.  Phys., 79(3):1448-1457, 1996. 

[51] M. Born and E(. Huang. Dynamical  Theories of Crystal  Lattices. Clarendon  Press, 
Oxford, 1956. 

[52] K. Huang. On  the atomic  theory of elasticity. Proc.  Roy. SOC. London, A203:178-94, 
1950. 

[53] S. Kohlhoff, P. Gumbsch, and H.F. Fischmeister. Crack propagation in BCC crystals 
studied  with a combined finite-element and  atomistic model. Phil.  Mag. A ,  64951-78, 
1991. 

[54] J.Q. Broughton, F.F. Abraham, N. Bernstein, and E. Kaxiras.  Concurrent coupling of 
length scales: Methodology and application. Phys.  Rev. B, 60:2391-2403, 1999. 

72 



BIBLIOGRAPHY 

[55] C.B. Kafadar and A.C. Eringen. Micropolar media - I the classical theory. Int. J .  
Engng. Sci., 9:271-305,  1971. 

- [56] S. Atluri and  T. Zhu. A new  meshless local Petrov-Galerkin approach  in  computational 
mechanics. Computational  Mechanics, 22:117-127,  1998. 

[57] T. Zhu, J. Zhang, and S. Atluri. A local boundary  integral  equation  (LBIE)  method 
in computational mechanics, and a meshless discretization  approach. Computational 
Mechanics, 21:223-235,  1998. 

[58] T. Belytschko, L. Gu,  and Y.Y. Lu. Fracture  and crack growth by element free Galerkin 
methods. Modelling  and Simulation in Materials  Science and Engineering, 2:519-534, 
1994. 

[59] T. Belytschko, D. Organ,  and  Y. Krongauz. A coupled finite-element, element-free 
Galerkin method. Computational  Mechanics, 17:186-195, 1995. 

[60] T. Belytschko, Y.Y.  Lu, L. Gu,  and M.R. Tabbara. Element-free Galerkin  methods for 
static  and dynamic  fracture. International Journal of Solids and Structures, 17:186- 
195, 1995. 

[61] Y.Y.  Lu, T. Belytschko, and M.R. Tabbara. Element-free Galerkin methods for  wave 
propagation and dynamic  fracture. Computer  Methods in Applied  Mechanics and En- 
gineering, 126:131-153,  1995. 

[62] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ,  and W.K. Liu. Smoothing  and 
accelerated  computations in the element free Galerkin methods. Journal of Computa- 
tional and  Applied Mathematics, 74:lll-126, 1996. 

[63] T. Belytschko and M.R. Tabbara. Dynamic fracture using element-free Galerkin  meth- 
ods. International Journal fo r  Numerical  Methods in Engineering, 39:923-938,  1996. 

[64] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: 
an overview and recent developments. Computer  Methods in Applied  Mechanics and 
Engineering, 139:3-47,  1996. 

[65] S. Beissel and T. Belytschko. Nodal integration of the element-free Galerkin  method. 
Computer Methods in Applied  Mechanics and Engineering, 139:49-74, 1996. 

I661 D. Organ, T. Fleming, T. Terry, and T. Belytschko. Continuous meshless approxima- 
tions for nonconvex bodies by diffraction and transparency. Computational  Mechanics, 

i 18:1-11,  1996. 

[67] P. Krysl and T. Belytschko. Element-free Galerkin method: convergence of the con- 
tinuous  and discontinuous  shape functions. Computer  Methods in Applied  Mechanics 
and Engineering, 148:257-277,  1997. 

73 



BIBLIOGRAPHY 

[68] J. Dolbow and T. Belytschko. Numerical integration of the Galerkin weak form in 
meshfree methods. Computational  Mechanics, 23:219-230, 1999. 

[69] N. Moes, J. Dolbow, and T. Belytschko. A finite element method for crack growth with- 
out remeshing. International  Journal of Numerical  Methods in Engineering, 46:131- 
150,  1999. 

[70] P. Krysl and T. Belytschko. The element free Galerkin method for dynamic  propagation 
of arbitrary 3-D cracks. International  Journal of Numerical  Methods in Engineering, 
441767-800,  1999. 

[71] J.S. Chen,  C. Pan,  C.T. Wu, and  W.K. Liu. Reproducing kernel particle  methods 
for large deformation analysis of nonlinear structures. Computer  Methods in Applied 
Mechanics  and Engineering, 139:  195-227,  1996. 

[72] J.S. Chen, C.T. Wu, S. Yoon, and Y.  You. A stabilized conforming nodal integra- 
tion for Galerkin meshfree methods. International  Journal of Numerical  Methods in 
Engineering, 2000. accepted for publication. 

[73] J.S.  Chen,  C.T. Wu, and S. Yoon. Nonlinear version of stabilized conforming nodal in- 
tegration for Galerkin meshfree methods. International  Journal of Numerical Methods 
in Engineering, 2000. submitted for publication. 

[74] Y. Krongauz and T. Belytschko. EFG  approximation  with discontinuous derivatives. 
International Journal for Numerical  Methods in Engineering, 41:  1215-1233,  1998. 

[75] T.J. Liszka, C.A.M. Duarte, and W.W. Tworzydlo. hp-meshless cloud method. Com- 
puter Methods in Applied  Mechanics  and  Engineering, 139:263-288,  1996. 

[76] W.K. Liu and Y. Chen. Wavelet and multiple scale reproducing kernel method. In- 
ternational  Journal for Numerical  Methods in Fluids, 21:901-931,  1995. 

[77] W.K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel methods 
for structural dynamics. International  Journal for Numerical  Methods in Engineering, 
3811655-1679, 1995. 

[78] S. Li and  W.K. Liu.  Moving least square reproducing kernel method (11): Fourier 
analysis. Computer  Methods in Applied  Mechanics  and  Engineering, 139:159-194,  1996. 

[79] W.K. Liu, Y.  Chen, R.A. Uras,  and C.T. Chang. Generalized multiple scale reproduc- 
ing kernel particle  methods. Computer  Methods in Applied  Mechanics  and Engineering, 
139191-158,  1996. 

[80] W.K. Liu, Y.  Chen, C.T. Chang, and T. Belytschko. Advances in multiple scale kernel 
particle  methods. Computational  Mechanics, 18:73-111, 1996. 

74 



BIBLIOGRAPHY 

[81] S. Li and  W.K. Liu. Moving least  square  reproducing kernel method  (I): Methodology 
and convergence. Computer  Methods in Applied  Mechanics  and Engineering, 143:113- 
154, 1997. 

[82] S. Li and  W.K. Liu. Moving least square  reproducing kernel method (111): Wavelet 
packet and  its applications. Computer  Methods in Applied  Mechanics and Engineering, 
1997. 

[83] W.K. Liu, W.  Hao, Y. Chen, Jun S., and  J. Gosz. Multiresolution  reproducing kernel 
particle  methods. Computational  Mechanics, 20:295-309, 1997. 

[84] J.S.  Chen, S. Yoon, H. Wang, and  W.K. Liu. An improved reproducing kernel method 
for nearly incompressible finite elasticity. Computer  Methods in Applied  Mechanics 
and Engineering, 1998. accepted for publication. 

[85] S. Li and  W.K. Liu. Synchronized reproducing kernel interpolant  via  multiple wavelet 
expansion. Computational  Mechanics, 21:28-47, 1998. 

[86] F.C. Guenther  and  W.K. Liu. Implementation of boundary  conditions for  meshless 
methods. Computer  Methods in Applied  Mechanics  and Engineering, 163:205-230, 
1998. 

[87] W.K. Liu and S. Jun. Multiple scale reproducing kernel particle  methods for large 
deformation problems. International Journal for Numerical  Methods in Engineering, 
4111339-1362) 1998. 

[88] S. Jun,  W.K. Liu,  and T.  Belytschko. Explicit reproducing kernel particle  methods 
for large deformation problems. International Journal for Numerical  Methods in En- 
gineering, 41:137-166,  1998. 

[89] W.K. Liu, R.A. Uras,  and Y. Chen. Enrichment of the finite element method with the 
reproducing kernel particle  method. Journal of Applied  Mechanics, 64:861-870,  1998. 

[go] S. Hao,  W.K. Liu, and  C.T. Chang.  Computer  implementation of damage models by 
finite element and meshfree methods. Computer Methods in Applied  Mechanics and 
Engineering, 1998. accepted for publication. 

[91] S. Li and  W.K. Liu. Reproducing kernel hierarchical partition of unity (I): Formulation 
and  theory. International Journal for Numerical  Methods in Engineering, 45251-288, 
1999. 

[92] S. Li and  W.K. Liu. Reproducing kernel hierarchical partition of unity (11): Applica- 
tions. International Journal f o r  Numerical  Methods in Engineering, 45:289-317,  1999. 

[93] G.J. Wagner and W.K. Liu. Application of essential boundary  conditions in mesh- 
free methods: A corrected collocation method. International Journal for Numerical 
Methods in Engineering, 47:1367-1379,  2000. 

75 



BIBLIOGRAPHY 

[94] W.K. Liu, S. Hao, T. Belytschko, S. Li, and C.T. Chang. Multiple scale meshfree meth- 
ods for damage  fracture  and localization. Computational  Materials  Science, 16:197- 
205,  1999. - 

[95] W.K. Liu and S.  Li. Numerical simulations of strain localization in inelastic solids 
using meshfree methods. International  Journal of Numerical Methods fur Engineering, 
1999. accepted for publication. 

[96] S .  Li, W. Hao, and  W.K. Liu. Mesh-free simulations of shear  banding in large defor- 
mation. International Journal of Solids  and Structures, 37:7185-7206,  2000. 

[97] W.K. Liu, S. Hao, T. Belytschko, S. Li, and C.T. Chang. Multi-scale methods. Inter- 
national  Journal for Numerical  Methods in Engineering, 47:1343-1361,  2000. 

[98] L.W. Cordes and B. Moran. Treatment of material discontinuity in the element-free 
Galerkin method. Computer Methods in Applied  Mechanics  and  Engineering, 139:75- 
89, 1996. 

[99] J.M. Melenk and I. BabuSka. The  partition of unity finite element method: Basic 
theory  and  applications. Computer  Methods in Applied  Mechanics  and  Engineering, 
139:289-314,  1996. 

[loo] B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: Diffuse 
approximation and diffuse elements. Computational  Mechanics, 10:307-318,  1992. 

[loll  J.T. Oden, C.A.M.  Duarte,  and O.C. Zienkiewicz. A new cloud-based hp finite element 
method. Computer Methods in Applied  Mechanics  and  Engineering, 153:117-126,  1998. 

[lo21 N. Sukumar, B. Moran, and T. Belytschko. The  natural element method. International 
Journal for Numerical  Methods in Engineering, 43:839-887,  1998. 

[lo31 M.R. Tabbara  and C.M.  Stone. A computational  method for quasi-static  fracture. 
Computational  Mechanics, 22:203-210,  1998. 

76 



Chapter 9 

DISTRIBUTION: 

1 

1 
1 
1 

1 

1 

1 

1 

1 
1 

1 
1 
1 
1 
1 
5 
5 

1 

1 

MS 0188 

MS 0316 

MS  0316 

MS  0824 

MS  0841 

MS  0847 

MS 0893 

MS 1411 

MS 1415 

MS 9001 

D.L. Chavez, LDRD Office,  1030 

J.B. Aidun, 9235 
M.J. Stevens, 9235 
A.P.  Thompson, 9235 

S.J.  Plimpton, 9212 

A.C.  Ratzel, 9110 

T.C. Bickel,  9100 

H.S. Morgan, 9120 

R.M.  Brannon, 9123 
E.D. Reedy Jr., 9123 

H.E.  Fang, 1834 
C.C.  Battaile, 1834 
M.V. Braginsky, 1834 
S.M. Foiles,  1834 
E.A. Holm,  1834 
J.J. Hoyt, 1834 
E.B. Webb 111, 1834 

J.E. Houston, 1114 

M.E.  John, 8000 

77 



CHAPTER  9. DISTRIBUTION 

1 
1 
1 

1 
1 

1 
1 
5 
1 
15 

1 
1 

1 
1 
1 

1 

1 

MS 9042 

MS 9108 

MS 9161 

MS 9161 

MS 9402 

MS 9405 

MS 9405 

Attn: 
J. Vitko, 8100, MS 9004 
D.R. Henson, 8200, MS 9007 
W.J. McLean, 8300, MS  9054 
P.N. Smith, 8500,  MS  9002 
K.E.  Washington, 8900, MS  9003 

P.A. Spence, 8727 
P.M.  Gullett, 8727 
Y. Ohashi, 8727 

S.L. Robinson, 8414 
G.C.  Story, 8414 

E.P.  Chen, 8726 
C.J. Kimmer, 8726 
P.A. Klein, 8726 
D.A. Zeigler,  8726 
J.A. Zimmerman, 8726 

J.C. Hamilton, 8721 
D.J. Siegal,  8721 

D.F. Cowgill,  8724 
K.L. Hertz, 8724 
B.P. Somerday,  8724 

R.H.  Stulen, 8700 
Attn: 

J.M. Hruby,  8702, MS  9401 
K.L. Wilson,  8703, MS 9402 
G.D.  Kubiak, 8705, MS 9409 
R.Q. Hwang,  8721, MS 9161 
W.R. Even Jr., 8722, MS 9403 
J.C.F. Wang,  8723, MS 9403 
C.H.  Cadden, 8724, MS 9402 
J.R. Garcia, 8725, MS 9042 
C.C. Henderson, 8729, MS 9401 
J.E.M. Goldsmith, 8730, MS 9409 
W.C. Replogle,  8731, MS 9409 

S. Aubry, 8726 

78 



5 
1 
1 
1 
1 
1 
5 
1 
1 
1 

- 

1 

1 

3 
1 
1 

MS  9950 

MS 9950 

MS 9018 
MS 0899 
MS 9021 

D.J.  Bammann, 8726 
A.A. Brown, 8726 
G.R. Feijoo, 8726 
J.W. Foulk,  8726 
Y. Hammi, 8726 
D.A. Hughes, 8726 
R.E.  Jones, 8726 
E.B. Marin, 8726 
R.A. Regueiro, 8726 
D. Suh, 8726 

T.D. Nguyen, 8726 

G.J. Wagner, 8728 

Central Technical Files, 8945-1 
Technical Library, 9616 
Classification Office, 8511/ 
Technical Library, MS 0899,  9616 
DOE/OSTI via URL 

79 


	Abstract
	Contents
	List of Figures
	Introduction
	Correspondence of atomistic and cont inuurn boundary value problems
	2.1 Describing material motion
	2.2 Correspondence of continuum and atomistic bound- ary value problems

	A Critical Review of the Virial Theorem
	3.1 Mean stress theorem
	3.2 Virial theorem
	3.3 Comments

	Stress Expression of Cheung and Yip
	4.1 Cauchy's tetrahedron
	4.2 Cheung and Yip’s stress expression
	4.3 Comments

	Atomistic-Continuum Formulation of Lutsko and Cormier et al.
	5.1 Particle mechanics
	5.2 Cormier's formulation
	5.3 Comments

	Atomistic-Continuum Formulation of Robert J. Hardy
	6.1 Review of continuum mechanics
	6.2 Hardy’s formulation
	6.3 Comparison of Hardy’s method with Moving Least Squares
	6.4 Evaluation of Continuum Stress in Atomistic Sirnulation
	6.5 Extending Hardy’s formulation to non-central potentials
	6.6 Comments

	Eringen's Micropolar Continuum Forrnulation
	7.1 Motivation
	7.2 Kinematics of a micromorphic continuum
	7.3 Kinematics of a micropolar continuum
	7.4 Mass and inertia
	7.5 Balance laws
	7.6 Preface to Hardy formulation

	Bibliography
	DISTRIBUTION



