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Abstract 
 

 
Three levels of fission product diffusional release models are solved exactly.  First, the 
Booth model for a homogenous uncoated spherical fuel particle is presented and an 
improved implementation is suggested.  Second, the release from a fuel particle with a 
single barrier layer is derived as a simple alternative to account for a coating layer.  
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I. Introduction 

 

Nuclear fuels encased in multicoated barriers are being considered for advanced High 

Temperature Gas Reactors (HTGRs).  This fuel configuration has the potential to 

enhance safety by containing fission products within the fuel.  However, even if the 

barriers remain structurally intact, experiments have shown that at high temperatures a 

significant fraction of the fission products may escape through the barriers [Kurata et al., 

1981; Hayashi and Fukuda, 1989; Schenk et al., 1990].   

 

Modeling all the details of fission product release from multicoated fuels is complicated 

by the variety of phenomena that occur.  First, due to manufacturing limitations, the 

geometry is not exactly a system of perfectly uniform spherical coatings [Minato et al., 

1994; Petti et al., 2002].  Furthermore, under a temperature gradient, the system deforms 

due to the so-called “amoeba effect” [Iwamoto et al., 1972; Stansfield et al., 1975].  

Second, due to stresses, coatings may crack or delaminate [Miller et al., 2001].  Third, 

there are also reports of fission products reacting with barrier coatings, resulting in 

nonuniform variations in the barrier thickness [Smith, 1979a, 1979b; Tiegs, 1982; Lauf et 

al., 1984].  Fourth, at high temperatures, diffusion through the barriers can be significant 

[Kurata et al.1981; Hayashi and Fukuda, 1989].  Finally, due to temperature variations 

across the fuel particle, mass transport is not entirely uncoupled from heat transfer.   
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Clearly, models that are restricted to only diffusive mass transfer of fission products do 

not capture all the phenomena.  However, surprisingly, such models, with assumed 

perfect spherical symmetry, have successfully modeled releases even from a fuel particle 

that has been pierced with a laser-drilled hole [Amian and Stover, 1982].  Therefore, 

there is utility in advancing such models for quantifying the effects of fission product 

diffusion.   

 

Booth [1957] developed a popular diffusion model for uncoated spherical grains.  To 

utilize this approach for fuel elements that are more than an order of magnitude larger, 

variations in the diffusivity are spatially averaged.  An advantage of the Booth model is 

that the release fraction is a simple analytical expression, thus eliminating extensive 

computations.  However, for multicoated fuels, only numerical solutions [Brown and 

Faircloth, 1976; Kurata, 1981; Amian and Stover, 1982], or semi-analytic approximations 

[Smith et al., 1977] have been documented in the literature.  In all these cases, significant 

computational resources are required and the results are limited by discretization or 

approximation errors. 

 

For reactor safety analyses, accurate but computationally efficient release models from 

multicoated fuels are needed.  In this work, a new exact analytical solution for diffusion 

through a multicoated fuel is given.  Thus, discretization and approximation errors are 

eliminated.  Furthermore, the solution can be rapidly determined for an arbitrary number 

of layers, with arbitrary diffusivities for each fission product in each layer, with an 

arbitrary initial fission product concentration in each layer, and with arbitrary 
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concentration discontinuities at interfaces between layers.  The exact solution is based on 

work developed for heat conduction through composite media [Mulholland and Cobble, 

1972; Ozisik, 1980].  However, for fission product release, the ability to specify 

discontinuous concentrations at coating interfaces has been added.  An alternate approach 

for obtaining exact solutions to multilayer problems is based on Laplace Transforms 

[Carslaw and Jaeger, Chapter 12.8, 1976].  However, this approach is difficult to apply 

for more than two layers [Ozisik, p. 262, 1989].  Furthermore, the transform technique is 

complicated for nonzero initial conditions, and all the examples presented, even for two 

layers, are limited to zero initial conditions [Carslaw and Jaeger, Chapter 12.8, 1976]. 

 

We begin in Section II by deriving in detail the Booth model for the release fraction 

[Booth, 1957].  One reason for presenting the derivation is that the original work is not 

readily available.  More importantly, we show that the current method for utilizing the 

Booth model [Ramamurthi and Kuhlman, 1990], suffers from a significant discontinuity 

that is readily corrected.  Next we show in Section III that an exact expression for the 

release fraction can be obtained for a single coating used as a diffusive barrier.  This 

lumped fuel and barrier solution assumes that all the resistance is in this barrier.  An 

earlier analysis restricted the diffusivity in the barrier to be identical to that in the fuel 

[Rosenberg et al., 1965].  The steady state behavior of a single coating barrier has been 

analyzed [Dunlap and Gulden, 1968].  Fukuda and Iwamoto [1975] report that Baurmann 

[1970] developed a transient single coating barrier model.  Unfortunately, we could not 

obtain a copy of Baurmann’s work.  An exact solution is then derived in Section IV for 

the general case of an arbitrary number of layers.  We show that in the limit of a single 
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layer with a much lower diffusivity than the fuel, the exact multilayer model approaches 

the simpler lumped fuel and barrier model.  To fully demonstrate the capabilities of the 

solution developed in this work, the simulation of a release from a TRISO-coated fuel 

geometry is given in Section V. 



 

10     

II. Fractional Release By Diffusion From A 

Homogeneous Spherical Fuel Particle  

 

The governing equation for Fickian diffusion and radioactive decay in spherical 

coordinates is given by 

 

                            c
r
c2Dr

r2r

1
t
c λ−





∂
∂

∂
∂=

∂
∂                (0 ≤  r ≤ R) (II.1) 

 

where R is the radius of the sphere, D is the diffusivity, and is λ the radioactive decay 

rate.  D is parameterized as 

 

                                    













−=

TgasR
0E

exp0DD  (II.2) 

 

where D0 and E0 are fitting parameters, T is the temperature, and Rgas is the ideal gas 

constant.  Because the temperature may vary with time, we assume that D is a known 

function of time.  We assume that there is no spatial variation of temperature, and thus 

the diffusivity is independent of r.  The boundary and initial conditions are, 

 

                         c = 0        (r = R, t > 0), (II.3) 
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                         c finite     (r = 0), and (II.4) 

  

                         c = c0      (0 ≤ r ≤ R, t = 0). (II.5) 

 

The condition given in Eq. (II.3) provides the maximum release.  Alternatively, by 

introducing another parameter, a convective boundary condition can be imposed such that 

the flux is proportional to the concentration on the surface of the sphere [Fukuda and 

Iwanmoto, 1975]. 

 

Using the transformation p = exp(λt)cr, the governing equation can be given as 

 

                                              
2r

p2
D

t
p

∂

∂=
∂
∂ . (II.6) 

 

The transformed boundary and initial conditions are, 

 

                                     p = 0         (r = R, t > 0), (II.7) 

 

                                     p = 0         (r = 0), and (II.8) 

  

                                     p = rc0      (0 ≤ r ≤ R, t = 0). (II.9) 
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The transformed system can be solved in terms of an eigenfunction expansion that 

satisfies the transformed boundary conditions.  Let p(r,t) = Q(r)T(t), where Q is a 

function only of r, and T is a function of only t.  Then the separated form of Eq. (II.6) is 

given by 

 

                                            2
Q
Q

DT
T β−=

′′
=

′
 (II.10) 

 

where β is a constant, and the primes represent differentiation with respect to the 

appropriate independent variable.  To within a multiplicative constant, the solution to Eq. 

(II.10) for Q that satisfies Eq. (II.8) is 

 

                                              Q = sin(βr).   (II.11) 

 

From Eqs. (II.7) and (II.8) β can take on only discrete values of  

 

                                              βn = nπ/R      (n = 1, 2, …). (II.12) 

  

By using these values of βn, the solution of Eq. (II.10) for T (within a multiplicative 

constant) can be given by 

 

                                              










 π−=
2R

tD22nexpT  (II.13) 
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where the time-averaged diffusivity is given by 

 

                                              
t

dx)x(D

t

0D

∫
= . (II.14) 

 

Combining Eqs. (II.11) and (II.13) results in 

 

                                   










 π−

∞

=







 π=∑ 2R

tD22nexp

1n
R

rnsinnAp  (II.15) 

 

where An are constants determined by the initial condition.  Imposing the initial 

condition and transforming back to spherical coordinates results in 

 

                      ( )










 π−

∞

=







 π+−

π

λ−
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tD22nexp

1n
R

rnsin
n

1n1
r

Rte2

0c
c . (II.16) 

 

The mass of fission product remaining in the sphere is given by 
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                        ∑∫
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The fraction released or decayed is therefore given by  

 

                     










 π−

∞

=
π

λ−
−=−= ∑ 2R

tD22nexp
2n

1

1n
2

te61
)0(M
)t(M1f . (II.18) 

 

An expression for the diffusivity variation with time is needed to determine D , and then 

the fraction released or decayed as given by Eq. (II.18) can be determined.  If Eq. (II.14) 

can be evaluated analytically, then an explicit expression for D  can be substituted into 

Eq. (II.18).  The case of constant D and no radioactive decay results in the classical 

Booth model [Ramamurthi and Kuhlman, p. 41, 1990].  However, the solution is actually 

not restricted to constant D, as long as the time-averaged diffusivity is used for D.   
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II.A.  Booth Model for Constant Diffusivity 

 

For constant diffusivity, D = D, and λ = 0, the fraction released is given by 

 

             












τ
π−

∞

=
π

−=







τ ∑ t22nexp
2n

1

1n
2

61t
Boothf        (D constant, λ = 0). (II.19) 

 

This function is plotted in Fig. II.1 as a function of the dimensionless time t/τ = Dt/R2.  

For t/τ much greater than approximately 0.1, only the first term in the series is needed, 

and thus 

 

           












τ
π−

π
−→








τ
t2

exp
2
61t

Boothf        (t/τ  >> 0.1, D constant, and λ = 0) (II.20) 

 

where D is the effective diffusivity, and t is time.  For t/τ < 1/π2 the fraction released is 

given by [Ramamurthi and Kuhlman, p. 41, 1990] 

 

                
τ

−
πτ

→







τ
t3t36t

Boothf         (t/τ  < 1/π2, D constant, and λ = 0) (II.21) 
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These two approximations are compared to the exact expression in Fig. II.1.  Notice that 

these two approximations are adequate for representing the fraction released for all values 

of dimensionless time.  The transition dimensionless time between the two 

approximations is given as 1/π2 = 0.101 [Ramamurthi and Kuhlman, p. 41, 1990].  

However, the approximations do not intersect, and are not even closest at this value of 

dimensionless time.  Therefore, if these two functional forms are retained we suggest 

instead using t/τ = 0.155 as the transition point.  At this value of dimensionless time the 

two approximations are closest. 

 

Because numerical solutions may have convergence problems with discontinuous 

functions, an even better approach would be to use approximations that result in a 

continuous release fraction with dimensionless time.  This can be easily achieved by 

determining a scale factor s given by 

 

                                












τ
π−

π
−=









τ
−

πτ
t2

exp
2
61t3t36s . (II.22) 

 

If the continuity condition is applied at t/τ  = 0.155, then  

 

                                 0006964.1
)155.0(3)36)(155.0(

2155.0exp
2

61
s =









−

π





 π−

π
−

=  (II.23) 
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and for thus t/τ  < 0.155 the approximation is 

 

          








τ
−

πτ
= t3t360006964.1Boothf    (t/τ  < 0.155, D constant, λ = 0)  (II.24) 

 

 

Figure II.1.  Fraction released for Booth model  
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III.  Lumped Fuel and Barrier Model 

 

Consider the same fuel sphere of radius ra, enclosed by diffusive barrier layer in the 

region ra ≤ r ≤ rb as shown in Fig. III.1. 

 

Figure III.1.  Schematic of coupled lumped fuel and barrier model.  

 

 

 

 

 

 

 

 

 

Because the dominant resistance is in the barrier layer, we will approximate the fission 

product concentration as uniform in the fuel.  Thus the initial fission product mass can be 

given by 

 

                                              ac1K3
ar3

4)0(M π=   (III.1) 

 

 

  ra 

 
    rb 
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where K1 is a constant, and ca is the concentrations in the regions 0 ≤ r ≤ ra.  With this 

formulation there may be multiple interior layers, each with a different fission product 

concentration, but with an initial average fission product concentration of ca.  The 

concentration just inside the diffusive barrier at the r = rb will be approximated as  

 

                                                ac2K
arrc ==  (III.2) 

 

where K2 is a constant.  (The constants K1 and K2 are introduced to allow for 

discontinuous concentrations.)  Equation (II.1) is still applicable in the diffusive barrier, 

however the boundary conditions are now 

 

                                   c = K2ca        (r = ra, t > 0), (III.3) 

 

                                   c = 0              (r = rb), and (III.4) 

  

                                   c = 0              (ra ≤ r ≤ rb, t = 0). (III.5) 

 

Eqs. (II.1), (III.3), (III.4), and (III.5) can be expressed in terms of dimensionless variables 

by defining a dimensionless distance, time, and scaled concentration respectively as 

 

                                         
arbr

arr
R

−

−
= , (III.6) 
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2)arbr(

tDT
−

= , and (III.7) 

 

                                         
ac2Kar

rcC = . (III.8) 

 

With these definitions, the dimensionless equation, and boundary and initial conditions 

are, 

 

                                               
2R

C2

T
C

∂

∂=
∂
∂  (III.9) 

 

                                            C = 1       (R = 0, T > 0), (III.10) 

 

                                            C = 0       (R = 1, T > 0), and (III.11) 

 

                                            C = 0       (0 ≤ R ≤ 1, T = 0). (III.12) 

 

The solution to this system is given by 
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Thus in the region ra ≤ r ≤ rb 

 

                 ( )















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From a mass balance, the rate of mass change in the region r < ra is given by the mass 

rate that diffuses into the barrier.  Thus 
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which reduces to 
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Integrating with the initial condition of cb = cbo at T = 0, results in 
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The mass contained in the system is given by 
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The integral is zero at T = 0, and for T > 0 can be given by 
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The fraction released by a diffusive barrier system is given by 

 

                                           
)0(M
)T(M1

ar
br,2K,1K,Tdbf −=




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



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where the subscript “db” stands for diffusive barrier.  In dimensional form there are seven 

variables: t, D, cbo, ra, rb, K1 and K2.  However, in dimensionless form we see from Eq. 
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(III.20) that the fraction released can be expressed in terms of only four dimensionless 

variables.  This is a significant simplification of the problem.  

 

As an example, consider a typical layer thickness for SiC for various TRISO-coated fuels 

as given in Table III.1.  Notice that the thickness of the SiC layer is on the order of 10% 

of the radius of the sphere interior to the SiC layer.  Thus we will consider the range 1.05 

< rb/ra < 1.15 by holding the inner radius fixed and varying the outer radius.  In addition, 

for convenience we specify that K1 and K2 are unity.  With these parameters, we see 

from Fig. III.2 that for T[rb/ra - 1]2 greater than approximately 0.1, the fraction released 

is more than 0.8.  (The x-axis variable is chosen this way such that this variable is 

independent of the outer radius.  Thus the x-axis variable is independent of the curve 

selected in the figure.)  Also, the greater the thickness of the barrier compared to the size 

of the fuel, the slower the release. 
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Table III.1.  Layer thickness for various fuels (expressed in micrometers, Petti et al., 

2002). 

Layer NPR MODUL HTTR HTR-10 HRB-4 

Fuel* 200 500 600 501 367 

Buffer 101.7 92 60 84.8 45 

IPyC 

Inner Pyrolytic Carbon 
52.9 39 30 43 31 

SiC 

Silicon Carbide 
35.3 35 25 40 34 

OPyC 

Outer Pyrolytic Carbon 
39.1 40 45 38.5 30 

       *Fuel thickness is for the fuel diameter. 
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Figure III.2.  Fraction released for lumped fuel and barrier model.  The curves as 

labeled are for rb/ra = 1.05, 1.10, and 1.15.  
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IV.  Exact Multilayer Model 

 

TRISO-coated fuel consists of multiple layers, and a full analysis requires accounting for 

diffusional resistance in each layer.  Such systems can be modeled as a layered sphere in 

which the layers may have different thicknesses and diffusivities for each fission product.  

A schematic of such a layered sphere is shown in Figure IV.1 with four layers (i.e. three 

coatings).   

 

Figure IV.1.  Schematic of coupled multilayer model.  
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For layer i, the inner and outer radii are ri and ri+1, respectively, where 1 ≤ i ≤ L, and  

r1 = 0.  The governing equation for the concentration in each layer is given by 
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where Di is the diffusion coefficient in layer i.  It is assumed that the diffusion coefficient 

is constant within each layer, but may vary from layer to layer.  The boundary condition 

at r = rL+1, c = 0, and at r = 0, c is finite.  The interface conditions at r = ri+1, i = 1, 2, 3, 

…, L-1 are given by continuity of the flux 
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and a general concentration relationship 

 

                                     1ic1iici ++γ=γ              (r = ri+1, i = 1, 2, …, L-1).  (IV.3) 

 

The partition factor γi, is introduced to allow for discontinuous concentrations at the 

interface [Dunlap and Gulden, 1968; Brown and Faircloth, 1976].  An analytical 

eigenfunction expansion approach for solving similar multilayer problems in heat 
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conduction has been reported [Mulholland and Cobble, 1972; Ozisik, 1980].  We now 

extend this expansion approach to allow for the interface condition given in Eq. (IV.3).   

 

We begin by separating Eq. (IV.1) into a product of a spatial function in layer i given by 

Ψi(r), and a temporal function given by Γ(t).  In anticipation of an eigenvalue problem 

for the n-th eigenvalue, the separated governing equation becomes 
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where βn is a constant eigenvalue, and n = 1, 2, …, ∞.  The eigenfunctions satisfy the 

equation 
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where Ai,n, Bi,n are constants that are determined from the boundary and interface 

conditions.  The eigenfunctions also satisfy the orthogonality relationship given by 
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where n and s are the indices of two different eigenfunctions.  (A proof of this 

orthogonality relationship can be obtained by following the approach given in Ozisik [pp. 

331-334, 1980].)  The solution for Γ is readily obtained to within a multiplicative 

constant as 
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The exact solution for the concentration in layer i can now be expressed as, 
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where Cn is a constant.  For L layers, there are L-1 interfaces, and thus 2(L-1) 

homogeneous interface equations for Ai,n and Bi,n given by Eqs. (IV.2) and (IV.3).  In 

addition, the end conditions at r = 0 and r = rL+1 provide two more homogeneous 

equations for a total of 2L equations.  From the condition at r = 0, we can immediately 

assign B1,n = 0, thus eliminating one coefficient and one equation.  The matrix must be 

singular for this system of 2L-1 homogeneous equations to have a solution.  This 

singularity requirement determines the eigenvalues βn.  For each eigenvalue, the 

coefficients Ai,n and Bi,n are the null vectors of the singular matrix.  The singular matrix 

times the null vector is always a vector of zeroes, without all the elements of the null 

vector being zero.  These null vectors are unique only to within a multiplicative constant, 

and may be normalized to one.  (Ozisik [1980] suggests arbitrarily selecting an element 

of the null vector to be unity to resolve nonuniqueness.  This approach is not 

recommended because the selected element may be zero, and by using such an arbitrary 

assignment the resulting solution may be wrong.) 

 

The constants Cn are determined by satisfying the initial conditions and by using the 

orthogonality property of the eigenfunctions given in Eq. (IV.7).  The result is  
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For c initially constant in each layer i, ci(r, t = 0) = ci(0).  For this initial condition the 

integral for Cn can be determined analytically, and thus 
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where the norm is given by, 
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Eq. (IV.12) can be integrated analytically to give, 
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The mass contained in a multilayer system is given by 

 

1ir

ir
iD

nr
sin

n

iDr

iD
nr

cos
2
n

iD
n,iB

iD
nr

cos
n

iDr

iD
nr

sin
2
n

iD
n,iA

1n

2
ntexpnC4

L

1i

dr)t,r(ic2r

1ir

ir

4

L

1i

)t(M

+





















































 β

β
+












 β

β
+

























 β

β
−












 β

β∞

=






 β−π

=

=

+

π

=

=

∑∑

∫∑

.

 (IV.14) 

 

Thus the fraction released for a multilayer system is given by 
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)0(M
)T(M1multilayerf −= . (IV.15) 

 

The expression for fmultilayer is exact, and thus eliminates discretization errors 

associated with numerical solutions for the concentration profile.  However, 

determination of the eigenvalues βn, does require numerical iteration.  This iteration 

involves repeatedly evaluating the determinant of a small (2L-1) × (2L-1) matrix and 

finding the eigenvalue that makes the determinant zero.  A simple secant technique is 

adequate for finding these eigenvalues.  To reduce the possibility that an eigenvalue is 

skipped, the derivative for the determinant as a function of β at the eigenvalue is checked 

to see that it changes sign for successive eigenvalues.  Typically, only 5 to 10 eigenvalues 

are needed for four significant figures of accuracy. 

 

The general multilayer solution given by Eq. (IV.9) reduces to the two-layer coupled 

lumped fuel and barrier model given previously in the limit of Dfuel/Dbarrier = D1/D2 

→ ∞.  This is shown in Figure IV.2 for r3/r2 = 1.1.  The dimensionless time T is given by 

Eq. (III.7) with the diffusivity taken as that for the barrier layer.  The solid curve was 

computed using Eq. (III.20), and the curves for finite D1/D2 were computed from Eq. 

(IV.15).  For D1/D2 greater than about 50, the simpler lumped fuel and barrier model 

seems adequate for determining the release fraction. 
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Figure IV.2.  Comparison of fraction released for lumped fuel and barrier model, 

and multilayer model for r3/r2 = 1.10, and γ1 = γ2 = 1.  The limit of  

Dfuel/Dbarrier → ∞  is the solution given in Eq. (III.20).  The three curves for finite 

Dfuel/Dbarrier correspond to the multilayer model. 
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V. TRISO-Coated Fuel Example 

 

TRISO-coated fuel consists of a micro spherical core of UO2, and four coating layers.  

These layers in order away from the fuel are (1) a buffer layer of porous pyrolytic carbon, 

(2) an inner dense pyrolytic carbon (IPyC) layer, (3) a silicon carbide (SiC) layer, and (4) 

an outer dense pyrolytic carbon (OPyC) layer [Minato et al., 1994b; Moormann, et al., 

2001].  For the purposes of the calculations in this section, we consider a specific TRISO-

coated fuel in which the layer outer radii are 300, 360, 390, 415, and 460 µm, 

respectively.  We also use the suggested diffusivities of Ruthenium at 1940 C for these 

layers.  These diffusivities are 8 × 10–13, 2 × 10–11, 2 × 10–12, 1.2 × 10–13, and  

2 × 10–12 m2/s, respectively [Kurata et al., 1981].  To demonstrate the effects of a 

concentration jump at the interfaces, assume that the partition coefficients are given by 

2γSiC = γIPyC = γOpyC = γBuffer = γUO2
= 1.  Thus we expect that the Ru concentration 

will drop by a factor of two from the PyC layers to the SiC layer. 

 

Consider the case in which Ru is initially uniformly distributed only in the UO2 layer and 

no Ru is initially in the other layers.  The evolution of the concentration profile in all the 

layers for this case is shown in Fig. V.1.  The Ru concentration shown in the figure is 

normalized to the initial concentration in the fuel.  After one hour of simulated time the 

Ru concentration in the first half of the radial distance is still mostly at the initial 

concentration.  Due to the low diffusivity in SiC, there is a sharp concentration drop in 
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this layer.  Furthermore, due to the partition coefficient for this layer, there is also a factor 

of two drop in concentration from the pyrolytic carbon layers to the silicon carbide layer.  

This interface drop is most prominent at the IPyC-SiC interface.  Because of the small 

concentrations at the SiC-OpyC interface, it is difficult to discern a concentration 

discontinuity at this interface.  After four hours of simulated time the Ru concentration in 

the buffer and IPyC layers increases due to diffusion of Ru from the UO2 layer.  After 7 

hours of simulated time, much of the Ru has diffused out of the UO2 layer.  However, it 

is the amount of Ru out of the layered system that is of concern, and not just the amount 

left in the UO2 layer.  By using Eq. (IV.15) the released fraction is readily calculated and 

is shown in Fig. V.2.  For this simulation, about 60 hours are required for more than 95% 

of the Ru to be released from the system. 
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Figure V.1. Fission product concentration profile evolution for TRISO-coated fuel 

using the diffusivities for Ru at 1940 C [Kurata et al., 1981].  The vertical dashed 

lines indicate the location of the interface between layers. 
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Figure V.2 Fission product release fraction for TRISO-coated fuel using the 

diffusivities for Ru at 1940 C [Kurata et al., 1981]. 
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