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Abstract
This report documents the research into the application of hierarchical Bayesian methods for characterizing
the population failure rate (i.e. probability of defect) of an electronic component based on test data from a
number of different test modalities.  Classical statistical methods, those based on a frequency approach
permit the combination of point estimates but stumble when characterizing the resulting confidence limits.
Classical Bayesian methods permit the logical combination of test data, but are not fully efficient in
incorporating all available information.  In particular, classical Bayesian methods assume that the articles
under test are not related in any manner even though the articles may be identical.  Alternatively,
hierarchical Bayesian methods permit the relationship between test articles to be explicitly included in the
analysis.  Data from four different test modalities are considered in the analysis. Comparisons are made
between the current analysis approach (using traditional statistical methods), classical Bayesian methods
and a hierarchical Bayesian approach.
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An Application of Bayesian Methods
for Combining Data from
Different Test Modalities

Abstract
This report documents the research into the application of hierarchical Bayesian methods
for characterizing the population failure rate (i.e. probability of defect) of an electronic
component based on test data from a number of different test modalities.  Classical
statistical methods, those based on a frequency approach, permit the combination of point
estimates but stumble when characterizing the resulting confidence limits.  Classical
Bayesian methods permit the logical combination of test data, but are not fully efficient
in incorporating all available information.  In particular, classical Bayesian methods
assume that the articles under test are not related in any manner even though the articles
may be identical.  Alternatively, hierarchical Bayesian methods permit the relationship
between test articles to be explicitly included in the analysis.  Data from four different
test modalities are considered in the analysis. Comparisons are made between the current
analysis approach (using traditional statistical methods), classical Bayesian methods and
a hierarchical Bayesian approach.

Background

System Description
For security reasons, the actual component to be characterized can only be described in
abstract terms.  The component consists of two identical subunits in hot standby
redundancy.  That is, both subunits are powered up and operational through the entire
mission.  A subunit consists of an electronic package utilizing monolithic microwave
circuit technology, a number of cables, and an antenna.  Failure of a subunit is assumed
to occur when it does not provide a correct signal (go/no-go) at the selected range given
the proper inputs. Component failure occurs when neither of the subunits provides a
correct signal.

Test Modalities
Testing is accomplished at both the subunit as well as component level.  In addition, there
are situations were individual devices within the subunit are tested.  While the techniques
discussed in this report are applicable when including device test data, this data is not
included in the analysis that follows.  There are four major types of testing where data is
available:

1. Tool Made Sample (TMS) – testing on the initial design production
2. E&D

a. Environmental Testing (E-test) – subunit testing involving a series of non-
destructive environmental tests, for example, temperature cycling
performed on samples to assure stockpile reliability and end-use
performance.  Non-failing units are returned to the stockpile.



2

b. Destructive Testing (D-test) – subunit testing involving destructive
environmental testing, e.g., vibration and shock combined with
temperature cycling.

3. REST Lab Testing (Stockpile Lab Testing) – system level testing
4. REST Flight Testing (Stockpile Flight Testing) – system level testing; component

and subunits may/may not be completely energized.

Of these tests, the most comprehensive and rigorous test regime is that accomplished for
E&D.  This testing puts each subunit through a wide range of possible input signals under
a variety of simulated stress conditions.  On the other extreme are the system tests
accomplished as part of the Stockpile Flight Testing program.  In this case, while the test
is the most realistic, not all functions of the subunit will be interrogated during a
particular flight test.
Table 1 provides a summary of the number of tests and the number of associated subunit
failures available for the four different test modalities.

Mode Tests Failures

TMS 20 2

E & D 124 0

REST Lab (SLT) 36 0

REST Flight (SFT) 2 0

Table 1. Summary of Test Results

Traditional Confidence Interval Assessment
Suppose that n independent tests are conducted with the probability of failure p.  The
observed number of failures, r, occurring in these n tests has a binomial distribution:

† 

f X = r; p( ) =
n!

r!(n - r)! pr(1- p)n -r (1)

with cumulative distribution:

† 

F(x;p) =
n!

r!(n - r)! px(1- p)n- x

x =r

n

Â (2)

Let a = desired confidence with

† 

pL  and 

† 

pU being the associated lower and upper
confidence limits.  The confidence limits can be found by solving the following equations
for 

† 

pL  and 

† 

pU :

† 
† 

n
x

Ê 

Ë 
Á 

ˆ 

¯ 
˜ pU

x (1- p)U
n- x

x = 0

r

Â = (1-a ) / 2 (3a)
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† 

n
x

Ê 

Ë 
Á 

ˆ 

¯ 
˜ pL

x (1- p)L
n -x

x = r

n

Â = (1- a) / 2 (3b)

Since x is a discrete random variable, an exact solution may or may not be available.
Thus if n samples are tested an infinite number of times and compute confidence limits
each time, then if 

† 

a = 0.90 , these limits will contain the true value of p 90 times out of
100.
For the particular series of tests under consideration, it is desired to assess the upper 10
and lower 90 percent confidence limits, i.e. 

† 

a = 0.80 .  Table 2 provides a summary of the
evaluation of equations 3a and 3b for the data in Table 1.  The median values are
determined from evaluation of either of the equations at 

† 

a = 0.50 .
Inherent within the assumption of the different test modalities are independent is that
there is no similarity or correlation between the articles being tested.  Therefore, from a
theoretical view, the test results can not be grouped together to make an overall
‘population estimate’.

Mode Tests Failures 10% LCL Median 90% UCL

TMS 20 2 0.05650 .1315 .245

E & D 124 0 0.001 0.006 0.0185

REST Lab (SLT) 36 0 0.003 0.0195 0.062

REST Flight (SFT) 2 0 0.0515 0.293 0.684

Table 2. Summary of Traditional Confidence Interval Analysis

Classical Bayesian Analysis
In the traditional technique (also known as the Frequentist approach) applied above, the
results implicitly depend on the fixed, but unknown value of p.  In a Bayesian analysis, p
is treated as simply an unknown parameter that can be better estimated through the
accumulation of information.  As a result, the conditional dependence of observing r
failures given the variable p is stated explicitly:

† 

f (X = r | p) =
n!

r!(n - r)! (1- p)n- r (p) s (4)

Let  

† 

g( p)  be a probability distribution function characterizing the initial understanding
that the variable p takes on a particular value. Bayes theorem states the information
gained from actually observing the random process (the failure data) can be combined
with the initial understanding to gain a better understanding of the variable p:

† 

g( p | r) =
g( p) f (X = r | p)
g( p) f (X = r | p)dp

0

1

Ú

=
g( p) f (r | p)

f (r)

(5)
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Selection of a prior
The most controversial aspect of Bayesian analysis is the selection of the prior 

† 

g( p)  since
a poorly characterized prior can dramatically impact the distribution 

† 

g( p | r) .  One
approach to addressing this problem is through the use of a prior distribution that contains
little information, i.e. a non-informative prior.
In the reliability field, the typical non-informative prior is the uniform distribution:

† 

g( p) =
1, 0 < p < 1
0, otherwise

Ï 
Ì 
Ó 

(6)

It will be convenient to recall that the uniform probability density function is a special
case of the beta density function:

† 

g( p) =
G(a + b)
G(a)G(b) pa-1 (1- p)b-1 0 £ p £1   (7)

where: 

† 

G(n) = xn -1 exp(-x)dx
0

•

Ú , and a, b are parameters of the distribution.  In the case
of the uniform distribution the parameters take on the values: a=1, b=1.  The beta form
for the prior is particularly appealing since the posterior is therefore also a beta
distribution function:

† 

g( p | s) =
G(a + b + n)

G(a + r)G(b + n - r) p(a+ r) -1(1- p)(b+ n- r)-1 0 £ p £1 (8)

This traditional non-informative prior assumed on p in the form of a uniform beta
distribution function was used as the first approach.
It is however rather unrealistic in that given the system
being analyzed, both engineering judgment and
historical records indicate that the underlying failure
rate is very low.  Therefore as an alternative, a prior
distribution that captures this information will be
investigated.  In particular, p will be assumed to be a
Weibull distributed random variable, with scale
parameter l and shape parameter n (e.g. Figure 1):

† 

g( p | n,l) = nlpn -1 exp[-lpn ], 0 £ p £1 . (9)

The Weibull distribution is chosen because it is often
used to describe product life and it models either increasing or decreasing failure rates
easily (see Figure 1).  It permits  a more realistic description of the historical information.

Results
For ease of analysis, Markov Chain Monte Carlo (MCMC) will be used to assess the
confidence intervals for each of the prior distributions assumed above. The analysis for
this study was accomplished using the WinBugs software package (Spiegelhalter, et al.
1996).  All runs in this report were carried out with 1000 burn-in iterations and a single
long-run of 10000 iterations.

Figure 1. Weibull Prior
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Case A
In a classical Bayesian analysis, as with the traditional Frequentist approach, each of the
tests is assumed to be independent from the other. Figure 2 depicts the probability density
function of the probability of observing a particular defect rate for each of the tests.
Table 3 presents a summary of the resulting confidence limit analysis.
It should be noted that since p is considered a random variable, the confidence intervals
represent that probability that the true value of p is above or below a particular value; this
is quite different than the definition of confidence intervals from a Frequentist
perspective.  From a theoretical viewpoint, the comparison between these two
perspectives on confidence intervals is a bit like mixing apples and oranges, but for the
purposes of this discussion the differences will be overlooked.
Finally, note that since the tests were assumed to be independent (as was the case in the
Frequentist analysis), no information is exchanged between tests, and therefore no
estimate of the population characteristics is available.  This is similar to a fixed effects
model common in statistical analyses.

Mode Tests Failures
Analysis
Method 10% LCL Median 90% UCL

TMS 20 2 Frequentist 0.0565 0.1315 0.245

Classical Bayes 0.0543 0.1227 0.238

E & D 124 0 Frequentist 0.001 0.006 0.0185

Classical Bayes 0.001 0.0058 0.01895

REST Lab (SLT) 36 0 Frequentist 0.003 0.0195 0.062

Classical Bayes 0.0033 0.01898 0.0663

REST Flight (SFT) 2 0 Frequentist 0.0515 0.293 0.684

Classical Bayes 0.0354 0.202 0.523

Table 3. Summary of Classical Bayes Confidence Interval Analysis: Uniform Prior
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Case B
As mentioned previously, the uniform prior, while a popular choice that avoids
controversy, does not reflect the available knowledge of the system being analyzed.  The
particular system is a very reliable system with strict controls over both the
manufacturing and testing process.  A more logical representation of the available
information would be a prior that emphasized the low likelihood of finding a defective
subunit but didn’t overpower the test data.  A prior that fits this description is a Weibull
density function with a shape parameter of 1.0 and a scale parameter of 5.0 truncated
with a maximum value of 1 (depicted in Figure 1).  As seen in Figure 1, these numbers
suggest failure rates more realistically – most likely lower than those of the uniform
distribution.  The results under the assumption of this prior are provided in Table 4 and
the associated probability density functions of the probability of observing a particular

Figure 2. Posterior Density Functions  of Failure Rates:
Classical Bayes Analysis with Uniform Prior

Figure 3. Posterior Density Functions of Defect Rates:
Classical Bayes Analysis with Weibull Prior
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defect rate for each of the tests are presented in Figure 3.

Mode Tests Failures
Analysis
Method 10% LCL Median 90% UCL

TMS 20 2 Frequentist 0.0565 0.1315 0.245

Classical Bayes 0.0449 0.1037 0.199

E & D 124 0 Frequentist 0.001 0.006 0.0185

Classical Bayes 0.0007 0.0052 0.0174

REST Lab (SLT) 36 0 Frequentist 0.003 0.0195 0.062

Classical Bayes 0.0025 0.01657 0.0547

REST Flight (SFT) 2 0 Frequentist 0.0515 0.293 0.684

Classical Bayes 0.0140 0.09217 0.2939

Table 4. Summary of Classical Bayes Confidence Interval Analysis: Weibull Prior
It is clear from both Table 4 and Figure 3 that the assumption that the underlying subunit
defect rate can be characterized by the suggested Weibull density function has relatively
minor impact on the results; when the available test data clearly dominates the final
median and confidence interval estimates (the E&D test data).  As would be expected,
with the very limited number of stockpile flight tests (and no observed failures) the
estimate is strongly influenced by the optimistic Weibull prior.

Hierarchical Bayesian Analysis
As mentioned earlier, the major suspicion of Bayesian methods lies in the construction of
the prior density function to characterize the initial knowledge.  Hierarchical Bayesian
(HB) methods provide some relief from this concern in that they reduce the sensitivity of
the results to the specifics of the prior density function.  Classical Bayesian methods
require the specification of unique parameters for the density function(s) associated with
the prior information and it is the uniqueness of the parameters that lead to a sensitivity in
the results.  Alternatively, hierarchical methods permit these parameters to be random
variables, which in turn relax the specification of the prior and results in the data having
an even stronger influence on the posterior characterization of the subunit.  For a
thorough introduction to hierarchical Bayesian methods see the review by Robinson
(2001).  Conceptually what is happening is that the parameters of the prior are assumed to
take on a range of values with a specified probability of a particular value being observed
as characterized by the probability density function.
The final very important point to be made is that it will be assumed that the items being
tested have similar underlying defect rates.  The similarity of those defect rates is
captured through the use of common underlying characteristics for the distribution of the
parameters for the prior.  The easiest way to view the differences between HB and
classical Bayes is via a directed graph.
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Graphical Representation of Hierarchical Models
With the concern regarding selection of the initial prior necessary in classical Bayesian
methods, hierarchical models have become increasingly popular and have a potential
application for solving very complex problems.  Hierarchical methods permit the
uncertainty associated with selection of the parameters for the prior to be explicitly
recognized.  The result is that the final estimates are less sensitive to the particular prior
chosen.
The structure of hierarchical models lends itself easily to a graphical depiction of the
relationships between various model constructs using directed graphs.  These graphical
cartoons are useful for organizing information and also for constructing the posterior
distribution functions discussed above.
Directed graphs are essentially a set of nodes connected with a set of directed edges or
arrows which depict the informational dependencies between the nodes.  Those nodes
that feed information to subsequent nodes are considered parent nodes.  Each node is
considered independent of all other nodes except parent nodes and those nodes for which
that node is a parent.
There are three types of nodes:

1. Constant nodes have no parents and represent fixed quantities in the analysis.
These nodes are represented by rectangles.

2. Stochastic nodes may have parents or children and represent, typically,
unobserved random variables.  They are commonly represented by circles/ellipses
on the graph.

3. Functional or deterministic nodes represent functions of other variables in the
graph.

In addition there are constructs referred to as plates, which indicate iteration over an
index variable, typically to represent data input.
Figure 4 depicts the directed graphs associated with the classical Bayesian analysis
performed in the previous section as well as the graph associated with the Frequentist
approach discussed earlier.  In both cases the number of defects, r, observed is assumed
to be a random variable (enclosing ellipse) and the number of test samples is assumed
known (enclosing rectangle). However, note that in one case the defect rate is assumed to
be known (enclosing rectangle) and in the other it is assumed to be a random variable.  In

Figure 4. Directed Graphs for Frequentist and Classical Bayesian Approaches
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the second situation, the number of defects in a sample, r, is assumed to be a binomially
distributed random variable with parameters p, the defect probability, and n, the number
of samples.  The probability of finding a defect is also assumed to be a random variable
as indicated by the surrounding ellipses with a beta distribution characterized with
parameters a and b.  In both cases, there are data available from i=1,…, N  different tests
as indicated by notation on the plates.
Contrast this with the structure depicted in Figure 5.  In this case, the number of failures
is still a binomially distributed random variable with parameters p and n.  The defect rate,
p, is again assumed to be a random variable; however, now the parameters a and b are
assumed to be unknown and are further characterized with specific probability
distributions.

Case A
Figure 5 depicts the directed graph for the case where the defect rate p is a beta-
distributed random variable with parameters a and b, which are in turn, random variables
(Weibull and uniform respectively).

† 

g(a |n,l ) = nlpn -1 exp[-lan ], 0 £ a,l £ • (11)

† 

g(b ) =
1, 0 < b < 10
0, otherwise

Ï 
Ì 
Ó 

(12)

It is important to recognize that the underlying defect rates for the subunits in all tests are
assumed to be similar as depicted by the parameters a and b.  This permits the results
available from each test to be merged into an estimate of the overall population defect
rate (pop.mean).  The choice of the beta distribution as the prior is for computational
simplicity, where the posterior distribution follows the same parametric form as the prior

Figure 5. Directed Graph of Hierarchical Bayes Model Using
Beta Distribution as Prior for Defect Rate (A)
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distribution, and for practical advantage, where the posterior mean is interpretable as the
experimental/current data plus the additional prior data.  As with the classical Bayesian
analysis, the HB analysis for this study was accomplished using the WinBugs software
package.

Case B
Figure 6 depicts the hierarchical model of the analysis where the number of defects r is a
binomial random variable, with parameters n and p.  The number of subunit tests n is
considered a constant for each sample, but p is again considered a random variable.  A
logit transformation ))1/(log( iii ppb -= is taken.  Both theoretical and practical
considerations suggest that when the response r is an indicator variable (success or
failure), the response function can be modeled assuming 

† 

bi  is a normally distributed
random variable with mean m and precision t.  As indicated by the ovals surrounding m
and t, they are considered random variables with unique statistical characteristics.
The key point to observe is that the subunits evaluated in each of the N test programs

share common characteristics, m and t.  Although the true values of m and t remain
unknown, it is assumed that the subunits being tested are similar enough that their true
defect rates come from the same family of distributions.

Figure 6. Directed Graph of Hierarchical Bayes Model Using
Logit Transformed Normal Distribution Prior for Defect Rate
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Hierarchical Analyses and Results

Case A
As depicted in Figure 5, the probability of observing a defect is considered a beta
distributed random variable with parameters a and b.  Since these parameters are not
known, it is assumed that they are in turn random variables.  Based on engineering
judgement, the following hyperparameter values were chosen.  The uncertainty in
parameter a is assumed to be characterized by a Weibull density function with shape
parameter n=1, and scale parameter, l=10.  The parameter beta is also a random variable
and is assumed to be uniformly distributed random variable over the interval (0,10].   The
results obtained from simulating these two distributions are depicted in Figure 7.
In an abstract sense, by assuming that the parameters of the prior distribution are not
known exactly, the prior distribution can be thought of as being sampled from a family of
distributions.  For Case 1, a random set of 30 prior distributions is depicted in Figure 8.
As can be seen a wide variety of outcomes are possible, each representing a possible
description of the prior information on the true defect rate.

Figure 7. Parameter Prior PDF – Hierarchical Bayes: Beta Prior

Figure 8. Sample of Possible Beta Priors
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Figure 9 depicts the probability density functions of the defect rates associated with each
of the four tests.  Since the subunits being tested are assumed to be related, an estimate of
the population density function is available (Figure 10).  Table 5 summarizes the results
of the analysis and contrasts the results with those from the previous traditional
Frequentist analysis; included are comparisons between the traditional confidence
intervals and the probability intervals that result from the Bayesian analysis.  As we can
see in Table 5, the 90% credible sets are significantly reduced when using the Bayesian
approach.

Figure 9. Posterior Density Functions of Defect Rates -
Hierarchical Bayes: Beta Prior

Figure 10. Population Posterior Density Function -
Hierarchical Bayes: Beta Prior
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Mode Tests Failures Analysis Method 10% LCL Median 90% UCL

TMS 20 2 Frequentist 0.0565 0.1315 0.245

Hierarchical (A) 0.0250 0.0731 0.1609

E & D 124 0 Frequentist 0.001 0.006 0.0185

Hierarchical (A) 5. E-19 1.0 E-6 0.00027

REST Lab (SLT) 36 0 Frequentist 0.003 0.0195 0.062

Hierarchical (A) 2. E-18 1.2 E-5 0.0547

REST Flight (SFT) 2 0 Frequentist 0.0515 0.293 0.684

Hierarchical (A) 6. E-18 6.6 E-5 0.2939

Population Hierarchical (A) 0.0060 0.0209 0.0663

Table 5. Summary of Hierarchical Bayes Confidence Interval Analysis: Beta Prior

Case B
The second case is depicted in Figure 6.  In this situation the characterization of a non-
informative prior that is common in the statistical literature is assumed.  As before, the
hierarchical model assumes that the number of defects r is a binomial random variable,
with parameters n and p.  The number of tests n is considered a constant for each sample,
but p is considered a random variable.  However, in this case, the defect rate is the result
of the transformation: 

† 

pi = exp[bi] / {1- exp[bi]}  where 

† 

bi  is a normally distributed
random variable with mean m and precision t.  Since information regarding the density
function for 

† 

bi  is limited m and t are assumed to be random variables.  However, it is
known that the equipment under each test is similar, so it is assumed that the 

† 

bi  share
common m and t.  Following the suggestions in the statistical literature when

p[1] sample: 10000

   -0.2     0.0     0.2     0.4

    0.0
    2.0
    4.0
    6.0
    8.0

p[2] sample: 10000

    0.0    0.01    0.02

    0.0
 2500.0
5.00E+3
 7500.0
1.00E+4

p[3] sample: 10000

    0.0    0.05     0.1

    0.0

1.00E+3

2.00E+3

3.00E+3
p[4] sample: 10000

  -0.25     0.0    0.25     0.5    0.75

    0.0
   50.0
  100.0
  150.0
  200.0

Figure 11. Probability Density Function of Defect Rates –
Hierarchical Bayes: Logit Transformation

TMS E&D

SLT SFT
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characterizing a non-informative prior in conjunction with the logit transformation, The
random variable t is assumed to be a gamma distributed random variable with a shape
parameter 0.001 and a scale parameter of 0.001.  The m is assumed to be a normally
distributed random variable with a precision of 0.001 and a mean of –24.  The value of
-24 for m is informative however and equivalent to the mean of logit(pi) in Case A above
which was determined based on engineering judgement.  Note that precision is defined as
1/variance.  [Leonard (1972), Congdon, p17-18, (2001)].
Figure 11 depicts the probability density functions for the defect rate for each of the
different test modalities and Figure 12 depicts an estimate of the defect rate for the entire
population based on all four test modalities.   As we can see in Table 6, the 90% credible
sets are significantly reduced when using the Bayesian approach.

Mode Tests Failures Analysis Method 10% LCL Median 90% UCL

TMS 20 2 Frequentist 0.0565 0.1315 0.245

Hierarchical (B) 0.0255 0.0816 0.182

E & D 124 0 Frequentist 0.001 0.006 0.0185

Hierarchical (B) 0.0 2.0E-13 6.0E-6

REST Lab
(SLT) 36 0

Frequentist 0.003 0.0195 0.062

Hierarchical (B) 0.0 3.2E-13 2.0E-5

REST Flight
(SFT) 2 0

Frequentist 0.0515 0.293 0.684

Hierarchical (B) 0.0 7.1E-13 1.1E-4

Population Hierarchical (B) 1.1E-11 4.0E-11 1.4E-10

Table 6. Summary of Hierarchical Bayes Confidence Interval Analysis: Logit Prior

pop.mean sample: 10000

    0.0 5.0E-10 1.00E-9

    0.0
5.00E+9
1.0E+10
1.5E+10
2.0E+10

Figure 12. Population Posterior Density Function - Logit Transformation
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Summary
The objective of this report was to explore the various approaches currently available to
characterize the reliability of systems based on data available from a variety of test
modalities.  The three approaches investigated were a traditional Frequentist approach, a
classical Bayesian approach with non-informative and informative priors and a
hierarchical Bayesian approach using two analysis structures. Table 7 and Figure 13
summarize the results investigated in this report.  Note that all results are accurate to the
third decimal place only.
The most notable difference in the three approaches is that the hierarchical Bayesian
approach permits the integration of test data from a variety of test modalities.  While it is
relatively common practice to merge data in all three analysis techniques, only with the
HB technique is the practice with a sound theoretical basis.
With the objective of the report said, a few issues related to the analyses in the report
were not addressed and should be evaluated in the immediate future.  First of all, all
analysis results indicate that TMS data may be different from the other 3 testing data.
The differences may be due to a burn-in period when the TMS data was taken or due to
the specifics of the testing procedures.  The poolability of the data sources should be
carefully evaluated.  Secondly, the time period when the data was collected was over a
course of several years.  The possible degradation trend was not examined.  Finally, case
B in the hierarchical Bayesian analysis gave a tighter confidence interval than case A;
however the behaviors of these prior distributions are quite complicated and their
application in these types of problems is suspect.  Further research into this type of prior
warrants further investigation before it is used in critical situations.
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Mode Tests Failures
Analysis
Method

10%
LCL Median 90% UCL

TMS 20 2 Frequentist 0.0565 0.1315 0.245

Classical Bayes (A) 0.0543 0.1227 0.238

Classical Bayes (B) 0.0449 0.1037 0.199

Hierarchical (A) 0.0250 0.0731 0.1609

Hierarchical (B) 0.0255 0.0816 0.182

E & D 124 0 Frequentist 0.001 0.006 0.0185

Classical Bayes (A) 0.001 0.0058 0.01895

Classical Bayes (B) 0.0007 0.0052 0.0174

Hierarchical (A) 5. E-19 1.0 E-6 0.00027

Hierarchical (B) 0.0 2.0E-13 6.0E-6

REST Lab (SLT) 36 0 Frequentist 0.003 0.0195 0.062

Classical Bayes (A) 0.0033 0.01898 0.0663

Classical Bayes (B) 0.0025 0.01657 0.0547

Hierarchical (A) 2. E-18 1.2 E-5 0.0547

Hierarchical (B) 0.0 3.2E-13 2.0E-5

REST Flight(SFT) 2 0 Frequentist 0.0515 0.293 0.684

Classical Bayes (A) 0.0354 0.202 0.523

Classical Bayes (B) 0.0140 0.09217 0.2939

Hierarchical (A) 6. E-18 6.6 E-5 0.2939

Hierarchical (B) 0.0 7.1E-13 1.1E-4

Population Hierarchical (A) 0.0060 0.0209 0.0663

Hierarchical (B)
1.1E-11 4.0E-11 1.4E-10

Table 7. Summary of Hierarchical Bayes Confidence Interval Analysis

As is expected, as the sample size increases all methods provide increasingly similar
results.  When the number of test samples is very small, e.g. n=2, the Bayesian methods
are clearly influenced by the use of information beyond that available from the immediate
test regime.  However, as the sample size increases even slightly, e.g. n=20, the test data
begins to dominate whatever prior assumptions were made about the underlying defect
rate.  This is clearly evident when comparing the results from using the two very different
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priors in the classical Bayesian analysis.  With that said, there is something unique about
the hierarchical Bayesian analysis.
The results from the HB method clearly give ‘optimistic’ results when compared to either
of the other methods.  This is a direct result of assuming that the subunits in the various
tests are similar.  The key here is that if you believe that the E &D testing truly provides
an accurate representation of the underlying defect rate, then the information from these
124 tests can be used to increase the confidence in the results from the two flight tests.
This report has demonstrated a mathematical foundation for an approach to bring together
data from a variety of sources and suggested an approach to combine this data in a logical
fashion.  It also demonstrates that the confidence of the results is increased due to this use
of pooled data.  In Figure 13, the confidence sets are greater/narrower for the population
mean where 4 test data were pooled together.  The application of a hierarchical Bayesian
approach will result in an increased confidence in the reliability assessment of the nuclear
weapons stockpile.

Figure 13. Summary of Analysis Results
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