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Abstract

The constitutive behavior of mechanical joints is largely responsible for the
energy dissipation and vibration damping in weapons systems. For reasons
arising from the dramatically different length scales associated with those dis-
sipative mechanisms and the length scales characteristic of the overall structure,
this physics cannot be captured through direct numerical simulation(DNS) of
the contact mechanics within a structural dynamics analysis. The difficulties
of DNS manifest themselves either in terms of Courant times that are orders
of magnitude smaller than that necessary for structural dynamics analysis or
as intractable conditioning problems.

The only practical method for accommodating the nonlinear nature of joint
mechanisms within structural dynamic analysis is through constitutive models
employing degrees of freedom natural to the scale of structural dynamics. In
this way, development of constitutive models for joint response is a prerequisite
for a predictive structural dynamics capability.

A four-parameter model, built on a framework developed by Iwan, is used
to reproduce the qualitative and quantitative properties of lap-type joints. In
the development presented here, the parameters are deduced by matching ex-
perimental values of energy dissipation in harmonic loading and values of the



force necessary to initiate macro-slip. (These experiments can be performed
on real hardware or virtually via fine-resolution, nonlinear quasi-static finite
elements.) The resulting constitutive model can then be used to predict the
force/displacement results from arbitrary load histories.
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A Four-Parameter Iwan Model
for Lap-Type Joints

Introduction

The constitutive behavior of mechanical joints is largely responsible for the energy
dissipation and vibration damping in weapons systems. For reasons arising from
the dramatically different length scales associated with those dissipative mechanisms
and the length scales characteristic of the overall structure, this physics cannot be
captured through direct numerical simulation(DNS) of the contact mechanics within
a structural dynamics analysis. The difficulties of DNS manifest themselves either in
terms of Courant times orders of magnitude smaller than that necessary for structural
dynamics analysis or as intractable conditioning problems.

The only practical method for accommodating the nonlinear nature of joint mech-
anisms within structural dynamic analysis is through constitutive models employing
degrees of freedom natural to the scale of structural dynamics. In this way, devel-
opment of constitutive models for joint response is a prerequisite for a predictive
structural dynamics capability.

To be useful, such constitutive models have the following properties:

e They must be capable of reproducing the important features of joint response.

e There must be a systematic method to deduce model parameters from joint-
level experimental data or from very fine scale finite element modeling of the
joint region.

e Model integration into a structural-level finite element code must be practical.

A framework that has potential for providing that balance is that due to Iwan
(1967,1968), and the work reported here addresses how that model-form can be ex-
ploited to capture the important responses of mechanical joints.

Iwan introduced constitutive models for metal elasto-plasticity that have since
been used to model joints. Of his models, the most prominent has been the parallel
system of Jenkins elements, sometimes called the parallel-series Iwan model. As the
name implies, such models consist of spring-slider units arranged in a parallel system
as indicated in Figure 1.
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Figure 1. A parallel-series Twan system



Mathematically, the constitutive form of the model is (Segalman, 2001)

P = [ pOklult) - #(t. 6)] dd (1)

where u is the imposed displacement,
F(t) is the applied force
ﬁ((ﬁ) is the population density of Jenkins elements of strength )
k is the stiffness common to all of the Jenkins elements

and z(t, QNS) is the current displacement of sliders of strength ¢.

The slider displacements, Z(t, é) evolves from the imposed system displacement,
u(t):
a if lu — 2t @)|| = ¢/k and 1 (u — #(t, ¢)) > 0
0 otherwise

0.0 - { )

It is assumed Z(t, q~5) = 0 initially for all ¢. Note that Equation 2 guarantees that
lu—2(t, 9)|| < ¢/

The parameter k can be removed from the above equations through the following
changes of variable:

¢ =0o/k (3)
p(¢) = k*p(ko) (4)
x(t, ¢) = I(t, ko) (5)
Equations 1 and 2 now become
)= [ p(@)lu(t) = (t, 6))do (©)

and
w if [lu —z(t, ¢)|| = ¢ and 0 (u—2(t,¢)) >0
0 otherwise

itt.0) = { @

We are now guaranteed that ||u — z(¢, )| < ¢.

The new quantities have different dimensions than the originals. Though gg has
dimensions of force, ¢ has dimensions of length. Similarly, p has dimensions of 1/Force
but p has dimensions of Force/Length?.

Two overall parameters for the interface can be expressed in terms of the above
integral system. The force necessary to cause macro-slip (slipping of the whole in-
terface) is denoted Fg and the stiffness of the joint under small applied load (where
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slip is infinitesimal) is denoted K. For the parallel-series Iwan system, macro-slip is
characterized by every element sliding:

u(t) —x(t, ¢) = ¢ (8)

for all ¢, so Equation 6 yields

Fs= | ~ op(¢) do (9)

Similarly for the parallel-series Iwan system, no elements have slid at the inception
of loading,

x(t, ¢) =0 (10)
at t = 0, so Equation 6 yields

Kr= [ p6)do (11)

If the joint is subject to cyclic oscillatory deformation, the slope of the hysteresis
curve just after reversal has the value K7, as shown in Figure 2.

Response to Small and Large Force

It is very difficult to obtain meaningful force-displacement information in experiments
involving small force amplitudes, but resonance experiments do enable the measure-
ment of dissipation per cycle with reasonable precision. Experiments involving large,
monotonically applied forces can provide little detail about joint kinematics, but can
indicate the force necessary to initiate macro-slip. It is shown below how each sort of
experimental data can be used to determine the parameters of a parallel-series Iwan
model that can capture both asymptotic behaviors.

Small Amplitude Oscillatory Loads

When a joint is subject to small amplitude oscillatory lateral loads, the dissipation
appears to behave as a power of the amplitude of the applied load. Generally, the
exponent of that relationship is a number lying between 2.0 and 3.0. (Goodman
pointed out that the Mindlin solution for the energy dissipation resulting from oscil-
latory lateral loads imposed on two spheres pushed together yields a power-law slope
of 3.0 in the regime of small lateral loads.)

10
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Figure 2. The joint parameter Kr is the slope of the hys-
teresis curve immediately after a force reversal.
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In Figure 3, that power-law slope is represented as 3 + xy where x is a negative
number of small magnitude. Mathematically, this is expressed as the following:

D(Fp) = vl ™ (12)
where D is the dissipation per cycle resulting from a harmonic load of amplitude Fj
and v is an appropriate coefficient.

The dissipation per cycle associated with oscillatory displacements (u(t) = ugsin(t))
is slider displacement times the force necessary to cause that displacement, integrated
over all Jenkins elements:

D= [ dfuo — dlép(o) do (13)

One major simplification made possible for histories where the displacement is
bounded by a small value tpay (ie. |u(t)] < umax) is that the integral of Equations 6
and 7 can be simplified to

o0

Pty = [ plo)lu(t) — a(t, )l do+u(t) [~ p()do (14

max

= Kpu(t) + O(tmax’) (15)

where the O() is the notation for quantities that are on the order of their argument
as the argument goes to zero [Abromowitz and Stegun, 1964].

Substituting Equation 15 into Equation 13, we see that the dissipation can be
written as a convolution involving applied force amplitude:

Fo/Kr
D= [ 4B/ Kr) =~ 6lop(0) do (16)
=4 ¢x (¢P(¢))|¢:FO/KT (17)
from which we can conclude that

for small arguments of the argument ¢ (Segalman, 2001).

12
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Figure 3. The dissipation resulting from small amplitude
harmonic loading tends to behave as a power of the force am-

plitude.
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Large Monotonic Loads

Let’s consider large monotonic pulls (0 < @). Equations 6 and 7 show that

P = [ aptonds+u) [ plo)do (19)
from which Iwan derived 92
T pw) (20)

Because the second derivative of force cannot be measured with any resolution
for most joints at small displacements, the above is at best only useful for a large-
displacement experiment.

Figure 4 sketches the monotonic force-displacement curve for a canonical lap joint.
We anticipate that the force saturates fairly suddenly at F'g and interface displacement
ugs. We envision the slope to be nearly discontinuous. Referring to Equation 20 we
are inclined to expect that the density p(¢) has finite support and the character of a
Dirac delta at the positive end of that support.

Some comment should be made about why we have to guess at the force displace-
ment curves for joints in structures such as we usually encounter. The key observation
is that the interface mechanics cannot be viewed directly. The interface region is acted
on by external loads through a large elastic region. Additionally, kinematic measure-
ments are of the net displacements of that composite system. Particularly vexing is
that the elastic subsystem is generally much more compliant than the interface until
the interface has been forced into the vicinity of macro-slip.

This insight is illustrated in Figure 5 showing the monotonic force-displacement
curves for a lap joint simulated with an extremely fine mesh. We see that the force
is almost linear in displacement until macro-slip suddenly occurs. The nearly linear
region is dominated by the compliance of the elastic part of the system; the response
of the interface is almost entirely obscured. Omnce the force is sufficient to cause
macro-slip, it is the (near infinite) compliance of the interface which dominates. The
conclusion is that for our class of structures, it is very hard to achieve resolution on
the force-displacement response of the interface itself through measurements of elastic
systems of which the joint is only a small part.

It should be said that for some structures for which the joints represent a major
source of stiffness degradation of the structure, Levine and White (2001) were able
to deduce Iwan parameters by examining distortion of nominal frequency response

14
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Pinning by Shank of Bolt

Microslip Regime
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Displacement

Figure 4. The monotonic pull of a simple lap joint shows
the force saturates at Fg as the displacement passes a critical
value.
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Figure 5. The numerical predictions of a finely meshed
system containing a single lap joint illustrate how interface
force and displacements are obscured by the large compliance
of the elastic response of the attached members.

16



curves as excitation frequency increased. This is an illustration of deducing joint
properties indirectly through observation of the integrated behavior of the full struc-
tural dynamic response. It is through a similarly indirect approach that parameter
estimation is pursued in the following.

Truncated Power-Law Spectra

Given the above observations, we are lead to consider parallel Iwan systems having a
power-law population distribution terminated by a Dirac delta:

p(¢) = ROX[H(¢) — H(¢ — Pmax)] + 50( — Pmax) (21)

where H() is the Heaviside step function and ¢,y is numerically equal to ug. The
coefficient S has a value to bring the slope of the monotonic pull curve down to zero
at (ug, Fy). This form of population distribution is shown graphically in Figure 6.

Substitution of Equation 21 into Equation 6 yields

Pmax
Ft) = [ Tult) - a(t, 9| R do + S[u(t) = a(t, bmas) (22)
Equation 7 remains unaltered.

The macro-slip force for the system becomes

Pmax
Fs = / $p(¢)dg (23)
RS2
= 7(X o) + SOmax (24)
B RoXi\ x +1
— ¢max<x+1>[x+2+ﬁ] (25>
where R -
gy (M) (20

Because x and (3 are dimensionless and because Fg can be measured or computed
fairly directly, a preferred set of model parameters are {x, 3, Fls, max}. For this
reason, one inverts Equation 25 to solve for R and employs Equation 26 to express S
appropriately:

17
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Figure 6. A spectrum that is the sum of a truncated power
law distribution and a Dirac delta function can be selected
to satisfy asymptotic behavior at small and large force ampli-
tudes.

Fs(x +1)

= 2
i (B + X55)

77 <¢is> (ﬂ T €§—§)> 2

The interface stiffness could be computed as

[ e BOS g BONL o Bs14D)
K= [ ployip = - om g5 = UH0) = (B X2

(27)

and

Gty T e (29)

Oscillatory Response

Because of signal-to-noise problems, there is little data available in the regime of small
imposed loads. We are left having to do parameter identification and comparisons

18



with data from experiments involving large-forces. In particular, we examine large-
force oscillatory experiments.

Direct solution of Equations 22 and 7 for a problem specified by F = Fjsin(t)
would involve solution of a difficult nonlinear integral equation. An alternative ap-
proach is to specify u(t) = ugsin(¢) and then to solve for the resulting dissipation and
peak force.

Noting that the maximum displacement of Jenkins elements of strength ¢ is
x(t,¢) = up — ¢, we observe that for ug < ¢nay the dissipation per cycle of such
elements is 4(ug — ¢)¢. The net dissipation per cycle is

D= [* it~ w(t,0))op(0)do (30)

This is similar to Equation 16, but no assumption of small displacement is made.
For the density function of Equation 22 and for ug < ¢mayx, the dissipation per cycle
is

4RU0X+3 _ Xx+3 4R¢maxx+3 — x+3 4FS gbmax (X + 1)

(x+3)(x +2) XT3+ BrEhH(+2)(x+3)

(31)

where 7 = ug/Pmax-

Next, we presume that the maximum force seen in each cycle is that force current
during the maximum displacement in the cycle.

uo Pmax
Fo = |7 éplo)do+uo [ p()do (32)

0
+1 2
¢maxx -[{UOXJr

X+ 1 (x+D(x+2)

Though the above is not a rigorously derived relationship, numerical calculations have

shown it to be correct to within numerical precision.

Equation 33 is made non-dimensional by dividing by Fls

(B+1) =/ (x +2)
B+ (x+1)/(x+2)

Fy/Fs=r (34)

The experimental quantity most easily measured is dissipation (D) as a function
of applied lateral load amplitude (Fp). Though these are dimensioned quantities, we

19



see that all the dimensions drop out when we plot dlog(D)/0log(Fy/Fs)

910g(D) /9 og(Fy/ Fs) = 20 90/ Ouo (35)
D Fy
d)maxx-&-l . qu+1
= (x+3) B+ FMG )~ Rt (36)
x+1 uo(
(S + Rémaiz) — RUoXtl)
_aaxt1

(B +1- )

Note that as ug — 0,

° F() — Uo(ﬁ + 1)R% = UoKTa

e and dlog(D)/0log(Fy) — x + 3.
Also, 4y — Pmax,

L F0_>F5'7

e and 9log(D)/dlog(Fy) — (x +3)(B+ X2)/5.

X+2

In a similar manner, we use the chain rule to calculate the second derivative of

the log-log plot:
) dlog D
0*logD b sios(t/Fe) (38)

Olog(Fo/Fs)* & log(Fy/Fy)

O (B 1) (0 + D (x +3) [(B+ D (x +2) — 0] -
- B+ 1= r0]? ( + 2)°

Note that as # — oo, the curvature goes to zero everywhere, but if 5 = 0, then
the curvature goes to oo as r — 1. If 3 is nonzero, then the curvature is at least
bounded.

One last quantity that involves only measurable components on the left hand side,
but does retain one dimensioned element on the right hand side is

20



e (e + 1)/ (x +2)
(x+3) [B+ (x+1)/(x+2)]
While Equations 37 and 39 have to do with the shape of the log(D) vs log(Fp)
curve, Equation 40 is useful in choosing model parameters to match actual values of
dissipation.

D/Fs = 4¢ax (40)

Identifying Parameters

Discussed next are two similar strategies for determining the parameters for the Iwan
system discussed above so as to reproduce available experimental data. The first
method is more intuitive, and should give some sense of the meaning of each model
parameter. The second is automated and more suited to processing multiple sets of
experimental data.

One quantity that is assumed known is Fls, through either experiment or finite
element analysis. Additionally, it is assumed that dissipation D as a function of
applied lateral load amplitude is known over a range of those load amplitudes.

Manual Method

The following strategy for estimating the remaining parameters involves a lot of op-
erator interaction and ’eyeballing’, but it appears to be robust. The computational
parts are easily implemented in Excel.

1. Plot the experimental values for log(D) vs. log(Fy/Fs), and adjust x and
so that plot of log(D) vs. log(Fy/Fs) from Equations 31 and 34 has the same
slope and curvature as the experimental curve.

This is facilitated by generating a column of values of r and corresponding
columns of Fy/Fs (Eq. 33) and D/(R¢3FX) (Eq. 31) and normalizing that

max
curve so that it lies near the experimental data. The user then adjusts y and 3
until the curves appear to overlie. If the curvature appears to be approximately

zero, choose 3 to be a number on the order of 10.

2. Employ Equation 34 to deduce the dimensionless displacement amplitude 7 =
o/ Pmax corresponding to some data point near the center of the experimental
data.

21



Dissipation For AFF Leg

Log10(Dissipation (in Ib))
o !
o

-1.2 -1 -0.8 0.6 -0.4 -0.2 0
Log10(Force/FS)

Figure 7. Fit to dissipation data from a mock W76 AFF
leg using the more manual method. The colored points are
experimental data, the open circles are centered on the aver-
age of the experimental data, and the curve is obtained from
a spectrum as described in this report.

3. Use Equation 40 at that experimental data point to deduce ¢ ax.

4. R and S are then obtained by evaluating Equations 27 and 26.

The following two figures show reasonable fits to experimental dissipation using
the above method. In the first case, (Figure 7) the fit is to data from a bolted leg of a
mock AFF (arming-fusing-firing set) (Figure 8) of a mock W76 warhead. (These mock
components were manufactured as part of the Campaign 6 experimental program
for validating predictive simulation capabilities). We see that the dissipation data
appear to lie on a straight line when plotted in a log-log manner. The parameters
used to fit that data were: Fg = 504, ¢max = 7.29x107%, ¥ = —0.58, and 3 = 10.
These parameters were determined from the loads nominally seen on the plane of the
interface. Because the interface is canted 45° from the line of action of the applied
loads, the shear forces seen by the interface is the axial load divided by v/2.
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Figure 8. The leg section of the AFF mock-up. To the left
is a finite-element mesh of the full leg section, in the middle
1s the actual leg section in the test apparatus, and to the right

is a sketch indicating the interface being modeled by the 4-
parameter model.
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Dissipation For Stepped Specimen
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Figure 9. Fit to dissipation data from a stepped specimen.
The open circles are experimental data, and the curve is ob-
tained from a spectrum as described in this report.

Though the AFF leg problem may appear simple (it is not) because the log-log plot
of dissipation vs lateral force is nearly linear, the case of the stepped sample shown
in Figure 9 shows substantially more curvature. This result is from a geometrically
simple test specimen (Figure 10). The qualitatively different response might be due
to the near singular normal tractions at the edges of the contact patch. Reasonably
good fit of the 4-parameter model presented above is obtained by setting Fig = 400,
Gmax = 4.92x1075, x = —0.6, and 3 = 0.1.
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Figure 10. A stepped specimen shows qualitatively different
dissipation than a simple half-lap joint. The difference may
be do to the near singular traction that develop at the edges
of the contact patch.
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Automated Method

Though the above algorithm might yield to automation, the following algorithm is
designed especially to employ Matlab’s optimization tools. Matlab’s fminsearch tool
is used to determine , 3, and RpXI3 so as to fit the experimental data points as well
as possible. One subtlety is that each comparison of the 4-parameter model with the
experimental data requires solution for r(x, 3, Fy/Fs). Once those three parameters
are found, the rest of the steps are much as indicated in the previous method. The

necessary code is illustrated in the Appendix .

Figures 11 and 12 illustrate the results of this method for the cases considered
above. The parameters obtained by the method are indicated in those figures. We see
that in each case the more automated method (using Matlab) obtained parameters
very similar to those which were obtained in the more manual method, though the
automated method does reproduce the experimental data more closely.

Continuity of the Inverse Map

We have seen above that parameters can be found to make the 4-parameter model
reproduce experimental dissipation data reasonably well. A further measure of merit
of a constitutive model is whether model parameters deduced to fit similar data sets
are themselves similar. This issue is addressed here.

We consider dissipation data collected from an AFF leg nominally identical to
the one discussed above. The leg was repeatedly disassembled and reassembled and
tested between disassembly /reassembly cycles. Nine resulting data sets are shown in
Figure 13. We see that eight of those nine data sets lie reasonably close to each other.
The data set labeled AFF 4 generates consistently less dissipation.

The Matlab code discussed above maps each data set to a set of four corresponding
model parameters. Normalized model parameters deduced using the Matlab tool are
shown in Figure 14. The value of Fy is specified at the same value among all data
sets, and the Matlab code tends to set f = 10 when there is little curvature in
the log(dissipation)/log(force) curve, so there is variation only in the x and ¢p.x
parameters. We see that the values of xy and ¢, deduced from all the data sets
seem to cluster with the exception of the valve of ¢, deduced from data set AFF 4.

The anomalous nature of the fourth data set is illustrated more strongly by Figure
15, where variability among the experimental data are considered. A variability metric
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AFF Leg Numberl, Sample Set 1: Dissipation Data
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Figure 11. Fit to dissipation data from a mock W76 AFF
leg using the method exploiting Matlab.
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log10(dissipation/cycle)

4-parameter model fitted to stepped specimen data
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Figure 12. Fit to dissipation data from a stepped specimen

using the method that employs Matlab.
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Experimental Dissipation for AFF Leg 2
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Figure 13. Ezperimental dissipation curves measured for a
single mock AFF leg that was disassembled and reassembled
between tests.
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Normalized Model Parameters
for AFF Leg 2. 9 Data Sets Shown
1.4
1.2 mAFF2_1
W AFF2_2
L ] [ |DAFF2_3
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W AFF2_8
0.2 u | |OAFF2_9
0+ - -
X B dmax Fs

Figure 14. Parameters for the 4-parameter model deter-
mined using Matlab code to fit the above experimental data.
To show all parameters on one curve, each parameter was
normalized by the average of the parameters deduced from all
data sets.
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Variance of Experimental
Dissipation for AFF Leg 2 for All
Nine Experimental Data Sets
0.045 m AFF2_1
o mAFF2_2
003 L OAFF2_3
0.025 EAFF2_4
0.02 OAFF2_5
0.015 mAFF2_6
000815 _ o AFF2_7
0 mAFF2_8
OAFF2_9

Figure 15. Variance (calculated using relative error) be-
tween the 9 experimental data sets and the experimental
mean.

is defined here in a manner that captures the relative error:

1 Ndata values

1 L
VE a Ndatavalues kzz:l [log(Dk/Dk)]

where Dy, is the kth data value averaged over all the data sets:

_ 1 Ndata sets

Dy = Z D}

Ndata sets _

(41)

(42)

and Di is the kth data value in the Ith data set. We see that the variability of the
fourth data set stands out as being approximately ten times the next largest variabil-
ity. From this point on, we discard that data set and consider only the remaining

eight.

The model parameters obtained by averaging the corresponding parameters de-
duced from each of the remaining eight data sets are reasonably close to those deduced
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earlier for an AFF leg. They are y = —0.57245, § = 10, ¢max = 0.000761268, and
Fg = 504.

Figure 16 shows several measures of variability among the remaining eight data
sets:

e The variability among the experimental data is shown on the left of the figure.
In this case the largest variability is that of case AFF_7 and has a value of
approximately 0.0025, corresponding to a disagreement between this data set
and the average of the others of approximately 5%.

e The variability of the experimental data from the predictions made by the
model when each of the four model parameters is obtained by averaging the
corresponding parameters deduced from the eight experimental data sets:

1 Ndata values

Vi=——— > [log(D}/Dy)]’ (43)

N, data values k=1

where Dy, is the kth data value predicted by the four-parameter model. We see
that the variability between the model predictions and the experimental data is
on the same order as that found among the experimental data sets themselves.

e A more stringent test of the model’s ability to capture the experimental data is
to measure the variability between each of the data sets and model predictions
made using parameters deduced from all the other experimental data sets:

1 Ndata values

Vie —— Y [log(Dl/D))]’ (44)

Ndata values k=1

where f),ﬁ is the k data value predicted by the four-parameter model using model
parameters averaged from quantities deduced from all data sets ezcept the Ith.
We see that the variability between the model predictions and the experimental
data is about 25% larger than that found among the experimental data sets
themselves. This is very good consistency.

We conclude from the above that the four-parameter model is capable both of repro-
ducing the data provided to it and of doing so in a consistent manner with system-
atically deducible parameters.
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Variance for AFF Leg 2 for 4-Parameter lwan Model
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Data Var. Mdl/Data Var. Comp. Mdl/Data
Var.

Figure 16. Variability (calculated using relative error)
within the 8 clustering experimental data sets, between the
experimental data and that of the nominal model, and be-
tween each data set and a model deduced using all the other
data sets.
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Power-Law Behavior

Some comment is appropriate about the determination of 3 (and ¢u.x) for the case
where the curvature of the log-log plot of dissipation versus force amplitude appears
to be zero. There is just not enough information in such cleanly power-law behavior
to determine the model parameters x, 5, and ¢nax. (Fs should be known a pri-
ori.) The following is done by both the manual and automated methods under those
circumstances:

e (3 is automatically set to 10;
e Y is uniquely determined by the slope of the log-log dissipation curve;
e [ is known a priori;

® Oy is determined so that - consistent with the above values of x, 3, and Fl -
the predicted and measured dissipation are consistent.

If there are experimental or computational values for the stiffness of the system
containing that joint, the additional condition can be used to make the determina-
tion of the model parameters better posed. In application, that last condition is
implemented by asking the Matlab optimization code to make the model stiffness K
achieve the desired values.

For illustration we consider the AFF leg specimen again. In this instance we
devise an equivalent joint model for which all the forces and displacements occur in
direction of the line of action of the applied force (Figure 17). Such a joint model
might be used in a two degree-of-freedom approximation to a system consisting of
the elastic portions of the specimen, the joint, and the reaction mass.

Resonance experiments indicate that the stiffness of the jointed leg is approx-
imately 1.56x10°1b;/in. The stiffness of a similar monolithic (non-jointed) leg is
approximately 2.67x10%1b;/in. It would be desirable to be able to adjust 3 and
Omax S0 that Kr in Equation 29 could account for the difference. Alternatively one
could set the stiffness of the elastic component of the jointed structure to the full
1.56x10°[b; /in and select 3 and ¢uax so that Kr is substantially larger. In either
case, we have guidance as to desirable ranges for K. The first approach is demon-
strated below.
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1 Equivalent Joint

Figure 17. Idealized joint orthogonal to the line of action
of the applied forces: all joint forces and displacements are
in the direction of the loads applied on the specimen.
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If we choose to account for the softness of the jointed leg through the compliance
of the joint, we find the joint stiffness to be
1 1

Kr = (1/K;) — (1/Ka) - (1/2-67x108) — (1/1.56x106) = 3.73x10° lby/in  (45)

Consideration of equilibrium shows the longitudinal force necessary to initiate
macro-slip in the joint is

Fg =504/ cos(45deg) = 712 (46)

Similarly, the the log-log dissipation versus force amplitude curves used to find the
remaining parameters employs longitudinal force amplitudes that are v/2 times the
force amplitudes seen on the actual interface surface. Application of the Matlab code
with and without reference to desired joint stiffness yields the parameters and fit
shown in figure 18.

AFF Leg Numberl, Equiv. Longitudinal Model: K, Free AFF Leg Numberl, Equiv. Longitudinal Model K Specified

ssipation/cycle)
\

ssipation/cycle)
\

X =-0.57566

B =9.9712
10 = 0:00053403

F. =712
s

X =-0.62317

B =3.659
@10y = 0:00022629

F. =712
s

log10(di
log10(di

R =7123066.2368

S =2925711.7917
KT =3725311.9521

R =1347699.7151

S =1294170.8531

asr KT =1423961.2555 i -45[

Exit Flag = 0 Resid =0.0027023 Exit Flag =1 Resid =0.0028176
L L L L

L L i L L L L
-0.4 -0.2 0 -14 -12 -1 -0.4 -0.2 0

-0.8 -0.6 -0.8 -0.6
log10(F /F) log10(F/F)

Figure 18. Model fit for an idealized joint orthogonal to the
line of action of the applied forces. A constraint on joint stiff-
ness is imposed in the calculations indicated on the right and
no such constraint is imposed in the calculations indicated on

the left.

As expected, we see that the additional constraint does result in the desired joint
stiffness but does not significantly change the quality of fit of the model predictions
to the experimental data points. Also as expected, though model parameters change,
it is only /3 that changes significantly.
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Discretization

Equations 6 and 7 are sufficient to solve for response of the above Iwan system once
one has all system parameters (R, x, [, and ¢uax). It is useful to discretize the
integral in Equation 6 in the following manner. One breaks up the interval (0, ¢max)
into N intervals whose lengths form a geometric series:

Abms1 = al¢,, forallm+1< N (47)

where « is a number slightly greater than one (1 < «). That the sum of the intervals
must be the whole interval:

N
Z A(bm = ¢max (48>
m=1

permits us to solve
A¢,, = ™ T Ag, (49)

where .

a —
A¢1 = [QbmaxaN — 1:| (50)

We consider one sample point, characterized by slide strength ¢,,, at the mid-
point of each interval A¢,,. At that sample point, the evolution of x,,(t) is computed
per Equation 7. For quadrature purposes, we refer to the coordinates of the left and
right hand of each sub-interval as ¢;,, and ¢, ,, respectively.

The force is evaluated by a discrete version of Equation 6.

Z F.(t) + Fs(t) oy
where
RO sonfut) — ()] Ju(t) — 2 (8)] = b
Fm<t) = ¢1+>2<+¢1+x (52>

R= [ut) —an(®)] A fJu(t) — 2 ()] < dm
xm(t) evolves per Equation 2 where ¢ = ¢,
F§ = S(bmax[u(t) - $5(t)], (53)
and z5(t) evolves per Equation 2 where ¢ = @pax,

Note that the above quadrature reproduces the values for Fg in Equation 24
exactly.
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The discretization discussed here is illustrated by the results of a C++ code that
imposes cyclic deformation on a four-parameter Iwan system and calculates the en-
ergy dissipation once steady state is achieved (always on the second cycle). Those
numerical calculations are compared with the analytic expressions of Equation 31. In
Figure 19 we see that for the amplitude range 0.05Fs < Fy < Fg integration over
the responses of as few as ten Jenkins elements appears to be sufficient. We have
achieved satisfactory simulations in all exercises using values of & = 1.2 and N = 50.
This is certainly overly conservative.

Dissipation for Stepped Specimen

o
© 1
> ]
(\é ) 7 | —Four Parameter
2 ] Specturm
- 1 Numerical (10
'% 3 ] Elements)
8 4 1 |—Numerical (50
S 1 elements)
'év ]
S -5 ]
-6
-1.5 -1 -0.5 0

Log10(FO0)

Figure 19. Comparison of dissipation prediction of Equa-
tion 81 with the quadrature of Equations 51 through 53.

The question arises as to over how many Jenkins elements we really must integrate.
The simplest criteria are

e in a monotonic pull, the stiffness degradation from K7 down to zero at macro-
slip should occur without too much discontinuity in the stiffness slope:

mT%X{p(QSm)AQSm} < Krp <54)

where K7 is evaluated from Equation 29. The maximum term in the above
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sequence is that associated with the last increment, so the condition is

R [aN_l(HTa) - 1r oV a - 1)

— N P < K7 (55)

For large N, the product on the left behaves as a constant times o — 1. Values
of o on the order of 1.1 or 1.2 appear to cause Equation 55 to be satisfied
adequately.

e the sliding forces associated with the weakest element should slide at a force
well below the smallest increment of force AF,,;, between reversals that one

wants to capture:
24x g 2+x

R AFuin 56
24+ x ( )

This becomes a condition that

a — 1 \Xt2 A
R(dmacy—7) /0 +2) < A (57)

The quantity on the left goes as o= X2V explaining why Equation 57 appears

to be satisfied with fairly modest values of N.

Conclusion

The four-parameter model presented here appears to be capable of capturing the
dissipation behavior found from harmonically loaded experiments on lap-type joints
conducted so far. Further, the tools have been demonstrated to deduce the necessary
model parameters with only modest effort.

Though the results presented here provide some reason for optimism, compari-
son with more sophisticated experiments should be made. Among those experiments
could be multi-frequency experiments such as discussed by Segalman (2001) or ran-
dom vibration experiments as performed by Smallwood for his hysteretic model. Each
of these classes of experiment has been explored by Smallwood(2001) in connection
with his power-law hysteresis model.

Finally, one should note that constitutive equations of the sort developed here
are “whole-joint” models. Such models may capture the response of the joint for
the class of loads from which model parameters were deduced, but they give little
insight into the micro-physics taking place. Over that longer term, more sophisticated
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approaches must be developed that better incorporate the tractions and displacements
that develop dynamically around the joint and that do not presume a specific nature
to the joint loading. An effort into that new direction has been initiated.

40



References

1]

2]

M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions, with
Formulas, Graphs, and Mathematical Tables, p. 1045, 1964

W. D. Iwan, A Distributed-Element Model for Hysteresis and Its Steady-State
Dynamic Response, ASME Journal of Applied Mechanics, 33, pp. 893-900, 1966

W. D. Iwan, On a Class of Models for the Yielding Behavior of Continuous and
Composite Systems, ASME Journal of Applied Mechanics, 34, pp. 612-617, 1967.

M. B. Levine and C. White, Microdynamic Analysis for Establishing Nanometric
Stability Requirements of Jointed Precision Space Structures, Paper No. 325,
Proceedings of the International Modal Analysis Conference Kissimmee FI., Feb.
2001.

D. J. Segalman, An Initial Overview of Iwan Modeling for Mechanical Joints,
SAND2001-0811, Sandia National Laboratories, Albuquerque, NM, March 2001.

D. O. Smallwood, D. L. Gregory, and R. G. Coleman, A Three Parameter Con-
stitutive Model for a Joint which Exhibits a Power Law Relationship Between
Energy Loss and Relative Displacement, 72nd Shock and Vibration Symposium,
Destin FL, Nov. 2001. (Available from SAVIAC)

41



42



Example Matlab Files for Deducing Model Param-
eters

The following listings illustrate the automated approach to calculating model param-
eters. The code is invoked by first entering the Matlab environment and then reading
in a file containing the experimental data:

AFF1_1
and reading in the fitting code
find_param

where the data code AFF1.m would have the following form:

%fitting AFF leg
verbage = ’AFF Leg Numberl, Sample Set 1: Dissipation Data’;
name = ’AFF1_1’;

disp(verbage) ;
D=[42.42640687 4 .25E-05
84.85281374 2.13E-04
127.2792206 5.84E-04
169.7056275 1.23E-03
226.27417 2.56E-03] ;
Fs= 504;

and the Matlab code find_param.m and the routines it calls are listed below.
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find_param.m

%This routine should be invoked only after the experimental data is ...

pA read in. This version permits consideration of a desired
yA stiffness K_T

force D(:,1)/Fs;
Diss D(:,2);
N = length(force);

% If K_T is not an input parameter, signal that it should be ignored
% in determining model parameters.
if (exist (CK_T’) <1),
K.T = -1;
end

% use optimizer to determine model parameters: \chi, \beta,
% \phi_max. R is output as well for convenience.

b

[chi,R,phi_max,beta,resid,flagl=fit3(D,Fs,K_T);

% Joint stiffness and S are calculated from the above parameters.
K_Tr = R*(phi_max~(chi+1))*(1+beta)/(chi+1);
S = betax(R*phi_max~(chi+1))/(chi+1);

chi_name = ’\chi ’
beta_name = ’\beta ’;
R_name = ’R -
S_name = ’S 5
phi_max_name = ’\phi_{max}’;
Fs_name = ’F_s 73
K_T_name = K_T?;
resid_name = ’Resid ’;
flag_name = ’Exit Flag’;;
chi_val = num2str(chi) ;
beta_val = num2str (beta) ;
R_val = num2str(R) ;
S_val = num2str(S) ;
phi_max_val = num2str (phi_max) ;
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Fs_val = num2str(Fs) ;

K_T_val = num2str (K_Tr) ;

resid_val = num2str(resid) ;

flag_val = num2str (flag) ;

chi_val_Eq = [chi_name, = chi_vall;
beta_val_Eq = [beta_name, = beta_vall];
R_val_Eq = [R_name, = R_val];
S_val_Eq = [S_name, = S_vall;
phi_max_val_Eq = [phi_max_name, ’ = ’, phi_max_vall;
Fs_val_Eq = [Fs_name, > =, Fs_val];
K_T_val_Eq = [K_T_name, ’ = K_T_vall;
resid_val_Eq = [resid_name, ’ = 7, resid_vall;
flag_val_Eq = [flag_name, > =, flag vall;

disp(chi_val_Eq);
disp(beta_val_Eq);
disp(R_val_Eq);
disp(S_val_Eq);
disp(phi_max_val_Eq);
disp(Fs_val_Eq);
disp(K_T_val_Eq);
disp(resid_val_Eq);
disp(flag_val_Eq);

% Plot these results

rmin = 0.8*find_r(force(1l),chi,beta);
rmax= (find_r(force(N),chi,beta)+1)/2;
Points = 51;

for i=1:Points,
eps = (i-1)/(Points-1);
r(i) = rmin + eps*(rmax-rmin);
Fr(i) = r(@)*( (beta+1)-(r(i)~(chi+1))/(chi+2) )/ ...
( beta+(chi+1)/(chi+2) );
Dr(i) = 4*R*((r(i)*phi_max)"(chi+3))/( (chi+2)*(chi+3) );
end

%save these comparision data
comp_file_name = [name, ’.mat’];
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eval([’save ’,comp_file_name,’ chi beta phi_max Fs force Diss Fr Dr ’]);

plot(loglO(force),logl0(Diss),’x’,1logl0(Fr), loglO(Dr));
% axis( [loglO(force(1)), loglO(force(length(force))),
yA logl10(Diss(1)), loglO(Diss(length(force)))])
title(verbage) ;

xlabel(’logl0(F_0/F_s)’);
ylabel(’loglO(dissipation/cycle)’);

text(0.7,0.5, chi_val_Eq, ’sc’);
text(0.7,0.45, beta_val_Eq, ’sc’);
text(0.7,0.40, phi_max_val_Eq,’sc’);
text(0.7,0.35, Fs_val_Eq, ’sc?);
text(0.7,0.25, R_val_Eq, ’sc’);
text(0.7,0.20, S_val_Eq, ’sc’);
text(0.7,0.15, K_T_val_Eq,’sc’);
text(0.7,0.05, resid_val_Eq,’sc’);
text(0.4,0.05, flag val_Eq, ’sc’);

printname = [name,’.ps’];
eval([’print -dpsc ’,printname]);

outname = [name,’.out’];

fout = fopen(outname, ’w’);

%First Identify data set, then put out fitted values
fprintf (fout, ’\tl%s\n’, name);

fprintf (fout, ’%s \t %s\n’, chi_name, chi_val);
fprintf (fout, ’%s \t %s\n’, beta_name, beta_val);
fprintf (fout, ’%s \t %s\n’, phi_max_name,phi_max_val);

fprintf (fout, ’%s \t %s\n’, Fs_name, Fs_val);
fprintf (fout, ’%s \t %s\n’, R_name, R_val);
fprintf (fout, ’%s \t %s\n’, S_name, S_val);

fprintf (fout, ’%s \t %s\n’, resid_name, resid_val);
fprintf (fout, ’%s \t %s\n’, flag_name, flag val);
fprintf (fout, ’\n’);

fclose(fout);
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fit3.m

yA

% [chi,R,phi_max,beta,resid,flagl=fit3(Din,Fs,K_T);

yA

%  where Din = [force dissipation] (n x 2) matrix

% Fs = breakfree force

yA

function [chi,R,phi_max,beta,resid,flag]=fit3(Din,Fs,K_T)
N = length(Din);

force = Din(:,1)/Fs;

Diss = Din(:,2);

% first guesses for parameters
chi = 0.0;

R = median(Diss);

phi_max = 1.0e-5;

beta =5;

if size(Din,1)<2,
disp(’pls provide at least 2 points’);
else
p=zeros (2*N+2,1) ;
% why is this dimensioned to N instead of 3
x=zeros(3,1);

for i=1:N,
p(i) = force(i);
p(i+N) = Diss(i);
end
p(2*N+1) = Fs;
p(2%N+2) = K_T;
x(1) = chi; % first guess for chi
x(2) = Dbeta; % first guess for beta
x(3) = R; %y first guess for R_p3c

options = optimset(’TolX’,1le-5,’Display’,’final’);
[x,resid,flag]l=fminsearch(’para_fit3’,x,options,p);

chi = x(1);
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x(2);
x(3); %this should be R*phi_max”(chi+3)

beta
R_p3c

r = zeros(N,1);

% estimate phi_max from each experimental data pair
pm = zeros(N,1);

for i=1:N,
r(i) = find_r(force(i), chi, beta);

pm(i) = (Diss(i)/Fs)*( (chi+3)*(beta+(chi+1)/(chi+2)) )/ ...

(4% (r(i)~(chi+3))*(chi+1)/(chi+2));
end

% average these to get a nominal phi_max
phi_max = sum(pm)/N;

R = R_p3c/phi_max~(chi+3);

end
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para_fit3.m

function [err]=para_fit3(x,p)

% there are N data points

floor(length(p)/2)-1;

= zeros(N,1); % dimensionless force

zeros(N,1); % dissipation at each data point
zeros(N,1); % estimate for r corresponding to each F

H O m=
[

for i=1:N,
F(i)=p(i);
D(i)=p(i+N);
end
Fs
K_T

p(2*N+1);
p(2%N+2) ;

chi x(1);
beta = x(2);
R_p3c = x(3);

% for each data point force F and current values for chi & beta
% calculate the corresponding r

for i=1:N,
r(i) = find_r(F(i), chi, beta);
end

hcalculate the corresponding dissipation
y=zeros(N,1);
for i=1:N,

y(i) = 4*R_p3c*(r(i)~(chi+3))/( (chi+2)*(chi+3) );
end

res = zeros(N,1);
for i=1:N,
% res(i) = (y(i)-D(i))/D(i);
res(i) = 1logl0(y(i)/D(i));
end
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%net residual
err = res’*res ;

% calculate stiffness

phi_max = (R_p3c/Fs)*(beta + (chi+1)/(chi+2))/(chi+1);
R = R_p3c/phi_max~(chi+3);

K_Tr = Rx(phi_max~(chi+1))*(1+beta)/(chi+l);

if ((1.0e-5< K_T) & (1<beta))
err = err + ((K_T - K_Tr)/K_T) "2;
end

%TEST TEST
Jweight toward smaller magnitude chi
err = err + (5.0e-3)*chi*chi;

%Try to bound beta & chi

if (10<beta),
err = err + 1.0e3*(beta-10)"2;
end

if (beta<0.001),
err = err + 1.0e6x(beta-0.001)"2;
end

if (chi<-0.999),
err = err + 1.0e6x(chi+0.999)"2;
end
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find r.m

b

% r = find_r(Ft,chi,beta);

b

% routine to find the r that results in a target value of Ft
b

function r = find_r(Ft, chi, beta)

yA

yA

% first estimate:
r = Ft;

yA

% iteration parameters
i=1; max_i = 100;
tol = 1.0e-4;
res = Ft;
while (i<max_i & Ft*tol<abs(res))
F = r*x( (beta+1)-(r~(chi+1))/(chi+2) )/ ...
( beta+(chi+1)/(chi+2) );
res = F-Ft;
slope = ( (betat+l) - r~(chi+l) )/(beta + (chi+1)/(chi+2));
r = r - res/slope;
r = max(r, -1);
r = min(r, 1);
i = i+1;
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