
SAND2002-3616
Unlimited Release

Printed November 2002

SIERRA Framework Version 3:
Core Services Theory and Design

H. Carter Edwards
Production Computing/SIERRA Architecture Department

Engineering Sciences Center
Sandia National Laboratories

Box 5800
Albuquerque, NM 87195-0827

Abstract
The SIERRA Framework core services provide essential services for managing the
mesh data structure, computational fields, and physics models of an application.
An application using these services will supply a set of physics models, define the
computational fields that are required by those models, and define the mesh upon
which its physics models operate. The SIERRA Framework then manages all of
the data for a massively parallel multiphysics application.
3

Intentionally Left Blank
4

Contents
Acronyms and Abbreviations . 9

1 Introduction. 11
1.1 Architecture of a SIERRA Application. 11

1.2 Execution of a SIERRA Application . 12

1.3 Layered Set of Services. 13

1.4 Finite Element Method (FEM) Specializations. 14

1.5 Organization of this Document . 14

2 Theory . 16
2.1 Fundamental Entities. 16

2.2 Brief and Selective Review of Set Theory . 17

2.3 Mechanics . 18

2.4 Mesh, Mesh Object, and Mesh Object Roster. 19

2.5 Field and Field Registrar . 22

3 Usage Subsets, Instance Subsets, and Context 24
3.1 Cardinality Assumptions . 24

3.2 Abstraction for Context . 25

3.3 Software Design for Context. 25

3.4 Interaction with Mesh Objects . 26

3.5 Field Value Relation . 26

3.6 Predefined Usage Subsets . 27

3.7 Instance Subsets . 28

4 Mesh Heterogeneity and Master Element Usage. 30
4.1 Master Element Families. 30

4.2 Field Dependency on Master Elements. 31

4.3 Equivalence-Use . 32

4.4 Declaration of a Master Element Usage . 32

4.5 Querying Master Element Usage . 34

4.6 Context for Master Element Usage . 34
5

4.7 Conditions for Simplifications . 36

5 Fields and Field Registrars . 37
5.1 Field Specification. 37

5.2 Declaring Fields (a.k.a. Field Registration) . 37

5.3 Field Redeclaration (a.k.a. Reregistration) . 39

5.4 Array and Aggregate Declarations . 40

5.5 State-Use, Multiple States, and Time Stepping. 42

5.6 Querying Declared Fields . 44

6 Mesh Object Rosters and Subrosters 46
6.1 Hierarchical Partitioning . 46

6.2 Mesh Object Properties . 47

6.3 Iterating and Querying Rosters . 49

6.4 Manufactured Mesh Objects, Usage Subsets, and Connections 51

7 Field Value Relation and Buckets . 53
7.1 Buckets for Efficiency. 53

7.2 Dimensions of Field Value Arrays . 54

7.3 Accessing Field Values . 55

8 Mesh Object Connectivity . 57
8.1 Partitions of Mesh Object Connections. 57

8.2 Ordinal and Orientation. 58

8.3 Data Structure . 59

8.4 Mesh Object Topology . 61

9 Creating and Using Mechanics Objects 63
9.1 Mechanics Algorithms . 63

9.2 Mechanics . 65

9.3 Mechanics Instances . 66

9.4 Mechanics Support (Singletons) . 67

9.5 Creating and Configuring Mechanics Objects . 68

10 Workset Algorithms . 70
6

10.1 Workset Scratch Memory . 70

10.2 Automatic Iteration of Mesh Objects . 71

10.3 Workset Variable Arrays . 72

10.4 Gather, Compute, Scatter, and Assemble . 73

10.5 Workset Stencil . 74

10.6 Declaring a Workset Algorithm . 76

10.7 Nested Workset Algorithms . 78

11 Parallel Distributed Mesh. 79
11.1 Processor Subset Classes. 79

11.2 Processor-Resident Policies . 80

11.3 Intermesh Relation . 81

11.4 Mesh Object Communication Relation (a.k.a. Communication Specification)

. 82

11.5 Distributed Data Structure for CommSpec . 84

11.6 Field-Value Global Assemble Operation. 86

11.7 Copying Mesh Objects Between Processors. 87

12 Dynamic Mesh Modifications . 88
12.1 Local Modifications and Global Synchronization 88

12.2 Synchronization of Created Mesh Objects . 89

12.3 Synchronization of Deleted Mesh Objects . 90

12.4 Synchronization of Mesh Object Attributes . 91

References. 92

Appendix A: Mapping to C++ Classes . 93

List of Figures
1.1 SIERRA application architecture. 11
1.2 SIERRA Framework layered set of services.. 14
4.1 Topological consistency of a master element family. . 31
4.2 Example contexts for multiple master element usages. 35
4.3 Imprinting contexts for master element usages.. 35
5.1 Illustration for fields of aggregate data types. 41
7

6.1 Mesh-partitioning hierarchy. . 46
8.1 Example ordering of connection relations. . 59
8.2 Connectivity relation objects. . 60
9.1 Mechanics components. 63
9.2 Mechanics and mechanics algorithm hierarchy. . 64
9.3 Mechanics-type inheritance hierarchy.. 66
9.4 Mechanics-instance mirrored hierarchy. . 67
10.1 Example of access pattern for field values. 70
10.2 Illustration of gather, scatter, and assemble operations.. 74
10.3 Examples of workset stencils. . 75
10.4 Illustration of options in assemble operations.. 78
11.1 Parallel distributed mesh with “orphaned” face. 81

List of Tables
6.1 Mesh Object and Subroster Properties. 49
6.2 Region’s Mesh-Manufacturing Flags. 52
8

Acronyms and Abbreviations
1D one-dimensional
2D two-dimensional
3D three-dimensional
API application programmer interface
CommSpec communication specification
CPU central processing unit
FEM finite element method
PDE partial differential equation
9

Intentionally Left Blank
10

1 Introduction
The purpose of this document is to describe the capabilities, abstractions, and conceptual design
of the SIERRA Framework core services. This document does not describe the specific
application programmer interface (API) or implementation of the core services. Documentation of
the API appears as comments in the API header files that can be viewed through Doxygen-
generated html pages.

1.1 Architecture of a SIERRA Application
All application codes that use the SIERRA Framework have the common and prescribed code
architecture illustrated in Figure 1.1. The hierarchical decomposition illustrated in this figure
defines several components of an application. These components have specific and well-defined
roles in an application.

Figure 1.1. SIERRA application architecture.

Application’s Procedures, Regions, and Mechanics
Each application code contains one or more procedures that are responsible for advancing the
application through a sequence of time steps. Each procedure contains one or more regions that
are responsible for advancing the physics that it models through a single time step. A region owns

Application

Procedure (time step control)

Region (single step of physics A)

Mechanics

Mesh and Fields

Region (single step of physics B)

Mechanics

Mesh and Fields

Transfer
11

an integrated set of mechanics that implement the region’s physics models. A single mechanics
typically implements a model for a single physics, e.g., a single partial differential equation
(PDE).

Mesh and Fields
Each of the application’s regions owns a mesh and computational fields required by its physics. A
mesh defines a spatial discretization of a region’s problem domain. Each of the region’s
mechanics will operate on the mesh or some subset of the mesh, e.g., a boundary. The
computational fields are the independent, dependent, or scratch variables required by the region’s
mechanics that are defined on the mesh, e.g., coordinates of nodes in the mesh.

Transfers
A transfer is used to loosely couple two different regions by transferring computational fields
between the regions’ meshes. Transfers are an advanced capability of the SIERRA Framework
and not part of the core services. Therefore, transfers are documented separately in the SIERRA
Framework / Transfer Services documentation.

1.2 Execution of a SIERRA Application
The SIERRA framework executes an application in the following phases. Each phase is briefly
described in this section.

1. Start-up of the parallel execution environment
2. Installation of the application’s singletons
3. Processing of user input for configuration of the application’s mechanics
4. Sequential processing of each of the application’s procedures

a. Construction of the meshes for the current procedure’s regions
b. Transfer of the previous procedure’s region data to the current procedure’s regions
c. Execution of the current procedure

5. Termination of the application

Start-Up
Start-up of the parallel execution environment is managed by the SIERRA Framework core
services; however, this start-up operation must be called immediately upon entry into the “main”
code of the application. The SIERRA Framework start-up operation will initialize the application
for parallel execution (currently via an implementation of the message-passing interface), process
command-line arguments, and set up a parallel output stream for logging text information.
12

Installation of Singletons
A singleton is a software object that has one and only one instance of itself within a particular
executable. An application’s “main” code calls a “plug yourself in framework” subprogram for
each of its singletons. Singletons primarily interact with the SIERRA Framework parser to
configure the procedures, regions, and mechanics in the application according to an end user’s
specifications.

Processing of User Input
The SIERRA Framework parser reads the application user’s input file synchronously on all
processors. This synchronous read is accomplished by reading the input file on the “root”
processor (typically processor #0) and broadcasting a sequence of input buffers to all other
processors. The parser verifies that the input file is free of syntax errors and then calls upon the
singletons to process the contents of the input file (see SIERRA Framework / Parser Services).

Sequential Processing of Procedures
The SIERRA Framework processes each procedure in the application once. First, a mesh is
constructed for each of the procedure’s regions. Construction of a mesh typically involves reading
a mesh from a bulk mesh data input file and creating the mesh objects and their interconnections.
Construction may also include the manufacture of mesh objects that did not appear in the bulk
mesh data file, such as manufacturing of all faces on the surface of a solid body. Once a mesh has
been created, it may have data transferred into it from the previous procedure’s regions (see
SIERRA Framework / Transfer Services). The procedure itself is then executed.

An application’s procedure is expected to control the execution of its regions (Figure 1.1).
Procedure execution control includes determining and performing multiple time steps,
coordinating the execution of its loosely coupled regions, and subcycling the time stepping of
individual regions as needed.

Termination
Upon normal termination of an application, the SIERRA Framework closes all remaining files,
collects run-time statistics, and terminates the parallel execution environment.

1.3 Layered Set of Services
Other SIERRA Framework services such as user-input parsing, bulk mesh data input/output,
interfaces to linear solvers, intermesh transfers, dynamic load balancing, and adaptivity are
“layered on” the core services (Figure 1.2). An application primarily interacts with these “layered
on” services through the SIERRA Framework core services. For example, an application informs
the bulk mesh data input/output subsystem to read a particular mesh file and then that mesh file is
loaded into the core services’ mesh data structure without any further interaction with the
application.
13

Figure 1.2. SIERRA Framework layered set of services.

1.4 Finite Element Method (FEM) Specializations
The SIERRA Framework Version 3 core services have specialized services for supporting
applications that use the FEM on fully unstructured meshes. These services are aware of the
potential existence of FEM master elements and FEM element topologies. This awareness
requires that the interface to basic master element capabilities be part of the SIERRA Framework
core services; however, the implementation of any particular master elements is not part of these
core services.

The most elementary master element capability is the definition of the topology for an element;
for example, a triangle “element” in a mesh is a two-dimensional (2D) entity that is defined by
three vertices and has three edges. The SIERRA Framework core services are heavily dependent
upon FEM element-topology information to efficiently manage the mesh data structure; therefore,
this interface specification and implementation of element topology is part of the SIERRA
Framework core services.

This bias for FEM master elements and element topologies does not constrain applications to use
master elements. SIERRA Framework core services may be used without FEM master elements
or element topologies. For example, a particle method may use the mesh and field data structure
without supplying master elements or element topologies. It is also planned to extend these core
services to support block-structured meshes.

1.5 Organization of this Document
The theory and abstractions expressed in the SIERRA Framework core services are presented in
Section 2. This theory section includes a brief review of key concepts and terms in set theory. This
review is required for the concise expression of the abstractions for the three major capabilities of
the SIERRA Framework core services: mechanics management, mesh management, and field
management.

Mechanics
Management

Mesh
Management

Field
Management

Mesh/Field
Communications

Bulk Mesh Data
Input/Output

User-Input
Parsing

Intermesh
Transfers

Interface to
Linear Solvers

Dynamic Load
Balancing

H-Adaptivity

Core
Services

Basic
Services

Advanced
Services
14

The translation of these complex mathematics-based abstractions to software design is given in
the remainder of this document. Numerous software-design decisions have been made with the
objective of time and/or memory efficiency for complex interactions between mechanics, mesh,
and fields. As such, the remaining sections of this document present the software design of the
SIERRA Framework core services according to interactions between these capabilities.
15

2 Theory
It is the responsibility of the SIERRA Framework to manage the complexities of adaptive,
multiphysics, computational mechanics applications that are used to solve large complex
problems in massively parallel environments. In addition, the SIERRA Framework must be
robust, efficient, scalable, extensible, and maintainable. It is essential to have a solid,
mathematically based, theoretical foundation in order to successfully fulfill these responsibilities.

2.1 Fundamental Entities
The SIERRA Framework core services manage the fundamental parallel computational
mechanics application entities of processor, mechanics, mesh object, and field. Complex,
massively parallel multiphysics applications are managed by constructing sets of these entities
and then defining subsets, set relations, and set topologies from these sets. These fundamental
entities are defined as follows:

Processor
A processor is viewed as a resource that executes a single thread of instructions, has exclusive
ownership of a block of memory, and can communicate with other processors. The set of
processors that defines the parallel execution environment is assumed to be homogeneous and
does not have any particular topology.

Mechanics
A mechanics is the software implementation of a model of a physics. An application contains
a hierarchically organized set of coupled mechanics. The procedures and regions identified in
Section 1.1 are specialized types of mechanics in this hierarchy.

Mesh Object
A mesh is a set of interconnected mesh objects that model the (spatially) discretized domain of
a problem domain. Each mechanics operates on a subset of the mesh.

Field
A field is any independent, dependent, or scratch variable that is required by one or more
mechanics to have a value associated with each mesh object upon which the mechanics
operates. Each region in an application defines a set of fields on its mesh.

The sets of mechanics, mesh objects, and fields may have numerous subsets that are used to
express an application’s virtually unlimited possible heterogeneities in its physics and
discretizations. The SIERRA Framework core services are responsible for managing these
complex subsets, as well as the complex interactions between subsets of heterogeneous
mechanics, mesh objects, and fields. These complex interactions are expressed and analyzed with
the mathematics of set theory.
16

2.2 Brief and Selective Review of Set Theory
Numerous sets of objects appear in an application, as introduced in Section 1.1. The SIERRA
Framework core services are responsible for managing sets of mechanics, mesh objects, and
fields, as well as the many possible subsets required by an application. Well-defined abstractions
and a consistent conceptual design are essential for fulfilling this responsibility; as such, the
mathematics of set theory is used and briefly reviewed in this section.

• A set is any collection of individually identifiable member objects.

• Recall the usual definitions and symbols for membership, subsets, equality, inequality,
intersection, union, null or empty set, for all, and there exists:

.

• A set of sets is referred to as a class.

• A class C defines a partition for a set A if each member of the class C is a subset of A, the
union of all members of C is equal to A, and the intersection of any two members of C is .

• The product set of two sets A and B, denoted , is the set of all ordered pairs where
 and .

• A relation R from the set A to the set B is a subset of .

• The domain of a relation is the set of the first coordinates of its member pairs, and the range is
the set of second coordinates of its member pairs.

• The converse of a relation R is a relation from the range of R to the domain of R, i.e.,
reversing the coordinates of the member pairs in R, and is denoted .

• A relation R is symmetric if for each member pair of R the reversed pair is also a
member of R. Note that if a relation is symmetric then the relation is equal to its converse,

.

• A class C is a topology on set A if and only if C satisfies the following:
a. A and are members of C.
b. The union of any number of sets in C is a member of C.
c. The intersection of any two sets in C is a member of C.

 ⊆⊂∈ ≠ ∅ ∃∀∪∩=

∅
A Ci C∈⊃

A Ci
i

∪=

∅ Ci Cj∩ i j≠∀,=

A B× a b(,)
a A∈ b B∈

A B×

domain R() a: a b(,) R∈{ }=
range R() b: a b(,) R∈{ }=

Rc

a b(,) b a(,)

R Rc=

∅

17

• The pairing of a set A and a topology on A, (A,C), is a topological space.

• A nonempty class C of subsets of A generates a topology on A by (1) defining a superset of C
that adds all sets that are pair-wise intersections of the members of C and then (2) expanding
this superset to include all sets that are unions of any number of members of this superset.

2.3 Mechanics
A mechanics is a software implementation of a model of some arbitrary physics. This
implementation performs one or more calculations with a set of fields defined over a subset of a
mesh (i.e., a set of mesh objects). For example, a simple implementation of kinematics may visit
each node in a finite element mesh, set the velocity to the previous value plus the acceleration
scaled by time, and then update the position to the previous position plus the velocity scaled by
time. In this example, the set of mesh objects consists of all nodes in the mesh, and the set of
fields defines the position, velocity, and acceleration.

A single mechanics typically implements a single PDE (partial differential equation). This
implementation defines the set of fields required by that PDE and provides a set of mechanics
algorithms that perform the calculations. The implementation of a mechanics algorithm is simply
a subprogram that is owned by the mechanics.

Tight Coupling Within a Region
A tightly coupled set of mechanics (e.g., coupled PDEs) is often required to model the physics of
a region. Mechanics are coupled within a region whenever they share one or more fields.
Coupling may be sequential, where the output of one calculation is the input to the next, or may
be coupled hierarchically, such as an element calculation calling a nested material calculation.
Mechanics may also be coupled in a region with an implicit time-stepping algorithm by
contributing to a shared Jacobian.

Mechanics Instance
A mechanics may operate on several distinct subsets of mesh objects where the same calculation
is applied to each subset but the parameters of that calculation (e.g., coefficients of the PDE) are
different for each subset. The SIERRA Framework defines a separation of calculations from
parameters, with mechanics responsible for supplying calculations and mechanics instances
responsible for supplying parameters.

A mechanics owns a set of mechanics instances. Each mechanics instance is responsible for (1)
identifying a distinct subset of mesh objects upon which the owning mechanics will operate and
(2) supplying a set of parameters for that operation. For example, a mechanics instance identifies
a subset of elements that model material “A,” and it supplies material properties for those
elements. A mechanics instance does not supply algorithms or identify fields used by the
mechanics.
18

Mechanics-Defined Usage Subsets and Instance Subsets
A mechanics operates on a region’s mesh or some subset of a region’s mesh. This subset contains
one or more subsets that are associated with the mechanics instances owned by the mechanics. A
mechanics also uses a subset of a region’s fields. These mechanics-defined subsets of mesh
objects and fields are referred to as usage subsets. Nested subsets of mesh objects associated with
mechanics instances are referred to as instance subsets. This mechanics-defined hierarchy of
mesh object subsets can be expressed as follows:

The set of usage subsets defines a class for a region’s mesh. This usage class is not a partition of
the mesh; a mesh object may and usually will be a member of more than one usage subset.
Likewise, each set of instance subsets associated with a particular usage subset defines another
class. For some mechanics, the associated instance class may be a partition of that mechanics’
usage subset, and the mechanics’ calculations may be optimized for this property. However, in
general, an instance class will not be a partition of the associated mechanics’ usage subset.

2.4 Mesh, Mesh Object, and Mesh Object Roster
A mesh is implemented as a set of interconnected mesh objects that model the discretized
problem domain for a tightly coupled set of mechanics within a region. These mechanics may, at
run time, modify the discretization of the problem domain. Dynamic modifications to a mesh may
involve creating new mesh objects in the mesh, deleting existing mesh objects from the mesh,
modifying mesh object connectivity within the mesh, or adding/removing mesh objects from/to
mechanics-defined usage subsets and instance subsets.

Finite-Element Mesh Objects
The SIERRA Framework explicitly defines the following five types of mesh objects to support
the FEM on unstructured meshes:

Node
A node mesh object represents a point in a one-dimensional (1D), 2D, or 3D discretization of
a problem domain.

UsageSubset Mechanicsi() MeshObjectk : Mechanicsi uses MeshObjectk{ }=

Mechanicsi has MechanicsInstanceij{ }

InstanceSubset MechanicsInstanceij() =

 MeshObjectk : MeshObjectk associated-with MechanicsInstanceij{ }

UsageSubset Mechanicsi() InstanceSubset MechanicsInstanceij()
j

∪=
19

Edge
An edge mesh object represents a simple curve between two nodes in a 2D or 3D
discretization of a problem domain. The specification for an edge must include its end-point
nodes and may include additional interior nodes.

Face
A face mesh object represents a simple area enclosed by simply connected edges in a 3D
discretization of a problem domain, e.g., a triangle or quadrilateral. The specification of a face
must include a set of vertex nodes that are the end points for faces’ boundary edges and may
include additional boundary or interior nodes.

Element
An element mesh object represents a simple region of the same dimension as the discretization
of the problem domain. For example, in a 3D discretization an element represents a simple
volume, and in a 2D discretization an element represents a simple area. The specification of
an element must include a set of vertex nodes and may include additional boundary or interior
nodes.

Other / Constraint
Other mesh objects may be needed to model irregular connectivity in a discretized problem
domain. For example, a problem domain with large deformation self-contact may define a
constraint mesh object that connects a node to the face that the node should be prevented from
penetrating. This fifth type is a “catch all” for representing irregular connectivity.

It is expected that Version 4 of the SIERRA Framework will support additional types of mesh
objects, particularly mesh object types to support block-structured meshes. As such, the software
design and implementation for mesh objects must be extensible.

Mesh object types define a partitioning of a region’s set of mesh objects. A mesh object must be
of a specific type. This type-defined partitioning of the set of mesh objects is used in the SIERRA
Framework software design to optimize algorithmic access to mesh objects. Each type-specific
subset of mesh objects is called a mesh object roster, sometimes referred to as simply a roster.

Parallel Distributed Mesh
The SIERRA Framework distributes a region’s set of mesh objects among the processors of a
distributed-memory parallel-processing environment. This distribution is defined by the
following three classes of mesh objects:

• Each processor has a subset of mesh objects that reside on that processor. The set of these
processor-resident subsets defines a processor-resident class.

• Each processor has a subset of mesh objects that it owns. The set of these processor-owned
subsets defines a processor-owned class.

• Each processor has a subset of mesh objects that it shares with other processors. The set of
these processor-shared subsets defines a processor-shared class.
20

A processor can only own mesh objects that reside on that processor; therefore, each processor-
owned subset is a subset of the corresponding processor-resident subset. The processor-owned
class is a partitioning of the mesh—each mesh object in a mesh is owned by exactly one
processor. The processor-ownership partition is essential for coordinating global reduction
operations on fields, such as a norm calculation, and for synchronizing modifications to a
distributed mesh.

A pair-wise intersection of members from the processor-resident class defines subsets of mesh
objects that are shared between pairs of processors. The set of these shared subsets defines a class
that describes the global sharing of all mesh objects among all processors. Each processor also has
a subset of shared mesh objects that is defined by the union of the mesh objects that the processor
shares with all other processors.

Generated Set-Topology for a Mesh
Six classes of mesh object subsets are defined: a partition of mesh objects by type (e.g., node,
face, edge, element), a mechanics-defined usage class, the mechanics instance-defined instance
class, a processor-resident class, a processor-owned class, and a processor-shared class. The
SIERRA Framework uses the union of these classes to generate a set-topology on a region’s
mesh. This topology is significant in that any operation that is performed on the mesh will be
applied to exactly one member of this topology.

Within this topology there exists a subclass S of the generated set-topology T with the following
two properties. First, the subclass S is a partition for the mesh. Second, the intersection of any
member of S with any member of T is either the null set or the same member from S, i.e.,

. Each member of the partition S is a subset of mesh objects
that are always operated on in the same manner. Thus a mechanics’ calculation could be
optimized to operate on members of S as a group, as opposed to operating on individual mesh
objects.

Each member of S is a subset of mesh objects that have the same mechanics usage, mechanics
instance association, and parallel operations. Each member of S is composed of a subset of mesh
objects that are homogeneous with respect to the operations performed on them. Each

ResidentPi MeshObjectk : MeshObjectk resides-on Pi{ }=

OwnedPi MeshObjectk : MeshObjectk owned-by Pi{ }=

GlobalSharing GlobalSharedPi Pj, ResidentPi ResidentPj∩={ }=

LocalSharedPi GlobalSharedPi Pj,
Pj
∪=

S T∩ ∅ S{ , }∈ S S∈ and T T∈∀
21

homogeneous subset (i.e., member of S) is called a mesh object subroster, sometimes referred to
as simply a subroster.

Intramesh Connectivity Relations
Let be a set of mesh objects that defines a particular mesh denoted . Then the set of

connections between pairs of mesh objects in the same mesh defines an intramesh connectivity
relation for that mesh, e.g., . This connectivity

relation is partitioned into an extensible class of purpose subsets that currently includes the
following:

• The uses connectivity relation has domain members that use, or are dependent upon, range
members. For example, an element has a uses connection with each of its nodes.

• The used-by connectivity relation has domain members that are used by range members. For
example, a node may be used by several elements.

• Some mesh objects may be hierarchically partitioned. The child connectivity relation contains
the parent-to-child connectivity.

• The parent connectivity relation contains the child-to-parent connectivity.

• The “other” or “auxiliary” connectivity relation contains mesh object connections that do not
fit in one of the previous four subsets.

Another significant partitioning of the connectivity relation is defined by the subsets that have a
given mesh object for the domain coordinate.

This class, for example, would include a subset that defines the connections from a given element
to its nodes, edges, and faces. Members of this class may be intersected with members of the
purpose class to define subsets such as all nodes that an element uses.

Intermesh Relations
The previous connectivity relation is defined with the same mesh for its domain and range.
Similar intermesh relations are needed to define relationships between two different regions, e.g.,

. Such a relationship is needed to support loose

coupling of two different regions.

2.5 Field and Field Registrar
A field is simply any variable that is used by a mechanics and has a value associated with each
mesh object used by that mechanics. Each region owns a set of fields that are used by that region’s

Meshα α

ConnectivityRelationα Meshα Meshα×⊂

mi mj(,) : mi mj(,) ConnectivityRelationα∈ , j∀{ }
i

IntermeshRelationα β, Meshα Meshβ×⊂
22

mechanics and associated with that region’s mesh objects. This set of fields is partitioned
according to mesh object type, i.e., five subsets for nodal fields, edge fields, face fields, element
fields, and constraint fields. Each type-specific subset of fields is called a field registrar.

Field Types
The values of a field are of a specified field type. This field type may be a simple numeric type, a
complex aggregation of values, or an array of a values of a specified field type. An aggregate field
type is a collection of named values, each with its own field type; for example, a struct in the C
or C++ language is an aggregate field type.

Field Value Relation
A field value is associated with the pairing of a field with a mesh object of the same type, e.g.,
pairing a node with a nodal field. This association defines the following field value relation for
each type of mesh object:

Not every pairing of a mesh object and field is required to have a value; therefore, the field value
relation is a subset of the Cartesian product of its domain (mesh object–field pairs) and range
(field values).

Existence of Field Values
The existence of a field value for a given mesh object–field pair is determined by the usage of that
mesh object and field. If the mesh object and field are used by a mechanics, then a field value
must exist; however, if the mesh object and field do not have a mechanics in common, then a field
value should not exist. Thus a field value exists for a mesh object–field pair if and only if there
exists a common mechanics-defined usage subset for the mesh object and the field.

FieldValueRelation Mesh Field×()⊆ FieldValues×

FieldUsageSubset Mechanicsi() Fieldk : Mechanicsi uses Fieldk{ }=

MeshObjectj Fieldk,() FieldValue,() FieldValueRelation∈

if and only if

 Mechanicsi∃ :
MeshObjectj UsageSubset Mechanicsi()∈ and

Fieldk FieldUsageSubset Mechanicsi()∈






23

3 Usage Subsets, Instance Subsets, and
Context

The set of mesh objects and the set of fields each has a class of usage subsets that is defined by the
mechanics that operate on mesh objects and use the fields. This three-way interaction between
mechanics, mesh, and fields is heavily exercised by an application—each execution of a
mechanics algorithm iterates the mechanics-induced subset of mesh objects and uses the
mechanics-induced subset of fields. It is critical to the performance of an application to have an
efficient software implementation of this complex three-way interaction.

Usage subsets are only defined for mechanics that are in the same region as the mesh (see Figure
1.1). Mechanics that are further nested in this hierarchy do not define new usage subsets but
instead inherit the usage subset that is defined for the root mechanics of the hierarchy.

The set of mesh objects has an additional class of instance subsets that is associated with the
mechanics instances owned by the mechanics. Each mechanics instance is owned by a particular
mechanics; therefore, each corresponding instance subset is a subset of the mechanics’ usage
subset. Instance subsets do not have an effect on fields; therefore, usage subsets and instance
subsets are treated separately. Just as with usage subsets, it is critical to an application’s
performance to have an efficient software implementation of the two-way interaction between
mechanics instances and mesh objects.

3.1 Cardinality Assumptions
The software design for usage subsets and instance subsets has assumptions regarding the
cardinality of these classes of sets. These assumptions are based upon an informal survey of
mechanics application developers and the planned capabilities for their applications. Minor
adjustments to these assumptions (i.e., same order of magnitude) are possible with negligible
effort. However, a major modification that would significantly alter the order of magnitude of the
assumed cardinalities would require a redesign of the SIERRA Framework core services.

1. It is assumed that during the execution of an application the cardinality of the set of usage
subsets has an upper bound of approximately 100 members.

2. It is assumed that during the execution of an application the cardinality of the set of instance
subsets that are nested within a particular usage subset has an upper bound of approximately
10,000 members.

These upper bounds are an indication of the anticipated complexity of an application. The number
of usage subsets is an indication of the heterogeneity of the mechanics that are available to a given
region. Each distinct mechanics that is owned by a region defines a usage subset; therefore, there
is an upper bound of approximately 100 such mechanics. The number of instance subsets is an
indication of the complexity of the mesh, i.e., how many blocks of materials, boundary
conditions, etc., are defined on the mesh.
24

3.2 Abstraction for Context
Usage subsets are coordinated SIERRA Framework core services of mechanics, mesh, and field
management through a shared abstraction and software entity referred to as context. Each
mechanics, mesh object, or field has an associated context.

Context
The context of a mesh object or field is a specification of how that mesh object or field is used
within the application.

Contexts are defined by usage subsets. The set of usage subsets includes mechanics-defined usage
subsets. Other usage subsets may be defined by nonmechanics considerations such as massively
parallel partitioning (Section 2.4), master element usage or equivalence-use (Section 4.3), or the
“condition” of a mesh object in a dynamically changed mesh (e.g., element death or h-adaptivity).
Each context defines a particular subset of mesh objects or fields.

Efficient access to subsets of mesh objects (or fields) that are defined by intersections (or unions)
of context subsets is also critical. For example, an inner product over a field may require
processing of all nodes that are (1) used by a given mechanics, (2) owned by the local processor,
and (3) are not “dead.” Because such an inner product may be performed several times within a
given time step, efficient iteration of this three-way intersection of subsets is essential.

3.3 Software Design for Context
Each mechanics, mesh object, and field has a context. This context is an array of boolean values
(e.g., bit flags), where each entry in the array is associated with a distinct usage-subset within a
particular region (Section 1.1). The length of this array is constant, fixed during compilation, and
corresponds to the assumed upper bound on the number of usage subsets. This software design for
context allows highly efficient operations on context objects and efficient memory utilization.

The membership of a given mesh object or field in a region’s particular usage subset is
determined by querying the appropriate entry in the context’s array of boolean values. Such a
query is only valid for mesh objects and fields that reside in the given region. The scope of a
context is limited to a region, i.e., a context defined within one region is not applicable or even
discernible within a different region. If the result of such a query is true, that mesh object or field
is a member of the usage subset. If the result of the query is false, that mesh object or field is not a
member of the usage subset.

Evaluation for membership in intersections and unions of usage subsets is efficiently obtained
through queries of the context array. If a mesh object is in the intersection of three usage subsets,

i UsageSubsetIndex Mechanicsj()=

Mechanicsj uses MeshObject
k

context MeshObjectk() i[] true=⇔

Mechanicsj uses Fieldm context⇔ Fieldm() i[] true=
25

each of the three boolean entries is true. If a field is in the union of several usage subsets, at least
one of the boolean entries is true. Such queries on fixed-length arrays of boolean values (i.e., bits)
is very efficient in the C++ programming languages used by the SIERRA Framework.

3.4 Interaction with Mesh Objects
Recall that the set of mesh objects is partitioned into homogeneous subsets referred to as
subrosters (Section 2.4). A necessary condition for a subroster to be homogeneous is that all mesh
objects in that subroster have the same context. As such, any evaluations regarding membership
in context-defined usage subsets may be made once for each subroster, and the result is applicable
to all members of the subroster. Efficient iteration of a usage subset is performed by iterating
subrosters, evaluating whether the subroster’s context contains the usage-subset context, and, if
so, iterating members of the subroster either by individual mesh objects or by bucket (Section
7.1).

Each mesh object in a particular subroster has an identical context. This context is associated with
the subroster and is shared by all mesh objects that are members of the subroster. Context is one of
several attributes associated with a subroster. These attributes are shared by all mesh objects that
reside in the subroster.

3.5 Field Value Relation
Field values are associated with the pairing of a mesh object and a field defined for that type of
mesh object (Section 2.5). This association may be thought of as a field value relation, where the
domain is in the set of mesh object–field pairs and the range is the memory for field values.

Note that the field value relation defined here is a subset of all possible members; thus not every
mesh object–field pair has an associated field value.

A field value is only needed for mesh object–field pairs that are used by one or more of the same
mechanics. If the subset of mechanics that uses a particular field does not operate on a given mesh
object, there is no need for a field value to exist for that mesh object.

A simple software design for the field value relation would be to disregard the mechanics usage
information and provide field values for all mesh object–field pairs. Such a simplistic approach
could generate large numbers of field values that are not used in the application. For example, if a
boundary condition defines a field on boundary nodes, setting aside values for all nodes would be
a highly undesirable waste of memory.

FieldValueRelation Mesh Field×()⊂ FieldValues×
26

The SIERRA Framework core services only allocate field values that will be used by a
mechanics. The existence of a field value for a given mesh object–field pair is determined by
comparing the context of the mesh object and field.

A field value will exist for a mesh object–field pair if and only if there exists some entry that is set
in both the mesh object’s context and the field’s context. Since the context is represented as an
array of bit flags, this condition is efficiently evaluated through the C++ bit-wise “and” operator.

Implications for Efficiency of Simple Algorithms
Each subroster is a homogeneous set of mesh objects that share a context. Therefore, the above
evaluation for the existence of a field value is directly applicable to the existence of field values in
a subroster’s buckets (Section 7.1). Algorithms that access a particular field, such as a norm or
inner product, are most efficiently implemented by iterating the subrosters that are compatible
with that field.

3.6 Predefined Usage Subsets
The SIERRA Framework core services predefines eight usage subsets and their associated
contexts. These usage subsets primarily support distributed, dynamic mesh capabilities. Each of
these usage subsets is only applicable to mesh objects. Membership in these usage subsets has
significant implications for how the SIERRA Framework processes mesh objects.

Active and Inactive
These are two disjoint usage subsets of mesh objects that either should or should not be processed
by a region’s mechanics. The SIERRA Framework will only process mesh objects that are
members of the active usage subset in workset algorithms, nodal linear-algebra utilities, and
default iteration of a roster. Members of the inactive usage subset are mesh objects that must be

MeshObjectk Fieldm,() FieldValue,() FieldValueRelation∈

if-and-only-if
i : context MeshObjectk() i[] true=() and context Fieldm() i[] true=()∃

if (MeshObject.context() & Field.context()) then
value exists

else
value does not exist

endif

foreach Subroster in Roster
if (Subroster.context() & Field.context()) then

foreach Bucket in Subroster
access field value arrays
perform computations over these arrays

end
endif

end
27

retained in the mesh data structure but should not be processed in normal calculations. Mesh
objects are placed in the inactive usage subset when “killed” by the element-death capability or
when refined by the h-adaptivity capability.

Globally Shared and Locally Owned
In a massively parallel distributed mesh data structure (Section 2.4), a given mesh object may
reside on more than one processor. If that mesh object is shared by two or more processors, it is a
member of the globally shared usage subset. If a mesh object is owned by the processor on which
it resides, it is part of that processor’s locally owned usage subset. Note that each mesh object will
be a member of exactly one processor’s locally owned usage subset.

Mesh objects are owned by exactly one processor so that reduction calculations or mesh-update
operations may be efficiently and robustly implemented. In a reduction calculation, such as a
norm or an inner product, only the owning processor contributes a term to the global reduction for
a given mesh object. In a mesh-update operation, the owning processor is responsible for
coordinating modifications to the mesh object.

Pending Create and Pending Delete
The SIERRA Framework core services support dynamic mesh modifications such as element
death and h-adaptivity. These capabilities (and others) create new mesh objects and delete mesh
objects that are no longer needed. Such modifications are handled in two phases: (1) local
modifications and (2) global synchronization. Mesh objects created in the local modification
phase are placed in the pending-create usage subset. Mesh objects that are to be deleted are placed
in the pending-delete usage subset during local modifications. Global synchronization processes
these two usage subsets to consistently update the distributed mesh data structure for the locally
created and to-be-deleted mesh objects.

Exposed Boundary and Interblock Boundary
In a parallel distributed mesh it is difficult to determine whether the face of an element is on the
boundary of the global mesh or merely on the boundary of the local processor’s subdomain. One
of the SIERRA Framework core services is to manufacture and/or identify the faces on the
exposed boundary of the global mesh and on boundaries between blocks of materials (Section
6.4). These faces are members of the exposed-boundary and interblock-boundary usage subsets,
respectively.

3.7 Instance Subsets
Recall from Section 2.3 that an instance subset is a collection of mesh objects that are associated
with a given mechanics instance. Also recall that each mechanics instance provides parameters to
its associated mechanics and that these parameters are applicable to all mesh objects of the
instance subset. For example, parameters provided by a mechanics instance could define material
properties for a material mechanics or boundary values for a boundary-condition mechanics.
28

Instance subsets and mechanics instances are typically used to differentiate parts of a the system
being modeled. These parts may be physically distinct, as in the differentiation between the rim
and tire of a wheel; or these parts may be an artifact of a Computer-Aided Design (CAD) model,
as in the modeling of a simple nail as a thin disk attached to a thin cylinder even though the nail is
a single continuous material.

The number of instance subsets in a specific problem is directly proportional to the physical
complexity of the system being modeled—more parts leads to more instance subsets. In contrast,
the number of usage subsets is proportional to the complexity of the physics being modeled.
Recall from Section 3.1 the assumption that the number of usage subsets has an upper bound of
approximately 100 and the number of instance subsets has an upper bound O(10,000).

A final assumption regarding the cardinality of sets of subsets is that a given mesh object is a
member of a relatively small number of instance subsets, e.g., O(10). This assumption is not a
“hard limit” in the SIERRA Framework—a particular mesh object could be a member of more
than O(10) instance subsets. However, the time required to determine whether a mesh object is a
member of a particular instance subset is proportional to the number of instance subsets to which
it belongs. In contrast, the software design for context and usage subsets (Section 3.3) allows
membership of a mesh object in a particular usage subset to occur in a small fixed amount of time.
29

4 Mesh Heterogeneity and Master Element
Usage

Master elements have three usages in finite element applications. First, master elements are used
by mechanics to perform their calculations. Second, master elements define “templates” for mesh
object connectivity. And third, master element properties may be associated with fields. The
usages are complicated when an application uses a mixed FEM (finite element method), i.e.,
when the application uses more than one master element for its calculations on a given mesh
object. Furthermore, a mesh may be heterogeneous. For example, a mesh may be a set of
interconnected hexahedral, pyramid, and tetrahedral elements.

4.1 Master Element Families
The complete set of master elements used by a region’s mechanics is maintained in the region’s
field registrars. This set of master elements is accordingly partitioned according to mesh object
type (i.e., elements, faces, edges, and nodes) such that each subset is maintained in the appropriate
field registrar. Each type-specific subset of master elements is further partitioned into master
element families.

A mechanics may use multiple master elements in its calculations. For example, a mechanics that
solves the Stokes equation may use a linear master element for the pressure discretization and a
quadratic master element for the velocity discretization. In this example, the linear master element
may only “know” about an element’s vertex nodes, and the quadratic master element may “know”
about both vertex nodes and edge nodes.

Topological Consistency
A master element family is defined by a set of master elements that are associated with the same
subset of mesh objects. Each member of the family must be topologically consistent (Figure 4.1),
i.e., the master element family must include at least one master element that is the topological
superset of all other master elements in that family.

Two simple examples of sets of master elements are given in Figure 4.1. In this figure, three
different triangular topologies of master elements are illustrated, with the dots representing nodes.
The upper set is a master element family—the second element defines a superset of the first
element’s nodes. The lower set is not a master element family—the second element does not
include the center node of the first element, and the first element does not include the edge nodes
of the second element.
30

Figure 4.1. Topological consistency of a master element family.

Text Labels for Family Members
Each field registrar may hold zero to many master element families. Typically, a master element
family is defined for each shape element in the mesh, e.g., a master element family for
hexahedrals and another family for tetrahedrals. Each member of a master element family is given
a text label that is used by a mechanics to query specific master elements from the family. Note
that if a master element family has only one member, the text label is extraneous.

The master element text labels must be unique within a family, but these labels should be
replicated for each family. For example, if the 4-node linear and 8-node quadratic master elements
within a tetrahedral family are labeled “LOW-ORDER” and “HIGH-ORDER,” respectively, the
8-node linear and 27-node quadratic master elements within a hexahedral family should also be
labeled “LOW-ORDER” and “HIGH-ORDER,” respectively. Applications are strongly
encouraged to follow this labeling convention so that their mechanics may be polymorphic with
respect to the master element family—that the same mechanics could be applied to different
element shapes simply by querying and using master elements.

Another Partitioning for Mesh Objects
A particular element has a shape, e.g., an element cannot be simultaneously a hexahedral and a
tetrahedral. Each element (or face or edge or node) must be associated with no more than one
master element family. For example, if a region’s mechanics do not use edge master elements, an
edge master element family is not needed, and the region’s edges will not be associated with a
master element family. Thus a mesh may be partitioned by a class of subsets where one member
of the class is associated with “no master elements” and every other member of the class is
uniquely associated with a master element family. This partitioning is denoted the equivalence-
use partitioning (Section 4.3).

4.2 Field Dependency on Master Elements
Element shape and discretization heterogeneities over a region’s mesh have an impact on the
fields of a region. A field may be an array that is dimensioned according to some element

Is NOT a master element family. Neither element
defines a superset of connected nodes.

Is a master element family. The second element
defines a superset of the first element’s connected
nodes.
31

property, such as the number of nodes or number of terms in a numerical integration rule. If the
element property that the field depends upon varies among elements, the field’s array dimension
must vary accordingly. For example, a field’s type may be a 3D vector, and the field may be
associated with the nodes of a master element. If the master element is a simple hexahedral, then
this field will be dimensioned, using the FORTRAN convention, as field(3,8). If the master
element is a simple tetrahedral, the field will be dimensioned as field(3,4).

The second dimension of some computational fields is allowed to vary with the master element
(i.e., equivalence-use) partitioning, while all other properties (e.g., the field type) of the field
remain the same. This variance is unambiguous since any given element must belong to exactly
one member of this partitioning. A field that varies over this partitioning is said to have an
equivalent use for the mesh objects within each subset of the partitioning.

4.3 Equivalence-Use
A partitioning of a mesh is defined by the set of subsets associated with master element families
and one subset that is not associated with any master element family. This partitioning is the
equivalence-use partitioning of a mesh. The set of master element families does not induce a
partitioning of fields. A field may be associated with many equivalence-uses; however, it may
have a different array dimension for each equivalence-use.

An equivalence-use defines usage subsets and is assigned a unique entry in a region’s context
(Section 3). Equivalence-use information is keyed in the SIERRA Framework by the associated
index in the regions’ array of context bit flags. Each mesh object of a given type belongs to
exactly one equivalence-use usage subset for that type; therefore, the context of a mesh object will
have exactly one equivalence-use context bit set. Thus the context of a mesh object may be
queried for the associated equivalence-use.

The dimension of a field will vary with equivalence-use. Thus the dimension of a field may only
be queried with respect to a particular equivalence-use. When accessing a field value associated
with a mesh object, the array dimension of the field value (if it is uncertain) is obtained by first
determining the equivalence-use of the mesh object and then querying the field for its dimension
with respect to that equivalence-use. This two-step process is illustrated with the following
pseudocode:

iEU = EquivalenceUseIndex of MeshObject.context()
nDim = Field.dimension(iEU)

4.4 Declaration of a Master Element Usage
A master element usage is declared in the field registrar of the associated type of mesh object,
e.g., element master elements are declared in the element registrar, and face master elements are
declared in the face registrar. Each master element usage is declared with an equivalence-use, a
master element, a text label, and a mixed-method context. The mixed-method context is only
needed (only useful) in mixed FEM applications that use multiple master elements with different
topologies for calculations on the same mesh object. See Figure 4.1 for an example.
32

Association of Mechanics with Master Element Usage
A given mechanics object uses zero or one master element family in its calculations. If a
particular physics is to be applied to different types of elements (e.g., hexahedrals and
tetrahedrals), different mechanics objects (possibly of the same type) are created for each element
type. Such a polymorphic set of same-physics mechanics can and should share a majority of their
code. Design details for mechanics types appear in Section 9.

Recall that each mechanics that is directly nested within a region is associated with a unique entry
in that region’s context (Section 3). In addition, each mechanics has its own context object that is
used to describe usage supersets to which the mechanics’ usage subset belongs (Section 9). The
equivalence-use that is associated with a master element family defines such a usage superset;
thus the mechanics’ own context object should include the equivalence-use context.

Multiple Master Element Families
Each declaration of a master element usage in its registrar must be associated with an
equivalence-use. Each master element usage declared with the same equivalence-use becomes a
member of the same master element family. Applications with heterogeneous elements will
typically have a master element family for each type of element. When multiple master element
families are present, the same set of text labels should be used to identify analogous members of
each family.

Consider a mesh that contains hexahedral elements, tetrahedral elements, and pyramid-transition
elements. The same physics is applied to each of the element types; however, different master
elements are needed by the mechanics that implements the physics. In this example let the
mechanics use a mixed method such that both quadratic and linear master elements are used (e.g.,
quadratic fluid velocities and linear pressures for Stokes). A total of six master elements divided
among three master element families are used. Each master element family has two members,
where the linear member is given the text label “Low-Order” and the quadratic member is given
the text label “High-Order.” Thus a single mechanics algorithm could be written so that it is
polymorphic with respect to the master element family—the algorithm will work with any master
element family that has declared two members with these labels.

Master Element Mixed-Method Context
If all master elements in a given master element family have the same topology (e.g., same
number of nodes), the mixed-method context is not needed and would introduce unnecessary
overhead. If the master element topologies are different, the mixed-method context associated
with each master element usage will have a critical role in differentiating between the usage of
nodes attached to the element. Details of this role are given in the two sections that follow.

If mixed-method contexts are used, it is recommended that they be reused among master element
families in the same manner that text labels are reused.
33

4.5 Querying Master Element Usage
The set of master element usages has two levels of partitioning. The first level corresponds to the
type of mesh object, e.g., element, face, edge, or node. Master element usages for a given mesh
object type reside in the registrar of the corresponding type. The second level of partitioning
corresponds to the master element families and the associated equivalence-use. Thus a given
master element usage resides in a particular master element family that resides in a particular
registrar.

A master element usage may be queried from the following information:

• The type of mesh object—so that the correct registrar is selected for the query.

• The equivalence-use—so that the correct master element family is selected within the
registrar. An equivalence-use may be known in advance or may be obtained from the context
of a mesh object, subroster, or mechanics.

• Selection of a particular member of the master element family. If the master element family
has only one member, no additional information is needed. Otherwise, a specific member may
be queried via its text label, context, or association with a field.

4.6 Context for Master Element Usage
Every master element usage is associated with an equivalence-use. This equivalence-use is
associated with a unique entry in a region’s set of context flags (Section 4.3). This equivalence-
use context is used to differentiate between master element families and thus has a completely
separate role from the mixed-method context. The role of the mixed-method context of a master
element usage is to differentiate how nodes are used by a mixed method with multiple,
topologically different master elements. If differentiation is not needed, the context parameter of
master element usage is irrelevant and should not be used.

Each master element usage has an associated mixed-method context that is given during its
registration. This context should have two entries set: (1) the entry associated with the mechanics
that is using the master element and (2) a unique entry associated with only that master element
usage. The second entry defines a usage subset that is unique for the combination of the
mechanics and one of its master elements. For example, let some mechanics with two master
element usages have an equivalence-use context entry E, mechanics context entry M, and two
mixed-method context entries of A and B, as illustrated in Figure 4.2.
34

Figure 4.2. Example contexts for multiple master element usages.

Each element operated on by a mechanics is a member of the usage subset associated with the
mechanics. As such, each element in this usage subset has the context entry M set to true. Because
the nodes, edges, and faces attached to an element are also members of this usage subset, they also
have context entry M set to true. At this point in our example there is no usage subset defined to
differentiate between the nodes of the element.

The equivalence-use context E is deliberately absent in this illustration. The usage subset defined
by an equivalence-use will include, and may be a superset of, the mechanics’ usage subset.
Therefore, the usage subset defined by an equivalence-use cannot play a role in the differentiation
of nodes that are already within the mechanics’ usage subset.

Imprinting Contexts for Master Element Usages
Continuing with the example, let the element be an eight-node quadrilateral as in Figure 4.3. The
mechanics declares a master element usage “A” for the low-order element and a master element
usage “B” for the higher-order element. All eight nodes of this element will have context entry
“M” set to show that they are a member of the mechanics’ usage subset. Since the higher-order
master element of usage “B” touches all nodes, all eight nodes will also have context entry “B”
set. However, since the lower-order master element only touches the vertex nodes, only the vertex
nodes have context entry “A” set. The final result in this example is that the vertex nodes have
context M+A+B and the mid-edge nodes have context M+B.

Figure 4.3. Imprinting contexts for master element usages.

Mechanics Master Element Usage “A”

Master Element Usage “B”

Context M+A

Context M+BContext “M”

= +

“Low-Order”
Master Element

“High-Order”
Master Element

M+A M+B

M+A+B M+A+B

M+B

M+A+BM+A+B

M+B

M+B

M+B
35

Note that if the two master elements in this example were to have the same topology, or if there
was only one master element, then the mixed-method contexts A and B would serve no purpose.
Also note that in this particular example all nodes are imprinted with both context M and context
B. Therefore, an implementation of this example could omit the extraneous context B.

Significance for Field Values
Recall that the context that is set on a mesh object, the element’s nodes in this example,
determines which field values will exist on that node (Section 3.5). A nodal field that has a
context of M or B will have a field value associated with every node of this element. However, a
field that has a context of A, but not M or B, will only have field values associated with the vertex
nodes of this element. Thus a mixed FEM can declare nodal fields to exist only on specified nodes
of an element.

4.7 Conditions for Simplifications
The master element usage example of the previous section identified four context entries: (1) the
equivalence-use context E, (2) the mechanics context M, (3) the low-order master element usage
context A, and (4) the high-order master element usage context B. In this example, the role of
each context was described for an application using a mixed FEM. Simplifications that reduce the
number of contexts may be made under certain conditions.

Omitting the Mixed-Method Context
If a master element family, i.e., the set of master elements applied to a given mesh object, consists
of a single element, there are no subsets of nodes to differentiate. This condition is also present
when all master elements in a family have the same topology. Under this condition a mixed-
method context (A or B in the example) is useless and should be omitted. If under this condition a
mixed-method context is present, the context will add unnecessary overhead to the application.

Reusing Mechanics Context for Equivalence-Use Context
An equivalence-use context is used to define a partitioning of mesh objects according to master
element families. If some subset of mechanics defines a compatible partitioning, each mechanics
context in this subset can be reused for an equivalence-use context. In the previous example, the
mechanics context M could then be used for equivalence-use context E.

This partitioning condition typically occurs for the subset of mechanics that implement the
primary physics of a region. This same subset of mechanics is applied to all of the region’s
elements and has been referred to as the element mechanics of a region. For example, a SIERRA-
based explicit-dynamics application (presto) and quasi-statics application (adagio) have such a
subset of mechanics that compute the internal forces for every element of the mesh. The element
mechanics’ context in these applications is reused for the equivalence-use context.
36

5 Fields and Field Registrars
Recall that a field is simply any variable that is used by one or more mechanics in a region and has
a value associated with each mesh object used by any of those mechanics. The set of field
specifications for a region is partitioned according to mesh object type, e.g., element fields, face
fields, edge fields, and node fields. These type-specific subsets of field specifications are
maintained within a region’s associated field registrar. Note that this partitioning prevents a
particular field from being associated with two different mesh object types, i.e., a particular field
cannot have values for both nodes and elements.

A field specification may be dependent upon the set of master elements within a region, i.e., the
dimension of a field may be based upon some master element property. Therefore, a region’s set
of master element usages is also maintained in the field registrars so that the coupling of field
specifications to master elements may be more efficiently implemented.

Master element usages and field specifications are declared at run time when a region’s set of
mechanics is created and configured (Section 1.2). All declarations for master element usages and
fields must be completed before a region’s mesh is populated. This completion-before-use
strategy allows the SIERRA Framework core services to “compile” the set of master element
usages and field specifications into efficient internal data structures. These internal data structures
are used to assign mesh objects to usage subsets (including equivalence-use) and efficiently
manage memory for the field value relation (Section 2.5).

5.1 Field Specification
Each field specification includes the items below. The purpose and use of each item is described
in the remainder of this section.

• association with a mesh object type (i.e., a member of which registrar)

• text name (e.g., “coordinates,” “temperature”)

• data type (e.g., integer, real, vector-3D, tensor-symmetric-3D, aggregate)

• association with one or more mechanics that use the field

• usage of the field with respect to time-stepping states (e.g., constant, independent, dependent,
temporary)

• [optionally] association of the field with a master element (e.g., a single value, a value for
each connected node, a value per quadrature point)

5.2 Declaring Fields (a.k.a. Field Registration)
A complete set of field specifications must be given when the field is declared. The association of
the field with a particular mesh object type is defined by the registrar that holds the field
37

specification, e.g., a nodal field is declared in the nodal registrar. When a field is declared in a
registrar, there are two possible results: (1) a new field specification is created or (2) an existing
field specification is modified. The second result is a redeclaration or reregistration of the field.
The implications of this redeclaration are described in Section 5.3.

Declaration of a “Simple” Field (Without a Master Element)
A declaration of a field requires (1) a text name for the field, (2) a data type, (3) the state-use, and
(4) a context that associates the field with a mechanics. These are the minimum four pieces of
information required to define a field. Declaration of a field that is associated with a master
element is more complex and is described in the next subsection.

The text name of a field provides a means to label the field for mesh data input/output, query the
field within the application, and share fields among two or more mechanics. Any field declaration
that is associated with the same mesh object type and has the same text name is the same field. If
several mechanics declare the same field, that field will be shared by those mechanics.

The data type for a field may be a simple numeric type; however, a data type could be an array or
aggregate of other data types. The set of available data types includes basic numeric types, arrays
of numeric types that are frequently used by mechanics (e.g., 3D vectors, tensors), and an
extensible set of application-defined array or aggregate types (Section 5.4).

The state-use has two purposes. First, it defines the number of states for which the field is to have
values. Second, it informs the SIERRA Framework of any special handling required by the field’s
values (Section 5.5).

The primary purpose for the context of a field is to determine for which mesh objects values for
that field must exist (Section 3.5). Recall that a field value will exist for each mesh object with a
context that has an entry in common with the field’s context. For simple applications that do not
use mixed FEMs, this context will be the context defined for the mechanics.

Each declaration of the same field, i.e., the declaration associated with the same mesh object type
and with the same name, must have the same data type and state-use. However, the context for
each declaration may be different. The different contexts obtained from each declaration are
merged for the field. This redeclaration-merging operation (Section 5.3) will vary depending upon
the set of equivalence-uses associated with the field’s registrar.

Declaration of a Field with a Master Element
A field may be declared with a master element association. This association has two components:
a master element from one of the field registrar’s master element families and an association with
a property of that master element. Each of these additional parameters has significant implications
for the field and its values.

The specification for a master element family is an equivalence-use, and an equivalence-use is
implemented as a context; therefore, the context of the field declaration must include the
equivalence-use context to identify the desired master element family.
38

The master element properties associated with the field define a dimension for the values of the
field. These properties include the master element’s number of nodes, number of edges, number
of faces, number of internal degrees of freedom, and cardinality of the integration rule. If a field is
associated with the nodes of the master element, the field will have a value for each node of the
master element. If a field is associated with the integration rule of the master element, the field
will have a value for each term in the integration rule. (Note that in previous SIERRA Framework
design documentation the terms of a master element’s integration rule have also been referred to
as the integration stations of the master element.)

All redeclarations of a field must have the same data type, state-use, and association with a master
element property. A redeclaration can be associated with a different master element family and
thus must have a different master element. If the redeclaration is with the same master element
family, the same master element must also be used. A redeclaration with a different master
element family has a different equivalence-use. The dimension of the field is allowed to vary with
the equivalence-use; therefore, the property associated with the different master element may may
have a different number.

5.3 Field Redeclaration (a.k.a. Reregistration)
The same field may be reregistered if and only if the name, data type, and use with respect to time
stepping are the same. A field may be reregistered any number of times for two purposes: (1) to
associate the same field with a different mechanics and (2) to associate the same field with a
different master element. Reregistration with a different mechanics association indicates that the
field is shared among the mechanics. Reregistration with a different master element may be used
to define a different master element–dependent dimension for that field. For example, register a
field for face mesh objects that are quadrilaterals and then reregister that same field for triangles.

When a field is reregistered with a different master element, that master element must also be
from a different master element family. This constraint is imposed for compatibility between field
dimensions and master element families. This compatibility is as follows:

• The dimension of a field may only vary with the equivalence-use.
• Reregistration of a field with a different master element may define a different dimension for

the field.
• Each master element family is uniquely associated with an equivalence-use.
• Thus reregistration of a field with a different master element must also be with a different

master element family to ensure a different equivalence-use.

The second or subsequent declaration of a field with the same mesh object type and text name
constitutes a redeclaration of that field. A field redeclaration must have the same data type, state-
use, master element, and association with a master element property. A field redeclaration must
also have the same master element for a given master element family. A field redeclaration may
have a different context and a different master element family. The master element family is
specified by the equivalence-use that appears in the context.
39

Same Equivalence-Use (Same Master Element Family)
If the equivalence-use that appears in the context is the same, the master element must also be the
same. The remainder of the context may be different. This type of redeclaration is handled by
merging the field’s context with the redeclaration context. Given that a context is simply an array
of bits, this merge is a simple bit-wise union operation in C++:

Field.context() |= declaration_context ;

Note that the effect of merging the context is that the subset of mesh objects for which the field
will have values is enlarged to include the usage subset associated with the declaration context.
Because the declaration context is typically associated with a mechanics, redeclaration enlarges
the scope of the field to include a new mechanics. In the end, the field is shared by all mechanics
that declare it.

Different Equivalence-Use (Different Master Element Family)
Field properties such as the dimension and associated master element may vary with the
equivalence-use. The equivalence-use of a field declaration is determined by which equivalence-
use appears in the context. A given field declaration (or redeclaration) may have only one
equivalence-use set in its context. This equivalence-use is used as a qualifier for the variable part
of a field’s properties: the dimension and the master element.

Recall that the set of equivalence-uses defines a partitioning for mesh objects, so a given mesh
object will be associated with exactly one equivalence-use. If a mesh object–field pair has a field
value, the master element and dimension of the field for that field value are well defined. This
variability allows a field to be polymorphic with respect to the kind of mesh object with
which it is paired. For example, the dimension of a field associated with the nodes of a master
element would be eight for a linear hexahedral mesh object and four for a linear tetrahedral mesh
object; however, to the SIERRA Framework this is the same field specification.

Three attributes of the field vary with the equivalence-use: (1) the associated master element, 2)
the dimUse dimension, and 3) the context. An equivalence-use defines a partitioning of the
associated set of mesh objects, so the context of a field defines a nested subset of mesh objects
within the equivalence-use’s partitioning subset. The context of a field varies with equivalence-
use, and thus varies with master element family, to allow the mixed-method context of a master
element usage (Section 4.6) to be consistently reused among master element families.

5.4 Array and Aggregate Declarations
A field type may be an aggregation of other field types. An example of this aggregation concept
appears in the C (and C++) programming languages as a struct. Each aggregate field type is a
set of other named fields. Each of these member fields has a field type, which may in turn be
another aggregate. One application of this hierarchical organization of fields is to mimic the
hierarchy of mechanics such that a nested mechanics uses similarly nested fields. For example, a
material mechanics is nested inside an element mechanics, and specific material fields are nested
within a single “material” field of an element. An application may extend the set of data types by
40

declaring new array or aggregate data types. Declaration of an array data type requires a type for
the members of the array and a dimension. An aggregate data type is constructed by incrementally
declaring new fields within as members of the data type.

A field registrar is an aggregate data type. Each new field declared within a field registrar
becomes a member of that field registrar’s aggregate data type. Field registrars are given special
handling by the SIERRA Framework in that field values are automatically created for the
associated type of mesh objects (e.g., elements, faces, edges, nodes).

Aggregate data types may be created in one of two ways: (1) as a stand-alone data type at a
“global” scope and (2) embedded within the scope of another aggregate data type. An aggregate
data type may be thought of as a struct in the C or C++ programming language. A struct may be
declared at the global scope or may be declared within the scope of another struct, as in the
illustrative code fragment in Figure 5.1.

Figure 5.1. Illustration for fields of aggregate data types.

This C or C++ language illustration does not represent the organization of storage for field
values. This illustration has been given to describe the design for aggregate data types. The
mapping from an aggregate data type to the organization of storage for field values is given at the
end of this section.

The first two members listed in Figure 5.1, member_a and member_b, are simple fields declared
within the field registrar. The member_x is a field of the aggregate data type type_x, where
type_x was previously declared at the “global” scope. The member_y is a field of an aggregate
data type that is embedded within the field_registrar aggregate data type. A field that is of
an aggregate data type may also be declared with a dimension.

Declaring a Field of an Aggregate Data Type
In Figure 5.1 the member_x and member_y fields are of an aggregate data type. These fields, or
any other fields of an aggregate data type, do not have a state-use (Section 5.5). The only fields
that have a state-use are fields of simple types or arrays of simple types. This allows every “leaf”
member of an aggregate-data-type hierarchy to specify its own state-use. Fields of an aggregate
data type may be an array. The organization of field-value storage for such fields is described
later.

struct field_registrar {
double member_a ;
int member_b[30] ;
struct type_x member_x ;
struct {

double member_c ;
double member_d[3] ;

} member_y[8] ;
};
41

Field Registrar Versus Aggregate Data Type
A field registrar is an aggregate data type; however, there are significant differences.

• Field registrars have master element usages but aggregate data types do not.

• Members of a field registrar may be associated with master elements, but members of any
other aggregate data type are not.

• A field registrar cannot be embedded or used within another aggregate data type.

• Field registrars are always recognized by the SIERRA Framework, but aggregate data types
are only recognized if they are nested within a field registrar.

Declaration of members within an aggregate data type is similar to declaration of simple fields
(Section 5.2) in that a text name, data type, state-partition (for nonaggregate data types), and
context are required. The member fields of an aggregate field (in Figure 5.1 member_c and
member_d are member fields of the aggregate field member_y) are required to have a context
that is compatible with the aggregate field. In the example of Figure 5.1 member_c and
member_d must have contexts that are contained within the context of member_y.

Member Fields of an Aggregate Data Type and Equivalence-Use
The member fields of an aggregate data type may be declared for a subset of the equivalence-uses
for which their parent field is declared. If this is the case, the nested field will only have a field
value for those mesh objects that appear in the usage subset of the equivalence-use. Thus not only
can the array dimensions of a field vary with equivalence-use, but the fields nested within an
aggregate data type may vary as well. Another way to view this variability is that the array
dimension of a nested field may be zero for a given equivalence-use.

5.5 State-Use, Multiple States, and Time Stepping
A field will be used in one of the following four ways with respect to the states of an application’s
multistate time-stepping algorithm:

State Field
The field has a value for each of N states where the values of the new (N + 1) state are updated
at each time step while the values of the old (N, N – 1, ...) states are unchanged. The SIERRA
Framework rotates the mapping between the state labels and the storage location at the end of
each time step (Section 1.2).

Persistent Field
The field has a value that likely changes every time step.

Constant Field
The value of the field is set during initialization (Section 3) and remains unchanged thereafter.
42

Temporary Field
The field has a value that is ignored by the SIERRA Framework restart capability.

These state-uses are specified through predefined objects for the temporary, constant, and
persistent uses and through an application-defined object for multistate-uses. Each field
specification that is one of these state-uses will have a reference to the corresponding predefined
object. An application may have multiple regions, each of which has a different time-stepping
algorithm. Each region would then define a different state-use object that specifies the number of
states required by that region.

(Note that in previous SIERRA Framework documentation this state-use property of a field was
referred to as the field’s data partition or datum partition.)

Field Values for Multiple States
Time-stepping algorithms typically require values for fields over a sequence of time planes. For
example, updating to the next time plane of a field may require values from the previous time
plane. The number of time planes required by the time-stepping algorithm defines the number of
states for that field. If updating to the current time plane requires one previous time plane, the
field has two states, a new state and an old state. When more than one previous time plane is
required, the states are labeled as N + 1 for the new state to be computed and N, N – 1, N – 2, ... for
the current and previous states in the sequence. The new and N + 1 labels are synonymous.

Each field is defined as a state field, persistent field, constant field, or temporary field. The
SIERRA Framework services provide values for of the number of states for a state field. During a
given time step it is assumed that the N + 1 value for these fields are updated, while the previous
values (N, N – 1, N – 2, ...) are unchanged, as illustrated below.

A persistent field is also assumed to be updated at each time step; however, it does not require
values from previous states. A persistent field is typically computed from state fields. A constant
field is initialized before the first time step and remains constant throughout all time stepping.
Constant fields typically hold properties of a model that vary over the set of mesh objects. As
such, constant fields are also referred to as model fields. Temporary fields refer to any other fields
that an application may require.

Implications for the Restart Capability
A field’s usage within an application (i.e. state, persistent, constant, or temporary) is significant
for the SIERRA Framework restart capability. Fields that are temporary are ignored by the restart
capability. Temporary fields are assumed to have auxiliary values that are used for intermediate
calculations internal to a time step or derived quantities for output purposes. It is assumed that
successful restart of an application does depend upon these values. Values for constant fields are
unchanged after initialization, so the restart capability only outputs these fields once for a given
restart file. Persistent and state values are output at each point in the application that a restart
image is generated.

field(N+1) = field(N) + function(field(N),field(N-1))
43

State-Field Updates and Rotation of Labels
A time-stepping algorithm typically requires a sequence of field values, where the cardinality of
this sequence is referred to as the number of states. For example, a field with two states has a new
and an old value, and a field with four states has values labeled N + 1 or new, N, N – 1, and N – 2.
Once a time-step update has completed, the “oldest” value in this sequence is no longer needed.
Furthermore, the new value becomes the old value for the next time step, or the N + 1, N, and N –

1 values become the N, N – 1, and N – 2 values, respectively.

This relabeling of values could be accomplished by copying values from the newer state into the
next older state (in oldest to newest order). For a large number of mesh objects and fields, such a
copying operation is expensive. A negligible cost alternative to copying values is used by the
SIERRA Framework: rotation of the labels for states.

Each state field has K values, where K is the number of states required for the time-stepping
algorithm. These K values may be addressed with the integer values [1..K]. During a given time
step i, the state labels are mapped to value addresses as follows:

For each subsequent time step this mapping of state labels is rotated such that the value in the
previous new state receives the label for the current old state.

5.6 Querying Declared Fields
A field registrar or any aggregate data type may be queried for its member fields. This query may
be made by text name or by iteration through the set of all member fields. A field is implemented
with a C++ object that contains all of the specifications that were given during the declaration or
redeclarations of that field.

Persistence of Field Objects
The first declaration of a field creates a field object that is owned by the containing aggregate data
type. Each subsequent declaration modifies the field object but does not invalidate it. Therefore, a
reference (C++ pointer) to that field object may be obtained and used by a mechanics. This is the
preferred approach to using declared fields.

Querying Properties of Field Objects
A field object may be queried for its text name, data type, dimension, context, state use, and
associated master element property (if a direct member of a field registrar). The field properties of
text name, data type, state-use, and association with a master element property are invariant with
respect to equivalence-use, so queries for these properties may disregard equivalence-use. The

N 1+
N

N 1–
N 2– i

4
3
2
1

→

N 1+
N

N 1–
N 2– i+1

1
4
3
2

→

N 1+
N

N 1–
N 2– i+2

2
1
4
3

→

44

dimension, context, and associated master element vary with equivalence-use, so an equivalence-
use must be supplied to query these properties. Recall that an equivalence-use may be obtained
from a mesh object or a subroster, or it may already be known to the application.

If the data type of a field is an aggregate, that aggregate may be recursively queried for its
member fields. These queries may iterate through the members or may retrieve a member by its
text name.
45

6 Mesh Object Rosters and Subrosters
The SIERRA Framework Version 3 supports unstructured meshes that are defined by an
interconnected set of node, edge, face, and element mesh objects (Section 2.4). Other types of
arbitrary, nontopological mesh objects, such as contact constraints, are also included in this set. A
coupled multiphysics application may have multiple meshes, where each mesh is owned by a
region (Figure 1.1). Each region’s set of mesh objects is hierarchically partitioned into type-
specific rosters and then into homogeneous subrosters, as illustrated in Figure 6.1.

Figure 6.1. Mesh-partitioning hierarchy.

A roster is associated with a subset of mesh objects that are of the same type (e.g., node, edge,
face, element, or other). The subset of mesh objects in a given subroster is homogeneous—all
mesh objects in a subroster are members of the same usage subsets and instance subsets (Section
3), and are associated with the same master element family or equivalence-use (Section 4).

A roster is responsible for creating, storing, organizing, retrieving, and deleting mesh objects of
its particular type. In a parallel-processing environment these capabilities are limited on a given
processor to the subset of mesh objects that are resident on that processor. For example, a mesh
object that is resident only on processors P1 and P2 cannot be retrieved on processor P0. Roster
capabilities can be divided into two categories: mutating and nonmutating. The capabilities that
mutate a roster, i.e. change the contents or organization of a roster, are described in Section 12.
The organization and nonmutating capabilities of a roster are described in this section.

6.1 Hierarchical Partitioning
The objective for the mesh-partitioning hierarchy illustrated in Figure 6.1 is to provide a balance
of execution-time and memory-space efficiency for applications. Design and analysis of this
partitioning hierarchy is expressed through the mathematics of set theory.

Theory
A region’s set of mesh objects is partitioned into homogeneous subsets where each subset is
associated with, or owned by, a unique subroster. This subroster partitioning is defined by
generating a set-topology (Section 2.2) on the region’s set of mesh objects, as follows. Let X be a
class of subsets of a mesh where the members of X include the roster subsets, usage subsets,

Mesh of a Region

Type-Specific Roster

Homogeneous Subroster

Mesh Object

Has 1..M

Has 0..M

Has 0..M
46

instance subsets, master element family (i.e., equivalence-use) subsets, and parallel distributed
mesh subsets (Section 2.4). Generate a set-topology T on the mesh with X. The subroster subsets
of the mesh are members of T such that the intersection of a subroster subset with any other
member of T is either that subroster subset or the null set. Let S be the subclass of T whose
members are the subroster subsets.

A roster is dynamic with respect to (1) the mesh objects it contains and (2) the partitioning of
those mesh objects among subrosters. During the execution of an application, new mesh objects
may be created, existing mesh objects may be moved between subrosters, and existing mesh
objects may be destroyed. However, the set-topology T of a mesh is fixed before a mesh is
populated (see Section 1.2) and does not change as mesh objects are created, moved, or destroyed.
Creation and destruction of mesh objects merely change the contents of the subsets in T, but these
processes do not change the class of subsets.

Time Efficiency
A given mechanics operates on a selected subset of a mesh; thus any given algorithm is required
to select a subset of the mesh. This subset could be selected by interrogating each mesh object for
inclusion or exclusion, which would be an O(N) operation where N is the number of mesh objects
in the mesh. If the same algorithm selects mesh objects by homogeneous subroster, with the
selection result guaranteed to be the same for each member of the subset, the inclusion or
exclusion operation is O(M) where M is the cardinality of the subroster class S.

Space Efficiency
The association of mesh objects with subsets (e.g., usage subsets, instance subsets, master
element family subsets) requires memory space in an implementation. Each member of a
subroster of mesh objects has an identical association with subsets. Thus the memory space
required to implement these mesh object–subset associations can be shared by all mesh objects in
the subroster.

6.2 Mesh Object Properties
All mesh objects share the same implementation in the SIERRA Framework core services, e.g., a
node and an element are implemented by the same C++ class and can only be differentiated by
their associated data. Mesh object properties have values that are either associated directly with
the mesh object or associated with a homogeneous subroster and indirectly with the subroster’s
mesh objects.

Unique Identifier (Mesh Object)
Each mesh object in a mesh is a member of a set and is therefore required to be uniquely
identifiable (Section 2.2). Mesh objects within a mesh are uniquely identified by the type of the

S S∈ T⊂ S T∩ S ∅,{ }∈ T T∈∀⇔
47

mesh object and an integer value. The type of a mesh object identifies the roster in which the
mesh object resides, and an integer value uniquely identifies the mesh object within that roster.

A mesh object’s integer identifier is unique only within its roster. For example, a node and an
element may both have an identifier of “1” but are uniquely identified within a mesh by a
combination of their type and identifier (node-1 versus element-1). The integer identifier is
unique and consistent among all processors of a dynamically changing parallel distributed mesh.
For example, if a node is shared among several processors, the node has the same integer
identifier on each processor.

Processor Ownership (Mesh Object)
A mesh object may be resident on more than one processor in a parallel distributed mesh;
however, the mesh object is owned by exactly one processor on which it resides (Section 2.4).
This unique processor ownership is known on each processor on which a mesh object is resident.
Identification of the unique processor-owner is essential for correct and efficient reduction
calculations over field values, e.g., norms and inner products. Knowledge of processor ownership
is also essential for the SIERRA Framework to maintain global consistency of the mesh.

Connectivity (Mesh Object)
A mesh object is connected to zero-to-many other mesh objects as defined by the intramesh
connectivity relation (Section 2.4). Software design details for mesh object connectivity appear in
Section 8.

Field Values (Mesh Object)
Each mesh object is associated with zero to many field values as defined by the field value
relation (Section 2.5). Each field value may be accessed through the pairing of a mesh object with
a field. Software design details for field values appears in Section 7.

Usage Subsets and Context (Subroster)
A mesh object is a member of one to many usage subsets of a region. Most usage subsets are
defined by mechanics. Other sources of usage subsets include equivalence-uses (master element
families) and those that support distributed and dynamic mesh capabilities (Section 3.6).
Membership in some of the dynamic-mesh usage subsets is mutually exclusive, as follows:

• The active and inactive subsets are mutually exclusive.

• The pending-create and pending-delete subsets are mutually exclusive. However, most mesh
objects are not members of either of these subsets.

Each mesh object has an associated context that identifies the set of usage subsets for which the
mesh object is a member (Section 3). The value of the context is identical for all mesh objects in a
given subroster. Therefore, the context of a mesh object resides with the subroster and is shared
by all mesh objects in that subroster.
48

Instance Subsets (Subroster)
The predominant number of subsets in the generator for the mesh topology consists of instance
subsets. A mesh object is a member of zero to many instance subsets; however, a mesh object that
does belong to any instance subset is unlikely ever to be used within an application. Each mesh
object has an associated list of mechanics instances that identifies the instance subsets for which
that mesh object is a member. This list is identical for all mesh objects in a given subroster;
therefore, the list resides with the subroster and is shared by all mesh objects in that subroster.

Topology of the Master Element Family (Subroster)
The finite element topology of a mesh object is a frequently used property of a family of master
elements (Section 4.1). This topology describes the expected connectivity for the mesh object
(Section 8). This property could be obtained by first querying the context of the mesh object, then
querying the master element family associated with that context, and finally obtaining the richest
finite element topology of that master element family. Because of its frequent use, the finite
element topology is included among the directly maintained mesh object properties. However,
these properties are identical for all mesh objects in a given subroster, so the finite element
topology resides with the subroster.

Summary of Mesh Object and Subroster Properties
The mesh object properties that are associated with individual mesh objects or shared by the mesh
objects in a given subroster are summarized in Table 6.1.

.

6.3 Iterating and Querying Rosters
A roster is a container for mesh objects of a given type. The ISO/ANSI C++ language standard
defines a container as an object that stores other objects and controls the allocation and
deallocation of those objects. An iterator is an object that is used to iterate over the members of a
container. The mesh objects within a roster may be iterated or queried by their unique identifiers.

Table 6.1. Mesh Object and Subroster Properties

Mesh Object Property Subroster Property (Shared by Mesh Objects)

Unique Integer Identifier Usage Subsets/Context

Owning Processor List of Instance Subsets

Connectivity to Mesh Objects Finite Element Topology

Field Values
49

Parallel Distributed Mesh
A roster on a particular processor is a container for mesh objects that are resident on that
processor. Iteration of the contents of a roster on a given processor will only access mesh objects
that are resident on that processor. Furthermore, queries for mesh objects in a roster will only be
successful on the processors for which the queried mesh object is resident. The SIERRA
Framework will not automatically retrieve mesh objects among remote processors in response to
iteration or queries of a roster.

Two-Level Iteration by Subroster
The mesh objects in a roster may be iterated directly or iterated by subroster. Iteration by
subroster is a two-level looping process, where the outer loop is over the subrosters of the roster
and the inner loop is over mesh objects in the current subroster. Recall that subrosters define a
partitioning for the mesh objects in a roster. As such, iteration by subroster will only access each
mesh object in a roster once.

The two-level iteration allows a mechanics calculation to apply its mesh-object selection code to
select subrosters as opposed to individual mesh objects. This approach reduces the total number
of operations performed to select the mechanics’ appropriate subset of mesh objects from a roster.
Thus it is recommended that a mechanics iterate mesh objects by subroster.

The code for selecting mesh objects may be a complex boolean expression involving several
usage or instance subsets. For example, a calculation may select all mesh objects that are in the
intersection of mechanics A and B usage subsets, in the locally owned usage subset, and not in the
pending-create or pending-delete usage subsets.

foreach Subroster in Roster
if Subroster.context has Mechanics-A and

Subroster.context has Mechanics-B and
Subroster.context has Locally-Owned and
Subroster.context does not have Pending-Create and
Subroster.context does not have Pending-Delete then

foreach MeshObject in Subroster
perform computations on MeshObject

end
endif

end

Ordering of Subrosters and Mesh Objects
The iteration order of subrosters in a roster and mesh objects in a subroster is dynamic and
arbitrary, but also deterministic. Ordering is dynamic in that any modifications to contents of the
roster (creating, shifting between subrosters, or deleting) can and will reorder the mesh objects
within the affected subrosters. Ordering is arbitrary in that mesh objects within a subroster are
ordered and reordered to maximize the efficiency during iteration and update operations. An
application should not attempt to anticipate the ordering of mesh objects within a given subroster.
Ordering is deterministic in that an application may rely on the ordering of mesh objects to be the
same given the same sequence of operations that is used to initially define the mesh set-topology
50

and then modify the mesh. Recall that the mesh set-topology is determined by the usage subsets
and instance subsets.

The order of mesh objects within a subroster is arbitrary and subject to change if the roster is
modified in any way. Arbitrary ordering allows efficient modification, creation, and deletion of
mesh objects. However, reordering can and will cause a reduction operation to have numerical
differences on the order of floating-point precision, as illustrated below. This numerical round-off
is due to the reordering of summation terms in the reduction operation.

Querying by Unique Identifier
A roster may be queried for a mesh object that has a specified, unique integer identifier. If a mesh
object with that identifier resides on the local processor, a valid iterator to that mesh object is
returned from the query. If no such mesh object resides in the local processor’s roster, an invalid
iterator is returned. The result of this query is processor dependent.

Iteration by Unique Identifier
Mesh objects in a roster may be iterated in the order of the mesh objects’ unique integer
identifiers; however, it is strongly recommended that mechanics do not use this iteration
technique. Iteration by identifier has no correlation with usage subsets or instance subsets. If a
mechanics algorithm performs this iteration, each mesh object would have to be evaluated for its
inclusion or exclusion in a mechanics’ appropriate subset.

6.4 Manufactured Mesh Objects, Usage Subsets, and
Connections

An initial set of mesh objects is read from a bulk mesh data input file into the region as described
in Section 1.2. Mesh objects are assigned to subsets, connected to other mesh objects, and have
field values allocated as they are read. Some applications require additional mesh objects, subsets,
or connections that did not appear in the bulk mesh data input file. The SIERRA Framework
provides the capability to manufacture the following frequently used additional subsets and
connections:

1. faces and edges on the boundaries of blocks of elements

2. faces and edges in the interior of blocks of elements

3. subsets for exposed boundaries and interblock boundaries

4. the node-to-element relation which is the converse of the element-to-node relation

5. “ghost” elements on parallel domain decomposition boundaries

ai
2

i 1 n→=
∑

 
 
 

aj
2

j n 1→=
∑

 
 
 

– εO n()<
51

Manufactured mesh objects are created in the same rosters and subrosters, and will have have the
same field-values capabilities, as mesh objects that are loaded from an input bulk mesh data file.

Mesh-manufacturing capabilities are requested through a set of flags on the region that must be
set before the bulk mesh data file is read. These flags are typically set during the user-input
parsing phase of an application (Section 1.2). The region’s mesh-manufacturing flags and the
results from setting them are given in Table 6.2.

The exposed and interblock boundary subsets are two different usage subsets with context values
defined by the SIERRA Framework. A face is in the exposed boundary subset if it has only one
element connected to it in the global mesh. Note that a face may have only one element connected
on a particular processor’s subdomain; however, if it is also connected to a different element on
another processor, the face is not exposed in the global mesh. A face that is connected to two
elements from different blocks in the global mesh is in the interblock boundary subset. In
addition, all edges and nodes belong to the same boundary subsets as any of their connected faces.

Table 6.2. Region’s Mesh-Manufacturing Flags

Region’s Flags Result If “True”

use boundary faces manufacture faces on boundaries and generate
exposed and interblock boundary subsets

use all faces manufacture faces of all elements

use all edges manufacture edges of all elements

use face edges manufacture edges of all faces

support dynamic mesh manufacture node-to-element relations
52

7 Field Value Relation and Buckets
Recall from Section 2.5 that the field value relation is a set-relation with a domain in the pairing
of mesh objects and fields and a range in the value associated with that pairing. Recall also from
Section 2.5 that a mesh object–field pair is a member of this relation if and only if there exists a
mechanics that uses both the mesh object and the field. Finally, recall from Section 3.5 that this
existence condition can be determined by comparing the context of the mesh object with the
context of the field.

7.1 Buckets for Efficiency
An implementation of the field value relation requires storage for the field values and for the
association of mesh object–field pairs with those field values. Not all mesh object–field pairs have
field values, so the implementation should not consume storage for unused field values. However,
this selective existence of field values introduces both execution-time and storage overhead—
conceptually similar to the overhead introduced by indexing arrays in numerous sparse matrix
storage formats.

All mesh objects in a subroster have the same context; therefore, they have the same master
element family, same associated field values, and same dimension for those field values (Section
4.2). Field values associated with a given subroster of mesh objects may be grouped into a
contiguous block of storage referred to as a bucket. Thus the storage overhead is reduced from an
O(N), per-mesh-object expense, to an O(M), per-subroster expense—conceptually similar to the
reduced overhead of some block-sparse matrix storage formats. The execution-time overhead is
likewise reduced if an application iterates subrosters (Section 6.3) and performs its calculations
on field values per bucket as opposed to per mesh object.

Issues with Dynamic Mesh Modifications
An application may change a mesh so that mesh objects are added to or removed from a subroster.
Changes to the membership of a subroster require the set of field values associated with the
subroster’s bucket to increase or decrease. This can lead to wasted time if a bucket’s memory is
frequently increased or wasted space if a bucket’s memory is not reduced. The problem of wasted
time and space is mitigated by allocating buckets of a fixed size and having a subroster use
multiple buckets for the associated field values. An additional optimization is made by correlating
the bucket size with the host systems’ memory page and cache size.

FieldValueRelation Mesh Field×()⊂ FieldValues×

MeshObjectj Fieldj,() FieldValue,() FieldValueRelation∈

if-and-only-if
 i : context MeshObjectj() i[] true=() and context Fieldk() i[] true=()∃
53

Two-Level Iteration by Subroster and Bucket
The two-level iteration approach for mesh objects in a roster should be modified to iterate
subrosters in the outer loop (as before) and buckets in the inner loop. Each bucket contains the
field values associated with a subset of mesh objects residing in the subroster. These field values
are contiguous arrays (Section 7.2) that may be passed to FORTRAN subroutines for highly
optimized numerical calculations.

foreach Subroster in Roster
if

Subroster is selected
foreach Bucket in Subroster

perform computations on Bucket
end

endif
end

In addition to arrays of field values, a bucket holds an array of C++ pointers to the mesh objects
that are associated with the bucket. This array is needed by calculations that use mesh object
properties that are not field values, e.g., the integer identifier or processor-owner of a mesh object.

7.2 Dimensions of Field Value Arrays
Field values are maintained in buckets as arrays. The dimension of a simple field-value array,
using FORTRAN convention, is field(dimType,dimUse,numObjects). The leading
dimType dimension is the length of the array associated with the field’s data type. If a data type is
a simple scalar, this value is one. The trailing numObjects dimension is the number of mesh
objects associated with the bucket. The dimUse value is obtained from the master element and
specified master element property (Section 4.2). For example, if the master element has a 2 × 2 ×
2 Gauss quadrature integration rule and the associated master element property is the integration
rule, use dimUse = 8.

Variant Dimension
This interior dimUse dimension may vary with the master element family associated with the
homogeneous subroster of mesh objects. This dimension may be known to the mechanics a
priori, e.g., the mechanics supports a particular master element family. If the field’s association
with a master element is known to the mechanics, the dimension may be determined by querying
the master element (Section 4). This would be the case for a typical mechanics that is
polymorphic with respect to the master element family. Finally, a truly generic calculation may
query the field for its dimensions with respect to the equivalence-use of the subroster (Section
5.6).

Dimensions for Field Members of Aggregate Data Types
Recall from Section 5.4 and Figure 5.1 that a field may be a member of an aggregate data type.
Aggregate data types may define members that are also aggregate data types with no imposed
54

limit on the depth of this hierarchy. However, an application developer should exercise some
restraint for simplicity and clarity of the aggregate data types.

Each field that is a “leaf” in an aggregate-data-type hierarchy has field values that occupy a
contiguous block of memory within a bucket. This contiguous block of memory is organized as a
multidimensional array with dimensions defined by its parent fields in the hierarchy. Continuing
with the illustration in Figure 5.1, the fields member_a, member_b, member_c, and member_d
would have the following FORTRAN-organized array dimensions within a bucket:

member_a(1,numObjects)
member_b(30,numObjects)
member_y::member_c(1,8,numObjects)
member_y::member_d(3,8,numObjects)

The leading-to-trailing dimensions correspond to beginning with the “leaf” field’s dimension and
appending a new dimension for each parent in the hierarchy. Each level in the hierarchy appends
another dimension until at the field-registrar level the number of objects in the bucket is the final
dimension.

This array organization is chosen so that any field value may be passed as an array to a
FORTRAN77 computational kernel. Array-based computations, especially when using highly
optimized FORTRAN77 subroutines, typically yield the best performance for an application.

7.3 Accessing Field Values
Field values may be accessed either directly from a bucket or indirectly through a mesh object.
Indirect access through a mesh object will (behind the scenes) retrieve the bucket, access the field
value array, and compute the offset into the array that corresponds to the mesh object. If field
values are accessed from mesh objects for each mesh object in a subroster, this overhead is
incurred for each mesh object. It is more efficient, and once again recommended, that a
calculation directly access field values from buckets as opposed to indirectly accessing field
values from mesh objects.

If a field has a state-use of temporary, persistent, or constant, the field value may be accessed from
the pairing of a bucket or mesh object with the field. The access operation returns a C++ pointer
to the storage of the field value, as in the following example. If the C++ pointer is for a specific
data type (i.e., integer or floating point), type checking is performed.

Int * ival = bucket.data(iField);
Real * rval = mesh_object.data(rField);

If a field has multiple states, access to the field values requires selection of which state is to be
accessed. This state specification is mapped to a particular memory location, where the mapping
is updated at each time step (Section 5.5).

Int * ival = bucket.data(iField , STATE_NEW);
Real * rval = mesh_object.data(rField , STATE_OLD);
55

Volatility of Field Value Pointers
The mapping from states to storage location changes every time step. For this reason, all C++
pointers to field values of multistate fields should be treated as volatile between time steps.
Furthermore, if the mesh is modified in any way, e.g., load balancing, element death, h-adaptivity,
or simply changing a single mesh object’s attributes, the storage location of any field value may
change. As such, any C++ pointer to a field value should be treated as volatile with respect to such
mesh modifications.
56

8 Mesh Object Connectivity
A mesh is a set of interconnected mesh objects. The interconnections among mesh objects in a
given mesh is expressed by the intramesh connectivity relation (Section 2.4) associated with the
mesh. This set-relation contains pairs of mesh objects from the same mesh. Each pair represents a
connection between the two mesh objects, for example, the connection between an element and
one of its nodes.

8.1 Partitions of Mesh Object Connections
Several frequently used partitions are defined for the intramesh connectivity relation.

Domain Mesh Object Partition
The intramesh connectivity relation is partitioned into N subsets, where N is the number of mesh
objects in the mesh. Each subset contains members that have a given mesh object as the domain
coordinate. This partition is used to group members of the relation by domain mesh objects so
that, given a domain mesh object, access to members is efficient.

Connection Type Partition
The intramesh connectivity relation is partitioned into five subsets that are associated with the
type or purpose of the connection. The five subsets, introduced in Section 2.4, are summarized as
follows:

1. The domain mesh object uses the range mesh object, e.g., an element uses a node. The
domain mesh object may depend upon the existence of the range mesh object.

2. The domain mesh object is used-by the range mesh object. The domain mesh object typically
exists to support the range mesh object.

3. The domain mesh object has a child which is the range mesh object.

4. The domain mesh object has a parent which is the range mesh object. The parent and child
connections support hierarchical partitioning of mesh objects under h-adaptivity.

5. The domain mesh object has an auxiliary connection to the range mesh object. An auxiliary
connection is defined when a uses, used-by, child, or parent connection is not applicable.

ConnectivityRelationα Meshα Meshα×⊂

mi mj, Meshα∈

mi mj(,) : mi mj(,) ConnectivityRelationα∈ , j∀{ }
i 

 
 
57

Range Mesh Object Type Partition
A final partition is defined based upon the mesh object type of the range mesh object. This final
partitioning enables queries such as “given an element, generate the subset of used nodes.” This
example query begins with a selection of a domain mesh object, “given an element.” The next
clause in the query is the type of connection, “used.” The final clause is the type of range mesh
object, “nodes.” This common query is for a subset defined by the intersection of a selected
member from each of the three partitions.

8.2 Ordinal and Orientation
The intersection of a member from the domain mesh object partition, connection type partition,
and range mesh object type partition defines a subset of mesh object connections. All members of
such a subset have the same domain mesh object and several different range mesh objects. The
objective of such a query operation is to obtain the range mesh objects from the resulting subset,
for example, to query the set of nodes connected to a given element. However, in many situations
the existence of the subset is not sufficient—a complete ordering of members is also required.

Requirement for Ordering
Connectivity between finite element mesh objects conforms to some element topology. For
example, a hexahedral can be defined by an ordered set of eight vertices, and if the vertices are
not ordered, then the hexahedral is ill defined. Each subset of mesh object relations that
corresponds to the intersection of a member from the domain mesh object partition, a “uses”’ or
“child” member from the connection type partition, and a member of the range mesh object type
partition is given a complete ordering. This ordering corresponds to the ordering of connections
defined by a mesh object topology.

Mesh Object Topology
Each mesh object may be given a topology that defines that mesh object’s required or expected
connectivity to other mesh objects. The expected connectivity defines a template for the subset of
range mesh objects that a domain mesh object uses. For example, a hexahedral mesh object may
use eight nodes, twelve edges, and six faces. Calculations that involve connected mesh objects are
more efficient if the members of such subsets appear in a known order. This order is defined by a
mesh object topology.

A mesh object topology defines a template (or stencil) of required or expected “uses” connections
between mesh objects. Furthermore, topological information includes ordering interdependencies
for multiple mesh object connections. For example, the topology of a triangular mesh object
requires connections to three vertices and three edges . These subsets
are interdependent such that each edge must use a particular pair of vertices, e.g., .

v0 v1 v2, ,{ } e0 e1 e2, ,{ }
e0 v0 v1(,)↔
58

Orientation
Mesh objects are interconnected such that several different mesh objects may share the use of
another mesh object. For example, the two triangles in Figure 8.1 share two nodes and one edge.
In this example the two ordered subsets of triangle-uses-node connections are as follows:

Each triangle also uses edge E1 that has the ordered subset of edge-uses-node connections
. Each triangle expects to have an edge defined by vertex nodes N2 and

N3. However, triangle T1 expects the 0th node of this edge to be N2, and triangle T2 expects the
0th node of this edge to be N3. Thus the orientation of edge E1 is compatible with the
expectations of triangle T1 and reversed with respect to the expectations of triangle T2.

Figure 8.1. Example ordering of connection relations.

Each member of a particular domain mesh object’s “uses” connection-relation subset has an
orientation. This orientation indicates whether the range mesh object is oriented as the domain
mesh objects expect or, if not, then how the range mesh object is actually oriented. Orientation of
edges is simple: either it is expected or the reverse of what is expected. Orientation of faces on
elements is more complex in that the face may be reversed and rotated with respect to the
expected orientation.

8.3 Data Structure
Each member of the intramesh connectivity relation is an object that is owned by the member’s
domain mesh object, as illustrated in Figure 8.2. Thus a mesh object is a container for members of
the connectivity relation that have that mesh object as their domain coordinate. This allows
efficient access to subsets defined by fixing the domain mesh object, for example, accessing the
nodes that an element uses.

T1 N1(,)0 T1 N2(,)1 T1 N3(,)2, ,{ } and T2 N4(,)0 T2 N3(,)1 T2 N2(,)2, ,{ }

E1 N2(,)0 E1 N3(,)1,{ }

T1

T2

(T1,N1)0

(T1,N4)0

(T1,N2)2

(T1,N3)1
(T1,N3)2

(T1,N2)1

E1

(E1,N3)1

(E1,N2)0
59

Figure 8.2. Connectivity relation objects.

Connectivity relation objects have attributes that denote their membership in the connectivity type
partition, membership in the range mesh object type partition, ordering (ordinal with respect to
expected), and orientation. The value of the ordinal corresponds to the ordering of the expected
connections. For example, the mesh object topology for a hexahedral expects to have six faces. If
only one of the six faces explicitly exists in the mesh, the element-to-face connectivity relation
object will be assigned an ordinal as if all faces existed. Thus the ordinal would answer the
question, Given an element and some face of that element, which face is it?

The value of the orientation attribute describes how a range mesh object is oriented with respect
to the domain mesh object’s expectation in a uses connection. This attribute could be determined
as needed by comparing the nodes of the two mesh objects. Such a comparison operation requires
execution time, so the SIERRA Framework determines the orientation once and saves this
information in the orientation attribute.

Mesh Object as a Container for Relation Objects
A mesh object is a container for the subset of relation objects that have that mesh object as their
domain coordinate. The members of this container may be iterated, searched, or modified by the
application. This container capability orders its members first by range mesh object type and then
by connection type. If desired, iteration and searching operations may be restricted to a type of
range mesh object and also to a connection type.

Relation objects are initially created when the mesh is read from a bulk mesh data file (Section
1.2). New relation objects may be created, existing relation objects modified, or existing relation
objects deleted. Existing relation objects are rarely modified; however, the presto SIERRA
application has an operation that modifies relation objects to reorient selected elements to
optimize some element calculations.

Converse Relation Objects (e.g., “Used-by” Connections)
The primary purpose of relation objects is to provide “uses” and “child” connection types. Each
member of these connection-relation subsets has a corresponding converse that switches the
domain and range mesh object to the “used-by” or “parent” connection type. Given a “uses”
relation object, the converse “used-by” relation object may exist; however, it is not required to

Has 0..M

References

Connectivity relation member
• connection type
• range mesh object type
• ordinal
• orientation

Mesh Object

(domain)

(range)
60

exist. For example, the element-uses-node connections are always needed, but the node-used-by-
element connections may not be needed. The SIERRA Framework allows an application to
specify which “used-by” connections are needed—and if not needed, they are not maintained.

If a “used-by” relation object exists, the ordinal and orientation attributes of that relation object
are obtained from the converse “uses” object. For example, a face-used-by-element relation object
has ordinal and orientation attributes obtained from the corresponding element-uses-face relation
object. Thus these attributes describe the range mesh object connection to the domain mesh
object.

If a “used-by” relation object does not exist, an asymmetry exists in the relation-object data
structure. This asymmetry could allow a mesh to be modified in such a way that it becomes
inconsistent, with the inconsistency being undetectable. This possibility is mitigated by having
each mesh object maintain a count of the number of relation objects for which it is the range
coordinate and for which a corresponding converse relation object does not exist. This count
enables a consistency check of the mesh to occur without having to maintain all converse
relations.

8.4 Mesh Object Topology
A mesh object topology defines the expected “uses” connections from a particular type of mesh
object to other mesh objects, and the correlation between these connections. A mesh object
topology should be uniquely associated with the following set of properties:

1. The spatial dimension identifies the dimension of the problem domain in which the mesh
object type is valid.

2. The topological dimension corresponds to the dimension spanned by the topology of the
mesh object type (number of parametric coordinates). For example, in a 3D problem domain
a hexahedral has three parametric coordinates, so its topological dimension is three; a
quadrilateral face has two parametric coordinates, so its topological dimension is two; and
quadrilateral shell also has two parametric coordinates, so its topological dimension is also
two.

3. The number of vertices of the mesh object, when combined with the topological dimension,
should identify the shape of the mesh object. Note that an edge has two “vertices”
corresponding to its two endpoints.

4. The number of nodes that the mesh object uses must include at least one node per vertex;
however, other nodes may also be used to define points in the interior of edges, faces, or
elements. Furthermore, the nodes corresponding to vertices must be ordered before any other
nodes.

A mesh object topology is an object that provides data to describe expected mesh object
connectivity. For example, a simple mesh object topology for a quadrilateral face has four
vertices, four nodes for the vertices numbered counterclockwise (v0,v1,v2,v3), and four simple
61

edges that are expected to be connected to vertex nodes (v0,v1), (v1,v2), (v2,v3), and (v3,v0),
respectively.

Standard Mesh Object Topologies
The SIERRA Framework defines a set of standard mesh-object-topology objects for common
finite element topologies. An application should use these objects whenever applicable, as
opposed to creating a mesh-object-topology object that is a duplicate of an object in this set. Many
operations compare the objects, as opposed to their contents, and will fail if a duplicate mesh-
object-topology object is created and used.

The set of standard mesh-object-topology objects is extensible and should be extended as needed
for new finite-element mesh object topologies. It is anticipated that the rate at which this set needs
to be extended will decrease over time.
62

9 Creating and Using Mechanics Objects
The software design for mechanics includes the four types of interrelated objects illustrated in
Figure 9.1. These types are mechanics, mechanics algorithm, mechanics instance, and mechanics
support. Each type of object has a particular role in the implementation of an application’s
mechanics. A mechanics, as is referenced throughout this document, corresponds to the
mechanics object identified in Figure 9.1.

Figure 9.1. Mechanics components.

A mechanics owns a tightly coupled set of mechanics algorithms, for example, a PDE (partial
differential equation) may be partitioned into several algorithms that are owned by a single
mechanics. A mechanics may also own other nested mechanics, for example, a model for some
physics may be the composition of a set of coupled PDEs. A mechanics and its algorithms define
a set of calculations; however, they do not define the parameters for those calculations. The
calculations of a particular mechanics may be applied to many different subsets of the mesh with
different parameters; therefore, the parameters for these calculations are held in a set of
mechanics instances that are owned by the mechanics. The fourth type of entity in Figure 9.1,
mechanics support, is responsible for creating and configuring the mechanics needed by an
application to solve the end user’s problem. A mechanics support obtains the end user’s problem
specifications from a parsed input file.

9.1 Mechanics Algorithms
The role of a mechanics algorithm is to apply an operation to a subset of a mesh. This operation
typically includes queries and modifications to field values associated with the subset of mesh
objects. The mesh subset is defined by a set of mechanics instances that is owned by the same
mechanics that owns the algorithm. A mechanics algorithm may also query or modify the
parameters owned by each of the mechanics instances.

Each mechanics has one to many mechanics algorithms (having no algorithms is supported but
would be of little or no use). The set of mechanics algorithms owned by a mechanics is dynamic,
and this set is determined when a mechanics is configured by its mechanics support singleton. A
particular type of mechanics will have some superset of available mechanics algorithms. The
mechanics support singleton will select algorithms from this superset and register those

Mechanics Support

Mechanics

Mechanics Instance

Has 0..M

Creates 0..MUser Input
via Parser

Mechanics Algorithm

Has 0..M

Has 0..M Nested
63

algorithms on the mechanics that it creates. Algorithms are selected to perform the simulation
required by the application’s end user.

Two forms of mechanics algorithms are supported: a workset algorithm and an “ordinary”
algorithm. When either form of algorithm is called, it is given a list of the mechanics instances
that it should use to perform its operation. Recall that the roles of a mechanics instance are (1) to
identify an associated subset of mesh objects upon which the algorithm is to operate and (2) to
supply a set of parameters for the algorithm’s operation. An ordinary algorithm is responsible for
iterating through this subset of mesh objects and querying or updating selected field values that
are associated with those mesh objects. A workset algorithm is given additional support by the
SIERRA Framework (Section 10) for simplified iteration of mesh objects and more efficient
access to some field values.

Hierarchical Execution of Algorithms
An application’s mechanics algorithms are executed hierarchically (Figure 9.2) according to the
architecture of the application (Section 1.1). Recall that a procedure is responsible for managing
the application’s time stepping, a region is responsible for performing a single time step of the
physics it models, and the set of mechanics nested within a region provides the implementation
for a region’s physics. Each mechanics within a region may also have nested mechanics that
implement nested models, for example, a thermal mechanics may have a nested material
mechanics.

Figure 9.2. Mechanics and mechanics algorithm hierarchy.

Each layer of mechanics in the hierarchy is expected to have one or more mechanics algorithms.
Mechanics algorithms are executed according to the hierarchical structure of the mechanics, e.g.,
a procedure’s algorithms call its regions’ algorithms and a region’s algorithms call algorithms
from the mechanics nested in the region. The SIERRA Framework initiates this hierarchical
execution of mechanics algorithms by calling two mechanics algorithms that every procedure is
assumed to have: initialize and execute.

A procedure’s initialize algorithm is expected to initialize the procedure and its regions in
preparation for time stepping. A procedure’s execute algorithm is then expected to control the

Procedure

Region

Mechanics

has 1..M

has 0..M
has 1..M

Algorithm

Algorithm

Algorithm

has 1..M

has 1..M

has 1..M
calls

calls

calls
64

subsequent sequence of time steps. It is recommended that each region and its internal mechanics
also provide separate algorithms for initialization and subsequent execution. This separation is
made so that the nominal time-stepping code is not cluttered with “if initial pass” code blocks.

Algorithm Interface
An algorithm executes to perform some calculation on behalf of the mechanics that owns it (see
Figure 9.1). The algorithm is invoked to operate on a subset of mesh objects associated with
mechanics instances of the owning mechanics using data provided by those mechanics instances.
Thus an algorithm must have access to, or be given, the owning mechanics and the set of
mechanics instances. This set of mechanics instances may be the complete set owned by the
mechanics (see Figure 9.1) or may be a subset.

An algorithm is responsible for iterating over the subset of mesh objects associated with the
mechanics instances, accessing field values (Section 7.3) associated with those mesh objects, and
performing its specified calculations. Mesh object iteration and data access will be performed
either directly on the mesh objects or through the workset capability (Section 10). The workset
capability iterates mesh objects on behalf of the algorithm and provides the specified field values
in contiguous arrays for efficient memory access.

9.2 Mechanics
The role of a mechanics is to aggregate the components of a model identified in Figure 9.1 and
support a nested hierarchy of mechanics. For example, a mechanics that implements a thermal
conductivity model may contain a nested mechanics that implements a temperature-dependent
material model. The hierarchical nesting of mechanics is flexible and can be configured at run
time in response to an application user’s inputs.

An individual mechanics is assumed to operate on mesh objects of a given type. For example, a
thermal conductivity mechanics would be defined for linear hexahedral elements and another
similar thermal conductivity mechanics (of the same type) would be defined for linear
tetrahedrals. It is recommended that two such similar mechanics should share all of their
algorithms and nested material-model mechanics; the similar mechanics should also have
parameter and/or field specifications that only vary in their array dimensions (e.g., eight vertex
quantities versus four vertex quantities).

Mechanics Types
A mechanics is an object of the mechanics type defined by the SIERRA Framework. Similarly, a
region or procedure is an object of the region type or procedure type that is also defined by the
SIERRA Framework. Note in Figure 9.2 that procedures and regions have a similar role in the
hierarchical execution of algorithms as a mechanics. This role is sufficiently similar that the
region type and procedure type are defined to be specializations of the mechanics type, as
illustrated in Figure 9.3.
65

Figure 9.3. Mechanics-type inheritance hierarchy.

An application may also specialize the mechanics, region, or procedure types (illustrated in
Figure 9.3) as needed to support its modeling needs. However, there are limitations on these
application-defined specializations. Any new capabilities or data defined by the specialization are
hidden from the SIERRA Framework. Such hidden data are inaccessible to the SIERRA
Framework restart capability, are not reloaded during a restart operation, and thus become the
responsibility of the application to reset this hidden data during a restart operation.

9.3 Mechanics Instances
The role of a mechanics instance is to (1) identify a particular subset of a mesh upon which the
owning mechanics operates and (2) supply a set of parameters for that operation. For example, a
mechanics instance is associated with the subset of a mesh that models material “A,” and it also
supplies material properties for material “A.” Another example is a mechanics instance that
identifies a particular boundary of a mesh and provides values for a flux boundary condition. A
mechanics instance does not supply algorithms or identify fields used by the mechanics.

Parameter values are associated with the entire mechanics-instance subset and do not vary with
individual mesh objects in that subset. For example, a subset of parameters may define material
properties for a homogeneous block of elements. The parameters owned by a mechanics instance
may be constant, such as fixed material properties, or may be updated by a mechanics algorithm.
These updated parameters are automatically included within the SIERRA Framework restart
capability.

Mechanics instances mirror the hierarchical nesting of the mechanics that own them, as illustrated
in Figure 9.4. While procedures and regions are specialized types of mechanics, they do not have
mechanics instances. A mechanics instance is used, in part, to identify a subset of a particular
mesh. A procedure may have multiple regions, so it is excluded from holding references to
particular subsets of a particular mesh and therefore does not need a mechanics instance.
Similarly, a region is associated with the entire mesh and does not need a mechanics instance.

Mechanics Type

Region Type Procedure Type

Application’s
Mechanics Type

Application’s
Procedure Type

Application’s
Region Type
66

Figure 9.4. Mechanics-instance mirrored hierarchy.

Each mechanics that is nested immediately within a region has zero to many mechanics instances.
If a mechanics owned by a region has a mechanics instance, each subsequent nested mechanics
will have mechanics instances that mirror the mechanics hierarchy. This mirrored mechanics-
instance hierarchy is automatically generated by the SIERRA Framework mechanics services.

Why Mechanics Versus Mechanics Instance
Mechanics and mechanics instances have distinct and defined roles in an application. These roles
are separated into the algorithmic concerns for the mechanics and the data concerns of the
mechanics instances. This separation of concerns is motivated by how algorithms and data are
applied in an application.

It is assumed that an application will implement a moderate number (e.g., less than 100) of
mechanics (i.e., physics models) immediately owned by a region. However, a particular
mechanics at this level may be applied to thousands of distinct subsets of the mesh. The
separation of concerns between algorithms and data reduces the memory requirements and
improves efficiency when applying mechanics algorithms.

9.4 Mechanics Support (Singletons)
A mechanics support singleton is responsible for accepting the application user’s input via the
SIERRA Framework parser and generating mechanics objects as needed to solve the application
user’s problem. Each mechanics object generated by a particular mechanics support singleton is
of a particular mechanics type. Each type of mechanics (e.g., thermal conductivity) is generated
by exactly one mechanics support singleton in the application code.

Generating a mechanics object involves both creating and configuring a mechanics object. A
mechanics object is created by dynamically allocating a new object of the mechanics support

Procedure

Region

Mechanics

has 1..M has nested 0..M

Mechanics Instance
has 0..M

has 1..M
Mechanics

has nested 0..M

Mechanics Instance
has 0..M

Mechanics Mechanics Instance
has 0..M

has nested 0..M

has nested 0..M

mirrors

mirrors
67

singleton’s mechanics type. Configuring the created mechanics object typically involves selecting
a set of the mechanics algorithms and fields that the mechanics will need, selecting master
elements that will be used, coordinating with other mechanics support singletons to set up a
nested mechanics hierarchy, and defining the mechanics instances for the specific problem to be
solved.

Installation of Mechanics Support Singletons
Mechanics support singletons must be installed in an application before the application user’s
input file can be parsed (Section 1.2).

Interaction with the Parser
Details of the parser’s interface with singletons is described in SIERRA Framework / Parser
Services; however, an overview is given in this section. Creation of mechanics includes both
allocation and configuration of the mechanics object.

The SIERRA Framework parser processes commands from the application user’s input file and
routes information parsed from those commands to the designated singleton in the application.
Interaction between a singleton and the parser has two parts: (1) designation of the singleton and
input command pairs and (2) processing of parsed input commands by the designated singleton.

Each mechanics support singleton is installed in the application before the application user’s input
file is read (Section 1.2). To install a singleton object, the object must first be created and then the
parser must be informed of the input file commands that will be handled by the singleton. Parsed
input file commands are handled by a singleton with command handler routines. During
installation a singleton gives the parser a set of input-file command identifier / command handler
pairs.

Whenever the parser encounters a command matching the identifier, the parser will call the
matching command handler with the parsed information. Command handlers for a particular
mechanics support singleton may be called numerous times. During such a sequence of calls the
singleton will create and configure mechanics according to information from the parsed
commands.

9.5 Creating and Configuring Mechanics Objects
Each mechanics is an object of a particular mechanics type that is allocated by a mechanics
support singleton and introduced into the application’s mechanics hierarchy. Configuration of the
mechanics has two major tasks: informing the SIERRA Framework of the fields that the
mechanics needs (Section 10.5) and configuring the algorithms used by the mechanics.
Configuration of a nonworkset algorithm is a simple registration of the algorithms’s subprogram
paired with a text label. After registration the subprogram will be referenced by the mechanics
with the text label.
68

Configuration of a workset algorithm requires additional information regarding the type of mesh
objects that are to be iterated, the connectivity of the iterated mesh objects to the mesh objects that
will be accessed, and the list of fields that will be accessed on the iterated and connected mesh
objects. This additional information is maintained in workset registrars that are part of the field
management services (Section 10.5).

Registration of Fields
The algorithms of a mechanics will query and update field values associated with the set of fields
and mesh objects that are used by the mechanics. The fields used by the mechanics must be
registered with the SIERRA Framework through the field registrar (Section 5) and then “recalled”
by the algorithms to access field values. Fields are associated with mechanics, i.e., made to be
members of the mechanics’ usage subset, by registering them with the mechanics’ context
(Section 3.2).

A given field may be registered by one or more mechanics, each with its own mechanics context.
Such a reregistration places that field in each of the registering mechanics’ usage subsets.
However, each reregistration of a field must have compatible type and array dimensions.

Recommended Specialization of the Mechanics Type
It is recommended that an application specialize the Framework mechanics base class (see
Appendix A: Mapping to C++ Classes) in order to save references to registered fields as member
data. Each field registered by the mechanics will be used in some algorithm owned by the
mechanics. These algorithms have immediate access to the mechanics and thus to any member
data. Thus an algorithm may pass the required field specification from the mechanics to the access
operation for field values (Section 7.3). If a reference to the field specification is not saved in a
specialized mechanics type, that reference will have to be recovered by performing a search
through the field registrar.

Registration of an Algorithm
An algorithm is registered within a mechanics (Figure 9.1) as either a workset algorithm (Section
10) or a nonworkset algorithm. In both cases algorithm registration requires the algorithm’s
implementation (e.g., a function) and a text label by which the algorithm is referenced.
Registration of a workset algorithm also requires additional information: a workset stencil
(Section 10.5) and a list of nested workset algorithms (Section 10.7) that the registered algorithm
may call when it executes.
69

10 Workset Algorithms
Computational hosts with hierarchical memory (i.e., registers, cache, and main memory) are more
efficient when data is “near” the CPU. For example, a calculation in which all data reside in the
registers will be faster and more efficient than the same calculation in which all of its data reside
in main memory. The goal of the SIERRA Framework workset algorithm capability is to keep as
much as possible of an algorithm’s required data in cache memory for as long as possible, i.e.,
minimize the number of cache misses during the execution of an algorithm.

Finite element algorithms typically use and update field values that are associated with elements
and with mesh objects that are connected to elements. The access pattern for these algorithms is to
iterate a set of elements and then, for each element, iterate the set of nodes several times, as
illustrated in Figure 10.1. The set of values queried or updated for the designated (node, field)
pairs are highly unlikely to be located near one another in computational memory; as such, the
number of cache misses is likely to be large during the calculation.

Figure 10.1. Example of access pattern for field values.

The workset algorithm capability performs the following operations on behalf of a mechanics
algorithm:

• It manages a block of scratch memory, referred to as a workset, for use by the algorithm.

• It iterates the mechanics’ usage subset of mesh objects.

• It iterates a specified subset of connected mesh objects, e.g., the nodes of each element in the
usage subset.

• It gathers (prefetches) queried field values from mesh objects into arrays that reside in the
workset.

• It scatters (overwrites) arrays in the workset to designated mesh-object field values.

• It assembles (sums) arrays in the workset into designated mesh-object field values.

10.1 Workset Scratch Memory
Each time a mechanics’ workset algorithm is called, the algorithm is given a large block of
scratch memory, referred to as a workset, for its data. A workset is sized to some predefined

foreach Element in { SetA }
foreach Node connected to Element

query Node.data(FieldX)
end foreach
some calculations
foreach Node connected to Element

Node.data(FieldY) = Node.data(FieldY) + somevalue(i)
end foreach
Element.data(FieldE) = someothervalue

end foreach
70

fraction of the execution host’s cache memory. This memory layout allows computationally
intensive kernels to work on contiguous arrays of data that are concurrently in cache—a
significant opportunity for efficient performance. This scratch memory is declared just before
calling the algorithm and is reclaimed just after the algorithm returns. Therefore, all data in the
workset are temporary.

An algorithm defines workset variables that are automatically mapped into the workset scratch
memory. Each workset variable is a multidimensional array with the dimensions defined in
Section 10.3. Fields that are inputs to an algorithm are automatically gathered from the iterated
mesh objects’ field values into workset arrays before the algorithm is called. Fields that are output
from the algorithm are automatically scattered (assigned) or assembled (summed) from workset
arrays to the iterated mesh objects’ field values after the algorithm returns.

10.2 Automatic Iteration of Mesh Objects
The usage subset of a mechanics is automatically iterated on behalf of a mechanics’ workset
algorithm. As illustrated in Figure 10.1, this iteration performs an outer loop over mesh objects of
a particular type and an inner loop over connected mesh objects. Each mesh object in the outer
loop is iterated once. If some mesh object is connected to N of the mesh objects in the outer loop,
the inner loop over connected mesh objects will access that mesh object N times, once for each
connection.

Subsetting with Repeated Calls to a Workset Algorithm
The outer loop of the iteration follows the two-level subroster-bucket looping strategy
recommended in Section 7. In this iteration strategy the iterated set of mesh objects is partitioned
into subsets that correspond to the contents of a bucket. A mechanics’ workset algorithm is
repeatedly called to process each bucket-correlated subset. It is possible that the memory required
for the workset variables associated with a bucket’s subset would exceed the workset size. In this
case, additional subsetting is performed until the desired workset size is attained.

Warning Regarding Parallel Processing
The subsetting of iterated mesh objects is performed independently on every processor. As such,
the number of calls to workset algorithms is most likely different on each processor. Thus calls to
workset algorithms are not synchronous, and parallel-processing communication operations must
never be performed within these algorithms.

Coordination with Mechanics Instances
The subset of mesh objects that is associated with a particular subroster is homogeneous with
respect to mesh object topology, use by mechanics, and association with mechanics instances
(Section 6.1). When the workset capability calls a mechanics’ workset algorithm for a “workset’s
worth” of mesh objects, it passes all of the mechanics instances that (1) are associated with the
current subroster and (2) belong to the current mechanics. Typically this subset of mechanics
71

instances contains only one member; however, some mechanics may have mechanics instances
that have overlapping subsets of associated mesh objects.

Alignment with Buckets
A bucket is a contiguous block of memory that holds field values in FORTRAN-compatible
arrays, similar to a workset. As such, a mechanics’ workset algorithm can directly operate on field
values that reside in the current bucket of the workset iteration. If an algorithm coordinates its use
of the workset with the current bucket, the number of required workset variables is reduced, in
turn reducing the number of gather and scatter operations and also potentially increasing the
maximum size of the mesh object subset that can be processed in a single workset. It is strongly
recommended that a mechanics’ workset algorithm use field values residing in the current bucket
when possible.

10.3 Workset Variable Arrays
A workset variable is a multidimensional array that is resident in the workset scratch memory. It is
expected that these arrays will be passed to optimized FORTRAN77 subroutines for numerical
computations; therefore, workset variable arrays are dimensioned for use by FORTRAN77 code.
Workset variable arrays can be dimensioned, using FORTRAN77 notation and semantics, as
follows:

WSVarConformal(dimType, dimUse, numObjects)
WSVarPermuted(dimType, numObjects, dimUse)
WSVarConnected(dimType, numConn, numObjects)

• dimType is the dimension of the type of the variable, e.g., for a scalar dimType = 1 and for
a 3D vector dimType = 3.

• numObjects is the cardinality of the workset’s current subset of mesh objects.
• dimUse is the number of scalars, vectors, or other type of values associated with the object.
• numConn is the number of mesh objects connected to the iterated mesh object, e.g., the

number of nodes connected to an element.

The first workset variable in the above example, WSVarConformal, is dimensioned conformal to
the dimensioning of a field value in a bucket (Section 7.2). A workset variable of this dimension
should be a scratch variable that is not gathered from or scattered to field values. If such a variable
is gathered or scattered, the algorithm is wasting execution time obtaining an exact copy of the
current bucket’s field value array.

The second workset variable in the above example, WSVarPermuted, has the dimUse and
numObjects swapped with respect to the dimensioning of a field value in a bucket. Some
mechanics’ workset algorithms may prefer these dimensions in their calculations. For scratch
variables these dimensions have no impact. For gathered and/or scattered variables these
dimensions require a copy and permutation between field value arrays in a bucket and workset
variable arrays.
72

The final workset variable in the above example, WSVarConnected, has the dimension numConn
that corresponds to the expected number of connected mesh objects, e.g., number of nodes
connected to an element in the workset. Field values may be gathered from the connected mesh
objects and copied into the corresponding member of the array. Likewise, members of the workset
array may be assembled, or summed into, field values of the connected mesh objects.

10.4 Gather, Compute, Scatter, and Assemble
The workset capability iterates the mechanics’ usage subset of mesh objects and calls the
mechanics’ workset algorithm for a workset-compatible subset of these mesh objects.
Immediately before calling the algorithm, a specified set of field values is gathered into a
corresponding set of workset variable arrays. Immediately after calling the algorithm, a specified
set of field values is either scattered to field values of the iterated mesh objects or assembled into
field values of the connected mesh objects.

Each field value that is gathered, scattered, or assembled is associated with a specified state of the
field. For example, field values of the old state are gathered, and field values of the new state are
assembled. Arrays that reside within workset memory are temporary and are valid only during the
execution of an algorithm; as such, these workset arrays never have a sense of state.

Field values of the iterated mesh objects may be gathered and/or scattered. However, a field value
of the connected mesh objects may be either gathered or assembled, but not both. If a field value
of a connected mesh object was gathered and assembled, the results of a workset algorithm would
depend upon the order in which the elements are iterated. For example, if two elements share
several nodes and the workset algorithm was to gather and then assemble the same nodal field
values, the second element processed would gather modified values from the shared nodes. If in
this example the order in which the elements are processed is reversed, the gathered nodal field
values could be very different (orders of magnitude greater than numerical round-off).
Furthermore, the update to the nodal file values cannot be a scatter operation—otherwise, the
same order-dependency problem would occur with the last element processed setting the final
value. Therefore, the only consistent update to field values for connected objects is an assemble
operation.

Illustration of Gather, Scatter, and Assemble
The gather, scatter, and assemble operations are illustrated in Figure 10.2. This illustration uses
pseudocode that is not intended to comply with any actual programming language. However, the
array dimensions are intended to reflect FORTRAN77 semantics.
73

Figure 10.2. Illustration of gather, scatter, and assemble operations.

10.5 Workset Stencil
The workset capability will manage workset memory, iterate a specified set of mesh objects, and
perform gather, scatter, and assemble operations. The set of mesh objects iterated by a workset is
specified by (1) a mechanics that owns the algorithm and (2) the mesh object topology (Section
8.4) of the iterated mesh objects. The mesh object topology provides the expected number of
connected objects for the workset.

For example, one mechanics algorithm uses the workset capability to process simple quadrilateral
elements, while another mechanics algorithm processes simple triangular elements. The first
workset knows to expect four nodes per element and the second workset knows to expect three
nodes per workset. The workset stencil for these two examples is simply the mesh object topology
of the elements to be processed.

do n = 1,numObject
// Gather from iterated mesh objects
do j = 1,dimUse

do i = 1,dimType
WSVarConformal(i,j,n) = bucket.data(i,j,n)
// or if perumuted:
WSVarPermuted(i,n,j) = bucket.data(i,j,n)

end do
end do
// Gather from connected mesh objects
do k = 1,numConn

do i = 1,dimType
WSVarConnected(i,k,n) = element(n).node(k).data(i)

end do
end do

// Call workset algorithm for the current subset

do n = 1,numObject
// Scatter to iterated mesh objects
do j = 1,dimUse

do i = 1,dimType
bucket.data(i,j,n) = WSVarConformal(i,j,n)
// or if permuted:
bucket.data(i,j,n) = WSVarPermuted(i,n,j)

end do
end do
// Assemble to connected mesh objects
do k = 1,numConn

do i = 1,dimType
element(n).node(k).data(i) += WSVarConnected(i,k,n)

end do
74

Homogeneity
A mechanics’ workset algorithm processes a subset of mesh objects that is homogeneous with
respect to mesh object topology. If a mechanics is required to process a heterogeneous subset of
mesh object topologies, e.g., quadrilaterals and triangles, the mechanics must provide a workset
algorithm for each mesh object topology. These algorithms could share the same calculations
(e.g., subroutines), if those calculations are parameterized with respect to mesh object topology. It
is recommended that algorithms be parameterized with respect to mesh object topology and any
other master element property whenever possible.

Iterate Versus Root
The workset capability has an additional iteration algorithm that is available to a mechanics. The
previously discussed algorithm iterates a topologically homogeneous set of mesh objects in an
outer loop and iterates connected mesh objects in an inner loop. The additional algorithm also
iterates mesh objects of a specified topology; however, it then traverses to some other connected
mesh object before performing the inner loop. This other connected mesh object is referred to as
the root of the workset stencil, while the iterated object in the outer loop is referred to as the
iterate of the workset stencil.

A workset stencil is an identification of a mesh object topology for the iterate of the workset
stencil and a mesh object topology for the root of the workset stencil. For a simple workset only
one mesh object topology is supplied, the original simple iteration algorithm is used, and the
iterate and root refer to the same mesh object. Illustrations of workset stencils are given in Figure
10.3.

A workset’s inner loop always iterates mesh objects that are connected to the root. Therefore, all
gather and assemble operations for connected mesh objects’ field values are with respect to the
root mesh object, not the iterate.

Figure 10.3. Examples of workset stencils.

Three different workset stencils are illustrated in Figure 10.3. The first (left) stencil specifies that
the iterate is a hexahedral element and the inner loop will include nodes connected to those
elements. The second (center) stencil specifies that the iterate is a quadrilateral face and the inner
loop will include the nodes and edges connected to those faces. The last (right) stencil specifies

Hexahedral
Element

Vertex
Nodes

Quadrilateral
Face

Hexahedral
Element

Vertex
Nodes

iterate and root iterate root

Quadrilateral
Face

Vertex
Nodes

iterate and root

Edges
75

that the iterate is a quadrilateral face; the root of the stencil is each element connected to those
faces; and the inner loop will include the iterated face, connected elements, and nodes connected
to the elements.

Impact of Iterate-Root Workset Stencils
When the iterate and the root of a workset stencil are not the same mesh object, the workset
capability will generate an entry in the workset for each unique (iterate, root) pair of mesh objects.
If in the face-element stencil example (Figure 10.3) an iterate face is connected to two different
root elements, the face will appear in the workset twice, once per root element. Similarly if two
iterate faces are connected to the same root element, the element will appear in the workset twice,
once per face.

Iteration of (iterate, root) pairs of mesh objects cannot align with buckets. Such a workset
algorithm does not have a current bucket to access; therefore, all input data must be gathered into
the workset. Likewise, all output data must be scattered or assembled from the workset.

Gather and scatter operations may be performed for either the iterate or the root of the workset.
However, such operations are potentially hazardous. Consider a workset with faces for iterate
mesh objects and elements for root mesh objects. If an element has two iterated faces, the element
is processed twice. If workset data are scattered to the element’s field values, the final scatter
operation to the element overwrites all previous scatter operations. Finally, if the iteration was
simply reordered, the results could change dramatically for a different final (face, element) pair.

10.6 Declaring a Workset Algorithm
Declaration of a workset algorithm has the following three steps:

1. Create the workset algorithm within a mechanics hierarchy.

2. Declare the workset’s fields.

3. Declare the workset’s gather, scatter, and assemble operations.

Creating a Workset Algorithm
Each workset algorithm is created as a member of a mechanics within a mechanics hierarchy
(Section 9.5). Creation of a workset algorithm requires the subprogram that is to be called, a text
label for the algorithm, a workset stencil, and a list of the nested algorithms that are called by the
created workset algorithm. This information is “compiled” into an internal data structure that is
used to set up the workset and call the subprogram.

The data structure for a workset algorithm includes a set of specifications for workset variables
and for gather, scatter, and assemble operations. This set of specifications resides in a workset
registrar. A workset registrar is similar to a field registrar in that it is a container for a set of
workset variable specifications (versus a mesh object’s field specifications). However, the
variables declared in a workset registrar have temporary values that only exist while the workset
76

algorithm is called. A workset registrar is also a container for a set of the gather, scatter, and
assemble declarations.

Declaring Workset Variables
Declaration of a workset variable is simpler than declaration of a field (Section 5.2). A workset
variable declaration only requires a field type, array dimension, and text label. Workset variables
are not explicitly associated with mesh objects; however, a workset variable may be indirectly
associated with mesh objects through gather, scatter, or assemble operations. There is no need to
associate workset variables with mechanics since the scope of a workset variable is limited to the
mechanics that owns the workset algorithm. Because workset variables do not exist between time
steps, such variables are temporary.

The declaration of a workset variable returns a C++ pointer to a workset variable object. This
object is required to access the workset-resident data array associated with the workset variable. It
is recommended that this pointer be saved as a private data member of the workset algorithm’s
owning mechanics object. These private data members must appear in the derived mechanics type
of the mechanics. If a pointer to the workset variable object is not saved as recommended, the
workset algorithm will be required to retrieve this object in a search-by-name operation. It is not
recommended that a workset algorithm pay this execution-time overhead.

Declaring Gather and Scatter Operations for Iterate and Root
Gather and scatter operations for the iterate or root mesh object are declared by associating a
mesh object field with a workset variable. The workset variable must be declared with the same
field type and dimUse dimension as the associated mesh object field (see Section 10.4 and Figure
10.2). The declaration of a gather or scatter operation is also required to specify whether or not the
data should be permuted as described in Section 10.4.

Declaring Gather and Assemble Operations for Connected Mesh
Objects
Gather and assemble operations for the mesh objects connected to a workset’s root mesh object
are declared by selecting the kind of connected mesh object to be iterated (Figure 10.3) and
associating a mesh object field with a workset variable. The kind of connected mesh object is
selected by providing its mesh object topology. The workset variable must be declared with the
same field type as the mesh object field.

A workset variable must also be declared with a dimension that is compatible with the connected
mesh object. For a gather operation this dimension must be equal to the number of connected
mesh objects as illustrated in Figure 10.3. For an assemble operation the dimension is either equal
to the number of connected mesh objects or equal to one. If it is equal to the number of connected
mesh objects, the summation is performed as in Figure 10.3. If the dimension is one, the same
workset value is summed into each of the connected mesh-object field values, as illustrated in
Figure 10.4.
77

The second assemble option illustrated in Figure 10.4 allows a workset algorithm to reduce the
memory it requires for workset variables, if the same value is to be assembled to each connected
mesh object. This optimization was introduced for a prototype application, and it is unknown if it
is being used within a production application.

Figure 10.4. Illustration of options in assemble operations.

10.7 Nested Workset Algorithms
Workset algorithms may call other workset algorithms as illustrated in Figure 9.2. The
hierarchical execution of workset algorithms is supported by merging the workset variables
required by each nested workset algorithm into the topmost workset. Thus each nested workset
algorithm shares the contiguous block of workset memory with the topmost workset algorithm.

A nested workset algorithm may have an associated workset registrar that is nested in a hierarchy
beginning at the topmost workset registrar. Typically, a nested workset algorithm will have input
and output data with respect to the calling workset algorithm. This input and output data is a
shared workset variable, typically declared by the calling workset algorithm.

The workset capability supports nesting of workset algorithms by merging nested workset
registrars into a single workset registrar with field members of aggregate data types. These
aggregate data types are defined by recursively merging the nested workset registrars into the next
higher-level workset registrar. The resulting workset-variable array dimensions are generated in
the same manner as aggregate field-value array dimensions in buckets (Section 7.2). Gather and
scatter operations are similarly merged from lower-level workset registrars into the next higher-
level workset registrar.

dimension WSVarConn(dimType,numConn,numObject)
dimension WSVarSame(dimType,1,numObject)
do n = 1,numObject

// Assemble to connected mesh objects
do k = 1,numConn

do i = 1,dimType
element(n).node(k).dataX(i) += WSVarConn(i,k,n)
element(n).node(k).dataY(i) += WSVarSame(i,1,n)

end do
end do
78

11 Parallel Distributed Mesh
Scalability in a massively parallel distributed-memory environment requires that a region’s set of
mesh objects be distributed among the processor’s memory space. The SIERRA Framework core
services manage the parallel distribution of mesh objects for an application. Management of a
parallel distributed mesh is described in three parts:

1. policies and distributed mesh sets, relations, and data structures

2. parallel operations that do not modify the distributed-mesh data structures

3. operations that modify the distributed-mesh data structures

11.1 Processor Subset Classes
Support for management of a massively parallel distributed mesh is based upon the specifications
for several classes of subsets defined on each region’s mesh and the relations between these
classes. These classes are the result of analysis of required capabilities and policy decisions for
the SIERRA Framework software design.

Processor-Resident Class
A mesh object resides in the memory space of one or more processors in the massively parallel
distributed-memory environment. Given a mesh object, it is mandatory to identify the processors
on which that mesh object resides. A processor-correlated domain decomposition of a mesh is
typically used to assign mesh objects to processors.

A domain decomposition of a mesh typically assigns type-specific subsets of mesh objects to
processors. The assignment of the remaining subset of mesh objects is induced by the
connectivity of the mesh. For example, if a domain decomposition assigns elements to processors,
the nodes, edges, and faces can be assigned to their attached element’s processor. In this example,
a node that is shared by four elements assigned to four different processors would be assigned to,
and reside on, all four processors.

The subset of mesh objects that are assigned to a particular processor defines the resident subset
of mesh objects for that processor (Section 2.4). The set of these subsets defines the processor-
resident class for the mesh.

Processor-Owned Partition Class
A SIERRA Framework policy for parallel distributed meshes is that each mesh object is owned
by exactly one of the processors on which it resides. An additional related policy is that operations
must “favor” the use of the owned mesh object when appropriate. For example, the calculation of

ResidentPi MeshObjectj : MeshObjectj resides-on Pi{ }=

ResidentClass ResidentPi Pi∀{ }=
79

a norm of a field performs a summation of terms contributed from mesh-object field values. In
this example, a processor should contribute terms for mesh objects that are owned by that
processor; otherwise, redundant terms would be contributed and an erroneous result would be
generated.

The subset of mesh objects that are owned by a particular processor defines the processor’s owned
subset of mesh objects (Section 2.4). The set of these subsets defines the processor-owned class
for the mesh. This processor-owned class is a partition for the mesh.

Processor-Shared Class
Operations on a parallel distributed mesh must be coordinated for mesh objects that reside on
more than one processor. Given a mesh object, this coordination requires that the membership of
the mesh object in each processor-resident subset is known. This requirement is limited by the
initial clause of “Given a mesh object” such that only the processors upon which a mesh object
resides are required to have knowledge of that mesh object’s membership in processor-resident
subsets.

The following processor-shared class represents the required knowledge for all processors.
However, a given processor is only required to have knowledge of the subclass SharedClassPi
that is associated with that processor.

11.2 Processor-Resident Policies
A face and an edge may reside on more than one processor in a parallel distributed mesh. If a face
or an edge is on a processor subdomain boundary, all processors that share that face or edge are
aware of its global sharing. A face or an edge will be present in any processor’s subdomain that
includes all nodes of that face or edge. This policy can and does result in faces and edges being
resident on a processor that does not have an element to attach to that face or edge, as illustrated in
Figure 11.1.

Each mesh object in a parallel distributed mesh may be resident on more than one processor but is
always owned by exactly one processor. The residence policy for edges and faces is that if all
nodes of an edge or a face are resident on a processor, the edge or face will also be resident on that
processor. This residence policy has implications for the ownership policy related to edges and

OwnedPi MeshObjectj : MeshObjectj owned-by Pi{ }=

OwnedClass OwnedPi Pi∀{ }=

OwnedPi ResidentPi⊆

OwnedPi OwnedPj∩ ∅= Pi Pj≠∀

SharedClass GlobalSharedPi Pj, ResidentPi ResidentPj∩= Pi Pj≠∀{ }=

SharedClass SharedClass⊃ Pi GlobalSharedPi Pj, Pj∀{ }=
80

faces such that an edge or a face attached to one or more elements in the global mesh will be
owned by a processor that also owns one of those elements.

Figure 11.1. Parallel distributed mesh with “orphaned” face.

In the illustration presented in Figure 11.1, the residence policy caused a face to be resident on
processor #2 without a connected element. However, the ownership policy would require that this
face be owned by processor #1 since that is the only processor with an element connected to the
face. A developer should be aware of the situation described and illustrated here and its impact on
algorithms that process faces and their connected elements.

11.3 Intermesh Relation
An application may have multiple regions where each has its own mesh. These regions are
typically coupled by transferring (see Figure 1.1) field values from a source mesh to a destination
mesh. Such a transfer of data implies some form of intermesh connectivity between two meshes.
Intermesh connectivity is complicated by the possibility that two mesh objects with an intermesh
connection may not reside on the same processor.

Recall that the intramesh connectivity relation defined in Section 8 represents the connectivity
between mesh objects within the same mesh. A similar intermesh connectivity relation is defined
to represent connectivity between different meshes.

The role and use of an intramesh relation are very different from those of an intermesh relation; as
such, the software design and implementation are also very different.

Globally Shared Face without an Element on P2

Two-processor decomposition
with a “notch” element.

All nodes of the face are shared, so the face is
shared; however, the “notch” element is not shared.

P1 P2

IntrameshRelationα β, Meshα Meshβ×⊂
81

Comparison with Intramesh Relation
The intramesh connectivity relation is used to represent the connectivity between mesh objects
that are members of the same mesh and also are resident on the same processor. An intermesh
connectivity relation is required to represent connectivity between mesh objects that may be
members of different meshes and may be resident on different processors. These same-mesh and
same-processor restrictions on an intramesh connectivity relation enable a highly optimized
implementation that is not possible for the more general intermesh connectivity relation.

Similarities with Processor-Shared Class
An intermesh connectivity relation has similarities with the processor-shared class. A member in
an intermesh connectivity relation must represent the connection between two mesh objects that
may reside on different processors. If a mesh object is a member of a processor-shared subset
SharedPi,Pj, the mesh object resides on Pi and Pj, and some connection must exist between the
two incarnations of the same mesh object. In an intermesh connection, the mesh objects are
different and may reside on different processors; in a shared subset, the mesh object is the same
and does reside on different processors.

The abstractions for the intermesh relation and the processor-shared subset have a common, more
general abstraction of a mesh object communication relation described in Section 11.4. This
abstraction is specialized to represent the intermesh relation and processor-shared subset
abstractions.

11.4 Mesh Object Communication Relation (a.k.a.
Communication Specification)

A mesh object communication relation, also referred to as a communication specification
(CommSpec), contains generalized connections between mesh objects that may reside on
different processors. These relations and their specializations are used to support all of the
SIERRA Framework’s mesh-dependent communication operations.

Definition
Members of a CommSpec are defined by the following expression:

The domain and range coordinates of a CommSpec member are themselves a pairing of a mesh
object with one of the processors upon which that mesh object resides. These domain and range
coordinate pairings identify a processor-specific incarnation of a mesh object. Thus a CommSpec
represents the connectivity between processor-specific incarnations of mesh objects.

CommSpecα β,

MeshObjectm Pi(,) MeshObjectn Pj(,)(,) :

 MeshObjectm ResidentPi∈ Meshα⊆

 and MeshObjectn ResidentPj∈ Meshβ⊆
 
 
 
 
 
 
 

⊂

82

Each CommSpec has a domain mesh and a range mesh, identified as and in the

previous definition. Every mesh object appearing in the domain coordinate must be a member of
the domain mesh. Likewise, every mesh object appearing in the range coordinate must be a
member of the range mesh.

Send and Receive Subsets of a CommSpec
A given processor only needs to have knowledge of the members of a CommSpec that include
that processor, i.e., all members whose domain or range coordinate includes that processor.
Furthermore, a processor needs two subsets, one in which that processor appears in the members’
domain coordinate and another in which that processor appears in the range coordinate. The first
subset defines a set of mesh objects for which the processor will send information. The second
subset defines a set of mesh objects for which the processor will receive information.

A processor’s send and receive subsets of a CommSpec are partitioned according to the range
processor and domain processor, respectively. The members of this partition identify specific
messages that must be exchanged and the mesh objects associated with each message. The
following relationship defines the mesh objects associated with a message from Pi to Pj:

Symmetric CommSpec for Processor-Shared Class
The processor-shared class (Section 11.1) of a mesh can be represented by a symmetric
CommSpec that is constructed as follows:

Note that each member of this CommSpec has the same mesh object in both its domain coordinate
and range coordinate. However, the domain and range coordinates refer to a particular incarnation
of that mesh object on a specific processor. Symmetry is guaranteed by construction since mesh
object membership in the subset GlobalSharedPi,Pj guarantees membership in the subset
GlobalSharedPj,Pi.

Meshα Meshβ

MeshObjectm Pi(,) MeshObjectn Pj(,)(,) CommSpecα β,∈

MessagePi Pj, MeshObjectm Pi(,) MeshObjectn Pj(,)(,) : m n,∀{ }∼

CommSpecα α,
MeshObjectm Pi(,) MeshObjectm Pj(,)(,) :

 MeshObjectm GlobalSharedPi Pj,∈ Meshα⊆
 
 
 
 
 

⊂

MeshObjectm GlobalSharedPi Pj,∈ MeshObjectm GlobalSharedPj Pi,∈⇔

therefore

CommSpecα α, CommSpecα α,
C=
83

General CommSpec for Intermesh Connectivity Relation
The CommSpec for an intermesh connectivity relation is constructed as follows:

This CommSpec defines complete connectivity of the parallel distributed mesh for all
incarnations of a mesh object in the domain and range. However, this degree of completeness may
not be required by a mechanics algorithm. For example, if the use of the intermesh connectivity
relation is to copy a field value from the domain mesh object to the range mesh object, the domain
mesh object only needs to appear once in the CommSpec. The reduced CommSpec would be
generated with only the owned incarnations of mesh objects appearing in the domain.

Restriction to Mesh Object Type
Each communication operation on a parallel distributed mesh is typically performed for a type-
specific subset of the mesh, e.g., for the shared nodes of a mesh. The implementation of
CommSpecs is tailored to this typical usage such that the mesh objects appearing in the members’
domain coordinate is restricted to the same mesh object type (e.g., node, edge, face, element). The
mesh objects appearing in the members’ range coordinate are likewise restricted; however, the
mesh object type for the domain and range may be different.

11.5 Distributed Data Structure for CommSpec
The members of a CommSpec, , identify a domain mesh

object, a domain processor upon which the domain mesh object is resident, a range mesh object,
and a range processor upon which the range mesh object is resident. The domain and range
processors (Pi and Pj) are typically not the same; as such, the referenced domain and range mesh

CommSpecα β,

MeshObjectm Pi(,) MeshObjectn Pj(,)(,) :

MeshObjectm ResidentPi∈ Meshα⊆ and

MeshObjectn ResidentPj∈ Meshβ⊆ and

MeshObjectm MeshObjectn(,) IntermeshRelation∈
α β,

 
 
 
 
 
 
 
 
 
 
 

⊂

CommSpecα β,

MeshObjectm Pi(,) MeshObjectn Pj(,)(,) :

MeshObjectm OwnedPi∈ Meshα⊆ and

MeshObjectn ResidentPj∈ Meshβ⊆ and

MeshObjectm MeshObjectn(,) IntermeshRelation∈
α β,

 
 
 
 
 
 
 
 
 
 
 

⊂

MeshObjectm Pi(,) MeshObjectn Pj(,)(,)
84

objects are resident on different processors. Therefore, the data members of a CommSpec must be
managed within a distributed data structure.

Software Design
Each member of a CommSpec is translated into software as two pairs: (1) a reference to the
domain mesh object paired with the identifier for the range processors and (2) a reference to the
range mesh object paired with the identifier for the domain processor. Members are split in this
manner in order to associate source (domain) mesh objects with destination (range) processors
and destination (range) mesh objects with source (domain) processors. This association supports
sending and receiving messages—information generated from domain mesh objects is sent to the
range processor, and information received from the domain processor is incorporated into the
range mesh object.

The association of domain mesh objects with range processors and range mesh objects with
domain processors is necessary but not sufficient. The association between the domain mesh
object and range mesh object must also be maintained. This association cannot be explicitly
expressed in the data structure when the domain and range processors are different, which is
typically the case.

CommSpec-member domain mesh objects are associated with range mesh objects as follows. The
members of a CommSpec are partitioned into processor-pair subsets such that each subset has a
given domain and range processor. The corresponding data members of that

reside on the domain processor Pi and range processor Pj are maintained in arrays with conformal
ordering. For example, if is the kth entry of this array on

domain processor Pi, then must also be the kth entry in the

corresponding array on range processor Pj.

domain-MeshObjectm domain-Pi(,) range-MeshObjectn range-Pj(,)(,) →

 domain-MeshObjectm range-Pj(,) range-MeshObjectn domain-Pi(,),

where
domain-MeshObjectm range-Pj(,) resides-on Pi

range-MeshObjectn domain-Pi(,) resides-on Pj

CommSpec Pi Pj(,) MeshObjectm Pi(,) MeshObjectn Pj(,)(,) m n,∀{ }=

CommSpec Pi Pj(,)

domain-MeshObjectm range-Pj(,)

range-MeshObjectn domain-Pi(,)
85

Storage Reduction for Symmetric CommSpec
A communication specification is symmetric if it is equal to its own converse and meets the
following condition:

If a CommSpec is symmetric, then the set of processor-resident data members satisfy the
following condition:

Note from the above condition that the resident data members for the domain and range arrays are
identical—a data member exists in the domain array if and only if it also

exists in the range array. Thus only a single array of CommSpec data members is required to
represent both the domain array and the range array.

11.6 Field-Value Global Assemble Operation
The most heavily used communication operation for a typical parallel distributed mesh is the
assembly of field values from each incarnation of a shared mesh object. This assembly operation,
also referred to as a parallel swap-add, is defined as follows:

The CommSpec for processor-shared mesh objects provides all information necessary to define
the structure of the messages.

MeshObjectm Pi(,) MeshObjectm Pj(,)(,) SymmCommSpec∈

if-and-only-if
MeshObjectm Pj(,) MeshObjectm Pi(,)(,) SymmCommSpec∈

MeshObjectm Pi(,) MeshObjectm Pj(,)(,) SymmCommSpec∈

if-and-only-if
MeshObjectm Pj(,) MeshObjectm Pi(,)(,) SymmCommSpec∈

 →
domain-MeshObjectm range-Pj(,) resides-on Pi

if-and-only-if
range-MeshObjectm domain-Pj(,) resides-on Pi

MeshObjectm Pj(,)

let Valuem k Pi, , FieldValue MeshObjectm Fieldk,() on Pi=

let P MeshObjectm() Pj : MeshObjectm ResidentPj∈{ }=

global-assembly: Valuem k Pi, , Valuem k Pj, ,
Pj P MeshObjectm()∈

∑ Pi∀=
86

The assembly operation is required to consistently give identical results on all processors. This
cannot be guaranteed unless the summation loop is in exactly the same order on all processors and
for every invocation of the global assemble operation. If this loop is not performed in the same
order, a summation with more than two terms may result in numerical round-off differences
among processors. Such differences can lead to serious run-time problems, as they have in some
non-SIERRA Framework–based applications.

11.7 Copying Mesh Objects Between Processors
The SIERRA Framework supports copying mesh objects between processors. This parallel
operation is currently used by the dynamic load balancing capability, intermesh transfer
capability, and element ghosting capability. Copying a mesh object is divided into two parts: (1)
copying its subset membership information (Section 3) and intramesh connectivity information
(Section 8) and (2) copying the mesh object’s field values. When a mesh object is copied to a
processor it becomes a member of that processor’s resident subset, .

The dynamic load balancing capability uses the mesh-object copying operation as follows. First, a
dynamic mesh-partitioning algorithm is used to determine on which processor each mesh object
should reside for the subsequent calculations to be load balanced. Next, each mesh object that is
not already on the desired processor is copied to that processor. Finally, copied mesh objects are
deleted from their original processor. The processor-resident and processor-shared mesh object
subsets are updated accordingly.

Mesh objects that are copied between processors of the same mesh, or from a source mesh to a
different destination mesh, retain their global identifier. If the destination processor of the copy
operation has an existing mesh object with the given global identifier, the copied mesh object is
compared to an existing mesh object. If the two versions of the mesh object are incompatible, an
error is generated. If the copied and existing mesh object are compatible, their connectivity
information is merged and existing field values are overwritten.

ResidentPi
87

12 Dynamic Mesh Modifications
Mesh objects may be created, deleted, or have their attributes changed during the execution of an
application. Use of these dynamic-mesh-modification capabilities must conform to a set of
guidelines to guarantee correct results. These guidelines and their consequences are described in
this section.

12.1 Local Modifications and Global Synchronization
In a parallel distributed mesh, dynamic mesh modifications are performed in two phases. First,
each processor independently modifies its resident (local) subset of the global mesh. Once all
local modifications are complete, the processors synchronize the modifications that were made on
processor boundaries.

Each of the three capabilities for dynamic mesh modification (i.e., creating, deleting, or changing
attributes) must be globally synchronized. Local mesh-modification operations may be mixed
together, e.g., both creating mesh objects and changing attributes in one operation. However, each
global synchronization operation must be called after all local modifications are completed.

Mesh objects are not deleted during the local modification phase. Instead, the mesh objects are
marked for deletion and then actually deleted during the global synchronization phase. This mark-
and-then-delete strategy is used to preserve processor-boundary information until global
synchronization can coordinate the deletion of a shared mesh object.

Global synchronization of mesh modifications must be performed for each modified roster. If a
roster is not modified, synchronization is not required for the roster. If multiple rosters are
simultaneously modified (e.g., both nodes and elements), these rosters must be synchronized as
follows:

• Global synchronization of rosters for creating mesh objects must be in the following order:
node, edge, face, element. This order ensures that created mesh objects are synchronized after
the mesh objects they use, e.g., a created element is synchronized after a created node that it
uses.

• Global synchronization of rosters for deleting mesh objects must be in the following order:
element, face, edge, node. This order ensures that deleted mesh objects are synchronized
before mesh objects they use, e.g., a deleted element is synchronized before a deleted node
that it uses.

• Global synchronization of rosters for changing attributes of mesh objects may be in any order.

The Inconsistent Transient State
The first local dynamic-mesh-modification operation performed by the application places that
mesh in a globally inconsistent state. While in this inconsistent state the “regular” Framework
88

services, such as support for workset algorithms, will not perform correctly. Global consistency of
the mesh must be restored via synchronization before “regular” Framework services can be used.

Global Synchronization: Framework Operations
Global synchronization of dynamic mesh modifications by the SIERRA Framework includes
several parallel operations:

• Global synchronization in the creation of mesh objects resolves potentially duplicated mesh
objects newly created on processor boundaries, determines unique global identifiers for newly
created mesh objects, synchronizes the usage-subset membership of shared mesh objects, and
updates the CommSpecs for shared mesh objects.

• Global synchronization in the deletion of mesh objects updates the CommSpec for shared
mesh objects that are marked for deletion and then deletes all marked mesh objects in the
roster.

• Global synchronization of changes to the attributes of mesh objects takes the global union of
shared mesh-object contexts, mechanics instances, and input/output instances.

12.2 Synchronization of Created Mesh Objects
Each newly created mesh object is marked as “pending creation” and is assigned an arbitrary and
globally inconsistent identifier on the local processor. A newly created mesh object is assigned to
usage and instance subsets, may be connected to other existing mesh objects or to newly created
mesh objects, and may have field values set. Global synchronization of pending-create mesh
objects must resolve the creation of mesh objects that should be shared among processors, select
globally unique identifiers, synchronize usage-subset membership, and update the communication
specification for shared mesh objects.

Resolution of Newly Created Shared Mesh Objects
A newly created mesh object that may be shared with one or more other processors is created in
one of three states:

1. No other processor has created that mesh object.

2. One or more other processors have also newly created a compatible mesh object.

3. One or more other processors already have an existing compatible mesh object.

Resolution of a potentially shared newly created mesh object first determines whether a
compatible mesh object exists on another processor. A mesh object is compatible or represents the
same mesh object if it is topologically identical. For example, two face mesh objects are
compatible if they are defined by the same nodes (vertex and, if present, mid-edge nodes) and are
compatibly attached to elements. For faces in 3D and edges in 2D, this “compatibly attached to
elements” clause means that if the face is attached to two different elements, then those elements
89

must be attached to opposite sides of the face. Evaluation of this element-compatibility condition
is complicated in the presence of topologically degenerate element-shells. In this situation the two
faces of a shell will have the same nodes but be associated with different sides of the shell.

For nodes, the determination of compatibility is more complex. It is assumed that any
dynamically created node that could be shared among processors is associated with the interior of
an edge, face, or element. These nodes are referred to as child nodes of the associated mesh
object. Newly created nodes are resolved by matching the topological description of their parent
mesh objects among processors.

If it is determined that a newly created mesh object already exists on another processor, the newly
created mesh object is updated to have the existing global identifier. Otherwise, one processor
from the subset of processors that could share the mesh object is designated to coordinate the
selection of a global identifier for that mesh object. In either situation, all instances of the shared
mesh object are synchronized to have the same usage-subset membership.

Mesh objects that are newly created globally are assigned globally unique identifiers with the
following algorithm:

1. The number of globally unique mesh objects needing global identifiers is determined. Note
that each newly created shared mesh object has a processor that has been designated to
determine the global identifier for that mesh object.

2. The existing set of global identifiers is analyzed to determine if there are any “holes” in the
contiguous numbering of the set. For example, the set {1, 2, 3, 5, 6, 8} has holes of {4, 7}.
These “holes” in the set of used identifiers are selected for newly created mesh objects before
values that are greater than the current maximum value. This selection policy leads to the re-
use of global identifiers that had been assigned to previously deleted mesh objects. This
selection policy was implemented, as opposed to a simpler policy of selecting the next largest
value, so that the identifier would not “overflow” when mesh objects are cyclically created
and deleted.

3. Globally unique identifiers are selected by the designated processors and assigned to the
newly created mesh objects. These designated processors then inform any processors sharing
these mesh objects of the assigned global identifier. Thus all instances of each mesh object
are assigned the same global identifier.

4. Finally, the processor-owner of each newly created mesh object is selected, and the “pending
creation” marking is removed from all instances of these mesh objects.

12.3 Synchronization of Deleted Mesh Objects
Each processor may mark one or more mesh objects as “pending deletion.” A mesh object that has
been marked is not immediately deleted as this would corrupt processor-sharing information.
When an application’s mark-for-deletion process is complete, a globally synchronized delete
operation is performed. This delete operation first removes the pending-delete mesh objects from
the processor-sharing communication specification. If all instances of a mesh object have been
90

marked as pending deletion, the influence of that mesh object is also removed from the mesh.
Finally, the marked instances of a mesh object are deleted.

De-imprinting
A mesh object’s “influence” in a mesh is most readily illustrated by the imprinting of an element
on its nodes (Figure 4.3). If the elements that have imprinted on a node are deleted, the imprinted
contexts are no longer valid and must be removed from the node. This “de-imprinting” is
complicated when nodes or other mesh objects are shared between processors and the imprinting
elements are not similarly shared. In this case, an imprinting element of a node may be deleted on
the local processor, but another processor may have a different element that is not shared and has
the same imprinting context.

12.4 Synchronization of Mesh Object Attributes
Shared mesh objects may be independently imprinted on different processors. The results of
processor-independent imprinting operations must be synchronized between processors. This
synchronization is accomplished by assigning a shared mesh object to each usage and instance
subset that is identified on each sharing processor. This assignment is the union of the usage and
instance subsets from the sharing processors.
91

References
1. Taylor, Lee M., Harold Carter Edwards, and James R. Stewart. Functional Requirements for

SIERRA Version 1.0 Beta. SAND99-2587. Albuquerque, NM: Sandia National Laboratories’
Engineering Sciences Center, 1999.

2. Edwards, H. Carter, and James R. Stewart. “SIERRA, a Software Environment for
Developing Complex Multiphysics Applications.” In Computational Fluid and Solid
Mechanics. Proc. First MIT Conf., Cambridge, MA, 2001, edited by K. J. Bathe, 1147–1150.
Oxford, UK: Elsevier, 2001.

3. Edwards, H. Carter, James R. Stewart, and John D. Zepper. “Mathematical Abstractions of
the SIERRA Computational Mechanics Framework.” In Proc. 5th World Congress Comp.
Mech., Vienna, Austria, July 2002, edited by H. A. Mang, F. G. Rammerstorfer, and J.
Eberhardsteiner.
92

Appendix A: Mapping to C++ Classes
The theory and design abstractions described in this document are implemented in the C++
programming language, primarily as C++ classes. The mapping from these abstractions to C++
classes implemented in SIERRA Framework Version 3 is given in this appendix. Future versions
of the SIERRA Framework may alter this implementation such that the design-to-implementation
mapping presented here is not compatible. However, it is anticipated that the theory and design of
the core framework will change more slowly than the implementation.

Table A.1. Mapping to SIERRA Framework Version 3

Section Abstraction C++ Class

Section 1.1 Procedure Fmwk_Procedure

Section 1.1 Region Fmwk_Region

Section 1.1,
Section 2.3, and
Section 9.2

Mechanics Fmwk_Mechanics

Section 1.1 Transfer Xfer_Transfer

Section 2.3 and
Section 9.3

Mechanics Instance Fmwk_MechanicsInstance

Section 2.4 Mesh Object Fmwk_MeshObj

Section 2.4,
Section 11.3

Intramesh Connectivity
Relations

Fmwk_CommSpec

Section 2.4 and
Section 8

Intermesh Connectivity
Relations

Fmwk_MeshObj::Relation

Section 2.5 and
Section 5.1

Field Specification Fmwk_DatumVariable

Section 2.5 Field Type Fmwk_DatumSpec

Section 3.2 Context for Usage Subsets Fmwk_Context

Section 4.1 Master Element Elem_MasterElem

Section 4.1 and
Section 8.4

Topology of a Master Element Fmwk_MeshObjTopology

Section 4.4 Master Element Usage Fmwk_MeshObjRegistrar::
MasterElemUsage

Section 6 Mesh Object Roster Fmwk_MeshObjRoster

Section 6 Mesh Object Subroster Fmwk_MeshObjSubroster
93

Section 6.2 Globally Unique Identifier Fmwk_Id

Section 7.1 Buckets of Field Values Fmwk_DatumBucket

Section 10 Worksets Fmwk_WorksetRegistrar
Fmwk_Workset

Table A.1. Mapping to SIERRA Framework Version 3 (Continued)

Section Abstraction C++ Class
94

Distribution

External
Texas Institutute for Computational and Applied Mathematics
University of Texas at Austin
Austin, TX 78712

Attn: J. Tinsley Oden

Lawrence Livermore National Laboratories
LLNL L-95
P.O. Box 808
Livermore CA 94551

Attn: Evi Dube

Internal
1 MS 0841 9100 T. C. Bickel
1 MS 0835 9140 J. M. McGlaun
5 MS 0835 9141 S. N. Kempka
5 MS 0835 9142 J. S. Peery

10 MS 0827 9143 J. D. Zepper
1 MS 0824 9110 A. C. Ratzel
1 MS 0826 9113 W. L. Hermina,
1 MS 0834 9114 J. E. Johannes
1 MS 0836 9115 E. S. Hertel
1 MS 0847 9120 H. S. Morgan
1 MS 0824 9130 J. L. Moya
1 MS 0828 9133 M. Pilch
1 MS 0847 9211 S. A. Mitchell
1 MS 1110 9214 D. E. Womble
1 MS 0819 9231 E. A. Boucheron
1 MS 0139 9900 M. O. Vahle

1 MS 0835 9141 S. W. Bova
1 MS 0835 9141 R. J. Cochran
1 MS 0835 9141 S. P. Domino
1 MS 0835 9141 M. W. Glass
1 MS 0835 9141 R. R. Lober
1 MS 0835 9141 A. A. Lorber
1 MS 0835 9141 P. A. Sackinger
1 MS 0835 9141 J. H. Strickland
95

1 MS 0835 9141 S. R. Subia
1 MS 9217 8920 C. J. Aro
1 MS 9042 8728 C. D. Moen
1 MS 0826 9113 D. R. Noble
1 MS 0826 9114 E. S. Piekos
1 MS 0834 9114 M. M. Hopkins
1 MS 0834 9114 P. K. Notz
1 MS 0825 9115 J. L. Payne
1 MS 0838 9116 R. E. Hogan
1 MS 0828 9133 K. J. Dowding
1 MS 0847 9133 W. R. Witkowski
1 MS 0316 9233 C. C. Ober
1 MS 0316 9233 T. M. Smith
1 MS 0316 9233 R. Hooper

1 MS 0847 9142 M. K. Bhardwaj
1 MS 0847 9142 M. L. Blanford
1 MS 0847 9142 A. S. Gullerud
1 MS 0835 9142 J. D. Hales
1 MS 0847 9142 M. W. Heinstein
1 MS 0847 9142 S. W. Key
1 MS 0847 9142 W. S. Klug
1 MS 0847 9142 J. R. Koteras
1 MS 0847 9142 N. K. Crane
1 MS 0847 9142 J. A. Mitchell
1 MS 0835 9142 K. H. Pierson
1 MS 0847 9142 V. L. Porter
1 MS 0847 9142 T. J. Preston
1 MS 0847 9142 G. M. Reese
1 MS 0847 9142 T. F. Walsh
1 MS 0807 9338 B. H. Cole
1 MS 0847 9214 K. F. Alvin
1 MS 9217 9214 M. F. Adams
1 MS 0847 9126 J. Jung
1 MS 9405 8726 R. E. Jones
1 MS 0847 9211 M. S. Eldred

1 MS 0827 9143 K. M. Aragon
1 MS 0827 9143 K. N. Belcourt
1 MS 0827 9143 D. M. Brethauer
1 MS 0827 9143 K. D. Copps

20 MS 0827 9143 H. C. Edwards
1 MS 0827 9143 C. A. Forsythe
96

1 MS 0827 9143 M. E. Hamilton
1 MS 0827 9143 J. R. Overfelt
1 MS 0827 9143 J. S. Rath
1 MS 0827 9143 G. D. Sjaardema

10 MS 0827 9143 J. R. Stewart
1 MS 0827 8920 A. B. Williams

1 MS 1111 9215 K. D. Devine
1 MS 0819 9231 K. H. Brown
1 MS 0819 9231 K. G. Budge
1 MS 0819 9231 S. P. Burns
1 MS 0819 9231 D. E. Carrol
1 MS 0819 9231 R. R. Drake
1 MS 0847 9226 S. J. Owen

1 MS 9018 8945-1 Central Technical Files
2 MS 0899 9616 Technical Library
1 MS 0612 9621 Review & Approval Desk for DOE/OSTI
97

	Abstract
	Contents
	Acronyms and Abbreviations
	1 Introduction
	1.1 Architecture of a SIERRA Application
	1.2 Execution of a SIERRA Application
	1.3 Layered Set of Services
	1.4 Finite Element Method (FEM) Specializations
	1.5 Organization of this Document

	2 Theory
	2.1 Fundamental Entities
	2.2 Brief and Selective Review of Set Theory
	2.3 Mechanics
	2.4 Mesh, Mesh Object, and Mesh Object Roster
	2.5 Field and Field Registrar

	3 Usage Subsets, Instance Subsets, and Context
	3.1 Cardinality Assumptions
	3.2 Abstraction for Context
	3.3 Software Design for Context
	3.4 Interaction with Mesh Objects
	3.5 Field Value Relation
	3.6 Predefined Usage Subsets
	3.7 Instance Subsets

	4 Mesh Heterogeneity and Master Element Usage
	4.1 Master Element Families
	4.2 Field Dependency on Master Elements
	4.3 Equivalence-Use
	4.4 Declaration of a Master Element Usage
	4.5 Querying Master Element Usage
	4.6 Context for Master Element Usage
	4.7 Conditions for Simplifications

	5 Fields and Field Registrars
	5.1 Field Specification
	5.2 Declaring Fields (a.k.a. Field Registration)
	5.3 Field Redeclaration (a.k.a. Reregistration)
	5.4 Array and Aggregate Declarations
	5.5 State-Use, Multiple States, and Time Stepping
	5.6 Querying Declared Fields

	6 Mesh Object Rosters and Subrosters
	6.1 Hierarchical Partitioning
	6.2 Mesh Object Properties
	6.3 Iterating and Querying Rosters
	6.4 Manufactured Mesh Objects, Usage Subsets, and Connections

	7 Field Value Relation and Buckets
	7.1 Buckets for Efficiency
	7.2 Dimensions of Field Value Arrays
	7.3 Accessing Field Values

	8 Mesh Object Connectivity
	8.1 Partitions of Mesh Object Connections
	8.2 Ordinal and Orientation
	8.3 Data Structure
	8.4 Mesh Object Topology

	9 Creating and Using Mechanics Objects
	9.1 Mechanics Algorithms
	9.2 Mechanics
	9.3 Mechanics Instances
	9.4 Mechanics Support (Singletons)
	9.5 Creating and Configuring Mechanics Objects

	10 Workset Algorithms
	10.1 Workset Scratch Memory
	10.2 Automatic Iteration of Mesh Objects
	10.3 Workset Variable Arrays
	10.4 Gather, Compute, Scatter, and Assemble
	10.5 Workset Stencil
	10.6 Declaring a Workset Algorithm
	10.7 Nested Workset Algorithms

	11 Parallel Distributed Mesh
	11.1 Processor Subset Classes
	11.2 Processor-Resident Policies
	11.3 Intermesh Relation
	11.4 Mesh Object Communication Relation (a.k.a. Communication Specification)
	11.5 Distributed Data Structure for CommSpec
	11.6 Field-Value Global Assemble Operation
	11.7 Copying Mesh Objects Between Processors

	12 Dynamic Mesh Modifications
	12.1 Local Modifications and Global Synchronization
	12.2 Synchronization of Created Mesh Objects
	12.3 Synchronization of Deleted Mesh Objects
	12.4 Synchronization of Mesh Object Attributes

	References
	Appendix A: Mapping to C++ Classes
	Distribution

