SAND REPORT

SAND2002-3104
Unlimited Release
September 2002

A Low-Power VHDL Design for an Elliptic
Curve Digital Signature Chip

Richard Schroeppel, Cheryl Beaver, and Timothy Draelos
Cryptography and Information Systems Surety Department

Rita Gonzales and Russell Miller
Digital Microelectronics Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94A1.85000.

Approved for public release; further dissemination unlimited.

(ﬂ:‘l) Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/ordering. htm

SAND2002-3104
Unlimited Release
Printed September 2002

A Low-Power VHDL Design for an
Elliptic Curve Digital Signature Chip

Richard Schroeppel, Cheryl Beaver, and Timothy Draelos
Cryptography and Information Systems Surety Department

Rita Gonzales and Russell Miller
Digital Microelectronics Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0785
{rschroe, cheaver, ragonza, rdmille, tjdrael}@sandia.gov

Abstract

We present a VHDL design that incorporates optimizations intended to
provide digital signature generation with as little power, space, and time as
possible. These three primary objectives of power, size, and speed must he
balanced along with other important goals, including flexibility of the hardware
and ease of use. The highest-level function offered by our hardware design is
Elliptic Curve Optimal Fl Gamal digital signature generation. Qur parameters
are defined over the finite field GF(217®), which gives security that is roughly
equivalent to that provided by 1500-bit RSA signatures.

Our optimizations include using the point-halving algorithm for elliptic
curves, field towers to speed up the finite field arithmetic in general, and fur-
ther enhancements of basic finite field arithmetic operations. The result is a
synthesized VHDL digital signature design (using a CMOS 0.5um, 5V, 25°C
library) of 191,000 gates that generates a signature in 4.4 ms at 20 MHz.

Acknowledgement

The authors would like to thank Mark Torgerson for many useful discussions and
comments.

Contents

1T Introduction e 7
2 The ‘Optimal El Gamal’ Authentication Algorithm........................ 8
2.1 Optimal El Gamal Scheme. 8
3 Algorithmic Optimizations i i 10
3.1 Finite Field Arithmetic and Field Towers. 10
3.2 Finite Field Algorithms 11
3.3 Point Halving Algorithm 15
3.4 Sliding Window Multiplication with Precomputation 16
3.5 Choosing Suitable Elliptic Curves 16
4 Hardware Architecture and Design 18
4.1 Hardware Implementation 19
4.2 Command, Configuration, and Control 19
4.3 Random Number Generation........... 21
4.4 Message Input. 21
4.5 Signature Algorithm 22
4.6 Hardware Optimizations i 22
5 Hardware Design Results...... ..o i 23
6 CONCIUSIONS . . .ottt e e e 25
Figures
1 Top Level Architecture. 19
2 Secure Signature Generation Chip Interface........ 20
3 Signature Algorithm Architecture 22

A Low-Power VHDL Design for
an Elliptic Curve Digital
Signature Chip

1 Introduction

While the value of elliptic curve arithmetic in enabling public-key cryptography to
serve in resource-constrained environments is well accepted, efforts in creative im-
plementations continue to bear fruit. A particularly active area is that of hardware
implementations of elliptic curve operations, including hardware description language
developments, programmable hardware realizations, and fabricated custom circuits.
Kim, et al, [1] introduce a hardware architecture to take advantage of a nonconven-
tional basis representation of finite field elements to make point multiplication more
efficient. Moon, et al, [2] address field multiplication and division, proposing new
methods for fast elliptic curve arithmetic appropriate for hardware. Goodman and
Chandrakasan [3] tackle the broader problem of providing energy-efficient public-key
cryptography in hardware while supporting multiple algorithms, including elliptic
curve-based algorithms. Moving closer to applications of elliptic curve cryptography
(ECC), Aydos, et al, [4] have implemented an ECC-based wireless authentication
protocol that utilizes the elliptic curve digital signature algorithm (ECDSA).

We present a VHDL! design that incorporates optimizations intended to provide
elliptic curve-based digital signature generation with as little power, space, and time
as possible. These three primary objectives of power, size, and speed must be balanced
along with other important goals, including flexibility of the hardware (e.g., support
of a class of elliptic curves) and ease of use (e.g., doesn’t require the user to supply
or interpret complex parameters). Currently, the highest-level function offered by
our hardware design is digital signature generation. Our elliptic curve parameters
are defined over the finite field GF(2!7®), which gives security roughly equivalent to
that provided by 1500-bit RSA signatures®. As we don’t currently have hardware and
therefore explicit power measurements, the emphasis of this paper is on a design that

'WVHDL stands for VHSIC Hardware Description Language, where VHSIC stands for Very High
Scale Integrated Circuit.

2The number of computer instructions to factor a number, N, is estimated as
0.018¢(1:923%/10gN (loglogN)?) ' The multiplier 0.018 is selected to give a figure of 10,000 MIPS-years to
factor a 512-bit number. The number of elliptic curve operations (point addition or halving) to solve
a discrete log problem (and discover a secret signing key, or forge a signature on a given message)
is roughly the square root of the group size. Our group size is about 2'77 so the breaking work is

7

reflects many choices promoting a low-power outcome. In addition to the obvious
goal of minimizing the number of gates, the speed of execution is critical to power
consumption since power can be removed from circuits as soon as they complete their
functions.

ECC solutions are well-known for their suitability in smart-card applications and
wireless communications security. Our work was motivated by the need to reduce the
resources required to provide strong public-key authentication for sensor-based moni-
toring systems and critical infrastructure protection. For these applications, signature
generation is often performed in highly constrained, battery-operated environments,
whereas signature verification is performed on desktop systems with only the typical
constraint of purchasing power. Hence, our hardware design focused primarily on
the signature generation, with signature verification to follow. Here, we present a
chip design represented in VHDL of the best to date, in our minds and for our ap-
plications, digital signature generation solution for low-power, resource-constrained
environments.

In Section 2, we start with the selection of an El Gamal digital signature variant
that minimizes the number of operations necessary for signature generation. Sec-
tion 3 presents algorithmic optimizations of the computational elements necessary to
compute a digital signature. We note that many of these elements can be applied to
other elliptic curve algorithms over G F(2™). The focus of this paper is on the imple-
mentation of highly-optimized versions of these core operations. Section 4 presents
the VHDL implementation of the digital signature algorithm and elliptic curve arith-
metic operations. In Section 5, we provide results of the number of gates and time
required to generate a digital signature and perform many of the underlying primitive
functions that might be used in an elliptic curve coprocessor.

2 The ‘Optimal El Gamal’ Authentication
Algorithm

2.1 Optimal El Gamal Scheme

The signature algorithm is the Optimal El Gamal digital signature scheme adapted
for use with elliptic curves (see [5], [6] for original description and security proofs). For

about 23%-% curve operations. Assuming 1,000 computer instructions per elliptic curve operation,
P

this number of instructions would factor a 1570-bit number.

an introduction to elliptic curves see [7]. This variant of the El Gamal algorithm was
chosen because it avoids the computationally expensive modular reciprocal during
signature generation and verification.

Parameters

The public parameters for the Optimal El Gamal Signature scheme are (K, G, W,)
where F is a choice of an elliptic curve, G € FE is a point of large order, r, and
W = s(is the public key where s (1 < s < r) is the long-term private key. We
assume that the public key parameters and a common hash function are available to
all relevant algorithms.

We denote by zp (resp. yp) the x—coordinate of a point P € F (resp. y—coordinate).

Alg. 1. Elliptic Curve Optimal El Gamal Signature Generation

Input: Private Key, s; Message, M Output: Signature (c,d) of M

1. Generate a key pair (v,V = v(@), where v # 0 is a randomly chosen integer
modulo r

2. Compute c = xy (mod r); If ¢ =0, then go to Step 1

3. Let f = Hash(M). Compute an integer d = (cfs+v) (mod r); If d = 0, then
go to Step 1

4. Output the pair (c,d) as the signature

Although our current chip design does not include signature verification, we de-
scribe the algorithm for completeness. Most of the optimizations presented later in
the paper will benefit signature verification as well as generation.

Alg. 2. Signature Verification

Input: Signature (c,d) on Message M Output: Accept/Reject
1. Ifceg|l,...,r—1], ord & [1,....,7 — 1|, output “Reject” and stop
2. Compute [= Hash(M)

3. Compute the integer h = c¢f (mod)

9

4. Compute an elliptic curve point P = dG — hW; If P = O, output “Reject” and
stop

5. Compute d = xp (mod r)

6. If ¢ = ¢, then output “Accept”

We note that anyone can forge a signature on a message that hashes to 0. However,
inverting the hash to find such a message is thought to be computationally infeasible.

3 Algorithmic Optimizations

The field of definition for the elliptic curve is important since it is the basis for all
elliptic curve operations. Generally the curve is defined over either GF(p) for some
large prime p, or G F(2™). Since the arithmetic in the latter field is much faster, that
was our choice. In particular, we use the field GF(2'®). One reason for choosing this
field is to make use of optimizations that can be derived from the fact that it can be
realized as a field tower: GF(217®) = GF((2%)?). In the case of characteristic two
fields, the equation for the elliptic curve can be given by F : y*+xy — 2*+ax?+b. For
simplicity and saving on storage, we assume that a = (1,0). This is useful since the
point addition algorithms use a but not b so we don’t need to store b (it is implied by
the coordinates of the generating point). Further, we exploit properties of G F'(2%9)
to reduce some of the basic arithmetic operations (e.g. squaring, square root) to
simple XOR, gates which are very fast in hardware. The ‘almost inverse’ algorithm
in [8] is especially fast for smaller degree fields. Finally, we modify our elliptic curve
multiplication algorithm to use point halving [9, 10| which offers a savings over the
usual point doubling.

3.1 Finite Field Arithmetic and Field Towers

Our first optimization involves field towers, which simplifies all underlying operations.
The finite field is

GF (2™ = GF(2)x]/f(x) = {ao + a1z + -+ am—12™ (mod f(z)) | a; € GF(2)}

where f(z) is an irreducible binary polynomial of degree m. An element a € GF(2™)
can therefore be represented as an m—tuple a = (ag, a1, ..., @m_1) of zeros and ones.

10

Addition of two elements is a bitwise exclusive-OR (XOR) operation:
a, be GF(2m), a—+ b= (ao D bo, a; D bl, ceey A—1 D bm—l)

and multiplication is like a plain multiplication without any carries but with the
XOR accumulation only. The result of the multiplication must, however, be reduced
by the field polynomial f(z). As the degree m of the field gets large, the multiplica-
tion can become time-consuming and the representation of the numbers can become
cumbersome. For a general reference on finite field arithmetic, see [11].

If m is a composite number, we can use field towers to speed-up the computations.
Suppose m = ns. Then we can think of GF(2™) = GF((2")°) as a degree s extension
of GF(2"). The elements are a € GF(2™),a = (ap, g, ..., as_1), where a; € GF(2").

For this work, we use the finite field GF(2'7®) and the corresponding field tower
GF((28%)?). Our choice of irreducible polynomial for GF(2%) over GF(2) is f(u) =
u® + 4 + 1, and the irreducible polynomial we use for GF((2%)%) over GF(2%)
is g(V) = V2 4+ V + 1. We note that this field is not susceptible to known attacks
on elliptic curves over composite degree fields (see [12]). Using a trinomial for the
field polynomial over GF'(2%?) makes the modular reduction easy and also helps with
squaring, square root, Qsolve, and the finishing step in the almost inverse algorithm.

3.2 Finite Field Algorithms

As elements of GF(2'7) are represented as pairs of GF(2%) elements, all algorithms
can be described using the arithmetic over GF'(2%9). While some of our optimizations
are for general fields, some are specific to our chosen field. We first describe any
optimizations over GF(2%%) and then give algorithms for the extension to G F'(217®).

Algorithms over G F(2%)

Unlike the situation with real numbers, squaring and square-rooting are one-to-one
operations in characteristic 2 finite fields. Every field element has a single unique
square root and square. The following algorithms are specific to GF'(2%°) with field
polynomial f(u) = u® + u* + 1. In the case of squaring, square root, and solving
the equation a = 22 + z for z (which we call “QSolve”), we note that the algorithmic
descriptions can be reduced to simple XORs of the input bits.

11

Alg. 3. Squaring

Input: a = (ag, .., ags) € GF(2%%)
Output: 2 = (200, ..., 288) € GF(2%) where z = a?

z even bits: . _
200 — 236 1 Zon = Gp D Anyro
238 — 2741 Z9n = Qn D Anys1
276 — 288 + 22n — Qp
z odd bits: . _
201 — 237 ¢+ 22n4+1 — Qn44s
230 — 287 ¢ Zopy1l — Qnyas D Gngoe

Alg. 4. Square Root

Input: a = (aq, .., ass) € GF(2%%)
Output: z = (2q, .., 288) € GF(2%) where z = \/a

200 — R12 -« Zp = Qop D A2n+51 D 25,113

213 — 218 © Zn = Q20 D A2p151 D A2n 113 D Aon—25
Z19 — 231 Zp = Q2np P Goni13 P Aon—_25

232 — 2371 Zp = G2, D A2p—63 D A2py13 D Aop_25
238 — 244 ¢ Zp — Qon

245 — 263 - An — (2n—89

Zea — 282 1 Zp = Q2p-89 D Gop_127

283 — 288 Zn — Q2np-89 D Aop_127 D A2n—_165

Quadratic Solve

We developed a special circuit for computing QSolve with a relatively small number
of XOR gates (387) and depth (35). The full circuit and detailed derivation are in
[13].

Alg. 5. Qsolve

Input: a = (ag, .., ags) € GF(2%%)
Output: z = (2q9, -.-, 288) € GF(2%) where a = 2° + z

12

FExcept for odd z in the range zo1 — 219 (which are computed directly), the bits
of z are computed from the following equations:

a even bits: oo — G361 A2n = Z2n D 2n O Znyv0
aszgs — Q74 - Aoy, — Zop D Zn D Zn451
Q76 — Ass © Aon, — 220 D 2n
a odd bits:
(o1 — A37 © A2pt1 = Zontl D Znyas
(39 — Qg7 U2pt1 = Z2nt1 D Znyas O Znyoe

This derivation uses several observations to reduce the number of gates.

1. QSolve is linear, so we could precompute QSolve(u’Y) for each N. The runtime
circuit XORs together the appropriate subset for a general polynomial (see [14]
for one method of doing the precomputation). This is fast, but uses a lot of
gates. We traded speed for size, getting a slower but smaller circuit.

2. We reduced the number of required QSolve(u”) values by removing some powers
of u from the problem. For example, the substitution QSolve(u?") = u® +
QSolve(u”) eliminates even powers of u. The substitution uV = «VN=3 |
w3 removes some odd powers of u. After repeated substitutions like these,
QSolve(u?) is only needed for odd N in the range 1...19.

3. Only some of the answer bits are required: 2,4 in the range zp;...219. This
reduces the number of gates considerably. The remaining bits can be recovered
by solving the bit equations for QSolve. For example, we compute z45 from the
equation agy = 201 P 245.

4. We assume that agg is equal to as;. The actual value of agg is ignored. Further-
more, 2y is irrelevant, and is set equal to 0.

Our minimal size QSolve circuit used only 287 XOR, gates, but had depth 65. We

moved back from this extreme point on the speed-size tradeoff curve to a circuit with
387 XOR gates and depth 35.

Division

Inversion over GF'(2%%) is performed with an “almost inverse” algorithm [8]. Division
is a reciprocal followed by a multiply.

13

Algorithms over G F(2'®)

We consider GF(217) as a degree two extension of GF(2%) with field polynomial
V2 +V + 1. Elements of w € GF(2') are pairs of elements from GF(2%). So
w = (ug,v1) where u;,v1 € GF(2%); ie. w = w1V + vy where V2 = V + 1. The
algorithms from G F(2%) are extended to G F(217®) in the obvious way. We give here
some examples where some optimizations have been made.

Alg. 6. Multiplication GF(2178)

Input: z = (u1,v1), ¥y = (uz2,v2); Output: z = x xy = (uz, v3)

1. Uz = (u1 —+ ’Ul)(UQ —+ ’1}2) + V19

2. U3 = ULUg + V1U2

Alg. 7. Inversion GF(2'78)

Input: =z = (uy,v;); Output: 271 = (ug, o)
J— Uy
1. up = (v1tvi)2+uiv;
_ u1tv1
2. Uy = (u1tv1)?+uivi

Alg. 8. Squaring GF(2')

Input: = = (uy,v); Output: 2?2 = (ug, vs)

9,2

2. vy = ud+v?

Alg. 9. Square Root GF(2178)

Input: x = (ug,v1); Output: /x = (ug, vs)

1. Ug = /U1
2. ’1}2:\/’1111‘1“\/'0_1

14

Alg. 10. Qsolve GF(2178)
Input: a = (ug,v1); Output: z = (ug,vs) such that a = 2% + 2
1. us = Qsolve(uy) (per Alg. 5)

Set t = U+ v+ U = totl...tgg

Ifto@ts: =1, thenus =us+1 andt =t +1

S

vy = @solve(t)

In both GF(2%°) and GF(2'®), only half of the field elements, a, have a cor-
responding solution, z. Moreover, when z is a solution, so is z + 1. In step 3 of
Algorithm 10, we choose the Qsolve solution us so that ¢ can be Qsolved in step 4.

3.3 Point Halving Algorithm

The slowest part of the signature algorithm is the multiplication of points. We mod-
ified the point multiplication algorithm to use a point halving algorithm in place of
a doubling algorithm. The idea of “halving” a point P = (xp,yp) is to find a point
Q = (xg,yg) such that 2¢) = P. Note this is the inverse of the point doubling
problem. The point halving can nevertheless be used in our algorithm by a simple
adjustment on the base point of the elliptic curve used. The algorithm offers a speed-
up in software of a factor of about two to three over the point doubling algorithm.
We follow the algorithm of [9].

For this algorithm we sometimes write the coordinates of the points P € E as
(xp,7p) where rp = xp/yp. In fact, we use the (zp,rp) form whenever possible,
but the input and output of the point addition algorithm need the Y coordinate,
so the halving algorithm must handle Y outputs and inputs. When the yg output
is not required, the point halving algorithm needs only one field multiplication. It
is most efficient when point halvings are consecutive. Our signed sliding window
multiplication method uses about five halvings between additions.

Alg. 11. Point Halving over GF(2™)
Input: Pe I/ Output:) = %P el
1. My, = Qsolve(xp + a), where a is the curve parameter

15

2.T=zpx(My+1p) orT=2xp*M,+yp

3. 1If parity(T and t,,)= 0, then M, = M, + 1; T =T + xp
Here t,,, is a mask that depends upon the modulus polynomial. In our case,
tm = (u® 4 1,0).

4. $Q:\/T
5. TQ:Mh+$Q+1

6. If needed, yo = zg * ¢

3.4 Sliding Window Multiplication with Precomputation

The computation of elliptic curve multiplication, nP, is performed using a 4-bit signed
sliding window algorithm [8]. The table of precomputed values {1, 3,5, 7}G are stored
and the circuit automatically computes the negatives {—1,—3, -5, —7}G as needed
on the fly. On average there are 5 halvings per addition.

3.5 Choosing Suitable Elliptic Curves

One of the parameters for the Elliptic Curve based El Gamal signature is a point on
the elliptic curve of large prime order (e.g. a point G = (xg,ys) such that pG = 0
for a large prime p (and p is the smallest such integer)). The security of the signature
scheme is based on the difficulty of computing discrete logarithms in the elliptic curve
group generated by this point G. The size of this group is the order, p, of G. For
our purposes, we need p to be about 163-bits or greater. The discrete logarithm
problem will then be extremely difficult to solve as long as we have choosen a non-
supersingular elliptic curve (this is a property of the curve that we can easily check).
In order to guarantee that our elliptic curve has such a point, we choose an arbitrary
elliptic curve with coefficients in our chosen field (GF(2'7)) and then compute the
order of the curve (the order of the curve is the number of points on the curve). If
the order has a large enough prime factor, then we can find a point on the curve that
has that prime as its order, otherwise, we throw that curve out and start over.

To compute the order of the curves, we used a point-counting algorithm by Satoh
described in [15]. The algorithm computes the trace, ¢, of a curve over GF(¢") and
the order of the curve is then ¢ + 1 — £. Satoh’s algorithm computes the order of

16

curves of the form
E:y?tay=a%10 (1)
over fields GF(2"). However, we are interested in curves of the form
E:y*tay—=2°+az®+b (2)

where the coefficients are described in the field-tower representation GF'((28%)?). As
before, the irreducible polynomial for GF(2%°) over GF(2) is f(u) = u® +u*+1, and
the irreducible polynomial for GF((28%)?) over GF(2%) is g(V) = V2+V +1. Curves
of the form (1) are closely related (“twists”) to the ones in which we are interested, (2).
In particular, if a satisfies a certain condition (Tracecr@iwsy/ar@)(a) # 0), then if the
curve in (1) has order #£E = 21" + 1 —t, the curve in (2) has order #F = 21 14t
In other words, the trace of the “twist” is of opposite sign. Furthermore, with a
chosen in this way, the twist, F, is guaranteed to be non-supersingular and the order
of £ is 2 x odd. We look for curves with order of £ = 2 x prime.

To find suitable curves, we generated random curves, E of the form (1), used
Satoh’s algorithm to get the trace, which was then used to calculate the order of the
twist, E. We searched until we found E’s with order 2 x prime. We then converted

the coefficients (over G F'(217®)) to their corresponding field tower representation over
GF((28)2).

A list of four suitable curves and their corresponding order and generating point,
G, are given below. The field elements (curve coefficients and point coordiantes) are
represented as six hexadecimal numbers: the first three numbers are the coefficient of
V, the second three are the coefficient of 1. The numbers are 32-bit hex words with
the first (leftmost) word representing the coefficients of u%...u5%. The high order hex
digit of the leftmost word is always zero because the maximum degree of an inner
field element is u®®, so the coefficients of u*...u% are always zero. All group orders
are twice a prime (and expressed in decimal).

e Curve: F: 9%+t oy =2+ azx+b a=(1,0);
b = (005552¢4 f6aadabe bdeO6bed, 00639 0d cbb7f183 20870c5 f)
Group order = 383123885216472214589586756827142188667085816405089074
Generating point, G = (z¢,yc), for the Prime Order Subgroup:
zc = (01abb52¢ 4f6aad9f ebde06be, 01e639f0 dcbbT f24 32b870d5)
Yo = (0193a002 e2e52025 7020763, 005013d3 f0366201 92¢1be36)

e Curve: F:y?>+zy=12°+ax+b: a=(1,0);
b— (00a04efb cdf1659d 0d49c059, 01c2d9df 91254¢31 eafd52e8)

17

Group order = 383123885216472214589586756137761950220155838991297966
Generating point, G = (z¢,yc), for the Prime Order Subgroup:

ze = (00a813be f37c¢H977 43527016, 00706677 €449538¢ Tabf54be)

Yo = (008cdbl4 492d3ca7 2019b4ee, Olceeedd 33d70alb 8c007d0S8)

e Curve: F: 9%+t oy =2+ azx+b a=(1,0);
b = (005309ed 85d18b6d 51a62¢48, 00a31¢35 1el35d14 04b07225)
Group Order = 383123885216472214589586756385414896282671114366078962
Generating point, G = (z¢,yc), for the Prime Order Subgroup:
xc = (000a579c Tech28f6 ef8b5chd, 0020f95b acafl3ae abdablad)
ye = (0ldce3c9 7f700af4 0607855b, 01748b8a ffa0le36 4005570a)

e Curve: F: 9%+t oy =2+ azx+b a=(1,0);
b = (00d76879 afA7f96e a977506f, 01e777cd 07439288 fed9ecTf)
Group Order = 383123885216472214589586756639236958209465764861990414
Generating point, G = (z¢, y¢), for the Prime Order Subgroup:
zc = (01b5dale 6bd1fe6b aabddalb, 01f9ddf3 41d0e492 3f927b1b)
ye = (006¢15¢9 7bdd689b 90787 f5e, 0000 fb5d 6Gbee f0D9 15873394)

4 Hardware Architecture and Design

The hardware design is a full VHDL implementation of the Elliptic Curve Optimal
El Gamal Signature algorithm that can be targeted to a Field Programmable Gate
Array (FPGA) or an Application Specific Integrated Circuit (ASIC). The implemen-
tation is a VHDL Register-Transfer-Level design. The goal is to maximize speed and
functionality while conserving area and therefore power.

The overall strategy was first to develop a set of basic GF(2™) arithmetic blocks
(in VHDL) that would be used throughout the design. Basic building blocks include
addition, multiplication, reciprocal, squaring, etc. The design was then built with
these blocks to create the full algorithm implementation for point addition, point
halving, point multiplication, and signature generation. The VHDL implementation
was created using a bottom-up approach. This allowed a great deal of flexibility
throughout the development. As algorithms were improved and/or optimized, the
design was easily adaptable.

18

Secure Signature Generation

Control |[<—

Signature
Algorithm

Remainder

Hash
Function

Figure 1. Top Level Architecture.

4.1 Hardware Implementation

The VHDL implementation consists of mapping algorithms discussed in the previous
sections to hardware functions and optimizing area and speed, where possible, while
allowing user flexibility.

The hardware was organized into four functional design blocks (Fig. 1). The
control block contains all the 1/O interface circuitry and controls the flow of the
digital signature algorithm. The remainder is used for modular reduction in the
signature as well as in the pseudo-random number generation process. The SHA-1
hash function serves a dual purpose in hashing the input message and creating the
pseudo-random number required for signature generation. The signature algorithm
block controls and performs the actual signing of the message.

4.2 Command, Configuration, and Control

The command, configuration, and control circuitry is responsible for all the high-
level control and configuration of the device. It controls the external interface to the
chip, message input and signature output, random number generation control, power
management, and algorithm flow control.

The external I/0O interface to this chip is intended to hang off of a microprocessor
bus. There is a 16-bit address bus, an 8-bit data bus, and control signals. The device
is intended to be used as a memory-mapped device in which communication to the

19

device is via a read and write interface similar to that of random access memory
(RAM). In addition, there are interrupt signals that are used to indicate to the host
system signature status, error status, and signature completion (Fig. 2).

Clk ——

rstN —irq(3:0)
addr(15:0) —» Secure
Signature
data(7:0)«—» Generation
Chip
csN —

weN —

oeN —

Figure 2. Secure Signature Generation Chip Interface

The architecture gives the end user a great deal of flexibility. The device can
be used in conjunction with any microprocessor that contains a memory-mapped
interface. Within the chip, there is a memory map for a full suite of initialization,
configuration, result, and status registers. In this respect, the aspects of the signature
algorithm are programmable. The following parameters can be programmed (i.e.
written) into the Secure Signature Generation Chip.

e Message (up to 512 bits at a time) or Message Digest (based on configuration)
e Generating Point on the Elliptic Curve, G = (z¢,rg)

e Order, 7, of the Point G

e Private Key, s

e Random Number (178 bits) or Random Seed (320 bits) (based on configuration),
used to generate the per-message nonce

e Configuration Variables (message format, random number format, sleep mode,
1st. Message, etc.)

20

In addition, the signature algorithm generates a set of variables that can be polled
(i.e. read).

e Public Key Output

e OQutput Signature (c, d)

The power management, circuitry (in the control section) is essentially a clock-
gating circuit that controls when a certain functional area is receiving a clock. The
power management is used on a function-by-function basis. That is, the clock-gating
follows the circuit function, and, when a circuit is not calculating a value (i.e. idling),
the clock to that respective circuit is disabled. This logic is used to reduce overall

power consumption by controlling the switching capacitance of respective functional
blocks.

4.3 Random Number Generation

There are two methods for generating the per-message nonce needed for the El Gamal
signature generation. The first is to simply input the random number via the 1/0O
memory mapped interface. This allows the user to use a true-random number if so
desired, but has the obvious overhead of needing to input that random number for
each message to be signed.

The second approach is to use the on-chip pseudo-random number generator.
This method follows the updated pseudo-random number generation algorithm of the
Digital Signature Standard [16]. This circuit uses the remainder circuit and the hash
function to create the pseudo-random number. The methodology is to use two 160-bit
seeds to create two independent 160-bit hash values. These values are fed back into
the random seed registers for further creation of pseudo-random numbers. They are
then concatenated together to produce a 320-bit value, from which the remainder
(mod r) is extracted. This value is then used as a 178-bit random number.

4.4 Message Input

There are two methods for message input. The user can configure the device to accept
a 160-bit message digest. This allows the user to generate the hash of the message and
input the message digest via the memory-mapped interface. The hashing overhead
would be under user control.

21

Alternatively, the user can have the on-chip circuitry hash a raw input message
using SHA-1. The SHA-1 VHDL was implemented per FIPS Standard [17] and com-
putes a 160-bit message digest from the incoming message.

4.5 Signature Algorithm

The VHDL implementation of the Elliptic Curve Optimal El Gamal Signature Algo-
rithm is a direct implementation of the algorithm described in Section 2. As with the
full-chip implementation, the control circuit is responsible for operation of the algo-
rithm and data flow between the various blocks. The multiply and remainder func-
tions exist to compute the products and modular reductions needed in the signature.
They are both simple ripple/shift implementations of the mathematical operations.
The block diagram is shown in Fig. 3.

Signature Algorithm

Control ~— Point
—{Circuits —] Multiplication

4T
Remainder

Multiply

Figure 3. Signature Algorithm Architecture

4.6 Hardware Optimizations

There were several design optimizations that were used to improve area and per-
formance. Some of the more prominent and significant improvements are discussed
below.

For multiplication in a finite field (Section 3.1), which operates with a simple shift,
and add, the radix of the multiply was increased to 16. This allowed us to perform the
multiply in 4-bit fragments, which provided a dramatic speed increase with a slight

22

area penalty. This operation was a bottleneck in the design, thus this improvement
provided a speed-up of about a factor of two.

In the Almost Inverse Algorithm (|8], p.50), there were three optimizations that
were implemented. The 1st is a parallel degree comparator circuit, which was opti-
mized for both area and speed. The 2nd optimizes the search for a 1 in the LSB of
a variable by using a “look ahead” technique with 4-bit blocks before defaulting to
operating on the data 1 bit at a time. This increased speed with a very small area
penalty. In a similar manner, the 3rd optimization is applied to the last step in the
algorithm, which divides and shifts the result a variable number of times. This too
performs a “look ahead” using 8-bit data blocks before defaulting to the single-bit
implementation.

The Qsolve Algorithm 5 was parallelized and the depth of the XOR, tree has been
reduced to increase the speed as described in Section 3.2.

The implementation of the SHA-1 algorithm has been optimized to use a shift
register for the main data storage, which reduced the area used, with a corresponding
increase in speed.

5 Hardware Design Results

This design has not been realized in silicon. However, the design has been synthesized
to a target CMOS 0.5um, 5V library. It has also undergone static timing analysis,
timing simulations, and power analysis. The following is a summary of results for
this target library.

Signature Generation Time using a 20 Mhz System Clock:

e Initialization: 0.25 ms
(Necessary any time the Generating Point is initialized and/or changed)

e Signature Generation: 4.4 ms
Synthesized Gate Count Approximations

(target library 0.5um, 5V, 25°C') of major sub-blocks, where a gate is equivalent to
a standard library NAND Cell.

23

e Chip: 191,000 Gates

Control: 27,000 Gates

— SHA-1: 13,000 Gates

— Remainder: 6,700 Gates

— Signature Algorithm: 143,000 Gates

x Control: 15,000 Gates

Multiply: 6,200 Gates

Remainder: 6,800 Gates

Point Multiplication: 112,000 Gates
- Register & Control: 30,000 Gates
- Point Addition: 52,000 Gates
- Point Halving: 29,000 Gates

*

*

*

Critical Timing Path (Setup Timing) (target library 0.5um, 5V, 25°C):

e Critical Setup Timing Path (register to register): 48 ns

The critical timing path is located at the Signature Algorithm Level in the computa-
tion of ¢fs + u (mod 7). Specifically, it is located in the subtract circuit within the
Remainder that computes the modulo r value for the signature. Optimizations are still
being performed to improve timing critical paths that affect the overall performance
of the device.

Power Analysis and Estimation using 20 Mhz System Clock (target library
0.5um, 5V, 25°C)

e Dynamic Power Consumption Estimation: 150 mW

e Static (Idle) Power Consumption Estimation: 6 pW/
The above numbers were generated using the Synopsys Power Compiler (power analy-
sis tool) which uses gate switching data (based on typical simulation results) to gen-

erate power estimates. These estimates are library dependent and are based on the
accuracy of the library models provided.

24

Please note that these design results (performance/speed, gate count, and power
estimation) are only applicable to the target hardware process technology, which
is not the most advanced technology available today, but was the most accessible
and complete for this analysis. If one were to target a more advanced technology,
the design would certainly improve in performance (speed), area (gate count), and
power consumption. Specifically, the Critical Setup Timing Path could significantly
improve, thus improving the overall speed of the chip. Using power P = V2 /R, where
V—=operating voltage and R—operating resistance, which is fixed, lowering V' from 5V
to 3.3V (1.8V') would result in a 56%(87%) reduction in power consumption. At 1.8V,
the estimated dynamic power consumption is 19mW .

6 Conclusions

Low-power hardware implementations of public-key cryptography continue to enable
its use in resource-constrained environments. Wireless applications alone will further
drive this market. In this paper, our VHDL design takes advantage of several op-
timizations of both finite field and elliptic curve arithmetic for the specific function
of digital signature generation. We use hardware techniques to reduce the overall
power consumption by switching the clock off to areas that are not currently be-
ing used. This reduces the power by reducing the effective switching capacitance of
the clock. Our design has been successful in achieving performance attributes that
are attractive to low-power applications requiring strong public-key authentication.
Opportunities to further develop optimized implementations of elliptic curve-based
signature algorithms include the following.

1. Further utilization of extension fields.
2. Additional improvements to point multiplication.

3. Improvement of the worst case setup timing path.

Finally, since our main focus was minimizing power consumption, we note that
we have ignored the problem of side channel attacks. Countermeasures against such
attacks are important and should be the subject of future work. Under the aus-
pices of technology transfer, anyone interested in employing our current and future
developments in their application is encouraged to contact the authors.

25

References

1]

9]

[10]

11

[12]

Kim, C., Oh S., and Lim, Jongin, “A new hardware architecture for operations
in GF(2")”, IEEE Transactions on Computers vol. 51, no. 1, p. 90-92. January
2002.

S. Moon, J. Park, and Y. Lee, “Fast VLSI arithmetic algorithms for high-security
elliptic curve cryptographic applications”, Proceedings of ICCE. International
Conference on Consumer Electronics, 19-21 June 2001, Los Angeles, CA.

J. Goodman and A. Chandrakasan, “An energy-efficient reconfigurable public-
key cryptography processor”, IEEE Journal of Solid-State Circuits, vol. 36, no.
11, p. 1808-20. February 2001, San Francisco, CA.

M. Aydos, T. Yanik, and C. Koc, “High-speed implementation of an ECC-
based wireless authentication protocol on an ARM microprocessor”, in IEEE
Proceedings-Communications, vol.148, no.5, p. 273-9. October 2001.

Nyberg, K. and R. A. Rueppel, “Message recovery for signature schemes based
on the discrete logarithm problem”, Advances in Cryptography — Eurocrypt 94,
Springer LNCS 950, 1994, p. 182-193.

L. Harn and Y. Xu, “Design of Generalised El Gamal Type Digital Signa-
ture Schemes Based on Discrete Logarithm”, in FElectronics Letters Online,
No0.19941398, September 30, 1994. IEEE.

J. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast Key FExchange
with Elliptic Curve Systems”, in Advances in Cryptology — Crypto 95, Springer
LNCS 963, 1995, p. 43-56.

R. Schroeppel, “Elliptic Curves — Twice as Fast”, Midwest Algebraic Geometry
Conference, Urbana, 1L, November 2000.

E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving”, Advances in
Cryptology — Asiacrypt "99, Springer LNCS 1716, 1999, p. 135-149.

IEEE P1363, Standard Specifications for Public Key Cryptography. Appendix
A, 1997.

N. Smart, “How Secure Are Elliptic Curves over Composite Extension Fields?”,
in Eurocrypt 2001, LNCS 2045, May 2001, p. 30-39.

26

[13] Schroeppel, R. “Circuits for Solving a Quadratic Equation in GF[2V]”, in prepa-
ration, 2002.

[14] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications,
1999.

[15] M. Fouquet, P. Gaudry, and R. Harley, “An extension of Satoh’s algorithm and
its implementation”, Journal of the Ramanujan Mathematical Society, vol. 15,
p. 281-318. 2000.

[16] FIPSPUB 186-2 -+ change notice 1.

[17] FIPSPUB 180-1.

27

DISTRIBUTION:

2 MS 0785
T. J. Draelos, 6514

2 MS 0785
C. L. Beaver, 6514

2 MS 0785
R. C. Schroeppel, 6514

1 MS 0785
M. D. Torgerson, 6514

1 MS 0785
T. S. McDonald, 6514

1 MS 0785
R. E. Trellue, 6501

1 MS 0451
S. G. Varnado, 6500

28

MS 1072
R. A. Gonzales, 1735

MS 1072
R. D. Miller, 1735

MS 1072
K. K. Ma, 1735

MS 9018
Central Technical Files,
8945-1

MS 0899
Technical Library, 9616

MS 0612
Review & Approval Desk,
9612 For DOE/OSTI

	Abstract
	Acknowledgement
	Contents
	1 Introduction
	2 The 'Optimal El Gamal' Authentication Algorithm
	2.1 Optimal El Gamal Scheme

	3. Algorithmic Optimizations
	3.1 Finite Field Arithmetic and Field Towers
	3.2 Finite Field Algorithms
	3.3 Point Halving Algorithm
	3.4 Sliding Window Multiplication with Precomputation
	3.5 Choosing Suitable Elliptic Curves

	4. Hardware Architecture and Design
	4.1 Hardware Implementation
	4.2 Command, Configuration, and Control
	4.3 Random Number Generation
	4.4 Message Input
	4.5 Signature Algorithm
	4.6 Hardware Optimizations

	5 Hardware Design Results
	6 Conclusions
	References
	Distribution

