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Abstract 
This report summarizes the  analytical  and experimental efforts for the  Laboratory 
Directed  Research  and  Development  (LDRD)  project entitled “Distributed Autonomous 
Navigation”. The principal  project  goal  was to develop distributed navigation  using 
swarms  of vehicles. Multiple vehicles  would  allow  navigation  with or without the 
availability of the Global  Positioning System (GPS).  Another  unique  thrust of this 
research  was to apply optimization techniques to determine “best” swarm formations for 
navigating specific types of terrain.  The  project  was  partially successful in  achieving 
gains in non-GPS  navigation,  multi-vehicle  trajectory planning, and  the  application of 
traditional flight-based  navigation  methods to ground  vehicles.  A  planned third year for 
the  project  was eliminated due to funding  shortfalls. 
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Introduction 
The ultimate goal  of distributed autonomous  navigation is for multiple cooperating robot 
vehicles to navigate  through  an  unstructured environment in less time and cost, and  more 
reliably than  a single vehicle.  In  past  LDRD [ 11 and  DARPA-funded projects, the 
Intelligent  Systems  and Robotics Center  has  demonstrated  that  a single autonomous 
vehicle  can  successfully traverse to a  goal location in  moderately  rough  terrain  using 
differential GPS. If, however,  the  GPS  signal is lost or the vehicle gets stuck, the 
mission is often aborted  and the vehicle is stranded. This is an  unacceptable ending in 
many tasks, especially those of  military  importance such as surveillance, target 
acquisition, physical  security,  and logistics support. In these emerging threat situations, 
the mission must  be  completed  with  the  highest probability of success possible. 

It  was  proposed to develop terrain- 
aided distributed autonomous 
navigation  hardware  and  algorithms 
that  will  allow  a  team of robot 
vehicles  (Figure 1) to traverse  an 
extremely rough  terrain  without 
being GPS reliant. The ultimate 
goal  was to demonstrate  that this 
team of  robot  vehicles could 
successfully  navigate  through  a 
dense forest or deep canyon  using 
localized sensing and 
communication and  a  partial  map of 
the environment. 

Figure 1. Swarm RATLER vehicle  on  test  terrain 

This was to be done through  the  enhancement of several unique capabilities that Sandia 
has  developed in the areas of terrain-aided  navigation  and swarm robotics.  In  most 
terrain-aided  navigation  systems, altitude measurements from a single vehicle are 
correlated against  a digital elevation map to determine position. These solutions require 
many  measurements  over  a substantial length of terrain, which is impractical for most 
land and  water  vehicles. To compensate, we  investigated  the  application  of  additional 
features such as terrain gradients, along  with  the  use  of swarms of communicating 
vehicles. This feature vector,  combined  with  the relative 3D positions of each vehicle, 
provided  a  geometric template that  was  correlated  against digital map data. 

Another focus of this research  was to apply distributed optimization techniques to 
determine optimal swarm formations for navigating  through specific types  of  terrain. 

During  pursuit  of the aforementioned  goals in this project, one major change in  research 
direction was  made. Control Subsystems Department 2338 was enlisted to add  proven 
missile navigation techniques to the mix  of  aforementioned  approaches  as  a  means to 
provide quantitative measures of position  accuracy  and  improvement.  During the first 
year  of this cooperative effort, the Robotics Center would explore two areas:  a) 



techniques for relative positioning between  vehicles  using altitude measurements,  and  b) 
techniques for performing  terrain  aided  navigation  given  a small swarm of  vehicles  that 
are collecting a limited number  of these measurements. During the remaining  two  years, 
as  part of the  overall effort, Dept.  2338  would build on these two areas by investigating 
aided inertial navigation techniques that  would  provide capability for periods  when GPS 
is denied  [3]. 

The Problem 

Vehicles  must  have  information to navigate  from one point to another.  And in the 
absence of GPS, the information must come from other sources.  Terrain-aided  navigation 
(TAN) is one way to 
navigate  without GPS, 
but in some applications elevation 
it may be inadequate. 
For example, a single 
vehicle  may  require  many 
measurements  over  a 

I where are we? 

I A 
large area  of  terrain to 
estimate its position. To 
reiterate, this is 
impractical for land 
vehicles, so to 
compensate we  proposed 
the  use  of  many  vehicles 
and more sensors. 

latitude V I  
Figure 2. The  Distributed  Navigation  Problem 

The primary  technical risks associated with distributed autonomous navigation are in  the 
areas of sensing and relative positioning, robust inter-vehicle communication, and terrain 
map  availability. Swarm RATLERTM  hardware  [2]  platforms from the Robotics Center 
were  used to minimize hardware  development risks. 

The project  was  organized  with approximately equal milestones for analysis  and 
hardware  development during its intended 3-year  term. These milestones are summarized 
as follows: 

Year 1: 
1. Research  and select altitude sensor; initial integration into Swarm RATLERTM 
2. Survey test  area 
3.  Initially demonstrate position estimation using  terrain data from multiple vehicles 

1. Complete sensor integration 
2. Complete terrain correlation algorithm 

Year  2: 

L 
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3. Demonstrate multiple vehicles  using  terrain-aided  navigation to traverse rough 
terrain  at Sandia’s Robotic Vehicle  Range 

4. Develop inertial navigation error analysis  tool 

1. Complete optimal  formation  algorithm  (based on terrain, task, etc.) 
2. Demonstrate terrain-aided  navigation of multiple vehicles  in  challenging  area OKI 

3. Couple inertial navigation  analysis for multiple vehicles 

year 3: 

Kirtland Air Force  Base  without GPS. 

1. 
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Terrain  Modeling 

As stated  in the original proposal, a single vehicle,  even  when outfitted with  a  wide  array 
of sensors, can encounter some ambiguity  in its estimated position.  Therefore,  the 
premise of this research effort is that  a cooperating system  of  vehicles  can minimize some 
of  the  ambiguity  of  the estimated vehicle positions by sensing a  unique  terrain feature 
(i.e., altitude) at  multiple locations. It  was envisioned that  a  group  of Swarm RATLERTM 
vehicles  would  be  used to record  and difference inaccurate absolute position 
measurements to a  specified  swarm  member.  Having done this, an accurate “template” of 
relative (to-a-base)  vehicle positions, would  result  that could be  compared  with  the 
terrain  model to find possible location matches. Once candidate locations were 
established, moving  the swarm in  an expeditious manner  would  hopefully eliminate the 
false candidates. A simulation would  be  developed  beforehand to predict  numbers  of 
vehicles, allowable sensor errors, and  the extent of  subsequent  vehicle  moves  in order to 
determine the vehicles’ template location as quickly as possible. 

To begin testing this approach, it was  decided  that  a  well-characterized  terrain  testbed  be 
employed for both  algorithm  verification and sensor calibration in  the 2nd and 3d years  of 
the  effort. 

GPS-RTK survey, 25,000 pts elevation data 

Survey  interpolated to lmt resolution 

b . ‘I, . Interpolated data  segmented for .- . , simulation  analysis, 72x127 grid 
3 1645 

. .  
.. , 

80 
~. . 

60 
100 

y coordinate - meters 0 0  x coordinate - meters 

Figure 3. Development  of  terrain  model  (moving  clockwise  from  upper left) 
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A GPS survey,  employing  the  Real-Time  Kinematic  (RTK)’  method,  was commissioned 
with  a local Albuquerque firm, Precision  Surveys, to map the motocross course adjacent 
Robotic Vehicle  Range at Sandia National  Laboratories.  Variations in elevation covered  a 
15-meter  range.  Approximately  25,000  points  were  taken and subsequently  used to 
generate  a  1-foot  interpolated  digital  terrain elevation data (DTED)  map  [3]. The 
transition from terrain to elevation model is shown  in  Figure 3. A  rectangular  portion of 
this surveyed  terrain  was extracted for  analysis  in  MATLAB  [4]. 

Sensor  Selection 

As  mentioned  previously,  our  goal  was to “ . . . minimize some  of  the  ambiguity  of  the 
estimated vehicle  positions  by  sensing  a  unique  terrain feature (i.e., altitude) at  multiple 
locations.’’  After  lengthy discussions on possible sensor choices, the  selection  was 
narrowed to baro-altimeters  and  the  use  of  uncorrected GPS, for the sake of expediency. 
The latter was not felt to contradict the original intent of the project  in  that  the 
measurement  was  sufficiently  degraded  in  an absolute sense. 

A representative survey of commercial-off-the-shelf  baro-altimeters  was  accomplished 
[7], including bench  testing. Full documentation  of these results is provided in Appendix 
A: Altimeter Search for Distributed Navigation. This effort concluded  that  the 
deployment of these devices  was  problematic due to difficulties in “...maintaining a 
stable reading and sealing  the  reference  port . . .”, and it was felt that  said  devices  were too 
sensitive to be  used  on “ . . . a  rugged  vehicle  traversing  rough  terrain”. 

From these results, hardware sensor usage  defaulted to uncorrected GPS. 

“RTK is currently carrier phase  observations  processed  (corrected) in real-time resulting 
in position coordinates to a 1-2 centimeter accuracy level. RTK, consists of  two or more 
GPS receivers, three or  more  radio-modems,  a ‘fixed-plate initializer’, and  a  handheld 
survey data collectodcomputer (TDC1). In RTK, one receiver occupies a  known 
reference station and broadcasts  a  correction  message  (Compact  Measurement  Record or 
CMR2) to one or more  roving  receivers. The roving  receivers  process  the  information to 
solve the WGS-84  vectors  by solving the integers in real-time within  the  receiver to 
produce  an accurate position  relative to the  reference station. Precision of RTK is +/-2 cm 
+ 2ppm, with  1  ppm equating to 1 mm  per  1 km (Trimble Navigation,  1993).  RTK, as 
with traditional kinematic GPS procedures, currently requires continuous satellite lock to 
be  maintained. This restriction allows for RTK to be  most effective in a  non-canopied,  no 
obstructions environment”. 
(htt~://wwwsni.ursus.maine.edu/nisweb/spatdb/acs~ac94105.html) 

11 

~ ~~ 



Terrain  correlation  and  localization 

The method  developed in this study correlates estimated multiple vehicle positions to 
digital  terrain data in order to plan the minimum  number  of individual motions to update 
location estimates to converge to the true  “map”  location  of all vehicles. This approach 
will  measure  the  ‘relative  positions of all the vehicles to a base, using  uncorrected GPS 
measurements  and correlate that “template” to the terrain  map to generate candidate map 
registration  values. A slope correlation is then done to assess which  vehicles  and 
directions to move. A majority  of  the following description is provided  in  Ref. [9]. An 
interesting aspect to this approach is that  the  vehicles  will be correlated to the  map,  which 
may  have small differences  from  reality. Since they  have to navigate  with  respect to the 
map, this was felt to be  the  preferred  goal. 

It  was  assumed  that  a swarm of mdbile robots was  randomly  positioned on the  terrain  and 
that individual members  were able to generate biased, noisy absolute location 
measurements  of  the terrain, but  accurate relative measurements  with  respect to one of 
the vehicles  (base). This relative positioning of the vehicles creates a  “template”  (Figure 
4) that can be rather quickly compared to the DTED data to determine various possible 
locations of the  vehicle 
ensemble. 

Vehicles  randomly 
distributed  on terrain .’ ; ”,. base  vehicle 

/ Figure 4. Vehicle  Template for 
Terrain  Correlation  on  DTED ,,,. ’ h’ . .... :- 
model 

’. 
.. . .. . . 

’.. . .  
, .  

A root  sum  squares 
(RSS)  of  the  differences 
between  the  measured  and 
map relative altitude 
counterparts are computed 
for all possible locations of 
the  vehicle template on  the 
map. A lower threshold is 
set  on  the  RSS  differences 
to limit the possible vehicle template 
candidate locations. 
Figure 5 depicts a starting scenario for five vehicles on  a  top-down  view of the  terrain. 
The solid circles represent the true locations of the vehicles. The stars represent five other 
possible locations on the map of the “template”. The dark stars are possible locations of 
the  reference  base  vehicle  while  the lighter ones represent the other members.  (Note  that 
one of the candidate locations does correspond to the true  location.) The rectangle 
represents  the  search  area for the base vehicle  that  maintains all vehicles  within the map 

\ 
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ior any location in the search  area. 

A subgrid  of four DTED model  points  around each possible vehicle location is 
established for local slope data and  correlation  products. Slope data was  acquired  through 
2nd order curve fits of  the  map  north-south  and east-west slopes. Multiplicative products 
of this data were  computed 
for a  given  vehicle over all 
of the subgrid  positions 
amongst  only unique 
candidate pairings  (i.e., 
candidates 1-2,l-3,2-3, etc). 
(Though four points were 
used for the subgrids, any 
size uniform subgrid could 
be chosen, incurring  a 
proportional penalty in 
computation time to subgrid 
size [SI). The vehicles 
demonstrating the  most 
negatively  (i.e.,  minimum) 
correlated product sums in 
the  two cardinal directions 
were chosen. 

3 candidate  templates  shown  (including  true) 

w \  
/I50 

4 0 w I w  

y coordinate - mete rs v 0-’0 x coordinate - meters 

other  collective  member 
candidate  locations 

Figure 5. DTED model  with  candidate  template  locations 

Once they  had  moved,  a  new  “template”  in  effect  was  formed and the relative positions 
again  measured via altitude differences. The goal  was to keep  moving  the  vehicles such 
that the new positions would  produce  greater  RSS  measurement errors among  the false 
candidate locations and  would  henceforth be eliminated. The cycle  of  vehicle  movements, 
measurement, relative distance RSS-value-thresholding  and slope correlation was 
repeated until a single set  of  vehicle locations demonstrated  a suitably small error. 

The algorithm for the position template search  and elimination is enumerated as follows: 

1. Measure relative positions,  form  template  and  scan  map for possible collective 
locations.  (Initially,  measure relative latitude and longitude as well to establish 
template). 

2. Prune locations based  on  thresholding relative altitude (h) errors 

13 

N vehicles 

( hrelative measured - hrelarive from IMP I threshold 
i=l  jth candidate position 



3. 

4. 

5. 

Compute slope (& correlation product sums over the  4-point subgrids between 
unique candidate pairings for the north-south  and  east-west cardinal directions 
using  the remaining candidate locations 

move  the  two  vehicles that have the smallest respective Gi values  a  designated 
number of grid spacings positive in the two cardinal directions (i.e., east, north), 
where 

M -I Candidates M cMdidales 4 subgrid points 

Gi = c c{ikmmS;,il,,, i = 1 ,..., N vehicles 
k = l  I=k+l  m=l 

The template  has  now changed shape by  the  two  vehicles  that  have  been  moved. 

Modify  the  remaining candidates by the moves in step 4, re-measure relative 
altitudes for the modified  remaining candidates, and go to step 2 

Figure 6. Terrain  model  used  in  slope  correlation 

Figure 7 shows the  progress  of  a  typical simulation. The true start locations of the swarm 
are displayed  in the upper left. The initial map search (upper right)  reveals 19 possible 
positions of the swarm to start. The simulated localization converges in  4  moves  and  the 
summary of vehicle  moves are displayed  in the lower right corner. 

Extensive testing of this scheme  with  the  actual  vehicles  on the actual  terrain  revealed 
less than  satisfactory results (i.e., chattering behavior and lack of  convergence) due to the 
following factors. 

14 
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1. The actual  measurements of relative  positions (using uncorrected GPS) appeared 
to be far noisier  than  modeled  via  adding  uniformly distributed noise to true 
locations. 

directions on  actual  terrain  was  problematic  and defaulted to the  tester’s  best 
guess. 

2. Moving the  vehicles an accurate  number of grid  spaces and in the correct 

3. Test terrain  and  modeled  terrain  could  differ over a short time. 

It is suggested that future work  with this algorithm combine previous relative vehicle 
locations with current locations in  the  sum-of-squares criterion for pruning false locations 
to enlarge and enhance the  terrain  map  “signature”  that is being compared. The template 
will increase in size as  the  product of number of vehicles  with the number  of  moves. This 
“enlarging  template”  approach is a  way to amass the amount  of data sampled in flight 
weapon,  terrain correlation applications. 

15 
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Optimal  Deployments for Multiple  Vehicles 
Optimal deployments for multiple vehicles  were  investigated via the  steepest-descent  (i.e. 
gradient  method) to minimize local vehicle  position  metrics. The example of  a large span 
communications network is a  meaningful  application of coordinated movements.  It is 
desired to span  a distance with  a  swarm of vehicles such that signals received  from  a  goal 
point are transmitted  back to a  start  point  by maintaining vehicle-to-vehicle line of sight. 
It is necessary to maintain  a line of  sight  back to the  start for said transmissions. For  a 
goal point that is visually  obscured  from  the  start point, it  may  be  a  lucky  happenstance 
that  arbitrary  deployments  of  vehicles  may  be able to provide this connectivity. To 
orchestrate the  deployment in an  optimal sense, we seek to minimize the: 

1. fore and  aft  distances  of  a  given  vehicle from its neighbors, 
2. altitude of a  given vehicle, and 
3. positive elevation changes  between  vehicles  (i.e.,  obstacles). 

A simulation was  developed to test this algorithm.  A  grid  of hills, which  deny line-of- 
sight  between endpoints, was  placed  on  a  landscape.  A  set of vehicles  was  deployed  from 
random locations close to the start point  and  moved  in  a stepwise fashion according to a 
gradient scheme, satisfying the above-enumerated  goals. If only the first of the  above- 
enumerated  goals is used,  the  vehicles  tended to spread themselves evenly from the start 
point to goal  in  a  straight line, violating  goals 2 and 3. The second constrained them  away 
from climbing hills (violating 3), and the third  insured  that  they  moved  where there were 
no obstacles (i.e., clear line-of-sight) between  vehicles.  Applying the last two metrics  as 
penalty functions in an optimization scheme  provided  a  deployment  pattern  that  would  be 
ideal for establishing the  communication  network to relay  information  over considerable 
distances. 

An example deployment is shown  in  Figure 4 starting from a random arrangement  of six 
vehicles. The terrain is composed of a  grid  of 9 hills that obscure the start point from 
observation of the goal. 

4 
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after 10 steps after 40 steps after 100 steps - local line of  sight  deployment  completed 

Figure 8. Steepest  descent  deployment  of  multiple  vehicles  using  altitude  and  line-of-sight  constraints 

Appendix C provides more complete coverage of the gradient-based  guidance. 



Navigation 

Control Subsystems Dept. 2338 supported this effort by investigating aided inertial 
navigation  techniques  that  would  provide capability for periods  when GPS is denied. 
These efforts complimented  a 2nd research effort [ 13 in autonomous navigation  and the 
specific developments are more completely described  in this reference.  A  brief,  reiterative 
description of this work follows: 

The navigation effort configured  an inertial navigation  system (INS) that  used  a closed- 
loop Kalman  Filter 
configuration  (Figure 9). This Receiver 

arrangement  estimated 
instrument biases  and errors 
using  GPS inputs and inertial 
measurement  unit (MU) HAGAR 

computations. These were  fed Error  Estimates 

back to correct IMU parameters 
during vehicle  navigation. Reference:  Jordan,  J.D,  Dept. 2338, personal  communication,  Feb 2002 

Figure 9. Closed-loop  Kalman  Filter INS used for HAGAR 

GPS Signals - GPS 

I 

Extended 
Kalman Filter - 

Force  and 
Moments from- 

Inertial 
Navigation 

This configuration could be  analyzed  and  tuned via the NuvCov program (See Appendix 
B for a  user’s  manual)  developed  in  Dept. 2338. This code [ 101 allows one to do tradeoffs 
on both  accuracies  and  types of position  and attitude measurement components used  (i.e., 
IMU’s, compasses, odometers, tilt meters, GPS receivers).  Borrowing extensively from 
Sandia missile applications, the code uses detailed operational specifications of candidate 
hardware  navigation components and is directed at  allowing one to see isolated (or 
combined) component characteristic effects on  position estimation performance. 

Figure 10 displays NuvCov output of the position error reduction  of  a  representative 
missile-grade INS with GPS updating  applied to a  vehicle  terrain  trajectory. The position 
error variances  in  three axes have 
been  used  as  semi-major axis 
dimensions of  a time dependent error 
“ellipse”.  Note  that  the ellipse 
initially shows more error in the 
altitude direction and  that  the  use  of 
Kalman filtering “circularizes’’ this 
error during  the  trajectory. Circular 
position errors imply  that you have 
reached  a point where  the error 
reduction process is  proceeding 
uniformly  in all directions indicating 
equal position  estimation  accuracy  in 
all directions (the ideal condition). 

initial ellipsoidally distributed position errors 
, .  

.. .. 
” . 

relallvs longnude (mt) 

Figure 10. Navigation  position error reduction  history 
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Simulated nominal  trajectories  were  developed  in  MATLAB [4] and are described in 
detail in [ 11. 

Milestone  Schedule 

This section  summarizes  the  success of the  stated milestones listed in The Problem 
section. 

Year 1: Sensor  research  and  initial  demonstration of terrain-aided  navigation 
Altimeter  sensors  were  researched  with disappointing results for other  than 
uncorrected  GPS. The use of uncorrected GPS still allowed  the  premise  of  the 
correlation of vehicle-measured  positions to a  map.  Vehicle correlation was 
demonstrated  in  simulation for arbitrary  numbers of vehicles.  The  simulated 
algorithm also showed  sensitivity of map correlation to sensor noise. 

Year 2: Traversal of terrain at Sandia’s  Robotic  Vehicle  Range  with  chosen  sensors  and 
algorithms.  Development of inertial  navigation  analysis  tool. 

Use of the TAN  algorithm  on  actual  terrain  demonstrated  the sensitivity of the 
“search” to sensor noise, map differences, and  achieving  prescribed  vehicle 
motions  on  terrain.  Additional  work is needed  on  the algorithm to increase terrain 
signature. The inertial  navigation  analysis tool, NavCov, was completed. NavCov 
is able to provide  navigation  error  predictions  based  on  a  wide  assortment of 
modeled  hardware. 

3: Development of optimal formation. Demonstration of terrain-aided  navigation of 
multiple  vehicles in challenging  area  on  Kirtland Air Force  Base  without GPS. Coupling 
inertial  navigation  analysis to multiple  vehicles. 

Year 3 work  cancelled due to funding shortfall. 
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Appendix  A.  Altimeter  Search  for  Distributed  Navigation 
Provided  by  Maritza  Muguira,  Intelligent Sensor Systems Department  15212 

Background 

Surface height  (or  gradient) is one of the  crucial  measurements  necessary for the 
distributed navigation  concept to pinpoint  position  without the use of GPS. Accordingly, 
we are searching for a sensor, which  will  detect  the absolute or relative height  of  the 
vehicles  in  the  platoon.  Atmospheric  pressure sensors were indicated as a possible aid to 
determine relative or absolute height  by  comparing relative sensed individual vehicle 
pressures or by correlating the  temperature  compensated  pressure  readings to the  expected 
pressure for a give elevation. For  the  first  year’s milestone, we  will  validate the concept 
out in the  motor cross by Sandia’s RVR. In this terrain, there is an  approximate 
maximum of fifty feet  elevation  range. Thus, a one-foot elevation error, which  represents 
two  percent  of  the total range, is necessary for the distributed navigation simulation to 
converge upon a reasonable  amount of candidates within a reasonable  amount of time. 
The RVR is at  an  elevation  of  approximately 5200 feet with  an atmospheric pressure of 
about 12.13 psi  (836.6  mbar).  Approximately 0.00054 psi  (0.037  mbar)  represents  an 
elevation difference of  one foot. 

Off the  Shelf Sensors 

Off the shelf sensors use  various  pressure  references  and fall into one of these categories: 
gage, differential, sealed  gage,  and  absolute.  The  gage sensors use the local atmospheric 
pressure as  the  reference.  Differential sensors measure  the pressure difference between 
two input ports. Sealed gage sensors reference  standard  atmospheric  pressure  at  sea level. 
Absolute  pressure  sensors  use a vacuum (zero pressure) as a reference. The desired 
accuracy  plays  an important role in  the  determination  of  the sensor type,  as  accuracy is 
typically a function of  the full scale output  (FSO).  By  using a reference  pressure close to 
the expected atmospheric  pressure  the error can  be  greatly  reduced.  For example, a 0 - 
15  psi absolute pressure sensor with  an error of 0.5% FSO will have a 0.075  psi error 
while a gage sensor with a 0.036 psi  operating  range  and 0.5% FSO will  have a 0.00018 
psi error. 

A few  pressure sensors with acceptable accuracy, size, weight  and electronic output were 
identified. Vaisala  quoted $795 per 800 - 1060  mbar  analog  barometer  with +/- 0.000435 
mbar  accuracy.  Nova  Lynx sells a 200 mb  span (9 13 - 1 1 13 mb)  analog output 
barometric pressure sensor  with  +/-0.00029  psi  accuracy for $5 10.  Although  that 
pressure span  is too high for this elevation, other  ranges are available upon request. Data 
Harvest offers a barometric  pressure  sensor  with  an 800 - 1100 mb  range,  but  without  an 
electronic output. Heise’s DXD Series Precision Pressure Transducers have a 0.001 psi 
accuracy  with 5 psi full scale for $825.  Weston  Aerospace  Ltd. quoted us $2640 for  the 
DPM  7885-1B  with a range of 0.5 - 19  psi  and 0.00185 psi  accuracy. Setra’s Model 470 
barometric pressure sensor  reads 800 - 1100 mb with 0.000087 psi  accuracy  and costs 
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$1250. Data  Instrument’s SURESENSE Ultra  Low  Pressure Sensors exhibit a  maximum 
0.25% linearity, hysteresis error and cost only $144 a  piece. The SURSENSE sensors 
were  out of stock when  we called Honeywell,  and  we  were  required to place a  minimum 
order of  10. We were able to borrow two 1 inch water operating range differential 
SURESENSE sensors  and  two  1 inch water  gage  SURESENSE  sensors  in order to 
conduct  some  preliminary test to determine the stability of the atmospheric pressure 
readings  versus  height.  Note  that Silicon Microstructures Incorporated  makes some 
sensors (SM5310, SM5350, SM5410, SM5450, SM5501, and SM5502) similar to Data 
Instrument’s  SURESENSE sensors. We also identified some  wind sensors available 
from  Vaisala  should we have difficulties isolating the sensor from the wind  and  need to 
compensate the  pressure  readout. The table below summarizes the candidate sensors and 
their characteristics. 

i 

22 



t 

Custom Seal 

a  screw that was coated with sealant gel  while  the testing port (port A)  was  open to 
sample ambient  air.  It  was difficult to maintain the seal as we adjusted the volume,  and 
once the seal was  maintained  the sensor would drift slowly to either saturation limit. We 
also tried using  a  very  long  tube  (approximately 40 ft.) such that sealing the end would 
not cause such a large volume  change relative to the entire reference  volume,  but  again 
we  would  see the readings  drift  until the sensor would saturate. We could not  understand 
why this was  happening, and we  decided to test the sensor with  a Sono-Tek syringe  pump 
to verify  that  the  sensor  itself  was stable. We had to adjust the  reference  volume  with the 
pump,  and  we finally stabilized the sensor after three days. 

Experiments  with  Garmin’s  etrex  Barometer 
We also tested with Garmin’s etrex barometer, and  a  few samples showed  about  a 1.5 feet 
error. However,  we  needed to collect more  samples for conclusive results. 
Unfortunately, currently Garmin does not  provide  a  method to extract the  barometric 
pressure  readings electronically such that  testing  would be extremely tedious. 

Recommendations 
After experiencing so many  problems  maintaining  a stable reading  and sealing the 
reference  port,  we  believe  that it would  not be wise to use such a sensitive sensor in  a 
rugged  vehicle  traversing  rough  terrain. Chris Lewis  suggested  that  we consider using  a 
range finder along with  an inclinometer and compass to determine the gradient of the 
vehicle. Surface gradients could be  used  rather  than elevation. Gradient measurements 
would  be susceptible to false readings from elevation changes  in the vehicle due to debris 
such as  rocks or bushes, so we  could  use  the  range finder to locate spots where the 
vehicle is sitting level on the ground  regardless of the gradient. The range finder can be 
rotated  about the vehicle  in  a circle, and all of the readings should be equal (except in the 
case where  an obstacle@) is located along  the  scan line) if  the vehicle is sitting level. 
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Appendix 6: Gradient-based  motion  planners  to  insure  line-of- 
sight  communication  for  mobile  robot  collectives  traversing 
arbitrary terrain[lZ] 

Introduction 

It is desired to use  a mobile robot collective to form a communications 
network  between  a  base station and  a  goal point, which are separated  by 
arbitrary  terrain. Constraining the movements  of  the individual collective 
members is the  tacit assumption that  line-of-sight (LOS) must  be  maintained 
between  adjacent  members  and  that communication signal strength varies 
inversely as  a  power of distance, l ldi" , between these members (see figure 
below,  courtesy of J. Feddema,  Dept. 1521 1) 

Problem  Formulation 

A suggestion for motion  generation  by J. Feddema,  Dept  1521  1  would  employ  a 
simple gradient  scheme to have the vehicles migrate such that each vehicle ( i )  tries to 
minimize a  power  of its straight-line distance (regardless  of terrain) to both adjacent 
neighbors. The initial performance  metric to be  minimized in this effort is 

for i = 1, ..., n 
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Vehicles 1 and n will  use  the  base  and  goal  positions  as  their  respective (i-1) th and 
( i + l )  th neighbors. It is assumed  that  each  vehicle  has  perfect  knowledge of its 
location (xi, yi  , z i  ). The  simple  gradient  form to update  a  vehicle  position  coordinate, 

g,, based on minimizing  metric, Vi, is ti ( k  + 1) = ti ( k ) -  a 3 1  for time step, k + l ,  
’ti k 

Using  this  form, the gradient  expressions for ground  coordinate  updates  (developed 
by J. Feddema)  are: 

+m(Yi(k)-Yi+l(k))((x,+l(k)-Xi(k)) 2 + ( ~ i + l ( k ) - y i ( k ) )  + ( z .  E+l ( k ) - z i ( k ) )  2 ) (m12t1 

for i = 1. .... n 

Values of rn between 2 < rn < 2.5 provide stable gradient  operations. rn = 2.1 was  used 
in this study. awas set to 0.1 for similar reasons.  Successive  updates  were  generated 
without  regard to vehicle  performance or consistent  time  intervals.  Consistent with 
the  gradient definition, the  update  “steps” are initially  large  and  get  progressively 
smaller as the  minimum “network is  achieved. 

The  vehicles  “moved” over a normalized world  expanse of terrain  whose  dimensions 
were -2 < (x, yjWorld< 2. A set of vehicle positions, (xi, yi) was initialized (k  = 0) 
using  random,  uniformly 
distributed  values  contained 
within  a  square of 0.8 units basis “hills” 
on  a side centered  about  a 
specified base station within ii. a 
the world  “expanse”. byx 
Between the base  station  and 
a  specified  goal point, “hilly” ‘41 -r, world expanse 
terrain, in  the  form  of  radial “w. 
basis  functions, was used  to hase station 
block  clear LOS. The radial 

randomized 
vehicle  locations 
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basis  function  form  gives  elevation, z(x, y) = ~q,-b~[(r-rhr~)2+(y-rby~)i] as a  function of 
I 

i=l 

ground  coordinates, x,y. 1 is the  number of radial  basis  “hills”, (rbx, rbyi) are  the 
ground  coordinates of the i-th  hill  center, Ai is the  “hill”  height,  and bi regulates  the 
hill  steepness. 

Results 

A collective of 6 vehicles  was  used to demonstrate  communication  network  formation. 
The  base  station  and  goal  ground  positions  were  (-1.5, -1.5) and (1.5,  1.5)  respectively. Ai 
= 10, bi = .25, and  nine  radial  basis  hill  centers  were  distributed  evenly  on  a  portion of 
the  world  grid  spanning -1.25 <(x, y)w0,1d<1.5. Network  completion  was  assumed  when 
no vehicle  changed  position by more  than loA3 units.  The  evolution of a typical run 
follows 

1 
i 

Z at 4 steps 
, ... 

= at8steps x .  

. ‘i 7 
goal 

Straight-line, 

base station, “ 5  j_ 

.2 .* 

at 135 steps (convergence) 

As is plainly  evident,  the “network generated from this  formulation is a  straight line 
from  base  station  to  goal  with  vehicles  approximately  evenly  spaced.  The  downside  to 
this  strategy is that  there is no  consideration  for  elevation  or  maintaining LOS, which 
allows  neighboring  vehicles to be situated  on  opposite  sides of the  same  hill  at  varying 
elevations. 
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If elevation is  an issue, the term - zi‘Wezi (where We is an  arbitrary  weight)  can be 

attached to the  previous  minimum distance metric, V, , to drive elevation to zero.  The 

1 
2 

gradient step form remains the same, but the gradient forms are altered  according to 

The gradients 2,L are computed by  differentiating  the z(x,y) radial basis function. In 

field practice, these derivatives would  need  to  be provided from a combination of 
inclinometer and azimuth sensor  readings (unless map data was available). A common 
weight, We = ,005, was  used for all  vehicles.  Results from this type  of  network  generation 
are shown  below. 

az.  az. 
axi ayi 

at 10 steps at 40 steps 

vehicles lie along 
curved  line 

)I, 
a, P; 

&1 

.- . .*, 
I- 

I .* 

at 165 steps 

Minimum  distance + elevation-penalty network formation 

Use  of the elevation penalty  coerces the vehicles to “skirt“ the hills as they form the 
“comm” link. As the link is finished (165 steps), the vehicles assume positions  that  are 
compromises between maintaining equal distances to adjacent neighbors  and  attaining 
zero value elevations. The addition of the elevation penalty prevents them from attaining 
the straight-line configuration  seen  in  the “minimize distance only” solution. A straight- 
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line solution  at  zero elevation would  position the vehicles in the  valleys  between hills 
causing a disparity in intra-vehicle distances, as  they  progress  from  valley to hill and 
beyond. The “comm” link line is bent to satisfy  both  desired  behaviors (to the  degree of 
the relative weighting). Unfortunately, LOS has still not  been  maintained  as  adjacent 
vehicles are still obscured  by intervening hills. 

LOS can  be  attained  within  the  same  gradient step formulation by  adding  a  final  term to 
be minimized  in  the  performance  metric for the ith  vehicle. This metric  would  assume 
knowledge of terrain  elevation  on a straight  line  between  adjacent  vehicles at  a  user- 

specified  number of points.  Adding  the term, -5 z~W,,z,, to the total metric  will 

provide  a gradient dependence  on inter-vehicle terrain. p is the number  of equally spaced 
intermediate points  between  vehicles i and i+l (as  well  as  between i and i-l), zq is an 
intermediate point  with  vehicle i as  the center point of the set, and Wlos is an  arbitrary 
weight. This term will  tend to drive elevation at  the 2p discrete points to zero. The 
gradient forms, including this final term are 

1 
2 

az.. azii 
axi  ayi The gradients 2, -were  computed  as - 

azii az, 
axj ’ ay where the partials - - are computed as  described  in the elevation penalty  discussion 

ax 
using the radial basis function. Cross derivative terms of  the  form  -were  ignored. 

ayi 

A  common  weight, Wlos= .005, and p = 3 intermediate points were  used for all vehicles. 
Results from a  network  generation  based  on  the three effects (distance, elevation, LOS) 
are shown below. 
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, z  A 

1 

0’ 

L 

LA 

A 

At 20 steps 

Vehicles  migrate  to  edge 
.) 

/of hills  to  maintain LOS 

-1 7 r., - - 
yw d.5 

-15 x *  
.2 -2 

At 10 steps 

At 60 steps 

“Minimum  distance + elevation  penalty + maintaining-LOS”  network  formation 

The addition  of  the LOS term supplies this dependency in a similar “weighted”  fashion  as 
was done for the elevation penalty. The combination of all three effects cause the  vehicles 
to move in the valleys  between hills, acquiring just enough elevation to maintain LOS, 
while attempting to equalize inter-vehicle distances. The final  “comm” link (at 60 steps) 
shows a viable vehicle  “collective”  configuration to establish a  base-to-goal link. As 
mentioned before, one caveat to the use  of this effect is that it presumes you have a  way 
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of obtaining more  than just local  terrain information. Possibly the possession of accurate 
on-board  topological  maps  would justify its use. 

Summary Observations 

The gradient step forms generate low-burden computational forms to effect vehicle 
movement. Relative weighting  between the penalties (distance, elevation, LOS = l., We, 
Wios) in the performance metric, step size control (via a?), and the number  of  inter-vehicle 
intermediate points, p ,  for LOS computations are tunable parameters  that  can  provide  a 
myriad  of  “marching”  behaviors. In the field, distance and elevation gradients could be 
obtained from inter-vehicle communications and  local  measurements. LOS gradient 
requirements  would  necessitate elevation mapping  of the intended  network  terrain. 
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Appendix  C:  Users’  Manual  for  Navigation  Covariance  Analysis 
Code  (NavCov) 

8 

r 

USER  MANUAL 
for the 

NavCov  Covariance  Analysis  Code 
developed for the 

Distributed  AutoNav  LDRD 
by  J.D.  Bradley,  Control  Subsystems  Department 2338 

version 1.0,5/1/2002 

This manual describes the function and use of  the  NavCov covariance analysis  code. This 
code is a  set of liberally commented  Matlab scripts and functions derived  from the work 
of previous projects  and oriented for use in defining inertial navigation  performance  and 
error budgets for land vehicle applications. 

INTRODUCTION 

The purpose of a covariance analysis code is either to predict the statistical performance 
of some aided inertial navigation  system  under consideration without extensive modeling 
and simulation, or conversely, to determine the required error budget of an  aided  inertial 
navigation  system to meet  some  contemplated  performance  goal. This covariance 
analysis code utilizes several tools, including: 

1)  a  model  of inertial navigation errors, consisting of a  set of linear differential equations 
describing the behavior  of  both  the  general errors and those errors associated  with the 
accelerometers  and  gyroscopes  contained in an MU. 

models of  measurement errors for sensors used to aid or update the inertial navigator. 
Error models are included for: 
a)  a baro-altimeter damping  loop,  which  is  used to stabilize the unstable vertical 

b) an  odometer  velocity  measurement,  which is used to update the along-track 

c) a compass heading  measurement,  which is used to update the heading estimate of 

d) a  two axis inclinometer attitude measurement,  which is used to update  the  roll and 

e) a GPS position  measurement,  which is used to update the latitude, longitude, and 

channel of  the inertial navigator, 

velocity estimate of the inertial  navigator, 

the inertial navigator, 

pitch estimates of the inertial navigator, 

height estimates of  the inertial navigator,  and 
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f) zero velocity  update,  which is used to update the north  and east tilts, north east, 
and  down velocities, and latitude, longitude, and  height estimates of the inertial 
navigator  when  the  vehicle is not  moving. 

3) a linearized Kalman filter used for propagating  and  updating  the covariance matrix 
and for calculating the optimized gains  (or  weighting factors) used during updating of 
the covariance matrix. The Kalman filter used  by  NavCov provides two  modes of 
operation: 
a)  a full order mode  which  uses  the  full  complement  of  modeled states to produce 

b)  a  reduced-order or suboptimal mode  used to omit the contribution of  some states 
the optimum (and  potentially optimistic) estimation of performance,  and 

in the calculation of Kalman  gains to achieve a potentially more realistic 
estimation of  performance. 

The inertial navigator error model  was  developed  by  Dr. William Widnall and Mr. Peter 
Grundy for the U.S. Air  Force  and is documented  in  [ref 13. Additional  information 
regarding the inertial  navigation error model is found in [ref 21. The baro-altimeter 
measurement error model is also documented  in  [ref 11. Kalman filter equations are 
documented  in  numerous sources including [ref 31. 

A  primary input to the covariance code is a trajectory definition about  which  partial 
derivatives in the linearized  navigation error model  and  measurement  model can be 
evaluated. For this application, a  pseudo-6-degree-of-freedom  (6DOF) simulation was 
developed  separately  by Dr. Richard Eisler based  on  point  mass translational motion  over 
digital terrain elevation data (DTED).  The simulation is driven  by throttle and  heading 
commands.  Vehicle attitude rates were  generated via finite differencing of  DTED  terrain 
features as  a  function  of  vehicle speed. No  vehicle  motion  was  assumed  normal to the 
local surface. 

It is important to understand  that  a covariance analysis computes, propagates,  and  updates 
the  variances (aka uncertainties)  of the inertial navigation error states rather  than  the 
actual inertial navigation states or error states. The actual states, error states, and  the 
sensor measurements do not exist in  the covariance analysis; these items would  be 
included in  a full simulation  of  an  aided inertial navigator. 

It is also important to note  that the inertial  navigator error model  assumes  that  navigation 
errors are small so that  a linearized model is valid, meaning  that  position errors remain 
small relative to the earth's radius, velocity errors remain small relative to orbital velocity, 
and attitude errors remain small relative to 1  radian  [ref 11. 

LINEARIZED  KALMAN  FILTER  EQUATIONS 

This section  borrows  heavily from [ref 31. The continuous time general  model  of  an 
inertial  navigator  and  the  measurements  used to aid the navigator  take  the  form of: 

? 

* 
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x = f (x,u,t) + w(t) 
z = h(x, t )  + v(t) 

t 

!! 

where  x is the navigation state vector, u is a  forcing function, w is an  independent  white 
noise  process  representing  navigation  process  noise, z is the measurement  vector,  and v is 
another  independent  white noise process  representing  measurement  noise. The function f 
represents the navigator's state dynamics  and  the function h represents the transformation 
between the navigation states and the  measurements. 

Assuming  that  an approximate trajectory x*(t) may be determined  by  some  means, the 
actual trajectory can be represented  as: 

x(t) = x * ( t )  + e(t) 

where e is the  navigation error state vector. Substituting, equations (1) and (2) become: 

x *+e = f (x * +e,u,t) + w(t) 
z = h(x * +e, t )  + v(t) 

To linearize these equations, it is assumed  that e is small and f and  h are approximated 
with Taylor series expansions truncated to the  first order terms only. The result is: 

X*+e =f(x*,u,t)+ - *e+w(t) 
[3, .*  

z = h(x*,t)+[%] ah *e+v(t) 

x=x* 

rhe approximate, or nominal,  trajectory  x*(t) is chosen to satisfy the differential 
equation: 

x* = f (x*,u,t) 

Note  that for NavCov,  x*(t) is the trajectory  data  that is generated  separately and provided 
as  an  input to the  code. 

Now, equation (6) becomes: 

e = [ $ ]  *e+w(t) 
x=x* 

or more commonly: 
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e=F.e+w(t)  

where F is known as the linearized error dynamics  matrix. The derivation and contents of 
the F matrix for the  inertial  navigator  error  model can be  found  in  [ref 11 and  [ref 21 and 
so won't  be  repeated  here. There are some  sign differences for several of  the elements due 
to use  by  NavCov  of  a  North-East-Down  (NED) coordinate frame  rather  than  East-North- 
Up  (ENU). 

Reorganizing  equation (7) leads  to: 

[z - h(x*,t)] = [ $1 e + v(t) 
%=x* 

or more  commonly: 

Z = H .e+ v(t) 

where Z is now  the  measurement residual, or the difference between  the  actual 
measurement  and the measurement  predicted  based  on the nominal  trajectory. H is known 
as the linearized observation  (or  measurement)  matrix. 

In a  real-time  implementation  of  an  aided inertial navigator,  an extended Kalman filter 
would  be  used  rather  than  a linearized Kalman filter. The difference is that  the extended 
Kalman filter evaluates the partial derivatives in the above equations about  the estimated, 
rather  than the nominal,  trajectory. 

The covariances of the  navigation error states are contained in  the  matrix P, defined  as: 

P = E(eeT ) 

where  E is the expected  value function. The variances  of  the  navigation error states reside 
along  the diagonal of P. The process  noise  matrix Q is defined  as: 

Q = E(wwT) 

Q represents the variances  of  the  process  noise for the navigation error states. The 
measurement  noise  matrix R is defined  as: 

R = E(vvT) 

R represents the variances of the  measurement noise. 
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NavCov utilizes the discrete-time version of the  Bucy-Joseph form of the  Kalman filter 
equations. Once  the P matrix is initialized, it is propagated  using the equation: 

P- ( k )  = < p ( k ) ~ +  ( k  - i)v* ( k )  + r(k) 

where P- denotes the covariance matrix  prior to updating  with  measurements and P' 
denotes the covariance matrix  after  updating.  k indexes the current time step, whereas k-1 
indexes the previous time step. The state transition  matrix (I in the above equation is 
computed using  a  truncated exponential series expansion via the equation: 

~ ( k )  = I + F(k)At + 3F2(k)At2 

where I is the identity matrix, At is the  time difference between the current and  previous 
time steps, and F is assumed to be time-invariant. Also, the matrix r in equation (16) is 
just: 

If measurements are available during the kth  time step, the observation matrix H is 
computed and the Kalman  gain  matrix K is computed  using  the  equation: 

K(k) = P-(k)HT  (k)[H(k)P-(k)HT ( k )  + R(k)]-' 

Then the covariance matrix P- is updated to P' using  the equation: 

P'(k) = [I - K(k)H(k)]P-(k)[I - K(k)H(k)]* + K(k)R(k)KT ( k )  

If no  measurements  are available during  the  kth  time step, then the updated covariance 
matrix P+ is set equal to P-. 

COORDINATE FRAMES 

NavCov  uses  a  number  of coordinate frames.  The first is the earth frame, which is a  polar 
coordinate frame that is earth fixed (i.e. it rotates  with the earth). It is defined  by  the 
WGS-84 ellipsoid, though  spherical approximations are used in several places throughout 
the code. Its components are: 

Earth Frame 
Latitude defined to be zero at  the equator and positive north, negative south, angular 
units 
Longitude defined to be zero at the Greenwich  meridian and positive east, negative 
west, angular  units 
Height  defined to be zero on  the ellipsoid and positive up, linear units 
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Note however,  that  height in this code is defined to be positive down  rather  than 
positive up. 

The second frame is the  geographic (also called navigation) frame, which is a locally 
level, or normal to the  gravity  vector. The geographic frame is also earth fixed. It is a 
right-handed  Cartesian coordinate frame with its origin  at the center of navigation (for 
this code)  and  components: 

Geographic  Frame 
North  defined to be  positive north, linear units 
East  defined to be positive east, linear  units 
Down  defined to be positive down, linear units 

Angles  and  angular  rates  about these axes are defined to be positive by  right-handed 
convention. 

The third  frame is the  body  frame,  which is fixed to the  body of the  vehicle.  It is a  right- 
handed  Cartesian coordinate frame  with its origin at the center of  navigation (for this 
code) and  components: 

Body  Frame 
X 
Y 
Z 

longitudinal axis, defined to be positive out the nose, linear units 
lateral axis, defined to be positive out the right side, linear units 
"down" axis, defined to be positive out the  belly, linear units 

Again, angles and  angular rates about  these axes are defined to be positive by right- 
handed  convention. 

These sign conventions differ  somewhat from those used  in  [ref 11 and  [ref 21 and  result 
is some  sign differences in the various equations contained in NavCov,  particularly  in  the 
computation of  the F matrix. 

MEASUREMENTS  INCLUDED 

As mentioned  before,  the aiding measurements  included  in  NavCov  are: 

1) baro-altimeter damping loop, which is used to stabilize the unstable vertical  channel 
of  the inertial navigator. This measurement is actually not  used  as  an aiding, or 
updating input, but rather, is implemented  as  an integral part  of  the inertial navigator. 

2) odometer  velocity  measurement,  which is used to update the along-track  velocity 
estimate of the inertial navigator, 
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3) compass heading  measurement,  which is used to update the heading estimate of the 
inertial navigator, 

4) two axis inclinometer attitude measurement,  which is used to update the roll and  pitch 
estimates of  the inertial navigator, 

5) GPS position  measurement,  which is used to update the latitude, longitude, and  height 
estimates of  the inertial navigator,  and 

6) zero velocity update, which is used to update  the north and east tilts, north east, and 
down velocities, and latitude, longitude, and  height estimates of the inertial navigator. 

Aiding  measurements can be enabled or disabled to explore their impact on navigation 
performance. In addition, these measurements  can be scheduled so that  they are only 
applied during specific parts of the  vehicle  trajectory. This allows, for instance, GPS to be 
used for a  period at the  beginning of the trajectory,  and  then denied for the remaining  part 
of the trajectory.  During this period  of  GPS-denial,  other aiding sources such as zero 
velocity  updating can be  used. 

Further discussion of  the  measurement error models is included in Appendix A. 

STATES INCLUDED 

NavCov initializes, propagates,  and  updates the covariance for a  number  of states that 
represent inertial navigator  and  updating sensor measurement errors. It is possible to 
include a  vast  number of states in pursuit the highest possible fidelity; however, 
depending on the application, many  of these states are of little consequence to the  actual 
performance of the inertial  system  under consideration. For instance, g-sensitive and g2- 
sensitive gyro errors are negligible for a  slow  land  vehicle  application.  The  number of 
states also impacts the speed  at  which the code runs due to the many  matrix  multiplys  and 
the  matrix inversion that are a  part  of the Kalman filter equations. Therefore, the states 
included in  NavCov are those that  have  the  greatest potential to affect the performance of 
an aided inertial navigator  used for the  slow  land  application. In addition, most  of  these 
states can  be enabled or disabled to explore the sensitivity of inertial navigator 
performance to the inclusion or exclusion of various states. It should be  noted  that  not all 
sensor measurements  have  associated error states. 

NavCov computes the covariance for the states listed below. The numbering  shown is for 
convenience only. The actual  numbering  depends  on  which states are enabled and 
disabled. 

Basic 9 inertial navigator error states, which  cannot  be disabled: 
1. latitude error 
2. longitude error 
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3. height, or altitude, error 
4. north  velocity error 
5. east velocity error 
6. down  velocity error 
7. north tilt error, which is the angular error about the north axis 
8. east tilt error, which is the angular error about the east axis 
9. heading error, which is the  angular error about  the  down axis 

10.-12. gyro bias errors 
13.-  15. gyro scale factor errors 
16.-2 1. gyro  misalignments 

22.-24. accelerometer  bias errors 
25-27. accelerometer scale factor errors 
28.-33. accelerometer  misalignments 

34. error in  integral of difference between inertial and bar0 altitudes 
35. baro-altimeter scale factor error 
36. baro-altimeter error due to constant-pressure surface altitude variation 

37. odometer velocity  measurement bias 

38. compass heading  measurement bias 

39. x-axis attitude (roll) measurement bias 
40. y-axis attitude (pitch) measurement bias 

Gyroscope sensor errors (for 3 gyroscopes) 

Accelerometer sensor errors (for 3 accelerometers) 

Baro-altimeter damping loop errors 

Odometer  velocity  measurement error 

Compass  heading  measurement error 

Inclinometer attitude measurement errors 

a 

A criticism of covariance analysis is that it often produces optimistic results. NavCov 
addresses this by  allowing for use of a  suboptimal  Kalman filter, where some of the states 
are omitted for the  purpose  of computing Kalman  gains. The states that  might  be omitted 
are those  that are felt to be  non-estimatable due to highly nonlinear, non-repeatable 
behavior. Such states might include gyro  bias for inexpensive, low quality MUS. 

The states that are automatically omitted in the suboptimal Kalman  filter  include: 
Baro-altimeter  damping loop errors 
Odometer  velocity  measurement error 

The states that may  be omitted in the suboptimal Kalman filter include: 
Gyroscope  sensor errors (for 3 gyroscopes) 
Accelerometer  sensor errors (for 3 accelerometers) 
Compass heading  measurement error 
Inclinometer attitude measurement errors 
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INSTALLING  THE  CODE 

The code is  delivered  as a zip file. Place the zip file in  an  empty directory and  unzip  it to 
that  same  directory. Since NavCov  is expected to evolve with  use  on specific 
applications, the zip file will  eventually  become obsolete and can be discarded. Periodic 
backups of current work are therefore a good  idea. 

STRUCTURE OF THE  CODE 

NavCov is a fairly simple, serially executed (single thread)  code. In almost all cases, 
scripts are used  rather  than functions; therefore, information is passed  between  the 
various  parts  of  the code using  global  variables. (We will  pause  here to allow  the  more 
sophisticated programmers to recover  after  keeling over in disgust.) On the positive side, 
the code is at least functionally  modular  and  it  is  hoped  that the code is fairly easy to 
interpret and  modify.  The  primary  sources of complexity are the ability to enable, disable, 
and schedule aiding sources,  and  the ability to run a suboptimal filter. 

The  main  script is called  navc0v.m.  It calls other scripts to perform the various steps 
required during a covariance analysis  run.  Most  of  the scripts performing computations 
are in the  same  directory  with  navc0v.m.  Inputs to the code are placed  in  various files 
contained  in  the  subdirectory  .\input-files.  Results  from  running the code are placed in 
the  subdirectory  .\output-files.  Plotting  parameters are placed in the  subdirectory 
.\plot-limits. 

The following flow  chart describes the  basic functionality of the code. 
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APPENDIX A to NavCov Users' Manual: MEASUREMENT MODELS 
INCLUDED IN VERSION 1.0 

BARO-ALTIMETER MEASUREMENT 

The  baro-altimeter  measurement is incorporated  in a third-order damping loop integrated 
with  the inertial navigator  rather  than in the  Kalman  filter. This mechanization  is 
documented  in  both  [ref 11 and  [ref 21. The error model for the  baro-altimeter 
measurement is also  documented in [ref 11. The various gains, constants, and initial error 
and  process  noise  variances for this  model  are contained in the Matlab script 
.\input-filesheas-models\baro-mode1.m. 

NavCov includes error states for 2 of the 4 baro-altimeter error sources shown  in [ref 11. 
A third  error state is  also  included as a result of the  third  order damping loop 
mechanization. Those states are: 

1) e,,, the error due to variation  in altitude of a constant pressure  surface,  and 
2 )  eh,q, the error due  to non-standard temperature, modeled  as a scale factor error 
3) &, the integral of the difference between  the indicated and reference altitudes 

The two remaining error sources listed in [ref 11 are considered negligible for the land 
vehicle  application  and so are left out of NavCov. The bar0 altimeter error dynamics 
equations used are: 

where VH is the  horizontal  velocity of the  vehicle, da/, is a constant representing  the 
correlation distance of weather patterns, w(t) is a white noise  process, E is the expected 
value function, ff&t is the  standard deviation of the variation in altitude of a constant 
pressure surface, k l ,  k2, and k j  are constant gain coefficients, &LI is the  height error 
(where the D subscript  reminds us that this error is positive down), and dh is the change 
in altitude since the baro-altimeter was initialized. The terms with the subscript "orig. 
terms" denote use of the original terms from the F matrix for the  undamped inertial 
navigator. 
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The error source epo is modeled  as a first order Markov (exponentially correlated) process. 
The error source eh,f is  modeled as a random  constant scale factor error. The terms in 
equations (A-I) and (A-3 through 6 )  are included  in F matrix. The term in equation (A-2) 
is included  in  the Q matrix. There are some sign differences  between  these equations and 
those shown  in  [ref 11 since NavCov  uses an  NED coordinate frame rather  than  ENU. 
Also,  the  model  used in NavCov  assumes that the  baro-altimeter  can  be initialized at  any 
altitude rather than sea level using  some means such  as GPS. This leads to use of Ah 
rather than h in the above equations. 

ODOMETER VELOCITY MEASUREMENT 

The odometer is used as a velocity-measuring sensor by NavCov. This velocity 
measurement is included in the Kalman filter. Its P, Q, and R values are set in 
.\input_files\meas-models\odomvel_model.m. 

The odometer velocity  measurement error is modeled  as a random constant plus a random 
walk. The error dynamics equation for this  model is: 

where w(t) is a white noise  process. This model is implemented in the F and Q matrices. 
One error state results from this model.  It  is  assumed  that this error state is poorly 
estimate-able (due to wheel slippage), so it is not  included  in  the  suboptimal  Kalman 
filter. 

The  measurement  model  used in NavCov is: 

z = V, + evod + v( t )  

where VX is the velocity of the  vehicle  along the longitudinal, or X axis, and v(t) is a 
white noise process. This  model is of the form of equation (2), except that VX must be 
expressed in terms of the states V , ,  VE, and Vo (since VX is  not a state used  in  NavCov). 
That relationship is defined via the geographic-to-body direction cosine matrix (DCM) 
Cglob as: 



The matrix Cgtob is  the  transpose  of  the  matrix &g, which is provided as an  input to 
NavCov  by the separate 6DOF simulation. The function h(x) in  the form of equation (2) 
is then: 

Then, remembering  per equations (1 1)  and (12) that  the observation matrix H is the 
partial derivative dh(x)/  XI^=^*, the following result is obtained: 

with  respect to the  error state vector: 

L ...I 

e = [Slat &ng &gt SV, NE 8 V D  E,  E,  E, ... evod .. .] T 

H matrix elements not  shown are 0. This result  is implemented in  NavCov's H matrix 
along  with similar results for the other measurements  described  below. 

COMPASS  HEADING  MEASUREMENT 

The compass is used  as a heading-measuring sensor by  NavCov. This heading 
measurement is included  in  the  Kalman filter. Its P, Q, and R values are set in 
.\input-filesheas-models\comphdg-mode1.m. 

The compass heading  measurement error is modeled  as a random constant plus a random 
walk. The random  walk contribution is increased with increasing heading rate as a way to 
cause the filter to re-estimate the bias when  heading  changes.  It is assumed  that the 
compass is at least somewhat calibrated. The error dynamics equation for this model is: 

where w(t) is a white  noise  process. This model is implemented  in  the F and Q matrices. 
One error state results from this model.  It is assumed that this error state is predictable, so 
it is included in the suboptimal  Kalman  filter. 

The Q value for this error model,  which is the expected value E[w(t) ~ ( t ) ] ,  is scaled 
between a minimum  value  when  heading rate is zero and a maximum rate when  heading 
rate reaches  an  assumed  maximum  angular  velocity. The equation defining this 
relationship is: 

(A- 10) 

(A- 1 1)  

(A-12) 

(A- 13) 
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where Kcom is a scaling constant, Qecommin and cca,, are assumed constants, and is the 
vehicle’s  heading  rate. a is computed  using  the  body-to-geographic  DCM  from  the  body 
angular rates contained in  the input trajectory data as: 

The measurement  model  used  in  NavCov is: 

z = E, + ecom + v(t) 

where ED is the  heading of the vehicle,  and v(t) is a  white noise process. 

The function h(x) in  the form of equation (2) is then: 

h(x) = E, + ecom 

Then  the  observation  matrix H, computed as the partial derivative dh(x)/ is: 

H=[O 0 0 0 0 0 0 0 1 ... 1 ...I 

with respect to the error state vector: 

e = [Slat arzg &gt N, NE N, E,  E, E, .. . ecom ...I T 

H matrix elements not  shown are 0. 

2-AXIS  INCLINOMETER  ATTITUDE  MEASUREMENTS 

The 2-axis inclinometer is used as a roll and  pitch-measuring sensor by  NavCov. These 
two attitude measurements are included in the Kalman filter. Their P, Q, and R values are 
set in .\input-filesheas-models\inclatt-mode1.m. 

The inclinometer attitude measurement errors are each modeled as a random constant 
plus a  random  walk. The error dynamics equations for this model  are: 

(roll  measurement error) 
(pitch  measurement error) 

(A- 15) 

(A- 16) 

(A-  17) 

(A-  18) 

(A-  19) 

(A-20) 
(A-21) 
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where wdt )  and wdt)  are white  noise  processes. This model is implemented in the F and 
Q matrices. Two error states results from this model.  It is assumed  that these error states 
are predictable, so they are included in the suboptimal Kalman filter. 

The measurement  model  used  in  NavCov is: 

where EX is the roll  of the vehicle, EY is the  pitch  of  the  vehicle,  and vd t )  and vdt)  are 
white  noise  processes. EX and EY need to be expressed in terms of the states E N ,  EE, and 
ED through use of  the  geographic-to-body  DCM as: 

Then the function h(x) in  the form of equation (2) is: 

Then the observation  matrix H, computed  as  the  partial derivative dh(x)/  XI^=^*, is: 

with  respect to the error state vector: 

e =[&at &ng &gt WN WE WD E ,  E ,  E ,  ... eincX eincY ...I T 

H matrix elements not  shown are 0. 

GPS POSITION  MEASUREMENTS 

GPS is used  as  a three dimensional  position-measuring sensor by  NavCov. These position 
measurements are included in the Kalman filter. No error states are associated  with this 
simple mechanization. The R values for the position measurements are set  in 
.\input-filesheas-models\gpspos-mode1.m. 

4 4  

(A-22) 

(A-23) 

(A-24) 

(A-25) 

(A-26) 
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rhe measurement  model  used in NavCov is: 

t 

Zat + vN ( t )  

where vdt), vE(t), and vo(t) are white noise processes. Since the latitude and longitude 
error states are in  units of radians  while the measurement  noise is specified in units of 
meters, re-type unit conversions are required. 

The function h(x) in the form of equation (2) is: 

h(x) = RE - cos(Zat). Zng [ Ri: ] 
Then  the observation matrix H, computed as the partial derivative dh(x)/  XI^=^*, is: 

0 

with  respect to the error state vector: 

e =[&at &ng &gt ...I 

H matrix elements not  shown are 0. The units of &at and &ng are radians. 

ZERO  VELOCITY  UPDATING  MEASUREMENTS 

Zero  Velocity  Updating  (ZVUPT) is a  powerful technique that can be used to identify tilt 
and velocity errors when  a  vehicle is stopped. The tilt errors are made observable because 
the MU'S accelerometers  provide  an  accurate  measurement  of the gravity  vector  and 
therefore the  vehicle's  pitch  and roll angles.  The  velocity errors are made observable 
because, during a stop, the  vehicle's  velocity is very  accurately  known to be zero.  Given 
frequent stops (allowing an  assumption  that  velocity error rate,  or  acceleration error, is 
constant), quadratic position errors can also be  estimated  as the double integration of the 
constant acceleration  error. 

(A-27) 

(A-28) 

(A-29) 

(A-30) 

AavCov includes ZVUPT to update  the 2 vehicle tilts, 3 dimensions of velocity, and 3 
dimensions of position. The measurements are incorporated  in the Kalman filter. No error 
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states are associated  with  this  mechanization. The R values for the  position  measurements 
are initialized in .\input-filesheas-models\zvu~model.m. and updated as necessary in 
.\update-R-ZVUP0S.m  and .\update-R-ZVUPOS-sub0pt.m. ZVUPT  of tilts, velocity, 
and  position  can  be enable and disabled separately. 

s 

For  the  tilt  measurements,  the  measurement  model  used  in  NavCov is: 

where EX is the roll of  the  vehicle, EY is the  pitch  of  the  vehicle,  and vdt) and vdt) are 
white  noise  processes. EX and EY need to be expressed in terms of the states EN, EE, and 
ED through  use  of  the  geographic-to-body  DCM as: 

Then  the function h(x) in  the  form  of  equation (2) is: 

Then  the  observation  matrix H, computed as the partial derivative ah(x)/ axlx=x*, is: 

H elements not  shown are 0. For  the  velocity measurements, the measurement  model 
used  in  NavCov  is: 

(A-3 1) 

(A-32) 

(A-33) 

(A-34) 

(A-35) 

where vlv(t),  vE(t), and VD(~) are white noise processes. The function h(x) in the form of 
equation (2) is: 
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(A-36) 

Then the observation matrix H, computed  as  the  partial derivative dh(x)/ is: 
* 

0 0 0 1 0 0 0 0 0  ... 
0 0 0 1 0  0 0 0 ... 

0 0 0 0 0 1 0 0 0  ... 1 
H elements not  shown are 0. Finally for the  position estimate, the measurement  model 
used  in  NavCov is: 

where vdt ) ,  vE(t), and vo(t) are white noise processes.  Again, since the latitude and 
longitude error states are in  units  of  radians  while the measurement noise is specified  in 
units  of  meters,  &-type  unit conversions are required. 

The function h(x) in the form of equation (2) is: 

h(x) = RE cos(Zat) e Zng [ Ri: 1 
Then the observation matrix H, computed as the partial derivative dh(x)/ is: 

i 

0 0 0 0 0 0 0 0  ... 
0 0 0 0 0 0 O ... 
1 0 0 0 0 0 0  ... ! 

H elements not  shown are 0. If ZVUPT  of position, velocity,  and tilts are all enabled, the 
combined H matrix  is: 

(A-37) 

(A-38) 

(A-39) 

(A-40) 
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H =  

RE 
0 RE * 
0 
0 
0 

0 
0 
0 

0 0 0 0 0  
cos(Zut) 0 0 0 0 
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  
0 0 0 0 0  
0 0 0 0 0  

with  respect to the error state vector: 

e = [&at &ng &gt N, NE ND E, E, cD ...I T 

... 

... 

... 
I.. 

..I 

... 

... 

... 

(A-4 1) 

(A-42) 

Some additional heuristics  are  added  in  the  mechanization of ZVUPT  of position. The 
purpose  of these heuristics is to parallel the  operation  and  performance  of a real-time 
system utilizing ZVUPT. The mechanization logic includes the  following: 

1. Position  updating is performed  only for the second and subsequent stops after  ZVUPT 
is enabled. 

2. The R value for position  updating is not expected to be  any better than the variance of 
the position  uncertainty  at  the  time  when  ZVUPT is enabled. Therefore, when  ZVUPT 
is disabled, the R value is matched to the P value for position  uncertainty. 

3. When the vehicle is stopped  and  ZVUPT is enabled, the R value for position  updating 
is expected to remain constant. It is therefore held constant during stops. 

4. The ZVUPT  position  update  variance for subsequent stops is expected to degrade over 
time. Therefore, the R value for position  updating is incremented after each stop is 
completed. 

This logic is included in  .\update-R-ZVUP0S.m  and .\update-R-ZVUPOS-sub0pt.m. 
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INPUTS TO THE CODE 

NavCov  requires  numerous inputs. They  are: 

3) 

4) 

a  Matlab script (.\input-fi1esbnputs.m) containing input definitions. The primary 
definitions included in this file are: 
a) flag enabling suboptimal filtering 
b) string defining the name  of  the IMU model 
c) string defining  the  name  of the trajectory 
d) string defining  the  name of the aiding schedule 
e) variable setting the data rate 
f) variable setting the  number of steps between  measurements 
g) flags enabling sensor  error states 
h)  flags enabling measurements 

a  text file containing the initial error and process noise  standard deviations for IMU 
sensor errors (.\input-files\imu-models\*.txt). The format  of this file follows long- 
standing convention in Sandia's navigation departments. 

a  Matlab  script (.\input-filesbmu-models\*-pvapq.m) defining the initial position, 
velocity,  and attitude error standard deviations for the particular IMU and  application 
under consideration. These numbers are set to reflect the initialization (i.e.  alignment) 
results expected for the  application. 

a  Matlab data file (.\input-files\trajectories\*.mat) containing vehicle  trajectory data. 
The  frequency, or data rate,  of  the  trajectory data should adequately capture the 
dynamics of vehicle  movement as well as provide some oversampling relative to the 
frequency of use of the  updating  sensors. For each time step, the data includes by 
variable  name: 
a) trajtime time  (seconds) 
b)  traj-p_geo earth frame latitude (rad), longitude (rad), and  height  (m) 
c) traj-vseo geographic frame north, east, and  down  velocities ( d s )  
d) traj-a-body body  frame x, y, and  z specific forces (accelerations  not including 
gravity, m/s2) 
e) traj-w-body body  frame x, y, and z angular rates (rads) 
f) traj-C-btog direction cosine matrix describing the body to geographic 
transformation 
g)  traj-euler euler angles roll, pitch, and yaw (rad) 

5 )  a  Matlab  script (.\input-files\trajectories\*.m) defining the aiding measurement 
schedule. 

3 

9 

6 )  Matlab scripts (.\input-filesheas-models\*.m) defining parameters for each aiding 
measurement error model. 
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MANIPULATION  OF  THE  INPUT  FILES  AND  TUNING 

Again, the purpose  of  a covariance analysis code is either to predict the statistical 
performance  of some aided inertial navigation  system  under consideration without 
extensive modeling  and simulation, or conversely, to determine the  required error budget 
of an aided inertial navigation  system to meet  some contemplated performance  goal.  As 
part of either use, a sensitivity analysis  of  various  parameters  can be achieved  by  making 
repeated small changes to the parameters of interest and  observing  the impact these 
changes  have  on the variances  of  the error states.  As can be imagined, this is an iterative, 
possibly tedious, process. The parameters  being  changed are primarily the initial error 
state variances (i.e. the P's), the  process noise variances  (i.e. the Q's), and  the 
measurement noise variances  (i.e.  the Rs). Changes to the trajectory, the aiding schedule, 
and the measurement  frequency  can also be contemplated. These changes are all made 
through  the input files listed above. 

Before NavCov is used for analysis  purposes,  various  input  parameters  need to be 
"tuned". The purpose of  tuning is to achieve  both  reasonable  and  mathematically stable 
results from the equations contained in the code.  "Reasonable" implies a subjective 
judgment based on experience - there is some  art involved. Tuning guidance is provided 
in  Appendix  B. In a nutshell, the process of tuning is iterative and  requires  repeated 
manipulation  of the input  parameters in a  systematic fashion, running of the code, 
evaluation of the results, and  repeat  until  satisfactory results are achieved. The code as 
delivered has  been  tuned to achieve reasonable results for the example trajectories and the 
example sensors included  with  version 1.0. The  tuning can be refined once the  analysis 
"matrix" (i.e.  the  menu of trajectories, IMU quality,  and aiding sensors, schedules, and 
frequency to be considered) is determined. 

After the code is tuned, the  analysis  matrix can be  pursued  case-by-case  by  altering  input 
parameters  as  necessary  and  running  NavCov for each case. The parameters  in the input 
files are altered using either the Matlab editor or a text editor. The required  units for each 
parameter are documented  in  the  input files. 

RUNNING  THE  CODE 

The code is simple to run  as follows: 

start  Matlab 
>> cd  <directory  where  code is installed> 
>> navcov 
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OUTPUTS  OF  THE  CODE 



Each  time  NavCov is run, it produces  output to Matlab  window  that  appears as follows: 

>> navcov 

*** COVARIANCE  ANALYSIS CODE FOR: *** 
DISTRIBUTED  AUTONOMOUS  NAVIGATION LDRD 

SUBoptimal  Filtering 
Trajectory - re2 
Aiding  Schedule - re2-sched1 
IMU - In200 
Data  Rate - 2.0 HZ 
Measurement  Rate - 1.0 Hz 
Aiding  Sources: 
BARO-ALT  ODOM-VEL  COMP-HDG  INCL-AT"'  GPS-POS ZVUPT 

0 0 0 0 1  1 

step # 10 completed, time-tag = 4.50 
step # 20 completed, time-tag = 9.50 
step # 30 completed,  time-tag = 14.50 
step # 40 completed, time-tag = 19.50 
step # 50 completed,  time-tag = 24.50 
... 
step # 170  completed,  time-tag = 84.50 

Finished 
Last  step # 179,  time-tag = 89.00 

The purpose of the  above  output is to provide the user  with  some  feedback  showing  a  few 
of the input  parameters  being  used  (for  a  sanity  check)  and also a  heartbeat  to  indicate 
that  the  code is indeed  running. A 2  second  pause  occurs  before the step  counter is 
displayed. The Os and  1's  following the "Aiding  Sources"  message  indicate  which  aiding 
sources  are  disabled  and  enabled. In this  example, GPS position  updates  and  zero  velocity 
updating  are  enabled.  After  the  "Last step" message is displayed,  the  following  query is 
displayed to the  user: 

Enter  a  filename for storage  of  output: 

to which the user  replies  as  desired: 

Enter  a  filename  for  storage of output: test 

This causes  two files to be  written  to the .\output-files  directory.  They  are testemat and 
test-inputs.m. The Matlab  data file test.mat contains the  results of the  covariance  analysis 
run,  including by variable  name: 
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* 

stdev-data 

aid-data 

SUBOPT 
MODEL 
TRAJ 
measrate 
sim-time 
traj-data 

flag indicating whether  suboptimal filtering was  used 
string defining the M U  model 
string defining  the  trajectory 
constant containing the  frequency of updates (Hz) 
vector containing time  (seconds) 
matrix  of  vectors containing a  copy  of  the trajectory data input to 
NavCov,  minus  time (units same as previously described) 
matrix of vectors containing the standard deviations for the states, 
taken from the diagonal  of  the full state covariance matrix P (same 
units as for trajectory data) 

stdev-data-suboptmatrix  of  vectors containing the  standard deviations for the states, 
taken from the diagonal of the  reduced  order covariance matrix 
P-subopt (same units as for trajectory data) 
matrix of flags containing the aiding schedule 

The variable stdev-data-subopt is not saved if  suboptimal filtering is not  used.  Also, as a 
note  of explanation, the  reduced order covariance matrix, containing fewer states selected 
as noted earlier, is used to generate the suboptimal  Kalman  gains  when suboptimal 
filtering is called for. Those suboptimal  gains  are  then  used to update the full state 
covariance matrix (as well  as  the  reduced order covariance matrix). 

The Matlab script file test-inputs.m contains a  copy  of  .\input-fi1esbnputs.m for 
documentation  purposes. 

rhe following message  then  appears  in  the  Matlab  window: 

Enter  a  filename  for  data  to  be  plotted  or 
press  <Enter>  if  data  already  loaded: 

This message originates in the plot-stuff.m  script. The option allows plot-stuff.m to be 
used independently to read  past results from the .\output-files directory and replot  them. 
Since NavCov just produced the results,  which still reside in  memory, the user  can 
respond  by  pressing the <Enter>  key.  Another  message from plot-stuff.m is then 
displayed: 

Enter  annotation  for plots: 

to which  the user once again replies as desired: 

Enter annotation for plots: test 

A number of plots are then  produced. Since suboptimal filtering was  used in this 
example, 4 plots result. 
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Figure 1 displays the  trajectory. The upper left subplot shows a  top-down  view  of  the 
ground  track in kilometers relative to the starting position. The ground track is time 
tagged every 15 seconds  in this example. The upper  right subplot shows an elevation 
view  of  the  trajectory  vs.  time. The elevation units are in kilometers relative to the 
starting elevation. Again,  the  trajectory line is time tagged. The lower left subplot shows 
the north, east, and  down  velocity  profiles  vs. time in units of metershecond. The lower 
right  subplot shows the roll, pitch, and heading angles in degrees. The trajectory  filename 
is displayed in the lower left corner. 
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APPENDIX B to NavCov Users' Manual. - TUNING  GUIDELINES 

These tuning  guidelines assume that  the  user  has  been  through the user manual  and  has 
developed  some experience with  the code structure and  input files. Tuning of the 
covariance code is a trial-and-error process,  involving  more art than engineering to 
achieve stable and  realistic results. Here  are  some  helpful guidelines to get  started  on 
tuning. The figures mentioned  below do not  correspond to those in the main  body  of the 
user manual; rather, they  correspond to the figures  generated  by  running  the  code. 

I. First, the  unaided IMU tuning  needs to be  addressed. 

a. An IMU model  defining  sensor Ps and  Qs is a  given  (in  a text file).  Hopefully it is 
derived from actual  test data, but  sometimes its fabricated  based  on  manufacturer's 
specs. 

-> model is contained in  text file .\input-filesbmu-models\xxx.txt 

xxx is  used  here  and  below  as  a  placeholder for a  text string or strings. Its 
meaning is context dependent, but  will  be obvious from inspection of the input 
files. 

b.  Define the expected initial position, velocity,  and attitude (PVA) Ps and  Qs. This 
usually comes from  empirical  knowledge  of  how  the  navigator is initialized. A 
good starting point for the Qs is to set them to be  P/( 1O0OA2). 

-> in the Matlab script .\inputs-files\imu-modelskxx-pvapq.m: 
set values for PO-xxx and Q-xxx 

c. Set up the covariance code to run  with all states (also referred to as full state or 
optimal) and  with  no aiding. 

-> in the Matlab script .\inputs-fi1eAinputs.m: 
set  SUBOPT = NO 
set  MEAS-STEP = Inf 
set  GYRO-xxx  and  ACCEL-xxx = ON 
set  BARO-ALT  and  other  aiding  sources = NO 

d.  Run the covariance code to obtain  the  standard  deviation  plots  (referred to as 
FIGURE 2 below) for PVA for the  given inputs provided for a.  and b. plus  a  given 
vehicle  trajectory. The plots  will  be  in  the  Matlab  Figure  No. 2 window, titled 
UNAIDED.  Print this figure for later reference. 

e. Now, define the expected initial PVA  Ps  and  Qs for the suboptimal case (reduced 
number  of states, also referred to as reduced order) case. Start by setting them to 
be the same as for the full state case. 



-> in the Matlab  script .\inputs-files\imu-models\xxx-pvapq.m: 
set  values for PO-xxx-SUBOPT and Q-xxx-SUBOPT equal to PO-xxx  and 
Q-XXX 

f. Set up the covariance code to run suboptimal and  with  no  aiding.  Usually  (i.e.  for 
low-cost  IMUs),  the  IMU sensor error sources will  not  be  included in the reduced 
states. 

-> in the Matlab  script  .\inputs-fi1esbnputs.m: 
set  SUBOPT = YES 
set  MEAS-STEP = Inf 
set  rGYRO-xxx  and  rACCEL-xxx = OFF 
set BARO-ALT and  other aiding sources = NO 

g.  Run the covariance code again to obtain the standard deviation plots for PVA. 
There will  be  two  PVA plots generated this time - one that is derived from the 
reduced order P  matrix  (referred to as  FIGURE 3) and one that is derived from the 
suboptimal full state P  matrix  (referred to as  FIGURE 2sub). These plots are 
displayed  in two Matlab Figure windows,  i.e. No. 2, titled UNAIDED,  and  Figure 
No. 3, titled Reduced States Results. 

h. Compare the Tilt Errors subplot of  FIGURE 3 to its counterpart in FIGURE 2. 
The goal is to match  the Tilt uncertainties in FIGURE 3 to that in FIGURE  2  at 
some  point  in  time. The point in time chosen would  normally  be  related to the 
length of  time  between updates from  whatever aiding source is being 
contemplated. Or in  other  words, the time that the navigator  would  be  running 
free inertial. This is where the trial-and-error begins. Start by increasing 
Q-TILT-SUBOPT in  the  xxx-pvapq.m script. 

-> in the Matlab  script .\inputs-files\imu-models\xxx-pvapq.m: 
increase  value of  &TILT-SUBOPT 

i.  Rerun  the covariance code to obtain the standard deviation plots for PVA.  Again 
compare the Tilt Errors subplots of FIGURE 3 and  FIGURE  2. Continue to 
increase Q-TILT-SUBOPT, rerun  the code, and compare the  plotted results until 
an  adequate  match is achieved. 

Note  that for poorer  quality MUS, it is sometimes not possible to obtain  a close 
match. Also note  that  there  will  not  be  much sensitivity to this tuning until the Q 
value is close to the  value  being sought. Once the Q  value is close, there is a lot of 
sensitivity. 

a 

j. Now  perform steps lh. and li. for the  Azimuth Error uncertainty. The Q  value to 
manipulate is Q-HDG-SUBOPT. Iterate  until  an adequate match is achieved. 
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