
SAND REPORT
SAND2002-2837
Unlimited Release
Vinted September 2002

i.* 5

istri ed Autonomo
An LDRD Final Repon:

repared by
andia National Labon

Navigation:

Albuquerque, New Mexico 87185 and Livermore, California 9455

Sandia is a multiprcgram laboratory operated by Sandia Corporation:
a Lockheed Martin Company, for the United States Department of

i; lrational laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infkinge privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors !+om
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22 161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@,ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

2

mailto:reports@adonis.osti.gov
http://www.doe.gov/bridge
mailto:orders@,ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

SAND2002-2837
Unlimited Release

Printed September 2002

b

Distributed Autonomous Navigation:
An LDRD Final Report

G. Richard Eisler
Satellite Data Processing

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 871 85-0973

Abstract
This report summarizes the analytical and experimental efforts for the Laboratory
Directed Research and Development (LDRD) project entitled “Distributed Autonomous
Navigation”. The principal project goal was to develop distributed navigation using
swarms of vehicles. Multiple vehicles would allow navigation with or without the
availability of the Global Positioning System (GPS). Another unique thrust of this
research was to apply optimization techniques to determine “best” swarm formations for
navigating specific types of terrain. The project was partially successful in achieving
gains in non-GPS navigation, multi-vehicle trajectory planning, and the application of
traditional flight-based navigation methods to ground vehicles. A planned third year for
the project was eliminated due to funding shortfalls.

3

Acknowledgements
This author wishes to thank the following individuals for their invaluable contributions,
time, extensive discussions on the project, and input to this final report:

Denise Padilla, Department 15212, and Johnny Hurtado, currently at Texas A&M
University, for developing the original proposal and for its initial studies.

Maritza Muguira, 152 1 1 for researching the accuracy of candidate baro-altimeter sensors
for localization use on mobile robots.

Chris Lewis, 1521 1, for basestation and vehicle code development and support, Swarm
RATLERm hardware support, and for providing the initial idea for the terrain correlation
algorithm.

Ralph Peters, 1522 1, for interpolating the surveyed terrain data to produce a DTED model
and extracting a rectangular grid for MATLAB analyses.

The author also wishes to thank Ken Jensen, 152 12 and Rush Robinett, 6200, for their
support and extensive discussions on this project.

4

4

Table of contents

Abstract ... 3

Acknowledgements .. 4

Table of contents .. 5

Table of figures ... 6

Introduction .. 7

Introduction .. 7

The Problem ... 8

Terrain MOdeling ... 10

Sensor Selection .. 11

Terrain correlation and localization .. 12

Optimal Deployments for Multiple Vehicles ... 17

Navigation ... 18

Milestone Schedule ... 19

References ... 20

Appendix A . Altimeter Search for Distributed Navigation .. 21

Appendix B: Gradient-based motion planners to insure line-of-sight communication
for mobile robot collectives traversing arbitrary terrain[l2] 24

Appendix C: Users’ Manual for Navigation Covariance Analysis Code (NavCov) 31

.

5

Table of figures
Figure I . Swarm RATLER vehicle on test terrain ... 7
Figure 2. The Distributed Navigation Problem. 8
Figure 3. Development of terrain model (moving clockwise from upper left) 10
Figure 4. Vehicle Template for Terrain Correlation on DTED model 12
Figure 5. DTED model with candidate template locations ... I3
Figure 6. Terrain model used in slope correlation .. 14
Figure 7. Terrain correlation simulation summary (proceeding clockwise from upper left)
..
Figure 8. Steepest descent deployment of multiple vehicles using altitude and line-ofsight
constraints .. I7
Figure 9. Closed-loop Kalman Filter INS used for HAGARI8
Figure IO. Navigation position error reduction history.I8

L

f

.

6

Introduction
The ultimate goal of distributed autonomous navigation is for multiple cooperating robot
vehicles to navigate through an unstructured environment in less time and cost, and more
reliably than a single vehicle. In past LDRD [11 and DARPA-funded projects, the
Intelligent Systems and Robotics Center has demonstrated that a single autonomous
vehicle can successfully traverse to a goal location in moderately rough terrain using
differential GPS. If, however, the GPS signal is lost or the vehicle gets stuck, the
mission is often aborted and the vehicle is stranded. This is an unacceptable ending in
many tasks, especially those of military importance such as surveillance, target
acquisition, physical security, and logistics support. In these emerging threat situations,
the mission must be completed with the highest probability of success possible.

It was proposed to develop terrain-
aided distributed autonomous
navigation hardware and algorithms
that will allow a team of robot
vehicles (Figure 1) to traverse an
extremely rough terrain without
being GPS reliant. The ultimate
goal was to demonstrate that this
team of robot vehicles could
successfully navigate through a
dense forest or deep canyon using
localized sensing and
communication and a partial map of
the environment.

Figure 1. Swarm RATLER vehicle on test terrain

This was to be done through the enhancement of several unique capabilities that Sandia
has developed in the areas of terrain-aided navigation and swarm robotics. In most
terrain-aided navigation systems, altitude measurements from a single vehicle are
correlated against a digital elevation map to determine position. These solutions require
many measurements over a substantial length of terrain, which is impractical for most
land and water vehicles. To compensate, we investigated the application of additional
features such as terrain gradients, along with the use of swarms of communicating
vehicles. This feature vector, combined with the relative 3D positions of each vehicle,
provided a geometric template that was correlated against digital map data.

Another focus of this research was to apply distributed optimization techniques to
determine optimal swarm formations for navigating through specific types of terrain.

During pursuit of the aforementioned goals in this project, one major change in research
direction was made. Control Subsystems Department 2338 was enlisted to add proven
missile navigation techniques to the mix of aforementioned approaches as a means to
provide quantitative measures of position accuracy and improvement. During the first
year of this cooperative effort, the Robotics Center would explore two areas: a)

techniques for relative positioning between vehicles using altitude measurements, and b)
techniques for performing terrain aided navigation given a small swarm of vehicles that
are collecting a limited number of these measurements. During the remaining two years,
as part of the overall effort, Dept. 2338 would build on these two areas by investigating
aided inertial navigation techniques that would provide capability for periods when GPS
is denied [3].

The Problem

Vehicles must have information to navigate from one point to another. And in the
absence of GPS, the information must come from other sources. Terrain-aided navigation
(TAN) is one way to
navigate without GPS,
but in some applications elevation
it may be inadequate.
For example, a single
vehicle may require many
measurements over a

I where are we?

I A
large area of terrain to
estimate its position. To
reiterate, this is
impractical for land
vehicles, so to
compensate we proposed
the use of many vehicles
and more sensors.

latitude V I
Figure 2. The Distributed Navigation Problem

The primary technical risks associated with distributed autonomous navigation are in the
areas of sensing and relative positioning, robust inter-vehicle communication, and terrain
map availability. Swarm RATLERTM hardware [2] platforms from the Robotics Center
were used to minimize hardware development risks.

The project was organized with approximately equal milestones for analysis and
hardware development during its intended 3-year term. These milestones are summarized
as follows:

Year 1:
1. Research and select altitude sensor; initial integration into Swarm RATLERTM
2. Survey test area
3. Initially demonstrate position estimation using terrain data from multiple vehicles

1. Complete sensor integration
2. Complete terrain correlation algorithm

Year 2:

L

8

3. Demonstrate multiple vehicles using terrain-aided navigation to traverse rough
terrain at Sandia’s Robotic Vehicle Range

4. Develop inertial navigation error analysis tool

1. Complete optimal formation algorithm (based on terrain, task, etc.)
2. Demonstrate terrain-aided navigation of multiple vehicles in challenging area OKI

3. Couple inertial navigation analysis for multiple vehicles

year 3:

Kirtland Air Force Base without GPS.

1.

9

Terrain Modeling

As stated in the original proposal, a single vehicle, even when outfitted with a wide array
of sensors, can encounter some ambiguity in its estimated position. Therefore, the
premise of this research effort is that a cooperating system of vehicles can minimize some
of the ambiguity of the estimated vehicle positions by sensing a unique terrain feature
(i.e., altitude) at multiple locations. It was envisioned that a group of Swarm RATLERTM
vehicles would be used to record and difference inaccurate absolute position
measurements to a specified swarm member. Having done this, an accurate “template” of
relative (to-a-base) vehicle positions, would result that could be compared with the
terrain model to find possible location matches. Once candidate locations were
established, moving the swarm in an expeditious manner would hopefully eliminate the
false candidates. A simulation would be developed beforehand to predict numbers of
vehicles, allowable sensor errors, and the extent of subsequent vehicle moves in order to
determine the vehicles’ template location as quickly as possible.

To begin testing this approach, it was decided that a well-characterized terrain testbed be
employed for both algorithm verification and sensor calibration in the 2nd and 3d years of
the effort.

GPS-RTK survey, 25,000 pts elevation data

Survey interpolated to lmt resolution

b . ‘I, . Interpolated data segmented for .- . , simulation analysis, 72x127 grid
3 1645

. .
.. ,

80
~. .

60
100

y coordinate - meters 0 0 x coordinate - meters

Figure 3. Development of terrain model (moving clockwise from upper left)

h

10

A GPS survey, employing the Real-Time Kinematic (RTK)’ method, was commissioned
with a local Albuquerque firm, Precision Surveys, to map the motocross course adjacent
Robotic Vehicle Range at Sandia National Laboratories. Variations in elevation covered a
15-meter range. Approximately 25,000 points were taken and subsequently used to
generate a 1-foot interpolated digital terrain elevation data (DTED) map [3]. The
transition from terrain to elevation model is shown in Figure 3. A rectangular portion of
this surveyed terrain was extracted for analysis in MATLAB [4].

Sensor Selection

As mentioned previously, our goal was to “ . . . minimize some of the ambiguity of the
estimated vehicle positions by sensing a unique terrain feature (i.e., altitude) at multiple
locations.’’ After lengthy discussions on possible sensor choices, the selection was
narrowed to baro-altimeters and the use of uncorrected GPS, for the sake of expediency.
The latter was not felt to contradict the original intent of the project in that the
measurement was sufficiently degraded in an absolute sense.

A representative survey of commercial-off-the-shelf baro-altimeters was accomplished
[7], including bench testing. Full documentation of these results is provided in Appendix
A: Altimeter Search for Distributed Navigation. This effort concluded that the
deployment of these devices was problematic due to difficulties in “...maintaining a
stable reading and sealing the reference port . . .”, and it was felt that said devices were too
sensitive to be used on “ . . . a rugged vehicle traversing rough terrain”.

From these results, hardware sensor usage defaulted to uncorrected GPS.

“RTK is currently carrier phase observations processed (corrected) in real-time resulting
in position coordinates to a 1-2 centimeter accuracy level. RTK, consists of two or more
GPS receivers, three or more radio-modems, a ‘fixed-plate initializer’, and a handheld
survey data collectodcomputer (TDC1). In RTK, one receiver occupies a known
reference station and broadcasts a correction message (Compact Measurement Record or
CMR2) to one or more roving receivers. The roving receivers process the information to
solve the WGS-84 vectors by solving the integers in real-time within the receiver to
produce an accurate position relative to the reference station. Precision of RTK is +/-2 cm
+ 2ppm, with 1 ppm equating to 1 mm per 1 km (Trimble Navigation, 1993). RTK, as
with traditional kinematic GPS procedures, currently requires continuous satellite lock to
be maintained. This restriction allows for RTK to be most effective in a non-canopied, no
obstructions environment”.
(htt~://wwwsni.ursus.maine.edu/nisweb/spatdb/acs~ac94105.html)

11

~ ~~

Terrain correlation and localization

The method developed in this study correlates estimated multiple vehicle positions to
digital terrain data in order to plan the minimum number of individual motions to update
location estimates to converge to the true “map” location of all vehicles. This approach
will measure the ‘relative positions of all the vehicles to a base, using uncorrected GPS
measurements and correlate that “template” to the terrain map to generate candidate map
registration values. A slope correlation is then done to assess which vehicles and
directions to move. A majority of the following description is provided in Ref. [9]. An
interesting aspect to this approach is that the vehicles will be correlated to the map, which
may have small differences from reality. Since they have to navigate with respect to the
map, this was felt to be the preferred goal.

It was assumed that a swarm of mdbile robots was randomly positioned on the terrain and
that individual members were able to generate biased, noisy absolute location
measurements of the terrain, but accurate relative measurements with respect to one of
the vehicles (base). This relative positioning of the vehicles creates a “template” (Figure
4) that can be rather quickly compared to the DTED data to determine various possible
locations of the vehicle
ensemble.

Vehicles randomly
distributed on terrain .’ ; ”,. base vehicle

/ Figure 4. Vehicle Template for
Terrain Correlation on DTED ,,,. ’ h’ :-
model

’.
..

’.. . .
, .

A root sum squares
(RSS) of the differences
between the measured and
map relative altitude
counterparts are computed
for all possible locations of
the vehicle template on the
map. A lower threshold is
set on the RSS differences
to limit the possible vehicle template
candidate locations.
Figure 5 depicts a starting scenario for five vehicles on a top-down view of the terrain.
The solid circles represent the true locations of the vehicles. The stars represent five other
possible locations on the map of the “template”. The dark stars are possible locations of
the reference base vehicle while the lighter ones represent the other members. (Note that
one of the candidate locations does correspond to the true location.) The rectangle
represents the search area for the base vehicle that maintains all vehicles within the map

\

12

8

n

ior any location in the search area.

A subgrid of four DTED model points around each possible vehicle location is
established for local slope data and correlation products. Slope data was acquired through
2nd order curve fits of the map north-south and east-west slopes. Multiplicative products
of this data were computed
for a given vehicle over all
of the subgrid positions
amongst only unique
candidate pairings (i.e.,
candidates 1-2,l-3,2-3, etc).
(Though four points were
used for the subgrids, any
size uniform subgrid could
be chosen, incurring a
proportional penalty in
computation time to subgrid
size [SI). The vehicles
demonstrating the most
negatively (i.e., minimum)
correlated product sums in
the two cardinal directions
were chosen.

3 candidate templates shown (including true)

w \
/I50

4 0 w I w

y coordinate - mete rs v 0-’0 x coordinate - meters

other collective member
candidate locations

Figure 5. DTED model with candidate template locations

Once they had moved, a new “template” in effect was formed and the relative positions
again measured via altitude differences. The goal was to keep moving the vehicles such
that the new positions would produce greater RSS measurement errors among the false
candidate locations and would henceforth be eliminated. The cycle of vehicle movements,
measurement, relative distance RSS-value-thresholding and slope correlation was
repeated until a single set of vehicle locations demonstrated a suitably small error.

The algorithm for the position template search and elimination is enumerated as follows:

1. Measure relative positions, form template and scan map for possible collective
locations. (Initially, measure relative latitude and longitude as well to establish
template).

2. Prune locations based on thresholding relative altitude (h) errors

13

N vehicles

(hrelative measured - hrelarive from IMP I threshold
i=l jth candidate position

3.

4.

5.

Compute slope (& correlation product sums over the 4-point subgrids between
unique candidate pairings for the north-south and east-west cardinal directions
using the remaining candidate locations

move the two vehicles that have the smallest respective Gi values a designated
number of grid spacings positive in the two cardinal directions (i.e., east, north),
where

M -I Candidates M cMdidales 4 subgrid points

Gi = c c{ikmmS;,il,,, i = 1 ,..., N vehicles
k = l I=k+l m=l

The template has now changed shape by the two vehicles that have been moved.

Modify the remaining candidates by the moves in step 4, re-measure relative
altitudes for the modified remaining candidates, and go to step 2

Figure 6. Terrain model used in slope correlation

Figure 7 shows the progress of a typical simulation. The true start locations of the swarm
are displayed in the upper left. The initial map search (upper right) reveals 19 possible
positions of the swarm to start. The simulated localization converges in 4 moves and the
summary of vehicle moves are displayed in the lower right corner.

Extensive testing of this scheme with the actual vehicles on the actual terrain revealed
less than satisfactory results (i.e., chattering behavior and lack of convergence) due to the
following factors.

14

d

i

1. The actual measurements of relative positions (using uncorrected GPS) appeared
to be far noisier than modeled via adding uniformly distributed noise to true
locations.

directions on actual terrain was problematic and defaulted to the tester’s best
guess.

2. Moving the vehicles an accurate number of grid spaces and in the correct

3. Test terrain and modeled terrain could differ over a short time.

It is suggested that future work with this algorithm combine previous relative vehicle
locations with current locations in the sum-of-squares criterion for pruning false locations
to enlarge and enhance the terrain map “signature” that is being compared. The template
will increase in size as the product of number of vehicles with the number of moves. This
“enlarging template” approach is a way to amass the amount of data sampled in flight
weapon, terrain correlation applications.

15

LC

I

Optimal Deployments for Multiple Vehicles
Optimal deployments for multiple vehicles were investigated via the steepest-descent (i.e.
gradient method) to minimize local vehicle position metrics. The example of a large span
communications network is a meaningful application of coordinated movements. It is
desired to span a distance with a swarm of vehicles such that signals received from a goal
point are transmitted back to a start point by maintaining vehicle-to-vehicle line of sight.
It is necessary to maintain a line of sight back to the start for said transmissions. For a
goal point that is visually obscured from the start point, it may be a lucky happenstance
that arbitrary deployments of vehicles may be able to provide this connectivity. To
orchestrate the deployment in an optimal sense, we seek to minimize the:

1. fore and aft distances of a given vehicle from its neighbors,
2. altitude of a given vehicle, and
3. positive elevation changes between vehicles (i.e., obstacles).

A simulation was developed to test this algorithm. A grid of hills, which deny line-of-
sight between endpoints, was placed on a landscape. A set of vehicles was deployed from
random locations close to the start point and moved in a stepwise fashion according to a
gradient scheme, satisfying the above-enumerated goals. If only the first of the above-
enumerated goals is used, the vehicles tended to spread themselves evenly from the start
point to goal in a straight line, violating goals 2 and 3. The second constrained them away
from climbing hills (violating 3), and the third insured that they moved where there were
no obstacles (i.e., clear line-of-sight) between vehicles. Applying the last two metrics as
penalty functions in an optimization scheme provided a deployment pattern that would be
ideal for establishing the communication network to relay information over considerable
distances.

An example deployment is shown in Figure 4 starting from a random arrangement of six
vehicles. The terrain is composed of a grid of 9 hills that obscure the start point from
observation of the goal.

4

I- .'Y a*

stiut"

after 10 steps after 40 steps after 100 steps - local line of sight deployment completed

Figure 8. Steepest descent deployment of multiple vehicles using altitude and line-of-sight constraints

Appendix C provides more complete coverage of the gradient-based guidance.

Navigation

Control Subsystems Dept. 2338 supported this effort by investigating aided inertial
navigation techniques that would provide capability for periods when GPS is denied.
These efforts complimented a 2nd research effort [13 in autonomous navigation and the
specific developments are more completely described in this reference. A brief, reiterative
description of this work follows:

The navigation effort configured an inertial navigation system (INS) that used a closed-
loop Kalman Filter
configuration (Figure 9). This Receiver

arrangement estimated
instrument biases and errors
using GPS inputs and inertial
measurement unit (MU) HAGAR

computations. These were fed Error Estimates

back to correct IMU parameters
during vehicle navigation. Reference: Jordan, J.D, Dept. 2338, personal communication, Feb 2002

Figure 9. Closed-loop Kalman Filter INS used for HAGAR

GPS Signals - GPS

I

Extended
Kalman Filter -

Force and
Moments from-

Inertial
Navigation

This configuration could be analyzed and tuned via the NuvCov program (See Appendix
B for a user’s manual) developed in Dept. 2338. This code [101 allows one to do tradeoffs
on both accuracies and types of position and attitude measurement components used (i.e.,
IMU’s, compasses, odometers, tilt meters, GPS receivers). Borrowing extensively from
Sandia missile applications, the code uses detailed operational specifications of candidate
hardware navigation components and is directed at allowing one to see isolated (or
combined) component characteristic effects on position estimation performance.

Figure 10 displays NuvCov output of the position error reduction of a representative
missile-grade INS with GPS updating applied to a vehicle terrain trajectory. The position
error variances in three axes have
been used as semi-major axis
dimensions of a time dependent error
“ellipse”. Note that the ellipse
initially shows more error in the
altitude direction and that the use of
Kalman filtering “circularizes’’ this
error during the trajectory. Circular
position errors imply that you have
reached a point where the error
reduction process is proceeding
uniformly in all directions indicating
equal position estimation accuracy in
all directions (the ideal condition).

initial ellipsoidally distributed position errors
, .

.. ..
” .

relallvs longnude (mt)

Figure 10. Navigation position error reduction history

18

Simulated nominal trajectories were developed in MATLAB [4] and are described in
detail in [11.

Milestone Schedule

This section summarizes the success of the stated milestones listed in The Problem
section.

Year 1: Sensor research and initial demonstration of terrain-aided navigation
Altimeter sensors were researched with disappointing results for other than
uncorrected GPS. The use of uncorrected GPS still allowed the premise of the
correlation of vehicle-measured positions to a map. Vehicle correlation was
demonstrated in simulation for arbitrary numbers of vehicles. The simulated
algorithm also showed sensitivity of map correlation to sensor noise.

Year 2: Traversal of terrain at Sandia’s Robotic Vehicle Range with chosen sensors and
algorithms. Development of inertial navigation analysis tool.

Use of the TAN algorithm on actual terrain demonstrated the sensitivity of the
“search” to sensor noise, map differences, and achieving prescribed vehicle
motions on terrain. Additional work is needed on the algorithm to increase terrain
signature. The inertial navigation analysis tool, NavCov, was completed. NavCov
is able to provide navigation error predictions based on a wide assortment of
modeled hardware.

3: Development of optimal formation. Demonstration of terrain-aided navigation of
multiple vehicles in challenging area on Kirtland Air Force Base without GPS. Coupling
inertial navigation analysis to multiple vehicles.

Year 3 work cancelled due to funding shortfall.

19

References

1. Eisler, G.R., “Robust Planning for Autonomous Navigation of Mobile Robots In
Unstructured, Dynamic Environments: An LDRD Final Report”, August 2002,
Sandia National Laboratories

2. Klarer, P.K. [19931, Recent Developments in the Robotic All Terrain Lunar
Exploration Rover (RATLER) Program, SAND93-1760C, August 93, Sandia
National Laboratories

3. Peters, R., personal communication, Sandia National Laboratories, Department
15221, Albuquerque, October 2001

4. The Mathworks Inc., MATLAB - The language of Technical Computing, Version
6, Nov 2000, Natick, MA, www.mathworks.com

5. Bradley, J.D., “DistAutoNav - 2338 Tasks - Statement of Work”, July 2001, Sandia
National Laboratories

6. Feddema, J., Lewis, C., Klarer, P. [1999], Control of Multiple Robotic Sentry
Vehicles, Proceedings of the SPIE , Unmanned Ground Vehicle Technology,
Orlando, April

7. Muguira, M., personal communication, Sandia National Laboratories, Department
152 1 1, Albuquerque, July 200 1

8. Lewis, C., personal communication, Sandia National Laboratories, Department
152 1 1, Albuquerque, June 2002

9. Eisler, R., Lewis, C., “Cooperative Robotic Map Correlation from Relative Position
and Terrain Slope Measurements”, presented at World Automation Congress 2002,
Orlando, June 2002

10. Bradley, J., personal communication, Sandia National Laboratories, Department
2338, Albuquerque, November 2001

1 1. Jordan, J.D., “Zero Velocity + Position Updating”, viewgraph presentation,
Department 2338, Sandia National Laboratories, Albuquerque, February 2002

12. Eisler, G.R., “Simple gradient-based motion planners to insure line-of-sight
communication for mobile robot collectives traversing arbitrary terrain”, memo to J.
Feddema, Sandia National Laboratories, July 1999

.

20

http://www.mathworks.com

t

Appendix A. Altimeter Search for Distributed Navigation
Provided by Maritza Muguira, Intelligent Sensor Systems Department 15212

Background

Surface height (or gradient) is one of the crucial measurements necessary for the
distributed navigation concept to pinpoint position without the use of GPS. Accordingly,
we are searching for a sensor, which will detect the absolute or relative height of the
vehicles in the platoon. Atmospheric pressure sensors were indicated as a possible aid to
determine relative or absolute height by comparing relative sensed individual vehicle
pressures or by correlating the temperature compensated pressure readings to the expected
pressure for a give elevation. For the first year’s milestone, we will validate the concept
out in the motor cross by Sandia’s RVR. In this terrain, there is an approximate
maximum of fifty feet elevation range. Thus, a one-foot elevation error, which represents
two percent of the total range, is necessary for the distributed navigation simulation to
converge upon a reasonable amount of candidates within a reasonable amount of time.
The RVR is at an elevation of approximately 5200 feet with an atmospheric pressure of
about 12.13 psi (836.6 mbar). Approximately 0.00054 psi (0.037 mbar) represents an
elevation difference of one foot.

Off the Shelf Sensors

Off the shelf sensors use various pressure references and fall into one of these categories:
gage, differential, sealed gage, and absolute. The gage sensors use the local atmospheric
pressure as the reference. Differential sensors measure the pressure difference between
two input ports. Sealed gage sensors reference standard atmospheric pressure at sea level.
Absolute pressure sensors use a vacuum (zero pressure) as a reference. The desired
accuracy plays an important role in the determination of the sensor type, as accuracy is
typically a function of the full scale output (FSO). By using a reference pressure close to
the expected atmospheric pressure the error can be greatly reduced. For example, a 0 -
15 psi absolute pressure sensor with an error of 0.5% FSO will have a 0.075 psi error
while a gage sensor with a 0.036 psi operating range and 0.5% FSO will have a 0.00018
psi error.

A few pressure sensors with acceptable accuracy, size, weight and electronic output were
identified. Vaisala quoted $795 per 800 - 1060 mbar analog barometer with +/- 0.000435
mbar accuracy. Nova Lynx sells a 200 mb span (9 13 - 1 1 13 mb) analog output
barometric pressure sensor with +/-0.00029 psi accuracy for $5 10. Although that
pressure span is too high for this elevation, other ranges are available upon request. Data
Harvest offers a barometric pressure sensor with an 800 - 1100 mb range, but without an
electronic output. Heise’s DXD Series Precision Pressure Transducers have a 0.001 psi
accuracy with 5 psi full scale for $825. Weston Aerospace Ltd. quoted us $2640 for the
DPM 7885-1B with a range of 0.5 - 19 psi and 0.00185 psi accuracy. Setra’s Model 470
barometric pressure sensor reads 800 - 1100 mb with 0.000087 psi accuracy and costs

21

$1250. Data Instrument’s SURESENSE Ultra Low Pressure Sensors exhibit a maximum
0.25% linearity, hysteresis error and cost only $144 a piece. The SURSENSE sensors
were out of stock when we called Honeywell, and we were required to place a minimum
order of 10. We were able to borrow two 1 inch water operating range differential
SURESENSE sensors and two 1 inch water gage SURESENSE sensors in order to
conduct some preliminary test to determine the stability of the atmospheric pressure
readings versus height. Note that Silicon Microstructures Incorporated makes some
sensors (SM5310, SM5350, SM5410, SM5450, SM5501, and SM5502) similar to Data
Instrument’s SURESENSE sensors. We also identified some wind sensors available
from Vaisala should we have difficulties isolating the sensor from the wind and need to
compensate the pressure readout. The table below summarizes the candidate sensors and
their characteristics.

i

22

t

Custom Seal

a screw that was coated with sealant gel while the testing port (port A) was open to
sample ambient air. It was difficult to maintain the seal as we adjusted the volume, and
once the seal was maintained the sensor would drift slowly to either saturation limit. We
also tried using a very long tube (approximately 40 ft.) such that sealing the end would
not cause such a large volume change relative to the entire reference volume, but again
we would see the readings drift until the sensor would saturate. We could not understand
why this was happening, and we decided to test the sensor with a Sono-Tek syringe pump
to verify that the sensor itself was stable. We had to adjust the reference volume with the
pump, and we finally stabilized the sensor after three days.

Experiments with Garmin’s etrex Barometer
We also tested with Garmin’s etrex barometer, and a few samples showed about a 1.5 feet
error. However, we needed to collect more samples for conclusive results.
Unfortunately, currently Garmin does not provide a method to extract the barometric
pressure readings electronically such that testing would be extremely tedious.

Recommendations
After experiencing so many problems maintaining a stable reading and sealing the
reference port, we believe that it would not be wise to use such a sensitive sensor in a
rugged vehicle traversing rough terrain. Chris Lewis suggested that we consider using a
range finder along with an inclinometer and compass to determine the gradient of the
vehicle. Surface gradients could be used rather than elevation. Gradient measurements
would be susceptible to false readings from elevation changes in the vehicle due to debris
such as rocks or bushes, so we could use the range finder to locate spots where the
vehicle is sitting level on the ground regardless of the gradient. The range finder can be
rotated about the vehicle in a circle, and all of the readings should be equal (except in the
case where an obstacle@) is located along the scan line) if the vehicle is sitting level.

23

Appendix 6: Gradient-based motion planners to insure line-of-
sight communication for mobile robot collectives traversing
arbitrary terrain[lZ]

Introduction

It is desired to use a mobile robot collective to form a communications
network between a base station and a goal point, which are separated by
arbitrary terrain. Constraining the movements of the individual collective
members is the tacit assumption that line-of-sight (LOS) must be maintained
between adjacent members and that communication signal strength varies
inversely as a power of distance, l ldi" , between these members (see figure
below, courtesy of J. Feddema, Dept. 1521 1)

Problem Formulation

A suggestion for motion generation by J. Feddema, Dept 1521 1 would employ a
simple gradient scheme to have the vehicles migrate such that each vehicle (i) tries to
minimize a power of its straight-line distance (regardless of terrain) to both adjacent
neighbors. The initial performance metric to be minimized in this effort is

for i = 1, ..., n
24

Vehicles 1 and n will use the base and goal positions as their respective (i-1) th and
(i + l) th neighbors. It is assumed that each vehicle has perfect knowledge of its
location (xi, yi , z i). The simple gradient form to update a vehicle position coordinate,

g,, based on minimizing metric, Vi, is ti (k + 1) = ti (k) - a 3 1 for time step, k + l ,
’ti k

Using this form, the gradient expressions for ground coordinate updates (developed
by J. Feddema) are:

+m(Yi(k)-Yi+l(k))((x,+l(k)-Xi(k)) 2 + (~ i + l (k) - y i (k)) + (z . E+l (k) - z i (k)) 2) (m12t1

for i = 1. n

Values of rn between 2 < rn < 2.5 provide stable gradient operations. rn = 2.1 was used
in this study. awas set to 0.1 for similar reasons. Successive updates were generated
without regard to vehicle performance or consistent time intervals. Consistent with
the gradient definition, the update “steps” are initially large and get progressively
smaller as the minimum “network is achieved.

The vehicles “moved” over a normalized world expanse of terrain whose dimensions
were -2 < (x, yjWorld< 2. A set of vehicle positions, (xi, yi) was initialized (k = 0)
using random, uniformly
distributed values contained
within a square of 0.8 units basis “hills”
on a side centered about a
specified base station within ii. a
the world “expanse”. byx
Between the base station and
a specified goal point, “hilly” ‘41 -r, world expanse
terrain, in the form of radial “w.
basis functions, was used to hase station
block clear LOS. The radial

randomized
vehicle locations

25

basis function form gives elevation, z(x, y) = ~q,-b~[(r-rhr~)2+(y-rby~)i] as a function of
I

i=l

ground coordinates, x,y. 1 is the number of radial basis “hills”, (rbx, rbyi) are the
ground coordinates of the i-th hill center, Ai is the “hill” height, and bi regulates the
hill steepness.

Results

A collective of 6 vehicles was used to demonstrate communication network formation.
The base station and goal ground positions were (-1.5, -1.5) and (1.5, 1.5) respectively. Ai
= 10, bi = .25, and nine radial basis hill centers were distributed evenly on a portion of
the world grid spanning -1.25 <(x, y)w0,1d<1.5. Network completion was assumed when
no vehicle changed position by more than loA3 units. The evolution of a typical run
follows

1
i

Z at 4 steps
, ...

= at8steps x .

. ‘i 7
goal

Straight-line,

base station, “ 5 j_

.2 .*

at 135 steps (convergence)

As is plainly evident, the “network generated from this formulation is a straight line
from base station to goal with vehicles approximately evenly spaced. The downside to
this strategy is that there is no consideration for elevation or maintaining LOS, which
allows neighboring vehicles to be situated on opposite sides of the same hill at varying
elevations.

26

If elevation is an issue, the term - zi‘Wezi (where We is an arbitrary weight) can be

attached to the previous minimum distance metric, V, , to drive elevation to zero. The

1
2

gradient step form remains the same, but the gradient forms are altered according to

The gradients 2,L are computed by differentiating the z(x,y) radial basis function. In

field practice, these derivatives would need to be provided from a combination of
inclinometer and azimuth sensor readings (unless map data was available). A common
weight, We = ,005, was used for all vehicles. Results from this type of network generation
are shown below.

az. az.
axi ayi

at 10 steps at 40 steps

vehicles lie along
curved line

)I,
a, P;

&1

.- . .*,
I-

I .*

at 165 steps

Minimum distance + elevation-penalty network formation

Use of the elevation penalty coerces the vehicles to “skirt“ the hills as they form the
“comm” link. As the link is finished (165 steps), the vehicles assume positions that are
compromises between maintaining equal distances to adjacent neighbors and attaining
zero value elevations. The addition of the elevation penalty prevents them from attaining
the straight-line configuration seen in the “minimize distance only” solution. A straight-

21

line solution at zero elevation would position the vehicles in the valleys between hills
causing a disparity in intra-vehicle distances, as they progress from valley to hill and
beyond. The “comm” link line is bent to satisfy both desired behaviors (to the degree of
the relative weighting). Unfortunately, LOS has still not been maintained as adjacent
vehicles are still obscured by intervening hills.

LOS can be attained within the same gradient step formulation by adding a final term to
be minimized in the performance metric for the ith vehicle. This metric would assume
knowledge of terrain elevation on a straight line between adjacent vehicles at a user-

specified number of points. Adding the term, -5 z~W,,z,, to the total metric will

provide a gradient dependence on inter-vehicle terrain. p is the number of equally spaced
intermediate points between vehicles i and i+l (as well as between i and i-l), zq is an
intermediate point with vehicle i as the center point of the set, and Wlos is an arbitrary
weight. This term will tend to drive elevation at the 2p discrete points to zero. The
gradient forms, including this final term are

1
2

az.. azii
axi ayi The gradients 2, -were computed as -

azii az,
axj ’ ay where the partials - - are computed as described in the elevation penalty discussion

ax
using the radial basis function. Cross derivative terms of the form -were ignored.

ayi

A common weight, Wlos= .005, and p = 3 intermediate points were used for all vehicles.
Results from a network generation based on the three effects (distance, elevation, LOS)
are shown below.

28

i

, z A

1

0’

L

LA

A

At 20 steps

Vehicles migrate to edge
.)

/of hills to maintain LOS

-1 7 r., - -
yw d.5

-15 x *
.2 -2

At 10 steps

At 60 steps

“Minimum distance + elevation penalty + maintaining-LOS” network formation

The addition of the LOS term supplies this dependency in a similar “weighted” fashion as
was done for the elevation penalty. The combination of all three effects cause the vehicles
to move in the valleys between hills, acquiring just enough elevation to maintain LOS,
while attempting to equalize inter-vehicle distances. The final “comm” link (at 60 steps)
shows a viable vehicle “collective” configuration to establish a base-to-goal link. As
mentioned before, one caveat to the use of this effect is that it presumes you have a way

29

of obtaining more than just local terrain information. Possibly the possession of accurate
on-board topological maps would justify its use.

Summary Observations

The gradient step forms generate low-burden computational forms to effect vehicle
movement. Relative weighting between the penalties (distance, elevation, LOS = l., We,
Wios) in the performance metric, step size control (via a?), and the number of inter-vehicle
intermediate points, p , for LOS computations are tunable parameters that can provide a
myriad of “marching” behaviors. In the field, distance and elevation gradients could be
obtained from inter-vehicle communications and local measurements. LOS gradient
requirements would necessitate elevation mapping of the intended network terrain.

30

8

Appendix C: Users’ Manual for Navigation Covariance Analysis
Code (NavCov)

8

r

USER MANUAL
for the

NavCov Covariance Analysis Code
developed for the

Distributed AutoNav LDRD
by J.D. Bradley, Control Subsystems Department 2338

version 1.0,5/1/2002

This manual describes the function and use of the NavCov covariance analysis code. This
code is a set of liberally commented Matlab scripts and functions derived from the work
of previous projects and oriented for use in defining inertial navigation performance and
error budgets for land vehicle applications.

INTRODUCTION

The purpose of a covariance analysis code is either to predict the statistical performance
of some aided inertial navigation system under consideration without extensive modeling
and simulation, or conversely, to determine the required error budget of an aided inertial
navigation system to meet some contemplated performance goal. This covariance
analysis code utilizes several tools, including:

1) a model of inertial navigation errors, consisting of a set of linear differential equations
describing the behavior of both the general errors and those errors associated with the
accelerometers and gyroscopes contained in an MU.

models of measurement errors for sensors used to aid or update the inertial navigator.
Error models are included for:
a) a baro-altimeter damping loop, which is used to stabilize the unstable vertical

b) an odometer velocity measurement, which is used to update the along-track

c) a compass heading measurement, which is used to update the heading estimate of

d) a two axis inclinometer attitude measurement, which is used to update the roll and

e) a GPS position measurement, which is used to update the latitude, longitude, and

channel of the inertial navigator,

velocity estimate of the inertial navigator,

the inertial navigator,

pitch estimates of the inertial navigator,

height estimates of the inertial navigator, and

31

f) zero velocity update, which is used to update the north and east tilts, north east,
and down velocities, and latitude, longitude, and height estimates of the inertial
navigator when the vehicle is not moving.

3) a linearized Kalman filter used for propagating and updating the covariance matrix
and for calculating the optimized gains (or weighting factors) used during updating of
the covariance matrix. The Kalman filter used by NavCov provides two modes of
operation:
a) a full order mode which uses the full complement of modeled states to produce

b) a reduced-order or suboptimal mode used to omit the contribution of some states
the optimum (and potentially optimistic) estimation of performance, and

in the calculation of Kalman gains to achieve a potentially more realistic
estimation of performance.

The inertial navigator error model was developed by Dr. William Widnall and Mr. Peter
Grundy for the U.S. Air Force and is documented in [ref 13. Additional information
regarding the inertial navigation error model is found in [ref 21. The baro-altimeter
measurement error model is also documented in [ref 11. Kalman filter equations are
documented in numerous sources including [ref 31.

A primary input to the covariance code is a trajectory definition about which partial
derivatives in the linearized navigation error model and measurement model can be
evaluated. For this application, a pseudo-6-degree-of-freedom (6DOF) simulation was
developed separately by Dr. Richard Eisler based on point mass translational motion over
digital terrain elevation data (DTED). The simulation is driven by throttle and heading
commands. Vehicle attitude rates were generated via finite differencing of DTED terrain
features as a function of vehicle speed. No vehicle motion was assumed normal to the
local surface.

It is important to understand that a covariance analysis computes, propagates, and updates
the variances (aka uncertainties) of the inertial navigation error states rather than the
actual inertial navigation states or error states. The actual states, error states, and the
sensor measurements do not exist in the covariance analysis; these items would be
included in a full simulation of an aided inertial navigator.

It is also important to note that the inertial navigator error model assumes that navigation
errors are small so that a linearized model is valid, meaning that position errors remain
small relative to the earth's radius, velocity errors remain small relative to orbital velocity,
and attitude errors remain small relative to 1 radian [ref 11.

LINEARIZED KALMAN FILTER EQUATIONS

This section borrows heavily from [ref 31. The continuous time general model of an
inertial navigator and the measurements used to aid the navigator take the form of:

?

*

3?

x = f (x,u,t) + w(t)
z = h(x, t) + v(t)

t

!!

where x is the navigation state vector, u is a forcing function, w is an independent white
noise process representing navigation process noise, z is the measurement vector, and v is
another independent white noise process representing measurement noise. The function f
represents the navigator's state dynamics and the function h represents the transformation
between the navigation states and the measurements.

Assuming that an approximate trajectory x*(t) may be determined by some means, the
actual trajectory can be represented as:

x(t) = x * (t) + e(t)

where e is the navigation error state vector. Substituting, equations (1) and (2) become:

x *+e = f (x * +e,u,t) + w(t)
z = h(x * +e, t) + v(t)

To linearize these equations, it is assumed that e is small and f and h are approximated
with Taylor series expansions truncated to the first order terms only. The result is:

X*+e =f(x*,u,t)+ - *e+w(t)
[3, .*

z = h(x*,t)+[%] ah *e+v(t)

x=x*

rhe approximate, or nominal, trajectory x*(t) is chosen to satisfy the differential
equation:

x* = f (x*,u,t)

Note that for NavCov, x*(t) is the trajectory data that is generated separately and provided
as an input to the code.

Now, equation (6) becomes:

e = [$] *e+w(t)
x=x*

or more commonly:

33

e=F.e+w(t)

where F is known as the linearized error dynamics matrix. The derivation and contents of
the F matrix for the inertial navigator error model can be found in [ref 11 and [ref 21 and
so won't be repeated here. There are some sign differences for several of the elements due
to use by NavCov of a North-East-Down (NED) coordinate frame rather than East-North-
Up (ENU).

Reorganizing equation (7) leads to:

[z - h(x*,t)] = [$1 e + v(t)
%=x*

or more commonly:

Z = H .e+ v(t)

where Z is now the measurement residual, or the difference between the actual
measurement and the measurement predicted based on the nominal trajectory. H is known
as the linearized observation (or measurement) matrix.

In a real-time implementation of an aided inertial navigator, an extended Kalman filter
would be used rather than a linearized Kalman filter. The difference is that the extended
Kalman filter evaluates the partial derivatives in the above equations about the estimated,
rather than the nominal, trajectory.

The covariances of the navigation error states are contained in the matrix P, defined as:

P = E(eeT)

where E is the expected value function. The variances of the navigation error states reside
along the diagonal of P. The process noise matrix Q is defined as:

Q = E(wwT)

Q represents the variances of the process noise for the navigation error states. The
measurement noise matrix R is defined as:

R = E(vvT)

R represents the variances of the measurement noise.

34

*

NavCov utilizes the discrete-time version of the Bucy-Joseph form of the Kalman filter
equations. Once the P matrix is initialized, it is propagated using the equation:

P- (k) = < p (k) ~ + (k - i)v* (k) + r(k)

where P- denotes the covariance matrix prior to updating with measurements and P'
denotes the covariance matrix after updating. k indexes the current time step, whereas k-1
indexes the previous time step. The state transition matrix (I in the above equation is
computed using a truncated exponential series expansion via the equation:

~ (k) = I + F(k)At + 3F2(k)At2

where I is the identity matrix, At is the time difference between the current and previous
time steps, and F is assumed to be time-invariant. Also, the matrix r in equation (16) is
just:

If measurements are available during the kth time step, the observation matrix H is
computed and the Kalman gain matrix K is computed using the equation:

K(k) = P-(k)HT (k)[H(k)P-(k)HT (k) + R(k)]-'

Then the covariance matrix P- is updated to P' using the equation:

P'(k) = [I - K(k)H(k)]P-(k)[I - K(k)H(k)]* + K(k)R(k)KT (k)

If no measurements are available during the kth time step, then the updated covariance
matrix P+ is set equal to P-.

COORDINATE FRAMES

NavCov uses a number of coordinate frames. The first is the earth frame, which is a polar
coordinate frame that is earth fixed (i.e. it rotates with the earth). It is defined by the
WGS-84 ellipsoid, though spherical approximations are used in several places throughout
the code. Its components are:

Earth Frame
Latitude defined to be zero at the equator and positive north, negative south, angular
units
Longitude defined to be zero at the Greenwich meridian and positive east, negative
west, angular units
Height defined to be zero on the ellipsoid and positive up, linear units

35

Note however, that height in this code is defined to be positive down rather than
positive up.

The second frame is the geographic (also called navigation) frame, which is a locally
level, or normal to the gravity vector. The geographic frame is also earth fixed. It is a
right-handed Cartesian coordinate frame with its origin at the center of navigation (for
this code) and components:

Geographic Frame
North defined to be positive north, linear units
East defined to be positive east, linear units
Down defined to be positive down, linear units

Angles and angular rates about these axes are defined to be positive by right-handed
convention.

The third frame is the body frame, which is fixed to the body of the vehicle. It is a right-
handed Cartesian coordinate frame with its origin at the center of navigation (for this
code) and components:

Body Frame
X
Y
Z

longitudinal axis, defined to be positive out the nose, linear units
lateral axis, defined to be positive out the right side, linear units
"down" axis, defined to be positive out the belly, linear units

Again, angles and angular rates about these axes are defined to be positive by right-
handed convention.

These sign conventions differ somewhat from those used in [ref 11 and [ref 21 and result
is some sign differences in the various equations contained in NavCov, particularly in the
computation of the F matrix.

MEASUREMENTS INCLUDED

As mentioned before, the aiding measurements included in NavCov are:

1) baro-altimeter damping loop, which is used to stabilize the unstable vertical channel
of the inertial navigator. This measurement is actually not used as an aiding, or
updating input, but rather, is implemented as an integral part of the inertial navigator.

2) odometer velocity measurement, which is used to update the along-track velocity
estimate of the inertial navigator,

36

t

3) compass heading measurement, which is used to update the heading estimate of the
inertial navigator,

4) two axis inclinometer attitude measurement, which is used to update the roll and pitch
estimates of the inertial navigator,

5) GPS position measurement, which is used to update the latitude, longitude, and height
estimates of the inertial navigator, and

6) zero velocity update, which is used to update the north and east tilts, north east, and
down velocities, and latitude, longitude, and height estimates of the inertial navigator.

Aiding measurements can be enabled or disabled to explore their impact on navigation
performance. In addition, these measurements can be scheduled so that they are only
applied during specific parts of the vehicle trajectory. This allows, for instance, GPS to be
used for a period at the beginning of the trajectory, and then denied for the remaining part
of the trajectory. During this period of GPS-denial, other aiding sources such as zero
velocity updating can be used.

Further discussion of the measurement error models is included in Appendix A.

STATES INCLUDED

NavCov initializes, propagates, and updates the covariance for a number of states that
represent inertial navigator and updating sensor measurement errors. It is possible to
include a vast number of states in pursuit the highest possible fidelity; however,
depending on the application, many of these states are of little consequence to the actual
performance of the inertial system under consideration. For instance, g-sensitive and g2-
sensitive gyro errors are negligible for a slow land vehicle application. The number of
states also impacts the speed at which the code runs due to the many matrix multiplys and
the matrix inversion that are a part of the Kalman filter equations. Therefore, the states
included in NavCov are those that have the greatest potential to affect the performance of
an aided inertial navigator used for the slow land application. In addition, most of these
states can be enabled or disabled to explore the sensitivity of inertial navigator
performance to the inclusion or exclusion of various states. It should be noted that not all
sensor measurements have associated error states.

NavCov computes the covariance for the states listed below. The numbering shown is for
convenience only. The actual numbering depends on which states are enabled and
disabled.

Basic 9 inertial navigator error states, which cannot be disabled:
1. latitude error
2. longitude error

37

3. height, or altitude, error
4. north velocity error
5. east velocity error
6. down velocity error
7. north tilt error, which is the angular error about the north axis
8. east tilt error, which is the angular error about the east axis
9. heading error, which is the angular error about the down axis

10.-12. gyro bias errors
13.- 15. gyro scale factor errors
16.-2 1. gyro misalignments

22.-24. accelerometer bias errors
25-27. accelerometer scale factor errors
28.-33. accelerometer misalignments

34. error in integral of difference between inertial and bar0 altitudes
35. baro-altimeter scale factor error
36. baro-altimeter error due to constant-pressure surface altitude variation

37. odometer velocity measurement bias

38. compass heading measurement bias

39. x-axis attitude (roll) measurement bias
40. y-axis attitude (pitch) measurement bias

Gyroscope sensor errors (for 3 gyroscopes)

Accelerometer sensor errors (for 3 accelerometers)

Baro-altimeter damping loop errors

Odometer velocity measurement error

Compass heading measurement error

Inclinometer attitude measurement errors

a

A criticism of covariance analysis is that it often produces optimistic results. NavCov
addresses this by allowing for use of a suboptimal Kalman filter, where some of the states
are omitted for the purpose of computing Kalman gains. The states that might be omitted
are those that are felt to be non-estimatable due to highly nonlinear, non-repeatable
behavior. Such states might include gyro bias for inexpensive, low quality MUS.

The states that are automatically omitted in the suboptimal Kalman filter include:
Baro-altimeter damping loop errors
Odometer velocity measurement error

The states that may be omitted in the suboptimal Kalman filter include:
Gyroscope sensor errors (for 3 gyroscopes)
Accelerometer sensor errors (for 3 accelerometers)
Compass heading measurement error
Inclinometer attitude measurement errors

38

INSTALLING THE CODE

The code is delivered as a zip file. Place the zip file in an empty directory and unzip it to
that same directory. Since NavCov is expected to evolve with use on specific
applications, the zip file will eventually become obsolete and can be discarded. Periodic
backups of current work are therefore a good idea.

STRUCTURE OF THE CODE

NavCov is a fairly simple, serially executed (single thread) code. In almost all cases,
scripts are used rather than functions; therefore, information is passed between the
various parts of the code using global variables. (We will pause here to allow the more
sophisticated programmers to recover after keeling over in disgust.) On the positive side,
the code is at least functionally modular and it is hoped that the code is fairly easy to
interpret and modify. The primary sources of complexity are the ability to enable, disable,
and schedule aiding sources, and the ability to run a suboptimal filter.

The main script is called navc0v.m. It calls other scripts to perform the various steps
required during a covariance analysis run. Most of the scripts performing computations
are in the same directory with navc0v.m. Inputs to the code are placed in various files
contained in the subdirectory .\input-files. Results from running the code are placed in
the subdirectory .\output-files. Plotting parameters are placed in the subdirectory
.\plot-limits.

The following flow chart describes the basic functionality of the code.

39

APPENDIX A to NavCov Users' Manual: MEASUREMENT MODELS
INCLUDED IN VERSION 1.0

BARO-ALTIMETER MEASUREMENT

The baro-altimeter measurement is incorporated in a third-order damping loop integrated
with the inertial navigator rather than in the Kalman filter. This mechanization is
documented in both [ref 11 and [ref 21. The error model for the baro-altimeter
measurement is also documented in [ref 11. The various gains, constants, and initial error
and process noise variances for this model are contained in the Matlab script
.\input-filesheas-models\baro-mode1.m.

NavCov includes error states for 2 of the 4 baro-altimeter error sources shown in [ref 11.
A third error state is also included as a result of the third order damping loop
mechanization. Those states are:

1) e,,, the error due to variation in altitude of a constant pressure surface, and
2) eh,q, the error due to non-standard temperature, modeled as a scale factor error
3) &, the integral of the difference between the indicated and reference altitudes

The two remaining error sources listed in [ref 11 are considered negligible for the land
vehicle application and so are left out of NavCov. The bar0 altimeter error dynamics
equations used are:

where VH is the horizontal velocity of the vehicle, da/, is a constant representing the
correlation distance of weather patterns, w(t) is a white noise process, E is the expected
value function, ff&t is the standard deviation of the variation in altitude of a constant
pressure surface, k l , k2, and k j are constant gain coefficients, &LI is the height error
(where the D subscript reminds us that this error is positive down), and dh is the change
in altitude since the baro-altimeter was initialized. The terms with the subscript "orig.
terms" denote use of the original terms from the F matrix for the undamped inertial
navigator.

40

The error source epo is modeled as a first order Markov (exponentially correlated) process.
The error source eh,f is modeled as a random constant scale factor error. The terms in
equations (A-I) and (A-3 through 6) are included in F matrix. The term in equation (A-2)
is included in the Q matrix. There are some sign differences between these equations and
those shown in [ref 11 since NavCov uses an NED coordinate frame rather than ENU.
Also, the model used in NavCov assumes that the baro-altimeter can be initialized at any
altitude rather than sea level using some means such as GPS. This leads to use of Ah
rather than h in the above equations.

ODOMETER VELOCITY MEASUREMENT

The odometer is used as a velocity-measuring sensor by NavCov. This velocity
measurement is included in the Kalman filter. Its P, Q, and R values are set in
.\input_files\meas-models\odomvel_model.m.

The odometer velocity measurement error is modeled as a random constant plus a random
walk. The error dynamics equation for this model is:

where w(t) is a white noise process. This model is implemented in the F and Q matrices.
One error state results from this model. It is assumed that this error state is poorly
estimate-able (due to wheel slippage), so it is not included in the suboptimal Kalman
filter.

The measurement model used in NavCov is:

z = V, + evod + v(t)

where VX is the velocity of the vehicle along the longitudinal, or X axis, and v(t) is a
white noise process. This model is of the form of equation (2), except that VX must be
expressed in terms of the states V , , VE, and Vo (since VX is not a state used in NavCov).
That relationship is defined via the geographic-to-body direction cosine matrix (DCM)
Cglob as:

The matrix Cgtob is the transpose of the matrix &g, which is provided as an input to
NavCov by the separate 6DOF simulation. The function h(x) in the form of equation (2)
is then:

Then, remembering per equations (1 1) and (12) that the observation matrix H is the
partial derivative dh(x)/ XI^=^*, the following result is obtained:

with respect to the error state vector:

L ...I

e = [Slat &ng > SV, NE 8 V D E, E, E, ... evod .. .] T

H matrix elements not shown are 0. This result is implemented in NavCov's H matrix
along with similar results for the other measurements described below.

COMPASS HEADING MEASUREMENT

The compass is used as a heading-measuring sensor by NavCov. This heading
measurement is included in the Kalman filter. Its P, Q, and R values are set in
.\input-filesheas-models\comphdg-mode1.m.

The compass heading measurement error is modeled as a random constant plus a random
walk. The random walk contribution is increased with increasing heading rate as a way to
cause the filter to re-estimate the bias when heading changes. It is assumed that the
compass is at least somewhat calibrated. The error dynamics equation for this model is:

where w(t) is a white noise process. This model is implemented in the F and Q matrices.
One error state results from this model. It is assumed that this error state is predictable, so
it is included in the suboptimal Kalman filter.

The Q value for this error model, which is the expected value E[w(t) ~ (t)] , is scaled
between a minimum value when heading rate is zero and a maximum rate when heading
rate reaches an assumed maximum angular velocity. The equation defining this
relationship is:

(A- 10)

(A- 1 1)

(A-12)

(A- 13)

42

(A- 14)

t

where Kcom is a scaling constant, Qecommin and cca,, are assumed constants, and is the
vehicle’s heading rate. a is computed using the body-to-geographic DCM from the body
angular rates contained in the input trajectory data as:

The measurement model used in NavCov is:

z = E, + ecom + v(t)

where ED is the heading of the vehicle, and v(t) is a white noise process.

The function h(x) in the form of equation (2) is then:

h(x) = E, + ecom

Then the observation matrix H, computed as the partial derivative dh(x)/ is:

H=[O 0 0 0 0 0 0 0 1 ... 1 ...I

with respect to the error state vector:

e = [Slat arzg > N, NE N, E, E, E, .. . ecom ...I T

H matrix elements not shown are 0.

2-AXIS INCLINOMETER ATTITUDE MEASUREMENTS

The 2-axis inclinometer is used as a roll and pitch-measuring sensor by NavCov. These
two attitude measurements are included in the Kalman filter. Their P, Q, and R values are
set in .\input-filesheas-models\inclatt-mode1.m.

The inclinometer attitude measurement errors are each modeled as a random constant
plus a random walk. The error dynamics equations for this model are:

(roll measurement error)
(pitch measurement error)

(A- 15)

(A- 16)

(A- 17)

(A- 18)

(A- 19)

(A-20)
(A-21)

43

where wdt) and wdt) are white noise processes. This model is implemented in the F and
Q matrices. Two error states results from this model. It is assumed that these error states
are predictable, so they are included in the suboptimal Kalman filter.

The measurement model used in NavCov is:

where EX is the roll of the vehicle, EY is the pitch of the vehicle, and vd t) and vdt) are
white noise processes. EX and EY need to be expressed in terms of the states E N , EE, and
ED through use of the geographic-to-body DCM as:

Then the function h(x) in the form of equation (2) is:

Then the observation matrix H, computed as the partial derivative dh(x)/ XI^=^*, is:

with respect to the error state vector:

e =[&at &ng > WN WE WD E , E , E , ... eincX eincY ...I T

H matrix elements not shown are 0.

GPS POSITION MEASUREMENTS

GPS is used as a three dimensional position-measuring sensor by NavCov. These position
measurements are included in the Kalman filter. No error states are associated with this
simple mechanization. The R values for the position measurements are set in
.\input-filesheas-models\gpspos-mode1.m.

4 4

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)

3

G

rhe measurement model used in NavCov is:

t

Zat + vN (t)

where vdt), vE(t), and vo(t) are white noise processes. Since the latitude and longitude
error states are in units of radians while the measurement noise is specified in units of
meters, re-type unit conversions are required.

The function h(x) in the form of equation (2) is:

h(x) = RE - cos(Zat). Zng [Ri:]
Then the observation matrix H, computed as the partial derivative dh(x)/ XI^=^*, is:

0

with respect to the error state vector:

e =[&at &ng > ...I

H matrix elements not shown are 0. The units of &at and &ng are radians.

ZERO VELOCITY UPDATING MEASUREMENTS

Zero Velocity Updating (ZVUPT) is a powerful technique that can be used to identify tilt
and velocity errors when a vehicle is stopped. The tilt errors are made observable because
the MU'S accelerometers provide an accurate measurement of the gravity vector and
therefore the vehicle's pitch and roll angles. The velocity errors are made observable
because, during a stop, the vehicle's velocity is very accurately known to be zero. Given
frequent stops (allowing an assumption that velocity error rate, or acceleration error, is
constant), quadratic position errors can also be estimated as the double integration of the
constant acceleration error.

(A-27)

(A-28)

(A-29)

(A-30)

AavCov includes ZVUPT to update the 2 vehicle tilts, 3 dimensions of velocity, and 3
dimensions of position. The measurements are incorporated in the Kalman filter. No error

45

states are associated with this mechanization. The R values for the position measurements
are initialized in .\input-filesheas-models\zvu~model.m. and updated as necessary in
.\update-R-ZVUP0S.m and .\update-R-ZVUPOS-sub0pt.m. ZVUPT of tilts, velocity,
and position can be enable and disabled separately.

s

For the tilt measurements, the measurement model used in NavCov is:

where EX is the roll of the vehicle, EY is the pitch of the vehicle, and vdt) and vdt) are
white noise processes. EX and EY need to be expressed in terms of the states EN, EE, and
ED through use of the geographic-to-body DCM as:

Then the function h(x) in the form of equation (2) is:

Then the observation matrix H, computed as the partial derivative ah(x)/ axlx=x*, is:

H elements not shown are 0. For the velocity measurements, the measurement model
used in NavCov is:

(A-3 1)

(A-32)

(A-33)

(A-34)

(A-35)

where vlv(t), vE(t), and VD(~) are white noise processes. The function h(x) in the form of
equation (2) is:

46

(A-36)

Then the observation matrix H, computed as the partial derivative dh(x)/ is:
*

0 0 0 1 0 0 0 0 0 ...
0 0 0 1 0 0 0 0 ...

0 0 0 0 0 1 0 0 0 ... 1
H elements not shown are 0. Finally for the position estimate, the measurement model
used in NavCov is:

where vdt) , vE(t), and vo(t) are white noise processes. Again, since the latitude and
longitude error states are in units of radians while the measurement noise is specified in
units of meters, &-type unit conversions are required.

The function h(x) in the form of equation (2) is:

h(x) = RE cos(Zat) e Zng [Ri: 1
Then the observation matrix H, computed as the partial derivative dh(x)/ is:

i

0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 O ...
1 0 0 0 0 0 0 ... !

H elements not shown are 0. If ZVUPT of position, velocity, and tilts are all enabled, the
combined H matrix is:

(A-37)

(A-38)

(A-39)

(A-40)

47

H =

RE
0 RE *
0
0
0

0
0
0

0 0 0 0 0
cos(Zut) 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

with respect to the error state vector:

e = [&at &ng > N, NE ND E, E, cD ...I T

...

...

...
I..

..I

...

...

...

(A-4 1)

(A-42)

Some additional heuristics are added in the mechanization of ZVUPT of position. The
purpose of these heuristics is to parallel the operation and performance of a real-time
system utilizing ZVUPT. The mechanization logic includes the following:

1. Position updating is performed only for the second and subsequent stops after ZVUPT
is enabled.

2. The R value for position updating is not expected to be any better than the variance of
the position uncertainty at the time when ZVUPT is enabled. Therefore, when ZVUPT
is disabled, the R value is matched to the P value for position uncertainty.

3. When the vehicle is stopped and ZVUPT is enabled, the R value for position updating
is expected to remain constant. It is therefore held constant during stops.

4. The ZVUPT position update variance for subsequent stops is expected to degrade over
time. Therefore, the R value for position updating is incremented after each stop is
completed.

This logic is included in .\update-R-ZVUP0S.m and .\update-R-ZVUPOS-sub0pt.m.

48

initialize
Constants

Compute Gravity.
Initialize Transformations,

and Mhw Mi=.
Variables

Allocate Memory for
Compute the

Large GlDbal VafWw Eased on Trajectory

Compute the
IMU Model @Matrix

Read Trajeotory

Inibaliiation h Dwiay
Mis~llaneoua

4
Initialize the

P Matrix
for this
step

4
Prqgate the

P Matrix

Compute the
R Matrix

Manipulate the P
Matrix if Ne-ry b

Compute the
K Matrix

Update the
P Matrix

Temporarily
Store Reeults

NavCov Flow Chart

49

INPUTS TO THE CODE

NavCov requires numerous inputs. They are:

3)

4)

a Matlab script (.\input-fi1esbnputs.m) containing input definitions. The primary
definitions included in this file are:
a) flag enabling suboptimal filtering
b) string defining the name of the IMU model
c) string defining the name of the trajectory
d) string defining the name of the aiding schedule
e) variable setting the data rate
f) variable setting the number of steps between measurements
g) flags enabling sensor error states
h) flags enabling measurements

a text file containing the initial error and process noise standard deviations for IMU
sensor errors (.\input-files\imu-models*.txt). The format of this file follows long-
standing convention in Sandia's navigation departments.

a Matlab script (.\input-filesbmu-models*-pvapq.m) defining the initial position,
velocity, and attitude error standard deviations for the particular IMU and application
under consideration. These numbers are set to reflect the initialization (i.e. alignment)
results expected for the application.

a Matlab data file (.\input-files\trajectories*.mat) containing vehicle trajectory data.
The frequency, or data rate, of the trajectory data should adequately capture the
dynamics of vehicle movement as well as provide some oversampling relative to the
frequency of use of the updating sensors. For each time step, the data includes by
variable name:
a) trajtime time (seconds)
b) traj-p_geo earth frame latitude (rad), longitude (rad), and height (m)
c) traj-vseo geographic frame north, east, and down velocities (d s)
d) traj-a-body body frame x, y, and z specific forces (accelerations not including
gravity, m/s2)
e) traj-w-body body frame x, y, and z angular rates (rads)
f) traj-C-btog direction cosine matrix describing the body to geographic
transformation
g) traj-euler euler angles roll, pitch, and yaw (rad)

5) a Matlab script (.\input-files\trajectories*.m) defining the aiding measurement
schedule.

3

9

6) Matlab scripts (.\input-filesheas-models*.m) defining parameters for each aiding
measurement error model.

50

i

?

MANIPULATION OF THE INPUT FILES AND TUNING

Again, the purpose of a covariance analysis code is either to predict the statistical
performance of some aided inertial navigation system under consideration without
extensive modeling and simulation, or conversely, to determine the required error budget
of an aided inertial navigation system to meet some contemplated performance goal. As
part of either use, a sensitivity analysis of various parameters can be achieved by making
repeated small changes to the parameters of interest and observing the impact these
changes have on the variances of the error states. As can be imagined, this is an iterative,
possibly tedious, process. The parameters being changed are primarily the initial error
state variances (i.e. the P's), the process noise variances (i.e. the Q's), and the
measurement noise variances (i.e. the Rs). Changes to the trajectory, the aiding schedule,
and the measurement frequency can also be contemplated. These changes are all made
through the input files listed above.

Before NavCov is used for analysis purposes, various input parameters need to be
"tuned". The purpose of tuning is to achieve both reasonable and mathematically stable
results from the equations contained in the code. "Reasonable" implies a subjective
judgment based on experience - there is some art involved. Tuning guidance is provided
in Appendix B. In a nutshell, the process of tuning is iterative and requires repeated
manipulation of the input parameters in a systematic fashion, running of the code,
evaluation of the results, and repeat until satisfactory results are achieved. The code as
delivered has been tuned to achieve reasonable results for the example trajectories and the
example sensors included with version 1.0. The tuning can be refined once the analysis
"matrix" (i.e. the menu of trajectories, IMU quality, and aiding sensors, schedules, and
frequency to be considered) is determined.

After the code is tuned, the analysis matrix can be pursued case-by-case by altering input
parameters as necessary and running NavCov for each case. The parameters in the input
files are altered using either the Matlab editor or a text editor. The required units for each
parameter are documented in the input files.

RUNNING THE CODE

The code is simple to run as follows:

start Matlab
>> cd <directory where code is installed>
>> navcov

3

OUTPUTS OF THE CODE

Each time NavCov is run, it produces output to Matlab window that appears as follows:

>> navcov

*** COVARIANCE ANALYSIS CODE FOR: ***
DISTRIBUTED AUTONOMOUS NAVIGATION LDRD

SUBoptimal Filtering
Trajectory - re2
Aiding Schedule - re2-sched1
IMU - In200
Data Rate - 2.0 HZ
Measurement Rate - 1.0 Hz
Aiding Sources:
BARO-ALT ODOM-VEL COMP-HDG INCL-AT"' GPS-POS ZVUPT

0 0 0 0 1 1

step # 10 completed, time-tag = 4.50
step # 20 completed, time-tag = 9.50
step # 30 completed, time-tag = 14.50
step # 40 completed, time-tag = 19.50
step # 50 completed, time-tag = 24.50
...
step # 170 completed, time-tag = 84.50

Finished
Last step # 179, time-tag = 89.00

The purpose of the above output is to provide the user with some feedback showing a few
of the input parameters being used (for a sanity check) and also a heartbeat to indicate
that the code is indeed running. A 2 second pause occurs before the step counter is
displayed. The Os and 1's following the "Aiding Sources" message indicate which aiding
sources are disabled and enabled. In this example, GPS position updates and zero velocity
updating are enabled. After the "Last step" message is displayed, the following query is
displayed to the user:

Enter a filename for storage of output:

to which the user replies as desired:

Enter a filename for storage of output: test

This causes two files to be written to the .\output-files directory. They are testemat and
test-inputs.m. The Matlab data file test.mat contains the results of the covariance analysis
run, including by variable name:

52

*

stdev-data

aid-data

SUBOPT
MODEL
TRAJ
measrate
sim-time
traj-data

flag indicating whether suboptimal filtering was used
string defining the M U model
string defining the trajectory
constant containing the frequency of updates (Hz)
vector containing time (seconds)
matrix of vectors containing a copy of the trajectory data input to
NavCov, minus time (units same as previously described)
matrix of vectors containing the standard deviations for the states,
taken from the diagonal of the full state covariance matrix P (same
units as for trajectory data)

stdev-data-suboptmatrix of vectors containing the standard deviations for the states,
taken from the diagonal of the reduced order covariance matrix
P-subopt (same units as for trajectory data)
matrix of flags containing the aiding schedule

The variable stdev-data-subopt is not saved if suboptimal filtering is not used. Also, as a
note of explanation, the reduced order covariance matrix, containing fewer states selected
as noted earlier, is used to generate the suboptimal Kalman gains when suboptimal
filtering is called for. Those suboptimal gains are then used to update the full state
covariance matrix (as well as the reduced order covariance matrix).

The Matlab script file test-inputs.m contains a copy of .\input-fi1esbnputs.m for
documentation purposes.

rhe following message then appears in the Matlab window:

Enter a filename for data to be plotted or
press <Enter> if data already loaded:

This message originates in the plot-stuff.m script. The option allows plot-stuff.m to be
used independently to read past results from the .\output-files directory and replot them.
Since NavCov just produced the results, which still reside in memory, the user can
respond by pressing the <Enter> key. Another message from plot-stuff.m is then
displayed:

Enter annotation for plots:

to which the user once again replies as desired:

Enter annotation for plots: test

A number of plots are then produced. Since suboptimal filtering was used in this
example, 4 plots result.

53

Figure 1 displays the trajectory. The upper left subplot shows a top-down view of the
ground track in kilometers relative to the starting position. The ground track is time
tagged every 15 seconds in this example. The upper right subplot shows an elevation
view of the trajectory vs. time. The elevation units are in kilometers relative to the
starting elevation. Again, the trajectory line is time tagged. The lower left subplot shows
the north, east, and down velocity profiles vs. time in units of metershecond. The lower
right subplot shows the roll, pitch, and heading angles in degrees. The trajectory filename
is displayed in the lower left corner.

0

e

t

54

3

APPENDIX B to NavCov Users' Manual. - TUNING GUIDELINES

These tuning guidelines assume that the user has been through the user manual and has
developed some experience with the code structure and input files. Tuning of the
covariance code is a trial-and-error process, involving more art than engineering to
achieve stable and realistic results. Here are some helpful guidelines to get started on
tuning. The figures mentioned below do not correspond to those in the main body of the
user manual; rather, they correspond to the figures generated by running the code.

I. First, the unaided IMU tuning needs to be addressed.

a. An IMU model defining sensor Ps and Qs is a given (in a text file). Hopefully it is
derived from actual test data, but sometimes its fabricated based on manufacturer's
specs.

-> model is contained in text file .\input-filesbmu-models\xxx.txt

xxx is used here and below as a placeholder for a text string or strings. Its
meaning is context dependent, but will be obvious from inspection of the input
files.

b. Define the expected initial position, velocity, and attitude (PVA) Ps and Qs. This
usually comes from empirical knowledge of how the navigator is initialized. A
good starting point for the Qs is to set them to be P/(1O0OA2).

-> in the Matlab script .\inputs-files\imu-modelskxx-pvapq.m:
set values for PO-xxx and Q-xxx

c. Set up the covariance code to run with all states (also referred to as full state or
optimal) and with no aiding.

-> in the Matlab script .\inputs-fi1eAinputs.m:
set SUBOPT = NO
set MEAS-STEP = Inf
set GYRO-xxx and ACCEL-xxx = ON
set BARO-ALT and other aiding sources = NO

d. Run the covariance code to obtain the standard deviation plots (referred to as
FIGURE 2 below) for PVA for the given inputs provided for a. and b. plus a given
vehicle trajectory. The plots will be in the Matlab Figure No. 2 window, titled
UNAIDED. Print this figure for later reference.

e. Now, define the expected initial PVA Ps and Qs for the suboptimal case (reduced
number of states, also referred to as reduced order) case. Start by setting them to
be the same as for the full state case.

-> in the Matlab script .\inputs-files\imu-models\xxx-pvapq.m:
set values for PO-xxx-SUBOPT and Q-xxx-SUBOPT equal to PO-xxx and
Q-XXX

f. Set up the covariance code to run suboptimal and with no aiding. Usually (i.e. for
low-cost IMUs), the IMU sensor error sources will not be included in the reduced
states.

-> in the Matlab script .\inputs-fi1esbnputs.m:
set SUBOPT = YES
set MEAS-STEP = Inf
set rGYRO-xxx and rACCEL-xxx = OFF
set BARO-ALT and other aiding sources = NO

g. Run the covariance code again to obtain the standard deviation plots for PVA.
There will be two PVA plots generated this time - one that is derived from the
reduced order P matrix (referred to as FIGURE 3) and one that is derived from the
suboptimal full state P matrix (referred to as FIGURE 2sub). These plots are
displayed in two Matlab Figure windows, i.e. No. 2, titled UNAIDED, and Figure
No. 3, titled Reduced States Results.

h. Compare the Tilt Errors subplot of FIGURE 3 to its counterpart in FIGURE 2.
The goal is to match the Tilt uncertainties in FIGURE 3 to that in FIGURE 2 at
some point in time. The point in time chosen would normally be related to the
length of time between updates from whatever aiding source is being
contemplated. Or in other words, the time that the navigator would be running
free inertial. This is where the trial-and-error begins. Start by increasing
Q-TILT-SUBOPT in the xxx-pvapq.m script.

-> in the Matlab script .\inputs-files\imu-models\xxx-pvapq.m:
increase value of &TILT-SUBOPT

i. Rerun the covariance code to obtain the standard deviation plots for PVA. Again
compare the Tilt Errors subplots of FIGURE 3 and FIGURE 2. Continue to
increase Q-TILT-SUBOPT, rerun the code, and compare the plotted results until
an adequate match is achieved.

Note that for poorer quality MUS, it is sometimes not possible to obtain a close
match. Also note that there will not be much sensitivity to this tuning until the Q
value is close to the value being sought. Once the Q value is close, there is a lot of
sensitivity.

a

j. Now perform steps lh. and li. for the Azimuth Error uncertainty. The Q value to
manipulate is Q-HDG-SUBOPT. Iterate until an adequate match is achieved.

56

	Abstract
	Acknowledgements
	Table of contents
	Table of figures
	Introduction
	The Problem
	Terrain MOdeling
	Sensor Selection
	Terrain correlation and localization
	Optimal Deployments for Multiple Vehicles
	Navigation
	Milestone Schedule
	References
	Appendix A Altimeter Search for Distributed Navigation
	Appendix B: Gradient-based motion planners to insure line-of-sight communications for mobile robot collectives traversing arb
	Appendix C: Users™ Manual for Navigation Covariance Analysis Code (NavCov)
	References
	Distribution

