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Abstract

Over the past several decades, the development of computer models to predict the
atmospheric transport of hazardous material across a local (on the order of 10s of km) to
mesoscale (on the order of 100s of km) region has received considerable attention, for both
regulatory purposes, and to guide emergency response teams. Wind inputs to these models
cover a spectrum of sophistication and required resources. At one end is the interpolation/
extrapolation of available observations, which can be done rapidly, but at the risk of missing
important local phenomena. Such a model can also only describe the wind at the time the
observations were made. At the other end are sophisticated numerical solutions based on so-
called Primitive Equation models. These prognostic models, so-called becausein principlethey
can forecast future conditions, contain the most physics, but can easily consume tens of hours,
if not days, of computer time. They may also require orders of magnitude more effort to set up,
as both boundary and initial conditions on all the relevant variables must be supplied. The
subject of this report is two classes of models intermediate in sophistication between the
interpolated and prognostic ends of the spectrum. The first, known as mass-consistent
(sometimes referred to as diagnostic) models, attempt to strike a compromise between simple
interpolation and the complexity of the Primitive Equation models by satisfying only the
conservation of mass (continuity) equation. The second class considered here consists of the
so-called linear models, which purport to satisfy both mass and momentum balances. A review
of the published literature on these models over the past few decades was performed. Though
diagnostic models use a variety of approaches, they tend to fall into a relatively few well-
defined categories. Linear models, on the other hand, follow a more uniform methodol ogy,
though they differ in detail. The discussion considers the theoretical underpinnings of each
category of the diagnostic models, and the linear models, in order to assess the advantages and
disadvantages of each. It isconcluded that diagnostic models are the better suited of the two for
predicting the atmospheric dispersion of hazardous materialsin emergency response scenarios,
as the linear models are only able to accommodate gently-sloping terrain, and are predicated
on several simplifying approximations which can be difficult to justify a priori. Of the various
approaches used in diagnostic modeling, that based on the calculus of variations appears to be
the most objective, in that it introduces the fewest number of arbitrary parameters. The
strengths and weaknesses of models in this category, asthey relate to the activities of Sandia’'s
Nuclear Emergency Support Team (NEST), are further highlighted.
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Nomenclature

c determines weighting assigned to various points in Liu and Goodin’s
(1976) modified Point-Iterative scheme (cf. Fig. 1); dimensionless

Dijk three-dimensional divergence; [sec'l]

E functional defined by Eq. (28); [m?]

i parameter used in Liu and Goodin’'s (1976) modified Point-Iterative
scheme to preserve dataat or near observation stations (f; = 0), or allow
the flow to adjust without constraint (f;; = 1); dimensionless

F aperturbation field (e.g., velocity or pressure) inthe linearized analysis,
dimensions arbitrary

F Fourier decomposition (either transform or discrete spectrum) of F in
linearized analysis, dimensions arbitrary

FD Finite-Difference

FE Finite-Element

Fr Froude number, U./(Nh); dimensionless

g gravitational acceleration; [m/secz]

h characteristic height of terrain features (cf. Fig. 4); [m]

h(x, y) local surface height above some reference level; [m]

Hc upstream height of the critical streamline dividing flow that passes

around an obstacle from that passing over it (cf. Eq. (41)); [m]

H(x, y, t) height above reference level of the top of the computational domain
(typically the top of the boundary layer, or the base of an elevated
temperature inversion); [m]

AH local height of the computational domain, H(x, y, t) - h(x, y); [m]

i =1 (in Appendix A); dimensionless

i,k integer indicesin the (X, y, 2) directions, respectively; dimensionless
ILU Incomplete Lower/Upper triangular factorization

k wavenumber in Fourier decomposition (Appendix A); [m'l]

I depth of inner region in linearized model (cf. Fig. 4); [m]

L characteristic horizontal scale of terrain featuresin linearized model (cf.
Fig. 4); [m]
L horizontal extent of flat plain surrounding region of interestin linearized

model (cf. Fig. 5); [m]
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X1, Xo

Y. Y2
4, 2y

Zn
Zout

horizontal extent of region of interest in linearized model (cf. Fig. 5);
[m]

horizontal extent of transition zone surrounding region of interest in
linearized model (cf. Fig. 5); [m]

index in Fourier seriesin Appendix A; dimensionless
Brunt-Visila frequency, [(g/0)(00/82)] Y ?: [sec!]
terrain-induced speedup factor, U ,4,/U.; dimensionless
Successive Over-Relaxation

Symmetric Successive Over-Relaxation

stair-step terrain representation of the topography (cf. p. 27)
terrain-following coordinate mapping of the topography (cf. p. 5)
uniform background velocity field; [m/sec]

oncoming velocity profile in linearized model (cf. Fig. 4); [m/sec]
components of mean wind along X, y, z respectively; [m/sec]
interpolated, or initial guess, wind field; [m/sec]

perturbation velocities along x, y, z respectively, in the linearized model,
cf. Eq. (48).

c%rJrrections added to u? 1] in Point-Iterative scheme to enforce
6”- = 0; [m/sec]

corrections added to vin 1 in Point-Iterative scheme to enforce

3" = 0 [mise]

. n . . .
corﬁgregtlgns Oadded to Ui j+1 in Point-Iterative scheme to enforce

W =W [m/sec]

corre(j:_tions 0added to vin +1 i In Point-Iterative scheme to enforce
n+ 1,

W =y [m/sec]

right-handed Cartesian coordinate system with x and y lying in the
horizontal plane, and z pointing upward; [m]

bounding valuesin the x-direction of the computational domain; [m]
bounding values in the y-direction of the computational domain; [m]
bounding values in the z-direction of the computational domain; [m]
characteristic roughness length of the terrain; [m]

scaled vertical coordinate used in inner region of linearized model; [m]

scaled vertical coordinate used in outer region of linearized model; [m]

viii



Greek Symbols

a

aq, 0o

5(...)

Q © © >

theratio (a4/a5); dimensionless

Gauss precision moduli, or weighting factors, applied to the horizontal
and vertical components of the wind, respectively (cf. EqQ. (28));
[(M/sec)™]

Gauss precision moduli, or weighting factors, applied to the u, v, and w
components of the wind, respectively (cf. Eq. (45)); [(m/sec) ]

the fraction of the total velocity correction in Liu and Goodin’s (1976)
modified Point-Iterative scheme applied on each iteration at the “ o™
pointsin Fig. 1; dimensionless

weight factor that controls the degree to which origina data are
preserved by the smoothing filter in Goodin, et al.’s (1980) Hybrid
approach (cf. Eq. (20)); dimensionless
horizontal divergence, defined in Eq. (8); [sec™!]

also used to represent boundary layer thickness in linearized model (cf.
Fig. 4); [m]

variation of the quantity that follows; same dimensionsas(...)

the fraction of the total velocity correction in Liu and Goodin's (1976)
modified Point-Iterative scheme applied on each iteration at the “ o”
pointsin Fig. 1; dimensionless

Lagrange multiplier in Eq. (28); [sec]

potential temperature; [°K]

density; [kg/m?]

elevation-based terrain-following vertical coordinate (TFC) defined in
Eg. (3); dimensionless

vertical component of vorticity, defined in Eq. (9); [sec™!]
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1. INTRODUCTION

The Nuclear Emergency Support Team (NEST) at Sandia National Laboratories is tasked
with responding to situations involving the accidental or deliberate release of radiological,
biological, or chemical hazards into the atmosphere. The transport of such material by the
atmosphere is heavily dependent on both the mean and fluctuating (turbulent) components of
the wind. Among the tools NEST has at its disposal are the Explosive Release Atmospheric
Detonation (ERAD) code (Boughton and Del aurentis (1992)), for modeling the dispersion of
radioactive material released by a high explosive (i.e., chemical) detonation, and AIRRAD
(Sagartz (1997)), which predicts radioactive fallout patterns resulting from a nuclear
detonation. Both ERAD and AIRRAD require as input a three-dimensional (3D) wind field
over the entire domain of interest, consisting of the mean wind components u, v, and w defined
on a Cartesian grid.

Currently both ERAD and AIRRAD use a simple interpolated wind field. Thisis created
from whatever observations are available by interpolating between (or extrapolating from)
those observations onto the 3D lattice of grid points, using weight factors that typically vary as
the inverse square of the horizontal distance between the data and grid points. (A comparison
between this and other interpolation schemes can be found in Goodin, et al. (1979).)
Interpolated wind fields are easily and quickly generated, an important consideration when one
isoperating in the field, and “real-time” predictions may be necessary.

One problem with using such an interpolated field is that in genera it will not satisfy the
eguation representing conservation of mass, often referred to as the continuity equation. As
noted by Sherman (1978), for flows over scales on the order of 10sto 100s of km, the density
p may reasonably be assumed constant, in which case the continuity equation reduces to
simply:

Oh =0 (1)

Note that this equation is already linear, with no further approximation needed. The
observations themselves will invariably contain some error, and the interpolation procedure
applied to them, oblivious asit isto any kinematic restrictions, will introduce further errors of
its own. Hence it would be extremely fortuitous if the interpolated wind field did not violate
Eq. (1) by retaining a nonzero divergence at most points in the flow. Positive and negative
values of the divergence can be interpreted physically as sources and sinks of mass,
respectively. The presence of these sources and sinks may significantly contaminate the
resulting predictions of hazardous material transport. A second problem with the use of
interpolated winds is that they make no correction for terrain effects—the flow is as likely to
go through an obstacle, such asamountain, asit isto pass around or over it.

In an ideal world, afull (nonlinear) Primitive Equation model would be used to predict the
wind field, including the influence of topographic changes, if any. However, such models
require considerably more computer resources as compared with a smple interpolated wind
field, and may take severa hours, if not days, for a complete solution. They can aso require
more detailed information to set up than istypically available. This makes them impractical for
applications such as those encountered by NEST, where codes are typically deployed on laptop
PCs, and quick turnaround is essential.



This report reviews the published literature on two intermediate classes of wind models
which have been developed over the past several decades, and which strike an attractive
compromise between physical fidelity and run time. The first consists of the so-called mass-
consistent or diagnostic models, which use the interpolated field asinput to an algorithm which
makes corrections to ensure that the surface wind is parallel to the underlying terrain, and that
Eq. (1) issatisfied at each grid point aswell. Unlike prognostic codes, diagnostic model s cannot
strictly be used as forecasting tools, as Eq. (1) does not contain any temporal derivatives.
Nevertheless, their predictions are frequently assumed to persevere sufficiently long so that
useful results concerning the spread of the contaminant can be obtained. Diagnostic modelsare
discussed in 82, which follows.

The second class consists of the linear or linearized models, which in addition to the
continuity equation, attempt to solve the momentum conservation equations as well. They do
not rely on an interpolated field as their starting point, but rather perform a small-perturbation
analysis about an assumed oncoming flow. The steady-state form of the equationsis solved, so
that again only the flow at the current instant can be studied, not its evolution with time. This
class of modelsisdescribed in 83. Finally, 84 summarizes the findings, and draws conclusions
as to which of the models is most appropriate for use in the type of applications encountered
by the NEST group at Sandia.



2. DIAGNOSTIC MODELS

As noted in the Introduction, diagnostic or mass-consistent models attempt to adjust the
interpolated wind field so that Eq. (1), the continuity equation for incompressible flow, is
satisfied at each grid point, and there is no throughflow at the surface. This section summarizes
the results of a literature review on this subject covering the period from approximately 1977
to mid-2001. Relevant publications were identified by electronically searching the Science
Citation Index of the Institute for Scientific Information® using the Web-based Sci Search® at
LANL" application. The index covers over 4,000 journals in 100+ scientific disciplines, and
allows the user to search via Author, Title, and/or Abstract keywords. The most salient papers
that resulted, including some prior to 1977, are listed beginning on p. 53, sorted a phabetically
by first author. The present author apologizes for any significant omissions—such a list is
inevitably incomplete, and even if it were not, would no doubt become so within a short time.
Space considerations—not to mention the reader’s patience—prohibit a discussion of every
entry. Rather, the intent is to focus on those that made meaningful contributions to the subject,
or provided illuminating comparisons between different approaches.

In an earlier study, Kitada, et al. (1983) found that the then-available diagnostic modelsfell
into four broad categories, which they termed Direct-Differencing, Point-lterative, Hybrid, and
Variational Calculus. This categorization remains useful today. Table 1 lists each category in a
separate column, with examples of each typelisted in (more or less) chronological order below
the appropriate heading. Again, the chronology may not be quite accurate, asit was not always
clear when a particular model was first devel oped; for each model, an attempt has been made
to reference the latest information available.

Each of 82.1 through 82.4 that follow will discuss a separate category from Table 1,
including some discussion of its theoretical basis, and its advantages and disadvantages. To
maintain some sense of continuity, an effort has been made to use a consistent notation
throughout the report. The discussion will alert the reader to cases where the nomenclature
differs from that used in the original source.

TLicensed access to SciSearch at LANL® through the Sandia Restricted Network (SRN) is available at
thefollowing URL: htt p: // sci search2. | anl . gov/ sandi a/ sci . ht m

3



Table 1: Morphology of Diagnostic Wind Models

DIRECT- VARIATIONAL
DIFFERENCING POINT-ITERATIVE HYBRID CALCULUS

Reynolds, et al. (1973) Endlich (1967); SST Goodin, et al. (1980);  Sasaki (1958, 1970)
TFCP

Peters & Jouvanis (1979) Liu & Goodin (1976); DIMCOR MASCON

SST Giarola, et al. (1995);  Dickerson (1978); 2D, SST@

SsTé

Carmichael & Peters Endlich (1984): TFC CALMET MATHEW

(1980) Scire, et al. (2000); Sherman (1978) part of
TFCP ARAC/LLNL; 3D ext. of

MASCON; SST2
Anderson (1971) Ludwig, etal. (1991) TAMOS NOABL

Pechinger, et al.(2001) Traci, et al. (1978); either
Stohl, et al. (1997) SST2or TFCP
TFCP

Liu and Yocke (1980) COMPLEX
Bhumralkar, et al. (1980)
Endlich, et al. (1982); TFCP

ATMOS1
Davis, et al. (1984)/LANL,
TFCP

MINERVE/SWIFT

Geai (1987)

Sontowski, et al.(1994,1995);
part of HPAC; TFCP

Barnard, et al. (1987)

NUATMOS
Ross, et al. (1988, 1991)
ext. of ATMOSL: TFCP

CONDOR, REDBL
Moussiopoulos, et al. (1986,
1988) TFCP

Mathur and Peters (1990)

WINDO4
Venkatesan et al. (1996)

MEM3D
Montero, et al. (1998)
unstructured, FE sol’n.

Harada, et al. (2000)

a. Stair-Step Terrain using “blocked” cells
b. Terrain-Following Coordinates



2.1 Direct-Differencing

The Direct-Differencing approach is the simplest of all the methods, and is typically used
when no information is available for the vertical component of the wind. We will denote the
initial fields of the two horizontal components by u; and v;, which are assumed known
throughout the domain of interest; they may result from the interpolation of whatever
observations are available, or simply a good initial guess. Equation (1) may be written in
Cartesian coordinates as:

ow _ Ui 9vg
9z~ Oox * oyJ @

Since the “horizontal divergence” on the right-hand side is a known function, this can be
viewed as asingle equation for the one unknown, w. The single boundary condition required is
that of no throughflow at the surface, z=h(x, y), which for relatively flat terrainissimply w = 0.
Thus, if the domain is overlaid with a lattice of Cartesian grid points, this equation can be
approximated in terms of finite differences, and the solution for w marched upward in z. Asthe
horizontal components are left unchanged, the mass balance at any grid point is independent
of that at neighboring points. Hence no iterations are required, and one pass through the field
isall that isrequired to enforce Eq. (1) everywhere. Thefinal 3D windfieldisgivenby u = u,,
v = v;, and w asjust described.

Equation (2) is useful primarily for terrain that is flat, or nearly so. However, correction of
the velocity field so as to satisfy Eq. (1) is most important for complex terrain. The use of
Eq. (2) in such situations is problematic because the surface at which the boundary condition
must be applied is now highly irregular, and no longer coincides with a constant value of one
of the coordinates. One can try and model such surface variations with a Cartesian grid in a
“stair-step” manner, by starting with a rectangular parallelepiped of cells, and then manually
blocking out those cells that lie below the surface. Within such cells the velocity components
areall frozen at zero. Asone might imagine, thisleadsto avery crude—and hence inaccurate—
representation of the surface unless very fine grid cells are used vertically. The latter can lead
to excessive computer time.

A more elegant solution is the use of a so-called terrain-following coordinate (TFC)
systemT, such as that used by Reynolds, et al. (1973). They retain x and y as horizontal
coordinates, but transform z to a terrain-following coordinate:

__z-h(xy)
7T A Y. D -h(xy) )

where h isthe surface height above some reference level, and H is the corresponding height of
the top of the domain. The latter is typically placed at the top of the boundary layer, or at the
base of an elevated temperature inversion. Reynolds, et al. actually use the symbol p rather than
o, but wewill usethelatter so as not to confuseit with the density, and because o isthe notation
most often used in the literature. Note however, that the o defined in Eq. (3) ispurely afunction

TIn the Computational Fluid Dynamics (CFD) community, these are often called body-fitted, or body-
conformal coordinates.
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of topography, and as such should not be confused with the pressure-based vertical coordinate
of the same name often used in meteorological models (e.g., Grell, et al. (1994)). The above
transformation maps the bottom and top of the domain to o = 0 and 1, respectively. Terrain-
following coordinates are used in several mass-consistent models (cf. Ratto, et al. (1994)), not
just those based on Direct-Differencing, as reflected in Table 1. Although the domain in
physical (x, Y, 2)-spaceishighly irregular near the surface, in computational (x, y, 0)-spaceitis
asimple rectangular parallel epiped, and the boundary condition mapsto ¢ = 0 onthe surface
o =0. If, asisoften the case, H isassumed to be constant, in physical space contours of constant
0 << 1 will conform to the underlying terrain quite closely, while becoming progressively
flatter aso _, 1. The downside is that after the transformation, Eq. (2) and the expressions for
the velocity components are not as simple as before, but the basic idea remains the same: the
vertical velocity is set to whatever value is required to cancel the horizontal divergence. After
the field is calculated in (X, y, 0)-space, it can be mapped back into (X, y, z)-space. Details of
this modification can be found in Reynolds, et al. (1973). Others who have used Direct-
Differencing include Peters & Jouvanis (1979), and Carmichael & Peters (1980).

This category of methodsis simple, quick, and straightforward to implement. The problem
with such asimplistic approach is that it ignores the observational and interpolative errors that
u; and v; inevitably contain, and places the entire burden of satisfying Eq. (1) on the vertical
component alone. Such a model is clearly inappropriate for stable conditions, where one
expects w to be of very small magnitude. Even in unstable conditions, unless one starts with
very accurate estimates for u; and v,, it is quite possible to end up with a w-field of
unreasonably large magnitude. The resulting windswill not go through obstacles, but they may
be biased in favor of going over some that they should be going around. For these reasons, the
Direct-Differencing approach appears never to have developed a wide following.

The three papers discussed above apply finite differences to a given (u,v) field to get the
horizontal divergence, and then compute w in such away asto cancel it. Two additional papers
bear mentioning here, those by Anderson (1971) and Liu and Yocke (1980). Rather than
compute w from a given (u,v) field, they compute u and v by requiring that they just cancel the
divergence created by differencing agiven w field. Though such situations are atypical, at least
asfar asthose scenarios NEST islikely to encounter, they areincluded here for completeness.
The discussion below most closely follows that of Liu and Yocke (1980), who were interested
primarily in applying their model to the siting of wind turbines, rather than pollutant migration.
They divide their domain into multiple vertical layers, and rewrite Eq. (1) asfollows:

au, . 0V _ow_ w(z,_1) —w(z)
ox dy 0z Az,

(4)

where u, and vj are averages over the vertical layer extending from z_4 to z. It isthen assumed
that the flow in the horizontal planeisonly weakly rotational, i.e.,

T 5)

Thisin turn implies the existence of a 2D scalar potential in each layer, @, such that u, and v,
can be obtained from its gradient:



(O Vi) = yp@y (6)

where [, isthe 2D horizontal operator (3/9x)i + (3/dy)] . When Eq. (6) is substituted into
the left-hand side of Eq. (4), theresult is

W (Z —W:(Z
20, = k_lA)zk & U

The given w;(2) field is differenced to get the right-hand side of Eq. (7), followed by the
solution of the Poisson equation for the ¢, field (and hence uy and v, from Eq. (6)) needed to
just cancel it. The solution of Eq. (7) typically requires an iterative numerical technique. Rather
than rely on measurements for w;(2), Liu and Yocke (1980) parameterizeit by relating w at the
surface to the terrain slope, and assume that the field decays exponentially with height. Details
can be found in their paper.

Much the same idea was applied by Anderson (1971), except that his analysis does not
subdivide the domain into multiple vertical layers. Rather, arelation similar to Eq. (4) aboveis
integrated across asingle layer extending from the surface at z= h up to the top of the domain,
H. This results in a Poisson equation for the scalar potential very similar to Eg. (7), with the
right-hand side changed to v [IJh. Such a model can provide layer-averaged horizontal
variationsin u and v, but no information regarding their vertical profiles.

For NEST-type applications, it is far more likely that (u, v) observations will be available
than dataonw, so it is doubtful the approach taken by these last two models would be useful in
most situations. Yet they have been put to good use as components of larger schemes. For
example, the hybrid model developed by Goodin, et al. (1980), described in more detail in 82.3,
uses a scheme similar to Anderson’s (1971) to correct u and v in the surface layer for local
terrain effects. And the parameterization of w(z) developed by Liu and Yocke (1980) isused in
the CALMET modél (cf. Scire et al. (2000), Chapter 2) to adjust for kinematic terrain effects.
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2.2 Point-lterative

This approach to satisfying EQ. (1) was begun by Endlich (1967), who first developed the
scheme for 2D flow. It is thus applicable only when the vertical component of wind is zero, or
in any case contributes negligibly to the divergence. Let the 2D horizontal divergence, 3, and
the vertical component of vorticity, w, be defined by:

ou  ov _
ov ou _

Endlich’s scheme adjusts the horizontal components u and v in such away that & is cancelled,
while preserving the original w. If the above equations are discretized about point (i, j)T of the
Cartesian grid shown in Fig. 1 below using centered, second-order differences, the result is:

i-2 i-1 i i+1 i+2
j+2 A

N
/
W=(O)=E
j+1 C [/
S
y Ay
j — C ¢ e £k
X Ax O 4-point stencil
Endlich (1967)

j-1

o + A 8-point stencil
Liu & Goodin (1976)

j-2 T

Figure 1. Finite-Difference Stencils Used in Point-lterative Schemes

Uin+1,j_uin—1,j+Virjj+1_vin,j—1 -5 (10)
2AX 20y '

Vin+1,j_vin—1,j_uin,j+1_uirjj—1 = " (112)
20X 20y .

The superscript nisan index denoting successive iterates in the numerical procedure described
below. Thus n = 0 corresponds to the initial guess at the (u,v) field, whether it be from
interpolated observations or some other source.

We usei, j indices here to maintain a consistent notation throughout; note that Endlich uses indices k
and j, where j and y increase in opposing directions.
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At the start of each iteration (or the initial guess), we know u" and V", from which we can
evaluate 8", which we wish to zero out, and w", which we wish to preserve at its initial value
w" = w°, from Egs. (10) and (11). The four-point finite-difference stencil used by these
equations is indicated by the open circles, “ o”, in Fig. 1. The iterative portion of Endlich’s
scheme consists of applying the following two steps on a point-by-point basisto go from iterate
nton+1:

1. Add corrections of equal magnitude, but opposite sign, to u” at the points East and West
of (i, j); we call these £ 0, ;. Similarly, corrections +V, . of equal magnitude but
opposite sign are applied to vn at the points North and South of (i, j). Substitute these
changes into Eqg. (10), with the requirement that the divergence vanish as aresult:

n _ n _ n _ n _
(Ui g O -y =05 OVijaea V) =i -1 =)

2AX 20y =0

If we subtract Eq. (10) from the above equation we are left with simply,

ﬁ+ﬂ :_5!1.

Ax Ay 1) (12)

Assuming that u and v contribute equally to cancelling 9;;, it follows that

ijs

o Ax

Ayn
- 5

(13)
We denote the results of thisfirst correction by,

n+1 _ n _

U1 = YUsn i
(14)
n+l _ n

Viiit1r T Vijr1 TV
Note that while Eq. (14) enforces the condition &;; = 0, it has absolutely no effect on
wy ;- This follows from the fact that only u at the East/West points and v at the North/
South points have been atered, while Eq. (11) depends only on u at the North/South

points and v at the East/West points, which remain unchanged.

2. Nevertheless, one must assume that corrections already made on the current iteration to
adjust & and w at neighboring points will have resulted in oa % oo . To counter the
|latter effect, we next add corrections + G,; of equal magnltude but opposﬂe sign to u”
at the points North and South of (i, J) and similarly, corrections +V;, of equal
magnitude but opposite sign are added to V" at the East and West points. That is,

TEndlich points out that other weightings are possible, but claims that the end results differ very little
regardless of what assumption is made as to the relative contribution of u and v. No predictions based
on other possible weightings of the two components are shown to support this contention.
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n+1 _ n

Ui je1 = U jz1 * U (15
n+l _ n + O
Viz1,j T Vizy ) T Vi

Since, as noted above, the stencilsfor & and w are mutually exclusive, this has no affect
on &;;, which was just zeroed out. With this second correction, and the requirement that

o -
0] revert to w, K Eq. (11) now reads:

n A n A n N n ~
i1 7 V) Vi = Vi) (e PO (g D) W

2AX 20y ')

(v

Subtracting EQ. (11) from the above equation leaves,

L | R R (16)

As before, assuming u and v contribute equally to correcting w resultsin:

Oij = A—Zy(wa—ooﬂ)

(17)
¥ = Q‘(w‘?_wﬂ)
ij 2

At thig stage, the velocity field given by Egs. (14) and (15) satisfies both &; = 0, and
W = O at thepoint (i, ). The sametwo-step procedure isthen applied at the next point, until
the entire domain has been updated. It must be exgected that after updating all pointsin the
domain for the (n+1)st iterate, §;; # 0 and j # W, , a most points anyway, and the u and v
values will be somewhat different from those given by Egs. (14) and (15). Thisisthe result of
the corrections about a given point contaminating those at neighboring points, and is why an

iterative process is necessary.

After all points have been updated, n isincremented by one, and the process repeated again
for the next iteration. Iterations continue until the largest magnitude of §;; in the domain isless
than some (small) predefined number, €. Endlich (1967) claims that with € = 10°° sec?,
convergence is typically achieved within 10-15 iterations. However, it would seem logical to
expect the number of iterations required to be a function of both how many grid points the
domain contains, and to what extent the original wind field isdivergent. Differencesin vorticity
at the same point between the original and adjusted wind fields are generally of the same order
ase. Endlich himself does not discussthe convergence properties of hisiteration scheme, which
is analogous to the Gauss-Seidel algorithm often used to solve dlliptic equations. However, a
companion paper by Stephens (1967) in the sameissue of the journal examinesits convergence
in some detail.

3. After the iterations have converged, one final step remains. The above algorithm can
result in an overall increase or decrease in windspeed throughout the domain. To avoid
this, the difference between the average over all points of the original and adjusted wind
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fields is added to the adjusted wind field at each point. Suppose the above process
convergesin N iterations; then the final wind field at each point is given by:

_ N _0 _N
U = u; + (0" -0 .
foral i, j (18)

N
Vi = V. +(V =V )

where (UO, \70) and (GN, \‘/N) are the average values of the original and iterated wind
fields, respectively. This step assures that the average adjusted windspeed is the same
asfor theoriginal field, and only needsto be performed once. Since the same correction
is added to each point, values of & and w throughout the field are unaffected.

Because it neglects any contribution from w, such an approach is justified only for stable
atmospheric conditions. For such flows, it has the advantage that the flow in each horizontal
layer can be treated independent of its neighbors. Also, as noted by Endlich (1967), this
approach does not require that boundary conditions be explicitly specified. Rather, the values
of u and v at a boundary point are adjusted to cancel 6, and preserve w, at the neighboring
interior point.

Liu and Goodin (1976) claim that the above procedure, while reducing the divergence,
neverthelessresultsin wind fields that differ substantially from the original observations. They
suggest a modified scheme that differs from Endlich’s in three important respects. First, they
introduce a parameter, f;;, which premultipliesthe correctionsto U;; and v;; in Eqg. (14), andis
only allowed to assume a value of zero or one. f;; = 1 corresponds to normal field points at
which corrections are allowed. However, for grid points at which observational data are
available, f; = 0; i.e., no corrections are made at such points, which enforces their requirement

that the final field must reproduce the observed data exactly.

Secondly, Liu and Goodin (1976) expand the finite-difference stencil from four to eight
points: the original four points used by Endlich, plus four additional points at (i, j+2) and
(1£2,]). The latter are indicated by a“ o” in Fig. 1. This introduces three additional artificial
parameters. c, r]Jr and [3. ¢ controls the mixing of information between the original four points
and the four new points added to the stencil. If ¢ = 1, only the four original “ o” points are
included; c = 0includesonly the newer “ A" points; intermediate values of ¢ result in amixture
of datafrom all eight points. n and B are additional factors which premultiply T,; and v,;; n
determines what fraction of the velocity corrections is to be applied on each iteration for the
origina “ o” points; 3 serves the same function at the“ o points. Details can be found in the
reference.

Lastly, no attempt is made to conserve w, i.e., Step 2 above in Endlich’s original procedure
is eliminated. Aside from these three differences, the iteration procedure is carried out point-
by-point just as in Endlich’s approach. The authors present a brief analysis of the method’s
convergence, and conclude that the only requirement necessary to assure that the magnitude of
d" decreases monotonically, and that u™ and V" converge to definite values, is that n < 1,
independent of 3 and c. (The latter still have an influence on the final solution, however.)

we've replaced Liu and Goodin’s a by n, to avoid confusion with the a factors introduced in §2.4.
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While Liu and Goodin’s results show the method can reproduce the original observations,
they also contain high-frequency components that produce very erratic looking wind-vector
plots. The authors claim these are the result of requiring strict reproduction of the observations.
They postulate that if this requirement were relaxed by say, allowing the wind at those stations
to vary within some prescribed limits about the observed values, the high-frequency
components could be removed. However, this introduces yet more ad hoc arbitrary parameters
into themodel. Asit s, the authors present no results showing how sensitive the predictions are
to the values given to c, n and 3, nor do they provide any guidance as to how they should be set
beyond the single convergence criterion noted above.

Endlich (1984) later modified his original method in two respects. First, rather than do the
calculations in Cartesian space as before, z is transformed to a terrain-following coordinate
(TFC), 0 = 0o(2). The vertical velocity in the computational (X, y, 0)-space is then neglected.
Thisis tantamount to assuming that the flow remains parallel to lines of constant o, which by
definition are constrained to go over obstacles. So while this model does admit a vertical
velocity in physical (X, Y, 2)-space, it is dictated by purely geometric constraints; atmospheric
dynamics are not really the driving force behind w.

The second modification introduced by Endlich (1984) is that, rather than directly
differencing values at the grid points as before, here the author differences face-averaged
velocities to obtain his corrections. Thisis more akin to afinite-volume approach, and islikely
to be more accurate now that the vertical cell size, Ao, isafunction of xandy. It is asserted that
15-20 iterations are sufficient to reduce the divergenceto “ small magnitudes’ (left unspecified).
Whether the method is as computationally efficient asthe author claimsis|eft open to question,
as no run times are quoted. Predictions based on this updated model are presented for avariety
of sitesaround the United States, but thereisapaucity of observationsto compare them against.
The latter were limited to annual average wind speeds, which is not a very discriminating
metric.

Ludwig, et al. (1991) sought to generalize Endlich’s (1984) procedure by improving on the
definition of the o-coordinate surfaces. The newer approach is termed the Winds On Critical
Streamline Surfaces (WOCSS) method, and appeals to the concept of critical dividing
streamlines to eliminate the purely geometric construction of the o-coordinate surfaces. The
underlying principle of critical dividing streamlinesis that the work that a parcel of fluid must
perform against the (buoyant) restoring force in order to just surmount an obstacle can be
eguated to its original kinetic energy. This allows the derivation of relationships among wind
speed, vertical temperature gradient, and the height of an obstacle that the flow can surmount.
These relationships alow the definition of a set of quasi-horizontal, two-dimensional surfaces
across which no flow occurs, and thus provide a basis for defining coordinate surfaces that,
unlike Endlich (1984), incorporates some measure of atmospheric stability. These surfaceswill
approximate the shape of the flow, but will intersect theterrain in areas where the flow isunable
to pass over it.

The flow in each layer defined by two such adjacent surfaces is adjusted independently of
the othersusing Endlich’s (1967,1984) two-dimensional Point-Iterative schemeto achieve non-
divergence. Windsare set to zero at grid points below thelocal terrain height; the authorsclaim
that subsequent adjustments to remove the divergence where surfaces intersect the terrain will
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cause the flow to pass around the obstacle, rather than being predisposed to go over it, aswas
the case with Endlich’s (1984) analysis. The major weaknesses of the WOCSS method are that
it applies only when dB/dz > O, i.e, stable flows, and that for certain types of flows, some
residual divergence will remain in the wind field, complicating its use for subsequent
atmospheric transport and diffusion modeling.

The biggest limitation of the methods in this Point-Iterative category is their two-
dimensionality. Since w is assumed negligible in Endlich (1967) and Liu and Goodin (1976),
the divergence can only be reduced by adjusting the horizontal components, u and v. This
makes them suitable only for stable or stratified conditions. In some sense this approach is the
converse of Direct-Differencing (82.1), which places the burden for satisfying Eq. (1) entirely
onw. It isinteresting to note that Endlich himself temporarily made use of a method, based on
the Calculus of Variations, which removes such restrictions (Endlich, et al. (1982)), before
returning to his Point-lterative scheme in Endlich (1984). The discussion of the Calculus of
Variations approach is deferred until §2.4.
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2.3 Hybrid

We've seen that the Direct-Differencing approach (82.1) requires that any nonvanishing
divergence be eliminated by adjusting the vertical velocity, w. Models based on this approach
are thus not likely to be useful for atmospherically stable conditions, for which the magnitude
of wis likely to be very small. Conversely, Point-Iterative schemes (82.2) neglect w, and
emphasize adjustments to u and v that will just cancel any horizontal divergence. Such models
areinappropriate for convective, or unstable, atmospheric conditions. Asits name suggests, the
next approach is ahybrid of the first two which attempts to spread responsibility for satisfying
Eq. (1) across all three wind components, and hopefully prove reliable under a broader
spectrum of conditions.

Goodin et al. (1980) were the first to attempt such a combined approach. Their procedure
consists of the following steps:

1. Aninitial surface wind field, u, and v;, is obtained from an inverse distance-squared
weighted interpolation of available observations, or other appropriate analysis. Gross
terrain features, such as mountains, are accounted for by the use of barriers to flow
during the interpolation.

2. Thefollowing 2D Poisson equation,

0°9 = W(x,y) (19)

is solved using an Alternating-Direction Implicit (ADI) scheme (Peaceman and
Rachford (1955)). Here @ isavelocity potential, and g isaforcing function that is said
to depend on the domain thickness and terrain gradients. The resulting irrotational
velocity field is used to adjust the previously interpolated surface field for local terrain
effects. Unfortunately, the authors are vague as to just how U is specified, or how the
irrotational velocity, [ , is combined with the interpolated field, saying only that they
used atechnique “similar to that of Anderson (1971)".

3. Thus far only the horizontal surface winds have been defined. Due to the relative
scarcity and imprecision of vertical profile observations, u and v at elevations above the
surface are interpolated using a r *-weighted interpolation scheme. This also provides
smoother results than would ar-2-weighted scheme.

4. Inprinciple, onecould at this point obtain valuesfor the vertical component everywhere
in the domain by applying the Direct-Differencing method described in §2.1. However,
as noted there and by Goodin, et al. (1980), thisis likely to yield unreaistically large
values of w. Instead, an effort isfirst made to reduce the divergence in the (u, v) field by
applying the following five-point filter,

n

n n
ijtUivg T U

n

n
S+ U +Uu . O
i,j+1 I, ] 1{] (20)
0

1)
5

n+1 _ n [Uu
Ui = Vil + (=)0

which sets the new value of u equal to a weighted average of the old value at the same
point, and that of its nearest four neighbors; the same formulaisused for vaswell. Itis
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applied on a point-by-point basis throughout each horizontal layer, except for the
bottom-most layer next to the ground. The subscriptsi and j are integer indices along x
and y, respectively, and the superscript n denotes the number of sweeps taken. Yj; isa
user-prescribed weighting factor that in principle can vary from point to point. y;; = 1
can be set at grid points at or very near observation stations to preserve those data, with
y;; = O at other points, giving their values free rein to adjust as needed. Values
between these extremes can be used to specify some mixture of adherence to the
original data vs. adjusted values.

Though no formal analysis of the filter's effects is given, it is clear that the averaging
process has the effect of smoothing the field at all points with vy, P < 1. Asthe number
of sweeps is increased, the field will become progressively more uniform and less
divergent. This number may vary from one vertical layer of the grid to another. The
authors suggest that the appropriate amount of smoothing can only be determined
empiricaly. They state that “ This step is designed to reduce as much of the anomalous
divergence as possible... A relatively unstable (generally near ground level) layer
requires few iterations since less of the divergence present is anomalous, while a more
stable upper layer must be smoothed more times.” Anomalous as contrasted to what?
According to Eqg. (1), all of the divergenceisanomal ous. Note that this step adjusts only
the horizontal wind components.

5. A terrain-following coordinate (again renamed o here) isintroduced. The authors never
give an explicit definition for o(2), but note that it variesfrom O at the surfaceto 1 at the
top of the domain, which is consistent with the definition given here by Eq. (3) in 82.1.
The continuity eguation, when transformed to the TFC system (X, y, 0), and setting the
divergence to zero, reads:

ow _ _[a(uAH) +a(vAH)} 21)

a0 X oy

where AH = H(x,yt) - h(x,y)T, and Wisthe vertical velocity in the TFC system, related
to that in Cartesian coordinates, w, by,

_w_o@h 0AHO ™@h_ _0AH7 0AH
W =w uEBx+0_6xD VEBy+06yD o T (22

Equation (21) isintegrated for W(o) layer by layer, starting from o = 0, using the (u, V)
field from Step 4. Thisis very much like the Direct-Differencing approach described in
§82.1, with one important exception. The result of integrating EQ. (21) across a single
vertical layer in the grid extending from k-1/2 to k+ 1/2 can be written,

0

J(uAH) , o(vAH
Wi i k+1/2 :M,k—l/z_(Ao)ijk[ (%X ), o )ljk (23)

oy

TAt this point both H(x,y,t) and h(x,y) are assumed to be known functions.
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Wi i k12 o representsthe vertical velocity at the top of the next lowest layer, whichis
the bottom of the current layer. In general, it will be nonzero, but Goodin, et al. (1980)
make the ad hoc assumption that W; i ke1/2 = = 0 for the purposes of this equation
only. The resulting W, K+1/2 is |n turn neglected for the purposes of calculating
W, i i k+3/2 and so on The authors reason that doing so prevents the accumul ation of
errors in W, thus avoiding unrealistically large values near the top of the domain. The
evaluation of Eq. (23) in each layer isthus completely decoupled from that in adjacent
layers. This step results in atering only W, and—through Eq. (22)— the w component
of wind velocity in physical space. The generally nonzero W values that result are used
in the next step, during which they are frozen at the current values.

Thewind field must still be expected to retain some divergence. At this point the authors
specializethe analysisto the case AH = H(x,y;t) - h(x,y) = constant. In thiscase Eq. (21),
with nonzero 3D divergence Dj; at grid point (i,j,k) can be approximated using
centered finite differences as,

n n n n
Yit1/2 )k~ Y-1/2jk, Viijriak~Vij-1/2k
AX Ay

Duk AH

(24)
+Wiker2=W i k-1/2

Ao

where the superscript n is again an iteration counter; the terms involving W do not
contain it, since, as noted above, W is considered frozen during this step. In the same
spirit as the Point-Iterative approach of 82.2, we imagine corrections of equal
magnitude, but opposite sign, applied to u at the pointsjust east and west of (i,,k), and
to v at the points just to the north and south, as follows:

n+1 n

Uiz1/2 i,k = Yiz1/2 ik FUijk

n+1 n (25)

Viijt12,k = Vijr12,k FVijk

Equation (24) evaluated at the next iterate would read, with Dﬂ; = =0,
n+1 n+1 n+1 n+1
0= AH Yita/2j k= Y-1/2jk Vij+1/2k"Vij-1/2k
AX Ay

(26)

+ Wk 2= W i k-1/2
Ao

Thevalues U, ;| and v;;, need to take onin order to just cancel D K €an be determined
by subtracting Eq. (24) from Eqg. (26), and then substituting from éq (25). Theresultis

2u ik 2v”k}

D = AH
ijk ™~ [ Ax Ay
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Assuming that, on average, both terms on the right contribute equally to cancelling the
divergence, we have,

_ AX n _ A n

Uijk = ~7a5 Pijk Vijk = ‘ZA‘yﬁDijk (27)
No attempt is made to preserve the vertical component of vorticity. While Egs. (25) and
(27) together cancel the remaining divergence at (i,j,k), they can be expected to
contaminate the divergence at neighboring points. This is why an iterative process is
again needed. The above corrections are applied on a point-by-point basis in each
horizontal layer to complete oneiteration, and then thefield is swept again. The number
of iterations required no doubt depends on the magnitude of the divergence field at the
start, and how low one wishes to drive it. On the latter point, Goodin, et al. (1980) say
only that “the magnitude of the divergence should belessthan thelocal vertical velocity
and less than the estimated errors in the horizontal velocity components.” Given that
divergence and velocity have different units, such direct numerical comparisons would
be inappropriate, leaving this criterion open to some interpretation.

Goodin, et al. (1980) used the above procedure to model the air flow over the Los Angeles
area using a 100 x 50 horizontal grid with Ax = Ay = 3.2 km, and 5 vertical layers of varying
depth. The algorithm is said to have reduced the divergence to less than 0.001 sec ™t in all the
layers, which took ~ 5 min of CPU time on an IBM 370 computer. It is difficult to assess how
much of areduction this represents without knowing the magnitude of the original divergence
field, which is not given. However, if one were to simply assign random numerical values of
O(1 m/sec)—based on their Figs. 1, 4b, and 9— to u and v over a 3.2 km grid sPaci ng, the
magnitude of the resulting divergence would be no worse than ~ O(103-10" sec’}). It would
appear then that the divergence field was reduced in magnitude by one, or perhaps two, orders
of magnitude. It will be seen later that this is much less of a reduction than can be obtained
using the Variational Calculus approach (cf. 82.4 here, and also Goodin, et al.’s Table 3).
Moreover, Table 2 in Goodin, et al. (1980) shows that most of their reduction is obtained as a
result of the smoothing procedure (Step 4 above), which doesn’t make use of Eq. (1).

Pepper, et al. (1998) used the above scheme to help set initial conditions for more refined
prognostic simulations employing finite elements. Chen, et al. (1999) successfully used it to
provide meteorological inputs for predicting the transport of a power plant plume over Grand
Canyon National Park.

Though the details differ considerably, the DIMCOR diagnostic model (Giarola, et al.
(1995)) is based on a procedure similar in philosophy to that of Goodin et al. (1980) in that it
represents a combination of the Direct-Differencing and Point-lterative schemes applied in
succession. Notably, an SST representation of the topography isused instead of Goodin et al.’s
use of a TFC mapping. The authors present results for adjusted winds over sections of
Antarcticausing a 44 x 38 x 7 grid. Run times are reported to be ~ 5 min on a 386 PC with
math coprocessor running DOS.

TThis next result is adlight generalization of Goodin, et al.’s (1980) Eq. (10) to the case Ax # Ay.
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The CALMET model (Scire, et al. (2000)) also employs a hybrid scheme similar to that
described above. It is designed to provide meteorological inputs to the CALPUFF pollutant
dispersal model. The original development of both CALMET and CALPUFF was sponsored
by the California Air Resources Board for use in a regulatory environment, and they have
received extensive use in that state as well as others. The CALMET/CALPUFF suite of codes
was formally proposed by the U.S. Environmental Protection Agency (EPA) for inclusion in
Appendix A of its Guideline on Air Quality Models as a preferred (“Guideline”) model for
certain types of applications. (See http://src. com cal puf f/ cal puff1. ht mand the U.S.
EPA SCRAM web site, htt p: / / ww. epa. gov/ scr an001, for details.) Terrain effects are
incorporated using a TFC system, as are both overland and overwater boundary layer modules.
CALMET has also been modified to make use of satellite cloud data and precipitation data. In
addition to accepting observational data as input, interfaces have been developed to accept
input winds from the predicted output of the prognostic models MM4 and MM5 (Grell, et al.
(1994)). Examples of studies that have employed CALMET include those by Godfrey and
Clarkson (1998), and Barna, et al. (2000a,b).

Another such hybrid model isincorporated as part of the TAMOS emergency response suite
of computer codes (Pechinger, et al. (2001)). It incorporates a diagnostic model variously
described as an “adjustment” of the CALMET model (Pechinger, et al. (2001)), and an
“improvement” to it (Stohl, et al. (1997)). According to Stohl, et al. a*“first-guess’ wind field
is modified by parameterization of topographic effects, slope winds, and blocking. Then
measured wind data are interpolated to the grid, and aweighted average of these modified first-
guess and interpolated wind fields is computed. Finally, Goodin, et al.'s (1980) procedure
described above is applied to the resulting wind field to reduce the divergence to acceptable
levels.

Hybrid procedures such as these represent a patchwork of disparate approaches, each
designed to in some way compensate for the deficiencies in the others. But the whole suffers
from too many ad hoc assumptions and approximations, not to mention lapses in specificity.
Notable among these are: the ambiguity in Goodin, et al.’s (1980) description of Step 2—
“similar to that of Anderson (1971)” leaves room for considerable interpretation; moreover, a
careful reading of Anderson (1971) reveals that it is a small-perturbation analysis linearized
about a mean flow, valid only for very small slopes, and hence inapplicable to mountainous
terrain; the splitting of Steps 5 (Direct-Differencing to get w) and 6 (Point-Iterative divergence-
reduction by adjustment of u, v), when in fact the physics does the two simultaneously; the
neglect of W, i k=1/2 in EQ. (23); and the assumption that u and v each contribute equally to
reducing the divergence at every point. There are also several user-specified parameters whose
values can only be known empirically, i.e., with the benefit of 20/20 hindsight. Among the latter
are the appropriate values of VYjj for use in Eq. (20), the number of smoothing iterations to
perform (Step 4), and the number of iterations to apply to Point-Iterative divergence-reduction
(Step 6). Indeed, the magnitude of w relative to u and v is likely to depend in large measure on
the number of iterations spent in Step 4 vs. Step 6. As Goodin, et al. point out, thiswill likely
depend on the stability properties of the atmosphere at the time, but an objective
parameterization of these quantities has yet to be developed. Hence there remains a good deal
of subjectivity in applying this approach to new terrain for which the model has yet to be
“tuned”.
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2.4 Variational Calculus

The groundwork for the application of the calculus of variationsto this problem waslaid in
the paper by Sasaki (1958), and later updated and extended by him in Sasaki (1970a,b). Though
he considered some simple examplesto illustrate the method, it wasn't until the late 1970s that
the formalism was embodied in practical computer programs that automated the process. The
first appears to have been MASCON, a two-dimensional flux model developed by Dickerson
(1978) at the Lawrence Livermore National Laboratory to supply meteorological inputs to air
pollution models of the San Francisco Bay area. This was soon followed by MATHEW
(Sherman, (1978)), which extended the variational formalism to three dimensions, and
provided inputs to the ADPIC pollutant transport model (Lange, (1978)). The development
below most closely parallels that of Sherman (1978), and fills in some details that have been
glossed over in the literature.

The calculus of variations deal s with the concept of afunctional, as contrasted with the more
traditional function. The value of a given function, say f(x), is known once the value of the
independent variable x is specified. A functional, on the other hand, isitself defined in terms of
one or more arbitrary functions, such that its value is known only after each such function has
been given a specific form. For present purposes, the particular functional of interest is the
following volume integral (cf. Sherman (1978), Eq. (1)):

E(u,v,w,A) = J[ai(u - ui)2 + O(i(v—vi)2 + oé(w—wi)2

Pu , 0V , OW]
ALt BED} dxdydz (28)
E isafunctional because its value depends on the specific form of the functions u, v, w, and A
that appear in the integrand. Theintegral is over the entire computational volume. u;, v;, and w;
denote the components of the observed (interpolated) wind field with which the calculation is
begun; these are fixed quantities. On the other hand, u, v, and w represent the adjusted wind
field for which wewill be solving; each in turnisafunction of x, y, and z. a, and a, are termed
“Gauss precision moduli.” More will be said about them in due course; for now they may be
thought of as weighting factors which are presumed to be specified a priori. Finally, A(X,y,2) is
the so-called Lagrange multiplier, which is also to be determined as part of the solution. The
terms on the first line represent a weighted mean-square deviation between the adjusted and
initial wind fields; the factor in parentheses on the second line is the divergence we seek to
eliminate. The variational approach seeks those functionsu, v, w and A such that the integral of
the two terms over the domain is as small as possible—i.e., we seek to minimize E. This
formulation is the one referred to by Sasaki as being subject to a “strong constraint” (Sasaki
(1970a), 83). The reader desiring amore in-depth discussion of the calculus of variations itself
isreferred to the texts by Weinstock (1952), Courant and Hilbert (1953), and Schecter (1967).

In principle, each wind component could be assigned a different weighting factor, for atotal
of three. But as noted by Sherman (1978), assigning different weights to each of u and v would
seem specious, so both are premultiplied by the same a4. (This point is raised again later, on
p. 35.) Originally, the magnitudes of a4 and a, were related to the confidence level in their
respective components’ observed values; i.e., a“ = (112)0"2, where o2 isthe presumed variance
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of the error in the corresponding field. Thus, alarge value for ui (a g) constrains the adjusted
field of the horizontal (vertical) components to remain close to the initial field in Eq. (28);
conversely, asmall weighting factor allows larger deviations between the two.

Just as f'(X,) = O is necessary for f(x,,) to be a minimum of the function f, a necessary
condition for the minimization of the functional E is that its first variation, dE, vanish (cf. the
texts cited above). It can be shown that: a) most of the rules for differentiation, e.g., the chain
rule, apply also to taking variations; and b) the variational operator & commutes with the
processes of differentiation and integration. Therefore, taking thefirst variation of Eq. (28) and
setting it to zero yields,

OE = J[Zui(u —Uu;)ou + Zai(v—vi)év + ZGg(W—Wi)5W
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Note that all the terms are linearly proportional to either du, dv, dw, or dA, except the middle
term proportional to A, which involves derivatives such as 0(du)/0x, etc. For reasons that will
become clear below, these terms need to be put in a form such that they too are linearly
proportional to just the variations and not their derivatives. For the moment consider just the
portion of the term in question that involves d(du)/ox,

_J: 6(5U)dxdydz _JZ'dZJ’dyJ' a(5“)0|x _Jz'dzJ’dy (U], J'éu—dx
Z, Z

where x4, X, etc., represent the bounding planes of the rectangular computational domain, and
the second equality follows from an integration-by-parts with respect to x. It should be clear
that the other portions of the term, those involving derivatives of dv and dw, can be handled in
like manner if the integration-by-parts is done with respect to y and z, respectively. This
transforms Eq. (29) to:
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Next collect terms proportional to du, dv, dw, and OA,
_ 2 oA 2 oA 2 oA
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Assume for the moment that the terms eval uated on the domain boundaries, i.e., thosein the
last line of Eq. (31), al vanish (we will return to this point later). The remaining integrand
consists of terms which are each proportional to one of du, dv, dw, or dA. For Eq. (31) to be
satisfied for arbitrary variations du, dv, dw, and dA, the coefficients multiplying each of these
guantities must themselves be zero at every point of the domain, i.e.,

oA 1 0A
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At first glance, thismight appear sufficient, but perhaps not necessary. To see why thisisin fact
both necessary and sufficient, consider the consequencesif Egs. (32a)-(32d) are not satisfied at
every point of the domain. That would imply the coefficients of du, dv... could be either
positive or negative over some finite portion of the volume. By choosing du, dv... such that
each always had the same sign as its coefficient, we could force the integrand to always be
positive, thus causing & > 0, in violation of Eq. (31). To repeat, the only way to enforce dE = 0
for any and all variations du, dv... isto satisfy Eqgs. (32a)-(32d) at every point. The first three
of these equations show that the adjusted wind field at each point equals the initial field plus
correction terms that are suitably-weighted derivatives of the Lagrange multiplier. The last
equation is simply Eqg. (1) written in Cartesian coordinates. Equations (32a)—32d) agree with
Sherman’s (1978) Egs. (2)—(5).

The above system consists of four partial differential equations (PDESs) in the four
unknowns, u, v, w, and A. However, the first three of these can be eliminated by substituting
Egs. (32a)—(32c¢) into Eqg. (32d), resulting in asingle PDE for A:
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or rearranging,
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Thisresult is valid for the general case where a4 and o, are allowed to vary with position in
thefield. In practice, they are typically assumed to be constants, in which case the result can be
written,

2 .2
0N, 0 ﬂl@a A _Zo(zﬂ_'_avi Mg (3

Thisis Sherman’s (1978) Eq. (9). The parenthetical expression on the right-hand side is the
divergence field of the initial wind, which is known. Thus Eq. (34) represents an elliptic
Poisson-like PDE for the unknown A.

However, obtaining a unique solution also requires that boundary conditions on A be
specified. Recall that on p. 23 it was assumed, without justification, that all thetermson the last
linein Eqg. (31) vanished. Sufficient conditions for this to be the case are:

Au =0 on Xy, Xy (35a)
AdV =0 onys Y, (35b)
Adw = 0 onz,,z, (35¢)

that is, the product of A times the variation in velocity normal to each boundary must vanish.
These are the same conditions stated by Sherman (1978) as her Egs. (6)—(8). As noted by
Sherman, they can be used to simulate a variety of boundary types, as follows.

Specifying A = 0 at aboundary clearly satisfies Equations (35a)—(35c¢). In general its nearest
interior neighbor in the solution will have anonzero value; i.e., the gradient of A normal to the
boundary, dA/dn, will be nonzero. Equations (32a)—(32c) indicate that the normal velocity
across the boundary will vary accordingly, implying that the amount of fluid crossing the
boundary will adjust to the interior solution. Thus, setting A = 0 is appropriate for throughflow
boundaries of indeterminate flux, as would typically be the case on the lateral faces (at xq, X,
Y1, Yo) of the computational domain. Further, since A = 0 across the entire boundary, the
gradients in the plane of the boundary are also zero, meaning that the two transverse
components of velocity will retain their initial values. Thisisthe situation depicted graphically
inFig. 2(a).
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Figure 2. Choice of Boundary Conditions for A

Alternatively, one could set the gradient of A normal to a bounding surface to zero; that is,
OA/on = dA/d(x,y,2) = 0, as appropriate. Equations (32a)—32c) tell us this is tantamount to
requiring that the normal velocity there remain unchanged fromitsinitial value, i.e., du (or dv,
or dw, as appropriate) = 0 there, which is another way of satisfying Egs. (35a)—35c). Hence
0A/0(x,y,2) = Oisappropriate for use at throughflow boundaries with a known flux, as specified
by anonzero normal velocity intheinitial field. Thisis also the appropriate condition to use at
an impermeabl e boundary, which isthe special case of zero normal initial velocity; thispertains
along the bottom boundary of the computational domain. With this boundary condition, the
gradients of A in the plane of the boundary are free to change, thus allowing the two in-plane
components of velocity to adjust as necessary. Thisis the situation shown in Fig. 2(b).

Equation (33) (or (34)) can be solved, subject to a suitable combination of the boundary
conditions just described, using standard numerical methods, typically based on finite-
difference approximations. The resulting A field is then substituted into Egs. (32a)-(32c) to
obtain the adjusted wind field, (u,v,w), that satisfies Eq. (32d). Barnard, et al. (1987), Ross, et
al. (1988), and Ratto, et al. (1994) have adl raised an important point that bears repeating: while
the procedure just described enforces mass conservation, in and of itself it does nothing to
assure that the surface boundary condition is satisfied, as neither Eq. (28) nor Egs. (32a)-(32d)
contain any explicit knowledge of the underlying terrain. The surface winds in the interpolated
field must have already been aligned parallel to the topography before the above adjustments
are made. Use of the impermeable boundary condition in the previous paragraph will then
assure that the wind component normal to the surface remains zero.

The Variational Calculus approach has the advantage of treating all three wind components
simultaneously in a unified framework, as opposed to forcing any divergence to be cancelled
by just one or two components (Direct-Differencing, Point-lteration), or some ad hoc
combination of all three (Hybrid). It has also enjoyed more widespread application than the
other approaches, as can be seen from Table 1 on p. 4. That is not to say that the present
formalism iswithout ambiguity, the most notable featurein this regard being the two weighting
factors, a1 and a».
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In thisregard it has often been stated in the literature, without elaboration, that the solution
of the system represented by Eqg. (34) and Egs. (32a)-(32c) dependsonly on theratio a4/a,, and
not on o, and a, separately (see, e.9., Ross, et al. (1988), and Finardi, et al. (1993)). At first
glance this would not appear to be the case, since there is no algebraic manipulation that can
be applied to these equations to render their coefficients functions of only a4/a,. However,
consider the following thought experiment. Imagine that we have a solution (u,v,w,A) for a
giveninterpolated field and suitably chosen values of a4 and a,. Now consider the same system
with the values of a; and a, each multiplied by a constant, say c, such that their ratio remains
the same. The right-hand side of Eq. (34) will increase by ¢, and since the left-hand side is
unchanged the new solution, say A', will be everywhere increased by the same amount relative
to the original, N' = c®A. However, when )\’ is substituted into Egs. (32a)-(32c), the original
(u,v,w) will still be recovered. So while the solution for A does indeed depend on a4 and a,
separately, A isjust an artifice we introduced. The only solution of real interest is for the wind
field, and that isindeed a function of only asingle parameter, a4/a,, which is often denoted in
the literature by the shorthand a. (Further support for this argument can be found on p. 29 in
connection with the COMPLEX model.) Thus, when constant weighting factors are used, it is
common to replace the above system with one in which for convenience a4 = 1, and a;/a, = a
(Ross, et al. (1988), Bradley, et al. (1997)):

T
= U+ 5 3% (36a)
10A
= Vi + éa/ (36b)
2
_ o oA
W = Wi + ?a—z (36C)
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From this point on, unless stated otherwise, the discussion will implicitly assume that the
weighting factors are constant, so that we can focus on choosing the single parameter a. In the
more general case where o, and o, both vary with position, but in such away that their ratio
remains constant, the above argument for (u,v,w) depending only on a can still be made by
replacing Eq. (34) with Eq. (33). However, there seems to be no getting around having to solve
the original system, Egs. (33) and (32a)-(32c), under these assumptions.

Although a4, and o, started out being related to the uncertainty in the observed values on
which the interpolated wind field is based, they have evolved over the years into a means of
incorporating the degree of atmospheric stability, or lack thereof, into the calculations. In the
discussion below of the various models based on thisformalism an attempt is made to highlight
the differences in how various investigators have chosen values for these weighting factors.

As noted earlier, Sherman (1978) was the first to apply this approach in three dimensions,
as embodied in the MATHEW model (cf. Table 1). The computational domain consisted of a
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rectangular box in (X, y, z), whose bottom coincided with the lowest elevation of interest. A
Cartesian grid with uniform Ax, Ay, and Az was superimposed on the domain. Thelocal surface
terrain elevation was modeled by blocking off columns of cells within the rectangular volume
such that no flow is allowed in or out of them. This leads to a crude “stair-step terrain”
representation of the topography; models employing this technique are indicated in Table 1
with the acronym SST. Its use limitsthe accuracy to which boundary conditions can beimposed
at the surface, and also prevents the use of variable cell depth in the vertical coordinate. The
finite-difference approximation to Eq. (34) leads to a system of linear equations whose
coefficient matrix isasymmetric and diagonally dominant; Sherman solved it using anumerical
method known as Successive Over-Relaxation (SOR) (Forsythe and Wasow (1960)).

Numerical experiments with MATHEW revealed that, as expected, the solutions were
strongly influenced by the choice of a = a 1/0(22. It was concluded that this ratio should be
proportional to the expected magnitude of (w/u)?, or a ~ 10 for conditions approximating
neutral stability. Larger values will result in most of the adjustment being made in w, as would
be appropriate for unstable (convective) flows; for smaller values, adjustmentsto u and v will
dominate, as would befit more stable flows. Reductions in the overall divergence magnitude
(comparing theinterpolated and final adjusted wind fields) by sometwelve orders of magnitude
were demonstrated. For grids containing 3x10% points, run times were on the order of a few
minutes on aCDC 7600 machine. MATHEW continuesto be actively used by the Atmospheric
Release Advisory Capability (ARAC) group at Lawrence Livermore National Laboratory
(Sullivan, et al. (1993)). Other investigationsthat have successfully used it have been published
by Finardi, et al. (1993), Banta, et al. (1996), and Givati, et al. (1996).

The NOABL model (Traci, et al. (1978)) isincluded in the present category even though it
purports not to be based on variational calculus, but on a more intuitive, quasi-potential
approach. The authors argue that the air can be viewed as inviscid, which implies that the
corrections (U, v, W) that must be added to the observed/interpolated field to satisfy Eq. (1) are
irrotational, and thus calculable via a scalar potential, . However, the usual potential
relationship, G = [ , ismodified as follows:

_ - o . 00
u-ui+u U_Tha—x
_ o o _ .- 00
V=V 4V V= Th& (38)
_ - o _ - 00
W—WI+W W—Tva—z

where 1,, T,, are termed the horizontal and vertical “transmissivity coefficients,” respectively;
appropriate values are to be determined empirically. This development ignores the fact that the
analysis is being applied within the planetary boundary layer, where by definition viscous
effects are rendered non-negligible owing to the strong gradients normal to the surface.
Furthermore, the condition of irrotationality, [1 x U = 0, isnot satisfied by Eq. (38) except in
the special case 1}, = T1,,. Nevertheless, accepting this premise for the sake of argument, and
substituting Eq. (38) into Eq. (1) resultsin the following partial differential equation for ¢
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But Egs. (38) and (39) are identical_to Egs. (32a)-(3%c) and (33), respectively, if we make the
identifications that 1, - 1/(2a3), 1, - 1/(205), and @ - A. Thus the same set of
equations is ultimately solved, regardless of the arguments used to derive them. The present
author feels the variationa calculus development is more defensible, and for that reason has
included the NOABL model in this category.

The preceding paragraph makes clear that the Lagrange multiplier A in Egs. (36a)-(36c¢) and
(37) can beinterpreted as a potential @ in the special case a = 1. The reader is cautioned that it
is only the adjustment to the (initial) interpolated velocity field in Egs. (36a)-(36¢) that is
correctly described as a potential flow. The full velocity field, which includes (u;, v;, w;), will
in general not be a potential (i.e., irrotational) flow, unless the initial velocity field is itself
irrotational. Ross, et al. (1988, 1991) correctly pointed out that for auniforminitial wind field,
the solution of thissystemwith a = 1 will yield apotential flow solution. Asaresult some have
come to regard the term “potential flow” as more or less synonymous with the choice a = 1,
with no consideration given to the initia field. On the contrary, in afield application where
multiple observations are available from which to interpolate, it must be expected that the
initial aswell asthefinal adjusted wind fieldswill not be potential flows regardless of the value
giventoa.

The NOABL model (Traci, et al. (1978)) isunique in one other respect: it is the only model
encountered in the literature that can solve the equations either in physical space, using an SST
representation of the topography, or aternatively using TFC (cf. p. 5). The authors point out
that the latter is the preferable approach, as it allows more precise imposition of the surface
boundary condition, as well as variable grid spacing in the o coordinate; the result is a more
accurate and economical solution. For a more thorough discussion of this point, see the
excellent review by Ratto, et al. (1994). The SST capability was nevertheless retained to
increase flexibility and maintain compatibility with other physical-space-based codes.

The COMPLEX model (Bhumralkar, et al. (1980), Endlich, et al. (1982)) is closely related
to MATHEW, and represents a brief, but apparently temporary, dalliance on Endlich’s part with
the variational calculus approach. (Recall from 82.2 that it was Endlich (1967) who pioneered
the Point-Iterative scheme.) It was developed to aid in the siting of wind turbines by
highlighting those areas where the terrain had the effect of enhancing the local winds.
COMPLEX differsfrom MATHEW in two important respects.

Thefirst has to do with the equations solved by COMPLEX; their derivation follows along
the same lines as that presented above through Egs. (32a)-(32d). But then, instead of
eliminating u, v, and w in order to derive a single PDE for A, Bhumralkar, et al. (1980) first
eliminate v, w, and A to get a single equation in u alone; then they eliminate u, w, and A to get
asingle equation in v alone, etc. The end result is a separate three-dimensional PDE for each
of the componentsu, v, and w, i.e., the Lagrange multiplier A iseliminated altogether. Thethree
PDEs are solved using numerical relaxation techniques, and the results should be (except for
discretization errors) equivalent to those obtained by solving Eq. (37) followed by (36a)-(36¢)
above. But why go to the added expense of solving three separate (albeit very similar) PDES,
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when the method described above requires the solution of only one PDE (as once A is known,
Egs. (36a)-(36¢) are essentially algebraic)? Bhumralkar, et al. never explain their motivation in
this regard, nor do they discuss how they set boundary conditions for their equations.
Nevertheless, it is interesting to note that each of their three PDES contains only the single
parameter aq/a, = o (= [Wh/WA/] Y2in their notation). This further reinforces the argument
made on p. 26, i.e., that the solution for the wind field depends only on a single arbitrary
parameter, a, not two. However, Endlich, et al. (1982) state that the val ues of a?= WH/W, “ that
give appropriate results are in the range 10°1% to 1012”, which is orders of magnitude lower
than those found appropriate in MATHEW (Sherman (1978)) or the ATMOS1 model (see
below). The second respect in which COMPLEX differs from MATHEW is that it solves the
TFC, as opposed to the SST, formulation of the equations, with the attendant advantages in

accuracy and efficiency (cf. p. 28).

Endlich, et al. (1982) point out that the predicted flow around and over obstaclesis sensitive
to where the top of the computational domain is placed—typically at the top of the planetary
boundary layer, or at the base of an elevated inversion. COMPLEX allows this height to vary
gpatially as well. As this is not a directly observed meteorological variable, it introduces
another ambiguity into the use of the model. (Note, however, that this is true of any of the
methods described in this report, and is not unique to the variational calculus approach.)
Endlich, et al. (1982) and Endlich (1984) discuss at some length how they chose to
parameterize the boundary layer thickness variations in terms of its average thickness, a
minimum thickness, and a “sope factor”. Ratto, et al. (1994) describe how other investigators
have handled this question. This discussion is useful in and of itself, regardless of which
approach istaken to satisfying Eq. (1).

ATMOSL isadiagnostic model developed by Davis, et al. (1984) to provide meteorological
inputs to ATMOS2, a pollutant advection/diffusion code. It is similar to MATHEW and
NOABL, inthat it solvesasingle PDE, Eq. (37), for the A field, from which u, v, and w are then
computed using Egs. (36a)-(36¢). The equations are written in terrain-following coordinates
(TFC), and a SOR technique is again used to obtain the A solution. Like Sherman (1978),
Davis, et al. found that values of a2 ~ 10" are appropriate for stable conditions, while for
unstable conditions a? > 1 will likely be necessary. A companion paper by King and Bunker
(1984) in the same journal/issue compares the predictions of the ATMOSI/ATMOS2 models
against measured concentration data. They conclude that while the diagnostic model gives
reasonable accuracy over both simple and complex terrain, to significantly improve its
predictions would require more finely resolved spatial observations, in addition to more
knowledge of the vertical wind profiles.

Similar conclusions are drawn almost universally in the literature on diagnostic models, and
serve as areminder that minimizing the functional E in Eq. (28) does more than simply serve
to enforce the continuity condition, Eq. (1). It also minimizes the mean-square difference
between the observed/interpolated wind field from which the model starts, and the final
adjusted wind field. If the interpolated wind field has not been sampled at points sufficiently
representative of the underlying terrain, there is little hope that the final winds will faithfully
reflect itsinfluence.
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The MINERVE model was developed by Geal (1987a,b)Jr of the French Electricity Board
for use as atool in the prediction of pollutant advection/diffusion. It too is based on the
variational formulation described above, expressed in the TFC system. MINERV E interpol ates
the observed data to obtain the initial (u;,v;,w;) field before minimizing the functional in
Eq. (28). Various interpolation procedures are included as options, which can be sel ected based
on the nature and distribution of the observations. To achieve reasonable fidelity, MINERVE is
said to require aminimum of three surface wind observations and one vertical profile (Bradley,
et al. (1997) and Cox, et al. (1998)). The system can be solved assuming either a constant a,
asin Egs. (36a)-(36c) and (37), or with a allowed to vary from point to point, asin Egs. (32a)-
(32¢) and (33). Equation (33) or (37), asthe case may be, issolved using SOR. Asit hasevolved
over the years, MINERVE now allows the value(s) of a to be prescribed by the user, or
calculated internally from empirical parameterizations related to atmospheric stability as
discussed below (Cox, et al. (1998), Sontowski and Dougherty (1996)). Perhaps what most
distinguishes MINERVE from other modelsin this category is the number of investigationsin
which it has been used, and the list of usersit has attracted who were not involved in its original
development. The studies have included comparisons with both wind tunnel data and
atmospheric flows over complex terrain, and provide an extensive database from which to
assess its accuracy. More will be said in thisregard in 84.

NUATMOS isamodel developed by Ross, et al. (1988). Like the earlier ATMOSL (Davis,
et al. (1984)) model on which it is based, NUATMOS employs TFC and variable grid spacing
in the vertical coordinate. What most distinguishes it from earlier models is the authors’
attempt to choose a based on objective criteria related to atmospheric stability. Heretofore,
o = a4/a, had been chosen based primarily on the relative errors/uncertainty in the observed
values of the horizontal vs. vertical wind components (cf. p. 21), or adjusted through trial-and-
error until the solution looked appropriate. As both of these approaches involve a considerable
element of subjectivity, and the choice has a significant influence on whether the adjusted flow
goes around obstacles, or over them, there remained a strong motivation to objectify this part
of the analysis. It was already known that: o ~ 1 would allow more or less equal adjustments
in the horizontal and vertical components of the wind in order to minimize Eg. (28), and hence
was appropriate to neutrally-stratified flow; a < 1would result in larger changes to the
horizontal components than the vertical component, and so is appropriate to stable flows; and
a > 1 would emphasize changes in the vertical component, and hence should be used for
unstable flows. But that still left considerable latitude to the user.

Starting from conservation of energy arguments, Ross, et al. (1988) devel oped the following
parameterization of a in terms of the Froude number, Fr:

z>H
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for Fr>0.5 (40)
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TAsof thiswriti ng, the present author has been unsuccessful in obtaining either of these two reports. The
description that follows must of necessity rely on the publications of others.
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where Fr = U_/(Nh) isthe Froude number characteristic of an isolated obstacle, such as a
hill; U, represents the assumed uniform background velocity; h is the characteristic height of
the hill: N = [(g/0)(26/32)]%? isthe Brunt-V&isila frequency appropriateto 86/ 9z 2 0;
g is the gravitational acceleration; and 0 is the potential temperature (see, e.g., Panofsky and
Dutton (1984)). H.. is the upstream height of the so-called “critical streamline”: below H, the
flow has insufficient energy to surmount the obstacle, and so passes around it, whereas above
thislevel the flow has sufficient strength to pass over it. Hunt and Snyder (1980) suggest using

He 2 h(1-Fr) (41)
for stable and neutral conditions.

By comparing solutions obtained using NUATMOS for various constant values of a against
the experimental data of Hunt and Snyder (1980) for flow over an isolated three-dimensional
hill, an appropriate value for the empirical constant, a, was determined. It was found that
a [ 0.7 gavereasonable agreement, provided Fr > 0.5; for values below this Eq. (40) predicts
negative values, which is physically unrealistic. Ross, et al. (1988) conclude that this result
provides an adequate description of the functional relationship a2(Fr) for the simple
topography and uniform background flow for which the experiments were conducted, and for
both neutrally-stratified and stable conditions. They caution, however, that the “best fit” a may
vary with the experiment, and even be a function of Fr—i.e., the functional form in Eq. (40)
may not be universal. And for complex terrain, it may even be necessary to let a = a(x,y,2)
throughout the domain.

Subsequently, Ross and Fox (1991) and Ross and Smith (1991) proposed that, based on
additional laboratory data, Eq. (40) be replaced by:

a =1+ ;2
(S*—1)Fr

where the terrain-induced “speedup”, S is defined as U,y,5/U,, as obtained by first running
NUATMOSwith a = 1. Thistoo should only be applied to neutral and stable conditions. They
conclude that, compared to using a uniform flow assumption everywhere in the field,
progressively better comparisons with measured pollutant concentration data are obtained by:
1) correcting for changes in terrain elevation only using a = 1; 2) choosing a = a(Fr) asin
Eq. (42) to reflect atmospheric stability; and 3) empirically choosing a to match the observed
height, H, of the critical streamline. The last option assumes of course that such data are
available, and there is sufficient time for the trial-and-error runs needed to do the match-up.

for Fr=0 (42

Moussiopoulos and Flassak (1986) developed two codes, CONDOR and REDBL, for
diagnostic wind modeling. They derived their equations using potential flow arguments similar
to Traci, et al. (1978), but acknowledge that the resultant system of equationsisidentical to that
obtained from a variational formulation. Both codes are formulated using a standard TFC
transformation, though the authors go into more detail in this regard than most. Their primary
goal wasto speed up the calculations by replacing the traditional SOR solution of the PDE for
A with more modern techniques that lend themselves to computers with vector architectures.
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CONDOR makes use of a fast direct elliptic solver based on Fast Fourier Transforms
(FFTs), coupled with a block-iterative technique to solve what amountsto Eq. (37) fora =1in
transformed coordinates. REDBL instead uses two interlaced cartesian grids of “red” and
“black” points (hence the name) to modify the SOR method in such a way that it can be
vectorized. (The standard SOR doesn’t vectorize well because of the way data dependencies
propagate during the iterations—cf. their Eq. (35).) Both codes were applied to adjusting the
wind field over Athens, Greece using the same 3D grid and observed/interpolated data. The
area covered was 55 x 55 km, with the upper boundary at a fixed height of 3 km with a mesh
of 21 x 21 x 11 = 485 yrid points. The solutions agreed well with one another, as they should,
and were in reasonable agreement with a more sophisticated prognostic model. REDBL took
~ 250 ms, and CONDOR ~ 300 ms—i.e., less than one second each—on the vector machine
CYBER 205 to compute one mass-consistent flowfield. For comparison, both codes were also
run on a conventional scalar processor (a SSEMENS 7881), and the run times increased by a
factor of ~ 25.

The calculations by Moussiopoulos and Flassak (1986) appear to be all for a = 1.
Moussiopoulos, et al. (1988) later improved the CONDOR model in two important respects.
First, the block-iterative technique was replaced with a Conjugate Gradient method which the
authors claim significantly reduced the number of iterations needed for convergence. Secondly,
the system of equations was generalized to allow for arbitrary atf, and an attempt was made to
objectively parameterize the latter in terms of the stability condltlon Rather than relate a? to
the Froude number Fr, as was done by Ross, et al. (1988, 1991), Moussiopoulos, et al. chose
instead to work with the Strouhal number, . For neutral and stable conditions, & = 1/Fr, with
Fr asdefined on p. 30. Following energy conservation arguments similar to those used by Ross,
et al. (1988), and also comparing with the experiments of Hunt and Snyder (1980),
Moussiopoulos, et al. (1988) suggest the following alternative to Egs. (40) and (42):

4
dzzl—i{ /1+—4-—1} for St> 0 (43)

Thisresult yieldsthe correct limits for both neutral (S — 0, a® - 1), and highly stable (&t — oo,
a2 - 0) conditions.

Moussiopoulos, et al. (1988) then went one step further and considered how a? might be
parlameterlzed for unstable conditions, St < 0. In thisregime, St = — h/(U 1) , where
= ./=(9/6)(06/0z) for 98/ 0z<0; the quantity T which replaces N* can be thought
of as the characteristic buoyancy time scale. As there was no experimental data for unstable
conditions to serve as a guide, they sought to bracket the range of values that aZ mi ght take. It
seems reasonable to expect that the minimum would correspond to the value appropriate to
neutral conditions, a2 = 1. For the maximum, they postulated the inverse of the value computed
from Eq. (43) for -S. That is,

Their Egs. (6a)-(6¢) differ dightly from the present Egs. (36a)-(36c) because Moussiopoulos, et al.
choseto set ai = 1/2,whereaswefollowed Ross, et al. (1988) in setting 0‘1 = 1. For thereasons cited
on p. 26, this only affects the A-field; the velocity field computed from either system will be the same
provided the samerratio /0, = a isused in both.
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2

Anin = 1
2 1 for St<0 (44)
Onax = 2
a~(-St)

Equations (40), (43), and (44) are al plotted vs. & in Fig. 3 below. (Equation (42) was not
included as it requires additional calculations to determine the speedup factor, S, for some
specified terrain variation.) For & > 0O, Eq. (43) provides a smoother transition at the neutral

3

GZ(St < O)max
2F - Moussiopoulos, et al. (1988)
E Eq. (44)

¥ a%(St<O)pp

Moussiopoulos, et al. (1988)
for St> 0, Eq. (43)

Ross, et al. (1988) for St > 0,
z>H, Eq. (40)

Figure 3. Parameterization of a? asa Function of Strouhal Number, &

condition, S = 0, and approaches zero only asymptotically asS — o, whereas Eq. (40) isonly
valid between 0 < & < 2. To judge which is more accurate would require that both be applied
to the same dataset, and the results compared; to the author’s knowledge, no such comparison
isavailable.

The true variation of a%(S < 0) is not known, but is expected to lie between the min/max
limits shown. Moussiopoulos, et al. (1988) applied the updated CONDOR model to the wind
field in the vicinity of Athens, Greece, with a allowed to vary with position throughout the 3D
grid. One set of simulationswasrun using a = a,,i,, from Eq. (44), and another using o = O ;5%
in those regions where S < 0; such conditions were confined to the bottommost (i.e., surface)
layer in the domain. Both calculations used Eq. (43) whenthelocal S = 0. Overall, the adjusted
wind fields were found to be a good approximation to the actual winds, provided the observed/
interpolated data were sufficiently representative of the terrain. Surprisingly, the authors found
only small differencesin the (unstable) surface layer predictions between the two simulations,
which they attribute to this layer being rather shallow. They conclude that, while further effort
should be expended in developing a functional relationship for 0(2(St < 0), the resulting
predictions are not likely to be heavily influenced by the particular choice. The present author
feels the latter conclusion is premature, based as it is on a single investigation, which
underscores even more the need for further data and study regarding unstable conditions.

33



Venkatesan, et al. (1996, 1997) describe a diagnostic model named WINDO4, which is part
of alarger suite of codes called the System for Prediction of Environmental Emergency Dose
Information (SPEEDI). It is similar to MATHEW (Sherman, (1978)) in that an SST
representation of the topography is used, but differsfrom it in that o is allowed to vary, in the
vertical direction only, according to Eq. (43) to reflect atmospheric stability. The authors
conclude that replacing the SST representation with a TFC mapping would likely improve the
model’s predictions.

All the above models employ Finite-Difference (FD) approximations to solve the system
represented by Eqgs. (36a)-(36c¢) and (37) (or Egs. (32a)-(32c) and (33)). Montero, et al. (1998)
appear to bethefirst to develop a Finite-Element (FE) procedurefor this problem, which forms
the basis for their MEM 3D model. The surface terrain is modeled as a collection of convex
polyhedra, stored as a series of vertices, edges and surfaces. The interior volume of the
computational domain is discretized using tetrahedral elements, with variable node spacing in
the vertical direction to allow higher node densities near the surface. The other significant
difference is the replacement of the traditional SOR iterative technique with the more modern
BiConjugate Gradient Stabilized (Bi-CGSTAB) method. Two sample problems are solved, one
with 4,608 nodes and 22,506 tetrahedra, the other with 6,662 nodes and 26,183 tetrahedra. Both
used constant values for a ~ O(1), and consumed ~ 3 min of CPU time to adjust the wind field,
which isabit on the high side in comparison with other models.

Whether for this or some other reason, Montero and Sanin (2001) later abandoned the FE
procedure, and reverted to the use of a FD model. They formulate their equations using TFC,
and go into considerably more detail than other authors regarding the specific difference
approximations that they used. The same choice of iterative solvers used in MEM3D was
implemented, i.e., Bi-CGSTAB with either Jacobi, SSOR, or ILU preconditioning. The wind
field over a portion of one of the Canary islands was modeled at various times using a51 x 51
x 14 mesh, again using a constant value for a ~ O(1). No run times are reported.

Many investigators have noted that the adjusted wind fields resulting from the variational
approach can be sensitive to the value chosen for a. Barnard, et al. (1987) sought to remedy
this by determining what they claim is an ‘optimum’ a. Their procedure assumes that
observations at multiple stations, eight or so for the calculations in their paper, are available.
The wind field is initialized using only one of these; the remainder are withheld for use as
“tuning” stations. An optimization procedure is used to drive numerous calculations with the
NOABL model using various values of a to adjust the winds, and for each the root-mean-
square error between the adjusted values computed at the tuning stations and the withheld
observations is computed. The ‘optimum’ value of a is that which minimizesthisr.m.s. error.
A typical run time to determine this value using a VAX 11/780 computer is said to be about
one-half hour. Such a procedure begs the question: since the variational method used in
NOABL already minimizesthe mean-square error between the adjusted and interpol ated fields
based on the observations it is given, wouldn't it be simpler to just provide all the available
observations at the outset? That is, perhaps the sensitivity of the adjusted wind field to a could
more easily be reduced by simply using more observations; the latter should improve the
fidelity of the interpolations, and presumably require adjustments of smaller magnitude.



Thisisthe tack taken by Harada, et al. (2000), who aso sought to reduce the ambiguity in
choosing a. Actually, the problem they set about solving is even more general, in that they did
not assume equal weights premultiplying uand v in Eq. (28), but rather assigned unique factors
o, 0y, and a,, to each component. Thus, the functional they seek to minimizeis given by,

E(u,v,w,A) = J[aﬁ(u —ui)2 + (J(\Zl(v—vi)2 + 0(3\,(W—Wi)2

u , 0v, w
AL azm}dxdydz

Thisleadsto a system of equations identical to Egs. (32a)-(32d), but with a4, and o, replaced
by a,, a,, and a,, in the first three of these equations, respectively. The PDE for A that results
now contains all three factors as well, but otherwise the procedure for solving for A, u, v, and
wiscompletely analogousto that already described. Asbefore, this minimizesthe mean-square
deviation between the adjusted and interpolated wind fields, while enforcing mass
conservation. In contrast to Barnard, et al. (1987), Harada, et al. use all available observations
toinitializetheir calculations. They set a, = 1, and then seek those values of a, and a,,, which
minimize the mean-square difference between the adjusted and observed values.

(45)

A genetic algorithm (GA) is employed to find these optimum values. GAs are one branch of
the fertile area of computational research known as artificial intelligence, and are too far afield
from the present subject to go into much detail here. Sufficeit to say that they artificially mimic
the processes of natural selection, evolution, and Darwin’s principle of survival of the fittest to
arrive at an optimal solution. Harada, et al. present results for only two cases, both concerned
with the flow about Waita mountain in Japan. In both cases the optimum values for a,, were
quite high and nearly equal, ~ 52-53; this might have been anticipated, as in both cases the
atmosphere was very stable. Curiously, the values found for a,, in each case differed
considerably, 0.7 vs. 1.1. The authors speculate this may have been due to there being
significantly different ambient wind directions in the two cases. It is too soon to tell, based on
just these two cases, whether their generalization to a, # o, represents a significant
improvement or not. Unfortunately, no results for which the genetic algorithm was not used
(e.g., witha = a,/a, = a,/a,, chosen from stability considerations as proposed by Ross, et al.
(1988, 1991) or Moussiopoulos, et al. (1986, 1988)) are presented for comparison, and no run
times are quoted, so it is difficult to gauge whether the additional effort spent on optimization
is warranted.

Mathur and Peters (1990) suggest several ways to improve on the variational formalism.
After the winds have been adjusted according to the systems represented by either Egs. (33),
(328)-(32c), or Egs. (37), (36a)-(36¢), Direct-Differencing can be applied to the horizontal
(u,v) field to further correct the w component. Asthisinvolvesno iterations, it can be performed
very quickly. According to the authors, this results in smoother w variations with far less
irregularities, and more reasonable magnitudes, than would be obtained by differencing the
initial interpolated field. Recall from 82.1 that Direct-Differencing the interpolated field can
lead to w values of unreasonably |arge magnitude unless the interpolated field isknown to high
accuracy. The lower magnitudes for w obtained from Mathur and Peters' suggestion are the
result of having already removed much of the divergence before doing the differencing. A
second benefit is that any residual divergence left after the variational adjustment is further
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reduced, typically by several orders of magnitude. In a published comment on the Mathur and
Peters paper, Ross and Smith (1991) point out that the same result could have been obtained by
simply continuing the iterative solution in the variational adjustment to a tighter convergence
criterion. This highlights a question that still appears not to have been resolved in the open
literature: how small alevel can the divergence be driven to by use of the Variational Calculus
approach? Sherman (1978) claims reductions of twelve orders of magnitude, while Mathur and
Peters (1990) and Kitada, et al. (1983) were only able to achieve reductions of between one and
two orders of magnitude, and found that it depended on the value chosen for a. More controlled
numerical experiments are clearly needed to resolve thisissue.

Mathur and Peters also show how the variational formalism can be extended to include
conservation of the vertical component of vorticity in the interpolated field, in addition to
vanishing divergence. Recall that these are the same conditions satisfied by the Point-Iterative
approach (p. 9). Based on their numerical results using such a generalized scheme they
conclude, however, that the additional constraint has an insignificant effect on the final results,
and so is probably not worth the extra effort required. Ross and Smith (1991) subsequently
pointed out that the vertical component of vorticity is automatically conserved by the
variational adjustment, without any need to specify it as a separate constraint, if equal
(constant) weight factors are used for both u and v. Thisiseasily seen by substituting Egs. (324)
and (32b) into the definition of the vertical component of vorticity, Eg. (9):

_ov oou _ PV U 1 0. 9%ap
©= 5% ay - ox "VD+2af Dxoy oy~ “ (46)

0

i.e,, Mathur and Peters numerical results simply confirm a side benefit of the procedure that
can be demonstrated analytically. Indeed, Ratto, et al. (1994) note further that if a; = a, =
constant, and A is suitably well-behaved, all three components of vorticity will be preserved.

For most applications, the incompressible form of the continuity equation, Eqg. (1), is
adequate. However, for situations where the density may vary spatially but not in time, e.g.,
very large domains, or when significant heat sources or sinks are present that can produce
strong temperature differences, the so-called “anelastic” form of the equation,

O a) =0 (47)

ismore appropriate (Ratto, et al. (1994)). Mathur and Peters (1990) show how this can be used
to replace Eq. (1) asthe strong constraint in the variational analysis as well. Unfortunately, no
predictions based on such a scheme are presented. Though the analysis presented by Endlich,
et al. (1982) employs Eq. (1), those authors claim to have performed calculations for spatially-
varying p, without providing any details. They report that differences between these results and
those predicated on constant p were “barely detectable”

It is clear that, of the four approaches to adjusting wind fields so as to satisfy mass
conservation that have been proposed, that based on the calculus of variations has attracted by
far the most followers. No doubt thisisdueto its unified treatment of all three wind components
simultaneously, and relative lack of ambiguity. Indeed, the only significant ambiguities in the
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use of thismethod are: 1) whether to allow o, and o, to vary independently or to assume—as
apparently most investigators do—a constant value for a = a;/a»; and 2) how values for these
Gauwss precision moduli/weighting factors/transmissivity coefficients are to be specified. More
data are needed, and much work remains to be done, on the question of whether a universal
parameterization of a%(Xt), or a?(Fr), can be developed that covers the gamut from stable to
neutral to unstable conditions, or whether some other approach is needed. Another potential
drawback to this approach isthe necessity of using an iterative schemeto solve Eq. (33) or (37),
with the attendant questions of convergence and robustness such a technique entails. But the
large community of users suggeststhat thisis not asignificant problem, and reported run times
on the order of a few minutes are well within the bounds of what is required of “real-time”
models.

37



Intentionally Left Blank

38



3. LINEARIZED MODELS

In contrast to the diagnostic, or mass-consistent, models of 82, which seek only to satisfy
the continuity condition, the class of methods known collectively aslinear or linearized models
attempt to solve the steady-state momentum equations as well. Because the terms “linear” and
“linearized” are so common in many branches of science and mathematics, attemptsto cull the
literature using SciSearch® were not very productive, even when restricted to the disciplines
of meteorology and atmospheric sciences. Asaresult, most of the publicationslisted beginning
on p. 61 were identified in a bootstrap manner from citations given in those already at hand.
There is the risk that any such bibliography is more inbred, and less up-to-date, than would
otherwise have been the case, but it is the author’s opinion that the list is fairly representative
nonethel ess.

Linear modelstend to follow, at least in broad outline, amore uniform methodol ogy than do
the diagnostic models, most of the differences between them lay in the details. Owing partially
tothis, but primarily to thefact that they are not aswell-suited to the NEST group’s applications
asthe diagnostic models (for reasons cited bel ow), the discussion in this section will not go into
as much depth as that of §2.

The seminal paper in this branch of wind modeling, to which all the various linear models
appear to trace their origin, isthat by Jackson and Hunt (1975). The problem studied is that of
two-dimensional incompressible adiabatic flow over a uniformly rough surface on which is
situated an isolated low hill, as sketched in Fig. 4. Far upstream of the hill the oncoming wind

Outer Region

z= hs(x/L) (2D), or,~ el
* 2= hs(x/L, y/L) (3D)

/77777777777 77777 S/

constant z
Figure 4. Linearized Model of Flow Past an Isolated Hill

is assumed horizontal, unidirectional (aligned with the x-axis), and a function of height only,
wW(x,2) =0, u(x,2) = Uo(z)T, with avariation that can be described by alogarithmic profile. The
hill profileis specified analytically in theform z= hs(x/L), where hisitsheight, 0 < s(x/L) < 1,
ands _, 0asx/L _, +o. L isacharacteristic length, which they define as that distance from the

TThe notation used in this section differs somewhat from that employed by the authors cited to maintain
consistency with the rest of the report.
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peak at which s(x/L) = 0.5 (p. 942). Thefollowing is an attempt to list the key approximations/
stepsin the analysis without getting mired in the details:

1.

The underlying premise is that the flow throughout the computational domain can be
viewed as a small perturbation about the oncoming, undisturbed flow. That is, if (u, w)
and (u', w') represent thetotal and perturbation velocity components, respectively, i.e.,

u:U0+u' u'/Uo«l

(48)
w=w W'/Uo«l

This allows any nonlinear terms in the equations to be replaced by ones with either
constant coefficients, or at worst, coefficients whose variation with the independent
variablesisknown a priori. The equations are thus rendered linear, and hence the name.
The small-perturbation assumption requires that the hill be low and of moderate slope,
i.e., theanalysisisstrictly valid only for

E «1. (49)

It is worth noting here that the continuity equation, Eq. (1), is aready linear by virtue
of having assumed incompressible flow. Hence, it is only the momentum equations,
notably the advective terms, which are nonlinear and necessitate this restriction.

Theenergy equationisnot considered. Thisisapparently the reason for having assumed
the flow to be adiabatic at the outset. As a result, the solutions can be expected to be
valid only for flows that are neutrally stable, or nearly so. (Subsequent investigations
relaxed this restriction—cf. p. 43 below.)

The roughness length, z,, is assumed to be constant and to satisfy

L
= »1. 50
Z (50)

A simple mixing length model is used to achieve closure of the equations—i.e., the
otherwise unknown turbulent Reynolds stresses are modeled as agebraic functions of
the mean velocity gradients.

A Fourier transformiis applied to the linearized equations' with respect to the horizontal
coordinate, in this case x. This has two primary effects on the equations. Let F(X,2)
represent any of the unknown perturbation quantities, whether velocity or pressure.
After the transformation, it is replaced by its Fourier transform, F (k,2), where k is the
corresponding wavenumber. The second change effected by the transform is that any
differential operations with respect to x will have been replaced by an algebraic
dependence on k. The origina system of partial differentia equations (PDES) is thus
transformed to a system of ordinary differential equations (ODES) in z. Appendix A
gives more details regarding the Fourier transformation, including the reason for
requiring that the disturbance, i.e., the hill, be isolated.

TFor this reason modelsin this category are sometimesreferred to in theliterature as“ linearized spectral”
or “spectral diagnostic” models.
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6. With further ssimplifying assumptions the ODEs admit families of relatively simple
analytical solutions. The solution for a particular case is rendered unique by imposing
suitable boundary conditions that fix what amount to the constants of integration. To
avoid imposing arbitrary boundary conditions on the transforms of velocity or pressure,
the boundary layer is divided into an outer region, which is essentially inviscid, and an
inner layer of thickness| (Fig. 4) where turbulence is significant. The magnitude of | is
determined by balancing the competing acceleration and stress gradient terms in the
inner layer.

7. If z,and z,,; denote (suitably-scaled) transformations of the independent coordinate z
in the inner and outer regions, respectively, the solution in the inner region is required
to satisfy the no-slip surface boundary condition as z,, — 0, while that in the outer
region must approach the freestream conditions at the boundary-layer’s edge as z, ; —
oo, [N addition, the inner solution for z,, — o is asymptotically matched to the outer
solution for z,; — O.

8. Upon completing Step 7, transforms F (k,2) for all the various perturbation fields are
known in both the inner and outer layers. The physical fields F(x,2) are then obtained
from the inverse transform (Eq. (51b) in Appendix A), and after adding back in the
undisturbed flow, analytical results are obtained across the entire boundary layer.

For a thorough discussion of all the assumptions and approximations, the reader should
consult Jackson and Hunt (1975). The authors compare their results against both wind tunnel
flows and whatever applicable real world data they could find. The comparisons are
encouraging, if somewhat limited.

Later investigations extended the Jackson and Hunt (1975) model in severa respects, and
are discussed below. It should be noted that in many of these investigations the results are able
to be expressed analytically only as far as the solutions of the ODEs for the transforms of the
perturbation functions (Step 7 above). Numerical techniques, i.e., Fast Fourier Transforms
(FFTs) must then be employed to evaluate the inversion integrals (Step 8). Nonethel ess, results
can till be obtained in considerably lesstime than would be required by afull-blown numerical
solution, i.e., one based on afinite-difference or finite-element model of the full PDEs.

Mason and Sykes (1979) expanded the applicability of the Jackson and Hunt model by
generalizing it from two to three dimensions. The principa difference is having to perform
Fourier transform/inverse operations with respect to both x and y, i.e., in Steps 5 and 8 above,
F(x,2) - F(xy,2) and F (k,2) - F (kq,ko,2), where k; and k, are the wavenumbersin the x and y
directions, respectively. The authors highlight the qualitative nature of the differences between
the two- and three-dimensional solutions, and compare the latter against experimental data
obtained from Brent Knoll. The Mason and Sykes model was also programmed independently
and subjected to further validation study—though still for “isolated” features—by Taylor and
Walmdley (1981) and Walmsley and Taylor (1981).

Carruthers and Choularton (1982) presented a semi-analytical theory for two-dimensional
airflow over an isolated hill. The boundary layer is still assumed to have neutral stratification,
but is capped by an elevated inversion layer. They found it advantageous to divide the flow into
three distinct layers, and rather than working with primitive variables (pressure, velocity),
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instead solve the linearized vorticity equation. Comparisons with observations made on Great
Dun Fell were encouraging.

The problem with applying either the 2D Jackson and Hunt (1975) or 3D Mason and Sykes
(1979) theories to real applicationsis that they assume an isolated disturbance, surrounded by
a uniform plain extending to infinity. Even the authors admit to having difficulty finding
appropriate validation data (cf. pp. 950-951, and pp. 388-389, respectively). The first
investigation that attempted to apply linear theory to “real world” terrain of finite extent was
that of Walmsley, et al. (1982). They used essentially the Mason and Sykes analysis, but with
the region of interest, of dimension Lg say, surrounded by aflat plain of uniform roughness and
size L > Lgi. This pattern is assumed to repeat itself periodically in both x and y, as shown
schematically in Fig. 5, where the periodicity iny is not shown for reasons of space. We have
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Figure 5. Imagined Periodic Terrain Variation Assumed by Linear Theory

assumed for simplicity that the horizontal footprint is square, though the analysisis applicable
to arbitrary aspect ratios. Theratio L/L g is set sufficiently large that periodic lateral boundary
conditions can be imposed without unduly influencing the flow within the region of interest.

However, if the terrain at the edges of the inner region were to change abruptly from its
actual elevation to that of the surrounding plain, spurious high-frequency oscillations would
result in the solution. For this reason, atransition zone is inserted between the real terrain and
the surrounding plain, within which the elevation is allowed to blend smoothly between the
two. Thisintroduces an additional parameter, the ratio L1/Lg. Finally, Walmsley, et al. (1982)
use discrete Fourier series to transform the PDEs to ODEs, rather than infinite Fourier
transforms, asthe former are more appropriate to periodic, as opposed to isolated, disturbances
(cf. Appendix A). The spectral content of the resulting solutionswill depend to some degree on
the parameters L/L g and L1/L g. Presumably, as these ratiosincrease, the solution in the region
of interest will converge to one that is unaffected by the artificial periodicity or the transition
zone. However, to the author’s knowledge, no one has yet performed a systematic study of how
large L1/L g and L/L g must be before the solution within the region of interest stops changing.

Walmsley, et al. (1982) refer to the model described above as M S3DJH/1 (Mason and Sykes
Three-Dimensional Extension of the Jackson and Hunt theory/Version 1). Its predictions are
said to overemphasize the influence of small-scale (high wavenumber) topographic features.
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They found that smoothing the terrain reduced the level of such ‘noise’, but were unable to
derive well-founded criteria for when the smoothing should be applied. A modified model,
dubbed M S3DJH/2, was devel oped which they felt more accurately depicted the effects of such
features. Its predictions agree well with MS3DJH/1 near the ground, but the high wavenumber
content of the solution decays more rapidly with height. There isa cost, however: for the same
256 x 256 x 3 grid, MS3DJH/1 consumed ~ 1 minute of CPU time, vs. 20 minutes used by
MS3DJH/2.

Another drawback to the application of the earlier analyses is the need to choose a single
characteristic length scale L (cf. Fig. 4). Taylor, et al. (1983) note that, while the predictions of
MS3DJH/1 and MS3DJH/2 are not unduly sensitive, the model results nevertheless do depend
on the choice of L. For very simple terrain features, various alternative definitions may give
similar results; but for complex topography, the choice may not be clear. The argument is made
that what is needed is a wavenumber-dependent scaling of the underlying length and velocity
scales. The authors point out that, rigorously speaking, such a change would require that terms
through first-order in the Jackson and Hunt/Mason and Sykes analysis be kept, whereas
MS3DJH keeps only the zeroth-order terms. Hence, this must be viewed as a heuristic or ad
hoc modification to the model. Another changeintroduced by Taylor, et al. (1983) isto improve
the matching of the horizontal perturbation velocity between the inner and outer layers, so that
asingle‘universally-valid’ expression results. Both these changes are incorporated in the next-
generation model, MS3DJH/3.

Mason and King (1985) independently developed similar refinements to the linear theory,
notably the use of uniformly valid solutions and distinct velocity scales appropriate to theinner
and outer layers. They also go into somewhat more detail regarding the sizes chosen for the
overall (periodic) domain and the transition zone relative to the region of interest (cf. Fig. 5),
viz, Lt/Lgr = 1.14 and L/L g = 3.66. It is not clear why these particular values were chosen, or
whether a systematic study of the effects of varying these ratios was carried out. Results
showed improved agreement with nonlinear finite-difference calculations, and trends similar to
those seen by Taylor, et al. (1983).

The above studieswere al for neutrally stable flows. Hunt, et al. (1984, 1988a, 1988b) also
continued with the development of linearized theories, notably considering the effects of
various degrees of stratification and different oncoming flows. They retain the concept of inner
and outer regions (cf. Fig. 4), but further refine the model as follows. The outer region is
subdivided into an upper and a middle layer, while the inner region is subdivided into a shear-
stress layer and an inner surface layer (Hunt, et al. (1984, 1988Db)). Analyses are presented for
stably stratified flows assuming a logarithmic oncoming profile (1988a), and for neutrally-
stable flows in which the oncoming flow is alowed to have either alogarithmic, power-law, or
linear profile with height (1988b).

Belcher, et al. (1990) considered the effects of (one-dimensional) changes in surface
roughness on the flow, in the context of atwo-dimensional flow model. Walmsley, et al. (1986)
extended the analysis of Taylor, et al. (1983) to include two-dimensional variations in surface
roughness in a three-dimensional flow model, again assuming neutral stratification. This
incarnation is designated MS3DJH/3R. Carruthers, et al. (1988) employed a model which
divides the turbulent boundary layer into three sub-layers: the inner, middle, and upper layers.
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Drawing on the ideas put forth in several earlier investigations, their model, dubbed
FLOWSTAR I, incorporates the effects of various stratifications, oncoming wind profiles, and
changes in both surface elevation and surface roughness. FLOWSTAR | is said to be able to
calculate the flowfield at asingle height on a 32 x 32 horizontal grid in ~ 10 min using an IBM
PC/AT. Later improvements were added, resulting in the FLOWSTAR Il model (Finardi, et al.
(1993)).

Researchers at the Risg National Laboratory in Denmark have also been active in this
branch of wind modeling. Astrup, et al. (1997) describe their independent development of a
linear model that is capable of treating inhomogeneous surface roughness. Their model is
incorporated as part of the LINCOM code, which is aso capable of predicting the effects of
surface elevation changes and thermal stratification. LINCOM is part of a preprocessor chain
known as MET-RODOS, which provides meteorological inputs to a yet larger collection of
codes, RODOS (Real Time On Line Decision Support), assembled to cal cul ate the atmospheric
transport and dispersion of radioactive materials (Mikkelsen, et al. (1997), Astrup, et al.
(2001)).

As noted above, several models purport to include the effects of thermal stratification.
Typically, this involves modeling its effects in some empirical manner, since linear models
ordinarily make no attempt to satisfy energy conservation locally. An important exception is
the work by Troen and de Baas (1986). Their “simple’ model for three-dimensional neutrally
stable flow (cf. their 82.1 and 2.2) is the basis on which LINCOM computes the effects of
topographic variations, according to Astrup, et al. (1997). However, Troen and de Baastake the
linearized analysis a step further in what they term the “generalized” model (their §2.4). The
set of equations on which this model is based includes both the energy equation and Coriolis
terms. They claim this can be done “without further assumptions and without seriously
complicating the mathematics’. To the present author’s knowledge, the generalized linear
model of Troen and de Baas (1986) isuniquein thisregard. However, their paper presents only
very limited numerical results and no comparisons with experiment for the generalized model.
Moreover, Astrup, et al. (1997) and Mikkelsen, et al. (1997) seem to imply that theories other
than Troen and de Baas' are currently used to model thermal effects in LINCOM. It would
appear that the accuracy and practicality of including the energy equation in such modelsisstill
an open guestion.

It is sometimes claimed that linear models have a speed advantage over diagnostic models
(Troen and de Baas (1986)). No solid evidence to support this claim was found. True, most
diagnostic models involve an iterative process of some sort to adjust the wind field, whereas
linear models require no iterations; their results are typically expressed analytically up to the
last step, where the final fields are formed using inverse Fast Fourier Transforms (FFTS).
Hence, it may well be that the CPU time per grid point is less for linear than for diagnostic
models. But CPU time per grid point is not the appropriate metric to use when making such
comparisons, because it ignores the fact that linear models surround the region of interest with
flat terrain and atransition zone (Fig. 5). Linear models must include all the grid pointsin this
composite block in the FFT evaluation, whereas diagnostic models need only consider the grid
points within the immediate region of interest. Hence a more appropriate metric is the total
CPU time needed to obtain a solution, not the time per grid point. In any event, it appears from
the literature that the times for both classes of models are on the order of a few minutes, and
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perhaps an order of magnitude less, given today’s chip speeds. This is well within the
requirements for real-time applications. Issues of accuracy and ease of use should thus take
precedence over speed.

Insofar as their applicability to NEST’s mission, the biggest drawbacks of the idealized
linear models considered in this section are the assumptions embodied in Egs. (48) and (49).
Any solution predicated on small-perturbation analysis is immediately suspect for flows
involving phenomena such as stagnation points, separation, and recirculation, where by
definition the perturbations are of the same magnitude as the flow about which the linearization
is performed. Yet these very regions are among the most likely to accumulate lethal
contaminants. Reliance on alinear model could thuslead to erroneous assessmentsin situations
involving such phenomena.

Of course, thereisno way to guarantee a priori that the results of alinear model will in fact
satisfy Eq. (48), but certainly a necessary (though perhaps not sufficient) condition is that the
terrain be gently sloping, as reflected in Eq. (49). Jackson and Hunt (1975) state that h/L less
than ~ 0.05 should be sufficient to justify linearization for most purposes. Assuming atypical
slope angle has a tangent of h/(2L) (cf. Fig. 4), thisimplies inclinations of no more than ~ 2°.
But it has been noted by several authorsthat such models are routinely applied to terrain slopes
that lay outside this strict range of validity: Mason and King (1985) found good agreement with
observations of flow speedup over hills with slopes of ~ 24°. Carruthers, et al. (1988) claim
useful results for slopes of the order of 0.25 to as great as 0.5. Assuming here that by ‘slope’
they mean the tangent of the angle between the surface and the horizonta, i.e., h/(2L) in Fig. 4,
thisimpliesterrain inclinationsin the range of 14°-27°. Finardi, et al. (1993) claim reasonably
good results out to h/L < 0.3-0.4, or inclinations of 9°—11°. Of course, termssuch as‘good’ and
‘useful’ are themselves subjective, as is the choice of values for h and L when the terrain is
complex. In any event, linear models are clearly inappropriate for use in mountainous regions,
or wherever local features such as bluffs violate these assumptions.

It should also be noted that those linear models that purport to predict the influence of
multiple mechanisms, e.g., changes in surface elevation, roughness, and stratification, do so by
assuming each mechanism acts independently of the others. That is, the effects of elevation
changes are computed assuming uniform roughness and neutral stratification, while the effects
of roughness changes are calculated for alevel plain and neutral stratification, and so on. Then,
because the underlying equations are linear, a composite flow field incorporating the effects of
all the mechanismsis obtained by superposing (adding) the separate solutions (Walmsley, et al.
(1986), Astrup, et al. (1997)). It must be recognized, however, that this neglects any nonlinear
interactions between the mechanisms—an assumption borne out of the desire to be able to
express the results analytically to the greatest extent possible. Hunt, et al. (1991) cite evidence
that this may be valid for accelerating flows, but not where significant deceleration is present.

In addition to the numerous approximations and ambiguous choices of physical parameter
values (e.g., h and L) that a linear model forces on the user, there is aso the question of how
large to make the transition zone and uniform plain that are imagined to surround the region of
interest (cf. Fig. 5). If L/Lg and L/L g aretoo small, edge effects resulting from the artificially
imposed periodicity will contaminate the results. On the other hand, values larger than needed
will waste valuable computational time computing solutions at more grid pointsthan necessary.
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To the author’s knowledge, this question has never been addressed systematically, and it
represents aweak link in the arguments of such methods' proponents.

In light of these uncertainties, even when good agreement with observational data is
demonstrated, there remains the nagging doubt that it could have been the result of afortuitous
self-cancellation of errors of opposite sign. J. C. R. Hunt is one of the originators of this type
of model, and has probably co-authored more papers on the subject than anyone else.
Boundary-Layer Meteorol ogy published a brief question and answer exchange with the authors
immediately following Hunt and Richards (1984) paper. In response to the question: “You have
shown a few examples of linear solutions to flow over complex terrain. Could you please
summarize common features to flows where linear theory works well? There are forced
boundary flowswhich have anicelinear solution although [the] velocity perturbations are quite
high.” Hunt replied: “ It isdifficult to know exactly when the linear solutionsfor an air flow over
hills are inaccurate. If the linear theory is used and large perturbations are calculated, then the
results should be treated with caution... But in general it is hard to define the limitations of
linear models without having made nonlinear calculations.”

It seems reasonable to conclude then that linear models are best suited for more deliberative
environments, such as air quality studies, predicting maximum wind loads on buildings, or
evaluating alternative sites for wind turbines. Such applications afford the time to ponder and
perhaps answer some of the questions raised above. However, NEST must make its hazard
assessments in “real time”, with little or no opportunity for second-guessing. It is concluded
that at the present time there are too many open questions regarding the application of
linearized models to complex terrain to recommend their use by NEST.
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4. SUMMARY & CONCLUSIONS

This report has attempted to review the published literature on both diagnostic (mass-
consistent) and linearized wind models from the perspective of the type of applications dealt
with by Sandia’'s Nuclear Emergency Support Team (NEST). Diagnostic models adjust an
initial (usually interpolated) wind field so as to satisfy the continuity equation at each grid
point, and the boundary condition of no throughflow at the surface. Linear models, in addition
to satisfying the continuity equation, also solve the equations representing conservation of
momentum. As the latter include viscous terms, they are able to enforce the no-dlip condition
at the surface as well. Discussion has focussed on the theoretical background of each class, as
well as the distinguishing characteristics, advantages, and disadvantages of the various models
within each class.

The broad question is which of these classes of models—diagnostic or linear—Ilends itself
most readily to emergency-response scenarios where “real-time”’ calculations are the order of
the day. Linear models are concluded to be less suitable for use by NEST, despite the fact that
they purport to include more physics (i.e., the momentum equations) in their predictions. This
is because the price paid for linearizing the normally nonlinear momentum equations is steep:
the flow is everywhere assumed to be a small-perturbation about a single, unidirectional
oncoming flow (cf. Eq. (48)-(49)). Their predictions are thus strictly valid only for very gently
sloping terrain—sl opes of no more than afew degrees (Jackson and Hunt (1975), Finardi, et al.
(1993)). In practice, these models are routinely applied well outside their strict range of
validity—to slopes as steep as 25°-30°— and may still yield qualitatively reasonable results
(Mason and King (1985), Carruthers, et al. (1988), Finardi, et al. (1993)). Yet this must be
regarded as fortuitous, due perhaps to the self-cancellation of compensating errors. Flows
involving stagnation points, separation, and recircul ation zones—as often occur on the leeward
sides of hills and mountains, for example—by definition involve large perturbations from the
oncoming flow, and so cannot be expected to be faithfully represented by such a model. Yet
these are the very types of regionsin which contaminants are likely to accumul ate; reliance on
such amodel inthese situationsis problematic at best. That isnot to say that adiagnostic model
Is guaranteed to accurately reflect such phenomena. But at least it has the hope of doing so,
provided representative observations are used to generate the interpolated field from which it
starts. More will be said on this point later.

In addition to the uncertainties introduced by an analysis predicated on very gently sloping
terrain, there are other assumptions and ambiguities associated with linear theories that make
their application to the real world somewhat problematic. For one, when dealing with complex
terrain, how does one unambiguously set values for h and L (Fig. 4)? The turbulent Reynolds
stresses in the inner region are approximated using a mixing length model, which represents
them algebraically in terms of the mean velocity gradients; but it would be simplistic to think
such amodel will apply universally. Also, when multiple forcing mechanisms are present, e.g.,
changes in surface elevation, roughness, and stratification, the linear models neglect any
possible nonlinear interactions between them, and simply sum the effects of each mechanism
acting independently of the others. Those models that include roughness variations and
stratification effects may also require inputs regarding the spatial variations in z,, and
atmospheric stability, that (like those required for full Primitive Equation models) are not
readily available. Finally, to the author’s knowledge, no one has performed a systematic study

47



of the degree to which results are influenced by the artificially-introduced horizontal
periodicity (Fig. 5), and the values chosen for the associated parametersL /L g and L1/LR.

Related to the issue of accuracy, a further perceived disadvantage of the linear theories, is
that, because they linearize about a single oncoming flow, it isnot clear how wind observations
from multiple stations (if available) can be assimilated into the results. Hunt, et al. (1991) point
out the need for further research on this topic. Astrup, et al. (2001) (p. 106) mention an
approach for doing so that involves weighted averages of multiple LINCOM -predicted
flowfields, but the description is very brief and rather cryptic.

I nvestigations comparing the predictions of diagnostic and linear models are few and far
between (e.g., Walmgley, et al. (1990) and Finardi, et al. (1993)). Most have been performed
by the devel oper(s) of one or more of the models being considered, raising questions about their
impartiality. An important exception in thisregard isthe investigation by Finardi, et al. (1993),
which compared predictions from two diagnostic (MATHEW and MINERVE) and two linear
(MS3DJH/3R and FLOWSTAR 111) models against two-dimensional wind tunnel data for
neutrally-stable flow. None of the investigators had been involved in the development of the
models. Unfortunately, the published results use different metrics to assess the fidelity of the
diagnostic and linear models. Hence, the focus was primarily on contrasting MS3DJH/3R vs.
FLOWSTAR, and MATHEW vs. MINERVE, and less so on comparing linear vs. diagnostic
models. Nevertheless, for applications to complex terrain, the authors give an implicit nod to
the diagnostic models when they conclude that (italics added by present author for emphasis):
i) “... linearized models are apowerful tool for dealing with flow over simple topography when
only the oncoming wind profile is given”; and ii) “the ability of mass-consistent models to
describe the main features of awind field over complex terrain depends on the availability of
properly sited input data. To attain a satisfactory description, every main flow feature hasto be
depicted by some input wind profile’.

In summary, while linear models may provide flow fields that incorporate both mass and
momentum conservation in a very idealized sense, their accuracy when applied to steep,
rapidly-changing terrain is debatable. These issues can only be addressed in hindsight through
observation, or as noted in the Q& A immediately following Hunt and Richards (1984), by
comparison with more complex nonlinear calculations. For these reasons, it is felt that linear
models are best suited for more deliberative environments, such as air quality studies,
predicting maximum wind loads on buildings, or evaluating alternative sites for wind turbines.
Such applications afford the time to ponder and perhaps answer some of the questions raised
above. However, NEST must make its hazard assessments in “real time”, with little or no
opportunity for second-guessing, an environment that linear models do not lend themselvesto.
Nevertheless, it is recommended that the team keep abreast of developments in this class of
models, particularly if ameans of linearizing the equationsis found that does not restrict their
applicability to gently sloping terrain. Extensions such as the inclusion of the energy equation
in the system (Troen and de Baas (1986)) are particularly intriguing.

It isthus concluded that use of adiagnostic model to correct the interpolated field represents
the next logical step up in wind modeling for the NEST group. Thiswill eliminate any sources
and sinks from the flow by enforcing Eq. (1), and assure that the wind goes around or over
obstacles—rather than through them!—~by enforcing the no-throughflow boundary condition at
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the surface. These models assume only that the flow is incompressible, typically require only
afew minutes of computer time, and require aminimal number of subjective inputs by the user.
Furthermore, they can easily accommodate an arbitrary number of wind observations, as
reflected by theinitial interpolated field.

The next question isthen: do any of the four approachesto diagnostic modeling, as outlined
inTable 1 on p. 4, clearly stand out as superior to the others? The Direct-Differencing approach
(82.1) isoverly simplisticinthat it neglectsany errorsin u, and v, , and placesthe entire burden
of satisfying Eq. (1) on the vertical component alone. Unless u; and v; are known very
accurately, itisproneto predict unreasonably large magnitudes for w that makeit inappropriate
for usein stable conditions, where one expectsw to be of very small magnitude. Point-Iterative
schemes (82.2) are in a sense the converse of Direct-Differencing, in that they assume the
vertical component is negligible, and adjust only u and v to cancel any initial divergence.
Modelsin this category are not suited for unstable conditions. Asits name suggests, the Hybrid
approach (82.3) is a combination of the first two which attempts to spread responsibility for
satisfying EqQ. (1) across al three wind components, and hopefully prove applicable under a
broader spectrum of conditions. But it suffers from too many ad hoc assumptions and
approximations, not to mention lapses in specificity. There remains agood deal of subjectivity
in applying this approach to new terrain for which a model has yet to be “tuned”.

Theonly category of diagnostic model that treats the three wind components simultaneously
in a unified framework, and with the least ambiguity, is the Variational Calculus approach
(82.4) first articulated by Sasaki (1958, 1970a,b). It is aso the approach that has attracted the
greatest following, as evidenced by the number of different models that are based on this
formulation. Significantly, the excellent review of mass-consistent models presented by Ratto,
et al. (1994) considered only models in the Variational Calculus category. The ambiguitiasJr
unigue to this approach are: 1) whether to assign a4 and o, constant values, or allow them to
vary independently in space; and 2) how these Gauss precision moduli (also known as
weighting factors, or transmissivity coefficients) can be related to atmospheric stability. More
data are needed, and much work remains to be done, on the question of whether a universal
parameterization of GZ(S), or 0(2(Fr), can be developed that covers the gamut from stable to
neutral to unstable conditions. A possible drawback to this approach is the need to use an
iterative scheme to solve Eq. (33) or (37), with the attendant questions of convergence and
robustness such a technique entails. The large community of users suggests this is not a
significant problem, and reported run times on the order of a few minutes are well within the
bounds of what isrequired of “real-time” models. It is therefore concluded that a model based
on the Variational Calculus approach is best suited for use by NEST.

Of the models in this category, MATHEW (Sherman, (1978)) and MINERVE (Geai
(1987a,b)) appear to have been used the most extensively. As noted earlier, Finardi, et al.
(1993) compared their predictions against wind tunnel data for neutrally-stratified flow over
isolated, two-dimensional hills of variable slope. Neither model was able to adequately
describe the wind field using only one or two vertical wind profiles to generate the initial

TThere are other ambiguities, such as: the horizontal extent of the domain, where to place the top, what
size grid cell to use, which interpolation scheme, etc. But these are always present, regardless of which
approach to diagnostic modeling one follows. The intent here is to focus on only those that are unique
to agiven category.
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interpolated field. However, when three profiles were used, several of the flows were well
depicted by either model everywhere but in the wake region. In this regard, it cannot be
emphasized enough that, in addition to satisfying Eqg. (1), these models also minimize the
difference between the adjusted and interpolated wind fields. Thus, any phenomena (such as,
in this case separation and recirculation on the leeward side of obstacles) not reflected in the
initial observationswill not be depicted in the adjusted wind field, as has been noted repeatedly
in the literature (e.g., Moussiopoulos, et al. (1988), Ross, et al. (1988), Boughton and
Del aurentis (1992), Finardi, et al. (1993), Ratto, et al. (1994), and Banta, et al. (1996).

Overdl, Finardi, et al. (1993) found that MINERVE did a much better job than MATHEW
at predicting w. They ascribe most of the differences between results generated by the two
models to the fact that MINERVE uses the more accurate terrain-following coordinate (TFC)
approach to represent the terrain variations, as opposed to the stair-step terrain (SST)
representation used by MATHEW. The latter makes it more difficult to accurately satisfy the
surface boundary condition unlessavery fine grid is used, which leadsto prohibitive run times.
The use of TFC in MINERVE permits both a more accurate enforcement of the surface
condition, and the use of variable grid cell sizes in the vertical direction. This allows more
efficient use of computing resources, because grid points can be clustered near the surface,
where gradients are strongest, and spaced further apart near the top of the domain, where they
are likely to be weakest. The authors point out that how well any such model does depends
strongly on not only the quality and quantity of the observational data, but on choosing an
appropriate value of a aswell. They found that high values of a ( > 1) seemed to give the best
agreement, which corresponds to leaving the horizontal wind field virtually unchanged. They
guestion (pp. 286-287) the utility of attempts to functionally relate a to atmospheric stability
criteria (e.g., Ross, et al. (1988, 1991) and Moussiopoulos, et al. (1988)), but don’t offer any
concrete suggestions as to how else a might be set on an objective, a priori basis.

While Finardi, et al. (1993) avoid making any conclusive statements as to whether they
found MATHEW or MINERVE preferable, it is interesting to note that in two subsequent
investigations that Finardi participated in, MINERVE was chosen for further study while
MATHEW was not. At the least, it seems reasonable to interpret this as atacit endorsement of
MINERVE over MATHEW. Finardi, et al. (1998) successfully used it to model wind variations
at a site in the Appennini mountains in central Italy being considered for wind turbine
installation. Its predictions were comparable to those obtained from application of the RAMS
prognostic model. Desiato, et al. (1998) applied both MINERVE and CONDOR to reconstruct
the 3D wind fields during the TRANSA L P-89 meteorol ogical and tracer experiment conducted
in the Swiss Alps. Though each used a different numerical solution technique, given the same
input data and values for a, both models produced approximately the same solution, thus
providing a cross-check on their validity.

MINERVE has been subjected to numerous and detailed evaluations/validations since its
initial development. Further, the model has been tested by a number of independent
organizations (Bradley, et al. (1997), Cox, et al. (1998)) not associated with its original
developers, the French Electricity Board (Geai, (1987a,b)). This is viewed as a favorable
indicator of both its accuracy, and its ease of use. Thelist of organizationsincludes: the Italian
Electricity Board (ENEL) (Finardi, et al. (1993,1998), Desiato, et al. (1998), Morsdlli, et al.
(1997)); the Swiss Radio Protection Board; Science Applications International Corporation
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(SAIC) (Sontowski, et al. (1995), Sontowski and Dougherty (1996), Cox, et al. (1998)); the
Defense Threat Reduction Agency (DTRA) and its predecessors DNA and DSWA (Bradley, et
al. (1997)); Software Solutions and Environmental Services Company (SSESCO) (cf. ht t p: /
/ www. ssesco. com/ RI TE. ht m ); and ARIA Technologies (France) (cf. http://
www. ai rparif.asso. fr/english/nodelisation/sinpar.htm. The above investigations
include comparisons with wind tunnel data for flow over idealized shapes, as well as
atmospheric flows in both North America and Europe, including the Appalachian mountains,
the Swiss Alps, the DOE Hanford site, and White Sands Missile Range.

Some evaluations systematically withheld selected wind data measurements from the
observed/interpolated wind field used asinput to MINERVE. The adjusted wind field was then
compared against the withheld data to gauge the effectiveness of the model. MINERVE was
found to give good to excellent results, depending on the number and location of observations
used as input. Finardi, et al. (1993) found that predictions with as few as two ground
measurements and one vertical profile were “encouraging” for practical applications. Bradley,
et al. (1997) and Cox, et al. (1998) are a bit more conservative, and conclude that for
satisfactory results a minimum of three surface observations and one upper-air profile are
needed. Generally speaking, the more observations the better, since as noted earlier, any local
phenomena not reflected in the interpolated field will likely not be present in the adjusted field.
However, Desiato, et al. (1998) caution that more observations do not necessarily improve the
accuracy of the results. They argue that the input data should only reflect phenomena of ascale
that is resolvable by the grid being used. Very localized flow phenomena caused by small
topographic features that are below the scale of the grid will be spatially expanded by the
interpolation process, and hence should be avoided in the observed dataset. Similarly, as the
interpolation normally depends only on the horizontal distance between the observation station
and a grid point, the effect of any topographic barrier between them is not taken into account,
which can lead to peculiar results. In such instances, they suggest using paired observations,
one on either side of the barrier, to counterbalance this effect.

MINERVE has severa different interpolation schemes available for generating the initial
field from the observations, including one employing inverse distance-squared weighting (the
scheme currently used in ERAD (Boughton and DelL aurentis (1992)) and AIRRAD (Sagartz
(1997)). The choice of which to use can be made based on the nature or distribution of the
observed data. The relative amount of adjustment made to the vertical and horizontal wind
components is determined by the Gauss precision moduli, a4 and a»,. Calculations typically
assume a constant value for a = a4/a5, asin Eq. (37); or, the model can also alow the Gauss
precision moduli o, and a5 to vary spatially in three dimensions (Eq. (33)). Values for these
weight factors may either be specified by the user, or calculated internally by the code (Cox, et
al. (1998)). If calculated internally, the weight factors are computed in terms of some measure
of atmospheric stability, typically depending on the vertical temperature profile. Various
parameterizations of a2 in terms of stability are available in the model (Sontowski and
Dougherty (1996)), including the a®(S) relation in Eq. (43), proposed by Moussiopoulos, et al.
(1988). Alternatively, if a4 and o, are not related to atmospheric stability, they could possibly
be used to enforce other conditions on the adjusted wind field. For example, if a4, and a, are
given very high values at grid points in the immediate vicinity of the observed data and low
values elsewhere, the adjusted field should be very close to the initia field (and hence the
observations) at those points, with more latitude to adjust away from them. It is not known
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whether such aspecification might introduce convergence difficulties, however. Recall also that
Liu and Goodin (1976) felt that the high-frequency contamination of their Point-Iterative
scheme's predictions (p. 13) was the result of too strict an adherence to the observed data
points.

NEST may be called upon to make hazard assessments in situations where only a single
surface observation, or perhaps none, is available. In light of the minimum input requirements
described above, in such situations will the use of MINERVE, or any diagnostic model for that
matter, represent added val ue to the transport and diffusion cal cul ations? To the extent that they
would otherwise be forced to rely on a uniform wind vector equal to the one observed (or
worse, assumed) value, the answer is yes. Yes, because the model will adjust the wind to go
around and over those terrain features that are resolvable by the finite-difference grid, rather
than through them, and it will do so without introducing any spurious sources or sinks in the
flow interior. However, effects such as land/sea breezes, or separation and recirculation on the
leeward side of obstacles, would not be represented, as they would not be present (under the
stated assumptions) in the observations. The extent to which this will influence the final
concentration predictions is another matter, and will no doubt vary from case to case.

Accordingly, it is recommended that as a first step in developing a diagnostic modeling
capability, the SandiaNEST group explore the possibility of licensing the MINERV E software
from Science Applications International Corporation (SAIC), who licenses MINERVE in the
United States, and continues to do further development work on it. Thisis likely to be much
more cost-effective than developing a new code “from scratch” in-house. Furthermore, much
of the work that would have had to be devoted to validating a new model has already been
performed, and the large community of users represents a base of experience that the team can
draw upon. Presumably, SAIC would also be willing to provide technical support and training
initsuse.

Finally, it should be remembered that the predictions of the various models discussed here
will likely be influenced almost as much by the skill level and experience of the user, as by the
choice of model. That is why we have tried to focus on those models which are the least
arbitrary to apply. But some ambiguity is the price one must pay for attempting to pin down a
three-dimensional vector field based on only the single scalar equation, Eq. (1). The problem
is simply under-determined, and therefore a completely objective solution is by definition
impossible.
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APPENDIX A: Fourier Decomposition

L et F(x,2) denote one of the unknown perturbation functionsin the linearized analysis of §3,
and F (k,2) its Fourier transform with respect to the x coordinate. We will use the following
definitions of the transform and its inverse:

00

F(k2) = % _OOF(X 2)e ¥ (51a)
F(x2) = —— F(k 7)€"k (51b)
2= 5

Here i = /=1 isnot to be confused with the integer coordinate index used in the main text.
The quantity k is termed the wavenumber with respect to the x direction, and varies over a
continuum of values. From Eq. (51b), F (k,z) may be thought of as the (complex) amplitude of
the k™ Fourier component of F(x,2).

The above transform pair is often used in the solution of linear differential equations.
Consider what happens when the transform in Eq. (51a) is applied to the first derivative of F:
F(x, 2)e 'kX x}

ﬁ‘[ —|kaJ|FD - ﬁ{ (\g\"i(t +|k-[00

=0if F(x00,2) =0
= ikF (k, 2)

Thefirst equality resultsfrom an integration by parts. The second assumesthat all perturbations
vanish at + . An analogous procedure, involving two successive integrations by parts with
respect to x, shows that the second derivative, d°F/dx?, transforms according to,
42
—F(x 2) - —k F (k, 2)
dx

provided that both F and dF/dx vanish at X = + 0. And in general, the nth derivative of F, after
N successive integrations by parts, can be shown to transform to,
dn NG
—nF(x, 2) - (ik) F(k 2 forall n=0 (52)
dx

provided that F and each of its derivatives through d™DE/dx(™D vanish at x = + co. (Itis
understood that d@F/dx(©) = F.) Hence, when applied to a linear differential equation, the
transform in EQ. (51a) results in F being replaced by F, and any differential operations with
respect to x with an algebraic dependence on the wavenumber k. Thisisthe reason Jackson and
Hunt (1975) assumethat the hill isisolated—so that all the “boundary terms” vanish (cf. p. 40).
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The preceding arguments carry over readily to the three-dimensional case, by generalizing
F to F(x,y,2). The Fourier transform is applied to the linearized equations with respect to both
horizontal coordinates, x and y. Provided F and its derivatives all disappear as either x or y —
+ 00, the result is that any differential operations with respect to x or y are eliminated, and
replaced by algebraic functions of k; and ky. The latter denote the wavenumbersin thex and y
directions, respectlvely The unknown F istransformed to F (kq,ko,2—the (complex) amplitude
of the (kq,k,)™" Fourier component in the horizontal decomposition—in what is now a system
of ordinary differential equationsin z.

In applying these conceptsto real terrain, it is necessary to think of the region of interest —
and the resulting flow—as being repeated periodically in one (if 2D) or both (if 3D) horizontal
coordinates. In that casetheintegralsin Egs. (51a)-(51b) are no longer defined. Rather than use
transforms, such periodic variations are best analyzed using Fourier series. The coefficientsfor
the complex Fourier series of a function F(x,z) with period 2L in x are given by (see e.g.,
Sokolnikoff and Redheffer (1966), Chapter 1, p. 71),

L/2 . [21ng

F(2) = %J' F(x2e OL Jdx  for m= 0,1 +2, ... (533)
—L/2
and the seriesitsalf is;
. 'E?_HDX
F(x2) = Z F(ePL D (53b)
m==w

Comparing theseto Egs. (51a)-(51b), we seethat the wavenumber kisreplaced by the grouping
2L, and the latter, instead of varying over a continuum of values, can take on only those
discrete values dictated by m being an integer between + . For thisreason, F is now written
as F.(2) rather than F (m,z), to emphasize that it represents a set of coefficients, each of which
isafunction of z

The above pair of equations is useful in solving linear differential equations for which the
solutions F are know to be periodic. Consider what happens when the integral operator in
Eq. (534) isapplied to the first derivative of F:

_ L/2
ETALLEN 2
L/2 L/2 _”D
1 e_lngmaxdlzdx =1 F(x z)e e E?’Tm] F(x, z)e_ - dx
L dx L ' _|_/2 'O O
-L/2 —L/2
_1r —imr i mrt 2T
= [|F(L/2.29¢ ™ -F(-L/2,2)e } + i R ()
where again an integration by parts was used. But e M= M - (—1)m, so the above

reduces to,
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2 _jremm

1 OL dF 1 RALLE
LJ'L/Ze o dx [F(L/Z 2)—F(-L/2, z)}( )" +i R ()

~
=0

B )

Similarly, if the same operation is applied to d?F/dx?, two successive integrations by parts and
the fact that dF/dx is also periodic will show that the second-order derivative transforms
according to:
2 2
d (27 ]
JF (X,2) - — 0L O Fn(2

and in general, the nth-order derivative with respect to x will be transformed to

d" 2"
JF(X, z) - ETD F(2) foral n=0 (54)

assuming that F and all derivatives up through d™DE/dx(™D have periodicity L. Note the
similarity between this result and Eq. (52). Thus, when periodic solutions are involved, the
integral operator in Eq. (53a) has an effect on linear differential equations analogous to the
effect that Eq. (51a) has for isolated disturbances, viz., F isreplaced by F,,, and any differential
operations with respect to x are replaced with algebraic functions of (2rmvL). These concepts
also carry over readily to more than one horizontal coordinate.
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