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Abstract 

The great lake equations of Camassa, Holm, and Levermore are considered. 
Additional terms arising from  physical considerations are incorporated into 
the momentum equation. The resulting equations are  then posed  in a weak 
formulation. Solutions of this modified set of equations are shown to exist and, 
under a certain condition, to be unique. A similar result is  shown  if the problem 
has non-homogeneous  Dirichlet boundary conditions. 
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Analysis of the Modified  Great 
Lake  Equations 

1 Introduction 

In this  report we show the well-posedness of weak solutions of a modified form of 
the time-independent  great lake equations.  Naturally,  this requires casting  the model 
equations in a weak form. We do  this by reformulating the problem in a weak sense, 
choosing suitable forms, and looking for solutions  in the  appropriate Sobolev function 
spaces. 

We then need to show that solutions of this weak formulation of the problem are 
well-posed, ie., that solutions exist and  are unique. We present the theorem which 
gives  well-posedness of solutions of the weak problem. This  theorem,  due to  the work 
of Leray,  was first presented in a complete  manner in Ladyshenskaya [9], but we follow 
the presentation found in  Girault  and  Raviart [6]. We show that our weak formulation 
satisfies the conditions of this  theorem. The  criteria required for existence of solutions 
are nearly  identical to those for the two-dimensional Navier-Stokes equations,  with 
the  addition of the dispersive great lake terms  and  the Coriolis and  bottom  drag 
terms. 

Well-posedness of the great lake equations  has  already been shown in [ll] and [lo]. 
There, however, the equations were cast in a  vorticity  formulation,  with the solutions 
being the inviscid limit of solutions of a system with  an artificial viscosity. These 
results  cannot  be easily used here, though, because we are not using the vorticity 
formulation, which is somewhat more difficult to use  when additional physical terms 
are  added. 

Finally we show that  the conditions for existence of solutions are still satisfied 
when non-homogeneous boundary  conditions are incorporated. The condition for 
uniqueness is modified accordingly. This proof also follows  from a similar proof in [6] 
for the two-dimensional Navier-Stokes equations,  with  the  addition of the great lake, 
Coriolis, and  bottom  drag terms. 

We introduce  the  great lake equations  in section 2, and  add various physics- 
based terms to arrive at the modified great lake equations. The weak formulation  is 
presented in  section 3, with  an  explanation of the various function spaces. In  section 
4 we show that  this system satisfies the criteria for existence of solutions,  with an 
extra condition for uniqueness. The  same is true when non-homogeneous boundary 
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conditions  are  added, as in  section 5. 

2 The  Modified  Great  Lake  Equations 

We start with the great  lake  equations of Camassa, Holm, and Levermore ([4], [ 5 ] ) .  
These  equations consider the two-dimensional velocity u and  surface  disturbance q 
(measured from the  undisturbed surface height) in a lake-sized body of water; see 
figure 2. The domain R may  be  multiply connected and has a Lipschitz-continuous 
boundary dR. In non-dimensional form, the equations  are 

1 
atuG -k U-VUG + ( V u ) u G  + v (7 - ,IuI2) = 0, 

v. (bu)  = 0, 
on dS1, u - n  = 0, 

where 
U G = U + - 6  1 2 2  B vv-u.  

6 
In the above B is the  depth of the lake from the undisturbed  surface level with 
constants BM and B, such that BM 5 B 5 B, < 0, and 6 is the  ratio of the mean 
depth  to  the mean horizontal  length of disturbances. We assume that 6 is small, so 
that  the lake  is shallow; the derivation also assumes that u is small compared to  the 
gravity wave speed, that u varies little with  depth,  and that surface waves are small 
compared to  the  depth. Additionally, we assume that VB is bounded by 6. 

These equations  describe  disturbances  with long wavelength and slow  wave speed. 
They have a structure nearly  identical to  that of the two-dimensional incompressible 
Euler  equations. In particular, these  equations have a conserved energy, an advected 
potential vorticity, and a Poisson-like equation for the height. 

These  equations lack important physics,  however: the Coriolis force, wind stress, 
bottom  drag, and viscosity. We can get an idea of the  importance of these terms 
by computing  their  relative sizes using the scales for Lake Erie, a prototypical lake. 
Typical scales are  a  horizontal velocity scale U of 5 cm/s, a wind speed U, of 5 
m/s, horizontal and vertical  length scales X and D of 40 km and 19 m, a Coriolis 
parameter f of 9.76 x lob5 s-', a wind shear coefficient Ct of 3.03 x a bottom 
drag coefficient Cb of  2.0 x and a viscosity v of 100 m2/s. Using these values, we 
have that relative to  the  inertial  terms,  the size of the Coriolis term is f X / U  = 78.08; 
that of the wind shear term  is Ct$$ = 64.21; that of the  bottom  drag  term is 
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Figure 1. Side view of the basin. The amplitude 77 of 
the wave  is exaggerated. The lateral boundaries are always 
assumed  to be vertical. 
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cbg = 4.21; and that of viscosity is & = 0.05. The viscosity term will actually be 
larger in regions with  a large velocity gradient.  Thus, we add these  terms to  the great 
lake equations. We also add non-homogeneous boundary  conditions so that we can 
incorporate inflow and outflow. 

For the Coriolis force we add  the  term kuL,  where the Rossby number E R  is 
given by CR = E, where U and L are  the horizontal velocity and length scales, f is 
the Coriolis parameter,  and (211, ~ 2 ) ~  = (212, -ul).  The value of f depends  on the 
rotation of the  Earth  and  the  latitude,  but we will assume it  to  be  constant; see [13]. 

For bottom  drag  and wind stress we use 9 U- "," and G a ;  b B  see  [8]. The coef- 
ficients cb and Ct depend on the physics of the  the  bottom  and  top surfaces, which 
we will take to be  constant,  and uw is the velocity of the wind. Typical values are 
Ct = 3.02 x cb = 2.0 x and uw = 5 cm/s. Since the wind stress  does  not 
depend on the dependent variables, we will often write it simply as f. 

The viscosity term we use is 

Here, I2 is the 2 x 2 identity matrix.  This form of viscosity is appropriate for the 
analysis which  follows and is derived in [12]. This.viscosity is not a molecular viscosity 
but  an eddy viscosity, allowing energy to dissipate at a  suitable  rate. 

Because this viscosity has second-order derivatives, we need to modify the bound- 
ary conditions for u. We will do so by specifying, in  addition to  the normal component 
of u, the tangential  component as well. Generally we will  will have the condition 

ulan = g ( 4  * 

In  practice, g will be 0 along sidewalls and nonzero at  points of  inflow or outflow. A 
compatibility  condition,  due to incompressibility, is 

g - n  Bds = 0 .  

Incorporating  all the  additional  terms  to  the great lake equations gives 

v- (u) = 0, 
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where 

with  boundary  conditions 

ulan = g , where g - n  ds = 0.  iQ 
3 Weak Formulation 

In  this section we will develop the weak formulation of the problem. We will restrict 
ourselves to  the time-independent  great lake equations  with homogeneous boundary 
conditions. 

The only difference between equations 2a - 2d and  the time-independent equations 
is that  the acceleration terms  are  dropped. Thus,  equation 2a becomes 

u-vuG + (VU)UG + v 7) - -1.12) - -u ( :  1 ,  
ER 

and  the  other  equations remain the same. 

In order to develop a weak formulation we need to define the  appropriate function 
spaces, their  norms, and functionals on these spaces. First, we define the familiar 
LP (R) spaces: 

Lp(R) = {V : JnIvIPdS1 < a}. 
These spaces have the norm 

As usual, the  notation Ivl denotes the absolute value for a scalar v and  the Euclidean 
norm (xi 1vi(2)1/2 for a vector or tensor v. 

More generally, for m 2 0 and 1 5 p 5 00, we denote by W m 7 p ( S 1 )  the  space 
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In the above, we use the multi-index notation a = ( ~ 1 ,  a2), with the ai being non- 
negative integers, P = 8:18F, and la1 = a1 + a2. These spaces have the norm 

When p = 2, we use the  notation Hrn(sl) = Wrn,P(sl) and llvllm = 11vllrn,2. Extending 
this  shorthand to m = 0, we use llvllo to  denote  the L2(R) norm of v. 

The inner  product (u, v) is defined as 

We will also use an inner product weighted  by the  topography B. For that we use the 
notation r 

(u, v), = 1, uv BdR . 

If v is any element of W m 7 P ( s 1 ) ,  with 1 5 p < c o ,  then  the set of distributions u 
for which (u, v) is finite is called the dual of Wrn)P(sl). This  dual space is denoted 
W - r n t p ' ( s l ) ,  where I + 5 = 1. This space has the  norm P 

More  precisely, if D'(s1) is the set of distributions  acting on infinitely differentiable 
functions  with  compact support,  then 

The Sobolev embedding  theorems for these spaces can  be found in [l]. 

For real s > 0,  the space Hs(R2) can be defined by 

HS(R2) = {U E L2(R2) : (1 + lkl)s/2C(k) E L2(RE)} ,' 

For an open subset s1 of R2 we can define H"(s1) by 

Hs((R) = { u  E L2(R) : 321' E Hs(R2) such that d l ,  = u } ,  
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with  the norm 

When s is an integer this norm is equivalent to  the norm defined earlier.  In  our work 
the value of these spaces is due  to a trace theorem (see [l]) which states  that, given 
a  bounded  domain R in R2 with a Lipschitz-continuous boundary, the range of the 
mapping  that  restricts a function u in H1(R) to  the boundary dR is in H1/2(dR). 
Moreover, this  mapping is onto, so that for any  function g in H'j2 (do) , there  exists 
a function u in H1(R) such that ulan = g. 

Since our problem is on a two-dimensional domain, we will often be concerned 
with vector-valued functions v = (211, 212). Such functions  are  said to  be  in the space 
Wm,p(R)2 if and only if both 211 and u2 are in Wm,P(S2), for any of the Wm,p(R) defined 
above. The corresponding  norm is 

Two spaces that we will  use often in this discussion are 

Li (0 )  = {h E L2(G?), JnhdR = 0} 

and 
H,'(R)2 = {v E Hl(R)2,vjan = o}. 

The boundary values of any 21 E H1(R)2 can be specified as in the definition of H,'(R)2 
if the domain R is bounded and  has a boundary dR that is Lipschitz-continuous. Due 
to  the restriction of H,'(R) on the boundary  and the Poincarh inequality, the semi- 
norm 

is actually  a  norm,  and is the  norm  that we will  use for this space. 

Next, with this  notation  in place, we can define the following forms: 

a(w; 21, v) = UrJ(21, v) + a1(w; 21, v) + u2(w; 21,v) + v) + a&; 21, v) (4) 

I 

and 
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where 

Q ( U ,  V) = - [VU + (VU)' - V -  21121 : [VU + ( V V ) ~  - V -  v I ~ I B ~ R ,  (6) is, 

In  the expression for Q ( U ,  v), we have that  (Vu)ij = 2, I2 = Sij (= 1 iff i = j ,  0 
otherwise),  and the tensor  product G : H is defined by G : H = x:=, GijHji. 
The weak  form of the  steady-state great lake equations is then  the following: 

Problem 1. Given f E H-1(R)2, find u E H,1(R)2 and 7 E Lg(i-2) such that 

It is clear that any  solution of equations 2b - 3 will be a solution of equation 
11. Similarly, any  solution of 11 with sufficient smoothness so that  the  appropriate 
derivatives exist will also be a  solution to equations 2b - 3. However, solutions of 
equation 11 without such sufficient smoothness  do  not make sense as solutions of 2b 
- 3. Thus, classical solutions of 2b - 3 are called strong  solutions, while solutions of 
Problem 1 are called weak solutions. 

4 Existence  and  Uniqueness 

In  this section we examine existence and uniqueness of problem 1. We will state  the 
theorems  guaranteeing  existence  and uniqueness of solutions for a general problem, 
and  then show that our equations  satisfy  the criteria for existence and  state  the 
condition for uniqueness. 

We consider two Hilbert  spaces X and M ,  with  norms I l - l lx and 1 1 -  l l ~ ,  respectively. 
We also introduce a bilinear  continuous form b(v, 7)  : X x M + R, and  a  form 
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a(w; u,v) : X x X x X .+ R such that for any w E X ,  a(w; -, e) is a  bilinear 
cwtinuous form. 

Then we pose the following problem: 

Problem 2. Given f E XI, find u E X and 7 E M such  that 

a(u ;  u, ii) - b(G, 7 )  = (f, ii)* V i i  E X ,  ( 1 2 4  
b(u,ij) = 0 V i j ~  M .  (12b) 

It is useful to introduce the linear  operators A(w) E L ( X ; X ' )  for w in X, and 
B E L ( X ;  MI)  defined by the following relations: 

Similarly, we define B' E L ( M ;  X') by 

Then  Problem 2 can be reformulated as follows. 

Find (u,  7) E X x M such  that 

A(u)u - B'q = f in X' , 
Bu=O in M ' .  

Because any  solution u of problem 2 must  satisfy  equation  12b, it is natural  to 
consider the space 

V = {u E X : b(u,ij) = 0 Vij E M } .  

We can  then  associate  with  problem 2 the following problem: 

Problem 3. Given f E X ' ,  f ind u E V such that 

a(u;u)G) = ( f , G ) B  V'LL E v. (13) 
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Using operator  notation,  this problem can  be  restated as follows. 

Find u E V such  that 
n-A(u)u = n-f in V' , 

where  the  projection  operator n- E L(X ' ;  V ' )  is defined b y  

(n-f 7 V ) B  = (f, v),  vv E v. 

Since the problem at hand is nonlinear, we use the Brouwer fixed-point theorem; 
see, e.g., [14]. We state  this as it applies to problem 2; a proof can be found in [6]. 

Theorem 1. Assume  the  following hypotheses: 

1. there  exists a constant Q > 0 such  that 

2. the space V is separable and; for all v E V ,  the mapping u I+ a ( u ;  u,v) 
is sequentially weakly continuous, i e . ,  if (urn) is  a sequence in V such  that 
urn 2 u E V weakly in V as m + 03, then a(urn;urn,  v) + a(u;u, V )  as 
m + m ;  

3. there  exists a constant p > 0 such  that 

Then there exists at least one  solution (u, q)  E V x M t o  problem 2. 

The first two conditions guarantee  that problem 3 will  have at least one solution, 
while the  third insures that for each solution u of problem 3 there  exists an q such 
that (u, q)  is a solution of problem 2. Specifically, condition 15, known as the inf-sup 
Condition', guarantees that  the space V will not  be empty, and that for  every solution 
u of problem 3 a unique q E M exists such that (u, q)  is a solution of problem 2. 

It is shown in Lemma 1.4.1  of  [6] that condition 3 is equivalent to B being iso- 
morphic from V I  = { g  E H,'(s2)2; (9, v) = 0 Vv E V }  onto MI, and  to B' being 

lAlso referred to as the div-stability condition and as the LBB condition, after its co-discoverers 
Ladyzhenskaya,  Brezzi, and Babuzka. See [2], [3], or [9] 
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isomorphic from M onto V" = { g  E H-1(R)2; (9, v) = 0 Vv E V}. Moreover, we 
have the bounds 

IIB'Pllx/ 1 PIIPIIM VP E Ad 7 

IIBvllw 2 Pllvllx E VI 7 

and 

For uniqueness we state  the following theorem, whose proof can also be found in 
[6].  We will  need the norm 

Theorem 2. Assume that 

1. there  exits  an o > 0 such  that 

2. the  mapping w I+ 7rA(w) is locally Lipschitz-continuous, i-e., there  exists a 
monotonically  nondecreasing function L : R+ + R+ such that for all p > 0, 

Then if 

problem 3 has a unique  solution in V .  

Condition 16 along  with the Lax-Milgram theorem  guarantees  that  the  operator 
rA(w) is  invertible for each w E V ,  while conditions 17 and 18 insure that  the  map 
u + (7rA(u))-'nf is a contraction  and hence has a unique solution. Note that in 
the absence of nonlinear  terms, a suitable choice of L(p) is L = 0, and  the last two 
conditions  are  automatically satisfied. 

Now that we have the criteria for existence and uniqueness, we consider the prob- 
lem at hand,  and  set X = H i  (0) and M = Li (Q). It is useful to modify the forms 
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al(w; u, v) and 4 w ;  u, v). Using integration by parts  and  the definition of wG, we 
may write  them as 

al(w;u,v) = ~ ~ [ ( w - V u ) - v -  (w-Vv).u]BdQ, 

An integration by parts  with  suitable assumptions of the  boundary conditions shows 
the equivalence of the different forms of al(w; u, v) and ~ ( w ;  u, v). As before, we 
have a(w; u, v) = ~ ( u ,  v) + al(w; u, v) 3- az(w; u, V) + a3(u, v) + ~ ( w ;  u, v). 

We  now show that  the conditions of theorem 1 are satisfied. First,  note  that when 
w ,  u, and v are in V, we have 

Consequently, al(w; u, u) = ~ ( w ;  u,  u) = 0. Moreover, a3(u,  u) = 0 identically, and 
a4(w; u, u) = Jn Iwl(u12dS1 > 0. Thus, for the first condition we have 

Hence, condition 1 of theorem 2 and,  setting w = u, condition 1 of theorem 1 are 
both satisfied, with Q = VBm. 

For the second condition, we show that this condition is satisfied by  each ai. Let 
u be in V and {u,} be a sequence in V such that 

Um 3 u weakly in V as m + a. 

Since ao(u, v) is topologically equivalent to  the H,'(R) inner product, we have 

For al(-; -, a), note that H1(S2)2 is compactly embedded in ~5~(S2)~.  By the Riesz- 
Schauder theorem (see, i. e., [14]), any weakly  convergent sequence in H 1  (Q)2 is 
strongly convergent in L2(Q)2. Thus, we have 

16 
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Now let v be in V ,  where Y = D(R)2 n V and D(R) is the space of all infinitely 
differentiable functions  with  compact  support  in R. We want to take the limit of 
a(um; urn, v). An integration by parts gives 

Note that  Vu is in L""(R) and that  the  strong convergence of {Um} in L2(fl) gives 
lirnm+"" u",&, = uiuj in L1(R). Thus, we have 

. .  

so we have 

By the density of Y in V, this result holds for all v E V .  

For a2(-; -, a ) ,  we again  let v be in Y and  take  the  limit of a2(um;um,v). We 
consider the two parts of the right side of equation 20 separately. For the first term, 

we use the fact that since urn + u strongly  in L2 and  Vu, + V u  weakly in L2,  
then (Vum)um 3   VU)^ weakly in L2. For the second term, 

we again use the fact that urn + u strongly in L2 means that u m u m  + uu strongly 
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(u-VB)(VB)*(V-VU - u*Vv)BdR 1 

For a3(u, v),  using the Cauchy-Schwarz inequality  and the fact that ~ ( z )  < BM, 
we have 

1 
lirn C L ~ ( U ~  - U, V)  = - lim - / ( U r n  - u)'.v BdR 

m+m m+mER R 

Finally, for a4 (ut; u, v) we have 

lim (a4(um; urn, v) - a4(u; u, v)) = lim / (IumIum - juju) -v dR 
m+m m+m a 

r n  n 

If  we again choose v E Y ,  then for the first term we have 

r 
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since Um 3 u strongly  in L2(s2) and 1 1 ~ ~ 1 1 0  and 1 1 ~ 1 1 ~ ~  are finite. For the second 
term we have 

for the same reasons as before. Thus, we have 

Finally, combining 23,  24,  25, 26, and 27, we have 

Hence, condition 2 is satisfied. 

Finally, for the  third condition we use the fact that this  condition holds when the 
bottom is flat, i.e., 

This result can be found in, for example, [9]. For the problem at hand we have the 
expression 

Let w = BU. Since B # 0, we have that u = w/B is well defined, and 
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using the Poincar6 inequality and  the fact that  VB = O(6). Thus, we have that 

The above steps show that Problem 1 satisfies the conditions of theorem 1. Thus, 
we have  proved 

Theorem 3. Problem 1 has a solution (u, 7) E H,'(Q)2 x Li(s1). 

Next we consider the uniqueness of solutions of problem 1. To apply theorem 2, 
we introduce 

where 

With  this we can state  the following theorem. 

Theorem 4. If 
~ = o = d r n ,  

then problem 1 has a unique  solution in V x Li(S-2). 

Proof: We need to check the conditions of theorem 2. We have already shown 
that condition 1 is satisfied. Next we let u, v, 'wl, and 202 be  in V .  Because a0 and 
a3 do not depend on the first argument of a and a1 and a2 are  trilinear, we have 
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For this  last  term we have 

. 
Thus, we have 

la(Wl; 21, v) - a(w2; U, v)l 5 lal(w1 - W2; '4v)I $. lQ(W1 - W2; u7 v)l 

+ lai(w1 - w2; a, v)l 

L J+lll~lllwl.- ' w 2 l l  * 

Thus, in  theorem 2 if  we set L N Condition 2 is satisfied, and  the inequality 28 is 
equivalent to  the inequality 18. Hence, subject to condition 28, solutions of problem 
1 are unique. 0 

5 Existence and Uniqueness with 
Non-homogeneous Boundary Conditions 

Here we show that  the existence result of the previous section will still hold when u 
has non-homogeneous boundary  conditions. The idea is to show that in this case the 
solution can be written as a sum of two functions: one which satisfies the  boundary 
condition and  contributes  little in the interior, and  another which has a homogeneous 
boundary  condition and solves an  equation on the interior that satisfies the conditions 
for existence from section 4. We also present a condition for uniqueness. 

For non-homogeneous boundary  conditions we consider 

u = g(z) on dR , (30) 

where g is not necessarily identically 0. As the domain may be multiply  connected, 
we denote by dRi, i = 1 ,2 , .  . . , p  the  separate components of the  boundary do, as in 

. figure 2. Using this  notation, we have a compatibility condition for g: 
P 
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The compatibility  condition  is required for solutions of problem 1 because, due to 
equation l l b ,  we have 

Figure 2. Domain  with  multiple  components of the bound- 
= Y e  

Due to  the  trace  theorem (see [l]), a function in H1(R)2 has  boundary  data g 
in H1/2(R)2. Thus,  the  problem  with non-homogeneous boundary  conditions can be 
stated as follows: 

Problem 4. Given f E H-1(R)2 and g E H1/2(dQ)2  satisfying  equation 31, find 
u E H'(R)2 and 7 E Li(R) such  that 

To establish the existence and uniqueness of solutions of Problem 4, we first need ' 

to demonstrate that we can find a function that satisfies the  boundary condition but 
contributes  little to  the  interior equations. To show this we need the following three 
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lemmas. The  first two of these  are rather technical and will be  stated  without  proof; 
they  can be found in [6]. Below, the  notation d(x; an) denotes the minimum distance 
from a point x to  the boundary dR. 

Lemma 1. For all E > 0, there  exists a function 0, E C2(Q) such  that 

e, = 1 in a neighborhood of ai l ,  
e,(x) = o d(x; a ~ )  2 z ~ ( E )   ( 6 ( ~ )  = exp(-I/E)) , 
80, < E l z l  - d(x;aR)  if d ( z ;  an) 5 2 6 ( ~ ) ,  i = 1 , 2 .  

Lemma 2. There  exists a constant C = C(R) > 0 such  that 

(33) 

The first of these  asserts that there is a  function 8, that is equal to 1 on a thin  strip 
along the boundary, vanishes in most of the rest of the domain R, and  has  suitable 
bounds on its derivatives. The second gives a useful inequality bounding the L2 norm 
of the  ratio of a function 4 to its  distance  to  the  boundary by the H 1  norm of 4. 

Next we prove a lemma stating  that for any  suitable  function g we can find a 
function u that satisfies the weighted incompressibility condition  (equation l l b )  and 
is equal to g along the boundary. 

Lemma 3. For  each g E H1/2(dR)2 satisfying  Equation 31, there  exists a function 
u E H1(R)2 such  that 

v- (BU) = 0, = 9. 

Proof: Let w be  any  function of H1(R)2 that satisfies w = g on dR. By Green's 
formula we have 

L v -  (Bw)dR = i a g - ? z B d s  = 0. 

Therefore V - (BW) E Li(R). Because the  operator B, presented io  section 4, is 
isomorphic from VI (the H' complement of V) to M' = Li(R), there is a v in 
V I  such that 

v-  (BV) = v- (BUY). 
A 
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Along the  boundary v is 0, as it  is  an element of V I .  Setting u = w - v gives the 
desired result. 

Now  we can prove the following lemma,  similar to one found in [7] ,  showing that we 
can find a  function u which satisfies the  boundary condition 30 and  the weighted  in- 
compressibility condition, but also satisfies inequalities regarding the nonlinear terms. 

Lemma 4. Given a function g E H 1 / 2 ( X ? ) 2  satisfying  condition 31, for any E > 0 
there  exists a function uo = u O ( E )  E H1(R)2 such  that 

v. (BUO) = 0 , uolaS-2 = 9 7 (35) 

Ia4(uo; v, v)l 5 Elvl: vv E v . (37) 
lai(v; uo, v)l 5 ~ 1 ~ 1 1  VU E v , i = 1 , 2 ,  (36) 

Proof: By Lemma 3, there exists a function 200 E H1(R)2 such that 

V. (BWo) = 0 ,  W o l a ~  = 9. 

We can express 2o0 in terms of a stream function $0 E H2(R) by 
1 1 

wo = -VA $0 = -(-ay$o, W O ) .  
B B 

For all p > 0, introduce  the function 
1 
B u o p  = -VA (ep$o) 7 

where Op is defined as in  Lemma 1. Note that uop is in H1(R)2 and  that conditions 
35 are satisfied. Now for x such that d ( z ;  aR) 5 26(p) ,  Lemma 1 gives 

so that 
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For the first term, Sobolev embedding gives that H2(R)c Co (R), so 
max, l$0(z)1~ < ca. Moreover, since ?+bo is determined by g, we can express max, l $ 0 1 2  
as Cl(g) and  bound the first integral by Cl(g)llvi/d(-; 80) 11;. For the second term, 
we have that l Q P l  5 1 if d(z; 8R) 5 2 b ( p )  and l0,l = 0 if d(z;  dR) 2 2p7 so the above 

Since H 1 ( R ) ~ L 4 ( R ) ,  we also have that (J Ivi14dR)1/2 5 C2(R)Ivilf. Applying these 
results  and Lemma 2 gives 
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Similarly, for i = 2 we have 

using Holder’s inequality and  the  fact  that B and it’s derivatives are  bounded. 

Finally, for i = 4. we have 

using equation 38, Holder’s inequality, and  the Poincark inequality. 

Since limp+o $(p )  = 0, for any E > 0 we may choose p small enough so that 

Setting U O ( E )  to  the corresponding uop now satisfies both conditions 35,  36, and 
37. 17 

With  the above  results  established, we can now  prove the following theorem con- 
cerning existence of solutions of problem 4. The idea is to split  the solution into 
two parts uo and w, where uo has  the  properties of the function in lemma 4 and UI 
satisfies an  equation of the  type  in problem 2. 

Theorem 5. Given f E H-1(R)2 and g E H1/2(dCl)2 satisfying  condition 31, there 
exists  at least one  pair (u,q) E H1(S1)2 x Li(fl) that solves problem 4. 

Proof: Choose uo E H1(i2)2 as in lemma 4 so that  it satisfies conditions 35,  36, 
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This problem now fits the framework of Problem 2 with X = H i ( f i ) ,  M = LE(o), 
and replace a(.; a, -) with a(-; -, e) and ( f , i . i ) B  with (f , i i)* - a ( u o ; u ~ , i i ) .  We then 
need only to check the conditions of Theorem 1. The second and  third conditions are 
the  same as before, so only  condition 1 needs to be verified. For all v, w E V we have 

By condition 36 of Lemma 4 we have that 

with E < v/2. Moreover, we have that 
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and similarly that 

Therefore, since Q(W; U ,  v) 3 0, we have 

C(W; U ,  V )  2 ( Y  - 4 ~ ) l ~ l :  V U ,  w E V .  

Thus,  the conditions of Theorem 1 are satisfied and we have that Problem 4 has at 
least one solution  in H'(R)2 x Li(R), which  proves the theorem. 0 

For uniqueness, we introduce some notation.  First, for any U O  E H,'(Q), set 

al(v; UO, v) + aZ(v; UO, v) + (a4(UO + v ;  UO, v )  - a4(UO; UO, v)) 
P(U0)  = SUP 

V E V  IvlT 

and 

Then  set 

Now  we can state  the following theorem. 

Theorem 6. Assume the  hypotheses of theorem 5. If v > YO, then problem 4 has a 
unique  solution in H' x Li(R). 
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c 

Thus, we choose cy = Y - p(u0) and condition 1 holds. For condition 2 we have 

Consequently we again choose L E N, and  the inequality 18 becomes 

or 

Y > P b o )  + JNI IPI IV '  
Since we can choose u0, we take the infimum over all admissible UO, and arrive at 
the condition Y > YO. If this condition holds, then  the conditions of theorem 2 are 
satisfied, and problem 32 has  a  unique  solution in H1(il)2 X Li(il) .  

6 Conclusion 

In this report we have analyzed the a modified version of the great lake equations 
of Camassa, Holm, and Levermore. In  particular, we have considered the time- 
dependent version of these  equations  and have added  terms  due to  the Coriolis force, 
bottom drag, wind shear,  and viscosity. We have shown that solutions of these 
modified equations  exist. Moreover, these  solutions  are unique if a relation  with 
the viscosity, nonlinear  terms, and forcing is satisfied. If the  equations have non- 
homogeneous Dirichlet boundary  conditions, the existence result is unchanged,  and 
uniqueness is similar  though a slighty different relation  must be satisfied. 

. 
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