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Abstract 

In this report we describe the performance of the ALEGRA shock wave physics code on a 
set of gas dynamic shock reflection problems that have associated experimental pressure 
data.   These reflections cover three distinct regimes of oblique shock reflection in gas 
dynamics – regular, Mach, and double Mach reflection.   For the selected data, the use of 
an ideal gas equation of state is appropriate, thus simplifying to a considerable degree the 
task of validating the shock wave computational capability of ALEGRA in the 
application regime of the experiments.  We find good agreement of ALEGRA with 
reported experimental data for sufficient grid resolution.  We discuss the experimental 
data, the nature and results of the corresponding ALEGRA calculations, and the 
implications of the presented experiment – calculation comparisons. 
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1.  Introduction 

 

A validation assessment activity that is important for applications of the ALEGRA shock 
wave physics code (Summers, et al., 1997) to High Energy Density Physics (HEDP) is to 
assess validation of the code for strong shock wave applications.  While such an 
assessment contributes to overall validation of application of ALEGRA in a variety of 
shock hydrodynamics applications, success in this endeavor is far from sufficient for 
achieving appropriate confidence in compressible multi-material shock wave simulations 
for complex HEDP applications.  It is the purpose of this document to present the results 
of an ALEGRA validation assessment activity that studies the performance of the code 
for strong gas dynamic shock waves, thus providing one additional component of needed 
validation. 

The Phenomena Identification and Ranking Table (PIRT) concept is recommended by the 
Sandia ASCI V&V program for organizing validation assessment activities (Pilch et al., 
2000).  In unpublished work (Mehlhorn, et al., 2000) a PIRT has been partially developed 
for ALEGRA HEDP applications.  The main elements of this PIRT which are relevant to 
shock hydrodynamics are: 

I. Strong shock waves in multi-material and multi-dimensional hydrodynamics. 

II. Strong shock waves in multi-material and multi-dimensional 
magnetohydrodynamics (MHD). 

III. Strong shock waves in multi-material and multi-dimensional radiation-
hydrodynamics (rad-hydro). 

IV. Strong shock waves in multi-material and multi-dimensional radiation-
magnetohydrodynamics (rad-MHD). 

By “strong shock waves” we mean shock waves in which compressibility and high 
temperatures are important.  For example, in an ideal gas a shock velocity that is larger 
than the sound speed of the ambient gas typically defines a strong shock. We thus 
distinguish validation assessment for strong shock waves from validation assessment 
aimed at lower pressure shock waves, which is required for explosively driven component 
applications of ALEGRA.  While strong shock validation assessment may also provide 
assessment for lower pressure applications, the reverse is not true.  It is implicit in our 
discussion that “strong shock wave” also includes the kind of smooth flows that might be 
important in the associated applications, such as power driven material expansion 
(exploding wires, for example). 
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The PIRT methodology also addresses the importance of validation activities and the 
believed current capability of the code, in this case ALEGRA, for accurately performing 
such calculations.  All of the items I – IV are of highest priority for HEDP applications of 
ALEGRA.  No such application can be performed in the absence of measured credibility 
for ALEGRA strong shock wave calculations.  We currently believe that ALEGRA is 
capable of accurately modeling problems in element I, while elements II – IV represent 
areas of rapidly evolving code capability.  Thus, validation assessment of element I has a 
degree of confirmation associated with it, while validation assessment in the other 
elements is presently exploratory.  The work reported in this document is fully directed at 
PIRT element I above. 

Under the major shock hydrodynamics PIRT element I above there are several other 
specific elements.  These are: 

I-a. Single fluid, 1-D. 

I-b. Multi-fluid, 1-D. 

I-c. Single fluid, 2-D. 

I-d. Multi-fluid, 2-D. 

I-e. Single fluid, 3-D. 

I-f. Multi-fluid, 3-D. 

The current work addresses item I-d.  All of the elements I-a through I-f potentially 
require validation assessment for all of the numerical hydrodynamics currently 
implemented in ALEGRA – (I-d-1) pure Lagrangian, (I-d-2) pure Eulerian, (I-d-3) 
Arbitrary Lagrange-Eulerian (ALE), and (I-d-4) Adaptive Mesh Refinement (AMR) in the 
case of element I-d above.  We believe that the multi-fluid elements and multi-
dimensional elements have higher importance than single fluid or 1-D.  Nonetheless it is 
difficult to completely isolate single fluid from multi-fluid and 1-D from higher 
dimensional elements.  In the absence of specific guidance from the intended application 
as to the particular numerical hydrodynamics to apply, this leads to a total of twenty-four 
different assessment activities under the single major PIRT element I; or to ninety-six for 
all four major elements aimed strictly at assessing shock wave modeling capability of 
ALEGRA.  This is a very large number of potential validation assessment activities.   

We observe that our effort in strong shock validation assessment is significantly 
simplified by the fact that for more specific HEDP applications the relevant numerical 
hydrodynamics choices are sometimes somewhat restricted.  Only those restricted choices 
are really of concern for validation for that particular application.  In addition, if more 
than one numerical hydrodynamics option must be assessed, we may be able to 
adequately assess it through the verification exercise of comparing with an option that has 
already undergone a significant validation assessment.  This is the approach that underlies 
the present work.  The direct validation assessment activity we perform is on item I-d, for 
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Eulerian numerical hydrodynamics.  Assessment of pure Lagrangian hydrodynamics is 
not an option for multi-dimensional strong shock reflection problems because we know 
from past experience that Lagrangian calculations will not function properly.  On the 
other hand, ALE and AMR are both of interest for strong shock problems, as well as 
Eulerian.  The present work, which emphasizes suitably resolved Eulerian calculations, 
then can serve as a verification benchmark for future analyses of the application of ALE 
and AMR to shock reflection problems.  We believe Eulerian, ALE, and AMR numerical 
hydrodynamic options are all expected to be viable options for Z-pinch HEDP 
applications other than ICF capsule design.  Thus, questions about how to appropriately 
balance validation assessment activities, such as strong shock wave reflection studies, for 
all three numerical hydrodynamics options are not moot.   

To summarize, this report is focused on a validation assessment activity targeted at the 
specific PIRT element (I-d-2), Eulerian multi-material, two-dimensional strong shock 
hydrodynamics.  To this purpose, Sandoval (1987) reported a set of interesting gas 
dynamic shock reflection calculations and experimental data that we believe are also 
useful for studying with ALEGRA.  The purpose of Sandoval’s study was to validate the 
capability of the Godunov ALE code CAVEAT (Addessio, et al., 1986) for performing 
the task of computing shock reflections.  Although ALEGRA is not a compressible 
computational fluid dynamics code of the type typically applied to problems of this nature 
(see Toro, 1999), and an artificial viscosity-based numerical shock hydrodynamics is used 
rather than a Godunov scheme, the shock reflection problems studied by Sandoval should 
still provide a reasonable opportunity to gauge the success or failure of ALEGRA for 
shock wave reflection calculations.  It is with this purpose in mind that we present the 
results in this report. 

Sandoval compares shock reflection calculations versus experimental data for three 
different regimes of shock reflection from planar (Cartesian x – y geometry) oblique 
surfaces – regular shock reflection (RR), Mach shock reflection (MR), and double 
Mach shock reflection (DMR).  What is most important to us in Sandoval’s work is the 
reported experimental data.  We will discuss these data below.  In addition, a fairly well 
developed theory of shock reflection in ideal gases exists (Ben-Dor, 1992) which 
provides an interesting counterpoint to the calculation – experiment comparisons that we 
present.  We will also review this theory briefly. 

The calculations we present are somewhat demanding, since the resolution required to 
even qualitatively represent the shock wave structures observed in shock reflection 
transition experiments is quite high for an artificial viscosity code.  Nonetheless, an 
understanding of the required resolution is very useful for other applications of 
ALEGRA, and this is one of the most interesting features of the work we report here. 

In Section 2 we discuss the phenomenology of shock reflection in planar oblique 
geometry.  Then we present the computational approach we apply, including the 
geometry, meshing, important input variables, and other features necessary to understand 
and repeat these calculations.   



    

 16

Section 3 presents a comparison of computations performed on the three major classes of 
shock wave reflection problems (that we discuss in Section 2) with experimental data.  
We review the experimental data, especially the reported error bars.  We also discuss the 
validation metrics defined for the comparison of the calculations with the chosen 
experimental data that we apply in this study.  The most desirable metric is that the 
calculations, especially when represented by summary statistics, fall within the data error 
bars.  We also believe that it is of importance to successfully predict the reflection 
transition regions from regular to Mach or double Mach reflection, which was the 
underlying motivation for our computational study.  Finally, we discuss some results on 
calculation verification, in particular the grid convergence studies that we performed to 
arrive at the numerical resolution that was required to achieve reasonable agreement with 
the experimental data. 

We conclude with a discussion of these results, as well as the opportunity for future work, 
in Section 4.  Appendix A provides traceability and repeatability information for these 
calculations, in particular input deck echoes for mesh generation and ALEGRA, as well 
as information about the approach used for post-processing our results. 

We assume that the reader of this report has familiarity with shock wave physics and the 
standard methodologies for performing computational simulations in that field. 
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2.  Description of Calculations and Experimental Data 

2.1 Description of the Calculations 

ALEGRA (Summers, et al., 1997) is a multi-material, multi-physics Arbitrary Lagrange 
Eulerian (Peery and Carroll, 2000) shock wave physics code.  This computer code uses a 
finite element grid for spatial discretization and a matched time-stepping method for 
performing shock wave physics calculations (Hughes, 1987).  Most importantly, 
ALEGRA uses artificial viscosity for fitting shock waves (Richtmyer and Morton, 1967) 
in numerical solutions.  The artificial viscosity methodology has historical application in 
both Lagrangian and Eulerian multi-material shock wave calculations.  Artificial viscosity 
provides flexibility for simulating the multitude of shock waves that are expected in 
general multi-material shock wave physics applications.  However, the use of artificial 
viscosity is also accompanied by the penalty of more stringent requirements for suitable 
resolution of complex shock structures.  Typical artificial viscosity implementations 
smear shocks over at least four zones in general purpose shock wave physics codes, 
although the less generally applied algorithm of Christensen (see Benson, 1992 for a 
discussion and extension of Christensen’s ideas) allows shocks to smear over fewer 
zones.  One of the questions that we attempt to answer in this work is what resolution is 
necessary to achieve sufficient resolution in ALEGRA shock wave calculations using the 
current artificial viscosity formulation (a combination of linear and quadratic viscosities).  
This question will be addressed by the work we present in this document. 

In the validation assessment activity that we discuss, we examine physical problems in 
which complex multi-wave structures arise.  However, the nature of these chosen 
problems is typically less complicated than what we might expect from HEDP 
applications.  For example, the shock waves we study in this report can be modeled using 
ideal gas equations of state.  In addition, the overall geometry of the problems is less 
complex than that found in other applications of interest to us, which also typically 
require multi-material calculations.  The shock structures that result from oblique shock 
reflection in ideal gases are described in Sandoval (1987) and carefully analyzed in detail 
in Ben-Dor (1992).  An older classic reference is Courant and Friedrichs (1948). Below, 
we review enough of the phenomenology of shock reflection to make our discussion of 
the corresponding ALEGRA calculations comprehensible.  The interested reader is 
especially advised to refer to the book of Ben-Dor, as well as the other detailed references 
given below, to have a more complete picture of this problem. 

2.1.1  Oblique Shock Reflection 

We will discuss calculations in three distinct regimes of oblique shock reflection below.  
These regimes – regular shock reflection (RR), Mach shock reflection (MR), and 
double Mach shock reflection (DMR) – are schematically depicted in Figure 2.1.  There 
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are several important features in these schematic flow fields that are important to 
understand and which we will now summarize.  Our notation is almost identical to that 
used by Sandoval (1987), although the orientation of the reflection in Figure 2.1 is 
different than in that work.  Our schematic diagrams are fully compatible with the 
calculations we report, which should make the task of correlating the schematics with the 
computational diagrams easier for the reader. 

Our discussion below assumes ideal gases.  The relevant equation of state for ideal gases 
as implemented in ALEGRA is worth recalling.  The equations are 

 

 

( 1)( )
( )

ref

ref
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p I I
I I
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ρ γ

γ
ρ

= − −

−
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    (2.1) 

 

In equation (2.1) the meaning of the variables is p is pressure, T is temperature, I is the 
specific internal energy, C  is the sound speed, refI  is the reference specific internal 
energy that allows adjustment of the zero of energy in calculations, and ρ is density.  The 
constant volume heat capacity vC  and the polytropic gas constant γ  are input parameters 
in ALEGRA that uniquely specify the ideal gas.  All of the calculations, theory, and 
experiments discussed in this work assume that 1.4γ = , a value appropriate for air at 
conditions that are not extreme enough to trigger real gas effects such as ionization and 
dissociation.  The heat capacity is adjusted to define initial conditions that match those 
presented in the report of Sandoval (1987).  These will be discussed in detail in Section 
2.2.  All units in this document are cgs (centimeters – grams – seconds).  Thus, pressure 
is measured in dynes/cm2, and specific internal energy is ergs/g.  Temperature is 
measured in Kelvin. 

We consider experimental data on the three different types of shock reflection (RR, MR, 
and DMR) in this report.  The reader should consult the book of Ben-Dor (1992) for 
further information.  We will first describe each of these reflection regimes to provide a 
self-contained perspective on the comparisons that we will present in this document.   
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2.1.1.1 Regular Shock Reflection 
 

The case of regular shock reflection (RR) is diagrammed in Figure 2.l(a).  The key 
features in this diagram are the incident shock, assumed to be steady, and the reflected 
shock “R”.  The pre-shock conditions of the gas are labeled with the subscript “0”.  The 
incident shock wave is assumed to be steady.  Then, knowledge of the incident shock 
velocity, sv , and the pre-shock gas conditions is sufficient to determine the post-shock 
gas state, which we label with the subscript “─”, through application of the Hugoniot 
jump conditions (Harlow and Amsden, 1970): 
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The Mach number M in (2.2) is defined as 0sM v C= , where sv  is the shock wave 
speed.  u− is the material velocity behind the shock, in the direction of motion of the 
shock (always planar in this report).  The material velocity of the pre-shock state in the 
experiments we consider is zero.  The incident shock wave produces a state of uniaxial 
strain behind it, except in the reflection region, where the flow field is more complex. 

The polytropic gas constant, the incident shock wave Mach number, and the angle of the 
wedge Wθ , or the incident angle of the shock wave 90°I Wθ θ= − , define the type of 
shock reflection that occurs for ideal gases.  For certain conditions, this reflection will be 
regular.  An approximate analytical theory that describes regular shock reflection is called 
the two-shock theory (Ben-Dor, 1992).  The essential geometry for understanding two-
shock theory is given in Figure 2.2.   Steady self-similar flow is assumed, which is valid 
as long as real gas effects are not important.  The frame of reference of this figure is fixed 
at the reflection point O, unlike that of Figure 2.1.  Thus, the incident shock (I) and 
reflected shock (R) are stationary, while the gas state 0 has particle velocity with 
magnitude equal to the projection of the incident shock velocity in the incident angle.  All 
shocks are assumed to be planar, not curved.  Then, the planar oblique shock relations can 
be used to determine the final state across the incident shock.  This state serves as the 
entry state for the reflected shock (R).  The final state behind the reflected shock is 
labeled state 2.  The flow beginning with entry into the incident shock and ending behind 
the reflected shock is suggested by the vectors and associated angles in Figure 2.2.   



    

 20

 

 

 

 

Figure 2.1 Schematics of possible shock reflection structures: (a) regular reflection; (b) single Mach 
reflection; and (c) double Mach reflection.  This figure is redrawn from Sandoval (1987) with the 
same orientation as the ALEGRA calculations summarized in this document. 
 

Because of planarity of the shocks and the steady state flow assumption, the oblique 
shock relations can be used to determine the final state 2 behind the reflected shock R.  
These equations are given by Ben-Dor (1992) and we repeat them here for reference: 
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Figure 2.2 Geometry of the two-shock theory for regular shock reflection. 
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Oblique shock relations across the reflected shock wave (R): 
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The quantity 
1

Ph γ
γ ρ

=
−

 in equations (2.3) and (2.4) is the enthalpy. 

For inviscid flows the gas velocity behind the reflected shock wave is parallel to the 
surface of the wedge, implying that 1φ θ− = .  Together with this constraint, equations 
(2.3) and (2.4) form nine equations for thirteen variables.  Specification of the initial state 
0 and the angle of incidence of the shock (or the wedge angle) is sufficient to completely 
determine the final reflected shock wave state 2, but not uniquely.  As discussed by Ben-
Dor, Henderson (1982) showed that these equations can be simplified to a sixth order 
polynomial for the pressure 1p in the case of an ideal gas.  Only four of the possible 
solutions can be rejected on physical grounds. 

In this report we will compare calculations with measurements of the pressure 1p  in state 
(1) behind the reflected shock wave in various experiments.  These measurements will be 
discussed in Section 3 below.  The pressure in Figure 2.1(a) illustrates where this pressure 
is measured both experimentally and computationally – immediately behind the reflected 
shock on the surface of the reflecting wedge where the analysis suggested by Figure 2.2 is 
as close to correct as possible.  The quantitative experimental data that we will compare 
with our calculations is the pressure ratio that is produced during the shock reflection 
process.  For regular shock reflection this ratio is defined as 

 

( )
( )1

1 0

0

r

inc

p pp
p p p−

−∆= =
∆ −

1R     (2.5) 

There is additional structure inside the reflected shock wave (R) that we have not 
depicted in Figure 2.1(a) or Figure 2.2, such as the structure called the corner signal 
(Heilig and Reichenbach, 1984).  The state variables spatially vary over the region 
enclosed by R in reality because of the net curvature of this shock wave.  Transition 
criteria for the transition from RR to MR depend on this structure.   

 

2.1.1.2  Mach Reflection 
 

Mach Reflection (MR) is depicted in Figure 2.1(b) and Figure 2.3.  The major feature that 
is new is the presence of the Mach stem 1M .  This shock wave intersects the reflected 
shock wave and the incident shock wave at a common point called the triple point 1T .  
Another new feature indicated in Figures 2.1(b) and 2.3 is the presence of a slip line 1S , 
across which the tangential velocity of the gas discontinuously changes.  The slip line 
potentially can roll up into a vortex at the reflection surface when real gas effects 
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(viscosity) are important.  While two-shock theory describes RR, three-shock theory 
describes MR in an approximate fashion, as shown in Figure 2.3.   

The three-shock theory consists of the equations (2.3) and (2.4), as well as a similar set of 
oblique shock relations for the Mach stem 1M : 

Oblique shock relations across the Mach stem (M1): 
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Figure 2.3 Geometry of the three-shock theory for Mach shock reflection. 
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The Mach stem is typically curved prior to its intersection with the triple point.  We have 
depicted this as a single linear kink in the Mach stem itself in Figure 2.3.  The key 
implication of Mach stem curvature in the three-shock theory is that the angle 0φ  is 
different than the incident angle Iθ .  As an inviscid contact discontinuity, the slip line 1S  
guarantees that 1 2p p=  and that the gas flow is parallel on both sides of the slip, 

1 2φ θ θ− = + .  These constraints, plus (2.3), (2.4), and (2.6), form fourteen equations for 
eighteen variables.  Specification of the initial state plus the angle of incidence of the 
initial shock wave allows simplification of these equations to a tenth order polynomial for 
the pressure 2p .  All but three of the roots of this polynomial can be discarded on 
physical grounds. 

Transition from regular to Mach reflection is a key issue.  Within the constraints of ideal 
gas flow this transition depends only on the ideal gas polytropic constant γ , the incident 
shock Mach number M  and the incident shock angle Iθ .  All of our computational 
results and comparisons with experimental data are expressed in terms of M and Iθ .  The 
important feature to predict is the transition point for either fixed Iθ  and varying M  or 
vice versa.  Such transition criteria are not trivial, as discussed in Ben-Dor and Glass 
(1979).  Also, experiments typically show transition angles for fixed M that are greater 
by up to 2° – 3° than predicted by analytic transition criteria.  The difference between 
experiment and theory is likely caused by non-equilibrium and viscous effects in real 
gases originating in the flow field near the finite tip of the wedge. 

The pressure ratio for MR that we compare with experimental data is the same as for RR 
and given by: 

( )
( )2
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0

r
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p pp
p p p−

−∆= =
∆ −

2R     (2.7) 

 

2.1.1.3  Double Mach Reflection 
 

For either fixed Iθ  and varying M or vice versa, the shock reflection process can be more 
complex than MR. This is shown in Figure 2.1(c) and is called double Mach reflection 
(DMR).  This reflection is distinguished by two separate Mach stems,  1M  and 2M , two 
triple points 1T  and 2T , and two sliplines 1S  and 2S .  Three-shock theory is insufficient to 
describe the shock reflection process in DMR.   

There is also an intermediate regime of shock reflection between MR and DMR, called 
complex Mach reflection (CMR).  This reflection regime results in a kinked reflected 
shock in the MR case, but without a fully developed second Mach stem.  We do not 
consider CMR in this report.   
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We also note the speculation raised by Ben-Dor and Glass (1977) of having triple Mach 
reflection occur for sufficiently large Mach numbers as a transition from DMR.  This 
regime of shock reflection has not been observed in the laboratory, although it might be 
seen computationally.  We have not studied the possibility of triple Mach reflection in 
this work. 

In DMR, there are two pressure ratios of interest that we will compare with experimental 
data.  The first is calculated, as in equation (2.7), from the pressure immediately behind 
the first Mach stem.  The other ratio is related to the pressure immediately behind the 
second Mach stem, 3p  in Figure 2.1(c).  This second pressure ratio is defined by: 

( )
( )3

3 0
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r
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p pp
p p p−

−∆= =
∆ −

3R     (2.8) 

 

2.1.2  Geometry, Grid, and Initial Conditions 

The general computational geometry and initial conditions for our ALEGRA calculations 
are shown in Figure 2.4.  All of the calculations reported here are performed using the 
Eulerian hydrodynamics capability of ALEGRA.  The geometry is Cartesian x – y 
geometry.  Thus, all regions are effectively of infinite depth into the page of any graphical 
view of the calculation.  The Eulerian ALEGRA capability, as well as more general ALE 
capability, is described by Peery and Carroll (2000).  The reader should note that Eulerian 
meshes used by ALEGRA are conformed to match the reflective boundary; the boundary 
of the reflective ramp depicted in Figure 2.1 is exactly geometrically represented in our 
calculations, not approximated by an inserted material boundary in an Eulerian mesh.  A 
complete computational match to a specified shock reflection experiment must include 
the reflective material in the calculation, not simply a geometric representation of the 
boundary.  However, it is standard practice in computational gas dynamics to not treat 
reflective boundaries as specific materials. 

The most convenient and economical way to perform shock reflection calculations of the 
type discussed here is through the use of an Eulerian pressure boundary condition or an 
inflow boundary condition.  This minimizes the amount of gas that must be in the 
problem, and thus minimizes the overall meshing requirements.  However, neither of 
these boundary condition capabilities is currently supported in ALEGRA.  Therefore, 
because we are not able to create a pressure or inflow boundary condition, we must 
simulate the incoming shock wave and the following gas as an initially moving material.  
That material must be fixed at the correct Hugoniot conditions for the corresponding 
steady shock wave we seek to generate.  We achieve this by appending a block of mesh 
with gas at the appropriate conditions below the region that would only be required if 
inflow conditions were used.  This secondary block of gas has an initial velocity 
corresponding to the correct Hugoniot material velocity state for the shock wave under 
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study.  The initial data for this region in Figure 2.4 are generically labeled in the same 
way as in our discussion of the shock reflection process.     

 

 

 

Figure 2.4 Sample of the initial data and geometry for ALEGRA Eulerian calculations of shock 
reflection from an oblique planar surface.  The regions are effectively of infinite depth into the page 
because of the assumed Cartesian x – y geometry of these calculations. 
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region of moving gas must be long enough in the y – direction to prevent rarefactions 
from the bottom of the region to propagate into the shock reflection region.  To 
summarize, the initial conditions, including block velocity, of the moving region of gas 
must be defined to generate a steady shock wave having the desired Mach number.  The 
fact that we generate the shock wave of interest through means of an impact leads us to 
have concern about possible “start up” problems associated with the numerical 
approximation of the delta function acceleration at the interface between the ambient and 
the moving gas regions.  Note that we have modeled the two different grid blocks with 
two different gases in our calculations.  Thus, our calculations are multi-material 
calculations.  Interface tracking is used to computationally maintain the boundary 
between the two distinct gases. 

 

 

Figure 2.5 Schematic of the computational geometry and labeled sides for CUBIT meshing 
specifications. 
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Figure 2.5 shows the definitions of the computational blocks associated with the 
description of the initial conditions that we gave above.  The initially moving block of gas 
that strikes the ambient gas is designated as “Block 1” while the ambient gas is “Block 
2.”  Block 1 is always 4.0 cm long by 1.5 cm wide.  Block 2 is the region of the ambient 
gas, including the wedge oblique reflection surface.  The geometry of Block 2 is 
dependent upon the choice of wedge angle.  We have designed the blocks to allow for a 
standoff distance between the impact plane of the two blocks and the beginning of the 
wedge.  This is intended to allow any noise that might be produced by the impact 
generation of the incident shock wave to die away (as we will see) by the time the shock 
wave interacts with the wedge.  As we pointed out above, once the initial conditions are 
chosen appropriately the type of shock reflection is completely determined by the angle of 
the wedge, the ideal gas constant, and the Mach number M of the shock wave. 

In Figure 2.5 the basic meshing resolution is conveyed by information about the number 
of elements along the given labeled sides A through E.  Low – resolution, mid – 
resolution, and high – resolution mesh schemes were chosen for the calculations that we 
discuss in this report.  The meshing scheme is summarized in Table 2.1 in terms of this 
information.  For side A, the low-resolution calculation had 75 elements, the mid-
resolution calculation 150, and the high-resolution calculation 300.  For side B, there 
were 33 elements in the low-resolution calculation, 66 and 264 elements in the mid- and 
high-resolution calculations, respectively.  The elements were given a growth bias along 
side B in the direction away from the boundary with Block 2 in order to minimize 
computational effort by using elements that were as large as possible.  It is our experience 
with Eulerian calculations that this increase in element size away from the critical shock 
generation and reflection regions should not influence the accuracy of the numerical 
simulation in those regions, even though it creates a varying grid with non-unit aspect 
ratio elements.  We state again that the long initial column of gas in Block 1 is required 
so that a continual effective boundary condition at the wedge exists. 

 

Table 2.1 Meshing Scheme. 
 

Resolution Number of Elements 
 

Side A Side B Side C Side D Side E 

Low 75 33 10 50 75 

Medium 150 66 20 100 150 

High 300 264 60 400 300 
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Block 2 had a maximum length of 1.2 cm and width of 1.5 cm (Figure 2.5 is not drawn to 
scale in the y – direction).  As mentioned above, a rectangular region of elements, 
indicated by Side C in Figure 2.4, was appended to the region of the reflective wedge.  
For Side C, the low-resolution calculation had 10 elements, the mid-resolution had 20 
elements, and the high-resolution calculation had 60 elements.  Side A and Side E were 
defined in the meshing strategy to have equal numbers of elements, and this number held 
constant through the Block 1 – Block 2 boundary, suggested by the A′ and E′ notation in 
Figure 2.5.  The same is true for the pairings Side B ↔ Side B′, Side C ↔ Side C′, Side 
D ↔ Side D′.  In other words, the mesh we use in our calculations looks logically 
connected, even though it is a finite element mesh that could conceivably have been 
arbitrarily connected.  There were 50 elements along side D in the low-resolution 
calculations, 100 in the middle-resolution calculation, and 400 in the high-resolution 
calculation. 

We present an example of the meshing of Block 2 and the top of Block 1 in Fig 2.6.  All 
meshing for our calculations was performed using the CUBIT meshing tool (CUBIT, 
1994), Version 5.0.  We give a sample of the type of CUBIT input deck used to generate 
the mesh for our calculations in Appendix A. 

 

 

Figure 2.6  Example of the computational mesh in the region of shock formation, propagation, and 
reflection. 
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Detailed specification of the gas initial conditions in the two blocks for these calculations 
are given in Tables 2.2 and 2.3.  The conditions for the ambient gas (state (–) in the 
wedge region) never change from calculation to calculation.  These initial conditions 
specify a density of 1.0 g/cm3, γ  of 1.4, and a temperature of 300 Kelvin, as listed in 
Table 2.3.  Two different initial conditions of the column of ideal gas impacting the 
stationary ideal gas around the wedge (Block 1) were run.  These conditions are also 
noted in Table 2.2. 

 

Table 2.2 Initial Conditions for Block 1. 
 

Mach 
Number 

Block 1 
Velocity 
(cm/s) 

Wedge 
Angle 

Run ID Ideal 
Gas 

Gamma 

Sound 
Speed 
(cm/s) 

Temperature 
(Kelvin) 

Pressure 
(dynes/cm2) 

Density 
(g/cm3) 

40 1.37_40 

43 1.37_43 

47 1.37_47 

52 1.37_52 

 

1.37 

 

0.53 

55 1.37_55 

 

0.53 

 

369.562 

 

1.45 

 

1.64 

40 3.36_40 

45 3.36_45 

50 3.36_50 

 

3.36 

 

2.55 

55 3.36_50 

 

 

 

1.4 

 

2.55 

 

937.835 

 

9.29 

 

4.16 

 

Table 2.3 Initial Conditions for Block 2 
 

Mach 
Number 

Ideal Gas 
Gamma 

Sound 
Speed 
(cm/s) 

Temperature 
(Kelvin) 

Pressure 
(dynes/cm2) 

Density 
(g/cc) 

1.37 

3.36 

1.4 1.0 300 0.714 1.0 

 

All other variations of this problem involve changes in the wedge angle.  Once again, 
depending on the wedge angle, gamma, and shock speed in Block 1, simple reflection, 
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Mach or a double Mach stem will form along the wedge (Figures 2.3).  We have 
performed calculations over incident angles in the range of 30° to 50°.   

The reader will observe that the specified initial conditions of the calculations, such as a 
sound speed of 1.0 cm/s and density of 1 g/cm3, do not really match any realistic 
experimental conditions for gases in real shock tube facilities.  We are mimicking the way 
that Sandoval (1987) performed these calculations.  In the absence of known real gas 
effects, all of the phenomena are uniquely determined by the polytropic gas constant, the 
constant volume heat capacity, the incident angle, and the incident shock wave Mach 
number.  This strategy will not work if dimensional quantitative experimental data, such 
as flowfield isopycnic contours or absolute pressure measurements, are reported.  Also, if 
real gas effects are important then flowfield temperatures are also important and it is 
important to match true experimental conditions so as to most accurately match the actual 
experimental temperatures. 

2.1.3 Example Calculations 

In this section we will illustrate ALEGRA results for each of the shock reflection regimes 
of interest.  These results show snapshots of the calculated flow fields at a calculation 
time of 0.7 seconds as well as a plot of the calculated pressure field along the surface of 
the reflecting wedge at the same time.  These results demonstrate the ability of ALEGRA 
to calculate shock wave reflections of all three types.  The assessment of the accuracy of 
these results is given in Section 3. 

 

2.1.3.1 Regular Shock Reflection 
 

Figure 2.7 illustrates the case of a regular shock wave reflection problem.  The calculation 
for this example had a specified Mach number of 1.37 and a incident angle of 35 degrees 
(calculation 1.37_55 in Table 2.2).  Both pressure and density are plotted along with their 
contours at the calculation time of 0.7 seconds.  (All contours in this report are unlabeled.  
The intent is to visualize the nature of the flow field in the important regions, not to 
quantify the particular field variable selected for contouring.)  In Figure 2.8, the gradient 
of the pressure and density are plotted at the same calculation time.  These plots are 
especially useful to highlight the incident and reflected shock discontinuities in the 
calculation.  The attachment point O on the wedge can be seen very clearly.  These plots 
were produce using the Ensight7 (Computational Engineering International, 2001) 
visualization package.  The arrows shown in Figures 2.7 and 2.8 show the location of the 
shock front in a plot along the surface of the wedge, which is separately plotted below. 
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Figure 2.7 Sample (a) pressure and (b) density plot with contours (drawn but not labled) for regular 
shock reflection calculation with a Mach number of 1.37 and incident angle of 35 degrees at a 
calculation time of 0.7 s.  The arrow correlates this figure with the plot in Figure 2.9. 
 

 

 

Figure 2.8 Sample gradient of the (a) pressure and (b) density plot with contours for regular shock 
reflection calculation with a Mach number of 1.37 and incident angle of 35 degrees at 0.7 s.  The 
arrow correlates this figure with the plot in Figure 2.9. 
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Figure 2.9  (a) Pressure plot with distance measured along the face of the wedge in the flow direction 
for the regular shock reflection calculation with a Mach number of 1.37 and incident angle of 35 
degrees.  (b) Zoom of the plot over the region indicated by the dotted rectangle in plot (a). 
 

In Figure 2.9 (a), the pressure plot just mentioned is plotted at the same calculation time 
of 0.7 seconds.  This is a representation of the pressure along a line of elements just off 
the surface of the wedge for this regular reflection calculation.  The element centered 
pressure data are extracted from a plot tool available in Ensight7 and plotted using the 
IDL visualization tool (Research Systems, 1998).  Figure 2.9 (b) is a magnification of the 
region in the vicinity of the shock front that clarifies the fine structure around the shock.   
The locations of the elements from which the data were extracted are marked in this plot 
by the discrete dots.  This plot makes it apparent that the artificial viscosity in this 
calculation has smeared the shock front over approximately four zones.  The shock is also 
not completely monotonic, for an overshoot and post shock oscillation is clearly visible 
over two or three elements following the shock wave peak pressure.  As we will discuss 
later, the presence of post shock oscillations complicates the task of data comparison of 
the calculations with the experimental data. 

 
2.1.3.2 Mach Shock Reflection 
 

Figure 2.10 shows an example of a single Mach reflection.  This calculation used an 
incident angle of 50 degrees (wedge angle of 40 degrees) and a Mach number of 1.37 
(calculation 1.37_40 in Table 2.2).  Both pressure and density are plotted along with their 
contours at the calculation time of 0.7 seconds as for the regular reflection calculation.  In 
Figure 2.11, the gradient of the pressure and density for this calculation are plotted and 
clearly show the structures discussed in Figure 2.3, including the incident, reflected, and 
Mach shock waves, as well as the triple point.  The slip line will not be visible for this 
calculation from plots of these variables.  As in the case of the regular reflection 

3.0

2.0

1.5

1.0

0.0

2.5

0.5

0.0 1.5 2.00.5 1.0

Regular Reflection
Pr

es
su

re

Distance Along Wedge

(a)

3.0

2.0

1.5

1.0

0.0

2.5

0.5

1.26 1.32 1.341.28 1.30

Regular Reflection

Pr
es

su
re

Distance Along Wedge

(b)



    

 34

discussed above, the arrows in Figures 2.10 and 2.11 show the location of the incident 
shock front for correlation with a plot selected along the face of the wedge. 

 

 

Figure 2.10  Sample (a) pressure and (b) density plot with contours for Mach shock reflection 
calculation with a Mach number of 1.37 and incident angle of 50 degrees at 0.7 s.  The arrow 
correlates this figure with the plot in Figure 2.12. 
 

 

Figure 2.11 Sample gradient of the (a) pressure and (b) density plot with contours for Mach shock 
reflection calculation with a Mach number of 1.37 and incident angle of 50 degrees at 0.7 s.  The 
arrow correlates this figure with the plot in Figure 2.12. 
 

(a) (b)

Mach Reflection

(a) (b)

Mach Reflection



    

 35

 

 

Figure 2.12  (a) Pressure plot with distance measured along the face of the wedge in the flow 
direction for the Mach shock reflection calculation with a Mach number of 1.37 and incident angle of 
50 degrees.  (b) Zoom of the plot over the region indicated by the dotted rectangle in plot (a). 
 

Figure 2.12 (a) shows the pressure plot corresponding to the one we discussed for the 
regular reflection calculation at the calculation time of 0.7 seconds.  Figure 2.12 (b) 
shows a magnification of the region in the vicinity of the shock front.  This plot helps 
clarify more precisely the flow region behind the Mach stem, although there is still some 
question as to which is the correct pressure to use for comparison with experimental data 
due to the even more pronounced overshoot and post-shock oscillation in this calculation. 

 

2.1.3.3 Double Mach Shock Reflection 
 

Figure 2.13 is an example of a double Mach reflection.  This calculation used an incident 
angle of 45 degrees and Mach number of 3.36 (calculation 3.36_45 in Table 2.2).  Both 
pressure and density are plotted with their contours.  A magnified view of the double 
Mach stem is shown in Figure 2.14.  In the density plot, a slip line can be distinctly 
observed.  In Figure 2.15, the gradient of the pressure and density are plotted.  These plots 
highlight the shock discontinuities and substructure of the Mach region.  The slip line is 
also clearly visible in the density gradient plot.   The arrows in these plots have the same 
significance as in our discussion of the regular and single Mach reflection calculations 
above. 
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Figure 2.13  Sample (a) pressure and (b) density plot with contours for double Mach shock reflection 
calculation with a Mach number of 3.36 and incident angle of 45 degrees at 0.7 s.  The arrow 
correlates this figure with the plot in Figure 2.16. 
 

 

Figure 2.14  Enlarged view of sample (a) pressure and (b) density plot with contours for the double 
Mach shock reflection calculation with a Mach number of 3.36 and incident angle of 45 degrees at 0.7 
s.  The arrow correlates this figure with the plot in Figure 2.16. 
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Figure 2.15  Sample gradient of the (a) pressure and (b) density plot with contours for double Mach 
shock reflection calculation with a Mach number of 3.36 and incident angle of 45 degrees at 0.7 s.  
The arrow correlates this figure with the plot in Figure 2.16. 
 

 

 

 

Figure 2.16  (a) Pressure plot with distance measured along the face of the wedge in the flow 
direction for the double Mach shock reflection calculation with a Mach number of 3.36 and incident 
angle of 45 degrees.  (b) Zoom of the plot over the region indicated by the dotted rectangle in plot (a). 
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The pressure plot along the wedge at the calculation time of 0.7 seconds is presented in 
Figure 2.16 for this double Mach reflection calculation.  The smearing due to artificial 
viscosity is clearly visible, especially in the region of the second Mach stem, as well as 
additional structure due to post-shock oscillation in the first Mach stem.  Oscillatory 
artifacts, however, are less apparent in the second Mach stem. 

Figure 2.17 presents another example of the calculation of a double Mach reflection.  
This calculation used a wedge with an incident angle of 50 degrees and a Mach number of 
3.36 (calculation 3.36_40 in Table 2.2).  In this case, the double Mach stem is even more 
pronounced than for the 45 degree calculation.  Density is plotted along with its contours 
in Figure 2.17 (a).  Figure 2.17 (b) is an enlarged view of Figure 2.17 (a).  Note the very 
visible slip line that can be observed in this case.  In Figure 2.18 (a), the gradient of the 
density is plotted, once again highlighting the shock substructure.  An enlarged view is 
plotted in Figure 2.18 (b).  The obvious heterogeneity of the flow field behind the first 
Mach stem illustrates the difficulty one would face in accurately extending three shock 
theory to some kind of “four shock theory” to approximate the pressure behind the second 
Mach stem. 

In Figure 2.19 we illustrate the transition of the plots for pressure along the surface of the 
wedge as a function of incident angle for both Mach numbers of 1.37 and 3.36. 

 

 

Figure 2.17  Sample (a) pressure and (b) density plot with contours for double Mach shock reflection 
calculation with a Mach number of 3.36 and incident angle of 50 degrees. 
 

(a) (b)

Double Mach Reflection



    

 39

 

Figure 2.18  Sample gradient of the (a) pressure and (b) density plot with contours for double Mach 
shock reflection calculation with a Mach number of 3.36 and incident angle of 50 degrees. 
 

 

Figure 2.19  Pressure – distance plots versus wedge angle for (a) M=1.37 and (b) M=3.36 at 0.7 
seconds calculation time. 
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Figure 2.19 quantitatively illustrates the computed nature of the regular to Mach and 
regular to double Mach shock reflections in terms of the pressure plots along the 
reflecting wedge.  These plots are overlaid as a function of wedge angle at the same 
calculation times.  This figure illustrates the numerical overshoot of the pressure in the 
reflected shocks and first Mach stem, as well as the poor quality of the numerical detail in 
the double Mach region for the 40-degree case. This is probably a numerical resolution 
issue. 

As we stated before, the steadiness of the shock front through block 2 is a computational 
concern because of the manner in which we must initiate the shock wave in our ALEGRA 
calculations.  The shock propagation into Block 2 (Fig 2.5) must be steady to insure 
computational consistency and accuracy for comparing with experimental data.  
Therefore, in Figure 2.20 (a) and (b) the pressure and density along the row of elements 
just below the Block 1 – Block 2 boundary are plotted versus time for the 3.36 Mach 
calculation with a 45-degree wedge angle.  These plots show the presence of a transient 
originating in the impact of Block 1 upon Block 2 in both the pressure and density.  The 
transients quickly vanish, by approximately a calculation time of 0.04 seconds, and a 
constant effective incoming flow boundary condition is subsequently observed.  This 
transient is further quantified by the plots in Figure 2.20 (c) and (d).  These plots show the 
percent relative error of the transient, which is calculated using the formula 

( )
Error 100i f

i

X X t
X

− 
= × 
 

    (2.9) 

 

 

Figure 2.20  Top row: Plot of (a) pressure and (b) density along the row of cells just below the 
boundary between Block 1 and 2 (Fig 2.3) versus time.  Bottom row: the percent relative error in the 
(c) pressure and (d) density, when compared to the initial condition. 
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In Eq (2.9), or X p ρ= ; the index “i” denotes the initial value of the quantity for Block 
1; and the index “f” indicates the corresponding time dependent value after the 
calculation has been started.  In an ideal steady state through this line of cells, this error 
would be identically zero to machine precision.  The transient is so fast, over an order of 
magnitude faster than the data gathering calculation time of 0.7 seconds, that it has no 
influence on the reflected shock.  The transient has completed before the shock wave 
initially reflects off the wedge, for example.  This explains why we designed Block 1 to 
stand off a finite distance from the apex of the wedge. 

 

 

Figure 2.21  Plot of total energy vs time in the Mach 3.36 calculation with a wedge angle of 45 
degrees (a) and the percent error in the total energy when compared to the initial conditions. 
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We present one final method for testing the steadiness of the generated shock wave in our 
calculations.  This is an overlay of vertical plots of pressure through the calculation 
geometry at various calculation times.  The location of the selected plot is shown in 
Figure 2.22 (a).  This is chosen so that the reflection point O on the wedge does not 
intersect the lineout over the range of times selected.  The resulting pressure versus 
distance lineout for the calculation times of 0.2, 0.4, and 0.7 seconds are shown in Figure 
2.22 (b).  These plots demonstrate how steady the impact generated shock wave is as it 
propagates through Block 2.  Based on these results we do not believe that transients 
associated with the initial collision of Block 1 gas with Block 2 gas influence the shock 
reflection process.  Therefore, we do not believe that such transients need to be accounted 
for in our comparisons with experimental data. 

 

 

Figure 2.22  (a) Schematic of where the plot was taken for the pressure versus distance plot and (b) 
the pressure vs distance plot at three different times. 
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3.  Comparison With Experimental Data 

3.1  Summary of Experimental Data 

 

The data that we use to evaluate the accuracy of ALEGRA shock reflection calculations 
are presented in Sandoval’s original Los Alamos report (1987) and originate in the work 
of Heilig and Reichenbach (1984).  We will first review these data. 

The experimental configuration reported by Heilig and Reichenbach was an air/air shock 
tube.  For the conditions of the experiments, which were conducted over the range of 
Mach number of 1.26 to 3.36, using a 1.4γ = ideal gas model as the equation of state of 
air is expected to be accurate, except for certain caveats.  The resulting density 
compression ratios achieved by the measured shock waves that correspond to this range 
of Mach numbers are approximately 1.4 to 4.2.  The upper limit of this range of 
compression ratios is considered to be representative of the strong shock regime, hence of 
relevance to validation for ALEGRA HEDP applications.  (A peak compression ratio of 
4.2 is still far less than the compression ratios that occur in real Z-pinch implosions and 
fusion capsule implosions, of course.)  Additional information on the experimental 
configuration is discussed in Heilig and Reichenbach, although it is implicitly clear that 
some familiarity with the design and performance of such shock tubes is assumed for the 
reader of that paper. 

Heilig and Reichenbach gather two classes of data in their paper.  First, they measured 
schlieren images of shock reflections in all three reflection regimes (RR, MR, and DMR) 
of interest in our work.  From the schlieren images, both qualitative characteristics (RR 
versus MR versus DMR, for example) as well as quantitative characteristics (shock 
curvature, or intersection angles at triple points, for example) can be evaluated.  The 
schlieren images also provided complementary evaluation of pressures from observed 
shock speeds in the images by using the Hugoniot relations (2.2) and the known Mach 
number and initial state of the gas.  These images could be qualitatively compared with 
our calculations, but we will not do that in this report. 

Second, Kistler pressure transducers were placed on the surface of the wedges used in 
these experiments.  These gauges recorded time-resolved pressure data.  The peak 
pressure data we record from our computational plots along the surface of the wedge are 
the computational analogs of the peak pressures recorded by the Kistler gauges in the 
experiments.  If we chose to exactly simulate the experimental shock tube, including the 
exact positions of the pressure gauges, we could present time-dependent fixed location 
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pressure data that would be exact analogs of the experimental Kistler gauge data.  Heilig 
and Reichenbach’s paper, however, does not present detailed information about 
experimental dimensions, gauge positions, and other required information.  In any event, 
direct simulation of a shock tube experiment is not in the scope of our current 
computational work. 

The experimental gauge data are reduced to form the pressure ratios we defined in 
Section 2.  These data for the two Mach numbers 1.37 and 3.36 that we are interested in 
are plotted in Figures 3.1 and 3.2.  We interpret error bars in these figures to represent 
diagnostic fidelity.  While the schlieren data can be used to calibrate and cross-validate 
the time-resolved gauge data there are timing errors in the schlieren images that introduce 
resolution problems (these timing error are not discussed in absolute terms by Heilig and 
Reichenbach).  At the same time, the pressure transducers provide an area-averaged 
response to the passage of the shock wave because of their finite areas and finite temporal 
response.  These combined considerations of diagnostic fidelity are apparently the source 
of the error bars associated with the experimental data in Figures 3.1 and 3.2. 

 

 

Figure 3.1  Plot of experimental data and analytic theory for Mach 1.37 experiments.  This figure is a 
reproduction of a figure in Sandoval (1987) and has multiple sets of experimental data included. This 
is why there are multiple experimental data for incident angles between 40 and 45 degrees. 
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Figure 3.2  Plot of experimental data and analytic solution for Mach 3.36 calculation.  As in Figure 
3.1 this figure is a reproduction of an identical figure in Sandoval (1987).  There are multiple sets of 
experimental data included.  The range of incidence angles greater than 40 degrees has multiple 
pressure data corresponding to the presence of two Mach stems in the  experiments. 
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associated error bars.  Heilig and Reichenbach present these data but the absence of error 
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diagnostic resolution quantification Heilig and Reichenbach do not present a probabilistic 
interpretation of their error bars.  It is unlikely that a uniform distribution is an adequate 
interpretation of these error bars, for example, given the asymmetry of the upper and 
lower bound of their representation about the nominal experimental value. 

It is known that the reflection transition regime is especially sensitive to factors that 
properly enter into experimental variability (Ben-Dor and Glass, 1979; Heillig and 
Reichenbach, 1984; Ben-Dor, 1992).  These factors include real gas effects, especially 
viscosity, near the vertex of the wedge; sensitivity to the finite extent of the wedge vertex; 
sensitivity to surface roughness of the wedge; and sensitivity to the temperature of the 
wedge.  The finite thickness of the pressure gauges is not discussed at all in Heillig and 
Reichenbach’s paper, but it may also contribute to some experimental variability.  The 
lack of discussion of overall experimental variability is typical in our experience in 
relation to existing published experimental data for purposes of validation.  Only 
dedicated validation experiments can really hope to improve information about 
experimental uncertainty. 

Heilig and Reichenbach note that viscous effects in the gas flow near the finite wedge 
apex, basically a boundary layer effect, may increase the transition angle of incidence for 
RR to MR by two to three degrees when compared to predictions of two- and three-shock 
theory.  If true, this implies that the prediction of the transition angle of incidence in our 
ALEGRA calculations will be too small by two to three degrees as compared to the data.  
Ben-Dor and Glass (1979) also observe that non-self-similar real gas effects make the 
transition from RR to DMR more complex. 

Ben-Dor and Glass (1979), Figure 21 summarize the experimental transition region for 
air, oxygen, and nitrogen in their paper.  For shocks in air with Mach numbers 1.37 and 
3.36, the transition angles of incidence are given by approximately 43 degrees (RR Æ 
MR) and 41 degrees (RR Æ DMR) respectively.  The latter angle does not fully agree 
with the data from Heilig and Reichenbach plotted in Figure 3.2.  This suggests the 
difficulty in experimentally measuring the transition angles precisely. 

3.2 Comments on Validation Metrics 

Trucano, et al.  (2001) has presented a general framework for validation metrics, with a 
complementary discussion found in Easterling (2001).  Broadly speaking, by validation 
metrics we mean the techniques by which we compare calculations and experimental 
data; and the methodology used for assessing the meaning of such comparisons. 

For shock wave problems of the type discussed in this paper we have four general 
methods of comparison between calculations and experimental data. 

� We may perform qualitative comparisons of 2-D flow fields.  Primarily this means 
to qualitatively compare the presence of flow field structures such as the reflected 
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shock, Mach stem, second Mach stem, and so on from experimental data such as 
Schlieren images and shadowgraphy.   

� We may study qualitative agreement, such as trends and orders of magnitude, with 
more quantitative data, in this case experimental pressure ratio data. 

� We may study the quantitative agreement of the calculations with the quantitative 
experimental data, specifically assessing agreement of calculations within 
specified experimental data error bars. 

� We may study the quantitative agreement of the 2-D flow fields of the 
calculations with those of the experiments.  For example, we could compare with 
experimentally measured 2-D density contours. 

In this report we examine qualitative agreement with published flow fields, but do not 
present the details of this directly.  The reason is that while some flow field images are 
available (Heilig and Reichenbach, 1984; Ben-Dor and Glass, 1979) and have been 
presented in Sandoval (1987) we do not have decent quality reproductions of the 
schlieren images available for presentation in this report.  Thus, we will only comment on 
the most obvious features of qualitative comparison available. 

Our primary focus for experimental comparison, as was Sandoval’s, is the quantitative 
comparison of our computed pressure ratios with the reported pressure data of Heilig and 
Reichenbach summarized in Figures 3.1 and 3.2.  Thus, we seek to make closer 
comparison with these data than simply to confirm agreement with trends in the data.  
Complete success in such a comparison is defined by our best estimate calculations lying 
within the reported experimental error bars.  Partial success, which is in fact sufficient for 
the goals of the present study, is defined by having good qualitative agreement with the 
data, including overall trends, partial quantitative agreement, and a well-founded belief 
that the calculations will improve in accuracy over some range of experimental data either 
through bias correction or improved computational resolution or both. 

Quantitative comparison with 2-D flow fields will not be addressed in our current work.  
There are published isopycnic data for regular, Mach, and double Mach reflections in 
Ben-Dor and Glass (1979).  (Such data are not reported in Heilig and Reichenbach.)  
Because we must consider data that have been previously published rather than acquired 
through an ongoing dedicated validation activity, we would have difficulty quantifying 
the images published by Ben-Dor and Glass to the degree necessary for a completely 
quantitative comparison.  Also, because the modeling strategy used in this report that 
takes advantage of self-similarity of ideal gas shock reflection problems would have to be 
modified to allow quantitative comparison with accurate experimental density contours.  
Finally, real gas effects influence the work that Ben-Dor and Glass report.  To fully 
compare with their published data we would need to perform calculations with real gas 
equations of state (such as tabular equations of state), which introduces an additional 
element of complexity in the validation process. 
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The data studied in this work also offer the opportunity to apply techniques such as those 
used in Hills and Trucano (2001).  Multivariate extensions of the work of Hills and 
Trucano are presently under study and must be pushed further before we can hope to 
apply them to a study like our present one.  In addition, refined statistical comparisons 
will also demand more attention to calculation verification and uncertainty than we have 
mustered in this report. 

All of these possible validation metrics would receive different emphasis for other kinds 
of validation problems involving shock reflections, such as might occur in radiation-
magentohydrodynamics validation.  For example, quantitative comparison with 2-D and 
3-D flow field data may be a critical element of success in such validation, and could not 
be avoided as we will here.  One advantage of dedicated validation experiments, which 
will likely be the case in more complex validation activities, is the ability to significantly 
strengthen assessment criteria in the validation exercise because more quantified 
validation data are more readily available. 

3.3 Agreement With Trends and Partial Quantitative Comparisons 

Once again, we will state that in the ideal gas treatment of shock reflection, the details of 
the shock reflection process depend only on the ideal gas gamma, the shock incidence 
angle, and the Mach number of the incident shock.  We want to assess the ability of 
ALEGRA to model the transitions from one domain of reflection to another, as well as 
accurately model reflection for each fixed wedge angle of interest.   

For a fixed Mach number and ideal gas gamma, a reflection transition occurs as we vary 
the angle of incidence.  For a fixed Mach number of 1.37, we have compared experiment 
and calculation in Figure 3.3.  This figure is the same as Figure 3.1, except that we have 
added discrete computational pressure ratios from ALEGRA.  These calculated pressure 
ratios are also summarized in Table 3.1.  We first note that for the Mach 1.37 suite of 
calculations a transition from regular reflection, which occurs at lower incidence (higher 
wedge) angles, to Mach refection at higher incidence (lower wedge) angles, occurs 
around an incidence angle of 43 or 44 degrees.  Our computed transition angle is thus 
approximately equal to the transition angle suggested by Heilig and Reichenbach’s data in 
Figure 3.1, as well as the data in Ben-Dor and Glass, by about three degrees.  Overall, our 
calculation results are in qualitatively good agreement with the experimental data in that 
the slope trends observed in the experimental data are mainly mirrored by our 
calculations, except in the region of the experimental flow transition, where the slope of 
our computed results is apparently too flat.  Our earlier figures in Section 2 demonstrated 
that the qualitatively correct differences (as described in Figures 2.1 – 2.3) of the 2-D 
flow fields for regular and Mach reflection are captured in our calculations.   

We also scrutinize our quantitative comparison with the experimental data in Figure 3.3.  
The quantitative data compare experimental and calculated values of the pressure ratios 
defined in equations (2.5) and (2.6).  We are able to simulate the pressure ratios at 
incidence angles well away from the flow transition quite well.  Our quantitative pressure 
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ratios seem to lie within the data error bars (which have to be guessed for the incidence 
angles greater than 45 degrees) for these angles.  Our quantitative disagreement with the 
data in the flow transition region may well be due to our difficulty in analyzing the 
calculated results to extract the pressure ratios (see our comments below).  IDL (Research 
Systems, 1998) was used to calculate this information from the corresponding ALEGRA 
simulations.  A sample IDL input deck that we used to produce Figure 3.3 is given in 
Appendix A.  Due to computational problems that we will discuss further, care must be 
applied in the selection of values of 1p  and 2p  for use in equations (2.5) and (2.7).   

For the Mach 3.36 calculation, the calculated transition from regular reflection to double 
Mach reflection occurs around an incidence angle of 42 degrees (Figure 3.4).  Once again, 
the qualitative comparison of the calculations with the experimental data is quite good.  
In our 40-degree incidence angle calculation, we observe a regular shock reflection.  In 
Sandoval’s calculations (Sandoval, 1987) a double Mach stem is computed down to 
incidence angles of around 35 degrees.  We appear to agree better with the given 
experimental data than the Los Alamos calculations.  Sandoval notes that this is a tricky 
experimental region for accurately determining the flow transition angle. 

 

 

Figure 3.3  Plot of ALEGRA calculation results, experimental data and analytic solution for Mach 
1.37 calculation at various incidence angles. 
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Figure 3.4  Plot of ALEGRA calculation results, experimental data and analytic solution for Mach 
3.36 calculation at various incidence angles. 
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to be the pressure ratio for the first Mach stem at the 43.5-degree incidence angle.  Due to 
computational problems that we will discuss further, care must be applied in the selection 
of values of 1p , 2p  and 3p  for use in equations (2.5), (2.7), and (2.8).  The anomaly at 
43.5 degree could well be an artifact of the choices we make for 2p  in reducing the 
computational data.  Because the error bars for the experimental data in Figure 3.4 are 
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Table 3.1  Summary of nominal computational pressure ratios. 
 

Mach 
Number 

Incidence 
Angle 

R(1)  R(2)  R(3)  

1.37 50 2.72358  
1.37 47  3.03201  
1.37 45  3.03711  
1.37 43  2.98049  
1.37 42  2.83797  
1.37 41 2.73113   
1.37 38 2.67764   
1.37 35 2.63737   
3.36 50  3.67682 1.92439 
3.36 45  4.41242 2.21543 
3.36 43.5  4.88101 1.94758 
3.36 42  5.40264  
3.36 40  5.25642  
3.36 38  5.03454  
3.36 35  5.12156  

 

 

3.4 Computational Pressure Ratio Variability 

Calculating the pressure ratios from the computed pressure plots along the surface of the 
reflecting wedge for comparison with the experimental data is not a trivial task.  The data 
reported in Figure 3.3 and 3.4 represent our choice of specific points from a range of plot 
points.   

Figures 2.9 (b), 2.12 (b), and 2.16 (b) show the complexity of the computed pressure plots 
for RR, MR, and DMR.  These figures all show that significant variability in the 
computed pressures behind the various shock waves in the problems has to be accounted 
for in calculating pressure ratios.  We replicate these figures below to illustrate the 
methods we used for deciding upon nominal computed values of the pressure ratios for 
the three flow reflection regimes.   

Consider the zoom of the pressure plots for the regular reflection calculation 1.37_55 in 
Figure 3.5.  Two points are there emphasized for possibly computing the pressure ratio 
from this plot – the maximum pressure and the pressure seven zones behind the 
maximum.  We believe the peak pressure value contains an overshoot, as well as a mild 
post-shock oscillation, which are artifacts of the artificial viscosity in ALEGRA.  The 
value seven zones behind the apparent peak pressure lies in an almost constant post-shock 
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state.  If the calculation were ideal, the pressure amplitude of the shock wave would equal 
the pressure value in the far field.  We believe that the pressure value seven zones behind 
the leading edge of the shock wave is a more numerically accurate value of the pressure 
to use to define 1p  in calculating the pressure ratio (1)R than the peak pressure.  This is 
the way we calculate (1)R  for RR and all the values shown in Figure 3.3 and 3.4. 

This choice strongly influences how well our particular calculations agree with the 
experimental data.  We illustrate this potential variability in our calculated pressure ratios 
in Figure 3.6 (a), where we have plotted the value of (1)R  resulting from the choice of the 
peak pressure, the seven zone off-set, the experimental value, and the experimental error 
bar for the flow defined in Figure 3.5.  The post-shock pressure ratio value is almost 
identical to the experimental value, while the pressure ratio defined by choosing the peak 
pressure value falls well outside the experimental error bar.   

 

 

Figure 3.5  Zoom of the pressure plot along the wedge for the regular reflection problem with Mach 
number of 1.37 and incident angle of 35 degrees. 
 

3.0

2.0

1.5

1.0

0.0

2.5

0.5

1.26 1.32 1.341.28 1.30

Regular Reflection

Pr
es

su
re

Distance Along Wedge

(b)

PeakPeak - 7



    

 53

Figure 3.6 (b) plots this information as a type of relative error that includes a 
compensation for the experimental error bar.  The percent relative error in Figure 3.6 (b) 
is calculated using the following formula: 

100, if 0

0, if 0

DE D
e

D

= × >

= =
   (3.1) 

where D  is the distance of the computed pressure ratio from the experimental error bar, 
and e  is the length of the experimental error bar on the side of the numerical value.  This 
would equal half the total length of the error bar if the error were symmetrical about the 
nominal experimental value.  Equation (3.1) is only one possible choice for quantifying 
differences between calculation and experimental data.  The general topic of such 
differences as validation metrics is stressed in Trucano, et al.  (2001).  There is clearly no 
probabilistic interpretation of the equation (3.1) in the present case because we do not 
have sufficient information about the probabilistic interpretation of the experimental error 
bars. 

 

 

 

Figure 3.6  Plot of (a) ALEGRA calculated R(1) and experimental data with the error bars and (b) the 
corresponding percent relative error for the regular reflection, Mach 1.37 calculation with an 
incident angle of 35 degrees.  We have shown graphically how e  and D  are defined in (a). 
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Figure 3.7  Zoom of the pressure plot for the Mach shock reflection calculation with a Mach number 
of 1.37 and incident angle of 50 degrees. 
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at locations three, six, and nine zones behind the peak pressure zone, was used to 
compute the pressure ration (2)R .  These three points correspond to the semi-constant 
plateau region behind the peak pressure in the Mach stem.  The process of extracting the 
data and calculating the pressure ratio values is the same as described above for the 
regular reflection.  Figure 3.8 shows the variability of calculated pressure ratios, the 
experimental nominal value and its associated error bar, and relative percent errors 
calculated using equation (3.1).  Only the pressure ratio derived from the maximum peak 
pressure strongly deviates from the experimental data.  The nominal pressure used for 
reporting calculated pressure ratios in the Mach reflection regime is the value of the data 
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Figure 3.8  Plot of (a) experimental data with the error bars and ALEGRA and (b) the percent error 
for the Mach reflection, Mach 1.37 calculation with an incident angle of 50 degrees. 
 

We emphasize one feature of Figure 3.8. The experimental data for the 50-degree incident 
angle given in Figure 3.1 does not have an error bar. Thus, for notional purposes we 
simply assumed an error bar for this particular data that was the same as the last visible 
error bar near incident angle of 44 degrees. There is no basis for this choice; it is simply 
convenient for applying our relative error measure in this case. 
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This plot shows a complex structure behind the first Mach stem.  Oscillations, which are 
undoubtedly artifacts of the artificial viscosity, contribute to this structure, but are harder 
to localize for purposes of selecting nominal pressures for computing pressure ratios.  The 
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twenty-two zones ahead of the peak pressure were used to compute the pressure ratio 

(2)R .  These results are summarized in Figure 3.10 (a).  Once again, as noted in the other 
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The difficulty in selecting an appropriate nominal value is that there is no clear constant 
pressure plateau in the post-shock region of either Mach stem.  The general trend around 
the second Mach stem is for decreasing pressures.  If another location were chosen further 
away it would produce a pressure ratio even closer to the experimental data.  The 
selection problem is even more difficult behind the first Mach stem because of the 
general irregularity in the pressure data.  One possibility for defining a nominal value that 
we did not explore would be to average pressure values over a set of zones close to yet 
behind the first Mach stem.  This approach could also be applied to extracting the 
nominal value behind the second Mach stem.  The main thing we wish to emphasize in 
this discussion is that there is difficulty associated with fully analyzing the calculated 
values that is associated with lack of verification, in particular solution convergence, of 
the particular calculations under scrutiny. 

 

 

Figure 3.9  Zoom of the pressure plot for the double Mach shock reflection calculation with a Mach 
number of 3.36 and incident angle of 45 degrees.   
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Figure 3.10  Plot of (a) experimental data with the error bars and ALEGRA calculations and (b) the 
percent error for the double Mach reflection, Mach 3.36 calculation with a wedge angle of 45 
degrees. 
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resolution.  This sheds additional light on the quality of the nominal calculated values of 
the pressure ratio in Figures 3.3 and 3.4. 

3.5 Calculation Verification and Computational Uncertainty 

3.5.1 Convergence 

One important component of calculation verification for validation studies is convergence 
assessment.  We know that the resolution of the grid affects our calculations dramatically.  
Without high resolution as presented in Table 2.1 we do not even see the formation of 
MR and DMR regimes in our calculations.  Sensitivity of our pressure data to resolution 
is shown in Figure 3.11, which overlays the pressure plots from the low, mid, and high 
resolution Mach 1.37, 35-degree incidence angle calculations.  For the regular reflection, 
the lowest zoning is all that is needed to observe the important shock structure.  But from 
Figure 3.11 we can see that at lower resolutions the shock front is quite spread out.  The 
pressure peak also seems to be higher for the lower resolution calculations, clear evidence 
of the influence of the shock front overshoots and post-shock oscillations associated with 
the artificial viscosity.  This suggests that convergence in pressure just behind the shock 
front, the ideal location for extracting the pressure for the pressure ratio calculation, is 
problematic as long as the post-shock oscillations are not tamed.  The post-shock plateau 
in the pressure can be observed for each calculation resolution, but it is flattest in the 
highest resolution calculation.  The post-shock pressure in the finest zoned calculation is 
clearly not equal to the pressure observed at the shock front itself due to oscillations. 

Grid resolution affects the single Mach reflection calculation dramatically.  Figure 3.12 
plots overlays of the pressure plots from low, mid, and high-resolution calculations of the 
Mach 1.37 calculation with an incidence angle of 50 degrees.  For Mach reflection, the 
coarsest zoning is all that is needed to observe the Mach stem as a single discrete 
structure.  But as can be seen from Figure 3.12, the shock front is more spread out and the 
peak pressure peak is reduced for the two lower resolution calculations.  The lower 
resolution calculations do not have the oscillations that are observed behind the Mach 
stem in the highest resolution calculation.  Strangely enough, the coarse and high-
resolution calculations have equal pressures far behind the shock front.  The medium 
resolution calculation’s pressure far behind the shock front is lower.  This demonstrates 
that the convergence studied using coarse, medium, and fine resolution for MR is not in 
the asymptotic (monotone) regime (Roache, 1998).  We need to refine our finest 
calculations to make further statements about convergence. 

Our difficulty increases in the double Mach reflection regime.  Figure 3.13 is a plot which 
overlays the pressure plots from low, mid, and high-resolution calculations for the Mach 
3.36 calculation with an incidence angle of 45 degrees.  For double Mach reflection, only 
the highest grid resolution was sufficient to observe the double Mach stem structure.  The 
shock front is once again too diffused for the two lower resolution calculations.  The 
lower resolution calculations do not have the oscillations that are observed behind the 
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shock in the highest resolution calculation.  Once again, convergence of the post-Mach 
region is not monotonic for our three different resolutions.  We basically have not even 
begun a convergence study on this problem because the double Mach region has only just 
appeared at our finest resolution. 

There are important reasons to converge calculations so that the asymptotic region has 
been accessed computationally.  Empirical order of convergence and extrapolated error 
prediction (such as performed using Richardson extrapolation) in the limit of zero grid 
spacing can be assessed in the asymptotic region.  See (Roy, et al., 2000; Roy, 2001) for 
an illustration of these concepts for gas dynamic flows.  Using grid resolutions that 
doubled (or greater) our finest grid resolution reported in Table 2.1 is clearly required.  It 
was beyond the scope of our current work, but clearly calculation verification remains an 
open question. 

 

 

Figure 3.11  Plot of pressure plots of the regular reflection calculation with Mach number 1.37 and 
wedge angle 35 degrees for coarse, medium, and fine grids. 
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Figure 3.12  Plot of pressure versus distance of the regular reflection calculation with Mach number 
1.37 and wedge angle 50 degrees for coarse, medium, and fine grids. 
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worth confirming that this is the case, if for no other reason than to demonstrate 
robustness in our calculated results.   

We ran the 35.98-degree calculation with the highest grid resolution in Table 2.1.  The 
calculation pressure plots for the 35.98 and 35 degreee calculations are plotted against 
each other in Figure 3.14 (a).  The major difference in these two plots is a small 
difference in the timing of the shock.  The shock from the 35.98-degree incidence angle 
calculation had a slightly smaller velocity component along the wedge than the 35-degree 
calculation, which is fully consistent with the geometry of shock incidence.  We compare 
the nominal computed pressure ratios of the two calculations with the nominal 
experimental data and error bar in Figure 3.14 (b).  Interestingly, the nominal value for 
the calculation that exactly replicated the experimental wedge angle has a slightly greater 
error.  However, this computational value still lies within the experimental error bar, as is 
the original calculation.  One interpretation of this result is that the experimental error bar 
is insufficient to contrast pressure ratio data for small differences in wedge geometries. 

 

 

 

Figure 3.13  Plot of pressure versus distance of the regular reflection calculation with Mach number 
3.36 and wedge angle 45 degrees for coarse, medium, and fine grids. 
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Figure 3.14  (a) Pressure versus position plots along the wedge for mach 1.37 calculation with 
incidence angles of 35 degrees and 35.98 degrees.  (b) The comparison of experimental data with the 
same calculations. 
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Figure 3.15  Pressure versus position plots along the wedge for the Mach 1.37 RR calculation with 
incident angle 35 degrees at various positions: surface of wedge, 2 zone offset, and 4 zone offset. 
 

 
Figure 3.16  Pressure versus position plots along the wedge for the Mach 1.37 MR calculation with 
incidence angle 50 degrees at various positions: surface of wedge, 2 zone offset, and 4 zone offset. 
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The plot agreement in Figure 3.17 for the double Mach reflection calculation (Mach 3.36, 
45 degree incidence angle) is not as good.  There is a significant difference in timing 
between the surface pressure plot and the offset pressure plots, as well as a difference in 
peak pressure at the second Mach stem that appears to be more than simply an overshoot 
phenomenon.  This suggests that there may not be adequate resolution (still) in the 
direction normal to the wedge in the current fine meshed DMR calculation. 

 
 

 

Figure 3.17  Pressure versus position plots along the wedge for the Mach 3.36 DMR calculation with 
incidence angle 45 degrees at various positions: surface of wedge, 2 zone offset, and 4 zone offset. 
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4.  Discussion 

In this report we have summarized the results of a validation assessment of strong shock 
wave Eulerian hydrodynamics for the ALEGRA shock wave physics code.  This 
assessment focused on oblique shock wave reflection phenomena in three distinct 
regimes and the associated flow transitions: regular reflection, Mach reflection, and 
double Mach reflection.  The main purpose of this work was to develop evidence of 
ALEGRA capability and credibility for accurate calculation of physical shock wave 
phenomena of relevance to high energy density physics applications, especially for Z-
pinch studies.  As such, the current work is only one of many potential validation 
assessment activities that are required to fully evaluate the credibility of ALEGRA 
radiation-magnetohydrodynamics simulations. 

We presented results demonstrating that ALEGRA is in good qualitative agreement with 
pressure ratio data gathered for oblique shock wave reflection, including agreement with 
data trends (signs of data curve slopes) as a function of shock incident angle, as well as 
the reflection regime transition angles from RR to MR and RR to DMR.  The original 
goal of our study was to simply illustrate the capability of ALEGRA to calculate shock 
reflection phenomena in all three regimes, with the secondary goal of assessing the code’s 
ability to describe the transition angles.  As we pursued the work it became clear that we 
could rationally study the quantitative agreement of the ALEGRA with the selected 
experimental data.  We found that in some situations highly resolved ALEGRA 
calculations produce nominal data that fell within the error bounds of the corresponding 
experimental data.  In other situations this was not the case. 

There are significant uncertainties associated with our nominal calculation data that we 
compared with experiment that seem to primarily reside in code and calculation 
verification issues.  First, we argued that shock front diffusion, overshoots, and post-
shock oscillations associated with the current artificial viscosity implementation in 
ALEGRA made the quantitative determination of our nominal computed pressure ratios 
difficult.  We discussed the choices we made in determining these nominal values from 
the raw pressure data taken from the code in the form of pressure plots along the surface 
of the computational reflection wedge.  While our nominal definitions are consistent with 
acceptable post-shock behavior and happen to also be in good agreement with some of 
the experimental data we analyzed, a goal for future work should be to eliminate some of 
the artifacts associated with the artificial viscosity so that the current wide scope for 
interpretation of post-shock data is significantly narrowed.  It is unlikely that further grid 
convergence alone will be sufficient to accomplish this goal. 
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Second, we observed that our grid convergence was itself probably inadequate.  We saw 
evidence for non-monotonic convergence for the Mach reflection calculations, while we 
virtually only began to resolve the double Mach reflection regime with our finest grid.  
For example, for double Mach reflection we should expect to perform two additional 
consistent refinements of our current fine meshing scheme to better examine the 
empirical order of convergence of the calculations, as well as to attempt an error 
extrapolation analysis.  While such large calculations were beyond our scope for this 
study, they are possible in future work.  At any rate, the absence of satisfactory grid 
convergence introduces additional uncertainty in our calculated results. 

We believe that our current work is successful enough to serve as a starting point for both 
Arbitrary Lagrange Eulerian and Adaptive Mesh Refinement (AMR) Eulerian 
calculations of some or all of the same shock reflection experiments.  This may be the 
subject of future work on this problem using ALEGRA. 

Our present work does not appear to call into question the accuracy of the ideal gas model 
in simulating these shock reflection experiments.  Nonetheless, performing assessments 
where non-ideal gases are important is an important step in the direction of the kind of 
plasma physics that must be modeled for Z-pinch applications.  There is a body of 
experimental work that illustrates the influence of non-ideal gas phenomena in shock 
reflections (Ben-Dor and Glass, 1979).  The associated data are sensitive, in particular, to 
molecular dissociation, and include quantitative isopycnic interferogram contours.  These 
data are of interest for future ALEGRA validation assessments, especially for AMR 
calculations.  Such experiments need to be modeled using a closer approximation to the 
actual experimental conditions than the simpler scaling approach used in this report, 
which mimicked the approach taken by Sandoval (1984).  This is because any exploration 
of non-ideal gas effects will be sensitive to the real temperatures in the experiments, and 
so simulations will need to more closely match the believed experimental thermal 
conditions.   
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Appendix A: Traceability Information  

A.1 Mesh Generation 

Sample CUBIT input deck 
############## USER DEFINED VARIABLES ########## 
### specify wedge angle 
# { ang = 40 }   ## angle 
### specify geometry size 
# { w   = 1.5 }        # width of brick 
# { d1  = 4.   }        # depth of bottom brick 
# { d2  = 0.2 }        # depth of middle  brick 
# { d3  = 1.   }        # depth of top brick 
# { d4  = 2.   }        # depth of rotated brick 
# { h   = 1.    }        # height of brick 
### specify mesh resolution size 
# { m1  = 300 }       # of elements along side of bottom brick 
# { m2  = 264 }       # of elements along the width 
# { m3  = 60   }       # of elements along middle brick 
# { m4  = 400 }       # of elements along the wedge 
### specify mesh bias size 
# { bias1  = 1.0095 }       # for elements on bottom brick 
# { bias2  = .9985   }       # for elements on top brick 
 
################################################# 
 
journal off  
 
brick width {w} depth {d1} height {h} 
brick width {w} depth {d2} height {h} 
body 2 move x 0 y 2.1 z 0 
brick width {w} depth {d3} height {h} 
body 3 move x 0 y 2.7 z 0 
brick width {w} depth {d4} height {h} 
body 4 move x 0 y 3.2 z 0 
rotate body 4 angle {ang} vertex 28 vertex 31 
intersect body 3 with body 4  
 
imprint all 
merge all 
 
curve 4  2  14  interval {m1} 
curve 1  3  interval {m2} 
curve 13 15 interval {m3} 
curve 59 57 interval {m4} 
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curve 1 scheme bias {bias1} start vertex 2 
curve 3 scheme bias {bias1} start vertex 3 
curve 59 scheme bias {bias2} start vertex 11 
curve 57 scheme bias {bias2} start vertex 10 
 
mesh surface 1 7 30 
draw surface 1 7 30 
 
###### SETUP THE GENESIS OUTPUT ################## 
block 1 surface 1  
block 1 Element Type quad 
block 2 surface 7 30 
block 2 Element Type quad 
sideset 1 curve 4 
nodeset 1 curve 4 
sideset 2 curve 1 13 57  
nodeset 2 curve 1 13 57 
sideset 3 curve 53  
nodeset 3 curve 53  
sideset 4 curve 59  
nodeset 4 curve 59 
sideset 5 curve 15 3  
nodeset 5 curve 15 3 
 
export genesis "1.37_40.gen" dimension 2 
exit 
 

A.2 ALEGRA Input  

Sample ALEGRA input deck 

 
$-----------------------------------BEGIN_QA------------------------------------------- 
$ ID: 1.37_40 
$ Title:     mach1.37 caveat problem with 40 degree wedge 
$ Category:     Verification and Validation 
$ Physics:      hydrodynamics  
$ Dimension:    2D 
$ Owner:        Mary I.  Chen 
$ 
$ Description:a column of gas impacts ideal gas surounding a wedge.  A  
$     shock then travels up the wedge.  For this problem, there is a  
$     1.37 mach number and 40 degree wedge 
$------------------------------------END_QA-------------------------------------------- 
 
title 1.37_40 
 
hydrodynamics 
 
  time step scale 0.6 
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  maximum initial time step 1.e-5 
   
  pronto artificial viscosity  
   linear 0.1  
   quadratic 2.0 
  end 
 
  block 1  
    material 1 
    eulerian mesh 
  end 
 
  block 2  
    material 2 
    eulerian mesh 
  end 
 
  no displacement: nodeset 2 x 
  no displacement: nodeset 3 x 
  no displacement: nodeset 3 y 
  no displacement: nodeset 4 x 
  no displacement: nodeset 4 y 
  no displacement: nodeset 5 x 
 
  initial block velocity, block = 1, y = .53 
  initial block velocity, block = 2, y = 0.0 
 
end 
 
termination time 0.7 
Emit output, time interval=0.01 
Emit plot,   time interval=0.1 
 
plot variable 
 pressure: avg 
 coordinates 
 density: avg 
 artificial viscosity 
end 
 
material 1       IDGAS 
  model  = 1 
  density 1.64  $g/cm3 
  temperature 369.562 $kelvin 
end 
 
material 2       IDGAS 
  model  = 1 
  density 1.0  $g/cm3 
  temperature 300.  $kelvin 
end 
 
model 1 ideal gas 
  gamma   = 1.4 
  cv      = 5.953E-3  
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  rho ref = 1.0 
  tref    = 300.0 
end 
 
exit 
 
 

A.3 Post-Processing Discussion 

Sample IDL input deck for deltapr/deltapinc 

This IDL script corresponds to Fig 3.2 (ALEGRA and experimental data for Mach 3.36 
calculation) in the report.  First, IDL reads in the EXODUS II file and extracts the 
variable of interest: pressure.  Then IDL reads in x-y data files for the theoretical and 
experimental data.  In the next section, IDL is extracting the data along the wedge.  Then, 
within the data of this plot, the maximum pressure is extracted.  Data points before or 
behind the maxiumum can be easily chosen.  After the desired pressures are gathered, 
they are used in Eq 3.1 and plotted against their respective incident wedge angles.  Then 
the experimental data with their respective error bars are plotted on top of the existing 
ALEGRA data.   

path = ’/pr/weekly/michen/cartesian_wedge/mach3.36/’ 
path1 = ’/home/michen/tim/caveat/cartesian_wedge/dig_data/mach3.36’ 
path2 = ’/home/michen/tim/caveat/cartesian_wedge/mach3.36/pro_high_res’ 
 
;startgif, file =  ’test’ 
 
set_plot, ’x’ 
popt=’y 
if (popt eq ’y’) then begin 
set_plot,’ps’ 
xpage=17 
ypage=15 
device, xsize=xpage,ysize=ypage, $ 
     filename= path2 + ’/delta_p_rigged.ps’ 
endif 
 
s1=readexo(file=path+’/40_degrees/goodres/3.36_40.exo’, block=[2], $ 
 var=’PRESSURE’, /alltime, /eul) 
s2=readexo(file=path+’/45_degrees/goodres/3.36_45.exo’, block=[2], $ 
 var=’PRESSURE’, /alltime, /eul) 
s3=readexo(file=path+’/50_degrees/goodres/3.36_50.exo’, block=[2], $ 
 var=’PRESSURE’, /alltime, /eul) 
s4=readexo(file=path+’/55_degrees/goodres/3.36_55.exo’, block=[2], $ 
 var=’PRESSURE’, /alltime, /eul) 
 
readcol, path1+’/file1_theo1’, theox1, theoy1 
readcol, path1+’/file1_theo2’, theox2, theoy2 
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readcol, path1+’/experimental’, expx, expy 
 
numelem = n_elements(expx) 
lasttime=n_elements(s1.time)-1 
 
rows1 = uniq(s1.coord_y(*,0), sort(s1.coord_y(*,0))) 
n1=n_elements(rows1) 
i=0 
row1=dblarr(n1) 
b1=dblarr(n1) 
while (i lt n1) do begin 
  row1= where( s1.coord_y(*,0) eq s1.coord_y(rows1(i),0) )  
  p1=n_elements(row1)-1 
  b1(i) = row1(p1) 
  i = i + 1 
endwhile 
a1=where(b1 ne b1(0)) 
place1=b1(a1) 
 
m1=where(s1.data(place1,lasttime) eq max(s1.data(place1,lasttime))) 
ind1=m1-11 
ind11=m1+13 
max1=s1.data(place1(ind1),lasttime) 
max11=s1.data(place1(ind11),lasttime) 
pr1 = max1-0.714 
pr11 = max11-0.714 
pinc1 =  9.29-0.714 
val1 = pr1/pinc1 
val11 = pr11/pinc1 
print, ’val1 = ’, val1  
print, ’val11 = ’, val11  
 
lasttime2=n_elements(s2.time)-1 
 
rows2 = uniq(s2.coord_y(*,0), sort(s2.coord_y(*,0))) 
n2=n_elements(rows2) 
i=0 
row2=dblarr(n2) 
b2=dblarr(n2) 
while (i lt n2) do begin 
  row2= where( s2.coord_y(*,0) eq s2.coord_y(rows2(i),0) )  
  p2=n_elements(row2)-1 
  b2(i) = row2(p2) 
  i = i + 1 
endwhile 
a2=where(b2 ne b2(0)) 
place2=b2(a2) 
 
m2=where(s2.data(place2,lasttime2) eq max(s2.data(place2,lasttime2))) 
ind2=m2-11 
ind22=m2+13 
max2=s2.data(place2(ind2),lasttime2) 
max22=s2.data(place2(ind22),lasttime2) 
pr2 = max2-0.714 
pr22 = max22-0.714 
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pinc2 =  9.29-0.714 
val2 = pr2/pinc2 
val22 = pr22/pinc2 
print, ’val2 = ’, val2 
print, ’val22 = ’, val22 
 
lasttime3=n_elements(s3.time)-1 
 
rows3 = uniq(s3.coord_y(*,0), sort(s3.coord_y(*,0))) 
n3=n_elements(rows3) 
i=0 
row3=dblarr(n3) 
b3=dblarr(n3) 
while (i lt n3) do begin 
  row3= where( s3.coord_y(*,0) eq s3.coord_y(rows3(i),0) )  
  p3=n_elements(row3)-1 
  b3(i) = row3(p3) 
  i = i + 1 
endwhile 
a3=where(b3 ne b3(0)) 
place3=b3(a3) 
 
m3=where(s3.data(place3,lasttime3) eq max(s3.data(place3,lasttime3))) 
ind3=m3 
max3=s3.data(place3(ind3),lasttime3) 
pr3 = max3-0.714 
pinc3 =  9.29-0.714 
val3 = pr3/pinc3 
print, ’val3 = ’, val3 
 
lasttime4=n_elements(s4.time)-1 
 
rows4 = uniq(s4.coord_y(*,0), sort(s4.coord_y(*,0))) 
n4=n_elements(rows4) 
i=0 
row4=dblarr(n4) 
b4=dblarr(n4) 
while (i lt n4) do begin 
  row4= where( s4.coord_y(*,0) eq s4.coord_y(rows4(i),0) )  
  p4=n_elements(row4)-1 
  b4(i) = row4(p4) 
  i = i + 1 
endwhile 
a4=where(b4 ne b4(0)) 
place4=b4(a4) 
 
m4=where(s4.data(place4,lasttime4) eq max(s4.data(place4,lasttime4))) 
ind4=m4-4 
max4=s4.data(place4(ind4),lasttime4) 
pr4 = max4-0.714 
pinc4 =  9.29-0.714 
val4 = pr4/pinc4 
print, ’val4 = ’, val4 
 
errorplus = [ .583, .603, .601, .668, .801, .653, .442, .399, .361, $ 
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              .657, .592, .525, .492, .447, .502, .505, 0., .324]  
errorminus = [.713, .792, .603, .582, .515, .521, .398, .421, .442, $ 
      .588, .657, .653, .503, .551, .350, .392, 0., .246]  
 
errorplus = errorplus /  5.461       
errorminus = errorminus /  5.461       
    
j = 0 
l = 0 
m = 0 
line = dblarr(numelem,2,2) 
top = dblarr(numelem,2,2) 
bottom = dblarr(numelem,2,2) 
while (j lt numelem) do begin 
 while (errorplus(j) gt 0) do begin  
   while (l eq 0) do begin 
     while (m eq 0) do begin 
       line(j,l,m) =  expx(j)  
       top(j,l,m) =  expx(j) - .15 
       bottom(j,l,m) = expx(j) - .15 
       m = m + 1 
     endwhile 
     while (m eq 1) do begin 
       line(j,l,m) =  expx(j) 
       top(j,l,m) =  expx(j) + .15 
       bottom(j,l,m) = expx(j) + .15 
       m = m - 1 
     endwhile 
     l = l + 1 
   endwhile  
   while (l eq 1) do begin 
     while (m eq 0) do begin 
       line(j,l,m) =  expy(j) + errorplus(j) 
       top(j,l,m) =  expy(j) + errorplus(j) 
       bottom(j,l,m) = expy(j) - errorminus(j) 
       m = m + 1 
     endwhile 
     while (m eq 1) do begin 
       line(j,l,m) =  expy(j) - errorminus(j) 
       top(j,l,m) =  expy(j) + errorplus(j) 
       bottom(j,l,m) = expy(j) - errorminus(j) 
       m = m - 1 
     endwhile 
     l = l - 1 
   endwhile 
   errorplus(j)=0 
 endwhile 
 j = j + 1 
endwhile 
 
errorplus = [ .583, .603, .601, .668, .801, .653, .442, .399, .361, $ 
              .657, .592, .525, .492, .447, .502, .505, 0., .324]  
errorplus = errorplus / 12.879        
 
; real x=[40, 45, 50, 55] 
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x=[50, 45, 50, 45, 40, 35] 
y=[val1, val2, val11, val22, val3, val4]  
 
plot, x, y, psym = 4, $ 
xtitle = ’incident angle’, $ 
ytitle = ’delta p_r / delta p_inc’, $ 
xrange = [30, 55], /xst, $ 
yrange = [1,6], /yst 
oplot, theox1, theoy1, linestyle = 0 
oplot, theox2, theoy2, linestyle = 0 
oplot, expx, expy, psym = 6, symsize = .4 
oplot, line(1,0,*), line(1,1,*), linestyle = 0 
 
i = 0 
while (i lt numelem) do begin 
  oplot, line(i,0,*), line(i,1,*), linestyle = 0 
  oplot, top(i,0,*), top(i,1,*), linestyle = 0 
  oplot, bottom(i,0,*), bottom(i,1,*), linestyle = 0 
  i = i + 1 
endwhile 
 
linestyle=[0] 
psym=[4,6] 
position =[.62, .87] 
legtet=[’ALEGRA’, ’Experimental’, ’Analytic’] 
legend, legtet, psym=[psym,0], line=[-1,-1,linestyle], pos=position, /normal 
 
;spng 
;endgif  
end 
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