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ABSTRACT 

This  project  makes use of “biomimetic behavioral engineering” in which adaptive strategies 
used  by animals in  the real world are applied to the development of autonomous robots. The key 
elements of the  biomimetic  approach are to observe and  understand a survival behavior exhibited 
in nature, to create a mathematical  model  and simulation capability for that behavior, to modify 
and  optimize  the  behavior for a desired robotics application, and  to implement it. The 
application  described  in this report is dynamic soaring, a behavior that certain sea birds use to 
extract  flight energy from laminar  wind  velocity gradients in the shallow atmospheric boundary 
layer directly above  the ocean surface. Theoretical calculations, computational proof-of- 
principle demonstrations, and  the  first instrumented experimental flight  test data for dynamic 
soaring are presented to address the feasibility of developing dynamic soaring flight  control 
algorithms to sustain the flight of unmanned airborne vehicles (UAVs). Both  hardware  and 
software were developed for this application. Eight-foot custom foam sailplanes were built and 
flown in a steep shear gradient. A logging device was designed  and constructed with custom 
software to record flight data during dynamic soaring maneuvers. A computational toolkit  was 
developed to simulate dynamic soaring in  special cases and  with a full 6-degree of freedom flight 
dynamics  model in a generalized time-dependent  wind field. Several 3-dimensional 
visualization tools were built to replay  the flight simulations. A realistic aerodynamics  model of 
an eight-foot sailplane was developed using measured aerodynamic derivatives. Genetic 
programming methods were  developed  and  linked  to  the simulations and visualization tools. 
These tools  can  now be generalized for other biomimetic behavior applications. 



EXECUTIVE SUMMARY 

This project  makes use of “biomimetic behavioral engineering” in  which adaptive strategies 
used  by animals in the real world are applied to the development of autonomous robots. The key 
elements of the biomimetic approach are to observe and understand a survival behavior exhibited 
in nature, to create a  mathematical  model  and simulation capability for that behavior, to modify 
and optimize the behavior for a desired robotics application, and to implement it. The 
application  described  in this report is dynamic soaring, a behavior that certain sea birds use  to 
extract flight energy from laminar wind  velocity  gradients in the shallow atmospheric boundary 
layer directly above the ocean surface. Theoretical calculations, computational proof-of- 
principle demonstrations, and the first instrumented experimental flight test data for dynamic 
soaring are presented to address the feasibility of developing dynamic soaring flight control 
algorithms to sustain the flight of unmanned airborne vehicles (UAVs). Both hardware and 
software were developed for this application. Eight-foot custom foam sailplanes were built and 
flown in a steep shear gradient. A logging device was  designed  and constructed with custom 
software to record flight data during dynamic soaring maneuvers. A computational toolkit was 
developed to simulate dynamic soaring in special cases and with a  full 6-degree of freedom flight 
dynamics  model in a generalized time-dependent  wind field. Several 3-dimensional 
visualization tools were built to replay the flight simulations. A realistic aerodynamics model of 
an eight-foot sailplane was developed  using  measured aerodynamic derivatives. Genetic 
programming methods were developed and  linked  to  the simulations and visualization tools. 
These tools can now be generalized for other biomimetic behavior applications. 
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I. INTRODUCTION 

One of the  major limitations in developing practical autonomous robots is the  power 
requirement for their mobility. This is particularly true for unmanned airborne vehicles (UAVs) 
that are large enough to carry sensors to be used for surveillance or other data-gathering 
applications.  UAVs  must consume significant energy simply to stay  aloft,  even  when  they are 
not collecting information. This  power constraint limits the  potential feasibility of these aircraft 
for most applications unless they  can harvest energy from the environment as they fly. 

some  extent. A simple scaling argument demonstrates that larger birds require much more 
energy per unit  mass to fly. Cruise velocity is proportional to wing loading (weight  per  unit 
wing area). Weight increases as the cube of the characteristic dimension, but wing area only 
increases  as the square. Drag forces increase with the velocity  squared, so large birds f ly  faster 
but suffer a significant power penalty owing to their size. Likewise, the power required to flap 
large wings for propulsion is much greater than that needed for flapping small wings. 
Consequently, large birds have learned to soar for extended periods of time  without  beating  their 
wings. 

For example, two  of the world’s largest birds are the California condor (Gymnogyps 
califomianus) and  the  wandering albatross (Diornedea exulans, Figure 1). Both species have 
evolved flight behaviors  that minimize wing flapping, but  use two very different strategies that 
are  adapted to their respective environments. Whereas land birds  tend  to take advantage of 
updrafts (static soaring), sea birds primarily make use of velocity gradients (dynamic soaring). 

without  beating their wings.  They soar in updrafts (thermal  and orographic uplift) where  the 

By applying biomimetic principles, one finds that nature has already  solved  this problem to 

Land birds such as condors and  vultures  can sustain airspeeds of about 90 kmhour for hours 

Figure 1. Wandering albatross soars near Sydney, Australia (photo: Tony Palliser). 
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vertical  component  of wind velocity  offsets  the sink rate of their  gliding flight. This is static 
soaring, and birds that  depend on uplift  often become grounded during still  periods of 
temperature inversion and atmospheric  stability. 

Sea birds, such  as albatrosses and petrels, can also  fly for long periods  while keeping their 
wings fixed. Weimerskirch and  Robertson  [1994]  used  satellite-tracking  methods to observe a 
light-mantled sooty albatross (Phoebetria palpebrata) fly  a distance of 6463 km in only  10.4 
days.  A  recently  publicized  study  by  Wake Forest University  used GPS measurements to track  a 
Laysan  albatross,  which flew nearly 40,000 km in 90 days.  Another  GPS tracking study of 
wandering  albatrosses  revealed  that they attained  speeds  of  up to 135 km/hour, and typically 
cruise at speeds  in excess of 85 km/hour [Weimerskirch et al. 20021.  Wandering albatrosses 
have  been observed to follow ships for days at a  stretch,  with almost no need to flap their  wings. 
These large sea birds make use of dynamic soaring in the near-surface  atmospheric boundary 
layer  by flying in a circuitous pattern  of climbing upwind,  turning, and diving downwind, then 
skimming the sea surface while  turning  back  upwind. This allows vast  areas  of the sea to  be 
searched and foraged with  little  expenditure  of  energy 

The most dependable, sustained  surface winds are  over the open  ocean in the wind  belts 
known as the low latitude easterly  trade  winds,  the  mid  latitude  westerlies  (known  in  the 
southern  hemisphere as the “roaring  forties”),  and the high latitude polar  easterlies.  In  addition, 
there are regional and seasonal monsoons,  most  notably  the  Asian  monsoon--which  is 
accompanied  by  sustained  surface  winds  greater than 50 km/hour--in the strategically  important 
vicinity  of the northern  Indian Ocean, Persian Gulf, and  Arabian  Sea. The development of  an 
autonomous sailplane that is  highly  mobile  and can remain  aloft  without  power  would  provide  a 
valuable platform for distributed sensor arrays  in  all of these  parts  of the world. Such UAVs 
could also be deployed over land  under  appropriate  conditions. The purpose of this report is to 
outline the theory of dynamic soaring,  present new computational  and experimental proof-of- 
principle  flight  tests, and document the development of evolutionary  biomimetic  behavior 
algorithms. 

11. DYNAMIC  SOARING 

A. Descriptive  analysis 

In  a  motionless atmosphere without  wind  velocity  gradients,  sustained  gliding  flight  would 
be  impossible.  However, the real  atmosphere  is in near-constant  motion, and many land-based 
soaring birds and experienced pilots  of  unpowered  fixed-wing  aircraft (sailplanes) have learned 
to remain aloft for many hours by seeking updrafts  and  avoiding  downdrafts. When the  upward 
velocity  of an air  mass exceeds the still-air descent rate of  an aircraft, there is a  net altitude gain 
without any local expenditure of energy.  Updrafts can be  caused by buoyant instabilities 
(“thermals”), orographic uplift  (“slope lift”), and  by  atmospheric  waves (Figure 2). The general 
term for this type of flight is “static  soaring”. 

A second  method  of  gliding  flight is dynamic  soaring,  which is the focus of this project.  This 
strategy  was  discovered and analyzed  by  Lord  Rayleigh  [1883], who developed a  physical  model 
to  show  how large sea birds can convert wind  energy  at  a  horizontal  shear boundary into energy 
of  flight  without  any  physical  work  output. He presented  a simple two-layer  horizontal  velocity 
model in which  the  bird soars in an  inclined circle, crossing  upward  through the shear boundary 
when heading upwind, and crossing downward  through it when heading downwind. His model 
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Static: Local air parcel has an 
Upward  velocity  component 

Dvnamic: Local air  has  a 
steep velocity  gradient 

Wave Lift 
Leeward  Slope  Separation  Flow 

Surface  Boundary  Layer 

Gusts 

Windward  Slope Lift 

Figure 2. Various means of soaring. 

explicitly assumed that the air parcels had no vertical  velocity components, and therefore 
provided the first description of dynamic soaring, which he explained as follows: 

... a bird without working his wings cannot, either in still air  or  in a uniform 
horizontal wind, maintain his level indefinitely. For a short time such 
maintenance is possible at the expense of an initial relative velocity, but this must 
soon be exhausted. Whenever therefore a bird pursues his course for some time 
without working his wings, we must conclude either 

( I )  that the course is not horizontal, 
(2) that the wind is not horizontal, or 
(3) that the wind is not uniform. 

It is probable that the truth is usually represented by ( I )  or (2); but the question I 
wish to raise is whether the cause suggested by (3) may not sometimes come into 
operation. 

Indeed (1) is simple gliding flight, (2) is static soaring, and (3) is  dynamic soaring. 
Subsequent work  has  demonstrated  unambiguously that Rayleigh  correctly  described the flight 
of large sea birds, which fly in the relatively thin atmospheric boundary layer directly above the 
sea surface in places where the  wind is strong and  steady.  Rayleigh concluded his  paper  with a 
paragraph  dedicated  to a potential  application: human flight. Since he  had  shown  that flight is 
possible by extracting energy directly from the wind, he made the following recommendation: 

When a man can launch himselffrom  an elevation and glide long distances before 
reaching the ground, an important step  will have been gained, and  until this is 
done, it is very improbable that any attempt to maintain the level  by expenditure 
of work can be successful. 



This is precisely the approach taken by the Wright brothers two decades later at Kitty Hawk. 
While dynamic soaring for human flight was  seen as an important possibility by  many early 
aviation pioneers (e.g. Langley, 1893), interest quickly faded after powered flight became a 
reality. Moreover, thermal soaring was eventually discovered to be practical, and it became 
recognized that the marine shear boundary was too thin in comparison to  the  dimensions of a 
human-piloted glider. Dynamic soaring was all but forgotten by aviators. 

of aerodynamic principles  to the study of avian ecology) maintained their interest in dynamic 
soaring as a means by which sea birds extract flight energy from  the wind. This research was 
reviewed and greatly extended by Cone (1964) who focused on flight in the marine shear 
boundary layer. According to Cone, 

On the  other hand, workers in the relatively isolated field of “aeroecology” (the application 

... the albatross  has  found  a remarkable way to exploit the energy of horizontally- 
moving airflows. Unlike  the steady and almost automatic soaring of the vulture, 
that of the albatross involves continuous voluntary maneuvering  and control 
regulation. Yet, so perfectly  adapted in structure and instinct is the albatross to 
its particular  mode  offlight that it performs  its cycle with  a geometrical precision 
of amazing exactness. ... the albatross  is  able  to accomplish such flight and to 
remain at  sea  for  years  at  a time, covering untold thousands of miles, all without 
any significant expenditure of its own muscular energy for propulsion. 

While dynamic soaring has long been recognized as being an important component of the 
way  that albatrosses transport themselves, it is not the  only mechanism. Hargrave [1899] 
published his observations of sea bird flight and concluded that the animals obtain a significant 
fraction of their flight energy from static lift from flying on the windward side of  Ocean waves. 
He remarked that all the complications associated with real flight  “...have been considered in the 
evolution of a sailing bird and  must be reckoned with by the  designer of a wave driven flying 
machine.” Wilson [ 19751, developed a model for  this type of soaring which he  called 
“sweeping flight”.  By  staying  in  the wave-generated updraft, the bird can increase  its speed up 
to  its polar maximum speed (VZ) for a given upcurrent, at which point its  still-air  sink rate exactly 
balances the  upward velocity component of the wind  and it  ceases  to accelerate. If the bird‘s 
mass is m and  stall speed is VI,  then its excess kinetic energy is given by E = m(V? - V?)L?, and 
it can convert this to potential energy by rapidly rising out of the  wave to a maximum height of h 
= (V,2 - V?)i2g. Once the bird has attained this  height  it  can  cruise back downward to  the next 
wave in whatever direction it wishes to go. Wilson estimated that albatrosses should be able to 
reach  an altitude of 20 m by this method, and suggested that by some complicated pattern of 
flight the birds could combine sweeping flight with dynamic soaring  to maximize the conversion 
of wind energy to kinetic energy of flight. Wilson also  felt obliged, like  the  others, to suggest a 
practical application and modeled the flight of a glider by this means. He also rejected this as 
unrealistic due  to the large  size of a human-piloted glider relative  to  sea waves. 

There is  still no consensus on the relative importance of dynamic soaring versus sweeping 
flight. In an authoritative review, Pennycuick [1982] suggests that albatrosses extract energy 
from the  wind by both means, but that sweeping flight  is relatively more important  for upwind 
flight, while dynamic  soaring  is dominates for downwind flight. This conclusion is based on a 
review of the  literature, combined with direct observations, and is presented as a tentative finding 
in need of more analysis and data. More recent observational research on sea bird flight [Spear 
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& Ainley,  19971 led to the  conclusion  that crosswind and tailwind flight of certain large petrels  is 
different  and  more efficient than  that of albatrosses.  The authors suggest that this better- than- 
expected performance may have resulted from a different  type  of soaring, not previously 
described in the literature on  sea birds. Clearly, there are still significant contributions to be 
made in the modeling of sea bird flight, especially in the identification of optimal flight 
strategies. 

own purposes. In the words of Cone, 
Nevertheless, the albatross is  remarkable in its ability to extract energy from the  wind for its 

Using  the practically boundless energy of the sea shear layers, the albatross, on 
its efficient wings, traverses vast expanses of sea from dawn to dusk in endless 
search of the squid  and shrimp which form its diet. With the exception of the 
breeding season, when it returns to the  small  isolated islands where it nests, the 
albatross is truly pelagic, remaining far at sea.  There it ceaselessly orbits within 
the narrow wind shear layer above the water, alighting only briefly to claim its 
food  from the sea. 

However, Cone was  dubious that “any generally  useful degree of dynamic soaring by  man 
will be developed, at least in the foreseeable future, despite a number of theoretical possibilities”. 
But the technical advances that  Cone  did  not  forsee--such as miniature computers and  sensors-. 
have now become a reality, and it is likely that Cone did not expect “dynamic soaring by man” to 
include “dynamic soaring by small  robots”. 

B. Piecewise two-dimensional numerical analysis 

As a first step towards applying evolutionary computing methods  to the optimization of 
dynamically soaring “perpetual flight machines,” sea bird flight maneuvers are analyzed  in  two- 
and  three-dimensional space. A genetic algorithm is then applied to determine behavioral 
parameters that maximize  upwind progress under a zero flight energy expenditure condition for 
idealized albatrosses. This analysis replicates previously  published computer simulations of 
albatross flight [Wood, 19731,  but reveals a mistake  in the earlier analysis that invalidates one of 
its key  results. Wood [ 19731  had incorrectly concluded that albatrosses in his  model (using 
maneuvers similar to the type  they have been  observed  to fly, but constrained to piecewise two- 
dimensional motion) can make direct  upwind progress without  power in a purely horizontal wind 

Three flight cycles are considered, all involving  motion in a laminar boundary layer in which 
wind  speed depends only on  the logarithm of the altitude. The  equation of motion includes lift- 
dependent drag forces, and  uses  published  values of drag coefficients for albatrosses, with a 
maximum wing load of three times  the  bird’s weight. The  first  flight cycle is  pure  upwind flight 
in two dimensions. The  second  is  three  dimensional  upwind fight with horizontal turns  and a 
downwind dive. The  third  includes a generalized aerobatic figure--the Reverse Half  Cuban 
Eight--by  which the bird turns downwind using  an inverted high-acceleration maneuver. The 
first two cycles are inadequate for upwind  progress,  but the third can be used to fly upwind  at no 
energy cost, with parameters that  can be optimized  by genetic algorithm. Real  albatrosses have 
not  been  observed  to fly this way,  and  upwind progress in  an idealized atmosphere is obviously 
not  the  only measure of success for analyzing  the  natural optimization of sea bird flight. 
Because survival and  reproduction are the  most important elements of Darwinian evolution of 
animal behavior, and low-altitude inverted aerobatics are extremely risky, the optimal flight 

- 1 1 -  



V 

Velocity components in inertial frame Wind vector field 

Figure 3. Bird  and  wind velocities in inertial  reference frame. 

maneuvers in nature are not necessarily the ones that maximize  upwind progress. However, this 
measure of success can be used as a quatitative “fitness functon” for optimization of soaring 
robots, because the learning phase in  which the unsuccessful individuals are killed 
computationally can be performed off-line (that is, as a simulation), with little relative cost. 

This  work follows Wood’s [ 19731 analysis of the kinematics of flight, using precisely the 
same  parameters for the  dynamic properties of flying albatrosses, and  making  the same 
assumptions  about  the gradient of wind shear near the ocean surface. This provides a conveniant 
means  to  validate  the present simulations with his, and gave a departure point for new 
simulations.  For  two-dimensional flight constrained to a vertical  plane  parallel to the wind 
direction (Figure 3), the local state (with respect to  the air) of the bird depends only  on the climb 
angle (4, and  on the airspeed (V). If the  wind  speed  depends  on altitude (y), then its global state 
(with respect to the world) also depends on the altitude. The  global state refers  to the condition of 
the  bird  in  an inertial reference frame, but  it  is the bird’s kinetic and  potential energy with respect 
to its immediate surroundings (the “wind-fixed” reference frame) that  is useful for flight. For the 
present simulations, consider @ V, and y to be the complete set of state  variables.  For a bird 
moving  with  an  inertial horizontal velocity  component u opposite to  the  altitude-dependent 
horizontal wind  speed U(y), and a vertical velocity  component v, the kinematic equations are: 

u =Vcos@-U(y) v =  Vsinqb (1)  

Dimensionless lift (1) is defined as  an  upward force per unit weight of the bird  and  normal  to 
its direction of flight, drag (6) is a similarly normalized backward  force,  and  parallel  to  the flight 
direction, and  gravity (g) acts directly downward. The net force on the  bird is the  vector sum, and 
the  two comuonents are: 

Ecos@-dsin@= 

Differentiating equations (1)  and substituting the acceleration terms into (2) yields equations 
for dimensionless lift  and  drag: 

- 



Wood [1973]  used  a  standard  aerodynamic drag equation which  can  be  written in the form: 

d=aV2+b12tV2 ( 5 )  

where  the first term is due  to skin  resistance  and  the  second is due to  wake  vortices  which are 
strong  functions  of  lift. The present  calculations use the same values as  Wood [ 19731: 
a = 0.96~10-~, and b = 4.25  (in  m.k.s. units). These parameters  were  determined from measured 
values of albatross  weight,  wing  area,  and  aspect  ratio,  and an estimated  lift  coefficient. 
Equations (3)-(5) can be combined into a  nonlinear  differential equation of  motion,  which  can  be 
solved  numerically: 

dV dU , 

dt dy 
--VVsm@cos4-gsin@-gaV  @+cos@+-- (6)  

For non-horizontal  flight,  equation (6 )  requires an explicit  numerical time integration  to 
determine the trajectory  of  the  bird, and the flight path  can  be  defined  by controlling the climb 
(or descent) angle @ within constraints imposed  by  the  strength of the  bird  (assumed  here  to be 
three times its weight) and the stall  speed  below  which the bird loses lift. For horizontal flight, 
(@= 0), equation (6) is easily seen  to become linear  and  it  can be integrated  analytically. Some 
of the special cases require a  preliminary  generalization to three-dimensional  flight,  which  needs 
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Figure 5. Generalized flight cycle originally  suggested  by  Rayleigh [1883]. 

another state variable 8, the angle  about  a  vertical axis with  respect  to the wind  direction. All 
cases  use the logarithmic wind  speed of Wood [1973]  and  others: 

0.17691og(y/0.03485) - = 0.1769- dU u,, 
dY Y 

where  m.k.s.  units  are  used,  and  where U,, is the reference  velocity at 10 meters above the 
surface,  which in all three simulations were set to 15 m/s (this  is  plotted  in the inset  in Figure 5). 

Of the three different  types  of flight cycles  calculated  here,  two can be represented as closed 
figures in a  phase space (where one or more of the bird‘s  state  variables changes smoothly from 
an  initial state, and  then returns to its initial  state). In general the bird’s coordinates will  have 
changed, and it  is this change in  coordinates that provides  a  fitness  function  to optimize the 
parameters  that define the cycle.  In the simple cases simulated  here,  only the x coordinate in the 
upwind  direction determines the fitness,  but in general the crosswind  component  could be 
combined  to optimize progress  in other directions.  Obviously  the change of  coordinates  must be 
in the desired  direction for the bird  to  make  progress. 

- 14- 



The first cycle is  purely  two-dimensional flight with  no  turns,  and  completely  in the upwind 
direction, as proposed  by  Walkden  [1925]. This cycle was  modeled  by Wood [1973],  who 
started  the bird in the  upwind direction, 1 meter from the  surface of the water, with  an  inertial 
velocity of 20 m/s .  In  his  simulation, the climb angle  is  increased at a rate which  maximizes  the 
allowable wing loading on the  bird,  until  an  angle  of 20” is achieved.  This climb angle  is  held 
constant  until the bird’s  airspeed drops to 19 m / s ,  at which  time  the  bird goes through  a  zero-lift 
transition (free fall) to  a dive back toward horizontal  flight at I meter from the surface, 
completing the cycle. This cycle  is shown in Figure 4 by  plotting  altitude and airspeed  as  a 
function of distance. The present  calculation  yields  results  identical  to  those  of Wood, which 
supports  his  conclusion  that this cycle cannot  be  completed  because the bird does not  return to its 
original  velocty. Figure 4 is in complete agreement  with Wood’s Figure 8 providing an 
independent  confirmation for the  present  calculations. Note that  the  airspeed  actually  increases 
during the  climb,  which is the counter-intuitive basis for dynamic soaring and the  mechanism  by 
which energy is taken  from the wind  gradient. The purely  upwind  flight  of  Walkden’s cycle 
results  in  a  rapid loss of airspeed  and  energy during the dive phase,  however, and this is why  it 
does not  work. 

Table 1: Comparison to previous  results 

The second cycle is  a  generalized one that  was also simulated  by Wood, and has  two  turns 
and  a  downwind dive, as  originally  suggested  by  Rayleigh [ 18831. In this  cycle,  Wood  modeled 
the  turns  as being purely  horizontal  maneuvers. This allowed him to determine exactly the 
position,  airspeed  and  time  interval using an  analytic  solution of equation (6) ,  which  is  linear for 
constant  y. A generalized  version of Rayleigh’s cycle is shown in profile and plan  view in 
Figure 5. Wood’s version of Rayleigh’s cycle, begins  exactly like the  purely  upwind  cycle. The 
bird  initiates  a  maximum-load  (3-g)  pull  up at 20 m/s  at A, climbs at a  constant  angle of  20’ 
between A and B, and  transitions at zero load  (free  fall) to horizontal  flight  when the velocity 
drops to 19 m / s  at D. The bird  then  makes  a  horizontal,  maximum-load  turn downwind, and 
initiates  a  zero-load dive upon  completion  of  the  turn  at E, pulling out at maximum load at F to 
level  out at the original altitude of 1  m,  going downwind and  initiating  a 180” turn at G, which  is 
complete at H. The bird  then  flies  straight  until its velocity drops back to  the original 20 m / s ,  
and the increase  in  upwind  position is the “cycle  advance”  which is the  measure of progress. 
The cycle can be  generalized so that there are four adjustable  parameters: Vo is the initiation 
velocity that starts  the cycle, a is  the  initial climb angle, p i s  the  increase or decrease in climb 
angle,  and V, is the initiation  velocity for transition  to  level  flight. The rest  of  the cycle is 
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completely constrained if these parameters  are fixed (for  a  given  wind profile and aerodynamic 
properties  of  the bird), and they  can  be optimized using a genetic algorithm to find the 
combination that maximizes the  net cycle advance. 

In this case, Wood’s results were not  reproducible. Table 1 compares the present output to 
Wood’s and shows inexplicable discrepancies only  for the turns, which  Wood solved analytically 
(the airspeed  at  point B is probably  a  typographical error in Wood‘s  paper  because it is 
inconsistent  with  his Figure 8, and its difference from  the present value is close  to unity). This 
discrepancy was double-checked by  solving the horizontal  turn  segments analytically, which 
reproduced  the present numerical results to  a  high  degree  of accuracy (see Appendix A for this 
analytical solution). 

Table 2 Comparison of analytical  to  numerical solutions for horizontal  turns 

I AtDE, (time to cor-’-+- -. , . . 

I A&, (time to complete lower turn, s) I 2.95 2.95 

Table 2 presents a comparison between  the  present  numerical solution and the analytical 
solution for the time interval and  the initial and final velocities for both turns. It is likely that 
Wood used an incorrect integral formula for his  analytical solution. It is reasonably 
straightforward to solve for the time and  velocity loss, but  the  analytical  solution for distance 
involves transcendental functions within functions and does not  appear  to be tractable. Whereas 
Wood calculated a  net gain of 48.1 meters per cycle, there is actually  a  net loss of 13.3 meters. 
An albatross flying this way  (with the parameters assumed by  Wood) does not  make progress 
directly against the wind, and  when  the generalized Rayleigh’s loop is optimized, the net gain is 
almost  negligible. Unfortunately, this mistake renders  Wood’s  primary result incorrect, which 
was  the final statement in his summary: 

... the more usualfight cycle which involves a dive in the downwind direction is 
completed very  easily without loss offying speed. In fact,  by diving steeply, 
sufficient excess airspeed  can  be gained to permit a very long final upwind glide 
at low  level. This repasses the  starting position and  thus gives a slow but definite 
nett progress  against the wind. 

Figure 6.  Schematic diagram of reverse half Cuban eight. 
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This conclusion  has  been  used  by  Pennycuick [ 19821  and  others  as  supporting evidence for the 
relative  importance of dynamic  soaring in sea birds.  Even  though  the  conlusion  was  due  to  a 
mistake  by Woods, its still  stands  when  Woods’ contraints are  relaxed. 

A  third cycle can be  considered  in  an effort to capture the  gain  of the downwind  dive  while 
avoiding  the huge loss  associated  with the downwind turn at high  altitude  where the wind  speed 
is  highest. The key element of this cycle is an aerobatic figure called  a  “reverse  half  Cuban 
eight,” similar to the more  familiar split-S, which is a  reverse  Immelman  turn  devised  by  pilots  in 
World War I as a  means  of  quickly  reversing direction. Figure 6 depicts  a  reverse  half  Cuban 
eight  using  standard  aerobatic  notation,  in  which dot is the start, the arrow indicates a  half  roll, 
the dashed line refers to inverted flight, and the vertical  bar  is the end of the figure. 

As with Rayleigh’s cycle, this  maneuver can be  genralized in terms  of the same parameters 
for optimization  purposes. In the standard  reverse  half  Cuban eight, the climb  is executed at a 
45’ angle, whereas  the  angle  can  vary  in  the  generalized  version,  with  the entry and exit angles 
being  adjustable  parameters. 

C. Genetic  algorithm  optimization of simple  cycle 

The cycle parameters Vo (initiation  velocity for climb), VI (initiation  velocity for end of 
climb), @(initial climb angle),  and P(change in climb angle) can be  varied to determine  the 
combination that maximizes  the  net cycle advance. There are  many  algorithms that could be 
used for this optimization  procedure, including random  searches,  hill climbers, and genetic 
algorithms. No optimization analysis was done by Wood [1973],  who  described  his  simulations 
as  a  few  random  cases and closed  by  saying  that,  “Lack  of  time  has  prevented  any  serious 
attempt  to optimise the various  cycle  parameters ...” As it turned  out,  he chose parameters  that 
were close to the optimal case, even  though he integrated  incorrectly. 

Genetic  algorithms [e.g. Forrest,  19931  are  well  suited for optimization  of  parameters  when 
there  is no way to numerically  invert  a  problem, and the forward problem  must be simulated 
repeatedly. In the present  case,  a  given set of parameters  uniquely  defines  a  cycle, and by 
running the simulation the net cycle advance can  be determined  and  used  to compare the  fitness 
of  different sets of  parameters. The above-listed  parameters are not  the  only  possible set, but 
provide  a  starting  point from which this work can be easily extended.  Other  possibilities  are 
suggested  below.  Details specific to the genetic algorithm used  here are given  in  Appendix B. 

The same set of  parameters  was  used  to optimize both the generalized  Rayleigh  and  Cuban 
eight  cycles.  Additional  parameters could be  used to characterize  both  flight  maneuvers,  perhaps 
leading  to  significant  improvements  in glide distance per  cycle,  but for this preliminary  analysis 
it makes sense to chose the smallest  number  that  would  allow  significant  variation. In some 
cases,  a  bird  would enter a  turn at such  a  low  velocity  that its speed  would drop  to zero,  and  in 
other  cases, the bird’s  altitude  would  be  too  low to recover from the  Cuban eight maneuver. 

Distance upwind,x(meters) 

Figure 7. Actual  trajectory of the  near-optimum  Cuban eight cycle in inertial frame. 
- 1 7 -  



When this happened, the function  would  set the individuals fitness to -100 for the Rayleigh, and 
to zero for the Cuban eight. These values were lower than any fitness achieved by a simulated 
albatross that actually made it  around  the cycle, so these individuals were strongly selected 
against.  Population size was varied, with  the largest run  being 101 individuals for 450 1 

generations. In general, 51 generations for about 50 cycles converged to within tens of 
centimeters of the best  of much larger runs. 

The best individual for the  generalized Rayleigh's cycle began its climb at  an  airspeed of 
19.45 d s ,  with  an  initial angle of only 6.6". The bird  steepened its ascent into the wind up  to 
57.8", and  kept climbing until its airspeed  dropped  to 12.0 d s .  The rest of the cycle is pre- 
scribed: free fall to level flight, maximum acceleration horizontal  turn  downwind, free fall dive 
until maximum acceleration pullout is required, then maximum acceleration turn  upwind  and 
glide until airspeed is back to 19.45 d s .  At this point, the bird  is  only 2.8 meters beyond its 
starting  point  (compared to a loss of 13.3 meters  using Wood's parameters). Wood's assumed 
starting speed of 20 d s  is  remarkably close to the optimum, but there are two major differences 
between his climb parameters and the ones required to  yield a net  gain. The optimal albatross 
starts its climb much shallower, presumably  to  get the most  gain out of the wind gradient while 
spending a larger fraction of its  time flying against the lower-velocity headwind at  low altitude. 
Once  it  is  through the steep part of the shear boundary layer, it wants to have a steeper ascent to 
get to high altitude and dump its airspeed to as low a value as possible so it can turn around  and 
dive before it gets blown  too far backward  by the higher  winds  at  high altitude. 

its ascent with  an airspeed of 20.38 d s ,  climbing at  an initial angle of 12.6", and steepening to 
37.7' until  its  speed dropped to 15.0 d s .  In this case, the strategy  is similar, but with one 
difference: the albatross only  needs to gain enough altitude to safely do a reverse half  Cuban 
eight without hitting the water.  The optimum Cuban eight cycle is displayed in  Figure 7 in the 

Birds  that  flew the  Cuban eight cycle did significantly better, with the best individual starting 
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Figure 8. Determination of how fitness and optimization parameters  vary  with  bird strength. 
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inertial reference frame (with respect to  the ground). The “loop” is with respect  to  the  air, and 
does not appear as  a loop in interial coordinates because the  bird is being blown downwind. 

To explore  the effect of wing strength on the best performance, the generalized Cuban eight 
cycle was optimized for birds that could survive wing loadings of 3,4,5, and 6 times the bird’s 
weight. In all  cases,  the bird’s acceleration was limited to 3 times gravity during the loop, but 
was  allowed  to increase  to the  maximum  allowed during turns and climbs . The stronger birds do 
better (see  Figure 8), primarily because that can turn upwind  more quickly after their downwind 
dive. For this tightly-defined idealized problem, the results of the various flight strategies are 
compared graphically in Figure 9. 

better cycles can be found with  more generalization of the Cuban eight cycle, especially by 
allowing the turns  to initiate while the bird is  diving or climbing, and  by letting  the acceleration 
vary during the half loop. It  makes  much  more sense to allow the genetic algorithm to link other 
generalized aerobatic maneuvers together to form cycles, rather than constraining the  flight to a 
specific, predetermined maneuver and optimizing only on its parameters. This strategy is more 
consistent with the intent of genetic algorithms, and takes advantage of the building blocks 
concept of Holland [1975]. This might  lead  to the discovery of more complicated (but more 
efficient) flight patterns that  would  be  required for crosswind flight,  or  for sweeping flight 
[Wilson 19751 under conditions that allow it, such  as when the wind field includes contributions 
from wave upcurrents. This requires the use of a full, 6 degree-of-freedom flight dynamics 
model, which is described in Section III. 

real world? This presumes that the  fitness  function chosen for  the present optimization is  the 

The  calculations of this section were intended to provide insight, and there is little doubt that 

One obvious question deserves to be addressed: why don’t albatrosses fly upside-down in the 

Downwind  dive 

15 mls wind 
Lower turn 
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start point 
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; (generalized  cycle  optimized by genetic  algorithm) 

(new type of cycle  involving  invetted flight, optkied by GA) 
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i j 60.5 meter gain 
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Figure 9. Comparison of fitness value for various flight cycles. 
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same as the  one chosen  by  nature.  Clearly there is  more  to  the  fitness  of a real  albatross  than 
how  fast it can fly upwind  without  flapping its wings. For an  animal  that is subject  to the 
Darwinian  evolution  of  the  real  world, the most  important  component of its fitness  is the 
likelihood that it  will survive long enough  to  reproduce  (with  viable offspring) and so unsafe 
behaviors are highly  selected  against. The fitness landscape  of  the  Cuban eight cycle is  shaped 
somewhat  like a lookout  point:  it  gradually  rises as the  parameters  are optimized, but drops off 
precipitously  on  several  sides. If the parameters are pushed  too far (e.g. the bird  starts its dive 
too  low) it cannot pull  out of its dive and collides with the water  at  high speed. In  real  biological 
systems, a bird  will fly in a way  that  is  unlikely to kill  it,  but  new  flight  maneuvers  must  be 
developed  “on-line” (i.e. in the real  world). The Rayleigh cycle merely consists of climbs, 
horizontal  turns,  and dives, and  can be modified  without  any  real  danger.  On the other hand, 
there  is  no  pattern  that can  be smoothly  and  safely  evolved into a Cuban eight cycle, because 
entry into that  maneuver  requires an inverted  dive.  By contrast, a robotic  albatross  could  be 
trained  to fly “off-line”  (within a simulation  rather  than  in  the  real  world) using genetic 
algorithms to optimize simulated  flight maneuvers, and  would  not  have to pay the ultimate price 
for pushing  the envelope too far. 

D. Three-dimensional analysis 

The previous  numerical  analysis  makes  use a number  of  simplifying  assumptions. The drag 
equation assumes that the aerodynamic  shape of the  bird  remains fixed, and neglects other 
contributions  to  lift  and drag for real  birds  and  aircraft.  All the aerodynamic  characteristics  of 
the  bird are distilled into only five parameters.  Moreover, to make the equations of  motion easy 
to  solve,  the  bird  was  constrained  to  move  only  in a horizontal or vertical  plane. 

Hendricks [ 19721 presents a more  sophisticated  analysis  in  considering  the flight of a glider 
in a non-uniform  wind field. He models the flight of a point-mass  aircraft  with  realistic 
aerodynamic  properties  in  two  different  kinds  of  idealized  wind  fields: 1) a uniform  vertical  wind 
shear  gradient,  and 2 )  isotropic  turbulence.  In  addition to piecewise  two-dimensional  gliding  in 
wind  shear,  three-dimensional  motion  is  analyzed  with  perturbation  methods.  Hendricks shows 
that flight energy gain  increases  with  wing  loading,  and  that the optimum  turning cycle 
frequency  is  identical  to  the  phugoid  oscillation  frequency. He also addresses the  possibility  of 
“gust  soaring” in which flight energy can be extracted  from  turbulence. 

Hendricks  describes soaring from the  perspective of an observer  riding in the plane, who 
experiences forces in addition to gravity.  Drag  is  usually  considered  to be an  instantaneous, 
time-dependent  force. By describing it as an average force over a time scale that  is long 
compared to the characteristic  time  of  the  aircraft motion, it  can be balanced  by a fictitious mass 
force  due to the effect of a non-uniform atmosphere. For uncontrolled flight, the random effects 
of atmospheric  turbulence have the  opposite effect, adding  to the effective time-averaged drag 
(the sink rate of a passive  airplane is greater in turbulence  than  in  smooth  air). However, it  has 
been  argued  that  by applying appropriate  control  actions,  flight  energy can be extracted from 
eddies  and gusts associated  with  turbulent flow. According  to  Hendricks, the attempts of pilots 
to soar using gusts  have  failed due  to the  sluggishness  and  inconsistency  of  human  reactions. By 
contrast, birds may have developed the ability  to  properly  react  to  gusts  by drawing on an 
instinctive  knowledge of turbulent  velocity correlations acquired  over  millions of years  of 
evolution. 

airflow around the  glider  is  quasi  steady,  that  the  glider  does  not  affect the flow field, and that 
For ease of mathematical  analysis,  Hendricks  introduces  the  simplifying assumption that 
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there are no torques acting on  the  glider (i.e. it is  modeled as a point mass). By considering the 
case where the characteristic length scale of the  wind  gradients are much  greater  than  those of 
the  glider, the velocity of the  glider  relative to the local  air  mass can be defined. This relative 
wind  velocity is simply the difference between  the  inertial  wind  velocity  and  the  inertial glider 
velocity. It is this relative  velocity on which  the  aerodynamic forces depend. Since flight in 
turbulence  is considered, it seems questionable  to  assume  quasi-steady flow over the aircraft. 
This simplification is justified by suggesting  that  flow fluctuations with  length  scales  less  than 
those of the glider are simply  parameterized  as the effective aerodynamic  lift  and drag 
coefficients CL and CD, respectively. The dimensionless  lift  and drag forces are 

where pis the air density and S is  the  wing  area.  Hendricks  very  reasonably  treats  turbulence as 
being  homogeneous  and  isotropic,  with  length  scales and atmospheric  properties for which  the 
5/3 law of Kolmogorov  [1941]  applies  to  the  energy  spectrum. In addition,  Hendricks’  analysis 
depends on the assumption that the glider  airspeed is sufficiently  fast  that the wind  variation due 
to the turbulence is fixed in space. 

For this three dimensional analysis,  the  inertial  reference frame neglects earth rotation  and 
other celestial  motion, and ignores the curvature of the Earth  by using a  Cartesian  coordinate 

Y 
V 

X 

Figure 10. Coordinate  systems  used for three-dimensional  analysis. 
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system with axes x, y, and z ,  (Figure 10) where the gravitational acceleration its directed along 
the negative z axis (note that this is a different convention than  that  used in the piecewise two- 
dimensional  analysis). The wind field is approximated as time-independent, and  can be written 
as a function of x, y, and z only. For a glider flying through this wind field, the  wind as seen  by 
an observer on the glider is U(r(t)) wherer(t)is the glider’s time-dependent inertial position 
vector.  The  velocity of the aircraft relative to the local air  mass is therefore: 

To put  these  variables  in  aviation terminology, V ( t )  , U(r(t)) , and i ( t )  are the time-dependent 3D 
vector  generalizations of “true air  speed”,  “winds aloft” at the location of the aircraft, and 
“ground  speed” respectively. Dimensionless lift and drag are defined as before  but  can be 
written as time-dependent  vectors: I(t) is the force per  unit  weight  normal to the direction of 
flight, and d ( t )  is the normalized  backward force in the direction of V(t) . These force 
components together  with the body force due to  gravity  are illustrated in Figure 11. 

Since this analysis is primarily concerned with dynamic soaring in quasi-steady shear flows, 
it is useful to assume  that the wind  velocity  only depends on altitude (z) ,  and  to  define  the x axis 

X 

Figure 11. Components of force relative to inertial and  wind-fixed frames. 
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of the  inertial coordinates to  be  the  direction the wind is blowing. The vector equation of motion 
in the inertial frame becomes: 

To solve the three-dimensional equations of motion for an aircraft  in  a  non-uniform  steady 
wind, it is convenient to define a  non-inertial “wind-fixed reference frame (Figure 10). The V 
coordinate is in the - V  direction,  the y axis  is in a  vertical  plane and normal  to V I  and 
t h e p  axis is  horizontal and normal  to  the other two  axes.  Projection of the  components  of  the 
vector equation (10) onto  the new wind-fixed axes yields  the three equations of  motion  in  that 
coordinate system: 

Vj-V-sin ycosp = g(Icosyl-cosy) 
dU . 
dz 

Hendriks [ 19721 expresses these as non-dimensional  wind-fixed equations of motion 

V = -V-ssmycosycosp-c,v*-siny dU . 
dz 

Vl; = -V-sln y c o s ~ - ~ , ~ ~ c o s ~ - c o s y  
dU . 
dz 

where  variables  are  normalized  with  respect  to  characteristic  length  and  time  scales, LC = 2m/rS 

and f, = m, respectively.  From the definition  of the wind-fixed  coordinate system (Figure 
lo), the  time derivative of the inertial  position  can  be  written: 

2 = Vsinys inp+u 

j ,  = Vcos ysin f l  

i = Vsiny 
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Substitution  of  (19) into equation (14) and multiplying through by V yields  the total energy 
equation for dynamic soaring (DS) in steady laminar shear: 

- (‘/zv’ + z )  = -%v - s a n 2 y c o s p - c , ~ ~  d ZdU . 
dt dz 

The left-hand side is the time rate  of change of  useful kinetic and potential energy. The  first 
term on the right side is the “DS term”,  and is the rate of energy gain  (or loss) due to the wind 
gradient,  and  the  second term is the rate of dissipative loss due to aerodynamic drag. Equation 
(20) can be  used to optimize a generalized three-dimensional analog of  the flight cycle originally 
proposed  by  Lord Rayleigh. 

Any cycle that  pumps  wind energy into flight energy requires that the integral of the right- 
hand side of equation (20) be greater than  zero. To harvest energy at all times from a positive 
vertical  wind  gradient, the  termsin 2ycosp must  be less than zero. This condition requires that 
for downwind flight, (-n/2 5 p I n/2), the aircraft must descend (-n/2 5 y 5 0). Likewise, 
forupwindflight(-n<PI-n/2 or n/2IpSn),theaircraftmustascend ( O I y < n / 2 ) .  
This is the rule that seabirds discovered through evolution, and that Lord Rayleigh first 
documented. 

inclined circle. To gather energy from  the wind at all  times,  the circle must be tilted about the  y- 
axis of the  inertial frame, so that  the  maximum  altitude coincides with the maximum  downwind 
position  and  vice-versa. To estimate the value of the gradient required for continuous circular 
flight,  the DS pumping and aerodynamic dissipation terms can be integrated over one cycle from 
,B =-n/2  to P = n / 2 .  By ignoring the modulation of V and by  letting y vary as (n /2)cosp ,  
a bounding condition can be calculated for an inclined circle in uniform laminar shear: 

One of the simplest cycles to consider (and  as  we  shall see in Section IV, to fly) is an 

- > -C,V dU 3n 
dz 2 

By re-dimensionalizing equation (20) and substituting in realistic values for wing-loading 
(mg/S= 250 N/mZ), lift coefficient (C~=l.0), and drag coefficient (Co=O.l), the minimum 
gradient is estimated to be about 0%. This  exceeds the gradient typically observed within 
several meters of the ocean surface [Cone,  19641. 

state flight cycle that only considers an upwind climbing segment where  angles were fixed at 
p = n , and y = n / 2  , and a downwind diving segment with p = 0 and y = -n / 2 .  Flight 
segments connecting these two were not considered, but domains of  maneuverability in 
the i,V phase plane were calculated assuming most of  the cycle is spent on the two longitudinal 
legs. There are two steady aerodynamic states (one  on each  leg),  and the aircraft “chatters” 
between  them,  with  an intermediate mean  state that represents a stable “chatter control”  state. 
Hendricks determined a necessary condition for sustained flight is 

A similar approximation was  worked out by Hendriks [1972],  who graphically solved a two- 

- > 2c,v dU 
dz 

- 24 



The shear gradient required for the more realistic inclined-circle cycle with continuous variation 
of states is, not surprisingly, significantly greater. 

To estimate the maximum velocity attainable for a dynamically soaring aircraft, the 
integrated DS term can be equated  to the dissipation term over one cycle.  Under ideal dynamic 
soaring conditions, the thickness scale of the shear boundary is insignificant compared to the 
scale of the aircraft, and there is an instantaneous jump in  wind  speed  (AU) across the boundary. 
The equation can  be  written: 

V,, = K(AU)(L/D) (22) 

where K is the reciprocal of  the factors in the inequalities (20) and (21). These values provide 
approximate  upper  and lower bounds for a simple circular cycle (0.2 < .K < 0.5). LID is the lift- 
to-drag ratio, which for a clean sailplane can exceed 50. By executing circular DS cycles across 
a 25  mph shear boundary, such a plane should be able to achieve airspeeds in excess of 250 mph. 

Field observations of actual albatross flight reveal dynamic soaring patterns that are much 
more complex and  sophisticated  than those analyzed in this section. Clearly the real world is 
more complicated than our idealized equations of motion are able  to capture. Nevertheless, the 
models considered thus far provide the insight and understanding required to develop the 
computational  methods  discussed in the next section. 

111. COMPUTATIONAL  MODELING 

In reality, lift and drag are much more complicated functions of an airplane’s angle of attack, 
sideslip angle, and other details of its state in three dimensional space, and the body  is  subject  to 
torques about its  three axes as  well as three components of force. To realistically simulate the 
flight of a bird or airplane requires that its equations of motion be solved with six degrees of 
freedom  (“6-DOF”) using a more accurate nonlinear aerodynamic model. Fortunately there are 
various codes available that are appropriate for this problem. Special versions of these codes 
were created for this project, so that dynamic soaring could be more realistically modeled. A 
realistic  UAV sailplane model  was developed based on NASA flight tests of a full-scale 
Schweizer SGS 1-36 sailplane and scaling it to a model  with an eight-foot  wingspan. The 
various codes are summarized in this section, as well  as  results showing the feasibility of 
dynamic soaring for a realistic UAV  model. 

A. LaRCsim 

Early  in this project, LaRCsim was  identified as the code of choice for the full 6-DOF 
dynamic soaring simulations and optimization because it  was a stable code and the source was 
available from NASA  and  could be modified or linked to  user-defined control routines. 
LaRCsim was developed  at  NASA Langley Research Center as a computational flight dynamics 
model for debugging aircraft flight control laws, and is a direct descendent of BASIC, a set of 
FORTRAN simulation routines  written  at NASA Ames [McFarland, 19751. These were further 
developed by  Jackson  [1995] for the Naval  Air Warfare Center, and  then rewritten in ANSI  C to 
take advantage of the RISC architecture of workstation-class computers of the 1995. It solves a 
full set of equations of motion for rigid-body flight, with  all  six degrees of freedom [e.g. Stevens 
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& Lewis,  19921.  It includes  full  earth geodesy, gravity, and atmospheric models, and can be 
applied to low-earth orbital flight as well  as atmospheric flight. 

LaRCsim has a number of features that made it attractive for investigating and developing 
dynamic soaring  strategies with realistic aircraft and atmosphere models. It models moments as 
well as forces, so vehicle properties must include a moment of inertia tensor and aerodynamic 
moment parameters in addition to  mass  and aerodynamic force parameters. It also models 
moments  and forces due  to engine thrust, and  moments  and forces due  to landing-gear  drag. 
Unlike the simple Cartesian three-dimensional numerical analysis developed in the previous 
section, LaRCsim models flight using a rotating oblate spheroidal earth  using both geocentric 
and geodetic coordinate systems, allowing cross-country flight to be simulated in a way that 
keeps track of the actual curvature of the Earth, and accounts for  the  Coriolis  effect. An 
atmospheric model is  built into the code, using a  cubic spline function (in a  lookup table) as  a 
smooth interpolative fit to the  1962 standard atmosphere that tabulates air density up  to 75,000 
feet. Higher order spherical harmonic gravity terms are included to account for  the nonspherical 
figure of the  Earth. For the angular orientation, quaternions are used to avoid the pole singularity 
when  the pitch angle is vertical. 

allow user-defined local air mass velocities that include both steady and transient (gust) 
components. This  allows shear gradients to be modified at will for the analysis of dynamic 
soaring in steady laminar flow, or of gust soaring in turbulence, or  of  any combination of these 
and other types of wind fields.  A flight session can be initialized to start anywhere in  the world, 
and  the aircraft can be piloted using keyboard and mouse interfaces. A very important feature  is 
that flight data can be output to a file for plotting .and post-flight analysis. 

Unfortunately, LaRCsim suffers from the drawback of lacking visualization capabilities, 
using only a text-based user interface (using curses). Another shortcoming is the fact that  certain 
flight parameters are hardwired and the code must be recompiled whenever they are changed. 
Most problematic is  its dependence on Silicon Graphics GL workstation debugger symbol tables 
to access static and global variables for display and recording. These important features did  not 
survive porting to  other workstations. While LaRCsim enabled the first full 6-DOF dynamic 
soaring simulations, its lack of platform independence and other limitations made it necessary to 
choose between rewriting LaRCsim or finding another computational tool. Fortunately, the 
world of open-source  code development allowed the  second choice to be viable. 

One feature that made LaRCsim particularly useful for the present application is  its ability to 

B. FlightGear 

In late 1997, an open source flight simulation project called FlightGear incorporated 
LaRCsim as its default computational flight dynamics model (FDM).  The FlightGear Flight 
Simulator (FGFS) developers ported LaRCsim to  a variety of other platforms and created  a 3D 
graphics interface using OpenGL for the purpose of maintaining a system-independent simulator. 
Because FGFS source code is available under  the  GNU General Public License, it has attracted a 
variety of professionals from research and academic environments to its development team, 
which has greatly enhanced its quality, features, and usefulness over the  past few years. By 
keeping the  code open source,  it is much  more useful than commercial simulators which are 
proprietary and lack extensibility necessary to  be  used for research. Moreover, the open-source 
licensing allows inter-organizational and international collaborations to emerge. Over 50 code 
developers, engineers,  scientists, and hobbyists from around the world have contributed to  the 
project. One of the greatest advantages of using FGFS for research is that it will  not become 
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“frozen” when the project is over. As  new software libraries, improved hardware, and  more data 
become available, there will  be a developer somewhere who  will incorporate them into FGFS. 

For a research project such as  this, the platform independence of FGFS is important. The 
current release (7.10) runs on all distributions of Linux, Windows NT/2000/XP, Windows 
95/98/ME, BSD UNM, SGI IRE, Sun-OS, and Macintosh. It consists of more  than 150,000 
lines of C/C++ code. By using OpenGL, it produces high quality 2D and  3D graphics with 

a CVS repository and modern software engineering techniques, the individual researcher can 
maintain version control and  merge her local changes and additions with those in the  current 
development version. FlightGear is managed using the SourceForge collaborative software 
development platform. 

Much of the development of FGFS is devoted to  the  “bells and whistles” that  would be out of 
reach of a developer in a ordinary research environment. For example, terrain rendering is based 
on  more than two gigabytes of U.S. Geological Survey data (based on satellite imagery) that can 
be downloaded from the internet for any location on Earth. This capability can be seen in Figure 
12, which shows a frame from a special version of FGFS (developed for this project) that flies a 
hardwired lemniscate pattern over Albuquerque. To emphasize the  main advantage of using 
FGFS,  if the USGS data format is changed or goes to  a higher resolution, in all likelihood this 
change will be nearly transparent to the researcher because one of the  many developers will 
adapt the code, which is  a “living” entity. Other features  include  a “sky dome” in  which  the sun, 
moon, planets, and stars  are in their proper positions, texture-based scenery which includes user- 

? frame rates of over 70/sec on a Dell 610 workstation with a high-end  3D graphics card. By using 

Figure 12. Frame capture of simulation over Albuquerque, flying toward Sandia Mountains. 
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defined haze density and cloud layers, a heads-up display (HUD) that provides graphical display 
of flight data,  a rudimentary autopilot that includes heading and altitude hold modules,  and audio 
support, which allows users to customize sound feedback based on flight parameters such as 
altitude, airspeed, or total energy. While these features  are not  required for  ninning simulations, 
they are very useful for “pilot in the  loop”  tests,  for developing intuition, for replaying flights, 
and for demonstrations. 

Over the three-year course of this project, the rate of improvement to FGFS has been 
spectacular, and other researchers are also making use of it and aiding its continued 
development. This network of researchers gives FGFS even more value to  the individual 
worker, because it provides a built-in technical support group and field of potential collaborators 
For example, a University of Illinois at Urbana-Champaign (UIUC) aeronautical engineering 
group is  using FGFS to  develop an autonomous “smart icing system” that will use a neural 
network  to improve flight safety in atmospheric icing conditions by sensing changes in an 
aircraft’s performance characteristics and assist  the pilot in responding properly [Sehgal, 20021. 
The U. Illinois team has added 15 new aircraft models to  the FGFS database, including a 
reconfigurable aircraft model that includes aircraft icing effects.  This  capability of incorporating 
a dynamically changing aerodynamics model into  a flight simulation can certainly be applied to 
simulations of soaring birds as well. This would allow unprecedented simulation  fidelity of birds 
(or dynamically changing UAVs),  which until now  have  been  modeled as  static rigid bodies. 
Moreover, adaptive reconfiguration strategies could be investigated for application to smart 
autonomous UAVs. 

Other research groups are  also using FGFS to aid the development of autonomous UAVs. A 
group at University of Wales, Aberystwyth, is building a virtual environment to simulate the 
flight of a lighter-than-air intelligent robot (“aerobot”)  to be  used  in planetary exploration. FGFS 
is being coupled to  a computational fluid dynamics (CFD) code  to generate realistic 
meteorological conditions, and the digital terrain model is derived for  Mars from the Mars 
Global Surveyor orbiter’s laser altimeter. FGFS is also being used by the  Simon Fraser 
University Aerial Robotics Group to develop another autonomous UAV, the FireMite. 

versions while minimizing conflicts with other parts of the  code. Because the modules can be 
compiled independently, the entire code does not  need to be re-built whenever a change is made 
to a particular module; it only needs to be re-linked. The default flight dynamics model for 
FGFS has been a version of LaRCSim, but various groups have contributed their own FDMs that 
can  be chosen at run time. For example, the  UIUC group has written and integrated its own 
UIUC-Aearomodel code as a wrapper interface around LaRCSim, and a newer FDM, called 
JSBSim has been written that incorporates the  flight dynamics and other functions of LaRCSim, 
but by taking advantage of the object-oriented capabilities of C++. JSBSim has emerged as the 
new default FDM for  FGFS, and for that and other reasons was  chosen  as the FDM for  the 
current research project. 

The high degree of modularity of the FGFS code encourages researchers develop their own 

C. JSBSim 

In addition to its  other disadvantages, LaRCsim was unable to read flight  characteristics and 
aerodynamic properties of a specific aircraft from a  data  file.  To model a  different kind of 
aircraft, the  code had to be modified and recompiled. For some applications, this  is acceptable, 
but it makes LaRCSim very difficult to  use as  a research tool. The UIUC approach was to write 
a wrapper interface that allowed other aircraft models to be implemented, but this method still 
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has  its limitations. Over the past  few  years,  a  new  open-source FDM was  written  in  C++ as an 
object-oriented code with emphasis on  configurability. JSBSim also  takes  advantage  of the C++ 
features  of  polymorphism,  inheritance, and encapsulation. Because of its flexibility and use of 
configuration  files  and  scripting,  it  has just recently  replaced LaRCsim as  the default FDM for 
FlightGear.  A standalone version of JSBSim was  developed  simultaneously  with  the  FlightGear 
version,  which allows it  separated from the computationally  intensive components of FlightGear 
for use in fitness evaluation and flight behavior  development.  JSBSim,  together  with  FGFS,  is 
ideally  suited for this  research  project. 

The stated  goals of JSBSim are: 1) to  allow  different  aircraft  to  be  modeled  without  writing 
new code, 2) to be  open source and  run on any  platform, 3) to be useful  as  a  tool in studying 
flight dynamics and as a  showcase for some of the equations, and 4) to  be executable in  both 
standalone  mode  and  integrated  with  FlightGear (or any other flight simulator). The last goal 
also  provides  a  strong  motivation  to  use  JSBSim,  not  only  because  it allows the  flight  dynamics 
to  be decoupled from the  computationally  intensive  graphics  rendering,  but  because  it can be 
integrated  with other tools.  For future work involving robotics  applications, it will  become 
important  to  port  the  knowledge  and tools developed  to Sandia’s existing  robotics  simulation 
tools  such as Umbra  [Gottlieb et al. 20011. Since both JSBSim and  Umbra  were  designed  from 
the start  to be modular and easily  integrated, it makes sense to  work  toward  integrating  them 
with one another. 

One of the most  important  attributes  of JSBSim is  the  capability  to  accept  the  specifications 
for a  flight  control system of any  level of complexity  by creating a  user-defined  configuration 
file. These files  are  in XML format and contain  a table of  aerodynamic  stability  derivatives, as 
well as mass  properties  (moment of inertia  tensor and center of gravity), landing gear,  propulsion 
system,  and control surfaces  (ailerons,  elevators,  rudder, flaps, and spoilers).  Aerodynamic 
coefficients can be  expressed  as  constants  or as 1D or 2D  tables to account for nonlinearities  and 
dependences,  allowing  much  more realistic behavior  than the numerical  models  described  in 
Section I1 of this report can provide. 

Another feature of JSBSim that is useful for this project is that it can simulate a  complex 
flight  control system using  information  provided but the user in the aircraft  configuration  file. 
The simplest  control system would  be  a linear scaling factor that  converts the movement of an 
input  device (e.g. mouse or joystick) to  a  control  surface  deflection command. JSBSim allows a 
much  more  sophisticated control system that can be assembled  using elements such  as digital 
filters, scheduled  gains, and sensor inputs.  This can  be extended to calls to  user-defined  genetic 
programs or other evolutionary  methods. The flight control system is  built up of sequential 
commands,  starting  with  the  pilot control input  (typically  by using a  3-axis joystick for rudder, 
aileron,  and elevator control). In the simplest  case, the only  thing  between the joystick and  the 
control surface  would be the linear scaling function.  For  trim,  stability,  and  autopilot  control, 
various  means  of feedback can  be  employed. In a  more  advanced control system, the joystick 
output can be  combined  with  values  derived from sensor outputs such as indicated  airspeed, 
altitude,  pitch  angle,  heading,  GPS  coordinate,  magnetic  declination, or acceleration. As part of 
the chain  of control, the sensor outputs can be combined with one another  to  yield  physically 
meaningful state values such as total energy. In this case,  temperature, altitude, and  barometric 
pressure  can  be  used to convert  indicated  airspeed  to true airspeed,  which can then  be  squared, 
halved  and added to altitude  to  give  instantaneous  total energy relative  to the air  mass. These 
derived  values can be  used to provide  situational  awareness to the control system, or can be 
compared  to  threshold  values  to  switch  the  control system from one mode to another (as in the 
case of policy tables to be  described  in  Section V). 
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To make JSBSim  into  a useful tool for investigating dynamic soaring and developing flight 
strategies, it was necessary to modify it to simulate various three-dimensional vector wind fields, 
such as the laminar boundary flow analyzed in Section II. This turned out to be straightforward, 
as  is the implementation of a turbulence model for the investigation of extraction of energy from 
gusts, which  will  be the subject of future work. Another necessary modification was  to output 
data to a  file in a  format that could be read  and plotted by a graphing package such as Microsoft 
Excel, and  to  be able to import the  data from the log  file  into FlightGear so that a given flight 
could be replayed--even if  it  was originally generated by JSBSim in standalone mode. This 
allows JSBSim to  be used to  do  a  fitness calculation as part of a genetic program without 
graphics, with  the best flights to  be saved and played back or plotted for analysis. Using JSBSim 
for developing flight behaviors for a UAV also required the development of a realistic flight 
model for a small glider, described in the next sub-section. 

D. UAV model characteristics 

For  the full  six-degree of freedom flight simulations, it  was necessary to  develop  a more 
realistic aerodynamic model than the  one that was used to model albatross flight in the previous 
section. Fortunately, extensive wind  tunnel  and flight  data  are published for  a modified 
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Figure 13. Modified SGS 1-36 sailplane, and pitching moment, drag and lift coeffiecients  as a 
function of angle of attack for two Reynolds number conditions  [from  Sim, 19901. 
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Schweizer SGS 1-36 Sailplane [Sim, 19901. This is a single-seat, T-tail  unpowered aircraft that 
is used commercially as an  advanced trainer and  has many characteristics that are typical of full 
scale and  model sailplanes. Force  and moment data were collected using wind-tunnel tests  at 
NASA Langley, and flight data were obtained from flight tests  at  NASA’s  Dryden Flight 
Research Facility. Pitching moment, drag, and lift coefficients from this  report  are  plotted as a 
function of the angle of attack in Figure 13. The instrumentation for the flight tests consisted of 
26 channels of data  that  were  used for the derivation of aerodynamic stability derivatives. The 
flight data included  three-axis accelerometers and rate gyroscopes, a pitch  and roll attitude 
gyroscope, a Pitot-static  port for static and dynamic pressure (for altitude  and airspeed), and 
control surface position  sensors.  The moment of inertia tensor  was determined with a physical 
measurement  on the ground. It is notable that  the  modified glider used for these measurements 
had a significantly lower aerodynamic performance as measured by the lift-to-drag ratio, because 
the  test  plane  was extensively modified. Thus, using this  as a model in JSBSim tends to 
underestimate  the performance of a real glider. 

Table 3: Characteristics of Schweizer SGS 1-36 Sailplane 

The  aerodynamic properties are defined by the partial derivatives of various coefficients as a 
function  of flight state variables. Coefficients include axial, normal,  and  side forces, rolling, 
pitching, and  yawing moments, lift, and drag. Flight state  variables include roll, pitch, and yaw 
rates, velocity, angles of attack  and sideslip, pitch  and  bank angles, and control surface positions. 
The significant derivatives were extracted from the NASA report by reading them off the graphs 
(interpolating and extrapolating when necessary). These were input into a JSBSim configuration 
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XML file that is read  at runtime, and are listed in Table 3. The  full-scale model was “test-flown” 
using FlightGear’s “pilot-in-the loop” capability by  two experienced sailplane pilots. They used 
a  joystick  for control inputs and  viewed  the 3D graphics using a large wall-projection system. 
The aerodynamic stability  derivatives were tuned somewhat based  upon their comments. The 
major criticism by the  pilots was  not  about the accuracy of the flight performance, but the about 
the lack of certain  sensory  cues experienced when flying real gliders. The lack of a side view 
made it very difficult for one  pilot  to maintain situational awareness and control  the model’s 
attitude. The other pilot  was  more concerned with the lack accurate changes in wind sound, 
especially  the increased volume of wind noise during high-sideslip-angle flight.  To  create  a 
realistic 8-foot UAV model, the full-scale SGS parameters were appropriately scaled. The 
values in Table 3 are dimensionless, so they remained the same. The lifting surface spans were 
linearly scaled; areas, masses, and moment constants were scaled by powers of 2,3,  and 5, 
respectively. Flight data from this scaled model  were collected during dynamic soaring 
conditions, as summarized in  the next sub-section. 

E. Dynamic Soaring simulations 

A special version of FlightGear was created for this project, allowing flight in arbitrary wind 
fields to be modeled. Rudimentary models of thermals, slope  lift, and turbulence were tested, 
but the main focus was laminar shear for developing dynamic soaring  strategies. A logarithmic 
boundary layer was implemented in an attempt to determine the  difficulty of dynamic soaring in 
typical low-altitude marine atmospheric conditions.  The most useful wind field was a simple 
velocity step  function, which simulates the leeward hill slope separation flow in  which radio- 
controlled dynamic soaring has actually been successfully flown. Flight  under such conditions 
requires a  significant  degree of practice and  pilot skill  (the experienced test pilots were  not 
immediately able to do  it). The most successful strategy is to attempt to fly in an inclined circle, 
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Figure 14. Dynamic soaring simulation using 8-foot scaled Schweizer model with modified 
version of JSBsim. 
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similar  to  the one numerically  analyzed  in  section II(d), keeping the plane of the orbit  as close as 
possible  to the plane of the shear layer. Tight  turns are required  necessitating  very steep bank 
angles. This is  consistent  with  the  perturbation  analysis  of Hendriks [1972] from which an 
optimal bank angle of 55’ from  the  horizontal  was  derived,  and  is  also in agreement  with the 
observations  by  Idrac [1931] of albatross soaring in the  shear  boundary  layer  at sea. Data  were 
logged for flights under  various dynamic soaring  conditions and can  be  plotted or played  back 

altitude  logged from a flight  in a shear  layer  with a velocity jump of 33.8 feet/sec for the scaled 
8-foot Schweizer sailplane. The shear  boundary is horizontal  at an altitude of 100 feet, and the 
airspeed  increases  by a value close to the velocity  difference for the  optimal  upwind  and 
downwind  shear  crossings.  Total energy is calculated and  put into altitude  units, and is seen  to 
be  increasing  with  time. This data is quite similar to that  collected from an actual flight test  (see 
Figure 20). 

Further  refinements in JSBSim,  however,  will  be  required  to  model  the  detailed  interactions 
between steep wind  velocity  gradients and an aircraft  under these conditions. In this case the 
wind  gradient  is so steep that  when the glider passes through the shear  layer,  different  parts of 
the  plane experience different  airspeeds. In reality,  this  would  result  in a torque on the aircraft, 
but  in the current  simulation the wind is only  defined  at a single reference  point, and the  glider 
effectively experiences a uniform air velocity  at  any  instant in time. 

T using the replay  option of the modified  version of FlightGear. Figure 14 is a plot of airspeed  and 

IV. FLIGHT TESTS 

Fortuitously, the first  radio-controlled  dynamic  soaring flights were  successfully  flown at 
about  the same time  that this project  was  initiated. The pioneer  of  this  mode of flight  was Joe 
Wurts, who-in addition  to  being an aeronautical  engineer  at  Lockheed-Martin Skunk Works 
and  specializing in micro-UAV  development-is a National  and  World  Champion  radio- 
controlled  sailplane  pilot. The explanation for his  “backside”  flights  was  initially  met  with 
considerable  skepticism  both  within and outside of the  recreational  radio-controlled  flying 
community, but  over  the  past  few  years  more  r/c  pilots have learned  how  to do it. “DS” has sinct 
become  somewhat of a fad because of the  very  high  speeds  that  can  be  attained (one of Wurts’ 
flights  was  unofficially  clocked  at 156 mph  using a radar gun), greatly  exceeding  those  normally 
achieved in sustained  unpowered flight. Based  on  his  achievements  and  technical  expertise,  Joe 
Wurts was  asked  to  be a collaborator on the  flight test portion of this project. 

Figure 15. Dynamic soaring  flight at Parker Mountain, Calif. (photo:  Paul Naton). 
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A. Dynamic  Soaring in a Shear Boundary 

Hendriks [1972] was  also the first researcher to recognize  the possibility of dynamic soaring 
with a radio-controlled glider, but  his  attempts to demonstrate it in  wind shear over flat terrain 
were unsuccessful. Wurts’success was due to his discovery was  that the wind velocity field on 
the  leeward  side of some recreational slope-soaring hills was  ideal for dynamic soaring of model- 
scale sailplanes. This is due to a separation of the flow fields when a prevailing upslope wind 
reaches the top of a hill or ridge  and does not  mix  with  the  stagnant  air on the leeward side. 
Under certain conditions the flow fields remain  separated for a long distance down wind,  and a 
stable,  very steep velocity gradient exists over a large enough area for radio-controlled sailplanes 
to maneuver.  Parker Mountain is a popular  southern California flying location where such 
conditions are common. It is actually a saddle ridge  that is oriented perpendicular to the 
prevailing onshore wind. The topography  rises  at a constriction  at the downwind end of a large 
valley, so wind velocities tend to be high  and consistent. Moreover, the orientation of the ridge 
lends  itself to solar heating of the uplifted  air parcel, causing it  to be locally unstable on the 
windward side. As air passes over  the  ridge the temperature profile becomes inverted because the 
stagnant downwind air mass is colder. Under ideal conditions, this temperature inversion tends 
to damp out any shear instabilities that form in at the flow  boundary,  and it remains extremely 
sharp  and suitable for dynamic soaring. Figure 15 shows a sequence of images of a dynamic 
soaring flight by Joe Wurts at Parker Mountain. 

B. EPP foam sailplanes 

Another fortuitous development of the late 1990s was the pioneering of the use of expanded 
polypropylene (EPP) in the manufacture of cheap, very durable, model aircraft. Expanded 
polystyrene (i.e. Styrofoam) had  been a popular  model  aircraft  material for a number of years 
because of extremely low cost and manufacturing ease, but suffers several drawbacks. Most 
significant is its relatively  low elastic limit, which allows it  to  break  upon impact or by 
significant  point loading. Another  problem  is that its preserves surface deformations such as 

Figure 16. Sandia test glider, the “DS Beast”  is  used to collect the first airborne data during a 
dynamic soaring flight at Parker Mountain, California on Nov.  16, 1999. Lef: Plane Builder  Pat 
Bowman holding glider with  P.I. Center: Pilot Joe Wurts launching into wind. Right: Glider 
executes  upwind dynamic soaring run on leeward  side of ridge (Photo: Dave Reese). 
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dents and scars, so even  without a catastrophic crash Styrofoam airplanes age poorly. The lack 
of durability of this material  greatly offsets the savings due to its low cost. 

Expanded polypropylene, on the other hand,  has  mechanical  properties  that  make it far 
superior  in terms of durability, which  ultimately keep the cost much  lower because replacement 
expenses are minimized. It's lower bending and torsional stiffness allow it to recover from 
severe deformations and impacts, and it tends to bounce rather than  break. One of the pioneers 

planes ("the DS Beast", see Figure 17) for this project, which  was  outfitted  with  instrumentation 
and a data logging capability. It  was  with this plane that we collected the first in-flight dynamic 
soaring data. 

f of EPP  foam for r/c aviation applications, Pat Bowman, was given the contract to build  three  test 

C. Data Logging 

A set of data loggers (Figure 17) and  control software was  designed  and built for this project 
by  Jennings  Engineering, Inc, with the following specifications: 

Enclosure Size 

Width: 3.70" (94mm) 
Length: 4.75" (12Omm) 
Height: 1.34" (34mm) 

Figure 17. Jennings custom data loggers with power supplies and  battery chargers. 
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Weight: 8.4 02. (240 grams) 

Batterv Cauacity 

Operating  Life: Approximately 2 hours (5 hours  with charger connected) 
Recharge time: Approximately 4 hours (data logger off) 

Storage Cauacity 

Memory: 4 MB battery  backed  up static ram (3.90 MB available for data storage) 
Recording time: Approximately  24.5 minutes total (at the  default data recording rates) 

Recorded Parameters and  Rates 

Acceleration: 3 axis, +/- 50 g full scale, 100 sampleskecond 
Angular rate: 3 axis, +/- 480 deg/second  full scale, 100 samples/second 

Magnetic fields: 3 axis, +/- 1.5 gauss full scale, 20 samples/second 
Dynamic pressure: 0.7 psi full scale (approximately 200 mph), 20 sarnpledsecond 
Static pressure: 15 psi full scale, 20 sampleslsecond 
Servo commands: 8 channels, 20 samples/second 

GPS: Latitude/Longitude/Altitude/Course/Ground Speed, 1 sample/second 

D. Flight Data 

The data logger hardware and software, designed  and  built  under contract, includes 3-axis 
accelerometers, 3-axis gyros, magnetometers, dynamic and static pressure sensors, GPS,  and 
control surface data commands, with 4 Mbytes of static  ram for collection of about  25 minutes of 
flight  test data. Logged data can be converted  to  airspeed, altitude, and total energy, and 6 
degree-of-freedom position and attitude histories can be extracted. We have collected data for 
three  test flights in dynamic soaring conditions, and  have  analyzed  the data to  show 
unambiguously  that dynamic soaring  can  be  used to sustain  flight in a fundamentally different 
way  than static soaring 

Figures 18-21 show four selected one-minute intervals of the full 22-minute record of a DS 
Beast I1 test flight on Nov. 16, 1999 at Parker Mountain, California.  Data from the onboard data 
logger are plotted with notations that describe events and flight patterns. GPS data are excluded 
from the plot. Total energy is  plotted  in  units of altitude, derived from true airspeed (corrected 
for density altitude) and altitude from Pitot-static  system. In the upper graphs the vector sum of 
the magnetic field is plotted after calibration and  removal of the B field induced by  the circuitry 
of the logger. Three-axis accelerometer data are shown  in blue. For the lower  graphs, control 
inputs are derived by unmixing the  recorded pulse-code modulated  signal to servos  on four 
control surfaces. No independent yaw control  was  used  in this test flight. Three-axis gyro data 
are plotted  with  vertical offset. In order to  help interpret the recorded data, notes  were also 
logged during the 22-minute test flight (Appendix C). 
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Figure 18. First minute of flight, showing data for launch and climb-out. 
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Figure 19. Second minute of flight, showing data for static soaring climbs and dives. 

- 3 8 -  



Figure 20. Seventh minute of flight, showing  data  for dynamic soaring shear crossings. 
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Figure 21. Final minute of flight, showing shear crossings and landing. 
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For about 20 seconds  prior  to  launch,  the  aircraft  was  held  steady  and  pointed into the  wind 
above  the  shear  layer to record  the  wind  speed  as an estimate of AU, about 20 feedsec (Figure 
18). For the  first  minute the aircraft was held  at constant airspeed  and  was flown in slope lift on 
the windward side of the ridge,  resulting in a  steady  climb. This was followed by  a  series  of 
climbs and  dives on the windward side to record the flight  characteristics  of the sailplane  (Figure 
19). The variation in altitude during these 8-second oscillations  was  between 100 and 200 feet, 
and the airspeed  varied  between  about 30 and 90 feedsec. Several times during the  high-speed, 
low-altitude  phase of the  cycle, the normal (z) acceleration  exceeded 7-8 g. These high 
velocities and accelerations  led  a  high rate of dissipative energy loss due to  drag,  and  this rate of 
loss exceeded  the  rate of replenishment  by the slope lift,  resulting in a  net  decrease  in  total 
energy with  time. 

The dynamic  soaring phase of the flight exhibits very  different  behavior (Figure 20). The 
period of the cycles was  about  the same, but  the  airspeed  remained  high (> 80 feedsec) 
throughout  the  series, so the dissipation  rate  was  much  greater.  Nevertheless,  there  was  a  net 
increase  in total energy due to  the  two  shear crossings for every cycle (the velocity  increase 
during the shear crossings averaged  around 20 feet/sec, consistent with  the  previous estimate of 
AU). Assuming  that the K value for  this cycle is  about 0.2, the LJD ratio for this plane can he 
estimated from equation (23) to  be  about 22. 

V.  EVOLUTIONARY  BEHAVIORAL  ENGINEERING 

This  part of the project extends the work of Pryor [1998] and Barnette et al. [2000] who 
applied  evolutionary  methods  to  the  development  of  robotic  behavior. Pryor [1998]  originally 
developed  a  genetic  programming  model to solve a suite of  high-level  robotics  problems. The 
motion of Pryor’s  “robugs”  was  idealized  and  highly  constrained so that  the focus of his 
evolutionary  model  could be on  high-level  navigational behaviors and  goals.  Low-level 
maneuvering  issue--such as locomotion,  steering, and braking control--were not  initially 
addressed.  Instead, the simulated  robugs  were  constrained  to move on  a  discrete  two- 
dimensional square grid  with  instructions  such as “turn” or “move  ahead”. 

Behaviors  were  automatically  generated using a  genetic program to solve a  series of 
problems  in  which  robots are randomly  distributed on a  grid  with  obstacles and rewarded for 
finding a source that  is emitting a  signal. The required  high-level  navigational  behavior can be 
encapsulated as a computer program,  which can be engineered  by  a  variety  of  methods.  In  the 
simplest case-when effective rules are easy to conceive and  implement+he  behavior can be 
coded  by  hand. For trivial  goals,  common  sense is all  that  is  required for inventing rules. More 
difficult challenges require more  sophisticated  solutions,  which can be  generated  by  a  variety  of 
optimization  methods  including  thermodynamic  analogy  models,  conventional  guidance  theory, 
or reinforcement  learning. 

It is important to recognize that-whatever method is employecCbehaviora1 engineering  is 
not  a  true  optimization  problem. The types of problems  that are likely to be of most use are 
analytically  intractable and involve  behavior  that  operates in a  noisy,  changing,  real-world 
environment.  Any  optimization  method that is  applied to designing for such  an  environment  is 
going to yield  a  solution that depends on the  simplifying  assumptions, and on the figure of  merit, 
chosen  by the behavioral  engineer. The global optimum may  strongly  depend on seemingly 
subtle differences in problem  representation.  It is therefore  important to focus on behaviors that 
are “good enough” and avoid  thinking in terms  of  “the  best,” because the best solution 
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determined  by some quantitative  test  will  always be an  artifact  of  the  problem  definition. 
Because  representation is the  most  important  part  of the problem,  and  will always be  based on 
the  discretion  of  the  researcher,  behavioral  engineering  is  as  much  of an art as  it  is  a  science. 

A. Genetic Programming 

Pryor  [1998],  and Barnette et al. [2000] outline the  details  of  the  implementation, and the 
specifics are not  repeated  here. The representation  allows  a  great  deal  of  flexibility,  and can be 
adapted  to  many  types  of  problems. The behavior  programs execute by  traversing  a tree that  is 
made  up  of  building blocks called  nodes,  which can either  be  a  function or a  terminal. Functions 
perform  operations  and  contain  pointers  to other nodes.  Terminals  return values that  result in an 
instruction  to the robot. The trees  themselves are generated  by  a  genetic  programming  model 
originally  developed  by  Pryor  [1998]  and  based on methods  described  by Koza [1992],  within  a 
general  framework  presented  by  Holland  [1975]. Genetic programming  is  a  type  of genetic 
algorithm, an evolutionary computing method that is  based  on  the  principles of biological 
evolution. 

not  synchronous because lifetimes  and  breeding times vary  in  length,  but evolution has been in 
operation for billions  of  years on Earth. In  the  model  they  are  synchronized for simplicity,  and 
the  number of generations is limited  by  practical  considerations  to  hundreds.  Each  generation 
consists  of  a  population of individuals. In nature  these are organisms  and the population size can 
vary  and can reach numbers of millions or billions. In the model they are computer programs 
and  the  populations  are  held  fixed for a  given  problem,  with  typical  sizes on the order  of 
thousands. The Darwinian  principle  of  “survival of the  fittest”  is  applied. In nature, any 
individual  that survives long  enough to breed  and  generate  offspring  is fit by  definition. In the 
model, each individual  behavior program is  assigned  a  numeric score based on a  “fitness 
function”  chosen  by the researcher to represent the problem, and survival depends on rank. 
Finally, the individuals must reproduce. In nature, the genotype  is carried by  DNA,  which  is 
mixed  between  individuals  by  sexual  reproduction, and random  processes  occasionally introduce 
mutations. The human genome contains  between  30,000  and 100,000 genes representing many 
millions of base  pairs. In the model,  the  “genotypes”  of  two individuals are mixed  with  a 
crossover  operator, and random  mutations  are  introduced  to  allow  exploration  of other regions  of 
the “fitness  landscape” (see Koza  [1992] for more  a  more  detailed  descriptions of these 
concepts). These artificial genomes have much  lower  information  content than DNA in  nature, 
containing  hundreds  of genes represented  by  thousands  of  bits of information. 

It  is clear that artificial evolution  does  not come close to the fidelity  of evolution in the 
natural  world  in  terms  of  numbers  of  generations,  numbers of individuals, or information content 
of the  genome. However, the largest  obstacle seems to be the fact that evolutionary computing 
methods are simulations, whereas  natural  evolution  operates  in the real  world.  Unless the “off- 
line”  simulation environment captures the important  characteristics of the  real  world,  successful 
individuals (behaviors) may  not survive in reality. In biology, on the other hand, the fitness of 
individuals is tested  “on-line”  under  actual  survival  conditions. 

This  project makes use of the  most  pragmatic  approach  and  rejects  the purist strategy  that 
“evolution  should  be  allowed  to operate on its own and  eventually it will find the best  solution”. 
For  this  application, the genetic  programming  methods  are  intended to extend  (but  not  replace) 
the  creativity  and intelligence of the designer. Unlike the natural  world, we do not have billions 

Evolution  takes place over many  discrete steps called  generations. Generations in  nature are 
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of years, the high information density of DNA, or large populations that  can generate behaviors 
from scratch  such as (for example) the dynamic soaring flight of the albatross. 

B. 2D Grid-based  albatross simulations 

Pryor [2002] defined  the  grid-based  UAV problem that became a benchmark for this project. 
The problem is similar to the robug problem in that the UAV is constrained to move on a two 
dimensional  Cartesian grid. The aircraft requires flight behavior logic  to  search for uplift  regions 
and investigate the surrounding area  without crashing. This problem is  more complicated than 
the robug  problem because of the  different procedures that  must be done sequentially. The agent 
must  search  and map the uplift region before the surrounding area can be explored, and 
conflicting goals of exploration versus exploitation (of the lift zone) must  be  balanced. This 
conflict was too difficult for a conventional genetic program,  and  more  advanced  methods  had  to 
be added. 

The benchmark problem is illustrated in Figure 22. A rectangular “lift zone” is generated 
with  its short dimension fixed at 20 units and its long dimension  randomly chosen from a range 
of between 85 and 105 units. The long-axis is randomly oriented along the x,  -x, y, or -y axis of 
the  Cartesian coordinate system. The rectangle is placed  such that the origin  is 5 units from one 

Trial I : fitness = -1 000 I 
I 
! Start zone 

I 

Figure 22. Benchmark problem for developing GP methods. 
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end,  and  centered  on its width. This leaves  between 80 and 100 units extending on one of the 
four  directions. A bird is placed  with  its orientation chosen  randomly from one of the four 
directions  at a random  location within a 100x100 square box  centered  on  the origin, at an 
altitude of 1x1 + lyl+ 20 units. When it is outside the lift zone, it loses  on  unit of elevation for 
every time step. Inside the lift zone it  gains one unit, up to a maximum of 250. It  moves one 
positive or negative unit along either the x or y-axis, every time  step.  It can go straight, turn left, 
or turn right (a recent  modification to the benchmark allows for U-turns). The fitness is defined 
by the maximum distance away from the origin  that a bird  reaches  before returning to the lift 
zone. The actual fitness is associated  with the evolved behavior  program, not with a given 
instantiation of the  bird, so the fitnesses of individual birds running the same program--but with a 
range of initializations-are averaged. If its altitude goes to  zero, a bird crashes and dies, and its 
contribution to the fitness function is assigned a large negative value. 

involves staged  and somewhat contradictory goals that force a balance  between exploration and 
exploitation. The conservative bird  will  stay in the lift zone to preserve  its life, but  will  get a low 
score.  The  bold  bird will fly away from the lift zone  and increase its risk of crashing. The highly 
ranked  bird  will require a delicately tuned algorithm. The  benchmark  also involves a set of  goals 
that  must  be accomplished in  sequence: 1)  the bird  must  find the lift zone, 2) the bird  must 
exploit the lift zone, 3) the bird must explore away from the lift zone,  and 4) the bird  must  return 
the lift zone. 

This would appear to be an extremely simple problem compared  to  actual flight, but  it 
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Figure 23. Benchmark GP problem  performance on CPlant. 
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C. YGP generalized  genetic  program 

f 

Many iterations of the genetic programming tool were  implemented by Pryor [2002] to tackle 
this problem,  with  varying  degrees of success. Versions of the code were written  with single 
trees, multiple trees,  and  various  trees  executed  in  sequence. This work  formed the basis of the 
evolutionary  model  employed for this project The details of Pryor’s work will be the subject of a 
future report. 

YGP  was  developed for’this project as a generalized version of Pryor’s GP,  with the added 
goals of 1) platform  independence, 2) modularity,  and 3) integrated visualization tools.  In  YGP, 
the  data structure of the tree that contains the flight control algorithm consists of multiple arrays 
that  keep  track of state variables (for flight simulation), calculated variables (for high-level 
situational awareness  and decisions), calculated integers (for policy table flags), registers 
(genetically calculated values)  and pointers (for multiple decision trees  that  depend  on policy 
flags). Array dimensions are  determined  at compile time,  and  depend on the evaluation function, 
the number of degrees of freedom of the flight vehicle,  and  whether  the flight space is discrete or 
continuous. By generalizing the genetic programming, behaviors for any environmental rules 
can  be  developed  with the same code, from the most basic (4 degrees of freedom, discrete space, 
simple flight rules,  fixed lift zone) to the most  advanced (6 degrees of freedom, continuous 
space, full  aerodynamics,  turbulent  boundary layer). We used the most  basic example as a 
benchmark because it runs much faster than a simulation that  must solve realistic equations of 
motion  at every time step. 

The only  version of YGP that  demonstrated fast convergence and  approached the theoretical 
best  solution for the benchmark  problem is the one  that implemented a policy table. This makes 
sense because of the sequential and competing goals described earlier. It is  because a bird in one 
situation, such as needing to find the lift zone,  needs to be running a very different  program than 
one in a situation where long-distance exploration is paramount.  For that reason, several trees 
were evolved independently, and each were called based  on the a policy table value that 
represented its current situation, such as 1) the bird has  not discovered the lift zone, 2) the bird is 
inside the lift zone, 3) the bird  has  reached  and altitude of 250, or 4) time  is running out. When 
such a policy table was  implemented, the ability of the code to find good solutions increased 
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Figure 24. Block diagram for YGP integrated with BirdBox. 
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markedly (Figure 23). 
Platform independence of YGP was achieved  by  implementing a text-based description of 

the  program trees in place of the original binary representation. These text trees are compact, 
with  about a 10  Kbytes storage requirement per behavior. The code was reorganized so that the 
evaluation routines were broken into modules  that  could  be called either from YGP or another 
(e.g. visualization) program (Figure 24). By  keeping the modules independent, the code could be 
applied to other problems simply  by inserting a different evaluation function. 

D. BirdBox visualization tool 

Finally, a cross-platform visualization tool called  BirdBox  (Figure 25)  was written  using 
OpenGL, GLUT, and GLUI libraries.  BirdBox allows a researcher to visually observe simulated 
gliders exhibiting flight behaviors that have been  evolved  with YGP. The user can  modify the 
camera rotation, camera translation, number of birds, size of birds, texture mapping, water 
animation,  and  screen update rate. GUI buttons provide the underlying functionality by allowing 
the  user to load a new  behavior file, and  switch to other environments. A data window displays 
time  and instantaneous information about the  bird state, such as distance, altitude, and current 
register. Birds are rendered  to appear as  animated  paper  airplanes,  eakh with its own color and 
shadow  on the ground to locate the bird  in the x-y plane. The same evaluation function 
subroutines that are used  in YGP are used  in  BirdBox,  with  the  same  data structure and  traversal 
function for the decision trees that are evolved  with  YGP.  BirdBox  was a useful tool to assist in 
developing YGP for the simple benchmark test, but for the more sophisticated flight analysis its 
function  was  replaced  by FlightGear, and  more  recently by Umbra. 

Figure 25. Screen capture ot BlrdBox  vlsuahzation  tool. 
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VI.  APPLICATIONS  AND FUTURE WORK 

Since the time of Lord Rayleigh, researchers have speculated on the possibility of imitating 
the soaring behavior of albatrosses to extract energy from the wind to power  human  flight. 
However, the more  that  was  understood about the aerodynamics of flight, the more it was 
realized that the  practical  aspects of the problem were insurmountable with  20”-century 
technology. Fortunately, in the final years of the century, advances on several fronts converged 
to make this dream possible if the definition of human flight is extended to include flight of all 
human-designed aircraft. Technology has  now  reached a state where  autonomous dynamic 
soaring UAVs, and perhaps swarms of these vehicles, are  within  reach. These advances include 
inexpensive consumer electronics for radio-controlled flight, durable foams for the construction 
of low-cost  small aircraft, powerful  but cheap programmable  palm computers to provide 
sufficient intelligence for control, lightweight GPS receivers for navigation,  small solid-state 
sensors for avionics, and  wireless internet communication for exchanging information  between 
aircraft. Simultaneously, the  world of radio-controlled recreational flight has just discovered and 
learned to exploit dynamic soaring for entertainment and competition, providing a new source of 
experience and information about  the  subject. 

The ultimate goal of this research is to develop UAVs that extract their locomotion energy 
from the local environment, have a high degree of free mobility  and endurance, adaptively 
modify their flight cycle to optimize energy harvesting, and have simple behavioral  rules  that  can 
be used  to  build collective intelligence. This project has  made progress toward  these goals by 1) 
developing an  understanding of dynamic soaring by numerically modeling  and optimizing 
simple cycles, 2) developing a variety of software tools that  can  be  used  to analyze and visualize 
dynamic soaring, 3) developing software tools  that can automatically generate flight behaviors 
that can be programmed into autonomous UAVs, and 4) designing and  building prototype UAVs 
for collecting and analyzing the first data from dynamic soaring flight in laminar shear. Such a 
small autonomous glider could cover large distances with  very little energy consumption. This 
device could have practical applications for aiding search missions, reconnaissance, or 
measurements of sea-surface or meteorological properties (e.g. surface and air temperature, 
barometric  pressure,  wind  speed  and direction, wave height, or even oil-slick characterization). 

These tools can also be used  to assess other strategies for wind-powered or wind-assisted 
flight. Extraction of energy from gusts is theoretically possible; it is well known that the flight 
performance of passive “dumb”  gliders decreases in turbulent conditions, whereas  vultures  and 
other soaring birds exhibit better  performance. One key to extracting energy from the  motion of 
the air may be the invocation of collective distributed intelligence of a swarm of aircraft that 
communicate their state  and  local conditions to one another. Even under atmospheric conditions 
that prohibit the extraction of 100% of flight energy from the  wind, it may be possible to 
radically increase the efficiency of powered flight by a judicious choice of flight behavior that 
can be discovered using the tools  developed  in  this project. 
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Appendix A 
Analytical  solution  for  horizontal  turns 

For  level flight in a horizontal  turn,  the lift is equal to  wing loading per unit mass, normalized 
to  gravitational acceleration, and the drag is equal to the (negative) change in  velocity: 

1 = (C2+I / 'R ,  d = - (dV/dt)/g ('41) 

where c is the centripetal acceleration divided  by  g. Equations (Al) and (5) become: 

dV/dt = -gaV2 - gb(c+l)N2 (A21 

If the  bird enters the turn with  velocity VO, the time interval for the  velocity to drop to VI is: 

where k4=b(c+l)/a. The definite integral can be solved exactly to  yield: 

At = - 1 V 2  - &kV + k 2  
2&gak 2 V 2 + & k V + k 2   k 2   - V 2  [ ilog 

+tan-' 

The initial  velocity VO is given,  but VI is unknown independently of At. We need a second 
integral  that  relates the velocity to angle, and solve for a 180" turn. We  use  the definition of 
centripetal acceleration, cg = VdfYdt, to determine the differential change in direction angle (8): 

Ab' = -dt = --dV cg cg  dt 
V V dV 

Substituting the drag-induced negative acceleration, with constant c, equation (A2) ,  yields: 

Ab' = - c I  V dV V dV 

V" aV4 + b(c + I)* 

This can  be solved analytically for VI in  terms of VO and A& 

VI = k /- tan tan _.-- 
. 
F 

By substituting (A7) back into (A4), the time required for the maneuver is determined. The 

Table 2. 
analytical  values for two turns  in Rayleigh's cycle are compared to  the numerical solutions in 
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Appendix B 
Genetic Algorithm 

t 

.-I The genetic algorithm code used  in the two-dimensional piecewise optimization (Section 
11) is written  in C++ and uses a modified  bit-string class of Capper [I9941 so that it has functions 
for mutate, crossover, and  various fitness evaluations. An “individual” class carries the 
phenotype, fitness value,  parents,  and last crossover point.  The  bit-string has functionality, such 
as Gray-Encode and Gray-Decode (to convert integers directly from and  to Gray). Binary-Gray 
and Gray-Binary conversion functions were  added,  mainly for testing purposes. For the 
optimization, the real number range is discretized into the appropriate number of intervals with 
sizes that  depend on the desired numerical resolution. This gives  the  bit- string individual 
enough flexibility to handle a real  number optimization, without the overkill one  might  get if all 
reals  had  to be represented by  type double, for example. 

vector consisting of the four parameters to be optimized. This phenotype is output for every 
individual of every generation along  with fitness determined by the fitness function. Fitness 
functions can  be customized to  handle  the  various flight cycles (such as the Cuban 8 cycle). 

The individual class contains the  set of variables “phenotype” which  can be thought of as a 

Representation 

Phenotypes  can  be determined by converting Gray-coded bit-string fields to  real  numbers. 
The following functions return the various phenotypes: 

double  bit array::Pheno-FunctionO(void) { //vO 
return 5*G;ay - Decode(0,8)/255 + 18; / /  range 18 to 23 
1 
double  bit - array::Pheno-Functionl(void) ( //vl/vO 
return  0.3*Gray  Decode(8,8)/255 + 0.5; / /  range 0.5 to 0.8 - 

(fraction  of VO) 
1 
double bit-array::Pheno-Function2(void) { //alpha 
return  10*Gray  Decode(16,8)/255 + 5; / /  range 5 to  15  (degrees) - 

1 
double bit-array::Pheno-Function3(void) { //beta(60-alpha) 

double  bit  array::Gray  Decode(void) { //decode  Gray  representation 
return  Gray  Decode(24,8)/255;  //range 0 to 1 

double  accum=O; 
int previous=O,  current=O,  powerof2; 
powerof2 = pow(2,max  bits-1) ; 
for  (int i=O; icmax  bits; i++) { 

- 
- - 

- 
- 

current = (previous+operator [ I  (i) ) $2; 
accum += powerof2*current; 
previous = current; 
powerof2 /=  2; 



I 

I 
Selection 

The GA was  run with scaled Roulette Wheel selection, using elitism with an odd-numbered 

return  accum; 

population,  and  with a copy of  the elite individual in the odd  position  that  never  Crosses over. 

Crossover 

Crossing Over within  the 8-bit real fields is  not  indicated  by the building blocks hypothesis, 
SO a crossover function was implemented so that  the fields would  be  treated as the building 
blocks: 

jcross = Uniform(1,max-bits-1); 

jcross = Uniform(l,3); 

jcross = jcross*8; 

/ /  Original  version of single  point  crossover 

/ /  This  is  the  version is  used  for  4 8-bit real6 

Mutation 

Likewise, mutation  should  be  treated differently when  the  bit strings are representing real 
values, SO a mutation operator preferentially mutates the rightmost bits of  each field, cone- 
spending to smaller changes in the real value. Here are the corresponding functions: 

for  (int i=O; icmax-bits; i++) ( 
/ /  Original  for  uniform  mutation 
double  d = drand48 ( )  ; 
if (d c =  pmutation) ( 
nmutation++; 
bitflip(i) ; 

I 
for  (int j=o; jc4; j++) ( 

for  (int i=O; ic8; i++) ( 
double  d = drand48()*2*(8-i)/8;  //backwards 
if (d c= pmutation) ( 
nmutation++; 
bitflip(i+j*8); 
cout<<llmutating  i = "ccicc" and j = "ccjccendl; 

I 
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Appendix C 
Flight  log for test  flight #3, Nov. 16,1999. 
Logger on. 
Hold in launch  Dosition  to  record  wind meed. 
Launch,  followe2  by  steady  climb  to  recokd  total  energy  gain  rate 
on windward  side. 
Series  of  dives:  steep  dive  to  north;  dive  to  south; 
"mild  dive"  to  north;  flip  switch;  loop  to  fly  through  gradient 

Low  altitude  passes; 
the  wrong  way. 

Joe  trying  to  keep  turns  to  within 5 feet  in  altitude. 

visually  bisecting  airframe  with  horizon. 
Still on front side, back  and  forth  slope  soaring. 

Downwind  dive  to  leeward;  Clockwise  (plan  view)  cycles,  constant 
altitude  4th  one  very  good;  Then  went  to  inclined  circles  with 
consistent  delta  altitude. 
Decreased  altitude. 
Went  from  circle  to  oblong  race  track; 

Went  front  to  reverse  to  CCW  cycles,  a  little  more  delta  altitude. 
so consistent  crossings of high  shear  layer. 

Some  shear  buffeting,  flying  almost  parallel  to  shear. 
Back  to  CW  plan  view  cycles,  now  flying  classic DS cycles  tried  to 
time  some  cycles: 8 . 5  sec, 7.9 sec. 
8.4 second  cycle  period. 
6.2 second  cycle  period. 
Switched  to  oblique  shear  crossing,  had  to  grab  some  slope  lift; 
some  big  cycles  to  get  more  than  a  few  GPS  pt/cycle. 
Higher  crossings. 

Mixing  it up, and will have  to sort  out from  data. 
Big  high cycles, a  big roll-yaw wiggle in  shear. 

Flipped  switch  and  went  up  front. 
Dive  parallel to hill, then  climb  parallel  to hill. 
Steeper  dive,  steep  upward  crossing  almost  perpendicular  to  shear 
interface. 
-75 degree  crossing angledail slide? 
Vertical  crossing  down  and up; top  of  plane ( + z )  was  pointed  down 
wind; no energy  gain. 
Circling  back. 
Dive  with  top ( + z )  upwind. 

no energy  addition. 
Crossing  toward  south  perpendicular  to  wind  direction 

Same  going  north. 
"Gassing  up" on front  side,  flying  south. 

Headed  south  through  boundary; N. through  boundary. no energy 
gain,  stalled. 
DS to  get  energy. 
Cross  below  and  then  above  interface  going  south. 
Big yaw like  a  weathervane  when  went  through  shear. 
Set  down.  Low  battery  light  blinking. 
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