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ABSTRACT

This report describes the results of research and development in the area of
communication among disparate species of software agents. The two
primary elements of the work are the formation of ontologies for use by
software agents and the means by which software agents are instructed to
carry out complex tasks that require interaction with other agents. This
work was grounded in the areas of commercial transport and
cybersecurity.
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1. Introduction

This project was conceived as research into agent mediation issues, focused on developing a
technological “Rosetta Stone” that would allow disparate agent systems to collaborate with one
another. We accomplished many of the original goals of the project, although not all in the way
first proposed. In the course of the project, we discovered additional important aspects of the
problem space and explored a number of these aspects as well.

We began by working with CMU to establish an operational version of their agent architecture in
our lab, alongside machines running Sandia's 2nd-generation agent architecture (SAA2). As we
made these systems interact with one another, we began to better comprehend the problem space
of general-purpose communication mechanisms in agent systems. To demonstrate and expand
our understanding of the issues we developed generalized mechanisms for describing and
executing complex patterns of interaction. This led to the invention of a number of software
components that we integrated with SAA?2 in the form of perception and schema-processing
frameworks.

Around this time, much of our work began to shift towards applicability in network security.
This led to the development of a number of security support protocols, and allowed us to test the
generality and capabilities of the communications framework that we had developed by applying
the technology in a domain it had not been explicitly designed to cope with. The process gave us
the opportunity to identify and improve a number of framework components where the
implementation had not fully realized the hypotheses. In the end we succeeded in constructing
operational systems of agents executing very complex communication patterns with one another,
based on the work we originally began with CMU.

The theoretical results of the LDRD effort are:

1. A more complete understanding of the problem of making disparate agent systems
communicate with one another,

2. The design of a general-purpose framework for enabling interaction between agents, and

3. An analysis of communication issues associated with security protocols in agent systems.

These theoretical results were realized in agent-based technology for executing speech acts in
KQML and a mature implementation of a general-purpose communications framework that has
since been leveraged repeatedly for many different tasks on other projects in our lab.

2. Background and Problem Statement

One of the difficulties in building distributed information systems is enabling disparate
components to share meaningful messages with one another. The issue is not so much in
constructing a network able to transmit data between the components, but rather in developing a
system in which all components can grasp the data’s semantic meaning.

“For an initiator to [understand] a respondent ... their messages must be ... grounded in a
shared ontology ... the lack of common definitions is known as the ontology problem,
and is the most challenging obstacle to widespread interoperability of heterogeneous,
distributed co-operating systems.” [1]

This problem must of course arise when components have been designed independently, but in
fact it can be an issue even when all components initially shared a semantic model, when
modifications and additions are not uniformly made. It has been said that “the main barrier to




electronic commerce lies in the need for applications to meaningfully share information” [2] and
it is clear that this barrier exists for other application domains as well.

The thesis of this project is that agents are a useful adjunct in addressing issues of
intercommunication among disparate processes. An agent is a computational thread of execution
(or set of interacting threads) that takes action based on input and its state without waiting for
explicit commands. As stated in our initial proposal, “agent-mediated information management
is currently the most promising solution to the problem of integrating and accessing large legacy
data stores and for utilizing networked information sources such as the Internet.” [3] The project
was engendered to explore the process of realizing this promise in a concrete setting using the
SAA?2 agents we developed.

We are not alone in our assessment that agents are the relevant approach. “Army, Navy and Air
Force researchers—along with defense contractor Lockheed Martin—have recognized software
agents as ‘absolutely critical’ in solving another long-standing frustration: The inability to share
data across the military's myriad computer systems.” [4]

But an agent-based approach can only facilitate the design and implementation of such systems.
What is required to actually enable two disparate agent communities to meaningfully share
information? Greaves et al. say it well:

“The dream of agent interoperability is commonly thought to rest on three main

characteristics shared by the interoperating agents:

1. They would be able to access a set of shared infrastructure services for
registration, reliable message delivery, agent naming, and so forth (i.e., there
must be structural interoperability);

2. They would share (possibly through translation) a common content ontology,
truth theory, and method of binding objects to variables (i.e., there must be
logical interoperability); and

3. They would agree on the syntax and semantics of a common agent
communication language (ACL) in which to express themselves (i.e., there
must be language interoperability).” [4]

In human systems, language interoperability is largely taken for granted; logical interoperability
is achieved through training, experience, and convention; and structural interoperability is
engineered as necessary—telephones, e-mail, radios—to extend our natural human abilities. In
most agent-based systems, language interoperability is achieved by selection of a standard
common language, such as Knowledge Query and Manipulation Language (KQML), the
Foundation for Intelligent Physical Agents (FIPA) ACL, or DARPA’s Agent Markup Language
(DAML). Existing media for transmission of information—e.g., the Internet—readily provide
structural interoperability. This leaves as the primary issue the realization of a means to achieve
logical interoperability: Given that agents can communicate with one another, what do they say,
and what must be done to enable the receiving agent to understand the transmitting agent?

For the applications we considered in the context of this research, the Internet provides structural
interoperability, and we used KQML to provide language interoperability. Our primary
conceptual challenge was therefore to formulate a representation of the knowledge that would
enable non-SAA agents to understand SAA agents; that is, to achieve logical interoperability
with agents that we did not design.



3. Approach

Our approach was to design and build into our Standard Agent Architecture (SAA) agents a

means to share information with another community of agents that had been designed

independently from our own. We selected the Reusable Environment for Task Structured

Intelligent Network Agents (RETSINA) at Carnegie Mellon University (CMU) as our target

community. RETSINA offered several features that supported our goals:

e RETSINA agents communicate using KQML syntax.

e (MU had developed a RETSINA-based Matchmaker system for advertising and finding
services that dovetailed nicely with our work on cross-border shipping;

e CMU had developed the Language for Advertisement and Request for Knowledge Sharing
(LARKS) with which to construct postings for their Matchmaker; and

e We could readily communicate with operational CMU agent communities via the Internet.

With these features and concepts in mind, we began the following work plan:

1. Develop a mechanism to accept objects in our internal format and emit messages in KQML
syntax.

2. Develop a means to express the services our agents would provide as trans-border
documentation experts and facilitators in LARKS.

3. Advertise our services with the CMU Matchmaker.

4. Receive and respond to KQML-framed requests for our services.

When we began to carry out domain-specific interactions with CMU’s agents (item 3 in the work
plan), it became apparent that the high granularity of the procedural language with which we
programmed our agents was going to limit the complexity of behavior we could implement,
especially when several agents were involved.

We needed a declarative language in which we could write agent behavior descriptions that the
agents would execute. This implied not only a language that supported the operations the agents
were to perform but also a canonical execution mechanism in each agent so that any SAA agent
receiving such a description could execute it.

It was apparent to us that we needed this extension no matter what further operations we decided
to pursue with our agent technology. But another change overshadowed all decisions: Because of
changes in our business direction and the outcome of our work on other projects, our focus began
to shift to security. For us, with our primary focus on agents, this devolved to answering three
questions: (1) With what aspects of “security” might agents be concerned? (2) How can an agent
protect itself from cyberattack? (3) How can an agent or group of agents protect other cyber
resources from cyberattack?

This change in direction of any subsequent real-world work made the move to a declarative-
language execution mechanism especially compelling, because many security operations are
very complex.

Based on these conditions, instead of completing step 4, we began the following work plan:
4a. Develop and implement a declarative framework for specifying the actions of agents.
4b. Develop and implement an execution engine that can execute action thus specified

5. Develop and implement ontological representations for security elements

6. Develop and implement security operations using the results of 4a, 4b, and 5.



4. Focus on Ontologies and Their Representation

The concept ontology appears above as a necessary element in applications that must share
meaning among disparate components. Ontology has a particular meaning when used in an
information technology context that differs from its use elsewhere. In addition, the representation
of ontological information takes a special form in our environment.

Definitions of onfology from the literature:

I. “An ontology is a description (like a formal specification of a program) of the
concepts and relationships that can exist for an agent or a community of agents.” [6]

II. “l. <Philosophy> A systematic account of Existence.

2. <Artificial intelligence> (From philosophy) An explicit formal specification of
how to represent the objects, concepts and other entities that are assumed to exist in
some area of interest and the relationships that hold among them ... A set of agents
that share the same ontology will be able to communicate about a domain ...

3. <Information science> The hierarchical structuring of knowledge about things by
subcategorizing them according to their essential (or at least relevant and/or
cognitive) qualities.” [7]

We include the first definition because of its breadth and use of vernacular English. This
definition is important because it exposes the important notion that if a concept isn’t represented
in the agent’s ontology, as far as the agent is concerned, it cannot exist; and, conversely, the
definition of what can exist for an agent, in whatever form, is the agent’s ontology.

The second definition distinguishes the meaning of onrology as used by different disciplines.
Definition I corresponds to element 2 of definition II. The direct statement “agents that share the
same ontology will be able to communicate” indicates that our fundamental conceptual
work—sharing an ontology—must be accomplished for heterogeneous agents to share meaning.
Element 3 of definition II is noteworthy because SAA2 agents use a hierarchical class-subclass-
instance network both intensively (to describe things that may or may not exist, such as
electronic messages it is able to create) and extensively (to categorize things that it discovers,
such as messages it receives). The agent’s ontology-bearing structure, in other words, is a class-
subclass-instance network defined at compile time and supplanted during its lifetime.

Ultimately, no matter how our ontology was expressed internally, we needed to delimit a section
of it for export to the CMU agents and convert or transform it into a form they could understand.
The approach we decided to take can be summarized:

1. Develop a representation of the activity to be advertised on the CMU Matchmaker (we
already had ontologies describing every aspect of the cross-border shipping problem.
Specifying an activity for the Matchmaker meant expressing it as a state change in some set
of information).

2. Determine how to express that activity in LARKS terms
3. Manually build a document in LARKS
4. Embed the LARKS activity description in a KQML message and send it to the Matchmaker

Some of the issues inherent in this process are explored in [8]{reprinted in Appendix II).



5. The Ontology of the Border Trade Facilitation System (BTFS)

The BTFS [9] was developed prior
to this research, and the nature of
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Figure 1. BTFS Ontology fragment in LARKS format

In order to experiment with the BTFS domain, the world was divided into services that would
typically be provided by an agent. In addition to each service’s specific ontology of discourse, all
services were described in a service-description ontology. This description was intended for
submission by the service provider to CMU’s “Matchmaker” agent, which when coupled with
their Agent Nameserver (ANS) acted as a Yellow Pages, of sorts. Agents desiring a particular
service would describe the service to a Matchmaker agent, and would be referred to an
appropriate service provider. The requestor would then make contact with the provider and they
would interact using that service’s ontology.

In order to interact with CMU’s Matchmaker and ANS agents, it was most expedient to enable
our agents to speak KQML, an agent communication language. This was straightforward, and
was easier than we believed it would be to enable their systems to comprehend and manipulate
the more sophisticated (and complex) distributed object representation used by our agents when
communicating among themselves.

6. Specifying Patterns of Interaction and Processing Schemata

As we approached the point of carrying out domain-specific interactions with CMU’s agents, we
became aware that a more highly structured description language was necessary to improve the
process by which we designed and implemented agent behaviors. Key elements of the design
problem were the identification and naming of distinct information states in a particular context
and whether organizing behaviors around discrete named states would be a practical way to




approach agent interactions. Out of this work came the schema processing mechanism now used
in SAA2 for most agent-to-agent interaction. The Schema Processing mechanism has been
declared in a Technical Advance entitled “Standard Agent Architecture II,” dated 4/18/2002, that
has not been assigned an identifying number as this is being written.

The underlying premise of the schema mechanism is that most of the information states in the
course of an interaction can be characterized and distinguished from one another. These states
are then used as the basis for a state diagram, and the transitions between these states and the
operations to perform within each state are built around them. The state diagram is realized in a
form we call a schema (pl. schemata). The schema mechanism consists of an “engine” that
executes the schemata and an expectation maintenance system that allows the agents to describe
and subsequently quickly select relevant stimuli (and reject irrelevant ones) depending on the
current states of the schemata being executed by the agent.

7. Security Policy and Cryptographic Protocols

The schema processing mechanism began to mature and we proceeded to implement more
involved operations using that system. Both as part of our work in exploring increasingly
complex interactions and their limitations and as part of our growing work in security systems
research, we began implementing cryptographic protocols for multiparty authentication in our
schema language. The multiparty protocols have been declared in Technical Advance SC-
7177/S-98,790 dated 4/26/2002 and entitled “Implementation of Group Threshold Signature
System.”

An essential component of the security work was the separation of interaction specification and
interaction policy. The specification of an interaction is a description of what information needs
to pass among which entities. The policy of an interaction defines conditions that may or must
hold or not hold, independent of the specification. Security policy is the basis by which an
observer decides whether an observed interaction is “legal” or not. Issues of delineating and
representing policy are relevant to this project’s goal of exploring communication among agents;
in essence policy is an aspect of communication that affects one’s own communication as well as
one’s responses to the communication of others. These issues are discussed further in [10]
(reprinted in Appendix II).

These protocols had many attributes, such as firm requirements of asynchronicity and minimum
numbers of agents involved, that made them useful demonstrations of the capabilities of agent
interactions. We did not have the opportunity to develop matching capabilities in CMU’s agents
to intermix agents from our two different systems while testing these protocols, but we believe
this would not be substantially more difficult than establishing interoperability in the BTFS
domain was.

At the end of this experiment, we can with a fair degree of confidence state that, even without the
distributed object system used by SAA2, the required object descriptions could be expressed in
other agent communication languages. Given language interoperability, SAA2 agents should be
able to complete these protocols with any other agent system that was extended to handle the
algorithms and ontologies involved. Furthermore we believe from our experience implementing
these and other protocols and procedures that SAA?2 agents can be readily extended to handle
complex new domains and operations.



8. Associated Work

This work was developed in several stages, and resulted in a number of publications
(Appendixes I through I'V).

During the development of the BTFS, substantial effort was put into discovering and specifying
the existing border trade participants and their processes, in order to accurately reproduce the
functionality of these components in the virtual version of that system. In both the agent
mediation study and the original BTFS system, BTFS service-providing agents performed these
operations and roles. In the context of work on agent mediation and interaction, however, these
agents also needed to provide service descriptions to an advertising service such as CMU's
Matchmaker agents. Appendix I lists some of these operations and describes some of the roles
involved in the border trade process that were transformed into an ontology for use with an
advertising service. Figures 2, 3, and 4 present this material as the software represents it.

The development of BTFS represented an application of technology developed in our laboratory
for allowing agents to elicit information from humans using HTML over the world wide web
(Appendix II, section 1). This allowed information to be brought into the agent in a controlled
format and using a simple synchronous process, enabling the agents to maintain simple
representations of ongoing transactions and map input directly into matching structures in the
BTFS ontology. The mechanisms developed to enable this were specialized predecessors of the
more general mechanisms that were to follow.

At this time we began to identify architectural obstacles in our initial standard agent architecture
(SAA) to rapidly developing new and increasingly complex processes for the agents to execute.
This led us to consider common features of such processes that could be exploited if appropriate
tools were developed. We submitted some of our initial hypotheses to a workshop at
Autonomous Agents ‘99 on conversation policies in agent systems (Appendix II, section 2). As
we refined our ideas these concepts ultimately developed into the proposal of this project.

In the course of the project we worked with CMU to enable our agents to interact with theirs,
choosing LARKS as a service description language, while continuing to refine and explore more
general means of communication between agents (Appendix II, section 3). Selected portions of
this software and descriptions of CMU’s agent framework are in Appendixes III and IV.

9. Conclusions

Our initial goals of developing an agent “Rosetta Stone” that would allow a wide variety of agent
systems to collaborate led us to cast a wide net into the problem of communication. We began by
researching agent communication languages and ontologies, developed many protocols and
policies, and examined the impact of security requirements in a multi-agent environment. Based
on our experience we drew a number of conclusions, and now have new questions that warrant
additional research.

As a result of this project our agents can contain complex ontologies, convert them into
alternative forms for consumption by different agents, and communicate with other agents using
standard message forms. This represents a proof of principle that independently designed agent
systems can be extended to collaborate with one another. This process can be very difficult in
practice, but the difficulty of the task can be mitigated if the design of one of those systems
provides a framework upon which language interoperability and a shared ontology can be built.
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This extension was possible but challenging in the SAA, and our second-generation SAA2 has
been designed with this dimension of extensibility. SAA2 can be easily extended to add
recognition and processing of new languages dynamically, and is able to be informed online of
new ontologies and select for each transaction the appropriate ontology to use when processing
information from another agent.

We have a framework mechanism and language for describing complex cooperative tasks that
agents can execute. This demonstrated that common patterns of interaction in agent systems can
be exploited using special-purpose process description languages. In the SAA we were able to
build simple interactive processes using conventional object-oriented programming techniques.
In order to express more involved conversation procedures that were responsive to dynamically
established communication policies, we implemented a more sophisticated state-based
mechanism for executing protocols. This allowed us to develop new tools that took advantage of
the structure of the communication environment to greatly simplify the programming task.

We were able to exercise these facilities in the context of security operations such as secure key
share distribution, and multi-party authorization protocols. Because of the complexity of the
security protocols we were now able to implement and come to understand, we realized that
informal approaches to communications security in agent systems are inadequate. This is a
strong statement, made from a point of view gained from working in information surety at a
national laboratory: systems developed with security requirements must consider the insider
threat model as important and realistic when designing network software.
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Data component trading for a shipment transaction

Collaborator actors operate on components of the shared shipment transaction object
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The BTFS Shipment Transaction (ST) is the supremal object (superobject) that is the
subject of the collaborative operations. Each collaborator performs its value-added
processing on one or more component objects of the ST. Each collaborator modifies
the state of the superobject, moving it towards a “goal state.”

Figure 2. Data component trading for a shipment transaction
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Figure 3. Shipment Transactions & Components: Attributes and Associations
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Figure 4. Border Trade Facilitation System Ontology
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Appendix 1. Operations and Roles of U.S./Mexico Cross-border Trade

Operations necessary to move goods across the U.S.-Mexican border; to be advertised in
Matchmaker: (illustrated in Figure 2. Data component trading for a shipment transaction)

shipment-initiation US-export
shipment-monitoring Mexican-export
shipment-in-transit-visibility US-import

US-transport Mexican-import
Mexican-transport US-regulator-filing
Border-crossing-drayage Mexican-regulator-filing

Detailed descriptions of the roles of border trade collaborators (Figure 3 illustrates how
these roles are connected to an individual transaction):

Originator:

Advertised services: shipment-initiation

Role function(s): Start the process of shipment by giving the fundamental task parameter values
Information: Originator, Origin, Cargo-manifest, elements of signature-list

Matchmaker comments: Normally a manufacturer getting ready to move some goods does this.
We expect that an agent will interact with a human to cause the appropriate information objects
to be created and the appropriate goals to be opened by the appropriate collaborators. This
service doesn’t make as much sense in the broad Internet setting, but is perfectly at home in an
Intranet environment.

Remarks: Acts to cause the creation of a new transaction object. The originator is sometimes
called the “shipper,” but we avoid this term because it’s also a common name for a document. In
the maquiladora environment, the originator and the consignee are different sites of the same
corporation.

Consignee:

Advertised services: none

Role function(s): shipment closure

Information: Consignee, destination, arrival time/date,

Matchmaker comments: Not an advertised service, but a role that must be filled by a collaborator
in order to finish a shipment.

Remarks: Acts to cause closing of the active transaction object (although archiving, cleanup, etc.
goals may ensue). Occasionally referred to as the receiver, but we avoid the term since it’s also a
common name for a document.

Monitor:

Advertised services: shipment-monitor, shipment-in-transit-visibility
Role function(s): Watch a shipment
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Information: Import plan, Export plan, arrival time/date, departure time/date

Matchmaker comments: Not clear whether monitoring is a separable component of a shipment
transaction. In-transit visibility is separable and should be advertised as a standalone function.

Remarks: Acts to cause timely completion of necessary information subgoals (technically, the
monitor merely notices that some subgoals may fail or have failed, but could naturally ask the
appropriate agents to correct some deficiency or put some other contingency plan into action).
In-transit visibility requires the presence of onboard sensing and locating hardware as well as a
reading and reporting infrastructure that would not necessarily be provided by agents.

Carrier:

Advertised services: US-transport, Mexican-transport, Border-crossing-drayage
Role function: negotiate to plan the route, then physically move goods.
Information: Container, shipper, route plan

Matchmaker comments: Primary service of all those given above is “transport” (i.e., physical
translation or “ptrans™). An issue is how to specify the scope within which the service is offered.

Remarks: (none)

POEnPOEx regulator:

Advertised services: none (the service of filing with the various regulators is accomplished by the
entry/exit broker.

Role function(s): Certify requirements have been met, permit/bar entry/exit
Information: Import/export plans as appropriate, elements of signature list
Matchmaker comments:

Remarks: The agent certifies that certain conditions are met and finally permit entry/exit, as the
case may be. This role is filled by the respective customs agencies, although other regulatory
agencies may impose additional constraints.

Entry/Fxit broker:

Advertised services: US-export, Mexican-export, US-import, Mexican-import, US-regulator-
filing, Mexican-regulator-filing

Role function(s): Get all the paperwork right

Information: Import/export plans as appropriate, shipper, route plan, elements of signature list
Matchmaker comments: These services are sometimes offered in combination (e.g., Mexican-
export and US-import are closely coupled).

Remarks: The broker needs information about virtually every aspect of the shipment in order to
ensure that the appropriate regulatory constraints are met in a timely manner. Note that
directionality and nationality can constrain the information needs; the Mexican export broker and
the US import broker don’t need identical information (although note it is possible for both to be
handled by one broker, especially in the maquiladora setting), and Mexican import/US export is
almost entirely different from Mexican export/US import in terms of the information needed and
which regulatory bodies require it.
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Ontological Leveling and Elicitation
for Complex Industrial Transactionss$

Laurence R. Phillips, Steven Y. Goldsmith, Shannon V. Spires

Advanced Information Systems Laboratory
Sandia National Laboratories
Albuquerque, New Mexico USA
{Irphill, sygolds, svspire }@sandia.gov

Abstract. We present an agent-oriented mechanism that uses a central ontology as a
means to conduct complex distributed transactions. This is done by instantiating a
template object motivated solely by transaction ontology, then automatically and
explicitly linking each element of the basis to an independently constructed interface
component. These links are then embedded in acquisition goals and delegated to an
agent that knows how to carry out the elicitation process. Having accepted these
goals, the agent uses the links to acquire information without reference to interface
components and to register this information with the transaction basis. Agents elicit
information without disturbing the basis and can integrate the information into the
basis without further reference to the link once it is validated. Validation
information is attached directly to the links so that the agent need not know a priori
the semantics of data validity, merely how to execute a general validation process to
satisfy the conditions given in the link. An advantage of this arrangement is that the
transaction basis, the links with the interface, and the validation requirements are
independent of one another and of the elicitation agents. This independence enables
an elicitation process to be realized without reference to the interface engine, which
is merely an attribute of the links. This means that in practice the interface structure
can be instantiated with reference only to link names, remaining sufficiently abstract
to enable us to wait until run time to generate the actual interface seen by the
informant. It can thus be idiosyncratic; when we generate the interface we can take
into account the informant’s identity, lexicon, language, time of last contact, etc.
Ontological leveling is critical: all terms presented to informants must be
semantically coherent with the ontologically motivated basis. To illustrate this
approach in an industrial setting, we discuss an existing implementation that
condycts international commercial transactions on the World-Wide Web. In this
implementation, agents operating within a federated architecture construct, populate
by Web-based elicitation, and manipulate a distributed composite transaction object
to effect transport of goods over the U.S./Mexico border.

keywords: elicitation, ontological leveling, computer supported cooperative work
(CSCW), international commerce

§ This work was performed at Sandia National Laboratories, which is supported by the
U.S. Department of Energy under contract DE-AC04-94AL85000
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Ontological Leveling and Elicitation
for Complex Industrial Transactionss

Laurence R. Phillips, Steven Y. Goldsmith, Shannon V. Spires
Advanced Information Systems Laboratory
Sandia National Laboratories
Albuquerque, New Mexico USA
{irphill, sygolds, svspire }@sandia.gov

Abstract. We present an agent-oriented mechanism that uses a central ontology as a
means to conduct complex distributed transactions. This is done by instantiating a
template object motivated solely by the ontology, then automatically and explicitly
linking each template element to an independently constructed interface component.
Validation information is attached directly to the links so that the agent need not
know a priori the semantics of data validity, merely how to execute a general
validation process to satisfy the conditions given in the link. Ontological leveling is
critical: all terms presented to informants must be semantically coherent within the
central ontology. To illustrate this approach in an industrial setting, we discuss an
existing implementation that conducts international commercial transactions on the
World-Wide Web. Agents operating within a federated architecture construct,
populate by Web-based elicitation, and manipulate a distributed composite
transaction object to effect transport of goods over the U.S./Mexico border.

1 Introduction

Discussions of elicitation in the literature involve anthropomorphic agents [1], belief
revision to accommodate heterogeneous distribution of knowledge [2], shared ontologies
[3] and [4], and semantically denotive labels [5]. The notion of teleologically motivated
discovery presented in [6] is useful since some elicitation situations need partially-
instantiated information structures—cases— to guide the elicitation process.

Ontological leveling is the construction of a central ontology to support several languages.
Our approach to ontological leveling builds the central ontology to support one language,
then extends it as we add languages. Sharing among languages can occur as the corpus
continues to provide translations in both into and out of the central ontology. We use
denotive labels, but not in the sense of [5]; labels are used here to maintain the connection
between the ontologically motivated basis and the elicitation forms used to populate it.

§ This work was performed at Sandia National Laboratories, which is supported by the
U.S. Department of Energy under contract DE-AC04-94AL85000
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We have not yet explored teleologically motivated discovery very deeply; although we
have extensions in place to permit exploration, we have focused to date on the necessarily
very structured communication required by international commerce.

We are interested in the process by which an agent elicits information from another agent
when both wish to accomplish a common goal. In general, these agents will be conversant
with a common ontology but may use widely divergent syntaxes to entail the semantic
content of interest. The efficient mechanism to enable semantically laden communication
in this kind of environment is to explicate the common ontology and level it with the
relevant fractions of the individually languages. The formal properties of this mechanism
are discussed in [7] and include translation, construction, verification, and reversibility.

When an agent requests information of another (referred to as the informant), it expects to
receive a response. We are interested in the subset of responses in which the informant is
acting to assist the agent in satisfying some mutual goal, usually based on an agreement to
do so. This occurs in the context of a federated system [3] acting to achieve some goal of
the virtual enterprise based on either an existing contract [8] or a trading partner
agreement [9]. We assume, therefore, that the informant is acting in good faith—that it is
benevolent {10]—but does not necessarily provide correct or complete information.

In this circumstance, the informant responds to the request by providing information it
thinks is correct in an attempt to satisfy the request. The agent must determine the value
of the information proffered by the informant. The agent can then either request more
information from the informant or go on to other tasks. In any case, the agent will validate
the informant’s information, if only by default, and may elicit further information about
responses it is unable to validate, perhaps ultimately discarding the information as
unreliable and failing to satisfy its goal. This explicit validation at elicitation time helps to
to prevent costly dependency-directed backtracking.

2 Ontological Leveling

Using the notation of [7], suppose we have several languages L,p; an interlingua
language L;; TRANSL, i, a binary relation between top-level forms of L, and top-level
forms of L;; and BT} ,, a set of top level-forms in L;. Suppose further that by some means
we have <TRANSL,;, BTLa>, an Li-based semantics for Ly, so that we know how to
translate back and forth between L, and L;. Normally, this places a burden on the
implementors to verify that all statements sy, really are equivalent to si; (their translated
TRANS} 5 1; versions) because L, will have an independently defined semantics. This is
not so difficult for the first language L, because its translation can drive the definition of
L;, but becomes increasingly difficult as Ly, L, Lq, etc., are added (that is, as TRANSy p.
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n,Li and BTy p-n are defined), each with its own semantics. A situation can have features
that will collapse the potential combinatorial explosion: First, the L, » languages will
have similar semantics when they are “about” the same context. Second, the L, 5 often

are not very expressive, having small vocabularies and simple grammars. Third, the areas
where the L, _, overlap can be few and denotationally coincident, reducing conflicts.

This process of adding additional languages to the set that can be translated into the
interlingua and back is called ontological leveling.

Suppose language 1 refers to a property named the “date-of-record” and language 2 refers
to a property called “date-of-transaction.” In the ontology, we have an object named
“filing-date” and another object named “receival-date.” We also know, axiomatically, that
in order for the transaction to be considered complete, a record of it must first be made.
To preserve the semantics of the translation, we can choose to translate date-of-record as
filing-date and date-of-transaction as receival-date and mediate during elicitation to
ensure that the elicited date-of-transaction is not earlier than the elicited date-of-record, as
required by the axiom. Unfortunately, the axioms operate only within each language and
its translated terms, not between languages, so formally we can’t guarantee that a
relationship holds between terms in two different languages just because it holds between
their translations. However, when an axiomatic relationship that holds in the interlingua is
one that we wish to hold between the reverse-translated terms, we can force the
translation to be reversible at elicitation time. In our example, we know that the date-of-
record must be no later than the date-of-transaction precisely because we want to force
that axiom to hold; we are not going to let an informant make the mistake of saying the
transaction is complete before its record has been filed. In practice, we can prevent
closure until filing occurs; formally we would also like to prevent the denotation of
closure until we see the denotation of filing, in order to maintain registration of the
internal state with the state of the world. We would furthermore maintain the metric
information—the dates gua dates—as the denotive markers of the events, because dates
already have a common semantics. In other words, barring formats, there’s a universal
calendar already in use, so we need not translate actual dates. Each event object in a
transaction, at some point during the transaction’s trajectory, will contain a date object
that both denotes that the event has occurred and connotes the time of occurrence.

A more difficult case is Total Value (What is the total value of items in this {shipment,
invoice, bill of lading, production request, work breakdown, field proposal, ... }).
Leveling consists in growing the interlingua to be sufficiently expressive to maintain
translation and reversal among several semantic projections, just as it does with the dates,
but this is much more difficult to do. For example, the axiom that defines the valuation of
one monetary currency with respect to another is time-varying. Does the transaction
object contain the value of the shipment that was computed at some time in the past or is

25



it determined at the time of the request? If the former, must it then also contain the time of
that valuation and the axiom that was used?' Must all such valuation times and
conversions be retained? How are we to retain commensurability among the set of
valuations in the transaction object? Theory suggests the correct answer is “All such
information must be preserved to maintain reversibility,” placing the burden on the
constructor of a functional interlingua for an industrial setting. As a practical matter, we
preserve reversibility where reversal will be applied and denote irreversibility where it
will not; relying on use-case analysis [11] to determine which case applies.

3 The Mechanism

Work is assigned to an agent by giving the agent a goal. The goal for elicitation is a form
instantiation goal (FI-goal); the agent is supposed to return an object that contains the
validated results of an elicitation process. FI-goals are members of specialized goal
classes that capture the semantics and syntax of the information to be elicited. An FI-goal
is a composite object initialized to contain several unknown objects (UOs)[12]. AUQ is a
class instantiation that has no content but is responsive (in a content-free manner) to class
protocol. The presence of a UO denotes a lack of information. The UOs from the FI-goal
are given to a generating mechanism that creates display code. The display generator
knows an appropriate display object for each class of UO. Currently, the display page
class for the Fl-goal is fixed during design, along with an explicit display object
classname for each UQ, e.g., “text box” or “radio button.” This information is maintained
in the automatically-generated initialization code for the display page class and is
therefore fixed at compile time.’

Each display object contains the name of the datum for which it is the interface. The agent
uses this name to re-connect the data retrieved from the informant to the appropriate
internal variable. Internally, everything is connected by pointers and composition, but we
release “probes” out to some stateless browser, with which we have no contact. At some
future time, a probe may return’ ; if it does, it may contain information we requested, and
we must at that time re-connect it to the appropriate data element. However, all probes
look alike, so each must contain a denotive signal to allow us to identify the internal
object for whom the probe bears information. This identifier is the name of the object.

Having retrieved the object, the elicitation agent attempts to verify the information that
(supposedly) belongs in it, using verification information contained in the object. This
level of verification is relative to this object only (e.g.: “X is supposed to be positive
numerical,” “Y is supposed to be pure text,” a column of figures may be required to add

' In practice, the axiom is embodied in a conversion factor.
% A planned improvement is to deduce the display object class at display time from the UO class.
® We emphasize may; the network might go down, the user might decide not to reply, etc.




up to a given total, etc.). When the agent fails to verify, it may continue the elicitation
process by pointing out the error and re-requesting the information, perhaps suggesting
corrections. Ultimately, an intelligent system could make “do-what-I-mean” corrections
and present them to the informant for verification. We continue to examine mechanisms
for robust error detection and recovery.

Having completed verification of the data, the elicitation agent passes the object to a
mediation agent who attempts to reconcile it with the interlingua-based object. There, it is
validated against inter-language constraints based on the axioms formed during leveling.
This can cause further rounds of elicitation if conflicts ares found in information from
different informants. For example, a receiving entity unable to take delivery at a location
specified by the sending entity and agreed to by the transport entity. A robust general
mechanism should be able to determine who provided the conflicting information and re-
elicit (using the reverse translation out of the interlingua) in a collaborative mode. This
general corrective tactic is useful because it can deal with unexpected errors.

4 The Application

The Border Trade Facilitation System (BTFS) [13] is an agent-based collaborative work
environment that assists geographically distributed commercial and government users
shipping goods across the US-Mexico border. This is currently a complex, paper-based,
error-prone process that often incurs expensive inspections and delays. In the BTFS,
agents mediate the creation, validation and secure sharing of shipment information and
regulatory documentation over the Internet, using the World-Wide Web to interface with
human actors. For each transaction, the BTFS coordinates several business entities and
their agents, two national customs offices, hundreds of data, and several non-
communicating computer systems.

The required regulatory documents for each leg of the trip are numerous and bilingual.
North American Free Trade Agreement (NAFTA) requirements have complicated the
documentation. A typical package prepared by a Mexican broker includes the original
invoice; the Shipper’s Export Declaration; a Spanish language invoice called the factura;
an import pedimento (Mexican declaration document; an example form rendered in
HTML is shown in [fig. 1]); an English manifest and a Spanish manifiesto describing the
physical nature of the shipment for transport; a packing list, describing how the shipment
is actually arranged on the transport; and any of several possible Mexican regulatory
documents. NAFTA documents must be on file certifying the firm as a magquila, and each
pedimento must be registered by the owners to satisfy year-end material-balancing
regulations. The driver and vehicle must be licensed and certified. The maquilas can
consolidate several invoices/facturas under a single pedimento. Shipment into the US
involves several additional US import documents. The documents are syntactically
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e} Netscape: pedimento
[ Back ] I Home ”Rﬂoad |lmaqe5 I Open ] Print I Find ” B ”I\msaapel
Loocation: [file:// /LRP 's%20Work®202IP /BTFSB20Alpha-6-2/BTFS /Mexican %204 ts /pedimento-de-exportasion htmi |
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Pedimento Consolidade? [ Si
Fecha da Pago: 27/5/97 No. Pedimento:8776-700801
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Aduana/SEC, 872 Factor Moneda Extraniera: '1
- Jr— T JEEp—
Fecha Present: 22/5/87 ¥ 7 Carreters Pesor 361 kg
Pais comprador: 'G8 Fais de Origen: B8
Exportador Nombza y Domicilio:
Nombre: Wire Components S.A. de C.U.
Domacilio: 1261 Parque Industrial Judrez
Ciudad/Estado: ‘Ciudad dudrez, Ghihs Cédige: 32635
Facturas: 1y Tevas
Fechas: 27/5/97
Forma de Factwacion: 'F .08
Comprador Nombre y Domicili
Nombze: ‘New Mex tors, Inc.
Domiciliot 2345 Eubank NE
Ciudad/Estado: {Aiblquarque, NH Cédigo: 871237 Sellos
Marcas, Nameros: {2 Conocimientos, . Guia @ Vehiculos Nos.: Valox Comercial
S/ e o ' CHoasa - 77538.72
vMe: 79538.752 7T vt 79838.2T T RetessTT T gegues s T
- it e Blemearr S PR e Tes
Ontt Fracdén Cantidsd Unidad CantFA/UDMY. FP Impuesto
Fermise(s) Claves Nimmazos / Fizn. Dis
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1 9802.00,8665 P [ 06 Pieza ] 2ee/6 e a
MQ - - 77538.72
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AT e
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P
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=~ | .otros :
1 1B
P = - — Total
Fatente : 8776 Nombze : Jaine Gonzalaez
RFC: GOJA-560508g) 1 Fitma de agente : -
| Agregue 1 linea(s) ((Analize ] | Guarde I | Termine ] | Resetear | | Desecher }
Destino/Oxigen : Franja Faonteriza -
2] (=]

Fig. 1. The Pedimento: In addition to the 57 separate data fields on this form, note that the section
between the horizontal bold lines, containing fourteen fields, is one line item and can be repeated
any number of times (although practical considerations limit this to a few hundred).
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distinct, although there is significant semantic overlap. For example, the total shipment
value required on many of these documents is not necessarily given the same name
between any given pair nor will the total always be computed on the same basis; and there
are at least two currencies involved.

Agents perform four specific functions on behalf of their user organizations: (1) agents
elicit information from informants; (2) agents translate information into and out of the
central interlingua, thereby eliminating the need for duplicate data entry; (3) cohorts of
distributed agents coordinate the work flow among the various information providers and
monitor overall progress so that regulatory requirements are met prior to arrival at the
border; (4) agents provide status information to human actors and attempt to influence
them when problems are predicted. In this paper we discuss functions (1) and (2). See
[14] for a more thorough treatment of the Standard Agent class.

We perceived that any electronic system that was to enable magquila trade would require a

Magquila-Enterprise-Transaction
Maaquila-enterprise-transaction-signature-list

Route-plan
Origin-point Entry-route Exit-route
Port-of-entry-point Port-of-exit-point Destination-point
Route-plan-signature-list

Shipper
Originator Carrier Origin
Arrival-time-and-date ~ Departure-time-and-date  Destination
Cargo-manifest Shipper-signature-list

Container
Identifier Owner Current-route
Surety-history Sensor Configuration Container-description

Export-Plan
Country-of-origin Port-of-exit Export-history
Export-declaration Inspection-history Export-broker
Export-plan-signature-list

Receival
cargo-condition Receival-signature-list

Import-Plan
Country-of-destination  Port-of-entry Import-history
Import-declaration Import-inspection-history  Import-broker

Import-plan-signature-list

Fig. 2. The Maquila Enterprise Transaction: Each sub-object is a separate entity with tens to
hundreds of its own attributes.
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central ontology as shown in fig. 2. Several informants would then be required to interact
with this ontology to conduct a transaction. Furthermore, the information provided by the
informants was to remain distributed for business, cultural, and political reasons. The
ontological leveling activity consumed several hundred person-hours.

However, once the magquila ontology had been explicated and embodied in the
interlingua, names could be assigned to links in generated software that would permit
registration of information passing between the BTFS and the human informants through
the web pages. The process of using the interlingua during system realization is:

Step 1. Generate a template of the form that will be used during elicitation. Currently, any
mechanism that generates HTML can be used. [Fig.1] is an example.

Step 2. Objectify the HTML using an automated process attached as a utility to the BTFS.
A fragment of such code follows; note the “payment-date” value given to the
“name:” attribute of the “TEXTBOX” object. This object contains the information
that will appear in the “Fecha de Pago” textbox in [Fig. 1].

(olp: :make-object
'TABLE-CELL t
:valign 'TOP
:components
(list (olp::make-object
'PARAGRAPHS t
: components
(list (olp::make-object
"TEXT t
:visible-aspects (list "Fecha de Pago:")
)
(olp: :make-object
'TEXTBOXES t
BEE’ :name "payment-date"
:size 12
:0ld-value "27/5/97"
:current-value "27/5/97"
:preset-value "27/5/97"
:instructions nil
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Step 3: At elicitation time, using the code created in Step 2, instantiate the object whose
translation into HTML will produce the display of [Fig. 1]. The automatically -
generated “payment-date” object is shown in [Fig. 3].

Step 4. The instantiated object is given to an elicitation agent as part of a form
instantiation goal. As part of the process of achieving that goal, the agent
generates the HTML for the web page that recreates [fig. 1] for the informant. A
fragment of such agent-generated HTML follows. Again note the explicit “name”
attribute.

<P><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0
WIDTH="100%" HEIGHT="100%"
name="date-&-pedimento-number-table">
<TR>
<TD VALIGN=top WIDTH="34%">
<P>Fecha de Pago:
<INPUT TYPE="text"

ngg: NAME="payment-date"
VALUE="27/5/97"
SIZE=12>

</TD><TD VALIGN=top COLSPAN=2 WIDTH="63%">

Human Actors are people that inhabit the agency through an interface device and interact
with agents to accomplish tasks. Human actor objects are temporary objects that contain
an interface address, an interface object that captures the display, data entry and control
functions currently available to the person, and a persistent person object that holds
personal data, passwords, email address, and an account object that provides access to
past and current workspaces. A workspace object contains objects created and stored by
the person during work sessions.

Agents and human actors have access to resources such as databases, fax machines,
telephones, email handlers, and other useful services. Resource objects provide
concurrency control and access protocols for agency resources. Subclasses of the resource
class implement objects representing data bases, fax machines, printers, email ports, EDI
ports and other commonplace legacy devices in the agency environment.
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Fig. 3. The actual “payment -date” object (nested several levels down in the page object) generated
when the pedimento web page is automatically generated for the informant.

Agency objects may be distributed in a network environment to create a collaborative
enterprise structure of interconnected agencies. An electronic commerce agency (ECA) is
a specialized subclass of an agency that implements architectural features specific to
electronic commerce applications. An ECA has the additional attributes of transactions
and organizations. The transactions attribute holds a collection of open and closed
transaction objects. The organizations attribute holds a collection of public proxy objects
pointing to agencies that represent trading partners.

The BTFS agent society comprises several federated ECAs analogous to the interested
business entities. Each ECA is populated by a heterogeneous collective of agents, each of
which is able to perform a fragment of the information tasks needed to effect trans-border
shipment. Business rules are idiosyncratic, so an operational ECA must be tailored and
situated for each business. Constructing the ECA and the agents that make it up consists
in specializing agents from a set of standard agent classes constructed for commerce.
ECA classes are also pre-defined for the various required roles: originator, receiver,
transport provider, and import/export broker.
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In addition to domain and task specialists, several varieties of housekeeping agents
perform maintenance tasks for the ECA. Security agents control access by human actors
to each agency within the parent organization. A human actor logged into the ECA
“inhabits” the agency for the duration of the work session. An agent handles all
interactions with the human actor. Task agents initiate requirements to obtain information
based on activated goals, monitor the appropriate information sites to see whether the
goals have been achieved, and take corrective or contingency measures when failures
occur. Dispatch agents allocate new transactions to the appropriate agents. Supervisory
agents allocate work to task agents, deal with rejected goals, collate agency-level data,
and respond to outside requests for task status information. Various agents incorporate
reporting facilities for humans, including customs offices of both governments.

5 Conclusions and Remarks

The BTFS prototype demonstrates a multi-agent approach to coordinating a complex,
knowledge-intensive shipping process. We have demonstrated the following agent
behaviors: elicitation, mediation with a central ontology, negotiation, delegation,
monitoring, and goal satisfaction.

The most challenging aspects of integrating a diverse enterprise such as border trade are:
(1) knowledge-intensive elicitation of form information; (2) mediation and ontological
leveling of information across multiple organizations; (3) knowledge engineering in
general; and (4) secure distributed object computing.

Ontological leveling proved to be a demanding but effective strategy for centralizing and
making coherent a diffuse and permanently decentralized operation. Current research is
looking at further automation of the realization process that produces usable applications
with demonstrable formal properties.
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1

Software agents communicate while they pursue goals. In some cases, agents
communicate specifically in order to accomplish goals. We restrict our interest in this
paper to goals that can be described as information states, that is, information goals.
We discuss agents that intend to accomplish information goals by communicating.

Although individual speech acts have been well-characterized, consensus on
higher-order structured interactions has not been reached. There is little or no
discussion in the literature of how to constrain the behavior of an agent during

The Role of Conversation Policy in
Carrying Out Agent Conversations
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Abstract. Structured conversation diagrams, or conversation specifications,
allow agents to have predictable interactions and achieve predefined
information-based goals, but they lack the flexibility needed to function robustly
in an unpredictable environment. We propose a mechanism that dynamically
combines conversation structures with separately established policies to

generate conversations. Policies establish limitations, constraints, and

requirements external to specific planned interaction and can be applied to broad
sets of activity. Combining a separate policy with a conversation specification
simplifies the specification of conversations and allows contextual issues to be
dealt with more straightforwardly during agent communication. By following
the conversation specification when possible and deferring to the policy in
exceptional circumstances, an agent can function predictably under normal
situations and still act rationally in abnormal situations. Different conversation
policies applied to a given conversation specification can change the nature of
the interaction without changing the specification.

Introduction

A: An argument is a connected series of statements intended to establish a
proposition.
B: No, itisn’t!
A: Yes, itis! It isn’t just contradiction!
Policy discussion, Monty Python,
Argument Clinic Sketch

communication in response to a dynamic environment.
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When a set of communication acts among two or more agents is specified as a unit,
the set is called a conversation. Agents that intend to have a conversation require
internal information structures that contain the results of deliberation about which
communication acts to use, when to use them, whom the communications should
address, what responses to expect, and what to do upon receiving the expected
responses. We call these structures conversation specifications, or specifications for
short. We claim that specifications are inadequate for fully describing agent behavior
during interaction.

Consider two agents who are discussing the location of a surprise party for a third
agent, who is not present. When that agent enters the room, all discussion of the party
suddenly ceases. The cessation occurs because the first two agents understand that the
third agent cannot receive any information that such a party is being considered.
Conversely, suppose that the conversation is about a party in honor of the third agent
and all three agents know the third agent is aware of it. Now, when the third agent
enters the room, the conversation continues.

Are the first two agents having the same conversation in both cases? We claim the
answer is “Yes, but they’re operating under different policies.” In both cases, they are
having a conversation whose essence is organizing the party. The conversation might
roughly be specified to contain information exchange components (e.g., to establish a
set of possible locations), allocation components (“I’ll call these two restaurants, and
you call this other one”), and a continuation-scheduling component (“I’ll call you
tomorrow with what I find out and we’ll take it from there”). These are all matters that
we expect to find in a conversation specification. On the other hand, the decision of
whether to stop talking when a specific third party enters the room is based on a
mutually understood policy and might reasonably be applied to any number of
conversations, for example, negotiations about the price of a commodity on which the
third agent is bidding.

Historically the agent communication literature has used the word “policy” to refer
to the description of the structure of interaction between a number of agents, generally
two but sometimes more (Bradshaw et al. 1997). The dictionary, however, defines
“policy” as “a high-level overall plan capturing general goals and acceptable
procedures.” This coincides with what we expect of a conversation policy: An agent
using a conversation policy would operate within certain constraints while attempting
to satisfy general information-based goals. When discussing procedures and
constraints of interaction beyond the basic structure of a conversation, the word
“policy” has connotation that we feel is more appropriately bound to the procedures
and constraints rather than to the basic structure. For the latter, then, we will instead
use the word “specification,” and use the word “policy” to refer to the former.

2  Policies for Interaction

The focus of our work is to create a mechanism for combining specifications with
policies that constrain the behavior of an agent in order to generate conversations
among agents.
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We have begun to design a mechanism that uses the specification’s description of
input states and actions based on them and the policy’s description of constraints,
limitations, and requirements together to determine an agent’s response to a message.
Given a suitable mechanism, the specification and the policy can be implemented as
data objects. The specification defines the structure for the conversation, and the
policy defines the acceptable procedures, rules, and constraints for the conversation.

We can interact with and speak of agents as intentional systems (Dennett 1987).
We assume that agents are able to emit illocutions and that illocutions can have
perlocutionary effect on other agents that “hear” them (Searle 1969). (We follow
Searle in using illocurion to mean an utterance intended to affect the listener and
perlocution to mean the production of effect on the listener). This means that an agent
can emit information with the intent of altering the information state of some other
agent, that the information can be received by some other agent, and that receipt of
this information can cause the recipient to be in an information state intended by the
emitter. The emitter desires the recipient to be in a certain state because the emitter
believes that this either is or assists in achieving one or more of its goal states.

Conversation specifications are distinctly similar to KAoS conversation policies
(Bradshaw et al. 1997). The specification dictates the transitions and outputs made by
the agent in response to input. A conversation policy is a set of constraints on the
conversation specification that limit the behavior of an agent beyond the requirement
of following the procedures and structures of the conversation specification. The
policy object is used by the mechanism to make decisions about acceptable courses of
action when the conversation specification fails to completely determine a course of
action. Lynch and Tuttle said it well: “Our correctness conditions are often of the form
‘if the environment behaves correctly, then the automaton behaves correctly.”” (Lynch
and Tuttle, 1989) This stems from the constraint that IOA’s cannot block inputs, the
automaton is permitted to exhibit arbitrary behavior when “bad” or unexpected inputs
occur. What happens when the environment doesn’t behave “correctly?” This is where
policy applies.

Policy differs from specification in that specifications describe individual patterns
of interactions, while policies are sets of high-level rules governing interactions. It is
possible for a class of conversation policies to have subclasses. For one policy to be a
subclass of another, the subclass must be more strict (more constraining) in at least
one attribute and no less constraining in any.

Our new mechanism combines the policies and specifications to determine the set
of conversations that can be generated. When policies change in the midst of a
conversation, the goal may become infeasible. In our formulation, the conversation
policy does not specify the types of messages that can occur. It is made up of
constraints on who can participate, and under what circumstances, whether sub-
conversations can be initiated within an existing open conversation, whether
equivalent conversations can take place in parallel with the same participating entities
(e.g., an agent can’t carry on two price negotiation conversations with the same entity
w.r.t. the same object). We claim that issues of specification are orthogonal to issues
of policy; specifications define the structure of interactions, while policies govern the
way interactions are carried out.
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3 Methods

We developed our current agent conversation mechanism using the Standard Agent
Architecture (SAA) developed by the Advanced Information Systems Lab
(Goldsmith, Phillips, and Spires 1998) at Sandia National Laboratories. The SAA
provides a framework for developing goal-based reasoning agents, and we are
currently using a distributed object system that enables agents to send each another
simple objects or sets of information. We are using the Knowledge Query and
Manipulation Language (KQML) (Labrou and Finin 1997) as our message protocol.

Interacting with an agent first requires that the agent be able to correctly identify
and respond to illocutionary messages. A situated agent in pursuit of goals must be
able to answer two questions: To which, if any, of its current goals does new
information relate, and what actions, if any, should it execute based on new

{Agent is now

glotivated and
egins a R
equest
background information
task) hange
Verity final istent Invalid
information information information

Fig. 1. A conversation specification that does not specify a
variety of potential constraints on the agent’s activities

information that relates to a given goal? In the SAA, the primary structure that

enables this is the agent’s stimulus-response table (SRT). An agent anticipating input
of a certain type puts an entry into its SRT, which maps stimuli (by class or instance)
to the appropriate action. Qur system currently requires messages to contain an
explicit reference to the context within which the SRT entry was created. The
reference is realized as the object identifier (OID) of the current conversation object
that gave rise to the message.

When an input arrives, the appropriate SRT entry is retrieved and its goal is
undeferred (having previously been deferred, presumably awaiting relevant input),
which activates the goal. The agent now determines how the new information in the
context affects the goal and either marks it satisfied, failed, or deferred or continues to
attempt to satisfy the goal. When satisfaction of the goal requires a speech act, the
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agent creates an utterance, delineates the context, embeds the context signature in the
utterance, attaches the goal to the context, places the entry in the SRT, defers the goal,
and executes the utterance. In short, illocution is a deliberate act that creates an
utterance and sets up an expectation of the response that the recipient will make.

To engineer a conversation, the entire set of context descriptors of interest is laid
out as a set of subgoals, each of which is satisfied by gathering specific information.
We have automated the construction of an utterance from a context, the updating of
the context to reflect the new information conveyed by the input, and the connectivity
that enables the utterance and the input to refer to the same context. Specialized code
is written to construct goals, execute side effects, maintain the SRT, and so on.

Composing speech acts in a theoretically predictable fashion is more difficult; this
is the motivation for creating a structured way of merging specification and policy at
run time to get a structured interaction that is forced to remain within certain
operational boundaries.

In our current mechanism, policy is embedded in the conversation mechanism as
part of the design. A policy change, for example, that an agent should institute a
timeout and ignore all messages responding to a particular request after the timeout
expires, would require reengineering the conversation. The mechanism would be
much more maintainable given an explicit policy object that could just be changed to
reflect the fact that there’s now a timeout. Qur essential thesis is that policies and
conversation specifications should be independent so that conversations could be
switched under the same policy and policies could be changed without changing
existing conversations.

4 Conversation policy

Consider the conversation in Figure 1. It describes a session allowing agent A to
determine agent B’s identity, offer B a choice of services and ascertain B’s selection,
and perform a task based on the selection. Describing the conversation is generally
simple for such things: when a request or assertion comes in, the agent deliberates,
returns information to the initiator, and anticipates the continuation. The two
participants are responding to one another in turn, barring interruption, retransmission,
or communication failure. There is no representation of what happens when the
conversation is interrupted or when an agent retransmits a message. These issues are
matters of policy that must be dealt with separately.

KAoS conversation “policies” enable definite courses of action to be established
and fail-stop conditions to be dealt with (Bradshaw et al. 1997). They also imply
mechanisms for initiating and concluding conversations. Specifications play the
crucial role in agent communication of providing structure, but they do not, for
example, describe whether a discussion can be postponed, or, if so, under what
conditions or for how long. Indeed, KAoS conversation “policies” appear to concern
matters of conversation specification, fundamentally how to respond to input given the
current information state, rather than matters of conversation policy, such as what to
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do when interrupted, whether the conversation can be postponed, or whether there is a
time constraint on reaching an end state.

Policy issues are important. One constraint imposed by the policy in Figure 1 is that
it requires turn-taking. If agent A receives several messages in a row, it may respond
to each in turn without realizing that, say, B’s third message was sent before A’s
second response. If agent A cannot detect the violation of the turn-taking policy, it
might consider the second and third messages in an outdated context. A similar
situation could occur if several agents were communicating and one were speaking out
of tum. Without policy, designing a mechanism to deal with these violations means
that a conversation specification that enforced turn-taking and one that merely allowed
it would be two different things that would need to be maintained separately and
activated separately by the agent. Furthermore, designing them into a system that had
no notion of turn-taking would require that every state/action pair of every
conversation specification be examined to see what should now happen if tumn-taking
is violated. At worst, accommodating a single policy issue doubles the number of
conversation specifications an agent might be called upon to employ.

Examining constraints immediately leads to ideas for policies that replicate familiar
patterns of interaction, such as a forum policy or a central-point-of-contact policy.
Different classes of states, changes in context, and the particular protocol of
communication used are independent of the conversation policy, although some make
more sense in one policy or another. The web page and information-state context, for
example, make the most sense in a 1:1 turn-taking policy when dealing one-on-one
with a number of individual humans. KQML, in contrast, has many performatives that
support broadcasting to a group of agents involved in the same conversation. In
practical terms we may end up having to constrain which policies can be upheld based
on communication details.

An explicit representation of policy also enables an agent to express the policy
under which it is operating. It is easy to transmit, say, a policy message outlining the
level of security required for any of several possible upcoming conversations for
which the recipient already has the specifications. In contrast, without policy, the
“secure” version of each conversation specification needs to be transmitted anew. If
two agents agree on a policy at the beginning of a conversation, the amount of
communication required to determine a course of action once a violation has occurred
can be minimized.

The structure of the conversation depends thus on the nature of the information and
how this changes the state of the conversation. By abstracting to the policy level, we
enable a set of constraints to support the execution of several conversations, as long as
they have the same kinds of states and the same kinds of transitions, i.e., the nature of
information in a state does not matter as long as there is a common means of mapping
input and state to another state in the conversation. If the conversation can be
described as a collection of states with transitions between them, then the conversation
policy should be describable as a form of transition function operating on the current
perceived state of the world and the communications the agent is receiving.

This abstraction is powerful because the individual conversation policies can be
combined with specifications to create several classes of conversations, all similarly
constrained. The constraints the framework imposes are then the conversation policy;
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and specializations of the conversation policy framework methods are
implementations of particular transition functions, which operate on particular classes
of conversations. These conversation policies would support transformations by our
mechanism, each of which defines a range of possible specializations within the high-
level constraints. Radically different behavior between two sets of conversations
would imply radically different frameworks, just as the difference between context-
free grammars and regular languages implies a greater difference in both the nature of
states and the transition function forms of finite automata and stack machines.

S Example

Consider the specification in Figure 2. Agent A,, the announcer, broadcasts a message
to a group of agents A,...A, and gathers responses from the group before continuing.
By itself, however, this specification leaves many questions unanswered—for
example, if some agent doesn’t respond at all, or responds more than once in a cycle,
what should agent A, do? These questions may be asked of many specifications, and
may have different answers even from one interaction to the next.

Conversation Policy

turn-taking

1:n
timeout-loses-turn
timeout after 1
interrupt postpones

Broadcast

Timeout or
n responses Gather

Responses

Fig. 2. Policy and specification as seen by the announcer. The policy aliows
conversations to be postponed, which the conversation specification need not
explicitly state.

The policy in Figure 2 provides answers to some questions of this sort. The policy
enforces turn-taking, meaning that agents in the group have only one opportunity to
respond to each broadcast. If they do not respond within one minute of each broadcast,
they lose the chance to do so during that turn. This might be the case if broadcasts
were frequent. If more pressing matters come up during a session, the discussion is
postponed (perhaps leaving messages in the announcer’s queue to be dealt with later),
but it can be expected that the session will resume at some future time.

How might we tailor policies to get usefully different behavior? For policies
concerned with fault-tolerance, the same policies could be used in many conversations

41



to handle the same expected problems, but policy can also be used to control
conversations during the course of normal interaction as well.

Suppose we combine the specification above with a policy that does not enforce
turn taking, but rather says that newer messages from an agent take precedence over
older messages. The announcer is forbidden from sharing message data among group
members, and the time allowed for responses to each broadcast is 24 hours.
Combining the policy and specification with a sales announcer produces a silent
auction. If the policy were replaced with one that had a time limit of a few minutes
and required the announcer to rebroadcast new information to the group, the same
specification could be used to produce an English auction. Using different policies
with the same specification as a foundation can produce a variety of desirable
behaviors with minimal changes to the agent’s code.

6 The Impact of a Policy Mechanism

In this section we discuss the relationship between conversation specifications,
policies, and an operational mechanism. We show how policy information can be used
to direct the action of an agent without reference to the conversation that agent is
having.

Consider a set of state/action pairs with the property that when an agent perceives
the world to be in a given state and executes the corresponding action, the world state
that results is described by the “state” component of one of the pairs (I/O automata fall
conveniently close to this). States with no corresponding actions are end states. Such a
set embodies no notion of intent, but an agent can commit to achieving one of the end
states by executing the actions. The point of an action specification is to explicate a
series of acts that will result in one of a known set of states.

A conversation specification is such a set of state/action pairs; the specified states
are information states and the specified actions are speech acts. A conversation
specification explicates a series of speech acts and their triggering states that will
result in a one of a known set of information states. An end state may be a goal state,
i.e., a state whose achievement is the agent’s intent, or a state in which the desired
state is known or believed to be either no longer desirable or unachievable.

The conversation specification may specify states and actions that are never
realized; e.g., failure-denoting states or error-correcting actions. All actions and states
are only partially specified, in the sense that none specify the entire state of the world,
because the number of features that might be observed at execution time is infinite,
and only a few of these are perceived at specification design time as having any
material effect on movement towards the goal.

For example, a plan that includes forming a team might specify neither who is to
fill every role on the team, though a specific agent must be cast in each role, nor in
what order the roles are to be filled, because the specific order has no effect on the
goal state.

Neither the conversation specification nor the policy controls the thread of
conversation; the specification specifies the invariant part of the conversation's course,
and policy specifies constraints on behavior, not the behavior itself. Control falls to
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the mechanism that combines the specification object and the policy object to arrive at
an executable action at deliberation time. In the remainder of this section, we examine
team formation with respect to what is determined by the conversation specification
and what is determined by policy.

Assume that an agent is in a state where will listen until it receives a message from
another agent. When a message arrives, the agent’s policy is to select and commit to
achieve one of the end states of a particular conversation specification; in other words,
the agent’s policy is to have a conversation when contacted. Leaving aside for the
moment the question of how the agent makes the selection, assume the agent receives
a message asking it to commit to achieving a goal and that it selects a conversation
specification wherein it will inform the requester that it has committed if it commits
and that it will not commit if it doesn’t. This could be a matter of policy; suppose
there were many agents available and this was known to the agent. The agent might
reason that the best policy would be to report only when it could commit and to keep
silent otherwise, in order not to use bandwidth.

Now what happens when an agent achieves a goal to which it has committed?
Should the agent report satisfaction to the requester, when there is one? If this were a
matter of policy, it could be turned on or off as overarching issues (security, priority,
traffic levels, etc.) dictated and overridden as needed by specific policy overrides from
the requester.

What should the agent do when it is asked to achieve a goal it believes it cannot
achieve by itself? It might be the agent’s policy to refuse to commit and to so report.
An alternative policy would be to attempt to acquire commitments from other agents
to assist. This would begin the team formation phase.

When the agent has acquired commitments from agents whose combined effort it
believes can achieve the goal, it builds the team roster of agents {A,, ... , A, }, marks
the team formation goal satisfied, and ends the team formation phase (this ignores the
issue of whether everyone on the team must believe the team can achieve the goal in
order to commit). It might be the case that the agent must form the team within a
given time period; what the agent should do when it does not receive sufficient
commitments within the allotted time is a matter of policy. A reasonable policy would
be to report to the original requester that the goal is unsatisfiable. This can be enforced
at a high level, that is, whenever the agent has committed to achieving a goal, and the
source of that goal is another agent, the agent must notify the source agent as to the
achievement or non-achievement of that goal. The agent holding a team roster for a
given goal constructs a joint persistent goal (JPG) (Cohen and Levesque 1991),
allocates the subgoals (assume the goal is linearizeable so that allocation is
deterministic) and sends each subgoal and the JPG to the appropriate team member.
The JPG contains a statement of the original goal and the team roster. When an agent
A; has achieved its subgoal, it multicasts this fact to the rest of the team using the
roster in the JPG. Here, policy to notify only the requester must be overridden by JPG-
specific policy. Every team member now believes A;has achieved its subgoal. Once A;
believes that every team member has achieved its subgoal, it believes that the JPG has
been satisfied and it multicasts this fact to the rest of the team. At this point, A;
believes that every team member believes that the JPG has been satisfied and is free to
leave the team.
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7  Conclusions

A conversation policy must be established so that the communicating agents (who
may have differing languages) have a common logical and contextual structure for
communicating. This allows each agent to establish predictive models of one
another’s behavior in response to information and to plan and reason about the
outcome of conversations with the other agent. Each agent can establish this model
based on information that another agent can perform a certain conversation
specification while conforming to certain requirements.

We advocate a separate conversation policy structure that embodies the constraints
that will be enforced while a conversation is going on—using a conversation
specification as a template or model. A participant in a conversation must have some
means of determining whether events that transpire during the conversation bear on
the realization of its goals. It is relatively straightforward to specify the normative
events in a conversation; the speaker intends to have engendered a specific state in the
listener, and the normative response types are limited. On the other hand, it is not
generally possible to specify all the exceptions. Even if we could, the necessary
responses depend on states of the environment, not states of the conversation. To take
the state of the environment into consideration, a policy must be able to constrain the
behavior of virtually any conversation specification to which it is applied.

8 Future Developments

It would be useful to define and prove certain formal properties of policies when

combined with specifications, for example,

1. Is the question of whether a conversation conforms to a given conversation policy
decidable, and if so, how can this be tested?

2. Does conversation X conform to some conversation policy, and if so, which one?

3. What is the maximally confining policy to which a set of conversations
conforms?

4. Wil the conversation generated from a specification terminate when following a
particular policy?

5. Under certain circumstances, a policy may render given specifications impossible.
What is the minimal set of constraints that can be established that will still allow a
set of conversations to take place?

6. Given a policy that has the potential to render a conversation impossible, what
should an agent do?

Consider for a moment the agent as an I/O automaton (IOA) (Lynch and Tuttle,
1989). The IOA’s I/O table specifies the agent's behavior. The IOA’s input column
describes agent’s information states. These states can be entered as an agent
internalizes information in messages it has received (i.e., as those messages have
perlocutionary effect). The agent then executes the specified internal and external
actions specified by the right-hand side of the automaton’s I/O table. This formalism
has some appeal because it makes a very clear distinction between actions under
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control of the automaton and those under control of the environment and allows a
readable and precise description of concurrent systems.

Analyzing collections of speech acts in terms of /O automata would be possible if
it were not for the dependency of the proofs about the IOAs on their being input-
enabled. Agents that filter their stimuli before taking action or replying do not meet
this requirement, so the applicability of the IOA theory is questionable.

A formal theory that establishes conversation semantics, describes how the
semantics of individual speech acts contribute to conversation, and allows us to
demonstrate certain characteristics of combinations of specifications and policies may
or may not be useful. When discussing a system whose purpose is to deal with the
unexpected, it may be more reasonable to engineer a policy that provides some
reasonable capstone when an unanticipated problem arises. Engineering conversations
that meet certain requirements, dynamically generating policies and specifications
based on beliefs and intentions, and modifying conversations based on changing
constraints may allow productive agent behavior even in the absence of a complete
theoretical description.

9 In Context

Throughout these papers we see two common issues being addressed: by what means
can an agent intend to have, and then have, a conversation, and by what means can an
agent manage the process of having conversations in a dynamic environment? Two
recurring subproblems are declaring behavioral models for an agent’s own use and
transmitting these models to other agents; agents need to be able to express the
following in both internal and external settings: “This <conversation_spec> is
the conversation I want to have” and “This <conversation_policy> is the
policy I want to follow.” In this paper we have labeled these structures conversation
specifications and conversation policies, respectively.

A primary question roughly separates the papers in this volume into two categories:
Are issues of specification and policy to be addressed by a single structural form that
unifies specification and policy (Category 1), or by two separate structural forms, one
for specification and one for policy, that are somehow composed during the conduct
of a conversation (Category 2)? We are in category 2, having explicitly proposed a
policy object to be communicated among conversing agents.

An essential question, approached by some authors, but not genuinely disposed of,
is: what, exactly, is gained by having two structures? Although efficiency, complexity,
and realizeablility have been used as motivators, we’d like to see a formal approach
that enables decisions of where a particular aspect of discourse should be represented
and, in particular, how such decisions are realized when policies and specifications are
composed during a conversation.
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Abstract :

There are currently two proposed standards for agent communication languages, namely, KQML (Finin,
Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither
has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to
design a general-purpose agent communications facility for new agent architectures that accommodates
many agent communications languages. In this paper we exhibit the salient features of an agent
communications architecture based on distributed metaobjects. We are primarily concerned with the
pragmatics of agent communications using objects rather than agent communications languages per se. We
are particularly concerned with agent communications in the open Internet environment. Our architecture
captures design commitments at a metaobject level, leaving the base-level design and implementation up to
the agent developer. The scope of the metamodel is broad enough to accommodate many different
communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the
metaobject framework. We conclude that with a powerful distributed object substrate that supports
metaobject communications, a general framework can be developed that will effectively enable different
approaches to agent communications in the same agent system. Moreover, we explicate some seeming
peripheral issues to ACL (e.g. authentication, integrity, reasoning and memory) that are actually critical to
the concerns of agent communications and that certainly impact effective communications in an open
environment.

Keywords: agent communication language, multiagent system, metaclass, metaobject protocol,
distributed objects
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1 Introduction

Communication among autonomous asynchronous agents is an essential function in network-based
multiagent systems. There are currently two proposed standards for agent communication languages,
namely, KQML (Finin, Labrou, and Mayfield 1994) and the FIPA ACL. Until a standard emerges, an agent
designer must accommodate this uncertainty in agent designs. One approach is to exploit the considerable
syntactic commonalities between the two, but this can produce implementations with serious semantical
problems, at least from the perspective of the speech acts underlying both languages. Moreover, both
languages have inherent problems with semantics based on modalities that are not supported by the
components that interface closely with the language, primarily the agent’s deliberative mechanisms and its
implementation of ontologies in an agent’s long-term memory. Unless the agents implements a belief,
desire, intention (BDI) architecture (georgeff, et al), the semantics of objects communicated through
KQML or the FIPA ACL is limited to modal propositions and cannot be readily interpreted by another
deliberative architecture.

Our design philosophy is to develop a general object-centered framework that enables programming of
multiple protocols for communication and interaction alongside multiple approaches to deliberation and
action (of which BDI is an instance). Figure 1 shows the general architecture for agent communication,
discussed in detail in subsequent sections. The components are: (1) the send-object protocol that provides a
standard interface for remote communication of objects; (2) a message object protocol that interprets the
structure of the message object, enabling multiple communication protocols (e.g. KQML, ACL); (3) a
metamodel that manages the update of remote agent models and the local agent’s model; and (4) the model
of local agent and models of remote agents. The framework includes an infrastructure for agent modeling
because communication among two agents requires both a common message format and a shared ontology.
Since agents may be in different states, communications is mediated through the receiver’s model to ensure
common semantics. The agent’s self-model contains the deliberative mechanisms and knowledge bases that
are exclusive to itself. The self-model has control over the operations of the remote agent models

Restricted Protocol Agent Models
Interface
a-334 - -
P o
7 o
Send messag:s Message péiclef /b ek -
* Object Object S e a1

- Protocol -4--. Protocol -a

Distributed Object System

Figure 1. Distributed Object Agent Communications Architecture

through the metamodel. We assume that the agents communicate both the structure and the state of their
models to one another for the purpose of collaboration by trading objects. The entire architecture is based
on the object framework concept. The classes and methods comprising the architecture are designed to be
specialized with subclasses and methods that implement the agent designer’s favorite communication,
interaction, reasoning and representation mechanisms. Our objective is to provide both a research tool for
evaluating new regimes and a practical system capable of operating in heterogeneous environments such as
the Internet.
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2 Distributed Objects

Our approach to the design and implementation of network agents relies heavily on a comprehensive
distributed object subsystem implemented in the Common LISP Object System (CLOS). Agent designs
“involve compositions of objects and metaobjects, many of which are intrinsically capable of distribution in
a network environment. Communicating among agents that are described as compositional objects has a
natural interpretation; it is an instance of message passing among objects and as such has a well understood
syntax and semantics. A distributed object is an object that has a commonly-known identity and is
represented by some form of surrogate object in multiple address spaces around the network. Distributed
object surrogates are of three primary types: proxies, copies, and replicants. (There can also be a fourth,
hybrid type which combines features of the main three.)

Proxies are pure surrogates. A proxy object “stands in” for a real object that is located elsewhere. The
proxy accepts messages destined for its “real” object, delegates them to the real object for processing,
receives the result of the message, and passes the result along to the original message sender. Proxies are
very handy for projecting an object’s capabilities from its current location to other places on a network.
They are immune to update issues, since any change to a real object will be immediately reflected in the
responses of all of its proxies. Proxies are the primary object distribution mechanism of CORBA [ref
http://www.omg.org]. The downside of proxies, of course, is that every message sent to a proxy invokes a
network transaction.

Copies are just that; an object is copied and sent from one network location to another. Pure copies keep no
information about their “source” object (and vice-versa) so they cannot be updated if the source object
changes. But of course, if the data and functionality contained in the copy is needed frequently at another
location, this may be an acceptable price to pay to avoid the network overhead of a proxy.

Replicants are copies that keep track of their source (and/or vice-versa) such that they can be updated if
their source object changes. Replicants thus provide the best features of both proxies and copies:
information currency with low network overhead, as iong as accesses are more frequent than updates and
we are willing to pay the price of more bookkeeping.

Hybrid objects can exhibit proxy, copy, or replicant behavior on a slot-by-slot basis. Hybrids are probably
the most useful form of object distribution in general because the distribution mechanism choice can be
made at a fine level of granularity. '

In our discussion of copies and replicants above, we omitted one nasty detail: objects in a modern
inheritance-based dynamic OO system [in which class and method meta data exist at runtime] never exist
alone. Objects themselves are but the tips of two massive icebergs: an inheritance graph and a containment
graph. In order to truly copy an object from Point A to Point B on a network, we must also copy its
inheritance graph—its class, and its class’s superclasses, and methods thereof—and we must also somehow
distribute any objects it references or contains. In an OO system like C++ where classes are not first-class
objects, this can only be done if the requisite classes and methods already exist on the destination machine.
But in an OO system like CLOS where classes and methods are first-class objects, we can treat the classes
and methods themselves as merely more objects to be copied and copy them on-demand, using the same
mechanism we use to copy pure instances. It is the classes and methods that we refer to with the term
metaobjects.

Distribution by proxy is popular in the distributed object community because it is immune to update
problems and it does not require that classes or methods be present at the target node; it is fundamentally
based on delegating messages to a remote “real” object. But as we’ve already noted, the performance
penalty for such delegation can be large and sometimes must be avoided. Therefore distribution by
transporting whole copies of objects is essential, especially when moving an agent on a network or sharing
ontologies among fixed agents. But copying objects also requires copying class lattices (distributing class
lattices by proxying them usually won’t work) and methods. And even if the objects we move are pure
copies (no updating expected), we must usually transport their class lattices and methods as replicants, not
pure copies, because if a class definition or method changes, the changes must be promulgated. This is why
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most distributed object systems either make no attempt to copy or replicate objects or do so in only a
limited fashion. Solving the replicant problem in general is quite difficult, especially in static OO
languages. It gets even worse: in CLOS, classes themselves are instances of metaclass objects. If any
transported class is an instance of a special metaclass, the metaclass must be transported also. Fortunately,
the replication problem is soluble in CLOS because of its extensive introspective capabilities and its
metaobject protocol.

The actual movement of a CLOS object takes place in two stages: serialization and materialization. To
serialize an object means to flatten it into a sequence of bytes that can be used to reconstruct the object at
another place. In CLOS, the essential information that must be serialized is the object’s class name and its
slot contents. Serializing an object is relatively straightforward, provided we are careful to maintain
referential integrity among slot contents, and to recursively serialize any other objects that may be
referenced in its slots. Once a sequence of bytes is produced, it is transmitted over the network to the
receiver.

At the receiver, materialization begins. The receiver looks at the class name of the incoming object and
checks to see if that class is present locally. If not, it asks the sender to serialize and transmit the class
metaobject. (When the class metacbject is materialized at the receiver, the receiver will check to see that all
its superclasses and metaclasses are also present and may recursively request their transmission as well.) If
the class is already present at the receiver, the receiver may check its timestamp, hashcode, or some other
version-maintenance identifier to ensure that it has the latest version. If not, it may request that the sender
transmit the latest version of the class. Methods and generic functions are also transmitted or updated along
with the class metaobjects that specialize them. Finally, once the receiver is satisfied that the object’s
requisite infrastructure is present, it simply allocates space for an object of the appropriate class and fills in
its slots with the original serialized data.

The above is the standard “pull” mechanism for demanding an object’s infrastructure when the object is
pushed. Objects that are replicated, not merely copied, can also be updated on a “push” basis by the sender
when necessary.

Proxies are still very useful in many cases and can be implemented in CLOS much more dynamically than
in CORBA: no a priori knowledge of allowed messages is needed. Any message sent to a proxy that the
proxy does not immediately understand can be automatically delegated to the proxy’s “real” counterpart by
overriding the CLOS no-applicable-method mechanism. New messages can thus be created on-the-fly for
real objects and any proxies to those real objects can immediately take advantage of them.

We have demonstrated that there is no inherent barrier to providing copies, replicants, and proxies as
distribution mechanisms for objects and metaobjects. Nevertheless, the reader will have noted we have said
nothing yet about the security implications of such wide-open distribution. Even though our basic
mechanism is quite general, it is usually necessary to impose some limitations on its power because of
security considerations. The architecture discussed in subsequent sections addresses some security issues.

Our distributed object substrate provides a general purpose communications mechanism capable of
implementing many different agent communication systems, including KQML. However, most standard
distributed object systems are not powerful enough to implement the features needed to provide security,
shared knowledge/ontologies and agent modeling. [JAVA and CORBA discussion here].

3 Autonomy, Identity, and Integrity

Autonomy is a comerstone in the modem specification of intelligent agents. Roughly speaking, autonomy
implies an agent acts without the direct intervention of humans or others, and have some king of control
over their actions and internal state (Castelfranchi 1995). Our operational definition of autonomy is:

1. An agent is a locus of unique, persistent identity
2. An agent is a unique locus of self-control
3. An agent is a unique locus of reasoning
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An autonomous agent will be self-determined with respect to its beliefs, goals and actions. It will be known
to other agents by a unique name that identifies it as an independent entity within the agent community. In
a multiagent collaborative system, agents rely on the autonomy of one another to make certain inferences
about the other agents. Casterfranchi (1995) identifies two distinct classes of autonomy: stimulus autonomy
and executive autonomy. A message from another agent qualifies as a stimulus to the receiver. An agent
may choose to respond to a stimulus or not to respond, depending on the current state of the agent’s
deliberations. Executive autonomy requires that an agent cannot be directly motivated with the goals of
another agent unless the agent decides that the goals are congruent with its own. Under no circumstances
should an agent attempt to satisfy a goal object obtained directly from another agent without first
evaluating and criticizing the goal within the context of its own knowledge state and goals.

Implementing stimulus autonomy and executive autonomy requires the design of a safe communications
protocol that maintains the integrity of the agent while allowing effective communication. We propose that
the functional property of agent integrity is a necessary element for agent autonomy. Integrity is an
operational concept that seeks to protect the agent’s internal structures from direct manipulation by another
agent, including human actors. An agent cannot be self-determined or self-controlled unless it is impossible
for others to directly influence its beliefs and actions unbeknownst to the agent. Distributed object
protocols can introduce vulnerabilities that undermine agent integrity. The Nefarious Neurosurgeon of
Dennett (1984) introduces electrodes into the brain of the victim Jones and controls his every thought in an
undetectable manner. An agent that can dispatch an arbitrary method invocation on an object argument in
the address space of another agent is capable of direct intervention in the agent’s deliberations and actions.
Agents operating within a multiagent system that does not restrict the remote method invocation (RMI)
process cannot believe in a distinct locus of identity and control for one another, since control of an agent
by another nefarious agent is possible. Integrity mechanisms force RMI to implement a restricted protocol
that cannot address arbitrary objects and methods within an agent program. In its full exposition, this
problem is identical to security concerns identified for mobile agents (Chessman 1994, Vigna 1998). Since
our agents are composite objects with full support for object distribution, they can potentially send one
another any of their structural and procedural components, including the entire agent corpus of the sending

agent, to function as an endosymbiont within the receiving agent, for example1 . Unrestrcited trading of
metaobjects, i.e., classes and methods can pose a serious threat to the receiver agent. An agent must have a
restricted object trading protocol that implements a criticism policy to protect it against dangerous foreign
objects.

Agents operating in an open network environment are also vulnerable to impersonation through active
attacks on the communications links. The maintenance of agent integrity requires a cryptographic
authentication protocol among collaborating agents. Agents must have a high degree of trust in the
authenticity of the source of a message in order to ascribe attributes such as beliefs and state to the sending
agent. Models of other agents must be managed as distinct loci of reasoning and knowledge to detect
inconsistent states among agents and to effectively maintain reputation structures (Zacharia 1999) for other
agents .

4 Object Communication

A careful look at the life cycle of a single agent-to-agent message, i.e. the simplest an instance of agent
communication, reveals that messaging involves the most fundamental actions of an agent. Messaging is a
deliberate, motivated action, designed to achieve a specific goal. In the speech act interpretation of a
message, the agent desires to entrain a specific mental state in the receiver. Our model of agent
communications is more general, enabling agents to share both communicated objects and other elements
of their implementation such as ontologies and goals. Figure 2 represents the sequence of events leading to
transmission.

' An endosymbiont is an agent with persistent identity operating within the address space occupied by another agent.
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Figure 2. Events Leading to Transmission

motivation

The motivation for transmission is generally derived from some higher goal of the agent. Fundamentally,
the agent must inform another agent or obtain information from another agent, obviously in a social setting
with other known agents.

oal-formulation
The agent creates a goal object that encapsulates the details of the communication act. Satisfaction of the

goal is complete when the object closure is obtained with respect to the goals of the communicative act.
This involves spawining subgoals to receive a response, if any, and to evaluate the response in the context
of the goal.

message-formulation
The actual message is formulated with a sender, receiver, and content object. Depending on the

communication protocol employed (e.g. KQML), additional information may be added. The exact
formulation is compatible with the communication protocol employed by the receiver object.

message construction
A specific class of message object is constructed for transmission as copied distributed object. The copied

object will be transmitted directly to the receiver.

transmission
The message object is transmitted to the receiver.

The Send-Object method (Figure 1) implements transmission of a message object. Each agent is registered
in the network with a well-known proxy object. An agent holds the proxy to another agent in the agent
model (discussed below).

Send-object(agent-proxy, message-object)

The send-object method is invoked in the target agent’s environment through remote delegation via the
proxy. The invocation is restricted to a specific namespace in the target agent that contains the agent proxy
and proxy class, the send-object metaobject, the classes of possible message objects, and filtering functions
to evaluate the message and its content. The distributed object system checks the serialized message for
references to other namespaces and rejects the message it contains other references. Thus the send-object
protocol is a virtual chokepoint for messages, preventing direct invocation of methods on objects outside
the restricted namespace. We call this element the Restricted Protocol Interface.

Receiving an object from another agent is also a deliberate act on the part of the receiver. It requires the
necessary motivation and goal creation to create the context for evaluating the communicated object. In
general, an agent must associate the communicated beliefs with persistent goals to determine their salience
and to formulate the proper actions in response.

motivation
The motivation for reception is derived from a normative persistent goal provided by the framework that
creates within the agent the desire to receive information from other agents.
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goal-formulation
The agent creates a goal object that determines which agents will be considered for interaction. The goal is

mutable, and agents may be removed from consideration for a variety of reasons, including security,
chronic poor performance on collaborative tasks, and prioritization under severe resource constraints.

message-expectation
Certain messages or classes of messages may be expected, perhaps in response to a previous transmission

in the context of a conversation. The framework enables a message object to directly invoke a specific
achievement goal in the self-model that has been deferred pending more information. An expectation
mechanism within the Message-Object element (Figure 1) can directly determine the context for message
processing through a reference to the context goal. This provides a mechanism for implementation
continuous conversations between agents.

message deconstruction
Each message must be deconstructed according to its class. For example, a KQML message will be reduced

to its component fields and the salient objects extracted by the Object-Message protocol. The components
representing the percepts are then passed to the metamodel for processing.

reception
The new beliefs are presented to the self-model and updates the remote agent model.

elaboration
A deliberation mechanism within the receiving agent is activated to determine the ramifications of the new
beliefs with respect to the agent’s goals.

goal-formulation message-deconstruction elaboration

=

motivation message-expectation reception

Figure 3. Events Leading to Reception

The architecture provides the source of motivation for social interaction among agents. The framework
provides classes and and method metaobjects that enable the construction of sending and listening goals.

S Agent Models

Agents have local beliefs about other agents and the world. In order to distinguish its local beliefs from
those of other agents, each agent has a distinct model of itself and distinct models of other agents. The
object constant self denotes the local agent and constants of the form a-1, a-2 , and a-100 denote the other
agents in the environment. Models of other agents allow the local agent to reason about the beliefs, goals,
and actions of others. The Agents Metamodel (Figure 1) manages the update of an agent’s models from
communicated information. The communications protocol passes message objects to the Agent Metamodel
(Fig 1) for elaboration and interpretation. The metamodel makes certain inferences about the beliefs of the
local agent and other agents based on communicated messages. First, the receiving agent must be able to
recognize the sender agent as the true source of a message. Each agent in the system has a unique,
persistent, and verifiable identity. Cryptographic authentication of each message by digital signature
enables the receiver to attribute the message to the identified sender with certainty. Although the exact
operation of the metamodel depends on the particular representation of belief, the following logical model
based on deductive belief (Konolige 1984) illustrates the point. The predicate message(y,x,z) denotes a
message with content object x sent from agent y signed with digital signature z. The metamodel computes
the signature using the digital signature function, reified as a trinary relation dsa(x,y,v), where x is the
message, y is the agent id (used to obtain the public key) and z is the computed digital signature. Note that
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this digital signature scheme is distinct from the authentication protocols used at the transport level. Agents
require a different signature scheme to authenticate their identity to one another at the knowledge level.
Certain collaborative activities may require more specialized signature schemes still. Protocols for
encryption and authentication at the link level may be constrained by the network and transport layer
underlying the communications system.

Validation of the digital signature sanctions the belief by the local agent in the belief of the sender via the
schema:

message(a-123, x, z) « dsa(x,a-123,v) « eq(z,v) £ Bel(self, Bel(a-123, x))

Bel(self , Bel(a-123, x)) is asserted in the local (self) model of the agent, while the argument Bel(a-123, x) is
asserted in the model of agent a-123. Alternatively, an invalid message is not believed by the local agent2 :

message(a-123, x, z) « dsa(x,2-123,v) « ~eq(z,v) £ ~Bel(self , Bel(a-123, x))

The conclusion Bel(c, x), where c is an arbitrary constant, is asserted in the model corresponding to the
“unknown agent”. This captures the notion “somebody believes x”.

Control of an agent’s models of other agents is mediated through the metamodel. The local agent may wish
to check an agent’s model for consistent beliefs. The metamodel provides a uniform protocol to the local
agent for performing queries, proving assertions, and importing hypothetical beliefs from a model into its
self-model.

Each model of a remote agent comprises a distinct namespace, a set of metaobjects (classes and methods)
that implement the interface to the metamodel, and a separate thread to control execution of methods. At
the framework level, instances and metaobjects transmitted by the actual remote agent are represented as
simple beliefs of the form Bel(a, x), where a is the agent name and x is any object or metaobject. This
captures the primitive notion that an agent believes in the existence of the referenced object or metaobject.
Included are complex compositions of objects implementing part-whole relationships. Compositions are
handled naturally by the underlying distributed object system by coercing the message content object and
all its components into copied objects during materialization.

The framework is easily specialized for a particular representation. Candidates include categorical
taxonomies such as description logics ( e.g. CLASSIC, LOOM, KL-ONE ), KIF (Finin, Labrou, and
Mayfield 1994 ), first-order logic and theorem provers, deductive data bases, BDI architectures, and so on.
Custom representations rendered in the object language are also possible. These different representations
may be active simultaneously in different agent models provided the necessary interface protocol to the
metamodel exists.

Direct communication of metaobjects between agents enables agents to share their models of one another
and the environment. An agent decides which elements of its representation and in what representational
scheme will be used by other agents to model its reasoning and behavior. Through an interaction protocol,
agents can negotiate detailed descriptions of their shared models, enabling cooperation on joint tasks. The
framework supports this in two ways. First, every model is ultimately rendered in CLOS through
metaobjects and instances, providing a common programming language with which the agents remotely but
safely program their corresponding models residing in other agents. This in effect creates an endosymbiont
within the local agent representing a special projection of the remote agent without degrading the integrity
of the local agent. Secondly, a model of another agent is a dynamic process under the control of the local
agent. The local agent can use the model to predict the behavior of a remote agent, to the extent that model
allows. This enables a powerful simulation mechanism within an agent that facilitates cooperative actions.

2 The metamodel will attempt to validate the message for all agents in its knowledge base. If this fails. the message is
invalid. If it succeeds, the valid agent id is substituted in the message.
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6 Conclusions

We have discussed several pragmatic issues associated with agent communications in an open network
environment. We have described a general architecture that ensures agent integrity, supports agent
modeling, and enables multiple representations and communications protocols to coexist in the same agent.
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Appendix III. Code and Programs

. Code file of the ontology of “documented-transportings” in Common Lisp Object System

(CLOS) form

2. Code file showing a “DocumentedTransportings” act in LARKS format

3. Code file of frame specification for exporting goods to Mexico with Ontology information in

N o »os

LARKS format

LARKS language support functions for generating ontologies, etc.

Code enabling an SAA agent to interact with the CMU Agent Name Server (ANS)
Code enabling an SAA agent to interact with the CMU Matchmaker

Code enabling an SAA agent to process and transmit KQML
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;; Code file of the ontology of “documented-transportings” in Common Lisp Object
;i System (CLOS) form used by the Standard Agent Architecture (SRA) agents

;The service to be advertised is:
;  (our agent) will (generate) and (execute) all (necessary documents) for the
; (transport) of (goods) between the (US) and (Mexico)
(defpackage :ONTOLOGY
(:use :ut-lrp :CL :CL-USER :DCLOS :AISL :chi)
(:nicknames :ONT)
)

(in-package :ONT)

(#+Allegro excl:without-package-locks #MCL progn
(defmethod slot-unbound :around ((me #MCL ccl::class #+Allegro class)
instance slot-name)
"Override default slot-unbound behavior. Return nil if slot unbound.™
(declare (ignore instance slot-name))
(if *su-override*
nil
(call-next-method)
)
))

(defun class-instance-slot-names (class)
(mapcar #'ccl::slot-definition-name (#+MCL ccl::class-instance-slots
#+pllegro aisl::class-instance-slots class)))

(defmethod instance-slot-names ((me standard-object))
"Returns list of names of instance slots of cobject.”
(class-instance-slot-names (class-of me)))

rror

(defclass larks-frame ()
({context :initarg :context :accessor context :initform nil)
(types :initarg :types :accessor types :initform nil)
(input :initarg :input :accessor input :initform nil)
(output :initarg :output :accessor output :initform nil)
(inconstraints :initarg :inconstraints :accessor inconstraints :initform nil)
(outconstraints :initarg :outconstraints :accessor outconstraints :initform nil)
(concdescriptions :initarg :concdescriptions :accessor concdescriptions :initform nil)
)
)

(defmethod completed-p ((the-frame larks-frame))
(funcall (outconstraints the-frame) the-frame)

)

(defmethod actionable-p ((the-frame larks-frame))
(funcall (inconstraints the-frame) the-frame)

)
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(defclass transportable-things 0O
((object-id :initarg :object-id
:accessor object-id
‘type 'OBJECT-ID
:initform nil)
(custamer-id :initarg :custamer-id
:accessor custamer-id
:initform nil)
(transport-id :initarg :transport-id
:accessor transport-id
:initform nil)
(nl-description :initarg :nl-description
:accessor nl-description
:initform nil)
(weight :initarg :weight :accessor weight :initform 5000)
(height :initarg :height :accessor height :initform 3.0)
(width :initarg :width :accessor width :initform 3.0)
(depth :initarg :depth :accessor depth :initform 3.0)
)
)

(defclass documented-transportings (larks-frame)
((goods :initarg :goods
:accessor goods
:initform nil)
(the-documents :initarg :the-documents
:accessor the-documents
:initform nil)
(start-location :initarg :start-location
:accessor start-location
:initform nil)
(desired-end-location :initarg :desired-end-location
:accessor desired-end-location
:initform nil)
)
)

(defmethod in ((the-location t) (the-country t)) t)
(defparameter *US* "Stand-in for an object that represents the United States™)
(defparameter *Mexico* "Stand-in for an object that represents the United States™)

(olp: :defmaker ((prototype documented-transportings) skey)
(setf (context prototype) :cammercial-transport)
(setf (input prototype) (list (goods prototype)
(start-location prototype)
(desired-end-location prototype)))
(setf (output prototype)
(list (olp::make-object 'bill-of-lading t :shipment prototype)
(olp: :make-object 'border-crossing-permit t))
)
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(setf (inconstraints prototype)
#' (lambda (item)
(and (or (and (in (start-location item) *Mexico*)
(in (desired-end-location item) *US*)
)
(and (in (desired-end-location item) *Mexico*)
(in (start-location item) *US*)
)
)
(< (length (goods item)) 500)
(<= (apply #'max (mapcar #'weight (goods item)))
10000)
(< (apply #'max (mapcar #'depth (goods item))) 4)
(< (apply #'max (mapcar #'width (goods item))) 4)
(< (apply #'max (mapcar #'height (goods item))) 4)
(eval (cons 'and
(mapcar #'(lambda (doc)
(not (signed-p doc))
)
(the-documents item))

)

)
(setf (outconstraints prototype)

#'(lambda (item)
(and (mapcar #'signed-p (the-documents item))))
) ,
)

(defclass documents ()
((signature :initarg :signature
:accessor signature
:initform nil)
)
)

(defmethod signed-p ((the-document documents))
(signature the-document)

)

;7 "shipment" will contain an instance of "documented-transportings”
;; This is the pointer from the documentation to what it documents
(defclass shipment-documents (documents)
((shipment :initarg :shipment
:accessor shipment
:initform nil)
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(defclass bill-of-lading (shipment-documents)
({goods-listing :initarg :goods-listing
:accessor goods-listing
;initform nil)
)
)

(olp: :defmaker2 ((prototype bill-of-lading) &key)
(loop for unit in (goods (shipment prototype))
do
(push
(format nil
"[Description] -~a [weight in kg] ~a" (nl-description unit) (weight unit))
(goods-listing prototype)
)
)
) -

(defclass border-crossing-permit (documents)
0
)

(defclass TARKS-INTERFACES (interfaces)
0
)

(defparameter *larks-interface* (make-instance 'LARKS-INTERFACES))

(defmethod chi::view-as-interface ((myself larks-frame)
(interface interfaces)
stream &key &allow-other-keys)
(format stream "~a~% = (and ~{ -% (all has-~a) -~} ~% "
(class-name (class-of myself))
(mapcar #'car (ccl::class-instance-slots (class-of myself)))

)
)

#| Execution test and expected results

(defparameter *some-goods*
(list (olp::make-object

"transportable-things t

:object-id (format nil "OID~a" (random 10000))

rcustomer-id "Hewlett-Packard"

:transport-id (format nil "CUSTOMS-MARK--~a--~a"
(random 1000)
(random 100000))

:nl-description "16 4-gross cases single-use surgical gloves palletized"”

:welght 186

theight 1.86

:width 1.45

:depth 2.16
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)
(olp: :make-object
"transportable-things t
:object-id (format nil "OID~a" (random 10000))
;customer-id "Hewlett-Packard"
:transport-id (format nil "CUSTOMS-MARK-~a--~a"
(random 1000)
(random 100000))
:nl-description "21 cartons outer shell electronic amplifier palletized"
:weight 131
:height 2.45
:width 2.45
:depth 2.45

)

(olp: :make-cbject

"documented-transportings t

:goods  *some-goods*

:start-location '(:latitude 95.34.123 :longitude 123.78.342)
:desired-end-location '(:latitude 51.32.239 :longitude 111.03.893)

)

(defparameter #*the-doc*
(olp: :make-object 'documented-transportings t
:goods  *some-goods*
:start-location '(:latitude 95.34.123 :longitude 123.78.342)
:desired-end-location '(:latitude 51.32.239 :longitude 111.03.893)
)
)

*THE-DOC*

? (outconstraints *the-doc*)
#<Anonymous Function #x6BAC3062

? (funcall (outconstraints #*the-doc*) *the-doc*)
NIT,

? (inconstraints *the-doc*)
#<Anonvmous Function #x69CSDAE>

? (completed-p *the-doc*)
NIL

? (acticnable-p *the-doc*)
T
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;; Code file showing a “DocumentedIransporting” act in IARKS format

DocunmentTransportableGoods

__________ InConstraints

;; YOU'LL NEED TO TRANSIATE THE CONSTRAINTS INTO IARKS

;; NB: contents of the "goods" slot are TRANSPORTABLE-THINGS
; Let's pretend the "in" predicate exists

; note "item" is the arg to the Lambda function

(and (or (and (in (start-location item) *Mexico*)
(in (desired-end-location item) #*US*)
)
(and (in (desired-end-location item) *Mexico*)
(in (start-location item) *US*)
)
)
(< (length (goods item)) 500)
(<= (apply #'max (mapcar #'weight (goods item)))
10000}
(< (apply #'max (mapcar #'depth (goods item))) 4)
(< (apply #'max (mapcar #'width (goods item))) 4)
(< (apply #'max (mapcar #'height (goods item))) 4)
(eval (cons 'and
(mapcar #'(lambda (doc)
(not (signed-p doc))
)
(the-documents item))

—————————— OutConstraints

(and (mapcar #'signed-p (the-documents item)))
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---------- ConcDescriptions

DOCUMENTED-TRANSPORTINGS
= (and (all has-goods (list-of TRANSPORTABLE-THINGS))
(all has-the-documents (list-of DOCUMENTS))
(all has-start-location LOCATION)
(all has-desired-end-location LOCATION)
)

TRANSPORTABLE-THINGS
= (and (all has-object-id IDENTFIER)
(all has-custamer-id IDENTIFIER)
(all has-transport-id IDENTIFIER)
(all nl-desctiption TEXT)
(weight REAL)
(height REAL)
(width REAL)
(depth RFAL)
)
DOCUMENTS
= (and (all has-shipment (list-of IDENTIFIER))
(&1l has-signatures (list-of SIGNATURE))
)
IOCATION
= (and (all has-latitude REAL)
(all has-longitude REAL)
)

SIGNATURE [this is a primitive]
IDENTIFIER [this is a primitive]
TEXT [this is a primitive]

REAL [this is a primitive]
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;; Code file of frame specification for exporting goods to Mexico with ontology

;; information in IARKS format

......................................................................................

N N R N N N N NN

17

;; Frame specification for IARKS

rrs

RN NN NN N N NN NN NN

ExportUSGoodsToMexico

Context Shipper*shipper

Input

originator:
country-of-origin:
invoice-number:
lading-information:
shipment-initiator:
shipment-init-date:
consignee:
arrival-time-window:
arrival-time:
arrival-date:
departure-time-window:
departure-time:
departure-date:
Ship-fram:

Ship-to:

Output

US-carrier:
Mex-carrier:
drayage-carrier:
exit-broker:
entry-broker:

scheduled-departure-time:
scheduled-departure-date:

predicted-arrival-time:
predicted-arrival-date:
fee:

InConstraints

Outconstraints

USFirm*Firm;
country*country;
integer;

ListOf (piece-description*piece-description)
USFirm*Firm;
date*date;
MexFirm*Firm;
duration*duration;
time*time;

date*date;
duration*duration;
time*time;

date*date;
USLocation*location;
Mexlocation*location;

USTransportProvider*TransportProvider
MexTransportProvider*TransportProvider
DrayageProvider*DrayageProvider
USExitBroker*broker
MexEntryBroker*broker

time*time

date*date

time*time

date*date

Price*prices

le(departure-time, +(scheduled-departure-time, departure-time-window), )
le(scheduled-departure-time, +(departure-time, departure-time-window) )
le(arrival-time, +(predicted-arrival-time, arrival-time-window))
le(predicted-arrival-time,+(arrival-time,arrival-time-window))
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R N N N e N N N NN NN
rr

;; Ontology for IARKS

N N N e R NN NN

Firm

USFirm

MexFirm

broker

USExitBroker

USEntryBroker

MexExitBroker

MexEntryBroker

location (and (all has-address physical-addresses))

USLocation (and location
(all has-address (all country-of aset(US)))
)

MexTocation (and location
(all has-address (all country-of aset(Mexico)))
)

TransportProvider

USTransportProvider

MexTransportProvider

DrayageProvider

67



;; LARKS language support functions for generating ontologies, etc.

i

(defclass IARKS-INTERFACES  (chi::interfaces)

0
(:documentation "The dispatching class for all VIEW-AS-INTERFACE methods."))

(defparameter *ILARKS-interface* (make-instance 'IARKS-INTERFACES))

(defun convert-slotname-to-ILARKS-name (slotname)
(convert-thing-to-IARKS-name (first (third slotname)))
)

(defun convert-thing-to-IARKS-name (thing)
(apply #'concatenate
'string
(mapcar #'string-capitalize
(cl-user::listify-string (chi::prettify (string thing)))
)

)

(defun CREATE-LARKS-ONTOLOGY-FILE (classname &opticnal
(the-pathname nil)
skey (overwrite-existing? t))
(when (not the-pathname)
(setf the-pathname
(make-pathname :directory (pathname-directory (choose-directory-dialog))
:name "Larks-ontology"
:type "tXt")
)
)
(with-open-file (the-filestream the-pathname :direction :output
:if-does-not-exist :create
:if-exists (if overwrite-existing?
:supersede
:append)
)
(view-as-interface classname *IARKS-interface* the-filestream)
)
)

(defmethod view-as-interface  ((myself t) (interface IARKS-INTERFACES)
stream skey &allow-other-keys)
(declare (ignore myself interface stream)
)
)

(defmethod view-as-interface  ((myself string) (interface ILARKS-INTERFACES)
stream s&key &allow-other-keys)
(view-as-interface (find-class myself) interface stream)

)
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(defmethod view-as-interface ((myself symbol) (interface LARKS-INTERFACES)
stream &key &allow-other-keys)
(view-as-interface (find-class myself) interface stream)

)

(defmethod view-as-interface ((myself standard-class)
(interface IARKS-INTERFACES)
stream
&key (visited-hash-table (make-hash-table))
&allow-other-keys)
(let ((method-namelist nil)
(method-arglist nil)
(method-name nil)
(the-method nil)
(its-a-class-p nil)
(classes-yet-to-be-visited nil)
)
(loop for method in (remove-if #'(lambda (item)
(or (typep item 'standard-reader-method)
(typep item 'standard-writer-method)))
(inspector: :specializer-direct-methods myself)
)
when (not (member (ccl::method-name method) method-namelist :key #'first))
do
(push (cons (ccl::method-name method) method) method-namelist)
)
(cond ((gethash myself visited-hash-table)
nil)
(t (setf (gethash myself visited-hash-table) t)
(let* ((superclasses (class-direct-superclasses myself))
(classname (class-name myself))
(indent (+ (length (string classname)) (length " = (and ")))
)
(when (not (listp superclasses)) (setf superclasses
(list superclasses)))
(format stream "~a = (and " classname)
(loop for superclass in superclasses

do
(format stream "~a~%" (class-name superclass))
(dotimes (i indent) (format stream " "))

)
(loop for slot in (class-direct-instance-slots myself)
D
(when (equal 'quote (fourth slot))
(setf its-a-class-p
(find-class (intern (string-upcase (symbol-name
(fifth slot)))
:chi))
)
)
(when its-a-class-p (pushnew its-a-class-p
classes-yet-to-be-visited))
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(format stream
"(all has-~a~@[ TYPE: ~a~])~%"
(convert-slotname-to-LARKS-name slot)
(class-name its-a-class-p))
(dotimes (i indent) (format stream " "))
)
(loop for method-name-pair in (reverse method-namelist)
d
(setf method-name (first method-name-pair))
(setf the-method (rest method-name-pair))
(setf method-arglist (ccl::arglist the-method))
(format stream " (Provides -~a~@[ inputs:~{ ~a~}-])~%" ; ** ~a~%"
method-name
(reverse
(set-difference
method-arglist
(list '&METHOD 'NEXT-METHOD-CONTEXT
'&REST 'the-rest 'skey '&allow-other-keys)
:key #'symbol-name
rtest #'string-equal
)
)
;method-arglist
)
(dotimes (i indent) (format stream " "))
)
(format stream ")-%~%")
(mapcar #'(lambda (item) (view-as-interface
item interface stream
:visited-hash-table visited-hash-table))
superclasses
)
)
)
)
(loop for one-class in classes-yet-to-be-visited
do
(view-as-interface one-class interface stream
:visited-hash-table visited-hash-table)
)
)
)

(defmethod ccl::class-name  ((myself symbol))
myself

)
#
(mapcar #'(lambda (item) (view-as-interface item *larks-interface* t))

(class-direct-instance-slots (find-class 'btfs::us-manufacturer))

)
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1L

i; Code in this file implements the agent's ability to interact with CMU's Agent Name
;; Server (ANS). This includes formatting ANS commands, interpreting ANS responses,
;; and the process of interacting with that server.

(in-package :genome)

#]
doesn't have training examples... probably should, anyway this file should contain

(ultimately) everything you need for interacting with or running an ANS service
| #

(defgene-fun *ip-exoculos-sitex*
delimit ((stream-type (eql :ans)) mstream)
(let* ((state 0)
(eol ;; read to the first <cr><1f>
(loop for next-char = (aisl::stream-read-char-no-hang mstream)
until (or (null next-char) (eq next-char :eof))
do (case state
(0 (when (eq next-char #\return) (incf state)))
(1 (if (eq next-char #\linefeed) (return t) (setf state 0)))))))
(if eol
(values (subseq (aisl::buffer mstream) 0) :success)
(values (subseq (aisl::buffer mstream) 0) :undelimited))))

(defgene-class *oculos-site*
ans-sorry (material-percept) ())
(defgene-class *oculos-site*
ans-success (material-percept) ())
(defgene-class *oculos-sitex*
ans-fail (material-percept) ())
(defgene-class *oculos-sitex*
ans-error (material-percept) ())

(defgene-fun *oculos-sitex*

elaborate ((stim-type (eql :ans)) stimulus)

(cond

#| ;; recognizing ANS commands, so we could provide such a service; low pricrity
((string-equal "list all" (subseq (content stimulus) 0 8))
)
((string-equal "register" (subseqg (content stimulus) 0 8))
)
((string-equal "unregister" (subseq (content stimulus) 0 10))
)
((string-equal "lookup" (subseq (content stimulus) 0 8))
)
{({string-equal "bye" (subseqg (content stimulus) 0 4))
)| #
;7 Just the responses that can be generated by register and unregister, for the moment
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;5 currently sorry<cr><lf> and fail<cr><1lf> are too short to be disambiguated. grrr.
((string-equal "sorry" (subseq (content stimulus) 0 5))

(make-instance 'ans-sorry))

((string-equal "success" (subseq (content stimulus) 0 7))

(make-instance 'ans-success))
((string-equal "fail" (subseq (content stimulus) 0 4))

(make-instance 'ans-fail))
((string-equal "ERROR" (subseq (content stimulus) 0 5))

(make-instance 'ans-error))))

(adding-to-gene *oculos-site*
(define-schema ans-register-schema ()
(ans-ipaddr ans-port name contact-info)
:do-if (string-equal (name schema) (name *N*))
:do (send-message "IP-ARTICULOS-NUCLEUS"
(list "TCP-SEND-MSG"
:destination (list (ans-ipaddr schema) (ans-port schema))
:raw-data (format nil "register ~a ~a-~c~c"
(name schema) (contact-info schema)
#\return #\linefeed)
;; all send-action-msgs have ff now -- note that tcp-send-msg isn't a send-action
:final-fn #'(lambda () (complete schema)))))
- (define-schema ans-success-schema ()
N ()
:match-if t
:match (ans-success t))
(define-schema ans-error-schema ()
()
:match-if t
:match (ans-error t))

(define-schema ans-registration ()
(ans-ipaddr ans-port)
:subschemata (:register (ans-register-schema :ans-ipaddr ans-ipaddr :ans-port ans-port
:name (name *N¥*)
:contact-info "kaml://134.253.158.211:5557")
:success (ans-success-schema)
:sorry (ans-error-schema))
:dfa ((:start :transitions ((:register :wait)))
(:wait :transitions ((:success :done) (:sorry :fail)))
(:done :signal :complete)
(:fail :signal :failed)))
)

;; this basically works, except that the response is not being detected
#+ignore ;
(do-schema (make-instance 'ans-registration
:ans-ipaddr (pip:dotted-to-ipaddr "134.253.158.26")
ans-port 6677))



;; Code in this file implements the processes for interacting with the CMU
;; Matchmaker server. The Matchmaker uses KOML to exchange information.

(in-package :genome)

(defconstant *CMUMatchMakerServer* 'SandiaLarksMatchMaker)
(defconstant *CMUANSServer* '("artemis.cimds.ri.cmu.edu" 6677))
(defconstant *LocalANSServer* '("beldin" 6677))

(defgene-fun *oculos-sitex
advertise-content ()
(let ((this-advert
(make-instance 'mm-advertise :operation "advertise"
:sender (name *N*)
:recelver *CMUMatchMakerServer*
radvertisement "(advertise :name advertisement
:name \"getInformation\"
:ontology \"weather\"
:requiredFieldCategories
(listof
(category
:name \"primary-keys\"
:fields (listof (cfield \"city\" \"string\"))
rattributes (listof )))
:optionalFieldCategories (listof )
:constraintFieldCategories (listof )
:outputOnlyFieldCategories
(listof
(category
:name \"output\"
:fields (listof (cfield \"weather\" \"string\"))
;attributes (listof )))
:host ethel.sandia.gov
:port 5556)"))
(this-dest *CMUANSServer¥*))
(send-kgml this-dest this-advert)))
(adding-to-gene *oculos-site*
(define-schema advertise-schema ()

€L

)

:do-if t

:match-if nil

:do (advertise-content)

))

;i (do-schema (make-instance 'advertise-schema))
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(adding-to-gene *oculos-site*
(define-schema kaml-schema ()
(sender receiver content)
:do-if nil
:match-1if t
:match (kgml-message-percept (progn (aisl:diag schema percept)
' (maybe-join-equal sender (sender percept)
receiver (symbol-name (receiver percept))
content (content percept)

)))

)
(define-schema kgml-response-schema ()
(sender receiver content)
:do-1if t ; (string-equal sender (name *N%*))
:match-if nil
:do (let ((percept (make-instance 'kgml-tell
:sender (sender schema)
:receiver (receiver schema)
:content (content schema))))
(send-message "IP-ARTICULOS-NUCLEUS"
(list "TCP-SEND-MSG"
;; this has to be fixed, should really interact with ANS. ..
;; which would require ascii things to be matched, not impossible though
:destination (list (pip:dotted-to-ipaddr "134.253.158.37") 6540)
:raw-data (serialize percept)
:final-fn #'(lambda () (complete schema))
:close? t))))

L

(define-schema kgml-sequence-schema ()
(sender receiver content)
:subschemata (:kaml (kgml-schema :sender sender :receiver receiver :content content)
:kgml-respond (kgml-response-schema :sender receiver :receiver sender :content content))
:dfa ((:start :transitions ((:kgml :one)))
(:one :transitions ((:kgml-respond :two)))
(:two :signal :complete)))

(defun *oculos-site* kgml-tell-message (sender receiver content)

(let ((this-message
(make-instance 'kgml-tell
:sender sender
:receiver receiver
:content content))
(this-dest *LocalANSServer¥))
(send-kgml this-dest this-message)))
(do-schema (make-instance 'kgml-sequence-schema))

Pio)
)
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;5 Code in this file implements structures for processing the Knowledge Query and
;; Manipulation Language (KQML) as perceptual stimuli and for transmitting messages
;5 in that format.

(in-package :genome)

A A A A e e N N A A A A

;7 KQML percept classes -- creating a message object that can be dispatched on
note that these are not all instantiable classes, only the non-mixin
classes should ever be created (that inherit from these mixins and

;5 kaml-messag-percept)

(defgene-class *oculos-site* kgml-message-percept (material-percept)
(:; (conversation-id :initform nil :initarg :conversation-id :accessor conversation-id)
;7 all kagml messages have these three slots -- should the performative be a slot?
(performative :initform nil :initarg :performative :accessor performative :allocation :class)
(sender :initform nil :initarg :sender :accessor sender)
(receiver :initform nil :initarg :receiver :accessor receiver)))

; any content-bearing message (all but 2) has these three slots -- the language and ontology
; describe the context and protocol which should be used to decode the contents
(defgene-class *oculos-site* kgml-content-mixin (kgml-message-percept)

&' ((language rinitform nil :initarg :language :accessor language)
(ontology :initform nil :initarg :ontology :accessor ontology)
(content :initform nil :initarg :content raccessor content)))
; a response bbject -- this should be used to undefer goals :pending-agent-response

(defgene-class *oculos-site* kgml-response-mixin (kgml-message-percept)
((in-reply-to :initform nil :initarg :in-reply-to :accessor in-reply-to)))

; a request object -- a useful counterpart to response objects (note that some objects
; can be both responses and requests, in the middle of a dialog or whatever)
(defgene-class *oculos-site* kgml-request-mixin (kgml-message-percept)

((reply-with :initform nil :initarg :reply-with :accessor reply-with)))

; a message whose contents can be emphasized -- agent X _KNOWS_ this to be true
(defgene-class *oculos-site* kgml-assertion-mixin (kgml-message-percept)
( (force :initform nil :initarg :force :accessor force)))

; used for deletes and asks across a domain, specifies a filter to use
(defgene-class *oculos-site* kgml-aspect-mixin (kgml-message-percept)

( (aspect :initform nil :initarg :aspect raccessor aspect)))
(defgene-class *oculos-site* kgml-operation-mixin (kgml-message-percept)
( (operation :initform nil :initarg :operation raccessor operation)))

(defgene-class *oculos-site* mm-advert-mixin (kgml-message-percept)
((advertise :initform nil :initarg :advertisement :accessor advertisement)))
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;; individual performative classes that can be created by the parser

;; NOTE: kgml content mixin is later precedence than the others so that

i methods may specialize (on responses, say) that override the more general
H but not necessarily required content mixin class

s

(defgene-class *oculos-site* kgml-tell (kgml-response-mixin kgml-request-mixin kgml-assertion-mixin kgml-content-mixin)
((performative :initform 'tell :accessor performative :allocation :class)))

(defgene-class *oculos-site* kqml-achieve (kgml-assertion-mixin kgml-content-mixin)
((performative :initform 'achieve :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-deny (kgml-response-mixin kgml-content-mixin)
((performative :initform 'deny :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-untell (kagml-response-mixin kgml-assertion-mixin kgml-content-mixin)
((performative :initform 'untell :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-insert (kgml-response-mixin kgml-request-mixin kgml-assertion-mixin kgml-content-mixin)
((performative :initform 'insert :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-delete (kgml-response-mixin kgml-request-mixin kgml-content-mixin)
« ((performative :initform 'delete :accessor performative :allocation :class)))
o

(defgene-class *oculos-site* kgml-delete-one (kgml-response-mixin kgml-request-mixin kgml-aspect-mixin kgml-content-mixin)
((performative :initform 'delete-one :accessor performative :allocation :class)
(order :initform nil :initarg :order :accessor order)

)
)

(defgene-class *oculos-site* kgml-delete-all (kaml-response-mixin kgml-request-mixin kgml-aspect-mixin kgml-content-mixin)
((performative :initform 'delete-all :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-error (kgml-response-mixin)
((performative :initform 'error :accessor performative :allocation :class)
(comment :initform nil :initarg :comment :accessor comment)
(code :initform nil :initarg :code :accessor code)

)
)

(defgene-class *oculos-site* kgml-sorry (kgml-response-mixin)
((performative :initform 'sorry :accessor performative :allocation :class)
(comment :initform nil :initarg :comment :accessor comment)

)
)

(defgene-class *oculos-site* kgml-evaluate (kgml-request-mixin kgml-content-mixin)
((performative :initform 'evaluate :accessor performative :allocation :class)))
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(defgene-class *oculos-site* kgml-reply (kgml-response-mixin kgml-assertion-mixin kgml-content-mixin)
((performative :initform 'reply :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-ask-if (kgml-request-mixin kgml-content-mixin)
((performative :initform 'ask-if :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-ask-about (kgml-request-mixin kgml-content-mixin)
((performative :initform 'ask-about :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-ask-one (kgml-request-mixin kgml-aspect-mixin kgml-content-mixin)
((performative :initform 'ask-one :accessor performative :allocation :class)))

(defgene-class *oculos-site* kgml-ask-all (kgml-request-mixin kgml-aspect-mixin kgml-content-mixin)
((performative :initform 'ask-all :accessor performative :allocation :class)))
(defgene-class *oculos-site* mm-advertise (kgml-operation-mixin kgml-mmadvert-mixin)
((performative :initform 'tell :accessor performative :allocation :class)
(operation :initform 'advertise :accessor operation :allocation :class)))

A A A A N NN

;; parsing functions for building percepts from disambigutated kgml
;; messages based on performative (first element of list in message)
(defgene-method *oculos-site* find-kgml-percept ((kgml list))
;;The first chunk in the list is the type of message. The rest of the message
;;is a keyword and then either a value or nil
(let ((the-class (find-class (find-symbol
(concatenate 'string "KOML-" (symbol-name (car kqml)))
(locus *N*))))
(the-parameters (get-kgml-params (cdr kaml))))
(apply 'make-instance the-class the-parameters)))

(defgene-method *oculos-site* get-kgml-params ((kgml list))
(maplist #'(lambda (x) (if (and (keywordp (car x)) (or (keywordp (cadr x)) (null (cdr x))))
(setf kaml (delete (car x) kaml :count 1)))) kaml)

kaml)

(defgene-method *oculos-sitex*
elaborate ((stim-type (eql :kaml)) (stimulus unit-stimulus))
(let ((*read-eval* nil)
(*package* (locus *N*)))
(find-kgml-percept (read-from-string (content stimulus)))))

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

associate method for messages that have direct links to their schema

i'm notioning that find-schema on a direct id would be fast, otherwise
find-schema would have to look at a bunch of data or look through

expectations or active schema to see what the input is appropriate to

;; based on sender or whatever

(defgene-method *oculos-site* match-directly ((the-percept kgml-message-percept))

7o
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(schemap (in-reply-to the-percept)))

(defgene-method *ip-exoculos-site*
delimit ((stream-type (eql :kgml)) mstream)
(1f (loop for next-char = (aisl::stream-read-char-no-hang mstream)
until (or (null next-char) (eq next-char :eof))
do (if (char= next-char #\"d) (return t)))
(values (subseq (aisl::buffer mstream) 0) :success)
(values (subseq (aisl::buffer mstream) 0) :undelimited)))

;; capstones which return nil when a message doesn't have such a slot (for now)
(defgene-method *oculos-site* language ((kgml kgml-message-percept)))
(defgene-method *oculos-site* ontology ((kgml kqgml-message-percept)))
(defgene-method *oculos-site* content ((kgml kgml-message-percept)))
(defgene-method *oculos-site* in-reply-to ((kagml kgml-message-percept)))
(defgene-method *oculos-site* reply-with ((kgml kgml-message-percept)))
(defgene-method *oculos-site* force ((kgml kgml-message-percept)))
(defgene-method *oculos-site* aspect ((kgml kgml-message-percept)))
(defgene-method *oculos-site* order ((kgml kgml-message-percept)))
(defgene-method *oculos-site* comment ((kgml kgml-message-percept)))
(defgene-method *oculos-site* code ((kaml kgml-message-percept)))

;; get rid of package delimiter or ""s around performative
; make sure oids etc can be read by their system (may have to eliminate some sgpaces)
(defgene-method *oculos-site* serialize ((msg kgml-message-percept))
(let ((sm nil))
(macrolet ((maybe-include-as (keyword slotname)
“(when (,slotname msg)
(setf sm (list* (,slotname msg) ,keyword sm)))))

(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(maybe-include-as
(setf sm (reverse

:sender sender)
:receiver receiver)
:language language)
:ontology ontology)
:content content)
:in-reply-to in-reply-to)
:reply-with reply-with)
: force force)

:aspect aspect)

:order order)

:comment comment)

:code code)

sm)))

(format nil "(~a~{ -~s~})" (performative msg) sm)))

(defgene-fun *oculos-site* send-kgml (destination percept)
(send-message "IP-ARTICULOS-NUCLEUS"
(list "TCP-SEND-MSG"
:destination destination
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:raw-data (serialize percept)
:close? t)))
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Appendix IV. Reprint of CMU reference that defines LARKS
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1 Introduction

Due to the exponential increase of offered services in the most famous offspring
of the Internet, the World Wide Web, searching and selecting relevant services is
essential for users. Various search engines and software agents providing various
different services are already deploved on the Web. However, novice users of
the Web may have no idea where to start their search, where to find what they
really want, and what agents are available for doing their job. Even experienced
users may not be aware of every change in the Web, e.g., relevant web pages
might not exist or their content be valid anymore, and agents may appear and
disappear over time. The user is simply overtaxed by manually searching in the
Web for information or appropriate agents.

On the other hand, as the number and sophistication of agents on the Web
that may have been developed by different designers increases, there is an obvi-
ous need for a standardized, meaningful communication arnong agents to enable
them to perform collaborative task execution. We distinguish two general agent
categories, service providers and service requester agents. Service providers
provide some type of service, such as finding information, or performing some
particular domain specific problem solving (e.g. number sorting). Requester
agents need provider agents to perform some. service for them. Since the In-
ternet is an open environment, where information sources, communication links
and agents themselves may appear and disappear unpredictably, there is a need
for some means to help requester agents find providers. Agents that help locate
others are called middle agents.

We have identified different types of middle agents in the Internet, such
as matchmakers (yellow page services), brokers, billboards, etc. [3], and ex-
perimentally evaluated different protocols for interoperation between providers,
requesters and various types of middle agents. Figure 1 shows the protocol for
two different types of middie agents: brokers and matchmalers. We have also
developed protocols for distributed matchmaking [12]. The process of finding
an appropriate provider through a middle agent is called matchmaking. It has
the following general form:

Provider agents advertise their capabilities such as know-how, expertise,
and so on, to middle agents.

Middle agents store these advertisements.

A requester asks some middle agent whether it knows of providers with
desired capabilities.

The middle agent matches the request against the stored advertisements
and returns the result.

While this process at first glance seems very simple, it is complicated by the

fact that providers and requesters are usually heterogeneous and incapable in
general of understanding each other. This difficulty gives rise to the need for a
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common language for describing the capabilities and requests of software agents
in a convenient way. In addition, one has to devise a mechanism for matching
descriptions in that language. This mechanisin can then be used by middle
agents to efficiently select relevant agents for some given tasks.

In the following, we first elaborate the desiderata of an agent capability
description language (ACDL), and propose such an ACDL, called LARKS, in
detail. Then we will discuss the matchmaking process using LARKS and give a
complete working scenario with some examples. We have implemented LARKS
and the associated powerful matchmaking process, and are currently incorpo-
rating it within our RETSINA multi-agent infrastructure framework [22]. The
paper concludes with comparing our language and the matchmaking process
with related works.

2 Matchmaking Among Heterogeneous Agents

In the process of matchmaking (see Fig. 1) are three different kinds of collabo-
rating agents involved:

1. Provider agents provide their capabilities, e.g., information search ser-
vices, retail electronic commerce for special products, etc., to their users
and other agents.

2. Requester agents consume informations and services offered by provider
agents in the system. Requests for any provider agent capabilities have to
be sent to a matchmaker agent.

3. Matchmaker agents mediate among both, requesters and providers, for
some mutually beneficial cooperation. Each provider must first register
himself with a matchmaker. Provider agents advertise their capabilities
(advertisements) by sending some appropriate messages describing the
kind of service they offer.

Every request a matchmaker receives will be matched with his actual set
of advertisements. If the match is successful the matchmaker returns a
ranked set of appropriate provider agents and the relevant advertisements
to the requester.

In contrast to a broker agent, a matchmaler does not deal with the task of
contacting the relevant providers, transmitting the service request to the service
provider and communicate the results to the requester. This avoids data trans-
mission bottlenecks, but it might increase the amount of interactions among
agents.
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Figure 1: Service Brokering vs. Matchmaking

2.1 Desiderata for an Agent Capability Description Lan-
guage

There is an obvious need to describe agent capabilities in a common language
before any advertisement, request or even matchmaking among the agents can
take place. In fact, the formal description of capabilities is one of the major
problems in the area of software engineering and AI. Some of the main desired
features of such a agent capability description language are the following.

» Expressiveness.
The language is expressive enough to represent not only data and knowl-
edge, but also to describe the meaning of program code. Agent capabilities
are described at an abstract rather than implementation level. Most of
existing agents can be distinguished by describing their capabilities in this
language.

o Inferences.
Inferences on descriptions written in this language are supported. A user
can read any statement in the language, and software agents are able to
process, especially to compare any pair of statements automatically.

¢ Ease of Use.
Every description should not only be easy to read and understand, but
also easy to write by the user. The language supports the use of domain or
common ontologies for specifying agents capabilities. It avoids redundant
work for the user and improves the readability of specifications.
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e Application in the Web. :
One of the main application domains for the language is the specification
of advertisements and requests of agents in the Web. The language allows
for automated exchange and processing of information among these agents.

In addition, the matchmatching process on a given set of capability descrip-
tions and a request, both written in the chosen ACDL, should be efficient, most
accurate, not only rely on keyword extraction and comparison, and fully auto-
mated.

3 The Agent Capability Description Language
LARKS

Representing capabilities is a difficult problem that has been one of the major
concerns in the areas of software engineering, Al, and more recently, in the
area of internet computing. There are many program description languages,
like VDM or Z{28], to describe the functionalities of programs. These languages
concern too much detail to be useful for the searching purpose. Also, reading
and writing specifications in these languages require sophisticated training. On
the other hand, the interface definition languages, like IDL, WIDL, go to the
other extreme by omitting the functional descriptions of the services at all. Only
the input and output information are provided.

In Al knowledge description languages, like KL-ONE, or KIF are meant to
describe the knowledge instead of the actions of a service. The action repre-
sentation formalisms like STRIPS are too restrictive to represent complicated
service. Some agent communication languages like KQML and FIPA concen-
trate on the communication protocals (message types) between agents but leave
the content part of the language unspecified.

In internet computing, various description format are being proposed, no-
tably the WIDL and the Resource Description Framework(RDF)[27]. Although
the RDF also aims at the interoperablity between web applications, it is rather
intended to be a basis for describing metadata. RDF allowes different vendors
to describe the properties and relations between resources on the Web. That
enables other programs, like Web robots, to easily extract relevant information,
and to build a graph structure of the resources available on the Web, without
the need to give any specific information. However, the description does not
describe the functionalities of the Web services.

Since none of those languages satisfies our requirements, we propose an
ACDL, called LarKS (Language for Advertisement and Request for Knowledge
Sharing) that enables for advertising, requesting and matching agent capabili-
ties. It satisfies the desiderata given in the former section.

3.1 Specification in LARKS

A specification in LARKS is a frame with the following slot structure.
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Context Context of specification ]
Types Declaration of used variable types
Input Declaration of input variables
Output Declaration of output variables
InConstraints Constraints on input variables
QutConstraints Constraints on output variables
ConcDescriptions Ountological descriptions of used words

The frame slot types have the following meaning.

& Context.
The context of the specification in the local domain of the agent.

& Types.
Optional definition of the used data types. If not used, all data types are
assumed to be defined in the following slots for input and output variables.

& Input and Output.
Input/output variables for required input/output knowledge to describe a
capability of an agent: if the input given to an agent fits with the specified
input declaration part, then the agent is able to process an output as
specified in the output declaration part. Processing takes all specified
constraints on the input and output variables into consideration.

& InConstraints and OutConstraints.
Logical constraints on input/output variables in the input/output decla-
ration part. The constraints are specified as Horn clauses.

& ConcDesriptions.
Optional description of the meaning of words used in the specification. The
description relies on concepts in a given local domain ontology. Attache-
ment of a concept C to a word w in any of the slots above is done in the
form: w*C. That means that the concept C is the ontological description
of the word w. The concept C is included in the slot ConcDescription.

In our current implementation we assume each local domain ontology to be
written in the concept language ITL (Information Terminological Language).
the syntax and semantics of the ITL are given in the appendix. Section 3.3 gives
an example for how to attach concepts in a LARKS specification, and also shows
an example domain ontology in ITL. A generic interface for using ontologies
in LARKS expressed in languages other than ITL will be implemented in near
future.

Every specification in LARKS can be interpreted as an advertisement as well
as a request; this depends on the purpose for which an agent sends a specification
to some matchmaker agent(s). Every LARKS specification must be wrapped up
in an appropriate KQML message by the sending agent indicating if the message
content is to be treated as a request or an advertisement.
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3.2 Examples of Specifications in LARKS

The following two examples show how to describe in LARKS the capability to .
sort a given list of items, and return the sorted list. Example 3.1 is the the spec-
ification of the capability to sort a list of at most 100 integer numbers, whereas
in example 3.2 a more generic kind of sorting real numbers or strings is specified
in LARKS. Note that the ConcDescriptions slot is empty, 1.e. the semantics of
the words in the specification are assumed to be known to the matchmaker

Example 3.1: Sorting integer numbers

| IntegerSort ] ]

Context Sort

Types

Input xs: ListQOf Integer,

Qutput y¥s: ListOf Integer:

InConstraints le{length(xs),100);

OutConstraints before(x,y,¥s) < — ge(x.,¥);
n(x.ys) < — in{x.xs);

ConcDescriptions

Q

Example 3.2: Generic sort of real numbers or strings

[ GenericSort ] ]
Context Sorting
Types
Input xs: ListOf Real | String;
Qutput vs: List0f Real | String;
InConstraints
QutConstraints before(x,y,ys) < — ge(x,¥);
before(x,y,ys) < — preceeds(x,¥);
n(x,ys) < — in(x,xs);
ConcDescriptions
[of

The next example is a specification of an agent’s capability to buy stocks at
a stock market. Given the name of the stock, the amount of money available for
buying stocks and the shares for one stock, the agent is able to order stocks at
the stock market. The constraints on the order are that the amount for buying
stocks given by the user covers the shares times the current price for one stock.
After performing the order the agent will inform the user about the stock, the
shares, and the gained benefit.

Example 3.3: Selling stocks by a portfolio agent
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sellStock

Context Stock, StockMarket;
Types
Input symbol: StockSymbols;

yourMoney: Money;
shares: Money;

Qutput yourStock: StockSymbols; -
yourShares: Money;
yourChange: Money;

InConstraints vourMoney >= shares*currentPrice(symb):
QutConstraints yourChange = yvourMoney - shares*currentPrice(symb);
yourShares = shares; yourStock = symbol;
ConcDescriptions
[}

3.3 Using Domain Knowledge in LARKS

As mentioned before, LARKS offers the option to use application domain knowl-
edge in any advertisement or request. This is done by using a local ontology for
describing the meaning of a word in a LARKS specification. Local ontologies can
be formally defined using, e.g., concept languages such as ITL (see Appendix),
BACK, LOOM, CLASSIC or KRIS, a full-fledged first order predicate logic,
such as the knowledge interchange format (KIF), or even the unified modeling
language (UML).

The main benefit of that option is twofold: (1) the user can specify in more
detail what he is requesting or advertising, and (2) the matchmaker agent is able
to make automated inferences on such kind of additional semantic descriptions
while matching LARKS specifications, thereby improving the overall quality of
matching.

Example 3.4: Finding informations on computers

Suppose that a provider agent such as, e.g., HotBot, Excite, or even a meta-
searchbot, like SavvySearch or MetaCrawler, advertises the capability to find
informations about any type of computers. The administrator of the agent may
specify that capability in LARKS as follows.
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FindComputerinfo

Context Computer*Computer;

Types Infolist = List0f(model: Model* ComputerModel,
brand: Brand*Brand,
price: Price*Money, color: Color*Colors);

Input brands: Set0f Brand*Brand;
areas: SetOf State;

processor: Set0f CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer:

Qutput Info: InfoList;
InConstraints
OutConstraints sorted(Info).

ConcDescriptions | Computer = (and Product (exists has-processor CPU)

{all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800)(exists in-currency aset(USD})});
HighPrice = {and Price (1e 50000){exists in-currency aset{USD)));
ComputerModel =

aset(HP-Vectra.PowerPC-G3, Thinkpad?70,Satellite315);

CPU = aset(Pentium.K6,Pentiuml],G3,Merced)

[Product, Colors, Brand, Money]

Most words in this specification have been attached with a name of some
concept out of a given ontology. The definitions of these concepts are included
in the slot ConcDescriptions. Concept definitions which were already sent
to the matchmalker are enclosed in brackets. In this example we assume the
underlying ontology to be written in the concept language ITL. An example for
such an ontology is given in the next section.

Suppose that an agent registers himself at some matchmaker agent and sends
the above specifications as advertisements. The matchmaker will then treat that
agent as a provider agent, i.e., an agent who is capable to provide all these kinds
of services.

3.3.1 Example for a Domain Ontology in the Concept Language ITL

As mentioned before, our current implementation of LARKS assumes the domain
ontology to be written in the concept language ITL.

The research area on concept languages (or description logics) in AI has
its origins in the theoretical deficiencies of semantic networks in the late 70’s.
KL-ONE was the first concept language providing a well-founded semantic for a
more native language-based description of knowledge. Since then different con-
cept languages are intensively investigated; they are almost decidable fragments
of first-order predicate logic. Several knowledge representation and inference
systems, such as CLASSIC, BACK, KRIS, or CRACK, based on such languages
are available. '

Conceptual knowledge about a given application domain, or even comnion-
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sense, is defined by a set of concepts and roles as terms in the given concept
language; each term as a definition of some concept ' is a conjunction of logical
constraints which are necessary for any object to be an instance of C. The
set of terminological definitions forms a terminology. Any canonical definition
of concepts relies in particular on a given basic vocabulary of words (primitive
components) which are not defined in the terminology, i.e., their semantic is
assumed to be known and consistently used across boundaries.

The following terminology, is written in the concept language ITL and de-
fines concepts in the computer application domain. It is in particular used in
the example 3.4 in the former section.

Product = (and (all is-manufactured-by Brand) (atleast 1 is-manufactured-by)
(all has-price Price))
Computer = (and Product (exists has-processor CPU) (2ll has-memory Memory)
{all is-model ComputerModel})
Notebook = (and Computer (all has-price
{and (and (ge 1000) (1le 2999)) (all in-currency aset(USD)) )
{all has-weight (and kg (le 5)) (all is-manufactured-by
Company})
(all is-model aset(Thinkpad380,Thinkpad770,Satellite315))))
Brand = (and Company (all is-located-in State))
State = {and (all part-of Country) aset(VA,PATX OH.NY))
Company = aset(IBM,Toshiba,HP ,Apple. DEC,Dell, Gateway)
Colors = aset(Blue,Green,Yellow,Red)
Money = {and Real (all in-currency aset(USD,DM,FF,Y P)})
Price = Money
LowPrice = {and Price (ge 1800)(exists in-currency aset(USD))),
HighPrice = {and Price (1e 50000)(exists in-currency aset(USD)})
ComputerModel = aset{HP-Vectra.PowerPC-G3,Thinkpad3R0,Thinkpad770,Satellite315)
CpPU = aset{Pentium,K6,PentiumIl,G3.Merced)
o)

3.3.2 Subsumption Relationships Among Concepts

One of the main inferences on ontologies written in concept languages is. the
computation of the subsumption relation among two concepts: A concept C
subsumes another concept C” if the extension of (' is a subset of that of C.
This means, that the logical constraints defined in the term of the concept C’
logically imply those of the more general concept C'.

Any concept language is decidable if it is for concept subsumption among
two concepts defined in that language. The concept language ITL we use is
NP-complete decidable. The well-known trade-off between expressiveness and
tractability of concept languages in practice is surrounded almost by subsump-
tion algorithms which are correct but incomplete. We use an incomplete in-
ference algorithm for computing subsumption relations among concepts in ITL.
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Figure 2: Matchmaking using LARKS: An Overview

For the mechanism of subsumption computation we refer the reader to, e.g.,
[19, 14, 20, 21].

The computation of subsumption relationships among all concepts in a ontol-
ogy vields a so-called concept hierarchy. Both, the subsumption computation

and the concept hierarchy are used in the matchmaking process (see section
4.1.2).

4 The Matchmaking Process Using LARKS

As mentioned before, we differentiate hetween three different kinds of collab-

orating information agents: provider, requester and matchmaker agents. The

following figure shows an overview of the matchmaking process using LARKS.
The matchmalker agent process a received request in the following main steps:

o Compare the request with all advertisements in the advertisement database
e Determine the provider agents whose capabilities match best with the
request. Every pair of request and advertisement has to go through several

different filtering during the matchimaking process.

o Inform the requesting agent by sending them the contact addresses and
related capability descriptions of the relevant provider agents.

For being able to perform a steady. just-in-time matchimaking process the in-
formation model of the matchmalker agent comprises the following components.
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1. Advertisement database (ADB).
This database contains all advertisements written in LARKS the match-
maker receives from provider agents.

2. Partial global ontology.
The ontology of the matchmaker consists of all ontological descriptions
of words in advertisements stored in the ADB. Such a description is in-
cluded in the slot ConcDescriptions and sent to the matchmaker with
any advertisement.

3. Auxiliary database.
The auxiliary data for the matchmaker comprise a database for word pairs
and word distances, basic type hierarchy, and internal data.

Please note that the ontology of a matchmaker agent is not necessarily equal
to the union of local domain ontologies of all provider agents who are actually
registered at the matchmalker. This also holds for the advertisement database.
Thus, a matchmaker agent has only partial global knowledge on available in-
formation in the overall multi-agent system; this partial knowledge might also
be not up-to-date concerning the actual time of processing incoming requests.
This is due to the fact that for efficiency reasons changes in the local ontology of
an provider agent will not be propagated immediately to all matchmaker agents
e is registered at. In the following we will describe the matchmaking process
using LARKS in a more detail.

4.1 The Filtering Stages of the Matchmaking Process

The matching process of the matchmaker is designed with respect to the follow-
ing criteria:

e The matching should not be based on keyword retrieval only. Instead,
unlike the usual free text search engines, the semantics of requests and
advertisements should be taken into consideration.

e The matching process should be automated. A vast amount of agents
appear and disappear in the Internet. It is nearly impossible for a user to
manually search or browse all agents capabilities.

e The matching process should be accurate. For example, if the matches
returned by the match engine are claimed to be exact match or the plug-
in match, those matches should satisfy the definitions of exact matching
and plug-in matching.

o The matching process should be efficient, i.e., it should be fast.

o The matching process should be effective, i.e., the set of matches should
not be too large. For the user, typing in a request and receiving hundreds
of matches is not necessarily very useful. Instead, we prefer a small set of
highly rated matches to a given request.
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To fulfill the matching criteria listed in the above section, the matching
process is organized as a series of increasingly stringent filters on candidate
agents. That means that matching a given request into a set of advertisements
consists of the following five filters that we organize in three consecutive filtering
stages:

1. Context Matching

Select those advertisements in the ADB which can be compared with the
request in the same or similar context.

2. Syntactical Matching

This filter compares the request with any advertisement selected by the
context matching in three steps:

(a) Comparison of profiles.
(b) Similarity matching.

(c) Signature matching.

The request and advertisement profile comparison uses a weighted key-
word representation for the specifications and a given term frequency
based similarity measure (Salton, 1989). The last two steps focus on the
(input/output) constraints and declaration parts of the specifications.

3. Semantical Matching

This final filter checks if the input/output constraints of any pair of request
and advertisement logically match (see section 4.1.3).

For reasons of efficiency the context filter roughly prunes off advertisements
which are not relevant for a given request. In the following two filtering stages,
syntactical and semantical matching, the remaining advertisements in the ADB
of the matchmaker are checked in a more detail. All filters are independent from
each other; each of them narrows the set of matching candidates with respect
to a given filter criteria. )

In our current implementation the matchmaker offers different types and
modes of matching a request to a given set of advertisements.

4.1.1 Different Types of Matching in LARKS

Agent capability matching is the process of determining whether an advertise-
ment registered in the matchmaker matches a request. But when can we say
two descriptions match against each other? Does it mean that they have the
same text? Or the occurrence of words in one discription sufficiently overlap
with those of another discription? When both descriptions are totally different
in text. is iv still possible for them to match? Even if they match in a given
sense, what can we then say about the matched advertisements? Before we
go into the details of the matchmaking process, we should clarify the various
notions of matches of two specifications.
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4.1.1.1 Exact Match Of course, the most accurate match is when both
descriptions are equivalent, either equal literally, or equal by renaming the vari-
ables, or equal logically obtained by logical inference. This type of matching is
the most restrictive one.

4.1.1.2 Plug-In Match A less accurate but more useful match is the so-
called plug — in match. Roughly speaking, plug-in matching means that the
agent which capability description matches a glven request can be " plugged into
the place™ where that request was raised. Any pair of request and advertisement
can differ in the signatures of their input/output declarations, the number of
constraints, and the constraints themselves. As we can see, exact match is a
special case of plug-in match, i.e., wherever two descriptions are exact match,
they are also plug-in match.

A simple example of a plug-in match is that of the match between a request
to sort a list of integers and an advertisement of an agent that can sort both
list of integers and list of strings. This example is elaborated in section 5.
Another example of plug-in match is between the request to find some computer
information without any constraint on the output and the advertisement of an
agent that can provide these informations and sorts the respective output.

4.1.1.3 Relaxed Match The least accurate but most useful match is the
so-called relared match. A relaxed match has a much more weaker semantic
interpretation than a exact match and plug-in match. In fact, relaxed match
will not tell whether two descriptions semantically match or not. Instead it
determines how close the two descriptions are by returning just a numerical
distance value. Two descriptions match if the distance value is smaller than a
preset threshold value. Normally the plug-in match and the exact match will
be a special case of the relaxed match if the threshold value is not too small.

An example of a relaxed match is that of the request to find the place (or
address) where to buy a Compag Pentium233 computer and the capability de-
scription of an agent that may provide the price and contact phone number for
that computer dealer.

Different users in different situation may want to have different types of
matches. Although people usually may prefer to have plug-in matches, such
a kind of match does not exist in many cases. Thus, people may try to see
the result of a relaxed match first. If there is a sufficient number of relaxed
matches returned a refined search may be performed to locate plug-in matching
advertisements. Even when people are interested in a plug-in match for their
requests only, the computational costs for this type of matching might outweigh
its benefits.

As mentioned above we have five different matching filters:

1. context matching

2. profile comparison
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P

. similarity matching
4. signature matching

5. semantical matching

The first three filters are meant for relaxed matching, and the signature and
semantical matching filter are meant for plug-in matching. Please note, that
the computational costs of these filters are in increasing order. Users may select
any combinations of these filters according their demand. Since the similarity
filter also performs intensive computation one may just select the context filter
and the profile filter if efficiency is of major concern.

Based on the given notions of matching we did implement four different
modes of matching for the matchmaker:

1. Complete Matching Mode. All filtering stages are considered.

2. Relaxed Matching Mode. The first two filtering stages are considered
except signature matching, i.e., the context, profile and similarity filter
only.

3. Profile Matching Mode. Only the context matching and comparison
of profiles is done.

4. Plug-In Matching Mode. In this mode, the matchmaker performs the
signature and semantical matching.

As said above, the matching process proceeds in different filtering stages. If
the considered advertisement and request contain conceptual attachments (on-
tological description of used words), then in most of the filtering stages (except
for the comparison of profiles) we need a way to determine the semantic distance
between the defined concepts. For that we use the computation of subsumption
relationships and a weighted associative network.

4.1.2 Computation of Semantic Distances Among Concepts

We have presenited the notion of concept subsumption in section 3.3.2. But the
concept subsumption gives only a generalization/specialization relation based
on the definition of the concepts via roles and attribute sets. In particular for
matchmaking the identification of additional relations among concepts is very
useful because it leads to a deeper semantic understanding. Moreover, since
the expressivity of the concept language ITL is restrictive so that performance
can be enhanced, we need some way to express additional associations among
concepts.

For this purpose we use a so-called weighted associative network. that is a
semantic network with directed edges between concepts as nodes. Any edge
denotes the kind of a binary relation among two concepts, and is labeled in
addition with a numerical weight (interpreted as a fuzzy number). The weight
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indicates the strength of belief in that relation, since its real world semantics
may varyl. We assume that the semantic network consists of three kinds of
binary, weighted relationships: (1) generalization, (2) specialization (as inverse
of generalization), and (3) positive association among concepts (Fankhauser
et al., 1991). The positive association is the most general relationship among
concepts in the network indicating them as synonyms in some context. Such a
semantic network is called an associative network (AN).

In our implementation we create an associative network by using the con-
cept hierarchy of a given terminology defined in the concept language ITL. All
subsumption relations in this concept hierarchy are used for seiting the gen-
eralization and specialization relations among concepts in the corresponding
associative network. Positive associations may be set by the administrator or
user. Positive association, generalization and specialization are transitive.

As mentioned above, every edge in the associative network is labeled with
a fuzzy weight. These weights are set by the user or automatically by default.
The distance between two concepts in an associative network is then computed
as the strength of the shortest path among them. Combining the strength of
each relation in this path is done by using the following triangular norms for
fuzzy set intersections {Kruse et al., 1991):

m(e,3) = max{0,a+3~-1} n=-1
=, 8) = o3 n=7_
r3(e, 3) = min{a, 3} n=oc

Since we have three different kinds of relationships among two concepts in
an AN the kind and strength of a path among two arbitrary concepts in the
network is determined as shown in the following tables. For a formal discussion
of that issue we refer to the work of Fankhauser et al. (1991), Kracker (1992),
and Fankhauser and Neuhold (1992).

lsls|p]| g |s |p|
gllg PP g™ | 1| ™
sfipls|p S 4T | T3 ™
pllplp|p NERERE

Table 1: Kind of paths in an AN. Table 2: Strength of paths in an AN.

For all 0 < a.3 < 1 holds that 7y (0, 8) < ™(a,3) € m3(er. ). Each tni-
angular norm is monotonic, commutative and associative, and can be used as
axiomatic sceletons for fuzzy set intersection. We restrict ourselves to a pes-
simistic, neutral, and optimistic t-norm 7, 7» and 73, respectively.

Since these triangular norms are not mutually associative the strength of a
path in an associative network depends on the direction of strength composition.
This asymmetry in turn might lead to unintuitive derived results: Consider, e.g.,
a path consisting of just three relations among four concepts Cy, Ca, C', Cy with

! The relationships are fuzzy, and one cannot possibly associate all concepts with each
other.
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C1 =405 C2 =408 C3 =09 Cs. It holds that m(m3(0.6,0.8),0.9) = 0.54, but
the strength of the same path in opposite direction is 7(7(0.9,0.8),0.6) = 0.43.
According to Fankhauser and Neuhold (1992) we can avoid this asymmetry by
imposing a precedence relation (3 > 2 > 1) for strength combination (see Table

3).

gls|p]
gl 2131
S 11211
pll1]1]3

Table 3: Computational precedence for the strength of a path.

The computation of semantic distances among concepts is used in most of
the filtering stages of the matching process. We will now describe each of the
filters in detail.

4.1.3 Context Matching

It is obvious that any matching of two specifications has to be in an appropriate
context. Suppose a provider agent advertises to sell several different types of
products, like cars, computers, shoes, etc. Further assume that all his adver-
tisements include the only input variable declaration: brand: Set0f Brand:
But what is meant by the type 'Brand’ in the context of any specification of
a capability of finding a particular item? Without any additional knowledge
about the particular context, a request to find information about a particular
item, like computers, would match with all product advertisements.

In LARKS there are two possibilities to deal with this problem which is con-
nected to the well-known ontological mismatch problem. First, the Context slot
in a specification S contains a (list of} words denoting the domain of discourse
for matching .5 with any other specification. When comparing two specifications
it is assumed that their domains, means their context, are the same (or atleast
sufficiently similar) as long as the real-valued distances between these words do
not exceed a given threshold®. The matching process only proceeds if that is
true.

Second, every word in a LARKS specification may be associated with a con-
cept in a given domain ontology. Again. if the context of both specifications
turned out to be sufficiently similar in the step before then the concept defini-
tions describe the meaning of the words they are attached to in a more detail
in the same domain. In this case, two concepts with same name but different
definitions will be stored separately by extending each concept name by the
identifier of the agent who did send this concept.

To summarize, the context matching consists of two consecutive steps:

2 Any distance between two words is computed by an appropriate word distance function
using the auxiliary database of the matchmaker.
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1. For every pair of words u, v given in the context slots compute the real-
valued word distances dy, (u, v} €[0.1]. Determine the most similar matches
for any word u by selecting words v with the minimum distance value
dy (2, v). These distances must not exceed a given threshold.

2. For every pair of most similar matching words, check that the semantic
distance among the attached concepts does not exceed a given threshold.

4.1.4 Syntactical Matching

4.1.4.1 Comparison of Profiles The comparison of two profiles relies on a
standard technique from the Information Retrieval area, called term frequency-
inverse document frequency weighting (TF-IDF) (see Salton, 1989). According
to that, any specification in LARKS is treated as a document.

Each word w in a document Reqy is weighted for that document in the fol-
lowing way. The number of times w occurs throughout all documents is called
the document frequency df{w) of w. The used collection of documents i1s not
unlimited, such as the advertisement database of the matchmalker.

Thus, for a given document d, the relevance of d based on a word w is
proportional to the number wf{w, d) of times the word w occurs in d and inverse
proportional to df(w)}. A weight h(w, d) for a word in a document d out of a set
D of documents denotes the significance of the classification of w for d, and is
defined as follows:

hlw,d) = wflw,d) -log( k).

The weighted keyword representation wkv(d, V') of a document d contains
for every word w in a given dictionary V' the weight h(z, d) as an element. Since
most dictionaries provide a huge vocabulary we cut down the dimension of the
vector by using a fixed set of appropriate keywords determined by heuristics
and the set of keyvwords in LARKS itself.

The similarity dps{Req. .Ad) of a request Reg and an advertisement Ad under
consideration is then calculated by :

Re’rl o Ad
|Req| - [Ad]

where Req e Ad denotes the inner product of the weighted keyword vectors.
If the value dps{Req, Ad) does exceed a given threshold 3 € R the matching
process continues with the following steps.

dps(Req, Ad) =

The matchmaker then checks if the declarations and constraints of both
specifications for a request and advertisement are sufficiently similar. This is
done by a pairwise comparison of declarations and constraints in two steps:

1. Similarity matching and

2. Signature matching
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4.1.4.2 Similarity Matching Let E;. E; be variable declarations or con-
straints, and S(E') the set of words in E. The similarity among two expressions
E; and Ej is determined by pairwise computation of word distances as follows:

Sim(E;,Ej) =1 —(( > (w, v))/|S(E;) x S(E;)|))
(u,u)ES(E,)xS(E_,}

The similarity value Sim(S,.S5y) among two specifications S, and S, in
LARKS is computed as the average of the sum of similarity computations among
all pairs of declarations and constraints:

Stm(Sq. Sp)

;v? Sim(E;, E;)/)(D(Se)x D(Se))U(C(Sa) xC(Sh)) |

(Ei,E;)€(D(5a NUC(S2)XC(Ss))

with D(S ) and C'(S) denoting the input/output declaration and input/output
constraint part of a specification S in LARKS, respectively.

4.1.4.3 Signature Matching Consider the declaration parts of the request
and the advertisement, and determine pairwise if their signatures of the (input
or output) variable types match following the type inference rules given below.

Definition 4.1: Subtype Inference Rules

Consider two types t; and t» as part of an input or output variable declaration
part (in the formx Input v :t;; or Output v : ¢»;) in a LARKS specification.

1. Typet; is a subtype of type t2 {denoted as t; < £2) if this can be deduced
by the following subtype inference rules.

2. Two types t1,t2 are equal (t; =, t2) if t1 =t #» and 12 < 1 with

(a} t1 =g to if they are identical t; =t
{(b)  t1 ]t =g ta |t (commutative)

(c) (t1lt2)|ts =1t (t2 %) (associative)

Subtype Inference Rules:

1) t1 < ta if 5 1 a type variable

2) f] =t {a
ty jst ta

3) t1.12 are sets,

t; C ta
t1 '_<st 1y

4) t; <ty |10

5) tg Xer t1 | ta
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6) 1] =gt to, $1<t80
(f1~$1) __<st (1‘.7’3.,)

7) t1 Xsr fa, 81282
tifsy <sr talsa

Q) tl -<.\-f 2“)
®) Set0f(f1) =+ SetOf(ts)

9 tl -<.s~? ta
%) Tist02(1;) <. ListOZ(ls)

Matching of two signatures sig and sig’ is done by a binary string-valued
function fsm on signatures with
sub  sig’ <, sig
Sub  sig <4 sig’
€ sig =g sig’
disj else

Fsmisig, sig’) =

Having described both filters of the syntactical matching we now define the
meaning of syntactical matching of two specifications written in LARKS.

Definition 4.2: Syntactical matching of specifications in LARKS

Consider two specifications S, and .Sp in LARKS with ny input declarations, my
output declarations, and v constraints ng, mi € N, k € {a, b}, two declarations
D;, Dj, and constraints C;, C; in these specifications, and V' a given dictionary
for the computation of weighted keyword vectors. Let /3,7, 8 be real threshold
values for profile comparison and similarity matching.

e The declarations D; and D; syntactically match if they are suffi-
ciently similar:

Sim(D;,Dj) >+ A fsm(D;, D;) # disj.

The constraints C; and C; syntactically match if they are sufficiently
similar:

Sim(C . Cy) > 4.

If both words in every pair (u,v) € S(E;) x S(E;) of most similar words
are associated with a concept C' and (7, respectively, then the distance
among C' and (" in the so-called associative network of the matchmaker
must not exceed a given threshold value 6.

The syntactical match of two declarations or constraints is denoted by a
boolean predicate Synt.
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o The specifications S, and S, syntactically match if

1. their profiles match, i.e., dps(S,, Sp) > 3. and

2. for each declaration or constraint E;, ¢ € {1,...n,} in the declaration
or constraint part of 5, there exists a most similar matching declara-
tion or constraint E;, j € {1,...,n,} in the declaration or constraint
part of S, such that

Synt(E; Ej) AN Sim{E;, E;) = mazx{Sim(E; . Ey),y € {1, ..,np}}
(Analogous for each declaration or constraint in Sy.)

3. for each pair of declarations determined in (1.) the matching of their
signatures is of the same type, i.e., for each (D;, D;) in (1.) it holds
that the value fsm(D;, D;) is the same, and

4. the similarity value Sim{S,, S») exceeds a given threshold.

4.1.5 Semantical Matching

By using the syntactical filter many matches might be found in a large agent
society. Hence, it is important to use some kind of semantic information to
narrow the search, and to pin down more precise matches.

The most common and natural interpretation for a specification (even for
a software program) is using sets of pre- and post-conditions, denoted as Pres
and Postg, respectively. In a simplified notation, any specification S can be
represented by the pair (Preg, Posts).

Definition 4.3: Semantical matching of two specifications

Consider two specifications S(Preg, Posts) and T(Prer. Postr).

The specification S semantically matches the specification T if
(Preg = Prer) A (Posty = Posts)

That means. the set of pre-conditions of S logically implies that of T, and
the set of post-conditions of S is logically implied by that of T'.
L

The problem in performing the semantical matching is that the logical im-
plication 1s not decidable for first order predicate logic, and even not for a set
of Horn clauses. To make the matching process tractable and feasible, we have
to decide on the expressiveness of the language used to represent the pre- and
post- conditions, and to choose a relation that is weaker than logical impli-
cation. The #-subsumption relation among two constraints C, " {denoted as
C' =<y (") appears to be a suitable choice for semantical matching, because it is
computationally tractable and semantically sound.
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Figure 3: Plug-In Match of Specifications: T plugs into S.

4.1.5.1 Plug-in Semantical Matching in LARKS It is proven in the
software engineering area that if the condition of semantical matching in defi-
nition 4.3 holds, and the signatures of both specifications match, then T can be
directly used in the place of S, 1.e., T plugs in S (see figure 4.1.5).

Definition 4.4: Plug-In semantical matching of two specifications
Given two specifications Specl and Spec2 in LARKS then Specl plug-in matches
Spec2 if

e Their signatures matches (see section 4.1.4.2).

e For every clause (']l in the set of input constraints of Specl there is a
clause C'2 in the set of input constraint of Spec2 such that C'1 <4 C2.

e For every clause ("2 in the set of output constraints of Spec2 there is a
clause C'1 in the set of output constraints of Specl such that ("2 <5 C'1.

where =< denotes the #-subsumption relation between constraints.

4.1.5.2 #-Subsumption between Constraints One suitable selection of
the language and the relation i1s the {definite program) clause and the the
so-called #-subsumption relation between clauses, respectively.®. In the fol-
lowing we will only consider Horn clauses. A general form of Horn clause is

%A clause is a finite set of [iterals. which is treated as the universally quantified disjunction
of those literals. A literal may be positive or negative. A positive literal is an atom, a negtive
literal is the negation of an atom. A de finite program clause is a clause with one positive
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ag V (ma1) V ...V (—a,), where each a;,7 € {1,....n} is an atom. This

is equivalent to ag V -{a; A ... A ap). which in turn is equivalent to

(ay A o A an) = ap).* We adopt the standard notation for that clause as

dg + a1, ..., an; 1 PROLOG the same clause 1s written as ag - @1, ..., dn.
Examples of definite program clauses are

e Date.year > 1995, sorted(computerinfo),
o before(x,y. ys) « ge(e.y), and

o scheduleMecting(groupl, group?, interval, meeting Duration, meetTime)
belongs(pl. groupl), belongs(p2, group2), subset(meetTime. interval). length(meetTime) =
meeting Duration, available(pl, meetTime), available(p2. meetTime).

We say that a clause ¢’ -subsumes another clause D (denoted as (" =y D)
if there is a substitution 6 such that C6 C D. (' and D are 6-equivalent if
C =<¢Dand D
precegeC.

Examples of #-subsumption between clauses are

e Pa) «+ @Q{a) =%y P(X) « Q(Y)
o P(X) « Q(X),R(X) = P(X)« Q(X).

Since a single clause is not expressive enough, we need to use a set of clauses
to express the pre and post conditions (i.e., the input and output constraints)
of a specification in LARKS. A set of clauses is treated as a conjunction of those
clauses.

Subsumption between two set of clauses is defined in terms of the subsump-
tion between single clauses. More specifically, let S and T be such sets of clauses.
Then, we define that $ #-subsumes T if every clause in T is #-subsumed by a
clause in S.

There is a complete algorithm to test the f-subsumption relation, which is
in general NP-complete but polynomial in certain cases. On the other hand,
f-subsumption is a weaker relation than logical implication. 1.e., from C' <4 D
we can only infer that €' logically implies D but not vice versa.?

5 Examples of Matchmaking using LARKS

Consider the specifications TntegerSort™ and 'GenericSort’ (see example 3.1, 3.2)
as a request of sorting integer numbers and an advertisement for some agent’s

literal and zero or more negative literals. A de finite goal is a clause without positive literals.
A Horn clause is either a definite program clause or a definite goal.

4The literal ag is called the head of the clause, and (¢; A ... A up) is called the body of
the clause.

“Please also note that the §-subsumption relation is similar to the query containment in
database. When advertisements are database queries, specification matching is reduced to the
problem of query containment testing.
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capability of sorting real numbers and strings, respectively.

[ IntegerSort i |
Context Sort
Types
Input xs: List0f Integer:
Qutput vs: List0f Integer:
InConstraints le{length(xs).100);
OutConstraints before(x,y.vs) < — ge(x.¥v);
in{x,vs) < — in(x.xs):
ConcDescriptions
{ GenericSort |
Context Sorting
Types
Input xs: List0f Real | String:
Dutput ys: List0f Real | String:
InConstraints
QutConstraints before(x.v.vs) < — ge(x.v);
before(x.y,ys) < — preceeds(x,v);
in(x,vs) < — in{x.xs):
ConcDescriptions

Assume that the requester and provider agent sends the request IntegerSort
and advertisment GenericSort to the matchmaker, respectively. Figure 5 de-

scribes the overall matchmaking process for that request.

1. Context Matching

Both words in the Context declaration parts are sufficiently similar. We
have no referenced concepts to check for terminologically equity. Thus,
the matching process proceeds with the following two filtering stages.

2. Syntactical Matching

(a) Comparison of Profiles

According to the result of TF-IDF method both specifications are

sufficiently similar:

(b) Signature Matching

Consider the signatures t;= (ListOf Integer) and t»= (ListOf
Real|String). Following the subtype inference rules 9., 4. and 1.
it holds that ¢, <. 7». but not vice versa, thus fsm(Dy,, D) =

sub. Analogous for fsm{Djis. D) = sub.
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Figure 4: An Example of Matchmaking using LARKS

(¢) Similarity Matching
Using the current auxiliary database for word distance values simi-
larity matching of constraints yields:

le(length(xs),100)) null =10
before(x,y,ys) < — ge(x,¥) in{x,¥s) < — in(x xs) = 0.5729
in(x,ys) < — in(x,xs) before(x.y,¥s) < — preceeds(x,y)) = 0.4375
before(x.y,ys)< — ge(xy)) before(x,y,ys) < — preceeds(x,v)} = 0.28125

The similarity of both specifications is computed as:
Sim(IntegerSort, GenericSort) = (.64

3. Semantical Matching
The advertisement GenericSort also matches semantically with the re-
quest IntegerSort, because the set of input constraints of IntegerSort 6-
subsumes that of GenericSort, and the output constraints of GenericSort
f-subsumes that of IntegerSort. Thus GenericSort plugs into IntegerSort.
Please note that this does not hold vice versa.

6 Related works

Agent matchmalking has been actively studied since the inception of software
agent research. The earlist matchmaker we are aware of is the ABSI facilitator,
which 1s based on the KQML specification and uses the KIF as the content
language. The KIF expression is basically treated like the Horn clauses. The
matching between the advertisement and request expressed in KIF is the simple
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unification with the equality predicate. Matchmaking using LARKS performs
better than ABSI in both, the language and the matching process. The plug-in
matching in LARKS uses the f-subsumption test, which select more matches
that are also semantically matches.

The SHADE and COINS[17] are matchmakers based on KQML. The content
language of COINS allowes for the free text and its matching algorithm utilizes
the tf-idf. The contect language of SHADE matchmaker consists of two parts,
one 15 a subset of KIF, another is a structured logic representation called MAX.
MAX use logic frames to declaratively store the knowledge. SHADE uses a
frame like representation and the matcher use the prolog like unifier.

A more recent service broker-based information system is InfoSleuth{10,
11]. The content language supported by InfoSleuth is KIF and the deductive
database language LDL++, which has a semantics similar to Prolog. The con-
straints for both the user request and the resource data are specified in terms
of some given central ontology. It is the use of this common vocabulary that
enables the dynamic matching of requests to the available resources. The ad-
vertisements specify agents’ capabilities in terms of one or more ontologies. The
constraint matching is an intersection function between the user query and the
data resource constraints. If the conjunction of all the user constraints with all
the resource constraints is satisfiable, then the resource contains data which are
relevant to the user request.

A somewhat related research area is the research on information mediators
among heterogenous information systems{23}{1}. Each local information system
1s wrapped by a so-called wrapper agent and their capabilities are described in
two levels. One is what they can provide, usually described in the local data
model and local database schema. Another is what kind of queries they can
answer; usually it is a subset of the SQL language. The set of queries a service
can accept is described using a grammar-like notation. The matching between
the query and the service is stmiple: it just decides whether the query can be
generated by this grammar. This area emphasizes the planning of database
queries according to heterogeneous information systems not providing complete
SQL sevices. Those systems are not supposed to be searched for among a vast
number of resources on the Internet.

The desfription of capabilities and matching are not only studied in the agent
community, but also in other related areas.

6.1 Works related with capability description

The problem of capability and service descriptions can be tackled at least from
the following different approaches:

1. Software specification techniques.
Agents are computer programs that have some specific characteristics.
There are numerous work for software specifications in formal methods,
like model-oriented VDM and Z[28], or algebraic-oriented Larch. Although
these languages are good at describing computer programs in a precise
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way, the specification usually contains too much details to be of interests
to other agents. Besides, those existing languages are so complex that the
semantic comparison between the specifications is impossible. The reading
and writing of these specifications also require substantial training.

2. Action representation formalisms.
Agent capability can be seen as the actions that the agents perform. There
are a number of action representation formalisms in Al planning like the
classical one the STRIPS. The action representation formalism are inad-
equate in our task in that they are propositional and not involving data
types.

3. Concept languages for knowledge representation. -
There are various terminological knowledge representation languages. How-
ever. ontology itself does not describe capabilities. On the other hand, it
provides auxiliary concepts to assist the specification of the capabilities of
agents.

4. Database query capability description.
The database query capability description technique is developed as an
attempt to describe the information sources on the Internet, such that
an automated integration of information is possible. In this approach
the information source is modeled as a database with restricted quering
capabilities.

6.2 Works related with service retrieval

There are three broad approaches to service retrieval. One is the information
retrieval techniques to search for relevant information based on text, another
is the software component retrieval techniques[26][8]{13] to search for software
components based on software specifications. The third one is to search for web
resources that are typically described as database models[18][23].

In the software component search techniques, [26] defined several notions of
matches, including the exact match and the plug-in match, and formally proved
the relationship between those matches. [8] propsed to use a sequence of filters
to search for software components, for the purpose to increase the efficiency of
the search process. [13] computed the distance between similar specifications.
All these work are based on the algebraic specification of computer programs.
No concept description and concept hierarchy are considered in their work.

In Web resource search techniques, [18] proposed a method to look for better
search engines that may provide more relevant data for the user concerns, and
rank those search engines according to their relevance to user’s query. They pro-
pose the directory of services to record descriptions of each information server,
called a server description. A user sends his query to the directory of services,
which determins and ranks the servers relevant to the user’s request. Both the
query and the server are described using boolean expression. The search method
is based on the similarity measure between the two boolean expressions.
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7 Conclusion

The Internet is an open system where heterogeneous agents can appear and
disappear dynamically. As the number of agents on the Internet increases,
there is a need to define middle agents to help agents locate others that provide
requested services. In prior research, we have identified a variety of middle agent
tvpes, their protocols and their performance characteristics. Matchmakingis the
process that brings requester and service provider agents together. A provider
agent advertises its know-how, or capability to a middle agent that stores the
advertisements. An agent that desires a particular service sends a middle agent
a service request that is subsequently matched with the middle agent’s stored
advertisements. The middle agent communicates the results to the requester
(the way this happens depends on the type of middle agent involved). We
have also defined protocols that allow more than one middle agent to maintain
consistency of their adevertisement databases. Since matchmaking is usually
done dynamically and over large networks, it must be efficient. There is an
obvious trade-off between the quality and efficiency of service matching in the
Internet. .

We have defined and implemented a language, called LARKS, for agent ad-
vertisement and request and a matchmaking process using LARKS. LARKS ju-
diciously balances language expressivity and efficiency in matching. LARKS
performs both syntactic and semantic matching, and in addition allows the
specification of concepts {local ontologies) via ITL, a concept language.

The matching process uses five filters, namely context matching, compari-
son of profiles, similarity matching, signature matching and semantic matching.
Different degrees of partial matching can result from utilizing different combi-
nations of these filters. Selection of filters to apply is under the control of the
user (or the requester agent).
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A  Syntax of LARKS

Definition A.1: Syntar of Larks
The syntax of LARKS is given by the following production system in EBNF-grammar:

< specification > = < Ident > [< CDeclaration >) [< TDeclarations >]
[< Declarations >] [< Constraints >)

‘Context’ < C'Dec >

< Ident >' #' < Termde finition >';’

< TDec > | < TDec>'; < TDeclarations >
"Input’ < OptDecList > 'Output’ < DecList >

< CDeclaration >
< C'Dec >

< TDeclarations >
< Delarations >

i

i

< TDec > u= ‘type’ < Ident>[:'< TExp>); | 'basicType' < IdentList >';
< Dec > < Ident >"'< TExp > ['='< Exp >}/

li

< DecList > = < Dec> | < Dec>'y < DecList >
< OptDecList > = < OptDec> | < OptDec >';' < OptDecList >
< OptDec > := [Optional] < Dec > :
< TEzp > = <TVar > | < BType > | < PType > | < CType >
< PType > := Bool' | Int' | Real’ | ‘String
< CType > = {'[< Ident >":'] < TExp >') [< Ident >":'] < TExp >') |
<TExrp> "'l <TExp> |
<TExp>'—> <TExrp>|
'Set0f’ '('< TExp >'")'|
'List0f '('TExp'Y|
"{'< ExpList >'}
< Exp > w= < aFBxp> |'('< ExpList >') | '"{< ExpList >'} |
< Exp >' (/< ExpList >')' | < Exp >'." < Ident >
< ExpList > = < Exp> | < Exp>' < ExpList >
< aBaxp > = < sConst> | <wvar> | <const>

< IdentList > < Ident > | < Ident >’ < IdentList >

< Constraints > 2= ['InConstraints < formulaList >]
['OutConstraints’ < formulaList >]

< formula > | < formula >';' < formulaList >
< atomList >

< atom > | <atom >’ < atomList >

i

i

< fomwlaList >
< formula >
< atomList >

i

i

< atom > = < predicate > | 'not’ < predicate >
< predicate > = < Ident >
< var > = < Ident >
< const > = < Ident >

with non-terminals < Ident >, < var >, and < const > denoting an identifier,
variable and constant. respectively. The non-terminal < Termde finition > refers
to that in the concept language ITL (see below), thus denoting a kind of a so-called
‘escape hatch’ from LARKS to ITL.

Convention:
In a capability description or request any term definition will be replaced by the name
of the corresponding concept or role which is assumed to be available in the local
knowledge base.
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B The concept language ITL

Definition B.1: Syntaxr of ITL

The syntax of the concept language ITL is given by the following production system
in EBNF-grammar:
< Terminology > n= < Termdefinition >+
< Termde finition > < Conceptde finition > | < Rolede finition >
< Conceptde finition > < atomicConcept > ' =" < Concept > |

< atomicConcept > ' =" < Concept >

< Rolede finition > n= < atomicRole > '=" < Role > |
< atomicRole > ' =" < Role >

< Concept > u= < Cone> | < AttrConc >

< Conc > t= < atomicConcept > |

< primComponent > | '(not’ < primConcComponent >) |
(and’ < Concept > ') |
‘(atleast’ n < Role >'Y |
"(atmost’ m < Role >')' |
'lexists’ < Role > < Concept >') |
'{all’ < Role >< Concept >')' |
"(1e' < num >"Y |'(ge' < num >'Y |
"1t < num > | (gt' < num >
'aset('< aval >t ')
‘(androle’ < Role >* 'Y |
< atomicRole > | < primRoleComponent >
< atomicConcept > n= < identifier > | 'nothing’
< atomicRole > < identifier >
< primComponent > < primConcComponent > | < primRoleComponent >
< primConcComponent > < identi fier >
< prim RoleComponent > < identifier >
< aval > < identifier >
< Term > < Concept > | < Role >
< ObjectSet > < Instance >*
< Instance > n= < Conceptinstance > | < RoleInstance >
< ConceptInstance > "'< Objgect > < atomicConcept >')’ |
(< Object > mnot’ < primConcComponent >'Y
< RoleInstance > n=  '('< Object > < atomicRole > < Object >'}' |
"< Object > < NumRestr > < atomicRole >')
‘atleast’ < num > |’atmost’ < num >
< wdentifier >

< AttrConc >
< Role >

< NumRestr >
< Object >

The meaning of (atomic) concept or role, attribute concept, concept and role
definition. term definition. term, terminology and object set is defined as the set of
strings which can be reduced to the respective non-terminal symbols in the production
svstem.

Tt 1s assumed that in every terminology T {written in ITL) all used atomic concepts
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and roles are unique identifiers and defined in T'; the enumerable sets of identifiers for
concepts and roles, attribute values and objects, as well as primitive concept and role
components are assumed to be pairwise disjoint. In addition. every primitive compo-

nent (undefined identifier) in a terminology is assigned a given, fixed meaning®.
[ ]

Definition B.2: Semantic of ITL

Let G be a grammar, D interpretation domain and D, D, disjoint subsets with
D =DwD, P(S) denotes the power set of any set S. The semantic of ITL
terms 1s defined by the following interpretation function.
Conc —= P(D)
€:<¢ Role — P(DxD) (1)
Attr = Dy

¢ 1s a ITL-interpretation if it satisfies the following equations:

n

eland (1..CR)) = [)e(Cy) (2)

i=1
€((all R 7)) = {deD:ry(d e(R)) Ce(C)} (3)
e((exists R ) = {deD:rg(d,e(R))Ne(Cy# B} (4)
¢((atleast n R)) = {deD: |rg(d,e(R))| >n} (5)
e({atmost n R)) = {de€D: |rg(d,e(R))| <n} {6)
(aset(al, ctn)) = {elar),-...elan)} (7)
((not CT)) = D\ ¢(CP) (8)
¢({androle R;...R,)) = ﬂ e(Ry) (9)

i=]
e(nothing) = 0 (10)

with

rg(d.e(R)) = {yeD:(dy) €eR)} (11)

rg(d. e(R)) denotes the set of role fillers of instance d for the role R.

All attributes ay....,a, of the concept aset(ay,...,an) are interpreted as
constants, i.e., for some D, C Attr we assign €(¢;) = a;,7 € {1,..n}. The
interpretation of the operators (1e n), (ge n}. {1t n). and (gt n) for numerical
comparison denotes the set of real numbers r € D with 2 < n, 2 > n,2 < n,
and > n, respectively.

¢Primitive components are elements of a minimal common vocabulary used by each agent

provider/user for a construction of their local domain-dependent terminologies (and object
sets).
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