
- 1
I

t

AND REPORT
AND2002-1760

Unlimited Release
Printed June 2002

L. d and S. Y. Gal+-
A

>repared by
jandia National Labor
Albuquerque, New Mexico 87185 and Livermore, Cc . nia 9451

Sandia is a multiDrOaram laboratow OM I Sandia Corporation,
a& &mpany, for 6- i'vtea states Department of

er Contract DE-AC04-9

Approved for r..L'' I - - - unlimited.

p1 c &tional laboratories

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reDorts@adonis.osti.gov
Online ordering: http://www.doe.govlbridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

mailto:reDorts@adonis.osti.gov
http://www.doe.govlbridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

e
e
e
a
e
e
e
e
a
e
e
e
e
a
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
a
e
e
e
e
e
e
e
e
e
e 1

e
e

Agent-Based Mediation and
Cooperative Information Systems

Laurence R. Phillips, Hamilton E. Link, and Steven Y. Goldsmith
Advanced Information and Control Systems Department

Sandia National Laboratories
P. 0. Box 5800

Albuquerque, NM 87185-0455

ABSTRACT

This report describes the results of research and development in the area of
communication among disparate species of software agents. The two
primary elements of the work are the formation of ontologies for use by
software agents and the means by which software agents are instructed to
carry out complex tasks that require interaction with other agents. This
work was grounded in the areas of commercial transport and
cybersecurity.

This page intentionally left blank.

2

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a

a

a

a
e

e

a

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

CONTENTS

Introduction . 1
Background and Problem Statement. 1
Approach . 3
Focus on Ontologies and Their Representation 4
The Ontology of the Border Trade Facilitiation System (BTFS) 5
Specificying Patterns of Interaction and Processing Schemata. 6
Security Policy and Cryptographic Protocols 7
Associated Work. 8
Conclusions . 9
References . 10

Appendix I. Operations and Roles of U.S./Mexico Cross-border Trade . . 8
Appendix 11. Publication Reprints . 12
Appendix 1111. Code and Programs . 13
Appendix IV. Reprint of CMU reference that defines LARKS 14

FIGURES

Figure 1. BTFS Ontology fragment in LARKS format 8
Figure 2. Data component trading for a shipment transaction 12
Figure 3. Shipment Transactions & Components: Attributes and

Associations . 13
Figure 4. Border Trade Facilitation System Ontology 14

3

1. Introduction
This project was conceived as research into agent mediation issues, focused on developing a
technological “Rosetta Stone” that would allow disparate agent systems to collaborate with one
another. We accomplished many of the original goals of the project, although not all in the way
first proposed. In the course of the project, we discovered additional important aspects of the
problem space and explored a number of these aspects as well.
We began by working with CMU to establish an operational version of their agent architecture in
our lab, alongside machines running Sandia’s 2nd-generation agent architecture (SAA2). As we
made these systems interact with one another, we began to better comprehend the problem space
of general-purpose communication mechanisms in agent systems. To demonstrate and expand
our understanding of the issues we developed generalized mechanisms for describing and
executing complex patterns of interaction. This led to the invention of a number of software
components that we integrated with SAA2 in the form of perception and schema-processing
frameworks.
Around this time, much of our work began to shift towards applicability in network security.
This led to the development of a number of security support protocols, and allowed us to test the
generality and capabilities of the communications framework that we had developed by applying
the technology in a domain it had not been explicitly designed to cope with. The process gave us
the opportunity to identify and improve a number of framework components where the
implementation had not fully realized the hypotheses. In the end we succeeded in constructing
operational systems of agents executing very complex communication patterns with one another,
based on the work we originally began with CMU.
The theoretical results of the LDRD effort are:
1. A more complete understanding of the problem of making disparate agent systems

2. The design of a general-purpose framework for enabling interaction between agents, and
3. An analysis of communication issues associated with security protocols in agent systems.
These theoretical results were realized in agent-based technology for executing speech acts in
KQML and a mature implementation of a general-purpose communications framework that has
since been leveraged repeatedly for many different tasks on other projects in our lab.

communicate with one another,

2. Background and Problem Statement
One of the difficulties in building distributed information systems is enabling disparate
components to share meaningful messages with one another. The issue is not so much in
constructing a network able to transmit data between the components, but rather in developing a
system in which all components can grasp the data’s semantic meaning.

“For an initiator to [understand] a respondent . . . their messages must be . . . grounded in a
shared ontology . . . the lack of common definitions is known as the ontology problem,
and is the most challenging obstacle to widespread interoperability of heterogeneous,
distributed co-operating systems.” [11

This problem must of course arise when components have been designed independently, but in
fact it can be an issue even when all components initially shared a semantic model, when
modifications and additions are not uniformly made. It has been said that “the main barrier to

4

a
a
a
a
a
a
a
a
a
a
e
e
a
a
a
a
a
a
a
a
0
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

electronic commerce lies in the need for applications to meaningfully share information” [2] and
it is clear that this barrier exists for other application domains as well.
The thesis of this project is that agents are a useful adjunct in addressing issues of
intercommunication among disparate processes. An agent is a computational thread of execution
(or set of interacting threads) that takes action based on input and its state without waiting for
explicit commands. As stated in our initial proposal, “agent-mediated information management
is currently the most promising solution to the problem of integrating and accessing large legacy
data stores and for utilizing networked information sources such as the Internet.” [3] The project
was engendered to explore the process of realizing this promise in a concrete setting using the
SAA2 agents we developed.
We are not alone in our assessment that agents are the relevant approach. “Army, Navy and Air
Force researchers-along with defense contractor Lockheed Martin-have recognized software
agents as ‘absolutely critical’ in solving another long-standing frustration: The inability to share
data across the military’s myriad computer systems.” [4]
But an agent-based approach can only facilitate the design and implementation of such systems.
What is required to actually enable two disparate agent communities to meaningfully share
information? Greaves et al. say it well:

“The dream of agent interoperability is commonly thought to rest on three main
characteristics shared by the interoperating agents:
1. They would be able to access a set of shared infrastructure services for

registration, reliable message delivery, agent naming, and so forth (i.e., there
must be structural interoperability);

2. They would share (possibly through translation) a common content ontology,
truth theory, and method of binding objects to variables (i.e., there must be
logical interoperability); and

communication language (ACL) in which to express themselves (i.e., there
must be language interoperability).” [4]

In human systems, language interoperability is largely taken for granted; logical interoperability
is achieved through training, experience, and convention; and structural interoperability is
engineered as necessary-telephones, e-mail, radios-to extend our natural human abilities. In
most agent-based systems, language interoperability is achieved by selection of a standard
common language, such as Knowledge Query and Manipulation Language (KQML), the
Foundation for Intelligent Physical Agents (FIPA) ACL, or DARPA’s Agent Markup Language
(DAML). Existing media for transmission of information-e.g., the Internet-readily provide
structural interoperability. This leaves as the primary issue the realization of a means to achieve
logical interoperability: Given that agents can communicate with one another, what do they say,
and what must be done to enable the receiving agent to understand the transmitting agent?
For the applications we considered in the context of this research, the Internet provides structural
interoperability, and we used KQML to provide language interoperability. Our primary
conceptual challenge was therefore to formulate a representation of the knowledge that would
enable non-SAA agents to understand SAA agents; that is, to achieve logical interoperability
with agents that we did not design.

3. They would agree on the syntax and semantics of a common agent

5

3. Approach
Our approach was to design and build into our Standard Agent Architecture (SAA) agents a
means to share information with another community of agents that had been designed
independently from our own. We selected the Reusable Environment for Task Structured
Intelligent Network Agents (RETSINA) at Carnegie Mellon University (CMU) as OUT target
community. RETSINA offered several features that supported our goals:

RETSINA agents communicate using KQML syntax.
CMU had developed a RETSINA-based Matchmaker system for advertising and finding

CMU had developed the Language for Advertisement and Request for Knowledge Sharing

We could readily communicate with operational CMU agent communities via the Internet.
With these features and concepts in mind, we began the following work plan:
1. Develop a mechanism to accept objects in our internal format and emit messages in KQML

2. Develop a means to express the services our agents would provide as trans-border

3. Advertise our services with the CMU Matchmaker.
4. Receive and respond to KQML-framed requests for our services.
When we began to cany out domain-specific interactions with CMU’s agents (item 3 in the work
plan), it became apparent that the high granularity of the procedural language with which we
programmed our agents was going to limit the complexity of behavior we could implement,
especially when several agents were involved.
We needed a declarative language in which we could write agent behavior descriptions that the
agents would execute. This implied not only a language that supported the operations the agents
were to perform but also a canonical execution mechanism in each agent so that any SAA agent
receiving such a description could execute it.
It was apparent to us that we needed this extension no matter what further operations we decided
to pursue with our agent technology. But another change overshadowed all decisions: Because of
changes in our business direction and the outcome of our work on other projects, our focus began
to shift to security. For-us, with our primary focus on agents, this devolved to answering three
questions: (1) With what aspects of “security” might agents be concerned? (2) How can an agent
protect itself from cyberattack? (3) How can an agent or group of agents protect other cyber
resources from cyberattack?
This change in direction of any subsequent real-world work made the move to a declarative-
language execution mechanism especially compelling, because many security operations are
very complex.
Based on these conditions, instead of completing step 4, we began the following work plan:
4a. Develop and implement a declarative framework for specifying the actions of agents.
4b. Develop and implement an execution engine that can execute action thus specified
5. Develop and implement ontological representations for security elements
6 . Develop and implement security operations using the results of 4a, 4b, and 5.

services that dovetailed nicely with our work on cross-border shipping;

(LARKS) with which to construct postings for their Matchmaker; and

syntax.

documentation experts and facilitators in LARKS.

6

a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a

a
a
e
a
a
a
a
a
a
a
a
a
a
a

a
a
a

a

a

0

4. Focus on Ontologies and Their Representation
The concept ontology appears above as a necessary element in applications that must share
meaning among disparate components. Ontology has a particular meaning when used in an
information technology context that differs from its use elsewhere. In addition, the representation
of ontological information takes a special form in our environment.
Definitions of ontology from the literature:

I. “An ontology is a description (like a formal specification of a program) of the

11. “1. <Philosophy> A systematic account of Existence.
concepts and relationships that can exist for an agent or a community of agents.” [6]

2. <Artificial intelligence> (From philosophy) An explicit formal specification of
how to represent the objects, concepts and other entities that are assumed to exist in
some area of interest and the relationships that hold among them . . . A set of agents
that share the same ontology will be able to communicate about a domain . . .
3. <Information science> The hierarchical structuring of knowledge about things by
subcategorizing them according to their essential (or at least relevant and/or
cognitive) qualities.” [7]

We include the first definition because of its breadth and use of vernacular English. This
definition is important because it exposes the important notion that if a concept isn’t represented
in the agent’s ontology, as far as the agent is concerned, it cannot exist; and, conversely, the
definition of what can exist for an agent, in whatever form, is the agent’s ontology.
The second definition distinguishes the meaning of ontology as used by different disciplines.
Definition I corresponds to element 2 of definition 11. The direct statement “agents that share the
same ontology will be able to communicate” indicates that our fundamental conceptual
work-sharing an ontology-must be accomplished for heterogeneous agents to share meaning.
Element 3 of definition I1 is noteworthy because SAA2 agents use a hierarchical class-subclass-
instance network both intensively (to describe things that may or may not exist, such as
electronic messages it is able to create) and extensively (to categorize things that it discovers,
such as messages it receives). The agent’s ontology-bearing structure, in other words, is a class-
subclass-instance network defined at compile time and supplanted during its lifetime.
Ultimately, no matter how our ontology was expressed internally, we needed to delimit a section
of it for export to the CMU agents and convert or transform it into a form they could understand.
The approach we decided to take can be summarized:
1. Develop a representation of the activity to be advertised on the CMU Matchmaker (we

already had ontologies describing every aspect of the cross-border shipping problem.
Specifling an activity for the Matchmaker meant expressing it as a state change in some set
of information).

2. Determine how to express that activity in LARKS terms
3. Manually build a document in LARKS
4. Embed the LARKS activity description in a KQML message and send it to the Matchmaker
Some of the issues inherent in this process are explored in [8] (reprinted in Appendix 11).

7

5. The Ontology of the Border Trade Facilitation System (BTFS)
The BTFS [9] was developed prior
to this research, and the nature of
electronically facilitated business
transactions was a natural point of
departure for this project. As a
result some time was spent
constructing more formal ontologies
for the ecommerce domain to
provide CMU’s agent system and
ours with a domain of concern in
which to perform experiments (see
example). The purpose of BTFS
was to maintain an accurate online
representation of the current state of
the world, in particular the state of
transported goods moving through
the US and Mexico. In addition to
tracking the physical locations of
these items, BTFS maintained the
information necessary to automate

IS-MANUFACTURER = (and MANUFACTURER
CATEGORY-INSTANCE
1

IANUFACTURER = (and COMMERCIAL-ORGANIZATION
CATEGORV-INSTANCE
(a l l h a s - F r ~ d u c t C a t e g ~ r i e 5)
(a l l has-FarentCompany)
1

:OMMERCIAL-ORGANIZATION = land ORGANIZATION
CATEGORV-INSTANCE
(a l l has-DunsNrrmher)
1

IRGANIZATION = (and EXPORT-AS-REFERENCE
ADDRESSED-OBJECT
PHONE-NUMBERED-OBJECT
FAX-NUMBERED-OBJECT
(a l l has-EcaFub l icFroxy)
1

:XFORT-AS-REFERENCE = (and PROXY-REFERENCE
1

‘ROXV-REFERENCE = (and OBJECT-BASE
PROXY-MIXIN
REMOTABLE-OBJECT-MIXIN

Figure 1. BTFS Ontology fragment in LARKS format

the paperwork used by customs agencies, manufacturers, and trucking companies. The notion
that part of the state of the world is purely informational, such as the fact that a transaction is
authorized once a document has been signed, is not uncommon in agent environments.

In order to experiment with the BTFS domain, the world was divided into services that would
typically be provided by an agent. In addition to each service’s specific ontology of discourse, all
services were described in a service-description ontology. This description was intended for
submission by the service provider to CMU’s “Matchmaker” agent, which when coupled with
their Agent Nameserver (ANS) acted as a Yellow Pages, of sorts. Agents desiring a particular
service would describe the service to a Matchmaker agent, and would be referred to an
appropriate service provider. The requestor would then make contact with the provider and they
would interact using that service’s ontology.

In order to interact with CMU’s Matchmaker and ANS agents, it was most expedient to enable
our agents to speak KQML, an agent communication language. This was straightforward, and
was easier than we believed it would be to enable their systems to comprehend and manipulate
the more sophisticated (and complex) distributed object representation used by our agents when
communicating among themselves.

6. Specifying Patterns of Interaction and Processing Schemata
As we approached the point of carrying out domain-specific interactions with CMU’s agents, we
became aware that a more highly structured description language was necessary to improve the
process by which we designed and implemented agent behaviors. Key elements of the design
problem were the identification and naming of distinct information states in a particular context
and whether organizing behaviors around discrete named states would be a practical way to

a
a
a
a
a
a
a
a
a
a
a
a

a
a
a

a
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

e

a
8

a
0
a
a
a
a

a

e
e
e
a
a
a
a
a
a
e
a
a
a
a

a
a
a
a
a
a
a

a
a
a
a

a
a
a
a
a

e

e

e

e

approach agent interactions. Out of this work came the schema processing mechanism now used
in SAA2 for most agent-to-agent interaction. The Schema Processing mechanism has been
declared in a Technical Advance entitled “Standard Agent Architecture 11,” dated 4/18/2002, that
has not been assigned an identifying number as this is being written.

The underlying premise of the schema mechanism is that most of the information states in the
course of an interaction can be characterized and distinguished from one another. These states
are then used as the basis for a state diagram, and the transitions between these states and the
operations to perform within each state are built around them. The state diagram is realized in a
form we call a schema (pl. schemata). The schema mechanism consists of an “engine” that
executes the schemata and an expectation maintenance system that allows the agents to describe
and subsequently quickly select relevant stimuli (and reject irrelevant ones) depending on the
current states of the schemata being executed by the agent.

7. Security Policy and Cryptographic Protocols
The schema processing mechanism began to mature and we proceeded to implement more
involved operations using that system. Both as part of our work in exploring increasingly
complex interactions and their limitations and as part of our growing work in security systems
research, we began implementing cryptographic protocols for multiparty authentication in our
schema language. The multiparty protocols have been declared in Technical Advance SC-
71 77/S-98,790 dated 4/26/2002 and entitled “Implementation of Group Threshold Signature
System.”

An essential component of the security work was the separation of interaction speczjkation and
interaction policy. The specification of an interaction is a description of what information needs
to pass among which entities. The policy of an interaction defines conditions that may or must
hold or not hold, independent of the specification. Security policy is the basis by which an
observer decides whether an observed interaction is “legal” or not. Issues of delineating and
representing policy are relevant to this project’s goal of exploring communication among agents;
in essence policy is an aspect of communication that affects one’s own communication as well as
one’s responses to the communication of others. These issues are discussed further in [lo]
(reprinted in Appendix 11).

These protocols had many attributes, such as firm requirements of asynchronicity and minimum
numbers of agents involved, that made them useful demonstrations of the capabilities of agent
interactions. We did not have the opportunity to develop matching capabilities in CMU’s agents
to intermix agents from our two different systems while testing these protocols, but we believe
this would not be substantially more difficult than establishing interoperability in the BTFS
domain was.

At the end of this experiment, we can with a fair degree of confidence state that, even without the
distributed object system used by SAA2, the required object descriptions could be expressed in
other agent communication languages. Given language interoperability, SAA2 agents should be
able to complete these protocols with any other agent system that was extended to handle the
algorithms and ontologies involved. Furthermore we believe from our experience implementing
these and other protocols and procedures that SAA2 agents can be readily extended to handle
complex new domains and operations.

9

8. Associated Work
This work was developed in several stages, and resulted in a number of publications
(Appendixes I through IV).

During the development of the BTFS, substantial effort was put into discovering and specifying
the existing border trade participants and their processes, in order to accurately reproduce the
functionality of these components in the virtual version of that system. In both the agent
mediation study and the original BTFS system, BTFS service-providing agents performed these
operations and roles. In the context of work on agent mediation and interaction, however, these
agents also needed to provide service descriptions to an advertising service such as CMU’s
Matchmaker agents. Appendix I lists some of these operations and describes some of the roles
involved in the border trade process that were transformed into an ontology for use with an
advertising service. Figures 2,3, and 4 present this material as the software represents it.

The development of BTFS represented an application of technology .developed in our laboratory
for allowing agents to elicit information from humans using HTML over the world wide web
(Appendix 11, section 1). This allowed information to be brought into the agent in a controlled
format and using a simple synchronous process, enabling the agents to maintain simple
representations of ongoing transactions and map input directly into matching structures in the
BTFS ontology. The mechanisms developed to enable this were specialized predecessors of the
more general mechanisms that were to follow.

At this time we began to identify architectural obstacles in our initial standard agent architecture
(SAA) to rapidly developing new and increasingly complex processes for the agents to execute.
This led us to consider cornmon features of such processes that could be exploited if appropriate
tools were developed. We submitted some of our initial hypotheses to a workshop at
Autonomous Agents ‘99 on conversation policies in agent systems (Appendix 11, section 2). As
we refined our ideas these concepts ultimately developed into the proposal of this project.

In the course of the project we worked with CMU to enable our agents to interact with theirs,
choosing LARKS as a service description language, while continuing to refine and explore more
general means of communication between agents (Appendix 11, section 3). Selected portions of
this software and descriptions of CMU’s agent framework are in Appendixes I11 and IV.

9. Conclusions
Our initial goals of developing an agent “Rosetta Stone” that would allow a wide variety of agent
systems to collaborate led us to cast a wide net into the problem of communication. We began by
researching agent communication languages and ontologies, developed many protocols and
policies, and examined the impact of security requirements in a multi-agent environment. Based
on our experience we drew a number of conclusions, and now have new questions that warrant
additional research.

As a result of this project our agents can contain complex ontologies, convert them into
alternative forms for consumption by different agents, and communicate with other agents using
standard message forms. This represents a proof of principle that independently designed agent
systems can be extended to collaborate with one another. This process can be very difficult in
practice, but the difficulty of the task can be mitigated if the design of one of those systems
provides a framework upon which language interoperability and a shared ontology can be built.

10

e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a

a

0

e

This extension was possible but challenging in the SAA, and our second-generation SAA2 has
been designed with this dimension of extensibility. SAA2 can be easily extended to add
recognition and processing of new languages dynamically, and is able to be informed online of
new ontologies and select for each transaction the appropriate ontology to use when processing
information from another agent.

We have a framework mechanism and language for describing complex cooperative tasks that
agents can execute. This demonstrated that common patterns of interaction in agent systems can
be exploited using special-purpose process description languages. In the SAA we were able to
build simple interactive processes using conventional object-oriented programming techniques.
In order to express more involved conversation procedures that were responsive to dynamically
established communication policies, we implemented a more sophisticated state-based
mechanism for executing protocols. This allowed us to develop new tools that took advantage of
the structure of the communication environment to greatly simplify the programming task.

We were able to exercise these facilities in the context of security operations such as secure key
share distribution, and multi-party authorization protocols. Because of the complexity of the
security protocols we were now able to implement and come to understand, we realized that
informal approaches to communications security in agent systems are inadequate. This is a
strong statement, made from a point of view gained from working in information surety at a
national laboratory: systems developed with security requirements must consider the insider
threat model as important and realistic when designing network software.

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
0
e
e
e
e
e
e
e
e
e
e
e 11

e
e

Data component trading for a shipment transaction
Collaborator actors operate on components of the shared shipment transaction object

I ORIGINATOR I I
route plan I

fMONlTOR7---ti container

route plan I BTFS (-> exit 4 Transaction
Shipment

POEx

exit

BROKER

CONSIGNEE

shipper Y-ZiJ
route plan \)

*acknowledge f poEn 1
-A REGULATOR I

entry - \ 1
declaration

shipper
ENTRY

BROKER
entry

declaration

The BTFS Shipment Transaction (ST) is the suprema1 object (superobject) that is the
subject of the collaborative operations. Each collaborator performs its value-added
processing on one or more component objects of the ST. Each collaborator modifies
the state of the superobject, moving it towards a ”goal state.’’

Figure 2. Data component trading for a shipment transaction

12

Shipment. Transactions-&.Components
Attributes. &.Associations

The.BTFS Shipment.
Transaction.is a.
distributed; composite.
object.withcompositiona1
semantics..Its.state.is.
detennined.by.the states.
fo,the.component I
objects. -Thestate evolves.
as.actors-submit.and.
cryptographically
validate their,respective.
component instances.

r
BTFS,ROUTE.PLAN

0RIGIN.POINT
EXIT. ROUTE

PORT.OF.EXIT.POINT.
PORT OF- ENTRY.POINT

ENTRY-ROUTE
DESTINATION*POINT

SIGNATURE LIST

I
BTFSEXPORT PLAN

COUNTRY.OF-ORIGIN
PORT.OF.EXIT

EXPORT. HISTORY
DECLARATION

INSPECTION-HISTORY
BROKER

SIGNATURE LIST

BTFSSHIPMENT
TRANSACTION

SHIPPER
ROUTE-PLAN
CONTAINER

EXPORT. PLAN
IMPORT,PLAN

RECEIVAL
. SIGNATlfE LIST

I BTFSSHIPPER I
ORIGINATOR
CONSIGNEE

CARRIER
ORIGIN

DESTINATION
ARRIVAL-TIMEIDATE
DEPART.TIME/DATE
CARGO.MANIFEST
SIGNATURE LIST

I BTFS..RECEIVAL I

Shipment.Transactionobjects
have.universal.identity
(OIDs)..EveryECA-sitethat.
is.a collaborator,has.its.own.
copyof.the.superobject .with.
the.same.OID.Component.
instances may.be.proxied,-
copied;replicated. a s needed.
to.each.eca-site.depending. on
the.kinds of-operations.
performed -at the site, -the.
latencyof.operations,-and.
the.access-to-updateratio.

1

-

BTFSCONTAINER

IDENTIFIER
OWNER

r CURRENT.ROUTE
SURETY.HISTORY

ATMS CONFIG
CONTAINER-DESCRIP

I
BTFSIMPORT PLAN

COUNTRY -OF SDEST
PORT*OF.ENTRY
IMPORT.HlSTORY

DECLARATION
INSPECTION-HISTORY

BROKER
SIGNATURE LIST

Component classes.are defined.aroundcollaborator/actor roles. Each collaborator !’owns” .
a.piece.of.the.transaction.and.is.responsible.for-instantiatinRits piece based. on the.values of.
other components. This .is.appropriate.since,BTFS.transactions,exhibit.a.”strict,partition”.
among.operations, knowledge, and data jurisdiction.-actor state-update.operations do not I
overlap,.although.they share a .few access-only /’service” operations, such as location and .
surety.reporting..

Figure 3. Shipment Transactions & Components: Attributes and Associations

13

Figure 4. Border Trade Facilitation System Ontology

14

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
e
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e

10. References
1.

2.
3.

4.

5 .

6.

7.
8.

9.

10.

Collis, J.; Soltysiak, S.; Ndumu, D.: Azarmi, N. Living with Agents
(http://www.bt.com/bttj/voll Snol/today/papers/j collis/contents.htm), British Telecommunications plc, 1999.
0ntology.Org. The needfor shared ontology (http://www.ontology.org/main/pagel .htmI)
Goldsmith, S. Y . Proposal for LDRD project #lo361 Agent-Based Mediation and Cooperative Information
Systems, 1998
Daskiewich, Daniel, CoABS program manager, quoted in USA Today, A.I.: Latest foot soldier in the war on
terror, http://www.usatoday.com/life/cyber/tech/review/2OOl/1 O/l/software-agents.htm, 2001
Greaves, M.; Holmback, H., and Bradshaw, J. M., What is a conversation policy? In M. Greaves and J. M.
Bradshaw, editors, Proceedings of the Autonomous Agents ‘99 Workshop on Specifying and Implementing
Conversation Policies, 1999.
Gruber, T. (1 993). Toward Principles for the Design of Ontologies Used for Knowledge Sharing, Knowledge
Systems Laboratory KSL 93-04, Stanford University.
Free OnLine Dictionary of Computing (FOLDOC; http://foldoc.doc.ic.ac.uk/foldoc/index.html)
Phillips, L.R.; Goldsmith, S.Y.; Spires, S.V.; Ontological Leveling and Elicitation for Complex Industrial
Transactions; Unpublished manuscript, Advanced Information System Lab, Sandia National Laboratories, 1998
Goldsmith, S.; Phillips, L.; and Spires, S. 1998. A multi-agent system for coordinating international shipping. In
Proceedings of the Workshop on Agent Mediated Electronic Trading (AMET’98), in conjunction with
Autonomous Agents ’98, MinneapolisISt. Paul, MN, USA
Phillps, L.R., and Link, H.E.; The Role of Conversation Policy in Carrying Out Agent Conversations; Issues in
Agent Communication, Springer, 1998.

. -

15

a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a

a

a

a
a
a
a
a
a

a
a
a
a

a
a

a

a

e

a

e

e

a

http://www.bt.com/bttj/voll
http://0ntology.Org
http://www.ontology.org/main/pagel
http://www.usatoday.com/life/cyber/tech/review/2OOl/1
http://foldoc.doc.ic.ac.uk/foldoc/index.html

Appendix 1. Operations and Roles of U.S./Mexico Cross-border Trade

Operations necessary to move goods across the U.S.-Mexican border; to be advertised in
Matchmaker: (illustrated in Figure 2. Data component trading for a shipment transaction)
shipment-initiation
shipment-monitoring
shipment-in-transit-visibility
US-transport
Mexican-transport
Border-crossing-drayage

US-export
Mexican-export
US-import
Mexican-import
US-regulator-filing
Mexican-regulator-filing

Detailed descriptions of the roles of border trade collaborators (Figure 3 illustrates how
these roles are connected to an individual transaction):
Originator:
Advertised services: shipment-initiation
Role function(s): Start the process of shipment by giving the fundamental task parameter values
Information: Originator, Origin, Cargo-manifest, elements of signature-list
Matchmaker comments: Normally a manufacturer getting ready to move some goods does this.
We expect that an agent will interact with a human to cause the appropriate information objects
to be created and the appropriate goals to be opened by the appropriate collaborators. This
service doesn’t make as much sense in the broad Internet setting, but is perfectly at home in an
Intranet environment.
Remarks: Acts to cause the creation of a new transaction object. The originator is sometimes
called the “shipper,” but we avoid this term because it’s also a common name for a document. In
the maquiladora environment, the originator and the consignee are different sites of the same
corporation.

Consignee:
Advertised services: none
Role function(s): shipment closure
Information: Consignee, destination, arrival time/date,
Matchmaker comments: Not an advertised service, but a role that must be filled by a collaborator
in order to finish a shipment.
Remarks: Acts to cause closing of the active transaction object (although archiving, cleanup, etc.
goals may ensue). Occasionally referred to as the receiver, but we avoid the term since it’s also a
common name for a document.

Monitor:
Advertised services: shipment-monitor, shipment-in-transit-visibility
Role function(s): Watch a shipment

16

e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
e
a
a
0
a
a
a
a
a
a
e

17

Information: Import plan, Export plan, arrival time/date, departure time/date
Matchmaker comments: Not clear whether monitoring is a separable component of a shipment
transaction. In-transit visibility is separable and should be advertised as a standalone function.
Remarks: Acts to cause timely completion of necessary information subgoals (technically, the
monitor merely notices that some subgoals may fail or have failed, but could naturally ask the
appropriate agents to correct some deficiency or put some other contingency plan into action).
In-transit visibility requires the presence of onboard sensing and locating hardware as well as a
reading and reporting infrastructure that would not necessarily be provided by agents.

Carrier:
Advertised services: US-transport, Mexican-transport, Border-crossing-drayage
Role function: negotiate to plan the route, then physically move goods.
Information: Container, shipper, route plan
Matchmaker comments: Primary service of all those given above is “transport” (i.e., physical
translation or “ptrans”). An issue is how to specify the scope within which the service is offered.
Remarks: (none)

POEdPOEx regulator:
Advertised services: none (the service offiling with the various regulators is accomplished by the
entrylexit broker.
Role function(s): Certify requirements have been met, permit/bar entry/exit
Information: ImporVexport plans as appropriate, elements of signature list
Matchmaker comments:
Remarks: The agent certifies that certain conditions are met and finally permit entry/exit, as the
case may be. This role is filled by the respective customs agencies, although other regulatory
agencies may impose additional constraints.

Entry/Exit broker:
Advertised services: US-export, Mexican-export, US-import, Mexican-import, US-regulator-
filing, Mexican-regulator-filing
Role fmction(s): Get all the paperwork right
Information: ImporVexport plans as appropriate, shipper, route plan, elements of signature list
Matchmaker comments: These services are sometimes offered in combination (e.g., Mexican-
export and US-import are closely coupled).
Remarks: The broker needs information about virtually every aspect of the shipment in order to
ensure that the appropriate regulatory constraints are met in a timely manner. Note that
directionality and nationality can constrain the information needs; the Mexican export broker and
the US import broker don’t need identical information (although note it is possible for both to be
handled by one broker, especially in the maquiladora setting), and Mexican import/US export is
almost entirely different from Mexican export/US import in terms of the information needed and
which regulatory bodies require it.

This page intentionally left blank.

18

Appendix 11. Publication Reprints

1. Ontological Leveling and Elicitation for Complex Industrial Transactions
2. The Role of Conversation Policy in Carrying Out Agent Conversations
3. Agent Communications Using Distributed Metaobjects

a
e
e
e
e
e
e
e
e
e
e
e
e
e
e
a
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e 19

e
e

This page intentionally left blank.

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
20

Ontological Leveling and Elicitation
for Complex Industrial Transactions8

Laurence R. Phillips, Steven Y. Goldsmith, Shannon V. Spires
Advanced Information Systems Laboratory

Sandia National Laboratories
Albuquerque, New Mexico USA

{lrphill, sygolds, svspire)@sandia.gov

Abstract. We present an agent-oriented mechanism that uses a central ontology as a
means to conduct complex distributed transactions. This is done by instantiating a
template object motivated solely by transaction ontology, then automatically and
explicitly linking each element of the basis to an independently constructed interface
component. These links are then embedded in acquisition goals and delegated to an
agent that knows how to carry out the elicitation process. Having accepted these
goals, the agent uses the links to acquire information without reference to interface
components and to register this information with the transaction basis. Agents elicit
information without disturbing the basis and can inteagate the information into the
basis without further reference to the link once it is validated. Validation
information is attached directly to the links so that the agent need not know a priori
the semantics of data validity, merely how to execute a general validation process to
satisfy the conditions given in the link. An advantage of this arrangement is that the
transaction basis, the links with the interface, and the validation requirements are
independent of one another and of the elicitation agents. This independence enables
an elicitation process to be realized without reference to the interface engine, which
is merely an attribute of the links. This means that in practice the interface structure
can be instantiated with reference only to link names, remaining sufficiently abstract
to enable us to wait until run time to generate the actual interface seen by the
informant. It can thus be idiosyncratic; when we generate the interface we can take
into account the informant’s identity, lexicon, language, time of last contact, etc.
Ontological leveling is critical all terms presented to informants must be
semantically coherent with the ontologically motivated basis. To illustrate this
approach in an industrial setting, we discuss an existing implementation that
conducts international commercial transactions on the World-Wide Web. In this
implementation, agents operating within a federated architecture consmct, populate
by Web-based elicitation, and manipulate a distributed composite transaction object
to effect transport of goods over the U.S./Mexico border.

keywords: elicitation, ontological leveling, computer supported cooperative work
(CSCW), international commerce

3 This work was performed at Sandia National Laboratories, which is supported by the
U.S. Department of Energy under contract DE-ACOP94AL85000

21

mailto:svspire)@sandia.gov

This page intentionally left blank.

22

a
a
a
a
a
a
a
a
a
a
a
e
a
a

a
a
a
a
a
a
a-
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e 23

e
e

a

Ontological Leveling and Elicitation
for Complex Industrial Transactions5

Laurence R. Phillips, Steven Y. Goldsmith, Shannon V. Spires
Advanced Information Systems Laboratory

Sandia National Laboratories
Albuquerque, New Mexico USA

{Irphill, sygolds, svspire)@sandia.gov

Abstract. We present an agent-oriented mechanism that uses a central ontology as a
means to conduct complex distributed transactions. This is done by instantiating a
template object motivated solely by the ontology, then automatically and explicitly
linking each template element to an independently constructed interface component.
Validation information is attached directly to the links so that the agent need not
know a priori the semantics of data validity, merely how to execute a general
validation process to satisfy the conditions given in the link. Ontological leveling is
critical: all terms presented to informants must be semantically coherent within the
central ontology. To illustrate this approach in an industrial setting, we discuss an
existing implementation that conducts international commercial transactions on the
World-Wide Web. Agents operating within a federated architecture construct,
populate by Web-based elicitation, and manipulate a distributed composite
transaction object to effect transport of goods over the U.S./Mexico border.

1 Introduction

Discussions of elicitation in the literature involve anthropomorphic agents [l], belief
revision to accommodate heterogeneous distribution of knowledge [2], shared ontologies
[3] and [4], and semantically denotive labels [5]. The notion of teleologically motivated
discovery presented in [6] is useful since some elicitation situations need partially-
instantiated information structures-cases- to guide the elicitation process.

Ontological leveling is the construction of a central ontology to support several languages.
Our approach to ontological leveling builds the central ontology to support one language,
then extends it as we add languages. Sharing among languages can occur as the corpus
continues to provide translations in both into and out of the central ontology. We use
denotive labels, but not in the sense of [5]; labels are used here to maintain the connection
between the ontologically motivated basis and the elicitation forms used to populate it.

5 This work was performed at Sandia National Laboratories, which is supported by the
U.S. Department of Energy under contract DE-ACO4-94AL85000

mailto:svspire)@sandia.gov

a
a
a
a
a
a

We have not yet explored teleologically motivated discovery very deeply; although we
have extensions in place to permit exploration, we have focused to date on the necessarily
very structured communication required by international commerce.

We are interested in the process by which an agent elicits information from another agent
when both wish to accomplish a common goal. In general, these agents will be conversant
with a common ontology but may use widely divergent syntaxes to entail the semantic
content of interest. The efficient mechanism to enable semantically laden communication
in this kind of environment is to explicate the common ontology and level it with the
relevant fractions of the individually languages. The formal properties of this mechanism
are discussed in [7] and include translation, construction, verification, and reversibility.

When an agent requests information of another (referred to as the informanr), it expects to
receive a response. We are interested in the subset of responses in which the informant is
acting to assist the agent in satisfying some mutual goal, usually based on an agreement to
do so. This occurs in the context of a federated system [3] acting to achieve some goal of
the virtual enterprise based on either an existing contract [8] or a trading partner
agreement 191. We assume, therefore, that the informant is acting in good faith-that it is
benevolent [101-but does not necessarily provide correct or complete information.

In this circumstance, the informant responds to the request by providing information it
thinks is correct in an attempt to satisfy the request. The agent must determine the value
of the information proffered by the informant. The agent can then either request more
information from the informant or go on to other tasks. In any case, the agent will validate
the informant’s information, if only by default, and may elicit further information about
responses it is unable to validate, perhaps ultimately discarding the information as
unreliable and failing to satisfy its goal. This explicit validation at elicitation time helps to
to prevent costly dependency-directed backtracking.

2 Ontological Leveling

Using the notation of [7], suppose we have several languages La-n; an interlingua
language Li; TRANSLa,Li, a binary relation between top-level forms of La and top-level
forms of Li; and BTLa, a set of top level-forms in Li. Suppose further that by some means
we have <TRANSL,Li, BTL,>, an Li-based semantics for La, SO that we know how to
translate back and forth between La and Li. Normally, this places a burden on the
implementors to verify that all statements SLa really are equivalent to S L ~ (their translated
TRANSb,Li versions) because La will have an independently defined semantics. This is
not so difficult for the first language La, because its translation can drive the definition of
Li, but becomes increasingly difficult as Lb, LC, Ld. etc., are added (that is, as TRANSLb-

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

24 a

n,Li and BTLb-n are defined), each with its own semantics. A situation can have features
that will collapse the potential combinatorial explosion: First, the La,...,” languages will
have similar semantics when they are “about” the same context. Second, the La,...,n often
are not very expressive, having small vocabularies and simple grammars. Third, the areas
where the La,...,, overlap can be few and denotationally coincident, reducing conflicts.
This process of adding additional languages to the set that can be translated into the
interlingua and back is called ontological leveling.

Suppose language 1 refers to a property named the “date-of-record’’ and language 2 refers
to a property called “date-of-transaction.” In the ontology, we have an object named
“filing-date” and another object named “receival-date.” We also know, axiomatically, that
in order for the transaction to be considered complete, a record of it must first be made.
To preserve the semantics of the translation, we can choose to translate date-of-record as
filing-date and date-of-transaction as receival-date and mediate during elicitation to
ensure that the elicited date-of-transaction is not earlier than the elicited date-of-record, as
required by the axiom. Unfortunately, the axioms operate only within each language and
its translated terms, not between languages, so formally we can’t guarantee that a
relationship holds between terms in two different languages just because it holds between
their translations. However, when an axiomatic relationship that holds in the interlingua is
one that we wish to hold between the reverse-translated terms, we can force the
translation to be reversible at elicitation time. In our example, we know that the date-of-
record must be no later than the date-of-transaction precisely because we want to force
that axiom to hold; we are not going to let an informant make the mistake of saying the
transaction is complete before its record has been filed. In practice, we can prevent
closure until filing occurs; formally we would also like to prevent the denoruhbn of
closure until we see the denorurion of filing, in order to maintain registration of the
internal state with the state of the world. We would furthermore maintain the metric
information-the dates qua dates-as the denotive markers of the events, because dates
already have a common semantics. In other words, barring formats, there’s a universal
calendar already in use, so we need not translate actual dates. Each event object in a
transaction, at some point during the transaction’s trajectory, will contain a date object
that both denotes that the event has occurred and connotes the time of occurrence.

A more difficult case is Total Value (What is the total value of items in this {shipment,
invoice, bill of lading, production request, work breakdown, field proposal, ... >>.
Leveling consists in growing the interlingua to be sufficiently expressive to maintain
translation and reversal among several semantic projections, just as it does with the dates,
but this is much more difficult to do. For example, the axiom that defines the valuation of
one monetary currency with respect to another is time-varying. Does the transaction
object contain the value of the shipment that was computed at some time in the past or is

it determined at the time of the request? If the former, must it then also contain the time of
that valuation and the axiom that was used?’ Must all such valuation times and
conversions be retained? How are we to retain commensurability among the set of
valuations in the transaction object? Theory suggests the correct answer is “All such
information must be preserved to maintain reversibility,” placing the burden on the
constructor of a functional interlingua for an industrial setting. As a practical matter, we
preserve reversibility where reversal will be applied and denote irreversibility where it
will not; relying on use-case analysis [1 I] to determine which case applies.

3 The Mechanism

Work is assigned to an agent by giving the agent a goal. The goal for elicitation is a form
insranriation goal (FI-goal); the agent is supposed to return an object that contains the
validated results of an elicitation process. FI-goals are members of specialized goal
classes that capture the semantics and syntax of the information to be elicited. An FI-goal
is a composite object initialized to contain several unknown objects (UOs)[121. A UO is a
class instantiation that has no content but is responsive (in a content-free manner) to class
protocol. The presence of a UO denotes a lack of information. The UOs from the FI-goal
are given to a generating mechanism that creates display code. The display generator
knows an appropriate display object for each class of UO. Currently, the display page
class for the FI-goal is fixed during design, along with an explicit display object
classname for each UO, e.& “text box” or “radio button.” This information is maintained
in the automatically-generated initialization code for the display page class and is
therefore fixed at compile time.’

Each display object contains the name of the datum for which it is the interface. The agent
uses this name to re-connect the data retrieved from the informant to the appropriate
internal variable. Internally, everything is Connected by pointers and composition, but we
release “probes” out to some stateless browser, with which we have no contact. At some
future time, a probe may return‘ ; if it does, it may contain information we requested, and
we must at that time re-connect it to the appropriate data element. However, all probes
look alike, so each must contain a denotive signal to allow us to identify the internal
object for whom the probe bears information. This identifier is the name of the object.

Having retrieved the object, the elicitation agent attempts to verify the information that
(supposedly) belongs in it, using verification information contained in the object. This
level of verification is relative to this object only (e.g.: “X is supposed to be positive
numerical,” “Y is supposed to be pure text,” a column of figures may be required to add

’ In practice, the axiom is embodied in a conversion factor.
* A planned improvement is to deduce the display object class at display time from the UO class.

We emphasize may; the network might go down, the user might decide not to reply, etc.

26

up to a given total, etc.). When the agent fails to verify, it may continue the elicitation
process by pointing out the error and re-requesting the information, perhaps suggesting
corrections. Ultimately, an intelligent system could make “do-what-I-mean” corrections
and present them to the informant for verification. We continue to examine mechanisms
for robust error detection and recovery.

Having completed verification of the data, the elicitation agent passes the object to a
mediation agent who attempts to reconcile it with the interlingua-based object. There, it is
validated against inter-language constraints based on the axioms formed during leveling.
This can cause further rounds of elicitation if conflicts ares found in information from
different informants. For example, a receiving entity unable to take delivery at a location
specified by the sending entity and agreed to by the transport entity. A robust general
mechanism should be able to determine who provided the conflicting information and re-
elicit (using the reverse translation out of the interlingua) in a collaborative mode. This
general corrective tactic is useful because it can deal with unexpected errors.

4 The Application

The Border Trade Facilitation System (BTFS) [13] is an agent-based collaborative work
environment that assists geographically distributed commercial and government users
shipping goods across the US-Mexico border. This is currently a complex, paper-based,
error-prone process that often incurs expensive inspections and delays. In the BTFS,
agents mediate the creation, validation and secure sharing of shipment information and
regulatory documentation over the Internet, using the World-Wide Web to interface with
human actors. For each transaction, the BTFS coordinates several business entities and
their agents, two national customs offices, hundreds of data, and several non-
communicating computer systems.

The required regulatory documents for each leg of the trip are numerous and bilingual.
North American Free Trade Agreement (NAFTA) requirements have complicated the
documentation. A typical package prepared by a Mexican broker includes the original
invoice; the Shipper’s Export Declaration; a Spanish language invoice called thefucturu;
an import pediment0 (Mexican declaration document; an example form rendered in
HTML is shown in [fig. 13); an English manifest and a Spanish muni$esto describing the
physical nature of the shipment for transport; a packing list, describing how the shipment
is actually arranged on the transport; and any of several possible Mexican regulatory
documents. NAFTA documents must be on file certifying the firm as a muquilu, and each
pediment0 must be registered by the owners to satisfy year-end material-balancing
regulations. The driver and vehicle must be licensed and certified. The muquilus can
consolidate several invoicedfucrurus under a single pedimenro. Shipment into the US
involves several additional US import documents. The documents are syntactically

27

a
a
a
a
a
a
a
a
a
a
a
e
0
0
a

0
e
a
a
a

a

a

a

a
a

a
a

a
a
a
a
a
a
a
a
a

a

0

a
0

e

0

Iniciar un Nuevo Pedimento de Exportacih

Pedunento Consolidado? c? si
..................

Fechs de Pnp: 27/5/d? No. Fdmento:~8776-700881

Tlpo de Opersam: 2 [A1 T.C.I
AduanalSEC. 072 Fartm Monedn Exttanlen: ' 1

~ Clave Pedzmenis:

.......................

Bxpoltpdox N m b m y Domidlie:
Nombm Wire Cmponents S.R. de C.U.

Domlnlh?: 1201 Parque Industrial Ju6rez
.. ._

FBdUII% (1) T0?478
...

Fethw: 27/5/97

F o r m de Fsrtuaa&n: FmT------"------

S s l l o s
Vdox Comexial

77538.72

C6digo de B a l m Contribacioner:

Obrenra~roncl:

Totaler:

E f M t l M : 0

Otror :

_ _
..
-I___

Wtsnta : 8776 Nwnbxe . J a i i i Oo&alaz -
RFC : GWR-560505gj f F l m de agente :

89

111 I_-.

Fig. 1. The Pedimento: In addition to the 57 separate data fields on this form, note that the section
between the horizontal bold lines, containing fourteen fields, is one line item and can be repeated
any number of times (although practical considerations limit this to a few hundred).

28

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a 29

a
a

distinct, although there is significant semantic overlap. For example, the total shipment
value required on many of these documents is not necessarily given the same name
between any given pair nor will the total always be computed on the same basis; and there
are at least two currencies involved.

Agents perform four specific functions on behalf of their user organizations: (1) agents
elicit information from informants; (2) agents translate information into and out of the
central interlingua, thereby eliminating the need for duplicate data entry; (3) cohorts of
distributed agents coordinate the work flow among the various information providers and
monitor overall progress so that regulatory requirements are met prior to arrival at the
border; (4) agents provide status information to human actors and attempt to influence
them when problems are predicted. In this paper we discuss functions (1) and (2) . See
[141 for a more thorough treatment of the Standard Agent class.

We perceived that any electronic system that was to enable maquila trade would require a

Fig. 2. The Maquifa Enterprise Transaction: Each sub-object is a separate entity with tens to
hundreds of its own attributes.

central ontology as shown in fig. 2. Several informants would then be required to interact
with this ontology to conduct a transaction. Furthermore, the information provided by the
informants was to remain distributed for business, cultural, and political reasons. The
ontological leveling activity consumed several hundred person-hours.

However, once the maquiZu ontology had been explicated and embodied in the
interlingua, names could be assigned to links in generated software that would permit
registration of information passing between the BTFS and the human informants through
the web pages. The process of using the interlingua during system realization is:

Step 1. Generate a template of the form that will be used during elicitation. Currently, any
mechanism that generates HTML can be used. Fig.11 is an example.

Step 2. Objectify the HTML using an automated process attached as a utility to the BTFS.
A fragment of such code follows; note the “payment-date” value given to the
“name:” attribute of the “TEXTBOX’ object. This object contains the information
that will appear in the “Fecha de Pago” textbox in pig. 11.

(01p::make-object
‘TABLE-CELL t
:valign ‘TOP
:components
(list (01p::make-object

‘PARAGRAPHS t
:components
(list (01p::make-object

‘TEXT t
:visible-aspects (list “Fecha de Pago: “)
1

‘TEXTBOXES t
(01p::make-object

IIzF :name “payment-date”
:size 12
: old-value “27/5/97“
:current-value “27/5/97“
:preset-value “27/5/97”
:instructions nil
J

30

a
a
a
a

a
a
a
a
a
a
a
a
a
a
a

*

Step 3: At elicitation time, using the code created in Step 2, instantiate the object whose
translation into HTML will produce the display of [Fig. 11. The automatically -
generated "payment-date" object is shown in [Fig. 31.

Step 4. The instantiated object is given to an elicitation agent as part of a form
instantiation goal. As part of the process of achieving that goal, the agent
generates the HTML for the web page that recreates [fig. 11 for the informant. A
fragment of such agent-generated HTML follows. Again note the explicit "name"
attribute.

<P><TABLE BORDER=O CELLSPACING=O CELLPADDING=O
WIDTH="100%" HEIGHT="100%"
name="date-&-pedimento-number-table@'>

<TR>
<TD VALIGN=top WIDTH="34%">

<P>Fecha de Pago:
<INPUT TYPE="text"

NAME="payment-date"
VALUE="27/5/97"
SIZE=12>

</TD><TD VALIGN=top COLSPAN=2 WIDTH="63%">

Human Actors are people that inhabit the agency through an interface device and interact
with agents to accomplish tasks. Human actor objects are temporary objects that contain
an interface address, an interface object that captures the display, data entry and control
functions currently available to the person, and a persistent person object that holds
personal data, passwords, email address, and an account object that provides access to
past and current workspaces. A workspace object contains objects created and stored by
the person during work sessions.

Agents and human actors have access to resources such as databases, fax machines,
telephones, email handlers, and other useful services. Resource objects provide
concurrency control and access protocols for agency resources. Subclasses of the resource
class implement objects representing data bases, fax machines, printers, email ports, ED1
ports and other commonplace legacy devices in the agency environment.

31

;.:.' ,. ... 3 ! .. I ." Resamy " -
!o("LRP's 9600 PPC" :MCL-4.1 3095699948 TEXTBOXES 0)

Instance s l o t s
FIELD: *<OLP: :SINGLE-FREE-FIELDS
CLEAR-IWSTRUCTIOWS-P : T
CHANGED-P: NIL
DCLOS: :OID: ! i l "LRP's 9600 PPC"

HD DCLOS: OBJECTiKEY :TIHESTAMP : 49378744" : NIL

\?$ > WRHE : payment-date" VISIBLE-ASPECTS : NIL

UIEU-RS-ICON-P : NIL
VIEU-VISIBLE-STRING-P: T

UISIBLE?: T
CURRENT-VALYE : "27,'~/9?"

c.yp, cant' ' 1 OLD-VALUE:

*x247CF46>

:MCL-4.1 30956999481

ke COLSPRW: NIL
SIZE: 12
HAXLENGTH: 150

CLEAR-P : NIL

. .

HD

on A : IWSTRUCTIOWS: NIL

:?cL
'

' s QlifiAA PPC' sHCI-4-1 RAQSiFi99A7S PFnTNFNTn-nF-FYPnRT~~TnN f l l l

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
0
a
a
a
a

a
a

32 a

Fig. 3. The actual "payment-date" object (nested several levels down in the page object) generated
when the pediment0 web page is automatically generated for the informant.

Agency objects may be distributed in a network environment to create a collaborative
enterprise structure of interconnected agencies. An electronic commerce agency (ECA) is
a specialized subclass of an agency that implements architectural features specific to
electronic commerce applications. An ECA has the additional attributes of transactions
and organizations. The transactions attribute holds a collection of open and closed
transaction objects. The organizations attribute holds a collection of public proxy objects
pointing to agencies that represent trading partners.

The BWS agent society comprises several federated ECAs analogous to the interested
business entities. Each ECA is populated by a heterogeneous collective of agents, each of
which is able to perform a fragment of the information tasks needed to effect trans-border
shipment. Business rules are idiosyncratic, so an operational ECA must be tailored and
situated for each business. Constructing the ECA and the agents that make it up consists
in specializing agents from a set of standard agent classes constructed for commerce.
ECA classes are also pre-defined for the various required roles: originator, receiver,
transport provider, and import/export broker.

e
e
e
a
e
e
e
e
e
e
e
e
a
0
e
e
e
e
e
e
e
e
a
e
e
e
e
a
e
e
e
a
e
0
e
e
e
e
e
e
e 33

e
e

In addition to domain and task specialists, several varieties of housekeeping agents
perform maintenance tasks for the ECA. Security agents control access by human actors
to each agency within the parent organization. A human actor logged into the ECA
“inhabits” the agency for the duration of the work session. An agent handles all
interactions with the human actor. Task agents initiate requirements to obtain information
based on activated goals, monitor the appropriate information sites to see whether the
goals have been achieved, and take corrective or contingency measures when failures
occur. Dispatch agents allocate new transactions to the appropriate agents. Supervisory
agents allocate work to task agents, deal with rejected goals, collate agency-level data,
and respond to outside requests for task status information. Various agents incorporate
reporting facilities for humans, including customs offices of both governments.

5 Conclusions and Remarks

The BTFS prototype demonstrates a multi-agent approach to coordinating a complex,
knowledge-intensive shipping process. We have demonstrated the following agent
behaviors: elicitation, mediation with a central ontology, negotiation, delegation,
monitoring, and goal satisfaction.

The most challenging aspects of integrating a diverse enterprise such as border trade are:
(1) knowledge-intensive elicitation of form information; (2) mediation and ontological
leveling of information across multiple organizations; (3) knowledge engineering in
general; and (4) secure distributed object computing.

Ontological leveling proved to be a demanding but effective strategy for centralizing and
making coherent a diffuse and permanently decentralized operation. Current research is
looking at further automation of the realization process that produces usable applications
with demonstrable formal properties.

References

1. Isbister, K., and Hayes-Roth, B. (1997) Social Implications of Using Synthetic Characters: an
Examination of a Role-Specific Intelligent Agent, Knowledge Systems Laboratory KSL 98-01,
Stanford University

2. Dragoni, A. and Giorgini, P. (1995) Distributed knowledge elicitation through the Dempster-
Shafer theory of evidence: a simulation study. In Proceedings of the International Conference
on Multi-Agent Systems (ICMAS 96), December 1996.

3. Genesereth, M., and Ketchpel, S. (1994). Software agents. In Communications of the ACM,
37(7):48-53, 1994

4. Gruber, T. (1993). Toward Principles for the Design of Ontologies Used for Knowledge
Sharing, Knowledge Systems Laboratory KSL 93-04, Stanford University.

5. Luke, S., Spector, L., and Rager, D. (1996). Ontology-based knowledge discovery on the world-
wide web. In Proceedings of the Workshop on Internet-based Information Systems, AAAI-96,
Portland, Oregon, 1996

6. BalabanoviC, M., Shoham, Y., Yun, Y. (1995). An Adaptive Agent for Automated Web
Browsing, Technical Report SIDL-WP- 1995-0023, Stanford University

7. Van Baalen, J. and Fikes, R. (1993) The Role of Reversible Grammars in Translating Between
Representation Languages. Knowledge Systems Laboratory, KSL-93-67, November 1993

8. Sandholm, T., and Lesser, V. (1995) On automated contracting in multi-enterprise
manufacturing. In Proceedings of Improving Manufacturing Performance in a Distributed
Enterprise: Advanced Systems and Tools, Edinburgh, Scotland

9. Roscheisen, M., and Winomgad, T. (1996) A communication agreement framework for
accessiaction control. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, Oakland

10. Rosenschein, J. S. and Genesereth, M. R. (1985). Deals among rational agents. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-gS), LOS Angeles,
CA

11. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. (1992). Object-Oriented Sofrware
Engineering, ACM Press.

12. Goldsmith, S., Spires, S., and Phillips, L. (1997). The Object Lifecycle Protocol, Advanced
Information Systems Laboratory Technical Report, Sandia National Laboratories, Albuquerque,
NM

13. Goldsmith, S., Phillips, L., and Spires, S. (1998) A multi-agent system for coordinating
international shipping, submitted to Workshop on Agent Mediated Electronic Trading
(AMET'98), in conjunction with Autonomous Agents '98, MinneapoWSt. Paul, MN USA

14. Goldsmith, S. (1997). The Standard Agent Framework, Advanced Information Systems
Laboratory Technical Report, Sandia National Laboratories, Albuquerque, NM

34

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

The Role of Conversation Policy in
Carrying Out Agent Conversations

Laurence R. Phillips and Hamilton E. Link

Sandia National Laboratories
MS 0445

Albuquerque, NM 87185
lrphill@sandia.qov , helink@sandia.qov

Abstract. Structured conversation diagrams, or conversation specifications,
allow agents to have predictable interactions and achieve predefined
information-based goals, but they lack the flexibility needed to function robustly
in an unpredictable environment. We propose a mechanism that dynamically
combines conversation structures with separately established policies to
generate conversations. Policies establish limitations, constraints, and
requirements external to specific planned interaction and can be applied to broad
sets of activity. Combining a separate policy with a conversation specification
simplifies the specification of conversations and allows contextual issues to be
dealt with more straightforwardly during agent communication. By following
the conversation specification when possible and deferring to the policy in
exceptional circumstances, an agent can function predictably under normal
situations and still act rationally in abnormal situations. Different conversation
policies applied to a given conversation specification can change the nature of
the interaction without changing the specification.

1 Introduction

A: An argument is a connected series of statements intended to establish a
proposition.

B: No, it isn’t!
A: Yes, it is! It isn’t just contradiction!

Policy discussion, Monty Python,
Argument Clinic Sketch

Software agents communicate while they pursue goals. In some cases, agents
communicate specifically in order to accomplish goals. We restrict our interest in this
paper to goals that can be described as information states, that is, information goals.
We discuss agents that intend to accomplish information goals by communicating.

Although individual speech acts have been well-characterized, consensus on
higher-order structured interactions has not been reached. There is little or no
discussion in the literature of how to constrain the behavior of an agent during
communication in response to a dynamic environment.

35

When a set of communication acts among two or more agents is specified as a unit,
the set is called a conversation. Agents that intend to have a conversation require
internal information structures that contain the results of deliberation about which
communication acts to use, when to use them, whom the communications should
address, what responses to expect, and what to do upon receiving the expected
responses. We call these structures conversation specifications, or specifications for
short. We claim that specifications are inadequate for fully describing agent behavior
during interaction.

Consider two agents who are discussing the location of a surprise party for a third
agent, who is not present. When that agent enters the room, all discussion of the party
suddenly ceases. The cessation occurs because the first two agents understand that the
third agent cannot receive any information that such a party is being considered.
Conversely, suppose that the conversation is about a party in honor of the third agent
and all three agents know the third agent is aware of it. Now, when the third agent
enters the room, the conversation continues.

Are the first two agents having the same conversation in both cases? We claim the
answer is “Yes, but they’re’ operating under different policies.” In both cases, they are
having a conversation whose essence is organizing the party. The conversation might
roughly be specified to contain information exchange components (e&, to establish a
set of possible locations), allocation components (“I’ll call these two restaurants, and
you call this other one”), and a continuation-scheduling component (“I’ll call you
tomorrow with what I find out and we’ll take it from there”). These are all matters that
we expect to find in a conversation specification. On the other hand, the decision of
whether to stop talking when a specific third party enters the room is based on a
mutually understood policy and might reasonably be applied to any number of
conversations, for example, negotiations about the price of a commodity on which the
third agent is bidding.

Historically the agent communication literature has used the word “policy” to refer
to the description of the structure of interaction between a number of agents, generally
two but sometimes more (Bradshaw et al. 1997). The dictionary, however, defines
“policy” as “a high-level overall plan capturing general goals and acceptable
procedures.” This coincides with what we expect of a conversation policy: An agent
using a conversation policy would operate within certain constraints while attempting
to satisfy general information-based goals. When discussing procedures and
constraints of interaction beyond the basic structure of a conversation, the word
“policy” has connotation that we feel is more appropriately bound to the procedures
and constraints rather than to the basic structure. For the latter, then, we will instead
use the word “specification,” and use the word “policy” to refer to the former.

2 Policies for Interaction

The focus of our work is to create a mechanism for combining specifications with
policies that constrain the behavior of an agent in order to generate conversations
among agents.

36

We have begun to design a mechanism that uses the specification’s description of
input states and actions based on them and the policy’s description of constraints,
limitations, and requirements together to determine an agent’s response to a message.
Given a suitable mechanism, the specification and the policy can be implemented as
data objects. The specification defines the structure for the conversation, and the
policy defines the acceptable procedures, rules, and constraints for the conversation.

We can interact with and speak of agents as intentional systems (Dennett 1987).
We assume that agents are able to emit illocutions and that illocutions can have
perlocutionary effect on other agents that “hear” them (Searle 1969). (We follow
Searle in using illocurion to mean an utterance intended to affect the listener and
perlocurion to mean the production of effect on the listener). This means that an agent
can emit information with the intent of altering the information state of some other
agent, that the information can be received by some other agent, and that receipt of
this information can cause the recipient to be in an information state intended by the
emitter. The emitter desires the recipient to be in a certain state because the emitter
believes that this either is or assists in achieving one or more of its goal states.

Conversation specifications are distinctly similar to KAoS conversation policies
(Bradshaw et al. 1997). The specification dictates the transitions and outputs made by
the agent in response to input. A conversation policy is a set of constraints on the
conversation specification that limit the behavior of an agent beyond the requirement
of following the procedures and structures of the conversation specification. The
policy object is used by the mechanism to make decisions about acceptable courses of
action when the conversation specification fails to completely determine a course of
action. Lynch and Tuttle said it well: “Our correctness conditions are often of the form
‘if the environment behaves correctly, then the automaton behaves correctly.”’ (Lynch
and Tuttle, 1989) This stems from the constraint that IOA’s cannot block inputs, the
automaton is permitted to exhibit arbitrary behavior when “bad” or unexpected inputs
occur. What happens when the environment doesn’t behave “correctly?” This is where
policy applies.

Policy differs from specification in that specifications describe individual patterns
of interactions, while policies are sets of high-level rules governing interactions. It is
possible for a class of conversation policies to have subclasses. For one policy to be a
subclass of another, the subclass must be more strict (more constraining) in at least
one attribute and no less constraining in any.

Our new mechanism combines the policies and specifications to determine the set
of conversations that can be generated. When policies change in the midst of a
conversation, the goal may become infeasible. In our formulation, the conversation
policy does not specify the types of messages that can occur. It is made up of
constraints on who can participate, and under what circumstances, whether sub-
conversations can be initiated within an existing open conversation, whether
equivalent conversations can take place in parallel with the same participating entities
(e.g., an agent can’t carry on two price negotiation conversations with the same entity
w.r.t. the same object). We claim that issues of specification are orthogonal to issues
of policy; specifications define the structure of interactions, while policies govern the
way interactions are carried out.

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e 37
e
e

a

3 Methods

We developed our current agent conversation mechanism using the Standard Agent
Architecture (SAA) developed by the Advanced Information Systems Lab
(Goldsmith, Phillips, and Spires 1998) at Sandia National Laboratories. The SAA
provides a framework for developing goal-based reasoning agents, and we are
currently using a distributed object system that enables agents to send each another
simple objects or sets of information. We are using the Knowledge Query and
Manipulation Language (KQML) (Labrou and Finin 1997) as our message protocol.

Interacting with an agent first requires that the agent be able to correctly identify
and respond to illocutionary messages. A situated agent in pursuit of goals must be
able to answer two questions: To which, if any, of its current goals does new
information relate, and what actions, if any, should it execute based on new

~n

0
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a

a
a
a
a

e

0

0

a

0

38 a
a

I
Fig. 1. A conversation specification that does not specify a
variety of potential constraints on the agent’s activities

information that relates to a given goal? In the SAA, the primary structure that
enables this is the agent’s stimulus-response table (SRT). An agent anticipating input
of a certain type puts an entry into its SRT, which maps stimuli (by class or instance)
to the appropriate action. Our system currently requires messages to contain an
explicit reference to the context within which the SRT entry was created. The
reference is realized as the object identifier (OID) of the current conversation object
that gave rise to the message.

When an input arrives, the appropriate SRT entry is retrieved and its goal is
undeferred (having previously been deferred, presumably awaiting relevant input),
which activates the goal. The agent now determines how the new information in the
context affects the goal and either marks it satisfied, failed, or deferred or continues to
attempt to satisfy the goal. When satisfaction of the goal requires a speech act, the

agent creates an utterance, delineates the context, embeds the context signature in the
utterance, attaches the goal to the context, places the entry in the SRT, defers the goal,
and executes the utterance. In short, illocution is a deliberate act that creates an
utterance and sets up an expectation of the response that the recipient will make.

To engineer a conversation, the entire set of context descriptors of interest is laid
out as a set of subgoals, each of which is satisfied by gathering specific information.
We have automated the construction of an utterance from a context, the updating of
the context to reflect the new information conveyed by the input, and the connectivity
that enables the utterance and the input to refer to the same context. Specialized code
is written to construct goals, execute side effects, maintain the SRT, and so on.

Composing speech acts in a theoretically predictable fashion is more difficult; this
is the motivation for creating a structured way of merging specification and policy at
run time to get a structured interaction that is forced to remain within certain
operational boundaries.

In our current mechanism, policy is embedded in the conversation mechanism as
part of the design. A policy change, for example, that an agent should institute a
timeout and ignore all messages responding to a particular request after the timeout
expires, would require reengineering the conversation. The mechanism would be
much more maintainable given an explicit policy object that could just be changed to
reflect the fact that there’s now a timeout. Our essential thesis is that policies and
conversation specifications should be independent so that conversations could be
switched under the same policy and policies could be changed without changing
existing conversations.

4 Conversation policy

Consider the conversation in Figure 1. It describes a session allowing agent A to
determine agent B’s identity, offer B a choice of services and ascertain B’s selection,
and perform a task based on the selection. Describing the conversation is generally
simple for such things: when a request or assertion comes in, the agent deliberates,
returns information to the initiator, and anticipates the continuation. The two
participants are responding to one another in turn, barring interruption, retransmission,
or communication failure. There is no representation of what happens when the
conversation is interrupted or when an agent retransmits a message. These issues are
matters of policy that must be dealt with separately.

KAoS conversation “policies” enable definite courses of action to be established
and fail-stop conditions to be dealt with (Bradshaw et al. 1997). They also imply
mechanisms for initiating and concluding conversations. Specifications play the
crucial role in agent communication of providing structure, but they do not, for
example, describe whether a discussion can be postponed, or, if so, under what
conditions or for how long. Indeed, KAoS conversation “policies” appear to concern
matters of conversation specijcution, fundamentally how to respond to input given the
current information state, rather than matters of conversation policy, such as what to

39

do when interrupted, whether the conversation can be postponed, or whether there is a
time constraint on reaching an end state.

Policy issues are important. One constraint imposed by the policy in Figure 1 is that
it requires turn-taking. If agent A receives several messages in a row, it may respond
to each in turn without realizing that, say, B’s third message was sent before A’s
second response. If agent A cannot detect the violation of the turn-taking policy, it
might consider the second and third messages in an outdated context. A similar
situation could occur if several agents were communicating and one were speaking out
of turn. Without policy, designing a mechanism to deal with these violations means
that a conversation specification that enforced turn-taking and one that merely allowed
it would be two different things that would need to be maintained separately and
activated separately by the agent. Furthermore, designing them into a system that had
no notion of turn-taking would require that every state/action pair of every
conversation specification be examined to see what should now happen if turn-taking
is violated. At worst, accommodating a single policy issue doubles the number of
conversation specifications an agent might be called upon to employ.

Examining constraints immediately leads to ideas for policies that replicate familiar
patterns of interaction, such as a forum policy or a central-point-of-contact policy.
Different classes of states, changes in context, and the particular protocol of
communication used are independent of the conversation policy, although some make
more sense in one policy or another. The web page and information-state context, for
example, make the most sense in a 1:1 turn-taking policy when dealing one-on-one
with a number of individual humans. KQML, in contrast, has many performatives that
support broadcasting to a group of agents involved in the same conversation. In
practical terms we may end up having to constrain which policies can be upheld based
on communication details.

An explicit representation of policy also enables an agent to express the policy
under which it is operating. It is easy to transmit, say, a policy message outlining the
level of security required for any of several possible upcoming conversations for
which the recipient already has the specifications. In contrast, without policy, the
“secure” version of each conversation specification needs to be transmitted anew. If
two agents agree on a policy at the beginning of a conversation, the amount of
communication required to determine a course of action once a violation has occurred
can be minimized.

The structure of the conversation depends thus on the nature of the information and
how this changes the state of the conversation. By abstracting to the policy level, we
enable a set of constraints to support the execution of several conversations, as long as
they have the same kinds of states and the same kinds of frunsirions, i.e., the nature of
information in a state does not matter as long as there is a common means of mapping
input and state to another state in the conversation. If the conversation can be
described as a collection of states with transitions between them, then the conversation
policy should be describable as a form of transition function operating on the current
perceived state of the world and the communications the agent is receiving.

This abstraction is powerful because the individual conversation policies can be
combined with specifications to create several classes of conversations, all similarly
constrained. The constraints the framework imposes are then the conversation policy;

and specializations of the conversation policy framework methods are
implementations of particular transition functions, which operate on particular classes
of conversations. These conversation policies would support transformations by our
mechanism, each of which defines a range of possible specializations within the high-
level constraints. Radically different behavior between two sets of conversations
would imply radically different frameworks, just as the difference between context-
free grammars and regular languages implies a greater difference in both the nature of
states and the transition function forms of finite automata and stack machines.

5 Example

Consider the specification in Figure 2. Agent A,, the announcer, broadcasts a message
to a group of agents A, ... A, and gathers responses from the group before continuing.
By itself, however, this specification leaves many questions unanswered-for
example, if some agent doesn’t respond at all, or responds more than once in a cycle,
what should agent A, do? These questions may be asked of many specifications, and
may have different answers even from one interaction to the next.

Conversation Policy
turn-taking

timeout-loses-turn
timeout after 1
interrupt postpones

Announce

Timeout or

Responses

Fig. 2. Policy and specification as seen by the announcer. The policy allows
conversations to be postponed, which the conversation specification need not
explicitly state.

The policy in Figure 2 provides answers to some questions of this sort. The policy
enforces turn-taking, meaning that agents in the group have only one opportunity to
respond to each broadcast. If they do not respond within one minute of each broadcast,
they lose the chance to do so during that turn. This might be the case if broadcasts
were frequent. If more pressing matters come up during a session, the discussion is
postponed (perhaps leaving messages in the announcer’s queue to be dealt with later),
but it can be expected that the session will resume at some future time.

How might we tailor policies to get usefully different behavior? For policies
concerned with fault-tolerance, the same policies could be used in many conversations

to handle the same expected problems, but policy can also be used to control
conversations during the course of normal interaction as well.

Suppose we combine the specification above with a policy that does not enforce
turn taking, but rather says that newer messages from an agent take precedence over
older messages. The announcer is forbidden from sharing message data among group
members, and the time allowed for responses to each broadcast is 24 hours.
Combining the policy and specification with a sales announcer produces a silent
auction. If the policy were replaced with one that had a time limit of a few minutes
and required the announcer to rebroadcast new information to the group, the same
specification could be used to produce an English auction. Using different policies
with the same specification as a foundation can produce a variety of desirable
behaviors with minimal changes to the agent’s code.

6 The Impact of a Policy Mechanism

In this section we discuss the relationship between conversation specifications,
policies, and an operational mechanism. We show how policy information can be used
to direct the action of an agent without reference to the conversation that agent is
having.

Consider a set of statejaction pairs with the property that when an agent perceives
the world to be in a given state and executes the corresponding action, the world state
that results is described by the “state” component of one of the pairs (I/O automata fall
conveniently close to this). States with no corresponding actions are end states. Such a
set embodies no notion of intent, but an agent can commit to achieving one of the end
states by executing the actions. The point of an action specification is to explicate a
series of acts that will result in one of a known set of states.

A conversation specification is such a set of state/action pairs; the specified states
are information states and the specified actions are speech acts. A conversation
specification explicates a series of speech acts and their triggering states that will
result in a one of a known set of information states. An end state may be a goal state,
i.e., a state whose achievement is the agent’s intent, or a state in which the desired
state is known or believed to be either no longer desirable or unachievable.

The conversation specification may specify states and actions that are never
realized; e.g., failure-denoting states or error-correcting actions. All actions and states
are only partially specified, in the sense that none specify the entire state of the world,
because the number of features that might be observed at execution time is infinite,
and only a few of these are perceived at specification design time as having any
material effect on movement towards the goal.

For example, a plan that includes forming a team might specify neither who is to
fill every role on the team, though a specific agent must be cast in each role, nor in
what order the roles are to be filled, because the specific order has no effect on the
goal state.

Neither the conversation specification nor the policy controls the thread of
conversation; the specification specifies the invariant part of the conversation’s course,
and policy specifies constraints on behavior, not the behavior itself. Control falls to

42

the mechanism that combines the specification object and the policy object to arrive at
an executable action at deliberation time. In the remainder of this section, we examine
team formation with respect to what is determined. by the conversation specification
and what is determined by policy.

Assume that an agent is in a state where will listen until it receives a message from
another agent. When a message arrives, the agent’s policy is to select and commit to
achieve one of the end states of a particular conversation specification; in other words,
the agent’s policy is to have a conversation when contacted. Leaving aside for the
moment the question of how the agent makes the selection, assume the agent receives
a message asking it to commit to achieving a goal and that it selects a conversation
specification wherein it will inform the requester that it has committed if it commits
and that it will not commit if it doesn’t. This could be a matter of policy; suppose
there were many agents available and this was known to the agent. The agent might
reason that the best policy would be to report only when it could commit and to keep
silent otherwise, in order not to use bandwidth.

Now what happens when an agent achieves a goal to which it has committed?
Should the agent report satisfaction to the requester, when there is one? If this were a
matter of policy, it could be turned on or off as overarching issues (security, priority,
traffic levels, etc.) dictated and overridden as needed by specific policy overrides from
the requester.

What should the agent do when it is asked to achieve a goal it believes it cannot
achieve by itself? It might be the agent’s policy to refuse to commit and to so report.
An alternative policy would be to attempt to acquire commitments from other agents
to assist. This would begin the team formation phase.

When the agent has acquired commitments from agents whose combined effort it
believes can achieve the goal, it builds the team roster of agents {A,, ... , An}, marks
the team formation goal satisfied, and ends the team formation phase (this ignores the
issue of whether everyone on the team must believe the team can achieve the goal in
order to commit). It might be the case that the agent must form the team within a
given time period; what the agent should do when it does not receive sufficient
commitments within the allotted time is a matter of policy. A reasonable policy would
be to report to the original requester that the goal is unsatisfiable. This can be enforced
at a high level, that is, whenever the agent has committed to achieving a goal, and the
source of that goal is another agent, the agent must notify the source agent as to the
achievement or non-achievement of that goal. The agent holding a team roster for a
given goal constructs a joint persistent goal (JPG) (Cohen and Levesque 1991),
allocates the subgoals (assume the goal is linearizeable so that allocation is
deterministic) and sends each subgoal and the JPG to the appropriate team member.
The JPG contains a statement of the original goal and the team roster. When an agent
Ai has achieved its subgoal, it multicasts this fact to the rest of the team using the
roster in the JPG. Here, policy to notify only the requester must be overridden by JPG-
specific policy. Every team member now believes Ai has achieved its subgoal. Once Ai
believes that every team member has achieved its subgoal, it believes that the JPG has
been satisfied and it multicasts this fact to the rest of the team. At this point, Ai
believes that every team member believes that the JPG has been satisfied and is free to
leave the team.

43

7 Conclusions

A conversation policy must be established so that the communicating agents (who
may have differing languages) have a common logical and contextual structure for
communicating. This allows each agent to establish predictive models of one
another’s behavior in response to information and to plan and reason about the
outcome of conversations with the other agent. Each agent can establish this model
based on information that another agent can perform a certain conversation
specification while conforming to certain requirements.

We advocate a separate conversation policy structure that embodies the constraints
that will be enforced while a conversation is going on-using a conversation
specification as a template or model. A participant in a conversation must have some
means of determining whether events that transpire during the conversation bear on
the realization of its goals. It is relatively straightforward to specify the normative
events in a conversation; the speaker intends to have engendered a specific state in the
listener, and the normative response types are limited. On the other hand, it is not
generally possible to specify all the exceptions. Even if we could, the necessary
responses depend on states of the environment, not states of the conversation. To take
the state of the environment into consideration, a policy must be able to constrain the
behavior of virtually any conversation specification to which it is applied.

8 Future Developments

It would be useful to define and prove certain formal properties of policies when
combined with specifications, for example,
1. Is the question of whether a conversation conforms to a given conversation policy

2. Does conversation X conform to some conversation policy, and if so, which one?
3 . What is the maximally confining policy to which a set of conversations

conforms?
4. Will the conversation generated from a specification terminate when following a

particular policy?
5. Under certain circumstances, a policy may render given specifications impossible.

What is the minimal set of constraints that can be established that will still allow a
set of conversations to take place?

6 . Given a policy that has the potential to render a conversation impossible, what
should an agent do?

Consider for a moment the agent as an I/O automaton (IOA) (Lynch and Tuttle,
1989). The IOA’s I/O table specifies the agent’s behavior. The IOA’s input column
describes agent’s information states. These states can be entered as an agent
internalizes information in messages it has received (i.e., as those messages have
perlocutionary effect). The agent then executes the specified internal and external
actions specified by the right-hand side of the automaton’s I/O table. This formalism
has some appeal because it makes a very clear distinction between actions under

decidable, and if so, how can this be tested?

44

control of the automaton and those under control of the environment and allows a
readable and precise description of concurrent systems.

Analyzing collections of speech acts in terms of YO automata would be possible if
it were not for the dependency of the proofs about the IOAs on their being input-
enabled. Agents that filter their stimuli before taking action or replying do not meet
this requirement, so the applicability of the IOA theory is questionable.

A formal theory that establishes conversation semantics, describes how the
semantics of individual speech acts contribute to conversation, and allows us to
demonstrate certain characteristics of combinations of specifications and policies may
or may not be useful. When discussing a system whose purpose is to deal with the
unexpected, it may be more reasonable to engineer a policy that provides some
reasonable capstone when an unanticipated problem arises. Engineering conversations
that meet certain requirements, dynamically generating policies and specifications
based on beliefs and intentions, and modifying conversations based on changing
constraints may allow productive agent behavior even in the absence of a complete
theoretical description.

9 In Context

Throughout these papers we see two common issues being addressed: by what means
can an agent intend to have, and then have, a conversation, and by what means can an
agent manage the process of having conversations in a dynamic environment? Two
recurring subproblems are declaring behavioral models for an agent’s own use and
transmitting these models to other agents; agents need to be able to express the
following in both internal and external settings: “This <conversation-spec> is
the conversation I want to have” and “This <conversation-policy> is the
policy I want to follow.” In this paper we have labeled these structures conversation
specijications and conversation policies, respectively.

A primary question roughly separates the papers in this volume into two categories:
Are issues of specification and policy to be addressed by a single structural form that
unifies specification and policy (Category l), or by two separate structural forms, one
for specification and one for policy, that are somehow composed during the conduct
of a conversation (Category 2)? We are in category 2, having explicitly proposed a
policy object to be communicated among conversing agents.

An essential question, approached by some authors, but not genuinely disposed of,
is: what, exactly, is gained by having two structures? Although efficiency, complexity,
and realizeablility have been used as motivators, we’d like to see a formal approach
that enables decisions of where a particular aspect of discourse should be represented
and, in particular, how such decisions are realized when policies and specifications are
composed during a conversation.

a

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a 45

a
a

10 Acknowledgements

This work was performed at Sandia National Laboratories, which is supported by the
U.S. Department of Energy under contract DE-AC0494AL85000.
Regina L. Hunter made numerous valuable comments on the manuscript.

References

1. Bradshaw, J.; Dutfield, S.; Benoit, P.; and Wooley, J. 1997. “KAoS: Toward an
Industrial-Strength Open Agent Architecture,” in Software Agents, AAAI
Press/MIT Press.

2. Cohen, P. R., and Levesque, H. J. 1991. Confirmation and Joint Action. In
Proceedings of the 12th Annual International Joint Conference on Artificial
1ntelligence.pp 95 1-959, Menlo Park, CA, Morgan Kaufmann

3. Dennett, D.C. 1987. The Intentional Stance. Cambridge, MA: MIT Press.
4. Goldsmith, S . ; Phillips, L.; and Spires, S . 1998. A multi-agent system for

coordinating international shipping. In Proceedings of the Workshop on Agent
Mediated Electronic Trading (AMET’98), in conjunction with Autonomous Agents
’98, Minneapolis/St. Paul, MN, USA

5. Labrou, Y. and Finin, T 1997. A Proposal for a new KQML Specification,
Technical Report, CS-97-03, Dept. of Computer Science and Electrical
Engineering, University of Maryland, Baltimore County

6. Lynch, N. A. and Tuttle, M. R. 1989. An Introduction to Input/Output Automata,
Technical Memo, MIT/LCS/TM-373, Laboratory for Computer Science,
Massachusetts Institute of Technology

7. Searle, J. 1969. Speech Acts, Cambridge, UK: Cambridge University Press.

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a

0

Agent Communications
Using Distributed Metaobjects

Steven Y. Goldsmith
Shannon V. Spires

Advanced Information Systems Laboratory
MS 0455

Sandia National Laboratories
Albuquerque, NM 871 85

sygolds@sandia.gov, svspire@sandia.gov
505-845-8926

Abstract
There are currently two proposed standards for agent communication languages, namely, KQML (Finin,
Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither
has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to
design a general-purpose agent communications facility for new agent architectures that accommodates
many agent communications languages. In this paper we exhibit the salient features of an agent
communications architecture based on distributed metaobjects. We are primarily concerned with the
pragmatics of agent communications using objects rather than agent communications languages per se. We
are particularly concerned with agent communications in the open Internet environment. Our architecture
captures design commitments at a metaobject level, leaving the base-level design and implementation up to
the agent developer. The scope of the metamodel is broad enough to accommodate many different
communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the
metaobject framework. We conclude that with a powerful distributed object substrate that supports
metaobject communications, a general framework can be developed that will effectively enable different
approaches to agent communications in the same agent system. Moreover, we explicate some seeming
peripheral issues to ACL (e.g. authentication, integrity, reasoning and memory) that are actually critical to
the concerns of agent communications and that certainly impact effective communications in an open
environment.

Keywords: agent communication language, multiagent system, metaclass, metaobject protocol,
distributed objects

47

mailto:sygolds@sandia.gov
mailto:svspire@sandia.gov

1 Introduction
Communication among autonomous asynchronous agents is an essential function in network-based
multiagent systems. There are currently two proposed standards for agent communication languages,
namely, KQML (Finin, Labrou, and Mayfield 1994) and the FIPA ACL. Until a standard emerges, an agent
designer must accommodate this uncertainty in agent designs. One approach is to exploit the considerable
syntactic commonalities between the two, but this can produce implementations with serious semantical
problems, at least from the perspective of the speech acts underlying both languages. Moreover, both
languages have inherent problems with semantics based on modalities that are not supported by the
components that interface closely with the language, primarily the agent’s deliberative mechanisms and its
implementation of ontologies in an agent’s long-term memory. Unless the agents implements a belief,
desire, intention (BDI) architecture (georgeff, et al). the semantics of objects communicated through
KQML or the FIPA ACL is limited to modal propositions and cannot be readily interpreted by another
deliberative architecture.

Our design philosophy is to develop a general object-centered framework that enables programming of
multiple protocols for communication and interaction alongside multiple approaches to deliberation and
action (of which BDI is an instance). Figure 1 shows the general architecture for agent communication,
discussed in detail in subsequent sections. The components are: (1) the send-object protocol that provides a
standard interface for remote communication of objects; (2) a message object protocol that interprets the
structure of the message object, enabling multiple communication protocols (e.g. KQML, ACL); (3) a
metamodel that manages the update of remote agent models and the local agent’s model; and (4) the model
of local agent and models of remote agents. The framework includes an infrastructure for agent modeling
because communication among two agents requires both a common message format and a shared ontology.
Since agents may be in different states, communications is mediated through the receiver’s model to ensure
common semantics. The agent’s self-model contains the deliberative mechanisms and knowledge bases that
are exclusive to itself. The self-model has control over the operations of the remote agent models

Restricted Protocol
Interface

Agent Models

a-334 ,*
/ 0

messages
-....) Send

0 -
+ Object

4 Protocol 4
h a-124

self
Distributed Object System

Figure 1. Distributed Object Agent Communications Architecture

through the metamodel. We assume that the agents communicate both the structure and the state of their
models to one another for the purpose of collaboration by trading objects. The entire architecture is based
on the object framework concept. The classes and methods comprising the architecture are designed to be
specialized with subclasses and methods that implement the agent designer’s favorite communication,
interaction, reasoning and representation mechanisms. Our objective is to provide both a research tool for
evaluating new regimes and a practical system capable of operating in heterogeneous environments such as
the Internet.

48

a

a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a

0

a

a

e

e

e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e

e

e

e

2 Distributed Objects
Our approach to the design and implementation of network agents relies heavily on a comprehensive
distributed object subsystem implemented in the Common LISP Object System (CLOS). Agent designs
involve compositions of objects and metaobjects, many of which are intrinsically capable of distribution in
a network environment. Communicating among agents that are described as compositional objects has a
natural interpretation; it is an instance of message passing among objects and as such has a well understood
syntax and semantics. A distributed object is an object that has a commonly-known identity and is
represented by some form of surrogate object in multiple address spaces around the network. Distributed
object surrogates are of three primary types: proxies, copies, and replicants. (There can also be a fourth,
hybrid type which combines features of the main three.)
Proxies are pure surrogates. A proxy object “stands in” for a real object that is located elsewhere. The
proxy accepts messages destined for its “real” object, delegates them to the real object for processing,
receives the result of the message, and passes the result along to the original message sender. Proxies are
very handy for projecting an object’s capabilities from its current location to other places on a network.
They are immune to update issues, since any change to a real object will be immediately reflected in the
responses of all of its proxies. Proxies are the primary object distribution mechanism of CORBA [ref
http://www.omg.org]. The downside of proxies, of course, is that every message sent to a proxy invokes a
network transaction.

Copies are just that; an object is copied and sent from one network location to another. Pure copies keep no
information about their “source” object (and vice-versa) so they cannot be updated if the source object
changes. But of course, if the data and functionality contained in the copy is needed frequently at another
location, this may be an acceptable price to pay to avoid the network overhead of a proxy.

Replicants are copies that keep track of their source (and/or vice-versa) such that they can be updated if
their source object changes. Replicants thus provide the best features of both proxies and copies:
information currency with low network overhead, as long as accesses are more frequent than updates and
we are willing to pay the price of more bookkeeping.

Hybrid objects can exhibit proxy, copy, or replicant behavior on a slot-by-slot basis. Hybrids are probably
the most useful form of object distribution in general because the distribution mechanism choice can be
made at a fine level of granularity.

In our discussion of copies and replicants above, we omitted one nasty detail: objects in a modern
inheritance-based dynamic 00 system [in which class and method meta data exist at runtime] never exist
alone. Objects themselves are but the tips of two massive icebergs: an inheritance graph and a containment
graph. In order to truly copy an object from Point A to Point B on a network, we must also copy its
inheritance graph-its class, and its class’s superclasses, and methods thereof-and we must also somehow
distribute any objects it references or contains. In an 00 system like C++ where classes are not first-class
objects, this can only be done if the requisite classes and methods already exist on the destination machine.
But in an 00 system like CLOS where classes and methods are first-class objects, we can treat the classes
and methods themselves as merely more objects to be copied and copy them on-demand, using the same
mechanism we use to copy pure instances. It is the classes and methods that we refer to with the term
metaobjects.

Distribution by proxy is popular in the distributed object community because it is immune to update
problems and it does not require that classes or methods be present at the target node; it is fundamentally
based on delegating messages to a remote “real” object. But as we’ve already noted, the performance
penalty for such delegation can be large and sometimes must be avoided. Therefore distribution by
transporting whole copies of objects is essential, especially when moving an agent on a network or sharing
ontologies among fixed agents. But copying objects also requires copying class lattices (distributing class
lattices by proxying them usually won’t work) and methods. And even if the objects we move are pure
copies (no updating expected), we must usually transport their class lattices and methods as replicants, not
pure copies, because if a class definition or method changes, the changes must be promulgated. This is why

49

http://www.omg.org

most distributed object systems either make no attempt to copy or replicate objects or do so in only a
limited fashion. Solving the replicant problem in general is quite dificult, especially in static 00
languages. It gets even worse: in CLOS, classes themselves are instances of metaclass objects. If any
transported class is an instance of a special metaclass, the metaclass must be transported also. Fortunately,
the replication problem is soluble in CLOS because of its extensive introspective capabilities and its
metaobject protocol.

The actual movement of a CLOS object takes place in two stages: serialization and materialization. To
serialize an object means to flatten it into a sequence of bytes that can be used to reconstruct the object at
another place. In CLOS, the essential information that must be serialized is the object’s class name and its
slot contents. Serializing an object is relatively straightforward, provided we are carehl to maintain
referential integrity among slot contents, and to recursively serialize any other objects that may be
referenced in its slots. Once a sequence of bytes is produced, it is transmitted over the network to the
receiver.

At the receiver, materialization begins. The receiver looks at the class name of the incoming object and
checks to see if that class is present locally. If not, it asks the sender to serialize and transmit the class
metaobject. (When the class metaobject is materialized at the receiver, the receiver will check to see that all
its superclasses and metaclasses are also present and may recursively request their transmission as well.) If
the class is already present at the receiver, the receiver may check its timestamp, hashcode, or some other
version-maintenance identifier to ensure that it has the latest version. If not, it may request that the sender
transmit the latest version of the class. Methods and generic functions are also transmitted or updated along
with the class metaobjects that specialize them. Finally, once the receiver is satisfied that the object’s
requisite infrastructure is present, it simply allocates space for an object of the appropriate class and fills in
its slots with the original serialized data.

The above is the standard “pull” mechanism for demanding an object’s infrastructure when the object is
pushed. Objects that are replicated, not merely copied, can also be updated on a “push” basis by the sender
when necessary.

Proxies are still very useful in many cases and can be implemented in CLOS much more dynamically than
in CORBA: no a priori knowledge of allowed messages is needed. Any message sent to a proxy that the
proxy does not immediately understand can be automatically delegated to the proxy’s “real” counterpart by
overriding the CLOS no-applicable-method mechanism. New messages can thus be created on-the-fly for
real objects and any proxies to those real objects can immediately take advantage of them.

We have demonstrated that there is no inherent barrier to providing copies, replicants, and proxies as
distribution mechanisms for objects and metaobjects. Nevertheless, the reader will have noted we have said
nothing yet about the security implications of such wide-open distribution. Even though our basic
mechanism is quite general, it is usually necessary to impose some limitations on its power because of
security considerations. The architecture discussed in subsequent sections addresses some security issues.

Our distributed object substrate provides a general purpose communications mechanism capable of
implementing many different agent communication systems, including KQML. However, most standard
distributed object systems are not powerful enough to implement the features needed to provide security,
shared knowledge/ontologies and agent modeling. [JAVA and CORBA discussion here].

3 Autonomy, Identity, and Integrity
Autonomy is a cornerstone in the modem specification of intelligent agents. Roughly speaking, autonomy
implies an agent acts without the direct intervention of humans or others, and have some king of control
over their actions and internal state (Castelfranchi 1995). Our operational definition of autonomy is:

1. An agent is a locus of unique, persistent identity
2. An agent is a unique locus of self-control
3. An agent is a unique locus of reasoning

e
a
a
a
a

a
a
a
a
a
a
a
e
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a

50

e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e

e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e

e

e

e
e

e

e

An autonomous agent will be self-determined with respect to its beliefs, goals and actions. It will be known
to other agents by a unique name that identifies it as an independent entity within the agent community. In
a multiagent collaborative system, agents rely on the autonomy of one another to make certain inferences
about the other agents. Casterfranchi (1995) identifies two distinct classes of autonomy: stimulus autonomy
and executive autonomy. A message from another agent qualifies as a stimulus to the receiver. An agent
may choose to respond to a stimulus or not to respond, depending on the current state of the agent’s
deliberations. Executive autonomy requires that an agent cannot be directly motivated with the goals of
another agent unless the agent decides that the goals are congruent with its own. Under no circumstances
should an agent attempt to satisfy a goal object obtained directly from another agent without first
evaluating and criticizing the goal within the context of its own knowledge state and goals.

Implementing stimulus autonomy and executive autonomy requires the design of a safe communications
protocol that maintains the integrity of the agent while allowing effective communication. We propose that
the functional property of agent integriv is a necessary element for agent autonomy. Integrity is an
operational concept that seeks to protect the agent’s internal structures from direct manipulation by another
agent, including human actors. An agent cannot be self-determined or self-controlled unless it is impossible
for others to directly influence its beliefs and actions unbeknownst to the agent. Distributed object
protocols can introduce vulnerabilities that undermine agent integrity. The Nefarious Neurosurgeon of
Dennett (1 984) introduces electrodes into the brain of the victim Jones and controls his every thought in an
undetectable manner. An agent that can dispatch an arbitrary method invocation on an object argument in
the address space of another agent is capable of direct intervention in the agent’s deliberations and actions.
Agents operating within a multiagent system that does not restrict the remote method invocation (RMI)
process cannot believe in a distinct locus of identity and control for one another, since control of an agent
by another nefarious agent is possible. Integrity mechanisms force RMI to implement a restricted protocol
that cannot address arbitrary objects and methods within an agent program. In its full exposition, this
problem is identical to security concerns identified for mobile agents (Chessman 1994, Vigna 1998). Since
our agents are composite objects with full support for object distribution, they can potentially send one
another any of their structural and procedural components, including the entire agent corpus of the sending
agent, to function as an endosymbiont within the receiving agent, for example’ . Unrestrcited trading of
metaobjects, i.e., classes and methods can pose a serious threat to the receiver agent. An agent must have a
restricted object trading protocol that implements a criticism policy to protect it against dangerous foreign
objects.

Agents operating in an open network environment are also vulnerable to impersonation through active
attacks on the communications links. The maintenance of agent integrity requires a cryptographic
authentication protocol among collaborating agents. Agents must have a high degree of trust in the
authenticity of the source of a message in order to ascribe attributes such as beliefs and state to the sending
agent. Models of other agents must be managed as distinct loci of reasoning and knowledge to detect
inconsistent states among agents and to effectively maintain reputation structures (Zacharia 1999) for other
agents .

4 Object Communication
A careful look at the life cycle of a single agent-to-agent message, i.e. the simplest an instance of agent
communication, reveals that messaging involves the most fundamental actions of an agent. Messaging is a
deliberate, motivated action, designed to achieve a specific goal. In the speech act interpretation of a
message, the agent desires to entrain a specific mental state in the receiver. Our model of agent
communications is more general, enabling agents to share both communicated objects and other elements
of their implementation such as ontologies and goals. Figure 2 represents the sequence of events leading to
transmission.

’ An endosymbiont is an agent with persistent identity operating within the address space occupied by another agent.

51

goal-formulation messageconstruction

motivation rnessage-formulation transmission

Figure 2. Events Leading to Transmission

motivation
The motivation for transmission is generally derived from some higher goal of the agent. Fundamentally,
the agent must inform another agent or obtain information from another agent, obviously in a social setting
with other known agents.

goal-formulation
The agent creates a goal object that encapsulates the details of the communication act. Satisfaction of the
goal is complete when the object closure is obtained with respect to the goals of the communicative act.
This involves spawining subgoals to receive a response, if any, and to evaluate the response in the context
of the goal.

message-formulation
The actual message is formulated with a sender, receiver, and content object. Depending on the
communication protocol employed (e.g. KQML), additional information may be added. The exact
formulation is compatible with the communication protocol employed by the receiver object.

message construction
A specific class of message object is constructed for transmission as copied distributed object. The copied
object will be transmitted directly to the receiver.

transmission
The message object is transmitted to the receiver.

The Send-Object method (Figure 1) implements transmission of a message object. Each agent is registered
in the network with a well-known proxy object. An agent holds the proxy to another agent in the agent
model (discussed below).

Send-object(agent-proxy, message-object)

The send-object method is invoked in the target agent’s environment through remote delegation via the
proxy. The invocation is restricted to a specific namespace in the target agent that contains the agent proxy
and proxy class, the send-object metaobject, the classes of possible message objects, and filtering functions
to evaluate the message and its content. The distributed object system checks the serialized message for
references to other namespaces and rejects the message it contains other references. Thus the send-object
protocol is a virtual chokepoint for messages, preventing direct invocation of methods on objects outside
the restricted namespace. We call this element the Restricted Protocol Interface.

Receiving an object from another agent is also a deliberate act on the part of the receiver. It requires the
necessary motivation and goal creation to create the context for evaluating the communicated object. In
general, an agent must associate the communicated beliefs with persistent goals to determine their salience
and to formulate the proper actions in response.

motivation
The motivation for reception is derived from a normative persistent goal provided by the framework that
creates within the agentthe desire to receive information from other agents.

52

e
e
a
e
e
e
e
a
e
e
e
0
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
a
e
e
e
e
e
e
e

L

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

Poal-formulation
The agent creates a goal object that determines which agents will be considered for interaction. The goal is
mutable, and agents may be removed from consideration for a variety of reasons, including security,
chronic poor performance on collaborative tasks, and prioritization under severe resource constraints.

messape-exDectation
Certain messages or classes of messages may be expected, perhaps in response to a previous transmission
in the context of a conversation. The framework enables a message object to directly invoke a specific
achievement goal in the self-model that has been deferred pending more information. An expectation
mechanism within the Message-Object element (Figure 1) can directly determine the context for message
processing through a reference to the context goal. This provides a mechanism for implementation
continuous conversations between agents.

messape deconstruction
Each message must be deconstructed according to its class. For example, a KQML message will be reduced
to its component fields and the salient objects extracted by the Object-Message protocol. The components
representing the percepts are then passed to the metamodel for processing.

receDtion
The new beliefs are presented to the self-model and updates the remote agent model.

elaboration
A deliberation mechanism within the receiving agent is activated to determine the ramifications of the new
beliefs with respect to the agent’s goals.

goal-formulation message-deconstruction elaboration

I 1
motivation message-expectation reception

Figure 3. Events Leading to Reception

The architecture provides the source of motivation for social interaction among agents. The framework
provides classes and and method metaobjects that enable the construction of sending and listening goals.

5 Agent Models
Agents have local beliefs about other agents and the world. In order to distinguish its local beliefs from
those of other agents, each agent has a distinct model of itself and distinct models of other agents. The
object constant self denotes the local agent and constants of the form a-I, a-2 , and a-100 denote the other
agents in the environment. Models of other agents allow the local agent to reason about the beliefs, goals,
and actions of others. The Agents Metamodel (Figure 1) manages the update of an agent’s models from
communicated information. The communications protocol passes message objects to the Agent Metamodel
(Fig 1) for elaboration and interpretation. The metamodel makes certain inferences about the beliefs of the
local agent and other agents based on communicated messages. First, the receiving agent must be able to
recognize the sender agent as the true source of a message. Each agent in the system has a unique,
persistent, and verifiable identity. Cryptographic authentication of each message by digital signature
enables the receiver to attribute the message to the identified sender with certainty. Although the exact
operation of the metamodel depends on the particular representation of belief, the following logical model
based on deductive belief (Konolige 1984) illustrates the point. The predicate message(y,x,z) denotes a
message with content object x sent from agent y signed with digital signature z. The metamodel computes
the signature using the digital signature function, reified as a trinary relation dsa(x,y,v), where x is the
message, y is the agent id (used to obtain the public key) and z is the computed digital signature. Note that

53

this digital signature scheme is distinct from the authentication protocols used at the transport level. Agents
require a different signature scheme to authenticate their identity to one another at the knowledge level.
Certain collaborative activities may require more specialized signature schemes still. Protocols for
encryption and authentication at the link level may be constrained by the network and transport layer
underlying the communications system.

Validation of the digital signature sanctions the belief by the local agent in the belief of the sender via the
schema:

message(a-123, x, z) ((dsa(x,a-I23,v) eq(z,v) K: Bel(serf, Bel(a-123. x))

Bel(serf, Bel(a-123, x)) is asserted in the local (self) model ofthe agent, while the argument BeI(a-123, x) is
asserted in the model of agent a-123. Alternatively, an invalid message is not believed by the local agent2 :

message(a-123, x, z) ((dsa(x,a-I23,v) ((’eq(z,v) E -tBel(serf, Bel(a-123, x))

The conclusion Bel(c, x), where c is an arbitrary constant, is asserted in the model corresponding to the
“unknown agent”. This captures the notion “somebody believes x”.

Control of an agent’s models of other agents is mediated through the metamodel. The local agent may wish
to check an agent’s model for consistent beliefs. The metamodel provides a uniform protocol to the local
agent for performing queries, proving assertions, and importing hypothetical beliefs from a model into its
self-model.

Each model of a remote agent comprises a distinct namespace, a set of metaobjects (classes and methods)
that implement the interface to the metamodel, and a separate thread to control execution of methods. At
the framework level, instances and metaobjects transmitted by the actual remote agent are represented as
simple beliefs of the form Bel(& x), where a is the agent name and x is any object or metaobject. This
captures the primitive notion that an agent believes in the existence of the referenced object or metaobject.
Included are complex compositions of objects implementing part-whole relationships. Compositions are
handled naturally by the underlying distributed object system by coercing the message content object and
all its components into copied objects during materialization.
The framework is easily specialized for a particular representation. Candidates include categorical
taxonomies such as description logics (e.g. CLASSIC, LOOM, KL-ONE), KIF (Finin, Labrou, and
Mayfield 1994), first-order logic and theorem provers, deductive data bases, BDI architectures, and so on.
Custom representations rendered in the object language are also possible. These different representations
may be active simultaneously in different agent models provided the necessary interface protocol to the
metamodel exists.

Direct communication of metaobjects between agents enables agents to share their models of one another
and the environment. An agent decides which elements of its representation and in what representational
scheme will be used by other agents to model its reasoning and behavior. Through an interaction protocol,
agents can negotiate detailed descriptions of their shared models, enabling cooperation on joint tasks. The
framework supports this in two ways. First, every model is ultimately rendered in CLOS through
metaobjects and instances, providing a common programming language with which the agents remotely but
safely program their corresponding models residing in other agents. This in effect creates an endosymbiont
within the local agent representing a special projection of the remote agent without degrading the integrity
of the local agent. Secondly, a model of another agent is a dynamic process under the control of the local
agent. The local agent can use the model to predict the behavior of a remote agent, to the extent that model
allows. This enables a powerful simulation mechanism within an agent that facilitates cooperative actions.

The metamodel will attempt to validate the message for all agents in its knowledge base. If this fails. the message is
invalid. If it succeeds, the valid agent id is substituted in the message.

54

a
a
a
a
e
a
a
a
a
a
a
a
a
a
e
e
a
a
a
a
a
a
a
e
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

6 Conclusions
We have discussed several pragmatic issues associated with agent communications in an open network
environment. We have described a general architecture that ensures agent integrity, supports agent
modeling, and enables multiple representations and communications protocols to coexist in the same agent.

References
Castelfranchi,C. 1994. Guarantees for autonomy in cognitive agent architectures. In Intelligent Agents
ECAI-91 Workshop on Agent Theories, Architectures and Languages. Springer-Verlag.
Dennett, D. 1984. Elbow Room. MIT Press. Cambridge MA.

Finin, T., Labrou, Y., and Mayfield, J. 1994. KQML as an agent communication language. Computer
Science Department, University of Maryland Baltimore County.

Goldsmith, S., Phillips, L. and Spires S. 1998.

Konolige, K. G. 1984. A deduction model of belief and its logics. Technical Note 326. Menlo Park, CA:
SRI International, Artificial Intelligence Center.

Labrou, Y., Finin, T. and Peng, Y. 1999. Agent communication languages: The current landscape. In IEEE
Intelligent Systems and their applications. March/April 1999. IEEE Computer Society.

Phillips, L.R., Goldsmith, S. Y., and Spires, S.V. 1999. CHI: A general agent communication framework,”
Proc. of the Hawai’i International Conference on System Sciences.

Vigna, G., ed.1998. Mobile Agents and Security. In Lecture Notes in Computer Science, vol. 1419.
Springer-Verlag.

Zacharia, G. 1999. Trust management through reputation mechanisms. In Proceedings of the Workshop on
Deception, Fraud, and Trust in Agent Societies. Autonomous Agents 99, Seattle Wa.

a
a
a
a
a
a
a
a
a
a
a
a *
a
a
a
a
a
a
a

a
a

a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a 55

a
a

This page intentionally left blank.

56

Appendix 111. Code and Programs

1. Code file of the ontology of “documented-transportings” in Common Lisp Object System
(CLOS) form

2. Code file showing a “DocumentedTransportings” act in LARKS format

3. Code file of frame specification for exporting goods to Mexico with Ontology information in
LARKS format

4. LARKS language support functions for generating ontologies, etc.

5. Code enabling an SAA agent to interact with the CMU Agent Name Server (ANS)

6. Code enabling an SAA agent to interact with the CMU Matchmaker

7. Code enabling an SAA agent to process and transmit KQML

57

This page intentionally left blank.

58

a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
a
a

; ; Code file of the ontology of "documented-transportings" in Cmmn Lisp Object
; ; System (O S) fom used by the Standard Agent Architecture (SAA) agents

;The service to be advertised is:

; (our agent) will (generate) and (execute) all (necessary documents) for the
; (transport) of (goods) between the (US) and (Mexico)
(defpackage : ONTOLOGY
(:use :ut-lrp :a : a - U S E R :ELo!3 :AISL :chi)
(: nicknames : ONT)

1

(in-package :ONT)

(#+Allegro excl : without-package-locks # + K L progn
(defmethcd slot-unbound :around ((me # + K L ccl : :class #+Allegro class)

"Override default slot-unbound behavior. Return nil if slot unbound.
(declare (ignore instance slot-name))
(if *su-override*

instance? slot-name)

nil
(call-next-mew)
1

1)

(defun class-instance-slot-names (class)
(mapcar #'ccl::slot-definition-name (#+Kt, cc1::class-instance-slots

#+Allegro ais1::class-instance-slots class)))

(defmethd instance-slot-names ((m e standard-object))
"Returns list of names of instance slots of object. II

(class-instance-slot-names (class-of m e)))

. . . .
, 1 1 1

(def class larks -frame ()
((context : initarg :context :accessor context : initfonn nil)
(types : initarg :types :accessor types : initfonn nil)
(input : initarg : input :accessor input : initfonn n i l)
(output : initarg :output :accessor output : initfonn nil)
(inconstraints : initaq : inconstraints :accessor inconstraints : initform nil)
(outconstraints :initary :outconstraints :accessor outconstraints :initform nil)
(condescriptions :initarg :condescriptions :accessor condescriptions :initform n i l)
1

1

(defmethcd completed-p ((the-frame larks-frame))
(funcall (outconstraints the-frame) the-frame)
1

(defmethod actionable-p ((the-frame larks-frame))
(funcall (inconstraints the-frame) the-frame)
1

59

(defclass transportable-things ()
((object-id :initarg :object-id

:accessor object-id
:type 'OE?JECT-ID
: initform nil)

(custmr-id :initarg :custamer-id
: acc&sor custamer- id
: initform nil)

(transport-id :initarg :transport-id
:accessor transport-id
:initform n i l)

(nl-description :initarg :nl-description
:accessor nl-description
: initfonn nil)

(weight :init- :weight :accessor weight :initform 5000)
(height :init- :height :accessor height :initform 3.0)
(width : initarg :width :accessor width : initfonn 3.0)
(depth : initary :depth : accessor depth : initfonn 3.0)
1

1

(def class documented-transportings (larks - frame)
((goods :initarg :goods

:accessor goods
: initfonn nil)

(the-dmuments : initarg : the-docunents
: accessor the-documents
: initfonn nil)

(start-location :initarg :start-location
:accessor start-location
: initfonn nil)

(desired-end-location :initarg :desired-end-location
:accessor desired-end-location
:initform nil)

1
1

(dehethd in ((the-location t) (the-country t)) t)

(defparameter *US* "Stand-in for an object that represents the United States")

(defprameter *Mexico* "Stand-in for an object that represents the United States")

(olp: : d e m e r ((prototype documented-transportings &key 1
(setf (context prototype) :ccPnnercial-transprt)
(setf (input prototype) (list (goods prototype)

(start-location prototype)
(desired-end-location prototype)))

(setf (output prototype)
(list (01p::make-object 'bill-of-lading t :shipat prototm)

1
(o1p::make-object 'brder-crossing-permit t))

60

e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

i)
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

(setf (inconstraints prototype)
' (lamWa (item)

(and (or (and (i n (start-location item) *Mexico*)
(i n (desired-end-location item) *US*)
1

(and (in (desired-end-location item) *Mexico*)
(i n (start-location item) *US*)
1

1
(< (length (goods item)) 500)
(<= (apply # 'max (mapcar # 'weight (gads item)))

(< (apply #'max (m a p c a r #'depth (goods item))) 4)
(< (apply # 'max (mapcar # ' w i d t h (goods item))) 4)
(< (apply #'m (maw #'height (goods item))) 4)
(eval (cons 'and

10000)

(mapcar # ' (1- (doc)
(not (signed-p d o c))
1

(the-documents item))
1

1
1

1
1

' (lamWa (item)

1

(setf (outconstraints prototype)

(and (mapcar #'signed-p (the-documents item))))

1

(def class documents ()
((signature : initarg :signature

: accessor signature
: initform n i l)

1
1

(defmethd signed-p ((the-document documents))
(signature the-document)
1

I ,
..

; ; "shipment" w i l l conta in an ins tance of "documented-transprtings"
; ; This is the po in te r fran the documentation to what it documents

(defclass shipment-documents (documents)
I ,
. .

((shipent :initary :shipnent
: accessor shiprent
: initform n i l)

1
1

61

(defclass bill-of-lading (shipnent-documents)
((goods-listing :initarg :goods-listing

:accessor goods-listing
: initfom nil)

1
1

(olp::deMer2 ((prototype bill-of-lading) &key)
(loop for unit in (goods (shipnent prototype))

do
(Push
(format nil

(goods-listing prototype)
1

'I [Description] -a [weight in kg] -a" (nl-description unit) (weight unit))

1
1

(defclass border-crossing-permit (documents)
0
1

(defclass LARKS-INTERFACES (interfaces)
0
1

(defparmter "larks-interface* (make-instance 'LARKS-IN"ACES))

(dehethd chi: :view-as-interface ((myself lark-frame)
(interface interfaces)
stream &key &allow-other-keys)

(format stream "-a-% = (and -{ -% (all has--a) -} -%) "
(class-name (class-of myself))
(n a p c a r #'car (cc1::class-instance-slots (class-of myself)))

1
1

I Ekecution test and expected results

(defparameter *some-goods*
(list (01p::make-object

' transportable-things t
:object-id (format nil "OID-a" (randcm 10000))
: custmer- id "Hewlett-Packard"
: transport-id (format nil "CUSTOKS-MARK--a--a"

(randcm 1000)
(randcm 100000))

: nl-description "16 4-gross cases single-use surgical gloves palletized"
:weight 186
:height 1.86
:width 1.45
:depth 2.16

62

0
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a

)

' transportable -things t
:object-id (format nil "OID-a" (random 10000))
: customer - id "Hewlett - Packard
:transport-id (format nil "CUSTOMS-MARK--a--a"

(01p::make-object

(random 1000)
(random 100000))

: nl-description "21 cartons outer shell electronic amplifier palletized"
:weight 131
:height 2.45
:width 2.45
:depth 2.45
)

1

(olp: :make-object
' documented-transprtinqs t
:goods *some-goods*
:start-location '(:latitude 95.34.123 :longitude 123.78.342)
:desired-end-location '(:latitude 51.32.239 :longitude 111.03.893)
)

(defparameter *the-doc*
(01p::make-object 'documented-transpoortings t

:goods *some-goods*
:start-location '(:latitude 95.34.123 :longitude 123.78.342)
:desired-end-location '(:latitude 51.32.239 :longitude 111.03.893)

I

m-m

? (outconstraints *the-doc*)
#~onqmous Function %x6BAC306>

? (funcall (outconstraints *the-doc*) *the-doc*)
NIL

? (inconstraints *the-dm*)
#Ifinonynous Function #x69C5DAE2

? (completed-p *the-doc*)
NIL

? (actionable-p *the-doc*)
T

I #

63

; ; Code f i l e showing a "DocumentedTransprting" act i n LARKS f o m t

DocumentTransprtableGoods

Context _ _ _ _ _ _ _ _ - _

DocumentedTransprting * DocumentedTransprtings
- - _ _ _ _ _ _ _ _ Tvpes

; ; u1 tlrpes are def ined as components of WCUMENTED-TRANSPORTINGS

- - - - - -____ Input

DocumentedTransprting

- - - - - -____ output

Documents

- - _ _ _ _ _ _ _ _ InConstraints

; ; YOU ' Lzi NEED TO TRANSIATE THE CONSTRAINTS INIO LARKS
; ; NB : contents of the "goods" slot are TRANSPORTABLE-THINGS
; Let ' s pretend the "in" predicate exists
; note "item" is the arg to the Lambda funct ion

(and (or (and (in (start-location item) *Mexico*)
(in (desired-end-location item) *US*)
1

(and (in (desired-end-location item) *Mexico*)
(in (start-location item) *US*)

1
(< (length (goods item)) 500)
(<= (apply # 'mx (mapcar # 'weight (goods item)))

(< (apply #'max (mapcar #'depth (goods item))) 4)
(< (apply # ' m x (maw #'width (goods item))) 4)
(< (apply # ' m x (mapcar #'height (goods item))) 4)
(em1 (cons 'and

10000)

(m a p c a r # ' (l e (doc)
(not (signed-p doc))

(the-documents item))

)

- - _ _ _ _ _ _ _ - OutConstraints

(and (mapcar #'signed-p (the-documents item)))

64

a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a

e

0

DCCUMENTED-TRANsPoRTINGs
= (and (all h a s - g d (list-of TRANSPORTABLE-THINGS))

(all has-the-d~uments (list-of ECUMENTS))
(all has -s tar t - location LKATION)
(all has-desired-end-location LCCATION)
1

TRANsPoRTmm-THINGS
= (and (all has-object-id I D E t T F I E R)

(all has-custaner-id IDENTIFIER)
(all has-transprt-id IDENTIFIER)
(all nl-desctiption TEXT)
(weight REAL)
(height REAL)
(width FE%)
(depth -1
1

DCCUMENTS
= (and (all has-shiprent (list-of IDENTIFIER))

(all has-signatures (list-of SIGNATURE))
1

LOCATION
= (and (all has-latitude REAL)

(all has-longitude REAL)
1

SIGNATURE [this is a primitive]

IDENTIFIER [this is a primitive]

TEXT [this is a primitive]

REAL [this is a primitive]

a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a 65

a
a

e

; ; W e file of frame specification for expr t ing gcds to Mexico with ontology
; ; information in IARKS format

.

..
I ,
..
; ; mane specification for lARKs
..
I , ..
l , l l l l , , , , ~ l ~ ~ , , , , , , , , , ~ , , , , , , , , , l , / l l l , , l l l l / , , l f l ~ l f l f ~ ~ f

ExportUsGooasToMexico

context shipFer*shipFer

mt
originator :
country-of-origin:
invoice-number:
lading-infomtion:
shiprent-initiator:
shiprent-init-date:
consignee:
arrival-time-window:
arrival-time:
arrival-date :
departure-time-window:
departure-tine:
departure-date:
ship-fm:
ship-to:

output
US -carrier :
bkx-carrier:
drayage-carrier:
exit -broker :
ent ry-broker :
scheduled-departure-time:
scheduled-departure-date:
predicted-mival-time:
predicted-arrival-date:
fee:

USFh*Firm;
comtry*country;
integer;
ListOf(piece-description*piece-description)
USFh*Firm;
date*date;
M&?irm*Fh;
duration*duration;
timerime;
date*date;
duration*duration;
time-ime;
date*date ;
USLocation*loCation;
MexT-mation*lccation;

USTransportProvider*~ansportPravider
"ransprtProvider*TransportProvider
DrayageFmvider*DrayageProvider
USEXitEzoker*broker
M&3ntryBroker*broker
timerime
date*date
timerime
date*date
Price*prices

Inconstraints

outconstraints

le(departure-time,+(scheduled-departure-time,departure-tine-window),)
le(scheduled-departure-timel+(departure-tine,departure-time-window))
le(arrival-time,+(predicted-mival-time,arrival-time-window))
le(predicted-arrival-tine,+(arrival-time,arrival-time-window))

66

..
I ,
. .

; ; 0ntolq-y for llwcs

USFirm

bmkex

USExitBroker

USEntryBroker

MedZxitBroker

MexEntryBmker

location (and (all has-address physical-addresses))

USLocation (and location
(all has-address (all country-of aset(US)))
1

MexIaxtion (and location
(a l l has-address (all country-of aset(P&xico)))
1

TransportProvider

USTranspxtProvider

MexTransportProvider

Drayageprovider

a
a
a
a
a
a
a
a
a
a
a
a
a

e
a

a

0

e
0
a
a
a
a
a
a

a
e
a
a
e
a

a
a
a
a
a

a
a
a
a 67

a
a

I ,
. .
; ; LARKS language support functions for generating ontologies, etc.
. .
I ,

(def class LARKS - INTERFACES (chi : : interfaces)
0
(:documentation "The dispatching class for all VIEW-AS-INTEXFACE methcds. ' I))

(defparameter "LARKS-interface* (make-instance 'LARKS-INTERFACES))

(defun convert-slotname-to-LARKS-name (s lotnm)
(convert-thing-to-L-name (first (t h i r d slotname)))
1

(defun convert-thing-to-1.9-name (thing)
(apply #'concatenate

'string
(mpcar # ' string-capitalize

(cl-user::listify-string (chi::prettify (string thing)))
1

1
1

(defun CREATE-LARKS-ONTOL-FILE (classname &optional
(the-pathname nil)
&key (overwrite-existing? t))

(when (not the-pathname)
(setf the-pathname

(de-pathname :directory (pathname-directory (choose-directory-dialog))
: mure "Larks -ontology"
:type "txt '1)

1
1

(with-open-file (the-filestream the-pathname :direction :output
:if-does-not-exist :create
:if-exists (if overwrite-existing?

: supessede
: append)

1
(view-as-interface classname *LARKS-interface* the-filestream)
1

1

(defmethd view-as-interface ((myself t) (interface LARKS-INTERFACES)
stream &key &allow-other-keys)

(declare (ignore myself interface stream)

1
1

(defmethd view-as-interface ((myself string) (interface LARKS-INTERFACES)
stream &key &allow-other-keys)

(view-as-interface (find-class myself) interface stream)
1

68

(defmew view-as-interface ((myself symbol) (interface LARKS-INTEWACES)
stream &key &allow-other-keys)

(view-as-interface (find-class myself) interface stream)
1

(defmethod view-as-interface ((myself standard-class)
(interface LARKS-INTERFACES)
Stream
&key (visited-hash-table (make-hash-table))
&allow-other-keys)

(let ((method-namelist nil)
(method-arglist nil)
(method-name nil)
(the-methd nil)
(its-a-class-p nil)
(classes-yet-to-be-visited nil)
1

(loop for method in (remove-if # ' (1- (item)
(or (typep item

(typep item
'standard-reader-mew)
'standard-writer-method)))

(inspect0r::specializer-direct-methcds myself)
1

when (not (member (ccl: :method-name mthcd) method-namelist :key #'first))
do
(push (cons (ccl: :method-name methcd) method) method-namelist)
1

(and ((gethash myself visited-hash-table)
nil)
(t (setf (gethash myself visited-hash-table) t)

(let* ((superclasses (class-direct-superclasses myself))
(classname (class-name myself))
(indent (+ (length (string classname)) (length I' = (and ")))

1
(when (not (listp superclasses)) (setf superclasses

(fomt stream "-a = (and I' classname)
(list superclasses)))

for superclass in superclasses
cb
(fomt stream '1-a-8" (class-name superclass))
(dotimes (i indent) (fomt stream I' I'))
1
for slot in (class-direct-instance-slots myself)
cb
(when (q u a l . 'quote (fourth slot))
(setf its-a-class-p

(find-class (intesn (string-upcase (symbol-name
(fifth slot)))

:chi))
1

1
(when its -a-class-p (pushnew its-a-class-p

classes-yet-to-be-visited))

69

(format stream
''(all has--a+[TYPE: -a-I)-%"
(convert-slotname-to-LARKS-name slot)
(class-name its-a-class-p))

(dotimes (i indent) (format stream ''))
1
for method-name-pair in (reverse method-namelist)
cb
(setf method-name (first method-name-pair))
(setf the-mthod (rest method-name-pair))
(setf method-arglist (cc1::arglist the-method))
(format stream "(Provides -a-@[inputs:-{ -a-}-])-%" ; ** -a-8''

method-name
(reverse
(set-difference
methd-arglist
(list '&METHOD 'NEXT-METHOD-CONTEXT

:key # 'symbol-name
:test # ' string-equal
1

'&REST 'the-rest '&key '&allow-other-keys)

1
;methd-arglist
1

(dotimes (i indent) (fomt stream '' "))

1
(format
(mapcar

stream ' 1) - % - % ")

(lambda (item) (view-as-interface
item interface stream
:visited-hash-table visited-hash-table))

superclasses
1

1
1

1
(lap for one-class in classes-yet-to-be-visited

do
(view-as-interface one-class interface stream

1
:visited-hash-table visited-hash-table)

1
1

(defmethd ccl: : class-name ((myself symbol))
myself
1

$ 1
(mapar #'(lambda (item) (view-as-interface item *larks-interface* t))

(class-direct-instance-slots (find-class 'btfs::us-manufacturer))

70

n

a, k

E

tl Ll

,.

.ri
k

 s
e
a
,

a
,?

a

ic
i

-0
 h

a

O
a

,
d

u

m
rd

..

1.
..

I
.

 .. ~
.

71

a
 k

$

..

h

0

h

h

h

c 5

......

......
c,
k

c
, a

r
l

rd -
4
 c -4

C

lrdord
m

3
a

w

........
v

v
v

w

v

[I)

5
h,
c

w
 Id
a
 ..

v

v

72

* a,

.d

c,

73

h

h

.... *. c, a 0

..

b
a

0

cl
-a

E

 a
-

v
 h

d
 tn

3

0

-c +J

h

h

4J a
a,
u k

a,
a
k

a,
3

h

h

8 -5 m

a,

C tn
0

k a
v

p

......
v

E

H
Z

v

-
h

e
74

m 0
r
l

(d

u
 ..

b

0

h

4J m u a,

h" 0
a,
m c 0
a

m
-

b
i

d
h

i

a
,

k
3

a,
5

ci
k

3 5

rdc
5

a
J

......
3
$
g

k

a,

L

..
.A

s
m

k

m
a

I
.A

..
a
 a,-

v

......
......

.d

..........
v

.

.........
a

..
v

a

..
v

....
v
 75

....
v

.
.
v

v

v

a,

,
 ,

......

~
...
..

V
 76

C
I

c
-d

x
.d

E

 I

h

II)
m

h

8 2.4 d
X

k
 ..

"
m

 v
i

O

r
l

a

-

c

"
a

a,
5

a 0

m 2 d
 a,

ci
w

 0
ci
m

a,
k

d

a,
H

.. ..

h

n
n

h

h

a
-

m
4J

.I-
a,

'. ri
..

v

..
3

.. ..
..

v
 77

h

h

h

h

X

a
c

ac,
k

5

0
0

?
U

"._ ..
..

.
.
v

..

h

.. -

,-.
to a,
u (d
a

to

g
q

"V

..
..

v

78

c,
a

a,
U

k

a, a

0

c
-d

V

79

This page intentionally left blank.

80

Appendix IV. Reprint of CMU reference that defines LARKS

81

a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

e

e
0
e
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a

a
a

a

e

e

This page intentionally left blank.

82

Interoperability among Heterogeneous
Software Agents on the Internet

Katia Sycara, Jianguo Lu, and Matthias Klusch

CWIU-RI-TR-98-22

The Robotics Institutle
Carnegie Mellon University

Pittsburgh, USA.

October 1998

@ Carnegie Mellon University 1998

This research has been sponsored in part by Office of
Naval Research grant N-00014-96-16-1-1222.

83

Contents
1 Introduction 4

2 Matchmaking Among Heterogeneous Agents 5
2.1 Desiderata for an Agent Capabilit,y Description Language 6

3 The Agent Capability Description Language LARKS 7

3.2 Examples of Specifications in LARKS 9

3.3.1 Example for a Donlain Ontology in the Concept Language
ITL . 11

3.3.2 Subsumption Relationships ilmong Concepts 12

4 The Matchmaking Process Using LARKS 13

3.1 Specification in LARKS . 7

3.3 Using Domain Knowledge in LARKS 10

4.1 The Filtering Stages of the Matchmaking Process 14
4.1.1

4.1.2
4.1.3
4.1.4

4.1.5

Different Types of Matching in LARKS 15
4.1.1.1 Exact Match . 16
4.1.1.2 Plug-In Match 16
4.1.1.3 Relaxed Match 16

Context Matching . 19
Syntactical Matching . 20
4.1.4.1 Comparison of Profiles 20
4.1.4.2 Similarity Matching 21
4.1.4.3 Signature Matching 21
Semantical Matching . 23

4.1.5.2 B-Subsumption between Constraints 24

Computation of Semantic Distances .Among: Concepts . . 17

4 . 1 5 1 Plug-in Semantical Matching in LARKS 24

5 Examples of Matchmaking using LARKS 25

6 Related works 27
6.1 Works related with capability description 28
6.2 Works related with service retrieval 29

7 Conclusion 30

A Syntax of LARKS 31

B The concept language ITL 32

a

a

a
a

a

a
a
a
a

a
a

a
a

e
a
a
a
a
a
a
a

e
a
a

a
a
a

a

*

0
a

a

a

a

a

a
a
a
a
e
a

84

List of Figures
1 Service Brokering vs. Matchmaking. 6
2 Matchmaking using LARKS: .4n Overview 13
3 Plug-In Match of Specificat,ions: T plugs into S. 24
4 -411 Example of Matchmaking using LARKS 27

85

1 Introduction
Due to the esponent,ial increase of offered services in the most famous offspring
of the Internet, t,he JVorld Wide Web, searching and selecting relevant services is
essential for users. Various search engines and software agents providing various
different services are a.lrea.dy deployed on the. Web. However, novice users of
the Web may have no idea where to dar t their search, where to find what they
really want, and what agenbs are available for doing their job. Even experienced
users may not be aware of every change in the Web, e.g., relevant web pages
might, not exist or their content, be valid anymore, and agents may appear and
disappear over time. The user is simply overtased by mmually searching in t,he
Web for information or appropriate agents.

On the other hand, a.s the number and sophistication of agents on the Web
that may have been developed by different designers increa.ses, there is an obvi-
ous need for a sta.ndardized, meaningful communication among agent,s to enable
them to perform collaborative t,ask esecution. We distinguish two general agent
categories, service providers a.nd service requester agent,s. Service providers
provide some t.ype of service, such as finding information, or performing some
particular domain specific problem solving (e.g. number sorting). Requester
agents need provider agent,s to perform some. service for them. Since the In-
ternet is an open environment, where information sources, communication links
and agents themselves may appear aad disappear unpredictably, t.here is a need
for some means to help requester agents find providers. .4gentes that. help locate
others a.re called middle uyents.

We have identified different, types of nliddle agents in the Internet, such
a3 ma.t.chmakers (yellow page services), brokers, billboards, etc. [3], and es-
perimentally evaluated different protocols for interoperation between providers,
requesters and various types of middle agents. Figure 1 shows the protocol for
two different types of middle agents: brokers and matdlmakers. &‘e have also
developed prot,ocols for distributed ma.tchma.king [12]. The process of finding
an appropriate provider through a middle agent is called ,m.utchm.ubing. It has
the following general form:

0 Provider a.gents advert,ise their capabilities such as know-how, expertise,
and so on, to nliddle agents.

0 Middle agents store these advert,isements.

0 -4 requester asks some middle agent whether it. knows of providers with
desired capabilities.

0 The middle agent ma.t.ches the request against t,he stored advertisements
a.nd ret,urns t,he result,.

While t,his process a t first glance seems very simple. it, is complicated by the
fact t,hat providers and requesters are usually het,erogeneous and incapable in
general of underst,anding ea.ch o th r . Th i s clifficult,y gives rise to t,he need for a

86

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

common 1arlgua.ge for describing t,he capabilit,ies and requests of softwa.re agents
in a convenient way. In addition, one has to devise a meclmnism for mat,ching
descriptions in t,hat. language. This mechanism can t,hen be used by middle
a,gents t,o efficiently select, relevmt a.gent,s for some given tasks.

In the following, we first ela.b.orat,e the desidera.ta of an agent capabilit,y
description 1angua.ge (ACDL), and propose such an ACDL, called LARKS, in
detail. Then we will discuss the matchmaking process using LARKS and give a
complete working scenario with sonle esalnples. We have inqdemented LARKS
and the associated powerful ma.t,chmaking process, a.nd are currently incorpo-
rat,ing it wit,hin our RETSINA mu1t.i-agent infrastructure fra.mework [22]. The
paper concludes with coinparing ow la,ngua.ge a.nd t*he matclmaking process
wit,h related works.

2 Matchmaking Among Heterogeneous Agents
111 the process of ma.t~chmal;ing (see Fig. 1) are three different. kinds of collabo-
rating agents involved:

1. Provider agents provide their mpabilities, e.g.. informat.ion search ser-
vices, retail electronic commerce for special products, et,c., to their users
and other agents.

2. Requester agent,s consume informat,ions and services offered by provider
a.gent,s in the system. Requests for any provider a.gent capabilities have to
be sent to a ma.tchmaker agent.

3. Matchmaker agents mediat,e among bot,h, requesters and providers, for
some mut,ually beneficial cooperation. Each provider must first register
himself with a matchma.l;er. Provider a.gent,s advertise their capabilities
(a.dvertisements) by sending some appropriate messages describing the
kind of service the; offer.

Every request a ma.t.chma,ker receives will be nla.tched with his act.ual set
of advertisement,s. If the nmtch is successful t,he matchmaker returns a.
ra.nl;ed set of appropriate provider agents and the relevant a.dvertisements
t#o the request,er.

In contmst, to a broker agent, a matchmaker does not. deal x411 the t,ask of
conta.ct,ing t,he relevant providers. transnlitting the service request. to t,he service
provider and communicat,e t,he resu1t.s to t,he request,er. This aroids data trans-
lnission bot,tJenecks, but it. might. increase the amount of interact,ions anlong
a.gel1t.s.

Brokering

Request-for-Service

e Matchmaking

Reply-Result-of-Service -
I

Requesr-for-Sew ice Provider I adverrise/unad?enise-Services

Figure 1: Service Brokering vs. Matchmaking

2.1 Desider.ata for an Agent Capability Description Lan-
guage

There is an obvious need t,o describe agent capabilities in a colmnon language
before any advertisement, request or even matchmaking among the agents can
ta.ke pla.ce. In fact. the formal description of ca.pabilities is one of the major
problems in the area of softxa.re engineering and -41. Some of t,he main desired
fea,tures of such a agent ca.pa.bilit,y descript,ion 1angua.ge are t4he following.

0 Expressiveness.
The language is expressive enough t,o represent. not. only data and knowl-
edge. but also to describe the meaning of program code. .+gent capabilities
are described at an abst.ract. rather than irnplement,a.t.ion level. Most. of
existing a.gent,s ca.n be distinguished by describing t,lleir ca.pa.bilities in this
language.

0 Inferences.
Inferences on descript,ions writt,en in this 1a.ngua.ge are support,ed. A user
can read a.ny st.at,ement in t.he language, and soft,ware a.gent.s a.re able to
process. especially bo compa.re any pair of stat,enlent.s a.ut.oma.t.ically.

0 Ease of Use.
Every clescript.ion should not. only be easy to read and understand, but
also easy t,o writ,e by the user. The language support,s the use of donlain or
colnnlon ont,ologies for specifying agenbs ca.pa.bilit,ies. It. a.voids redundant,
work for the user and improves the readability of specifica.tions.

88

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

Appl ica t ion in the Web.
One of the nnin applica.tion domains for the 1a.ngua.ge is t.he specifica.tion
of advert.isement,s a,nd requests of agent,s in the \J'eb. Tlle language allows
for aut,omated esclmnge a.nd processing of information anlong these agents.

In addit.ion. the matchmatching process on a. given set of capability descrip-
t,ions and a request, bot.11 writt,en in the chosen XCDL: should be efficient, most
accurat,e, not. only rely on keyword est,ract*ion aad comparison. and fully auto-
mated.

3 Tlle Agent Capability Description Language
L.ARI<S

R.epresenting capabilities is a difficult. problem t.11a.t. has been one of the major
concerns in the a.reas of soft,ware engineering, AI. and more recently. in the
area of internet comput<ing. There a.re many program description la.ngua.ges,
like VDM or Z['28], to describe the fuuct.iona.lities of programs. These languages
concern too much detail to be useful for the searching purpose. Also, reading
and writing specifica.tions in t8hese languages require sophisticated tmining. On
the other hand, t.he interface definition 1angua.ges. like IDL, WIDL, go to the
other extreme by omitting the funct.iona1 descriptions of the services a.t all. Only
the input. and output information are provided.

In AI, knowledge description hnguages, like KL-ONE, or KIF are meant to
describe the knowledge instea,d of the actions of a. service. The a.ct,ion repre-
sent,at,ion formalisms like STRIPS are t,oo restrict,ive to represent cornplica.t,ed
service. Some agent. communicat.ion languages like KQML and FIPA concen-
tmt,e on t,he communica.tion prot,ocals (message types) betmeen agent,s but, leave
t,he content pa.rt of the language unspecified.

In internet computing, various description format, are being proposed, no-
t,ably the WIDL a.nd the R.esource Description Franlework(RDF) ['Zi]. Although
t,he R.DF also a.ims a.t, the int.eroperab1ity between web a.pplicat,ions, it, is rat,her
intended to be a. basis for describing metachta. R.DF allowes different. vendors
to describe t,he propert,ies a.nd relations bet,ween resources on bhe Web. That.
ena.bles ot,her progra.ms, like IVeb robots, to easily est.ra.ct, releva.nt. infornmtion,
and to build a. gra.ph struct,ure of t.he resources availa.ble on the Web, without
the need t.0 give any specific informa.tion. However: the description does not
describe t,he functionalities of t.he Web se?vices.

Since none of t.hose languages sat,isfies our requirement,^, we propose an
ACDL, called LARKS (Language for Advertisement. and Request. for Knowledge
Sha,ring) t,ha.t enables for aclvertising, requesting and mat,ching agent, capabili-
t.ies. It satisfies the desiclera.ta given in t,he former section.

3.1 Specification in LARKS
.A specifica.t,iou in LARKS is a. fra.nle wit.11 bhe following slot, st,ruct,ure.

89

Context Contest. of specification 1
Types Decla.ration of used va.riable t,ypes
Input Declarat*ion of input, variables
output Declaration of outnut, vmiables
Inconstraints Constraints on input variables
Outconstraints C!onstraint,s on output variables
ConcDescriptions Ont.ologica1 descriptions of used words

~~

The frame slot. types lmve the following meaning.

Context.
The contest of the specification in the local domain of the agent.

Types.
Optional defidion of the used data types. If not, used, a.11 data types are
assumed to be defined in the following slots for input. and output. variables.

Input and Output.
Input,/out$put varia.hles for required input/output, knowledge t,o describe a
capabi1it.y of an agent: if t.he input given t>o an agent, fit>s with t,he specified
input declaration p x t , then the agent, is a.hle to process an output as
specified in the out,put declaration pa.rt,. Processing takes all specified
constra.ints on the input, and output variables int,o consideration.

Inconstraints and Outconstraints.
Logical c0nstraint.s on input,/output variables in t,he input./output de&-
ration part. The const,raint.s are specified as Horn clauses.

ConcDesriptions.
0ptiona.l descript,ion of the meaning of words used in the specifica,tion. The
description relies on concept,s in a. given local domain ont,ology. Xttache-
ment of a. concept. C t-o a. word w in any of the slots a.bove is done in the
form: w*C. That means that the concept C is the ontologica.1 description
of t,he word w. The concept. C! is included in trlle slot. ConcDescription.

In our current. illlplelllellta.t.ioll we assume ea.ch local domain ontology t.0 be
writt,en in the concept language ITL (1nforma.tion Terminological Language).
the synt,a.s and sema.nt,ics of the ITL a.re given in t h e a.ppendis. Sect,ion 3.3 gives
an esanlple for how t.o atta.ch concept,s in a. LARKS specificat,ion, and a.lso shows
a n esalnpie donmin ont.ology in ITL. A generic int>erfa.ce for using ontologies
in LARKS expressed in 1angua.ges other than ITL will be inlplen1ented in near
fut,ure.

E\Tery specifica.t.ion in LARKS can be int,erpret,ed as an advertisement as well
a.s a. request.; this depends on t,he purpose for which a.n agent, sends a specification
t,o sonle ma.t,chma.l<er agent,(s). Ever?; LARKS specification must be wrapped up
in a.n appr0pria.t.e IiQiCIL messa.ge by the sending a.gent. indica.ting if t,he messa.ge
cont.ent. is to be t,rea.t,ed as a. request, or an a.duert,isement.

90

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

3.2 Examples of Specifications in LARKS
The following t.wo esanlples show llow to describe in LARKS t.he capa.bi1it.y to
sort a. given list, of items, a.nd ret,urn t,he sort.ed list,. Esanlple 3.1 is the the spec-
ification of the ca.pabi1it.y t,o sort, a. list. of at most, 100 int,eger numbers, whereas
in esanlple 3.2 a more generic kind of sorting red numbers or strings is specified
in L.4RE;S. Note t11a.t t,he ConcDescriptions slot, is empt,y, i.e. the semantics of
the words in t,lle specifica.t,ion are assumed to be known t,o t,he mat~chmaker

Int,egerSort,
Context Sort
Types
Input

ys: ListOf Integer; output
ss: ListOf Integer;

before(s,y,ys) < - ge(s.y); Outconstraints
le(lengt,h(ss),lOO); Inconstraints

ConcDescriDtions
in(stys) < - in(s,ss):

1 1 1

Example 3.2: Generic sort of r r d numbe.rs 01’ strings

Genericsort,
I Context I Sort#ina

output I ys: ListOf Real I St,ring;
I Inconstraints I 1
Outconstraints before(x,y:ys) < - ge(s ,y) ;

hefore(s,y,ys) < - preceeds(s,y);
in(s.vs) < - in(s.ss):

I , \ , \ I . 1 1 ConcDescriptions 1
0

The nest esa.mple is a. specificat,ion of an agent,‘s ca,pa.bilit,y t,o buy st.ocks at
a st.ock nmrket.. Given t,he name of t,he stock, t,he a.rnount. of money available for
buying st,ocks a.nd t,he shares for one stock, the agent. is a.ble t,o order stjocks at,
t.he stock nlarket,. The constra.int,s on t,he order are t1la.t. t,he a.mount, for buying
st,ocks given by t,lle user covers t,he sha.res times the current, price for one stmock.
Aft,er performing t.he order t.he a.gent will inform t,he user ahout. t.he stcock, t<he
sha.res, a.nd the gained benefit..

91

-
sellStock
Context
Tvpes

St.ocl<, Stockklarket,;

Input symbol: StockSymbols;
yourhloney: Money;
s h e s : Money;

yourShares: Money;
vourChanae: Monev:

output yourSt,ock: St.ockSymbols;

Inconstraints I yourMoney >= sl~a.res*current,Price(s~mb): ~

Outconstraints 1 yourChange = yourMoney - da.res*currelltPrice(symb);

~~~~ 

I yourSlmres = shares: yourSt,ock = symbol: 
ConcDescriptions I 

92 

0 

3.3 Using Domain Knowledge in LARKS 

As mentioned  before, LARKS offers t,he  opt,ion t.0 use applica.tion  domain knowl- 
edge in  any  advert,isement,  or request,. This is done by using a local ontology  for 
describing the  meaning of a word in a LARKS specificat.ion.  Local ont.ologies can 
be formally  defined  using, e.$., concept 1angua.ges such as ITL (see Appendix), 
BXCII;, LOOM, CLASSIC or KRIS, a. full-fledged first  order  predicate logic, 
such as t8he  knowledge  interchange format (KIF), or even the unified modeling 
language (UML).  

The  main benefit of t,ha.t opbion is twofold: (1) the user can specify in  more 
detail wlmt, he  is  requesting or a.dvert.ising, and (2) the  ma.tchmaker a.gent is  able 
to make automated inferences on such kind of additiona.1 senm.ntic descriptions 
while matching LARKS specificat,ions,  thereby improving t,lle  overall qua1it.y of 
matclling. 

Suppose t,lmt, a provider agent, such a,s, eg . ,  Hot,Bot., Escit,e, or even a Ineta- 
searchbot., like  SavvySearch or hIetaCrawler.  a,dvertises the ca.pa.bility to find 
informabions about ally t,ype of comput,ers. The  administ~rator of the  agent  may 
specify t8ha.t  ca.pabilit,y in LARKS as follows. 

a 



1 FindClomnut.erInfo 1 
Context 

brand: Brand*Brand, 

Computer*Computser: 

price:  Price'Money,  color:  Color"Co1ors); 
Input brands: SetOf Brand*Brand: 

areas: SetOf St.at,e: 
processor: Setof CPU*CPU: 
priceLow*LowPrice: Integer: 
priceHigh*HighPrice: Integer: 

Types InfoList. = Listof (model: Model*C'omput~erModel. 

output Info: InfoList,: 
Inconstraints 
Outconstraints 

Computer = (and Product. ( ex i s t s  ha-processor CPU) ConcDescriptions 
sorted( Info). 

( a l l  has-memory Memory) ( a l l  is-model Computerhlodel)); 
LowPrice = (and Price (ge lSOO)(exists in-currency aset(USD))): 
HighPrice = (and Price (le  50000)(exists in-currency aset(LJSD))): 
Comput.erMode1 = 
ase t (  HP-Vectra,PowerPC-G3.Thi~~~adT;O.Sat.elIite315); 
CPU = aset(Pentium.IiG,PentiumII!G3!Merced) 
[Product, Colors, Brand. Money] 

Most. words in  this specification  have been at,tached  with a name of some 
concept. out of a. given ont,ology. The definitious of these  concepts  are  included 
in  the  slot ConcDescriptions. Concept defiuit,ions  which were already  sent 
to  t,he  ma.t,chmaker a.re enclosed in  brackets. In t.his example we assunle  the 
underlying ont.ology to  be writt.en in  the concept.  langua,ge ITL. -411 example for 
such an ontology  is  given  in the  nest,  section. 

Suppose t h t  a.n agent,  registers  himself a.t. some luat,chma.ker  agent.  a.nd  sends 
t1he above specifica.t.ions as a.dvert,isernent,s. The  nmtchnmker \vi11 t.hen t,reat t.hat, 
a.gent as a provider  agent,,  i.e., a n  agent,  who is capa.ble tso provide d l  these  kinds 
of services. 

3.3.1 Example for a Domain Ontology in the Concept Language ITL 

As ment.ioned  before, our current,  illlplelllellt,at,ioll of LARKS assumes the  donmin 
ont,ology t,o be writ,t.en in  the concept, language ITL. 

The research  area. on concept languages (or description logics) in  AI  has 
it,s  origins  in the t.heoret.ica1 deficiencies of senlantic net,works in the  late 70's. 
IiL-ONE was t,he first, concept. language  providing a well-founded selnantic for a. 
more  na.tive language-lnsed  description of knowledge.  Since then different, con- 
cept. languages  are int,ensively  invest,iga.ted; t.hey are a.lmosts decidable  fra.gment,s 
of first,-order  predicat,e  logic.  Several  knowledge  represent,at,ion and inference 
syst,ems.  such as CL.L\SSIC, BAC'Ii. I<R.IS, or CR,-ACI<, based on such  languages 
are ava.ilable. 

Concept,ua.l knon-ledge about. a given  a.pplicat,ion domain, or even  colnnlon- 

93 



sense,  is  defined by a set of concept,s and roles as t,ernls in  the given concept, 
1angua.ge; ea.ch t,erm as a. definibion of some concept. C is a conjunct.ion of  1ogica.l 
constra.ints  which  are necessa.ry for any object t,o be a.1 inst<ance of C. The 
set, of t.ernlinologica1 definitions  forms a terminology. Any canonica.1 definition 
of c0ncept.s  relies  in  pa.rt,icular on a. given  basic  vocabulary of words (primitive 
compo11ent.s) which are not, defined in the t,erminology,  i.e..  their  semant.ic  is 
assumed t.o be known and consist,ently used a.cross boundaries. 

The following  terminology.  is  written  in t,he concept language ITL and de- 
fines concept,s in t.he comput,er a.pplica.t.ion domain. It. is in  pa.rticular  used  in 
t,he example 3.4 in t,he former  section. 

0 

(and ( a l l  is-manufactured-by Brand) (atleast 1 is-manufactured-by) 
( a l l  has-price Price)) 
(and Product. ( e x i s t s  has-processor CPU) (all  has-memory hlemoryj 
( a l l  is-model Comput,erModel)) 
(and Comput,er ( a l l  has-price 
(and (and (ge 1000) (le 2999)) (a l l  in-currency ase t (  USD)) ) 
( a l l  has-weight. (and kg (le 5 )  ) (all is-rnanufact,ured-by 

( a l l  is-model aset~(Thinkpad3~0.ThinkpaclTO.Satellite315)))) 
(and Company (a l l  is-locat,ed-in State)) 
(and ( a l l  part.-of  Connt.ry) aset( V-4tP.4?TX,0H,NY)) 
aset( IBM.Toshiba.HP.4pple.DEC,Dell,Gat,eway) 
aset(Blue,Green.kellon:Red) 
(and Real ( a l l  in-currency aset(USD.DM,FF,Y,P))) 
Money 
(and Price (ge  1800)(exists in-currency aset(USD))), 
(and Price ( l e  50000)( e x i s t s  in-currency aset(USD))) 
aset(HP-Vect . ra .PowerPC-~3,Thinl ;pad380,a~~~O,Sat .e~i t~e315)  
aset(Pent~ium,I<G,PentiumII.G3.Merced) 

Company)) 

3.3.2 Subsumption Relationships Among Concepts 

One of t,he ma.in  inferences on  ontologies  writaten in concept, lmguages  is  the 
comput,at,ion of t,he subszrmption relation among two concepts: A concept C 
subsumes  anot>ller concept. C," if t.he extension of C' is a subset of that of C. 
This means. t,llat t,he  logical  const,ra.int,s defined in t,he term of the concept C" 
logically ilnply those of the  more  general concept, C'. 

Any concept 1a.ngua.ge is  decidable if it, is for  concept, subsumpt,ion  among 
t,wo c0ncept.s  defined  in t(1m.t 1a.ngua.ge. The concept. language ITL we nse is 
NP-complete  decidable. 'The well-1;nown trade-off hebween expressiveness and 
t,ract,a.bilit,y of concept 1angua.ges in  pract,ice is surrounded a.lnlost. by subsump- 
t.ion algorit,hms which axe correct  but. incomp1et.e. We use a.n inconlplet,e in- 
ference  algorit,hm  for  colnput,ing  subsumpt,ion rela.tions a.mong conceptas  in ITL. 



a 
a 
a -- 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
0 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

e Inform t,he requesting  agent by sending  t,llenl t.he cont,a.ct. a.ddresses and 
rela.t,ed capability clescript,ions of t,he relevant.  provider  agents. 

Matchmaker A, Oent x 

Matching AdvertisementDB 
ConceptDB 
AuxiliaryDB 

Resuit-of-Matchin 

Requester  Agent 
Provider  Agent 1 

Figure 2 :  Matchn1al;ing using LARI~S:  .4n Overview 

4 The Matchmaking Process Using LARKS 
.As mentioned before, we differentia.t*e  between three different, 1;inds of col1a.b- 
ora.t.ing infornlation  agents:  provider, request,er a.nd ma.t.cllmaker a.gent.s. The 
following  figure shows an overview of t,he n~at,chmaking process usillg LARKS. 

The matchmaker agent. process a. received request in the following main  steps: 

e Compa.re t,he request wit,h all a,dvertkement,s in the  a~lvert~isement  database. 

e Det,ernline t,lle provider  agents whose ca.pa.bilit.ies ma.t.ch best. wit.11 the 
request. Every pair of request. and a.dvertisement, 11a.s t.0 go through  several 
different, filt,ering during  t,he  mat,chma.king process. 

For being a.ble t.o perform a. stea.d?;. just>-in-t,ime  ma.t,chmaking process the in- 
forma.t.ion  model of bhe mat~c:hma.ker agent.  comprises t.lle following components. 

95 



1. . ~ d ~ w t i s e n m ? t  d U t c l k L S €  (XDB). 
This da.t.a.ha.se cont*ains a.11 a.dvert.isements  writt,en in LARKS t.he match- 
ma.ker receives from provider a.gent,s. 

2 .  Part ial  global ontology. 
The ont.ology of the ma.t.chma.ker consists of all ontological  descriptions 
of words in  a.dvert,isement,s  st,ored  in  t,he ADB. Such a description is  in- 
cluded  in t.he slot. ConcDescriptions a.nd sent, t.0 tahe  matchmaker  with 
any a.dvert,isement. 

:3. Au.dia,yy dc/~tuhux. 
The a.usilia.ry data  for  t,he matchmaker comprise a da.ta.ba.se for word pairs 
and word dist8ances,  basic  t,ype  hierarchy, and imernal  data.. 

Please  note  that  the onbology of a. ma.t.chma.ker agent  is not. necessarily  equal 
t,o the union of local doimin ontologies of a.11 provider agents who are  actually 
regist.ered at  the mat,chmaI;er. This also holds  for t,he advert.isement database. 
Thus, a. mat,chma.ker  agent. has only  pa.rt>ial g1oha.l knowledge on available in- 
format.ion  in  t.he  overall mu1t.i-a.gent system;  this  partial 1;nowledge might also 
be not. up-t.o-date  concerning t.he a.ctua1 t,ime of processing  incoming  requests. 
This  is  due tso the fa.ct that for efficiency reasons  changes in  the  local  ontology of 
an provider  agent, will not. be propaga.t,ed  imnmlia.t.ely t.0 all ma,t,chmal;er agent,s 
he is registered at,. In the following we will describe t,he matachmaking process 
using LARKS in a. more detail. 

4.1 The Filtering Stages of the Matchmaking Process 
The 1na.tching  process of the ma.tchmaker is designed  with  respect t.0 t,he follow- 
ing criteria: 

The  matching  should not Le hosecl on keyword rrtrieoal! only. Inst,ea.cl, 
unlike the  usual free tes t  sea.rch engines,  the  semant,ics of requests and 
advertisenleat,s  should be taken  into  consideration. 

The  matching process  should be uuto,matt;d. A vast  a.mount. of agents 
appea,r a,nd disappear  in  the  Int,ernet.  It is  nearly  impossible for a user to 
lna.uua,lly  searcli or browse all  age&  capabilities. 

The ma.tching process should  he crccwclte. For esample, if the  matches 
returned by the ma.tch  engine are cla.inled t,o be exact ma.t,ch or the plug- 
in  ma.tch,  those  mat.ches shoulcl sa.t.isfy t.he clefinitmiom of esa.ct, nntching 
a.nd plug-in  ma.t,chiug. 

The  ma. tding process should  be ~JSicIe77t, i.e., it. should he fast,. 

The mat,ching  process  should  he effecfire, i.e., t.be set, of ma.t.ches should 
not, be t.oo la.rge. For the user.  t,yping in a request, and receiving hundreds 
of ma.t.ches is not. necessa.ril\. very useful. Inst.ea,d, we prefer a slna,ll  set of 
highly rat.ed mat,ches t,o a. given request. 

96 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 

a 

a 
e 
a 



a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

0 

To fulfill t.he mat,ching  crit,eria  listed  in t.he a.bove section, the mat,ching 
process is orga~lized a.s a. series of increasingly  st,ringent, filt,ers on candida.t,e 
a.gent,s. That.  means  that. ma.t,ching a. given request, int,o a. set. of a.dvert,isenlents 
c*onsist,s  of  t.he following five filt,ers that, we organize in t,hree  consecutive  filt,ering 
st,a.ges: 

Select t.hose advert.isement,s in t.he ADB which can  be  conlpared  with  t,he 
request, in  the  sanle or sirnilax  cont,est.. 

This filt'er con1pa.res the request wit,h an?; advert.isement, select.ed by the 
cont>est,  mat.ching in t.hree steps: 

(a) Compa.rison of profiles. 
(b) Simila.rit,y matdling . 

The request  and  a.dvertisement profile comparison uses a weight.ed key- 
word represent,at,ion  for  t,he specifica.tions aad a. given tern1 frequency 
ba.sed simila.rit,y measure  (Salt,on, 1989). The  last t,wo st,eps focus on the 
(input/out,put,) const,ra.int,s and declaration  part,s of t,he specifications. 

3. S~~n.untico1 Matching 
This final  filter checks if t.he input,/out,put, c0nstra.int.s of any  pair  ofrequest. 
and  advertisement 1ogica.lly match (see sect,ion 4.1.5). 

For reasons of efficiency t,he contest.  filter roughly prunes off advertisements 
which a.re not. relevant  for a given request.. In  t,he following t,wo filtering  stages. 
synt.act,ical a.nd semant,ica.l  ma.t,ching, t,he remaining  advertiselnents  in the  ADB 
of t,he ma.t.chma.ker are checked in a. more det,a.il. -411 filters a.re independent  from 
each other: ea.ch  of  t.11em lnrrows t,he set. of mat.ching  ca.ndidat,es with respect 
to a given filt,er c:rit,eria.. 

modes of lilat,ching a. request. t,o a. given set of aclvert,isements. 
111 our current,  inlpiement,a.t,ion t,lw ma.tdu~la.ker offers different. t>ypes and . 

4.1.1 Different Types of Matching in LARKS 

97 



e 
e 
e 

' e  
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
,e 
e 
e 
e 
e 

e 
e 

98 e 

4.1.1.1  Exact  Match Of course, talle most. a.ccura.t,e ma.t,ch is when both 
descriptions a.re equivalent, eit,her  equal 1itera.lly. or equal by rena.ming the vari- 
ables, or equal  logitally  obtained 11y logical  inference. This  type of nmtching is 
t.he most,  restrictive one. 

4.1.1.2  Plug-In  Match A less accurate but,  lnore  useful ma.t,ch is the so- 
called plug - in. nmtch. R.oughly spea.l;ing, plug-in nnt.ching  means  that  the 
a.gent. which  capabilit,y  descript,ion 1nat.ches a given request  can be  "plugged  int,o 
t.he place" where t,lmt. request wa.s raked.  -in? pa.ir of request and advert,isement. 
can differ in the signat.ures of t,heir input,/out,put,  declarat.ions, t.he number of 
constmints, a.nd t,lle const.raint,s t.henlselves. -4s we can see, exa.ct, ma.t,ch is a 
specid case of plug-in ma.t,ch, i.e., wherever t,wo descript,ions  are exact, mat&, 
t.he): are also plug-in ma.tch. 

A simple  esample of a. plug-in mat.ch is that. of t.he ma.t,ch bet8ween a request. 
t>o sort. a. list, of imegers ancl an advert.isement, of a.n agent. that. can sort,  bot,ll 
list of int.egers and list, of st,rings. This exa.mple is elabora.t,ed  in  sectmion 5. 
Anot,ller exa,nple of plug-in  ma.tcll is bet.weea t,he request. t,o find some  computer 
infornmtion n:it,llout. an?;  c:onst.raint. on the out,put. ancl the a.dvert,isement of an 
a.ge1-k tl1a.t. can provide  t,hese  infornmtions and sort,s t,lle respect,ive out,put. 

4.1.1.3 Relaxed Match The least. a.ccura.t,e but.  most' useful ma.t,ch is the 
so-ca.llec1 w1a.red ma.tch. A rela.sed nmtch has a. much more weaker semantic 
int,erpret,ation t h a n  a. exact, nmtch  and plug-in ma.td1. In fact,.  relaxed match 
will not, tell  whetther t,wo descript,ions  senlnnt,ically ma.t,ch or not,.  Instead  it 
det.ermines how close the two  descript,ions a.re by returning  just. a numerical 
distance value. Two clescript,ions ma.t.ch if the dist,ance  value  is  slnaller t1la.n a 
preset  t,hreshold va.lue. Normally t.he plug-in  match a,nd tShe  exact. match will 
he a. special  mse of t.he relaxed  rnatch if t,he  t,hreshold  value  is not t,oo sma.11. 

.?In esample of a. relased nla.t,ch is t,hat, of t,he  request t,o find talle pla.ce (or 
a.ddress) where t>o buy a Co1npa.q Pentium2:33 comput,er  and t,he capabi1it.y de- 
scriptmion of a.n agent t , lm  ma,y provide  t,he  price  and coat.a.ct, phone nunher for 
t,llat computer  dealer. 

Different. users in different. situation may want. to  lmve different. t,ypes of 
mat,ches.  .ilt,hough  people  usually ma): prefer t.0  lmve plug-in ma.t,ches, such 
a. kind of ma.t'cl1 does not exist. i n  nmny ca.ses. Thus.  people rimy try  to see 
t.he result. of a rela.sed match first.. If there is a. sufficient number of relased 
mat,ches  retwrled a refined search n1a.y he  performed t,o 1oca.t.e plug-in ma.tching 
a.clvert.isement.s. Even wllen people are int.erest,ed in a plug-in  mat,ch  for  t,heir 
request,s only, t,he  computa.t.iona1 cost,s for t,llis t,?;pe  of ma.t.ching might out,weigh 
it.s henefit.s. 

As nlentioned  above we have five different. nmtching filt,ers: 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

3 .  simila.ri1 0' 
3 

1. signa.t,ure  ma.t,ching 

5. sema.nt.ica.1  ma.t8c1ling 

The first. t,hree filt,ers a.re meant'  for  relaxed matdling, a.nd t,lle signatmure and 
sema.at,ica.l mat.cl1ing filter are mea.nt. for  plug-in  mat.ching.  Please  notme, t,ha.t, 
t,he  comput,ationa.l c0st.s of t,hese filt,ers are in  increasing order. Users may select, 
any conlbina.t,ions of t,hese fibers a.ccording t,lleir demand. Since the  similarity 
filter also performs int.ensive comput,a.t,ion one n1a.y just select, t,he  cont.est  filter 
and t-lle profile filter if efficiency is of major concern. 

Based  on  the given not'ions of ma.t.ching we did  inqdelnent,  four different, 
nlodes of mat,chiag for bhe ma.t,chma.ker: 

1. Complete  Matching  Mode. All filt.ering stages a.re considered. 

2. Relaxed  Matching  Mode. The first t,wo filt.ering stages  are considered 
except,  signa.txre mat,cl1ing, i.e.,  the  cont,est, profile and  similarit,y filter 
only. 

3. Profile  Matching  Mode. Only  the cont.est. matching  and  coinparison 
of profiles is done. 

4. Plug-In  Matching  Mode. In  this  mode,  the ma.t,cllmaker  performs the 
signat.ure and semantical  mat,ching. 

As wid a.hove, the ma.td1ing  process  proceeds  in different. filt,ering  st.ages. If 
t,he  considered advert.isement. a,nd request  cont.ain conceptua.1 at,t,a,clm1ents (on- 
t,ological  descript,ion of used words), t,llen i n  most. of t,he  filtering  stages (except. 
for t,he  conlparisou of profiles) we need a wa?; t.0 det.ermine t,lle semant,ic dist.a.nce 
I)et,ween the defined concept,s. For t.11a.t.  we use t,he comput,at.ion of subsulxption 
relat.ionships aad a, weight.ed  a.ssocia.tib-e net.work. 

4.1.2 Conlputation of Semantic  Distances  Among  Concepts 

iVe have present,ecl t,he not,ion of concept. sulxumpt.ion in  sect,ion 3 . 3 . 2 .  But the 
concept  subsunlpt,ion gives only a generaliza.t.ion/specialization rela.t,ion lxsed 
on t,lle definiteion of the concept,s via. roles and a.t,t,ribut.e sets. In  pa.rt,icular  for 
ma.t.chmal;ing t,he ident,ifica.t.ion of a.dditiona1 rela.t,ions among concept,s is very 
useful because it. leads to a. deeper semant.ic  underst.anding.  Moreover,  since 
t,he e1pressivit.y of t,he concept. language ITL is rest,rict,ive so t,hat. performance 
can  be  enhanced. we need some w a y  t,o express  addit,ional  a.ssociat,ions among 
coi1cept.s. 

For t.llis purpose we use a. so-called weigl~t,ed  associat,ive netsvork. that. is a. 
sema.nt.ic net.worl; wit,h c1irec:t.ed edges het,n:een concept,s as nodes. A n y  edge 
denot.es t.he 1;ind  of a. bina.ry rela.tion a.nlong t.wo  col1cept.s. a.nd is  labeled  in 
a.ddit,ion wit,h a numeric-a1  n-eight. (int,erpret.ed as a f u z z y  number).  The weight. 

99 



i11dicat.e~ t,lw st.rengt,ll of helief i n  t,ha.t rela.t,ion. since its real world senlantics 
ma? vary'. We a.ssunle t,ha.t, t.he sema.nt,ic net,work consist,s of three  kinds of 
binary, weight,ed relationships: (1) generalizat,ion. (2 )  specia.lizat,ion (as inverse 
of genera.lizat,ion), and ( 3 )  posibive associat,ion among concept,s  (Fanklmuser 
et. al.. 1991). The pos i t ic~  association is the most.  general  relationship  among 
 concept,^ in the net,work indicat,ing  t,hem as synonyms in some  cont.est. Such a 
senlantic net.worl; is called an associatirre nef tr!or-k (AX).  

In our implement.ation we crea.t.e an a.ssociative  network by using the con- 
cept,  hierarchy of a given  t,erminology defined in t.he concept 1a.nguage ITL. All 
subsumption  relations  in  this concept.  hierarchy  are  used  for  sett,ing  the gen- 
eralization and specialization  relat,ions a.mong concepts  in  the  corresponding 
associat,ive net.work. Posit.ive  a,ssociat,ions nmy be set. by t,he a.dminist,rat.or or 
user.  Posit,ive  a,ssocia,t,ion,  generalization and  specia.lization are transitive. 

As nlentsioned  a,bove, every edge in t.he associative net,wrork is  labeled  with 
a fuzzy weight. 'These w e i g h  are set, by t,lle user or a.ut.omat,ica.lly by default. 
The dist,ance  between two concept,s in an associa.t,ive network is then  computed 
as t.he strengt,h of t,he  short.est.  pa.th a.mong  them.  Combining  the st,rengt.h of 
each  relat,ion  in  t,his pa.t.11 is done by using t,lle following  t,riangula.r norms for 
fuzzy set int,ersect,ions (Iiruse et, a.l., 1991): 

Since we h v e  t.hree different  kinds of relakionships among two  concept,s  in 
a n  XN t,he kind  and  st.rength of a path a.mong t,wo a.rbit.rary  concepts in the 
network  is  det,erlnined a.s shown in  t,he  following tables. For a formal discussion 
of t-hat.  issue we refer t,o  t,he work of Fanklmuser et. a.1. (1991), 1l;ra.cker (1992), 
and Fankhauser  and  Neuhold (1992). 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 

100 a 
a 
a 

a 
Ta.ble 1: Iiind of pa.t,hs in an AN. Table 2 :  St,rength of p a t h  in an AN. 

lThe relat.ionships are fuzzy, and one cannot possibly associate all concepts with each 
ot,her. 



a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

e 

e 

e 

W] I I g l s  / P I  

1 1 :I 
Table 3 :  Con1puta.t.iona.l precedence  for t,he strength of a. path. 

The computa.t,ion of semant,ic dist.a.nces a.mong concept,s  is used in most of 
the filt,ering  st.ages of the mabching process. lye will now describe  each of the 
filters in det,ail. 

4.1.3 Context Matching 

It, is  obvious tl1a.t any ma.t.ching of two specifica.t,ions has  to be in  an appropria.t,e 
cont,est,.  Suppose a. provider a.gent. advertises t,o sell several different. types of 
procluct,s. like cars, comput.ers,  shoes,  et,c.  Further  assume t11a.t. all  his  adver- 
t,isement.s include t.he only input va.ria.ble declarat,ion: bra.nd: Setof Brand; 
But,  wlmt is  meant  by  the type 'Brand' in  t,he contest of any  specification of 
a. ca.pabilit,y of finding a p o ~ t i c , c d a ~  it.em'! Wit.llout. a.ny a.ddit,ional  knowledge 
about.  t<he partkular  cont,est, a, request. t o  find infornntion  about a, particu1a.r 
item. like comput.ers.  would n l a t d ~  \yit,h all product.  advertisements. 

In LARKS there are two  possibilit.ies t o  deal  with t.his probleln which is con- 
nected t o   t h e   ~ ~ ~ l l - k a o w n  ont,ological misma.t.ch problem.  First., t,he Context slot. 
in a specifica.t,ion S cont,a.ins a. (list. of)  words denot,ing  the  donlain of discourse 
for ma.t,ching S wit,h a.ny  obher specifica.t,ion. When  conqmring t,wo specifica.t.ions 
it is assumed  tha.t.  t,heir clonmins. 1nea.m their  contest. a.re the  same (or at,least. 
suf€icient,ly similar) as long as t.l:e red-va.lued dist.ances bet,ween these words do 
not. esceecl a. given t,hreshold'. The ma.t,ching process only proceeds if tlmt is 
tme. 

Second, every word in a LARKS specifica,tion may  be associa.t,ed with a con- 
cept. in a. given  donv.in  ontology.  Aga.in. if t,he  cont,est. of  bot.11 specifications 
t.urned out,  t,o be sufficient,l; similar in the st,ep before t,llen t,he concept, defini- 
t,ions describe  t,he  meaning of t,he  words the?; are a.t,tached t.0 in a. nlore  detail 
in  t,lw sa.me donnin.  In  t,his  case. t,wo co1lcept.s wit,h same  name  but different. 
definit,iolls will l x  stored sepa.ra.t.ely by extending each concept. name by the 
idehfier  of the agent. who did smd this concept.. 

101 



1. For every pair of n-ords { I ,  ( 1  given in t.he context slots  conlput,e  t,he real- 
d u e d  word dist,ances d p ( .  ( [ I .  , I * )  E[0.1]. Det,ernline the most. similar ma.t.ches 
for any word I I  by selecting words 1 1  n.it,ll t.he nlillinlunl  distance value 
d,c ( u ,  2:).  These dist,ances must,  not. esceecl a. given threshold. 

2 .  For every pair of most. similar ma.t,ching words, check t h t .  the  semantic 
dista.nce a.mong t,he  at,tached co11cept.s does not.  esceed a. given threshold. 

4.1.4  Syntactical Matching 

4.1.4.1 Comparison of Profiles The compa.rison of two profiles relies on a 
st,a.ndard  tecllnique  from t.be Infornlat,ion R.et,rieval area.. called t,erm frequency- 
inverse  document,  frequency  weighting (TF-IDF) (see Sa.lton. 1989). According 
to t h t ,  any specificat,ion  in LARKS is t.reated as a. document,. 

Each word '11) in a. document. R , E ~  i s  weight.ed for t11a.t document, in the fol- 
lowing way. The number of times 21: occurs  t,kroughout, a.11 document,s is called 
the document.  frequency d f ( , w )  of 21:. The used collection of document,s is not, 
unlimited,  such a.s t,he a.dvertise1nentJ dat.a.ba.se of t,he  mat,chma.ker. 

Thus, for a. given  docunlent. d ,  the  relevame of d ba.sed on a word 'IO is 
proportional t.0 t.he number z c ~ f ( n : .  d )  of t.imes  t,he word u' occurs  in d a.nd inverse 
proportiona.1 to d f ( u : ) .  A weight, h.(zo, d )  for a word in a doculllent, d out of a set 
D of documents denot,es the significance of t.he clnwification of for d ,  and is 
defined ns follows: 

h ( W , d )  = Wf(.IO, d )  . log(  df). ID1 

The weight,ed keyword represent,at.ion tr!k,u(d, 1.') of a. document. d contains 
for every word 'tl: in a. given  dict,iona,ry 1,' t,he weight I r (  to, d )  as an element,.  Since 
most dictionaries  provide a. huge \-ocabula.ry w e  cut, down t<he  dimension of the 
vect.or by using a fixed set. of appropria.t,e  keywords  det,erlnined by heuristics 
a.nd t.he set of keywords  in LARIG itself. 

where Req 0 -4d denotes t,he inner  product. of t,he \veight.ed keyword vect.ors. 
If  t.he value d p s (   RE^, -4d) does exceed a. given tJ1reshold ;3 E R t,he  nlat.ching 
process  cont.inues wit.11 t,he following steps. 

102 

a 
a 
a 

a 

a 
a 
a 
a 
a 
a 
a 

a 

a 

a 
a 
a 
a 
a 
a 
a 
0 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 

a 
a 

a 

a 

a 

a 

a 

a 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

103 

4.1.4.2 Similarity  Matching Let Ei. Ej be va.ria.hle decla.ra.t,ious or con- 
stmint.s, a,nd S ( E )  the set of words in E .  The similariby a.nlong t.wo expressions 
E; a.nd E-.j is det,ennined by pairwise  comput,at.ion of word dist,ances a.s follows: 

4.1.4.3  Signature  Matching Consider t,he  declara,tion  pa.rts of the request 
and the a.cl\.ert,isemeIlt., and det,ermine  pairwise if their  signatures of t,he  (input. 
or out,put.)  variable  types ma.tch following the t,ype inference rules  given below. 

Consider  two types f l  and t 2  a.s part, of an input, or output  mriahle declarat.ion 
pa.rt. (in  the  form Input  z! : f 1; or Output 'L' : t 2 ; )  in a LARKS specification. 

Subt.vne-  Inference R.ules: 



Having  described bot.11 filters of t8he s!;ntact,ica.l ma.tching we now define the 
meaning of syntsa.ct,ica.l ma.t,ching of t,wo specifications  writt.en  in LARKS. 

Definition 4.2: Syntactical .mczfchin,y of specifications in LARKS 

The declarations Di and Di syntactically  match if t,hey are suffi- 
ciently simi1a.r: 

The constraints C.'i and C j  syntactically  match if  the!; a.re sufficient.ly 
similar: 

104 



4.1.5 Semantical  Matching 

By using the synt,a.ctical filt,er lnany mat8ches might, be found  in a large a.gent 
societ*y. Hence, it is import,ant, t,o use some  kind of sema.nt,ic  informa.tion to 
narrow  the sea.rch, and to pin down more precise mat,ches. 

The most,  colmnon and na.t,ural int,erpret.a.t.ion for a. specifica.tion  (even  for 
a soft,ware program) is using set,s of pre-  and  post,-conditions,  denot,ed a.s P r e s  
and  post.^, respectailrely. In a simplified  llot.at,ion, any specificat.ion S can  be 
represented by t,he pair (Pr'e.5. Post,$).  

The specifimtion 5' semantically  matches t,he specifica.t,ion T if 

(P~e .5 .  + P I . ~ T )  A (P&T + Po.~f.,s) 

Tlmt,  means. t,he set, of pre-conc1it.ions of S logimlly  implies t,ha.t. of T .  and 
t,he  set of post,-condit,ions of .S is logically  implied by t,hat, of T .  
a 

105 



Pres 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
e 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

capability 5 

1 
PreT 

plug-in 

<- Capability T 

PostT 

Posts / 
Figure 3 :  Plug-In hla.t,ch of Specifica.t.ions: T plugs into S. 

4.1.5.1 Plug-in Semantical Matching i n   L A R K S  Its is  proven  in the 
soft.wa.re engineering area. bha,t. if t.lle condit,ion of selnant,ical nmtching: in defi- 
nition 4.3 holcls, and  the signa.t.ures of hot,h  specifications ma,t.ch, t,lIen T can be 
direct.ly  used  in the  phce of ,5'> i.e.. T plugs  in S (see  figure 4.1.5). 

Definition 4.4: Pluy-Itl, .s~.~nonticul m a t c h i n g  of tu:o syecijicntions 

Given t.mo specifications S p e c 1  a.nd Spec2 in LARKS t,hen Specl plug-in matches 
S y c 2  if 

0 Their  sigmtures  1mt~ches (see sect.ion 4.1.4.2). 

0 For every c h s e  c'1 in tslle set, of input.  const,raint,s of S p e c l  t.here is a 
clause C'2 in t,he set of input.  const,raillt4 of Spec2 such t,llat C1 50 C2. 

0 For every &use C'2 i n  the set. of output. const,ra,int.s of Spec2 t,here is a 
clause C'1 in  t,he set. of out,put, const.ra.int,s of Spec1 such that. C'2 50 C'1. 

where <# denotes t,lle 8-subsumptmion rela.t.ion het,ween const,ra.ints. 
e 

106 



P(u) C Q ( u )  5 s  P ( S )  t Q(-S) 

Since a. single cla.use is not. expressive enough, we need  t,o  use a. set, of cla.uses 
t.o express  t,he pre and post. conditions (Le.,  t,he input, a.nd output.  coast>ra.int,s) 
of a specificat,ion in LARKS. -4 set. of clmses is t,rea.t,ed a.s a. conjunction of those 
clauses. 

Subsumption bet,ween t,wo set, of clauses is defined in t,erlns of t,he subsump- 
t,ion het.ween single clauses. More spccifica.lly, let. S and T he  such set,s of clauses. 
Then, we define t,hat. S 8-subsumes T if every cla.use in T is &subsumed by a 
cla.use in 5'. 

There is a. colnplet,e algorithx to test, the 8-subsumpt.ion relation, which is 
in general NP-co1nplet.e but.  polynomial  in cert,a.in  cases. On  the ot,her hand, 
0-subsumpt.ion is a. w d e r  relat,ion than 1ogica.l implica.t,ion,  i.e., from C.' D 
we can only illfer t11a.t C,' logically  implies D but. 1101, vice versa.' 

5 Examples of Matchmaking using LXRIS 



1 Integersort. J 

output vs: ListOf Integer: 

GenericSort, 
Context 
TvDes 

Sort.ing 
1 

~ 

Input I xs: Listof Real I Sbring: 
OUtDUt 1 YS: Listof Real I St.rine: 

I Inconstraints I I 

1 in(x.ys) < - in(x.xs): 
ConcDescriptions I 

Xssume t.11a.t bhe request,er and provider  agent.  sends the request. Int,egerSort 
a.nd advert,isment,  CenericSort  to the ma.tchma.l<er,  respectively. Figure 5 de- 
scribes t.lw overa.11 nla.t,chma.l<ing process for t,hnt. request. 

1. Contfxf  Mcrtching 
Bot,h words in t.he Context declaration parts are sufficiently similar. We 
11a.w no referenced concept,s t,o check for t~erminologicall\;  equit,y. Thus, 
the ma.t.ching process proceeds with t,he following t,wo filtering stages. 

a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 

a 
a 

a 
a 
a 
e 
a 

a 
a 
a 
a 

a 
a 
a 
e 
a 
a 
a 
a 
a 

a 

0 

a 
e 

0 

0 

e 

0 
e 108 



Figure 4: An  Exa.nlple of Matchmaking using LARKS 

(c) Similurity Alutchiny 
Using the  current  ausilia.ry  database for word distance  values  simi- 
larit,y matdling of const.ra.int,s yields: 

le(lengt,h(ss),100)) null = 1.0 
before(x,y,ys) < - seis,.) in(s,ys) < - in(s,ss) = o..jj'2(3 
in(x,ys) < - in(x,ss) before(s.y,ys) < - preceeds(x,y)) = 0.4375 
before(sty,ys)< - ge(s.y)) before(s,y,ys) < - preceeds(s,y)) = 0.281'25 

The sin1ila.ritmy of both specifica.tions is comput.ed a.s: 
Si?n.(IntegerSort, Genericsort) = 0.64. 

3 .  Sm~.unticctl Matching 
The a.dvertkenlent GenericSort also  matches sema.nt,ica.lly wit,h t,he re- 
quest, Integersort, because  t,he  set of input.  const,ra.ints of Integersort f?- 
subsumes t1la.t. of Genericsort ~ and t,he out,put  const,raintss of Genericsort 
8-subsumes t,ha.t of Int egersort. Thus Genericsort plugs  int,o Integersort. 
Please note t11a.t tsllis does not hold vice versa.. 

6 Related works 



unificat.ion wit.11 t,he equalit,y  predica.te. i\Ia.t.chma.king using LARKS performs 
bet,t,er t.1la.n ABS1 in both, t,he language  and  the ma.t.ching  process. The plug-in 
mat,ching  in LARKS uses the Q-subsumpt,ion  test, which select. n1ore matches 
t,hat. are also semant.ica.lly  ma.t,ches. 

Tlle SHADE and  COINS[l-i] are mat,chma.kers ba.sed on IiQML.  The cont,ent. 
1angua.ge of COINS allomes for  t,he  free  t.est and it,s  ma.t,ching  algorithm ut.ilizes 
t,he t,f-idf. The  contect  language of SHADE mat,chmaker consist,s of two parts, 
one is a subset. of KIF,  anot,her is a structured logic representation called RL4S. 
MAS use logic frames to declara.t.ively store  the 1;nowledge. SHADE uses a 
frame like represent,a.t,ion aad t.he ma.t.cher use t,he prolog like  unifier. 

A more recent. service  broker-ba.sed  infornmtion  syst,em is InfoSleuth[lO, 
111. The content, 1a.nguage support,ed by InfoSleut,h is IiIF a.nd the deduct,ive 
dat8a.base language LDL++, which has a senmlt,ics  similar  t,o Prolog. The con- 
snaints for bot.11 t,he user requestt. a.nd t,he resource d a h  are specified  in  t,erms 
of some given  cent.ral  ont,ology.  It. is tShe use of this co1n1non vocabulary  t,hat. 
enables  t,he  dyna.mic  lnat,ching of recluest,s t,o t,lle amilable resources. The ad- 
vertisen1ent.s specify agents' ca.pabilit.ies in  t,ernls of one or more  ontologies. The 
constraint,  ma.tching is an intersect,ion  function bet,ween t.he user query  and t,he 
da.ta  resource  const.raint,s. If t,he  conjunct,ion of all the user  const,raint,s  with a.11 
the resource constraints is  sat,isfiable, then  the resource contains  data which are 
relevant, t.0 the user  request,. 

-4 somew11a.t. rela.t.ed research area is t,he research on informa.t,ion mediators 
among  heterogenous informa.t.ion s?;st.emsrLS] [ 13. Ea.ch local  infornmtion  system 
is wrapped by a. so-called wra.pper agent, and  their ca.pa.bilities are described  in 
t,wo levels. One is w11a.t. they  can  provide,  usually  described in the local data  
model and lo(-a1 clat,aba.se schema. .4nother is what.  kind of queries t,hey can 
answer:  usually it  is a. subset, of the SQL 1angua.ge. The set of queries a service 
can accept. is  described using a grammar-like  not.a.tion. The ma.tching between 
t,he query and t.he service is simple: it  just, decides whether  the  query  can  be 
generat.ec1 by t.his gramnm. This a.rea emphasizes the  planning of dat.abase 
queries  a.ccording t,o het,erogeneous  informa.tion systems not,  providing  complete 
SQL sevices. Those syst.ems a.re not. supposed t,o be  sea,rched for among a vast. 
number of resources on t,he Inbernet,. 

The desfription of ca.pa.bilit,ies and nmt,clling a.re not. only st.udied  in the a.gent, 
communit,y,  but. a.lso in  ot,her rela.t.ed a.rea.s. 

6.1 Works related  with  capability  description 

a 
a 

a 
a 
a 
a 
a 
a 
a 

a 
a 

a 

a 
a 
a 
a 

a 

a 

a 

a 

a 

a 

a 
a 

a 
a 

a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 

110 a 
a 
a 

a 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

a 

way, t,he specifica.t.ion usudly  contains boo much det,a.ils to  be of int,erest.s 
to  other a.gent,s. Besides, t,hose esist,ing  langmges  are so complex that t.he 
senlantic  comparison I>et.ween t,he specificakions is impossible. The  reading 
a.nd writ.ing of t,hese specifica.tions also  require  subst,ant,ial  t,ra.ining. 

2. Action  represent'ation  formalisnls. 
Agent  capa.hilit,y can be seen a.s t,he a.ct.ions t h t .  the  agents  perform.  There 
are a. number of art,ion represent.at,ion  fornlalislns  in AI phnning like the 
classical  one the STR.IPS. The  action represent,at,ion  fornlalisln  are i11a.d- 
equa.te in our task in t.hat,  t,hey are proposit,iona.l a.nd not. involving dat,a 
types. 

3 .  Concept. 1a.ngua.ges for knowledge represent.a.t.ion. - 
There a,re various  t,erminological  knowledge  represent,a.t.ion  languages. How- 
ever.  ontology iwelf does not, describe  capabilitsies. On t,he other  hand,  it 
provides a.usilia.ry concept,s to assist.  t,he  specifica.tion of the capabilities of 
a3ent.s. 

4. Dat,abase  query ca.pabilit,y descript,ion. 
The  database query  capa.bilit,y  descript,ion  t,echnique is developed as a.n 
a.t,tempt, to  describe the  informatmion sources on t,lw Int.ernet,  such  t,hat 
an a.ut,oma.t.ed int.egra.tion of informa.t.ion is  possible.  In  t,his  approa.ch 
t,he infornmion source is modeled  as a. dat.a.base  with  restricted  quering 
trapbilities. 

6.2 Works related with service  retrieval 
There  are  three broad approa.ches to service  retxieual.  One is  the informa.t.ion 
ret,rieva.l t.echniques to sea.rch for relevant  inforlnat,ion based  on test,. anotSher 
is the soft.ware component. ret.rieval t.echniques[.X][8] [I31 t.o sea.rch for  software 
conlponent,s ba.sed on softxwe specifica.t,ions. The t,hird  one is t,o search for web 
resources t,llat. a.re t*ypica.lly described as da.t,a.base 1xodels[l8][23]. 

In the soft.wa.re component,  search  t,echniques, [26] defined severa.1 not.ions of 
ma,t.ches, including t,he esa.ct.  mat,ch a.nd the plug-in ma.t.cl1,  a.nd formally  proved 
t,he  relationship  Ixtween  t,hose  matches. [8] propsecl to use a. sequence of filters 
t,o sea.rch for soft.ware components.  for t.he  purpose  t,o  inrrease t,he efficiency of 
t~he search process. [I:]] comput,ecl t,he dist,ance bet,\veen sinlilar  specificat,ions. 
All t>hese work a.re k e d  on the a1gehra.k  specification of comput,er  progra.ms. 
No concept. descript.ion a.nc1 concept. hierarchy a.re considered  in t,heir work. 

In Web resource sea.rch t,echniques, [18] proposed a lnet,hocl t,o look  for het.t,er 
sea.rch engines  t,hat. ma.y provide  more relevant,  da.t.a  for the user concerns.  and 
ra.nk t,llose sea.rch engines  a.ccording t.o their releva.nce t.o user's query. They pro- 
pose t>he c1irect.ory  of services t.o record  descript,ions of ea.ch informa.t.ion server, 
mlled a server  descript.ion. X user sends  his query t,o t,he  direct,or): of services, 
which determins and ranks  the servers  relevant. t.0 the user's request. Bot,h t.he 
query and t,he server a,re descrihed  using hoo1ea.n expression. The sea.rcl.1 1net,hod 
is ba.sed on the  simila.rity mea.sure Ixt.ween t.lle two  boolean  expressions. 

111 



7 Conclusion 
The Int,ernet. is a.n open syst.em where  lleterogeneous  agent,s can  appear  and 
c1isa.ppea.r dynamically. As t.he number of agents on t,he  Internet. increa.ses, 
t.here is a need t,o define nliddle agent,s t.o help  agent,s 1oca.t.e others t.ha.t, provide 
requested  services. In prior  research. we have identified a. variet,y of middle agent. 
t.ypes, t,heir  protocols and t,heir performance cha.ract.erist.ics. hlat,chmaking is t,he 
process t.hat.  brings  requester a.nd service  provider  agent,s together. .4 provider 
agent  a.dvertises it.s know-how. or ca.pahilit,y to a. middle  agent  t,hat. st.ores the 
a.dvertisement,s. An agent.  t,hat.  desires a pa.rt.icu1a.r service sends a middle agent, 
a. service  request, t h t  is  subsequent,ly ma.t,ched with the  middle a.gent,‘s stored 
advert,iselnent,s. The middle  agent  communicat,es  t,he resu1t.s t o  the requester 
(t,lle m y  this  lmppens  depends  on t,he type of middle agent, involved). We 
have also defined prot,ocols  tlmt, a.llow more than  one  middle a.gent, to  maintain 
consist.ency of their  adevertisenlent. datahses .  Since  nlatPchnlal&lg  is usually 
clone dyna.mica.lly and over l x g e  net,works. it  must  be efficient,. There is an 
obvious trade-off het.ween t,he  qua,lit,y and efficiency of service  ma.t,ching in the 
Internet. 

We have defined and implement.ed a la.nguage, ca.lled LARKS, for agent. ad- 
vert,isement and request, and a matchmaking process using LARKS. LARKS  ju- 
diciously ba.la.nces 1a.ngua.ge espressivit.!. and efficiency in ma.tching.  LARKS 
performs bot,ll synt.a.ct,ic and  senlantic  matching.  and  in  addition  allow t,he 
specifica.t.ion of concept,s (1oca.l ontologies) via. ITL. a concept  1angua.ge. 

The mat,cllirlg process uses five filt,ers, na.mely cont.est  ma.tching,  compari- 
son of profiles, simila.riby matching, signa.t.ure nmtching  and s e n m h c  matching. 
Different. degrees of pa.rt,ia.l matching  can result. from utilizing different. combi- 
nat,ions of t.hese filt,ers. Selection of filters to a.pply is under  t<he  control of the 
user (or the request,er a.gent). 

Acknowledgeulents: 
We would like t,o t,ha.nk Daxide  Bruga.li for helpful  discussions aad Set,h Widoff 
for help with  the  implement.a.t,ion. This resea.rch has been sponsored by ONR. 
grant, n’-OOO14-96-16-1-1222. 

a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 

e 

112 , a  



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

A Syntax of LARKS 
Definition A. l :  S:ynto.z: of Lurks 

The synt.ax of LARKS is by t.he following production system in EBNF-grammar: 

< speci f icatiolz > 

< TDec > 
< Dec > 
< DecList > 
< OptDecList > 
< OptDec > 
< TErp > 
< PType > 
< CType  > 

< E t p  > 

< E:rpList > 

< IdentList > 
< C‘onstraint.s > 

< f o.mttlnLi.st > 
< for~mzdn > 
< utom.Li.st > 
< at0.m > 
< predicate > 
< uur > 
< const > 

< UEJ13 > 

..- ..- 

..- ..- 

..- 

..- 

..- ..- 

..- 

. .- ..- 

..- ..- 

..- 

. .- ..- 

..- 

.._ 

. .- 

. .- 

..- 

..- 

< Ident > [< CDeclaration >] [< TDeclurations >] 
[< Declaration-s >] [< Constraints >] 
‘Context‘ < CDec > 
< Iclent >’ *’ < Terrn.de f init ion > I ; ’  

< TDec > I < TDec > ‘ ; I  < TDeclnrntions > 
’Input‘ < OptDecList > ‘Output‘ < DecList > 

’type’ < Irlent > [I::‘< T E z p  >]‘;’ 1 ’basicType’ < IdentList > ’ ; I  

< Ident > I : ‘ <  T E J ~  > E’=’< Erp >I1:’ 
< Dec > I < Dec > ’ ; I  < DecList > 
< OptDec > I < OptDec >’;’< OptDecList > 
[’Optional’] < Dec > 
< T1.-ar > I < BTt~pe > I < PType > I < CType > 
Bool’ I Int’  I Real‘ I ’Str ing 
’(‘[< Iclrnt >’:’I < T E r p  > ’ , I  [< Iclelzt > ’ : I ]  < TE:rp > ’ ) I  I 
< T E x p  > ‘1’ < TEzp > I 

’Setof’ ’ ( I <  T E r p  >’)’I 
’Listof ’( ’TErp’)’I 
I { ‘ <  ErpList > ’ } I  

< aErp  > I ’ ( I <  EzpList > ’ ) I  I ’ { I <  EzpList >’}’ I 
<  EX^ >’ (’< EspList > ‘ ) I  I < Ezp >‘ .’ < Ident > 
< E J : ~  > I < Ezp > ’ , I  < EzpList > 
< sC‘onst > I < m r  > I < const > 
< Iclent > I < Idrnt >’ . I  < IdentList > 
[’Inconstraints < formrclaList >] 
[‘Outconstraints’ < for,mulaLi.st >] 
< for,m.zcln > I < f ornaccla > ‘ ; I  < f or.rn.daList > 
< ato.mList > 
< atorn > I < ntorn > ’ , I  < cctonrList > 
< predicate > 1 ’not’ < predicctte > 
< Idfl l t  > 
< Iclent > 
< Ident > 

< TEl:p > ’- >’ < T E x p  > I 

1vit.h non-terminals < Iclent >. < zwr >. and < comt > denoting an ident,ifier. 
variable and const.ant . respect.ively. The non-t.ermina1 < Termde f inition > refers 
t,o t . l m  in t,he concept language ITL (see 1)elon). t,llus denot,ing a kind of a so-called 
‘escape hat.ch’ from LARKS t,o ITL. 

Convention: 
In a capability cleecript.ion or  request, any t,ernl definit.ion will be replaced by t.he name 
of t,he corresponding concept or role which is assumed t.0 be available in t.he local 
knowledge base. 

113 

http://Terrn.de


B The concept  language ITL 
Definition B.l:  Syntcrx OJ ITL 

The synt,ax of t,he concept, language ITL is given by t.he  following production  system 
in EBNF-gammar: 

< Term.ino1og.y > < Te:r,m.de:finition >+ 
< Te~-mcle f inition > ::= < C'onceptde f inition > I < Rolede f inition > 
< C'onceptrle f init ion > ::= < uto.n?.icC'oncept > ' =' < Concept > I 

< Role& f inition > ..- . .- < cubmicRole > ' =' < Role > 1 

< Concept > ..- ..- < C O I Z C  > I < -4tt).Conc > 
< Conc > < ctto.m.icC'oncept > j 

< c~tom.icC!oncept > ' =' < Concept > 

< clto.rn.icRole > I =* < Role: > 

< primC!o.m.ponent > I '(not' < prim.ColzcCo.nlpolze~lt > j  I 
'(and' < C'oncept >+ ')' I 
' (at least '  11 < Role > ' ) I  I 
'(atmost' 'm. < Role >'j' I 
' ( ex i s t s '  < Role > < Concept > ' ) I  I 
' ( a l l '  < Role >< Concept > ' ) I  I 
' ( l e '  < num. > ' ) I  I '(ge' < nerm >")' I 
' (1t '  < n.um > ' ) I  I '(gt' < n z m  >')' 

< .4ttrC'onc > ' aset('< a m 1  >+ ' ) I  

< Role > '(androle' < Role: >+ I ) '  I 

< atomicConcrpt > ..- < identif ier > I 'nothing' 
< uto.m.icRole > ..- < identifier > 
< pri.mCompone nt > ..- < pri,m,C?oncCo.m.ponfnt > I < pri~mRoEeCo~m.ponent > 
< primC'olzcC.'ompo~zerlt > ::= < identif ier >'.' 
< primRoIeCompo~?ent > ::= < idrnti f ier >'.' 

< Ter,m > ..- < Concept > I < Role > 
< ObjectSet > ..- < Instance >+ 

< utornicRole > I < pri,n,RoleCo,mpolzent > 

< Clt'CLl > < identi f ier > 

< ll?.stance > < ConceptIn.stnnce > I < Rolelnstance > 
< C'o7lc~ptIll.stnlrc~ > ' ( I <  0l) ject  > < nto~n~.icC!oncept > I ) '  I 

'(< Object > not' < p~,ifnConcCo.m.pone~zt > ' ) I  

< R f ~ k I n . s t f ~ n c e  > ' ( I <  0lj;je:ct > < nto,m.acRole > < OhJect > I ) '  I 
' ( I <  0bje:ct > < NwmRe:str > < uto.m.icRole >')' 

< StrrnRestr > 'a t least '  < n z m  > I 'atmost' < num > 
< Object > < iclenti f ier > 

The meaning of (atomic) concept or role. at.t.ri1mt.e concept.. concept. and role 
clefinit,ion. term definit.ion. t.erm, t.erminology and object set, is defined as rhe set. of 
st.rings bvvhich can be reduced t.o the respect.ive non-terminal syn~l~ols in t,he product,ion 
syst.em. 

It, is assurned that i n  every t.errttirlology T (u.rit.terl  in ITL) all used at.omic concept,s 

114 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 



and roles are unique iclent,ifiers and defined in she enumerable set,s of identifiers for 
concept,s and roles! at.t,ribut.e values and ol1ject.s. as well as primit,ive concept. and role 
components  are assumed to be pairwise disjoint,. In addision. every prirnit,ive compo- 
nent, (undefined iclensifier) in a terminology is assigned a given. fixed meaning'. 
e 

Definition B.2: S ~ n ~ a n t i c  of ITL 

Let G be a. gra.mnlar. 'P int,erpret.a.t.ion domain a.nd D, D, disjoint.  subset,s wit.11 
T, = D u Do. P ( S )  denot.es the power set of any set S. The senmnt,ic of ITL 

e 
e 
e 
e 
e 
e 
e .  
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 115 

e 
e 



References 
[l] Jose' Luis -4mbit,e and Craig A .  I\;noldock. Planning by  Rewriting: Efficiently 

Generat.ing High-Qualit,y Plans. Proceedings of t,he  Fourteenth Nat,ional Confer- 
ence on Artificial Int,elligence. Providence, RI. 1997. 

[L'] J. E. Caplan. M. T .  Harancli. A logical framework for software proof reuse. Pro- 
ceedings of t.he ACM SIGSOFT Symposium on Softxare Reusability,  April 1995. 
ACM Soft.ware Engineering  Not,e, -4ug. 19%. 

[3] I<. Decker, Ii. Sycara. RI. \AXliamson. kliddle-.kgent.s for the  Mernet.  Proc. 15t.h 
IJC.41. pages 57S-58:3, Nagoya, Japan, .IupLIst, 199.7. 

[A] S. Cranefield. -4. Diaz. hl. Purvis.  Planning and hhchmaking for the  Interopera- 
tion of Informasion  Processing Agenbs. The Informasion Science Discussion Paper 
Series No. 9T/O1. lyniversity of Otago. 

[S] P. Fankhauser, hl. Icracker. E.J. Neuhold. Sexnantic YS. St.ruct,ural Resemblance of 
Classes. Special Issue: Senlant,ic Issues in hludt.idat,abase Systems, ACM SIGMOD 
RECORD, Vol. 20, No. 4, pp.59-63. 1991. 

[6] P. Fankhauser.  E.J. Neuhold. Iinowledge  based int.egrat.ion of het,erogeneous 
databases. Proceedings of IFFIP Conference DS-5 Semantics of lnt,eroperable 
Datalxse Syst.ems, Lorne. Vict,oria. .kust,ralia, 1992. 

[T ]  T. Finin. R. Frit,zson, D. McIiay. R. McEnt,ire. KQML as an Agent. Communica- 
tion Lan<guage. Proc.  3rd Int,ernat.ional Conference on  Information and 1l;nowledge 
Management, CIIiM-94, -4ChI Press, 1994. 

[8] J. Goguen. D. Nguyen, 1. Meseguer, Luqi, D. Zhang: V. Berzins. Soft.wa-e com- 
ponent  search. J0~1rn.d of Syst,enls Integration, 6, pp. 93-134. 1996. 

[9] (2. HLIC~.  P. Fankhauser. I i -  -4berer. E.J. Neuhold.  Jedi: Ext.racting and Synthe- 
sizing 1nformat.ion from t,he Welx Proceedings of Int,ernat,ional Conference on Co- 
operat,ive  Informat,ion  Systems  CoopIS'98. IEEE Computer S0ciet.y Press. 1908. 

[lo] Jaco1x.N.. Shea.R., 1995, "Carnot.  and  InfoSleuth - Database Technology and the 
WLVW"y -4CM SIGAlOD Int.ern. Conf. on iVIanagement. of Data, May 1995 

[ll] Jacobs.N.,  Shea.R.. 1996, "The role of Java in InfoSleut,h: Agent,-based exploita- 
tion of het,erogeneous inforrnat,ion ressources"l Proc. of Int,ranet,-SG Java Devel- 
opers Conference!  -1pril 1996 

[I?] S. Jha. P. Chalasani. 0. Shehory and I<. Sycara. A Formal  Treat,ment. of Dis- 
t.ril>ut,ed h;latchmaking. In Proceedings of t.he Second  Int,ernat,ional conference on 
.4ut,onomous Agerm (-1gent.s 9S)> Rlinneapolis. ME. hIay 1998. 

[1:3] J-.I. .Jeng. B.H.C.  Cheng. Specification matching for  software  reuse: a foundat.ion. 
Proceedings of t,he -4CU SIGSOFT Symposium  on Soft.ware Reusa1ilit.y. -4CM 
Software Engineering Now, -411g. 1995. 

[I43 hl .  I<lusch. Cooprr/tivc Inforrnrrtion .4gtn,ta on thc Irrtrt.net. PhD Thesis, Univer- 
sit.? of Iiiel? December 1996 (in  German) I<ovac Yerlag. Hamlxlrg. 1998. ISBN 
3-.uGO64-T46-6. 

[Is] k1. Kracker. -4 fuzzy concept network. Proc. IEEE Internat.iona1 Conf. on FLIZZ!~ 
Syst.ems. 1992. 

[I61 R.Iiruse. E.Schwecke. J.Heirlsohn. ~ ~ u c e r t c r i t ~ t y  crnd I'ccgzler~es.s in Iinowlcrlge 
Bo.wrl .Sysfem.s. Springer. 1991. 

116 

http://Irrtrt.net


[17] D. Iiuokka. L. Harrada. On using IiQSIL for Matchmaking. Proc. 3rd I d .  Conf. 
on Infor~nation  and Iinowleclge Management C'IIihI-95. pp. 239-4.5. .4.4AI/h;IIT 
Press, 199.5. 

[IS] S.-H. Li. P. B. Danzig. Boolean Similarit,! bleasures for Resource Discovery. 
IEEE Transactions on Iinowleclge and Data Engineering. Yol.9. No. 6! Novem- 
I>er/Decenher, 1997. 

[21] G. Smolka. and M. Schmidt,-Schauss. .it.t,rihut.ive concept. clescript,ion with cont- 
plemems, A I  48. 1991. 

["I I<. Sycara.  I<. Decker. -4. Pannu, iL1. VLYlliamson. and D. Zeng. Dist,ributed 1nt.el- 
ligent -4gent,s. IEEE Expert. pp:36-46, December 1996. 

[23] \'. Vassalos. k'. k'apal;onst,ant.inou. Expressive C'apabilit,ies Descripbion Languages 
and  Query Rewriting -4lgorit.hms. availalde at. ht.t,p://~~\~\v-cse.ucsd.edu/ yan- 
nis/.papers/vpcal,L'.ps 

[?a] G. Wickler. Using Expressive and Flexible .4ct,ion Representations 
to Reason about. Capahilit.ies for helligent, Agent, Cooperat.ion. 
h t . t . p : / / a ~ ~ ~ ~ w . d a i . e d . a c . u k / s t u d e n t 5 / g u . / n ~ l  

[253 WordNet. - a Lexical Dat.ahase for English. ht.tp://wu.w.cogsci.princeton.edu/ wn/ 

[ X ]  -4. M. Zaremski. J. M .  Wing Specificat.ion mat.ching of soft,.ware components. 
Technical Report, C"Li-CS-9.5-12T. 1995. 

[?TI Resource Descript,ion Framework (RDF) Schema Specification. 
llt,t.p://w\vvw.~~.:3.org/TR/WD-rdf-schema/. 

[?SI Ben Pott,er,  Jane Sinclair. David Till.  Introduct,ion t.o Formal  Specification and 
Z, Prencice-Hall Int.ernat,ional Series in Computer Science. 

a 
a 
e 
a 
e 
e 
a 
a 
a 
a 
a 
e 
a 
e 
a 
a 
a 
a 
a 
0 
a 
a 
a 
a 
a 
0 
a 
a 
a 
0 '  
e 
a 
e 
e 
a 
a 
a 
a 
e 
e 
a 117 

a 
a 

http://ht.tp://wu.w.cogsci.princeton.edu


This page intentionally  left blank. 

118 



Distribution: 
MS0188  LDRD  Program  Office,  1030  (Attn:  Donna  Chavez) 
MS0451 S .  G. Varnado, 6500 
hIS0455 R. S .  Tamashiro,  65 17 
MS0455 H. E.  Link, 6517 
MS0455 S .  Y. Goldsmith,  65  17 
MS0455 L. R.  Phillips,  6517 
MS0455 S .  V. Spires,  65 17 
MS9018  Central  Technical  Files,  8945-1 
MS0612  Review & Approval  Desk  for DOE.OSTI,9612 
MS0899  Technical  Library,  961  6 

119 



L 

This page intentionally left blank. 

120 


	ABSTRACT
	CONTENTS
	1. Introduction
	2. BackgroundandProblem Statement
	3. Approach
	4. Focus on Ontologies and Their Representation
	5. The Ontology of the Border Trade Facilitation System (BTFS)
	6. Specifying Patterns of Interaction and Processing Schemata
	7. Security Policy and Cryptographic Protocols
	8. Associated Work
	9. Conclusions
	10. References
	Appendix I. Operations and Roles of U.S./Mexico Cross-border Trade
	Appendix II. Publication Reprints
	Appendix III. Code and Programs
	Appendix IV. Reprint of CMU reference that defines LARKS
	Distribution

