

SAND REPORT

SAND2002-1600
Unlimited Release
Printed May 2002

PT3660 Destructive Thermal Battery
Tester System Software Overview

Joseph E. Garni

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

 2

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

 SAND 2002-1600
Unlimited Release
Printed May 2002

PT3660 Destructive Thermal Battery Tester System Software Overview

Joseph E. Garni
Power Source Components Department

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-0614

Abstract

The PT3660 Destructive Thermal Battery Tester is used to evaluate the performance of various types of
thermal batteries using test profiles to simulate the real-world conditions under which the batteries will
operate. The PT3660 will replace the PT3392 tester, which has been used for production thermal battery
testing since the mid-1980s. The PT3660, like its predecessor, performs both development and
production lot testing. The PT3660 software runs in the MS-DOS operating environment on an IBM-
compatible PC. It consists of two major parts: the operator interface software and the data acquisition
and load control software. In addition, there are software modules for system configuration, calibration,
hardware analysis and troubleshooting, and post-test data analysis.

This document presents an overview of and descriptive paragraphs for each routine within each software
module that comprises the PT3660 system software. The software source code files are available by
request from the author.

 3

This page intentionally left blank.

 4

TABLE OF CONTENTS

1. Pt3660 System Software ..9

1.1. Overview..9

1.2. Why DOS and not Windows?..11

1.3. Development System Software..12

1.4. Libraries used in PT3660 Software Development ...13
1.4.1. DAS_LIBM.LIB ..13
1.4.2. XMSIFH.LIB...13
1.4.3. MCIB.LIB..13
1.4.4. GRAPHICS.LIB ..14
1.4.5. UI3660.LIB..14

1.5. Installing the Operating Software on a PT3660 Computer System...................................14
1.5.1. From the Windows environment ...14
1.5.2. From the DOS environment...15

1.6. Installing the Source Code on Your Computer System...17

1.7. Building New Executable Versions of the Software ...18
1.7.1. ACQ_LOOP.EXE, DACTEST.EXE, VERIFYAD.EXE, TSTSQUIB.EXE,

TESTDIO.EXE, TSTMON.EXE...18
1.7.2. PT3660.EXE ..18
1.7.3. SYSCFG.EXE..19

2. Descriptions Of Software Routines ...19

2.1. ACQ_LOOP.EXE..19
2.1.1. all_gpib_devices_offline (gpiboffl.c) ..19
2.1.2. all_loads_off (loadsoff.c)...19
2.1.3. allocate_extended_memory (allocxms.c) ..19
2.1.4. apply_and_measure_cal_pulses (calpulse.c) ...19
2.1.5. build_one_data_file (bld1file.c)...20
2.1.6. cleanup_before_exit (cleanup.c) ..20
2.1.7. close_volt_violations (clsvtvio.c) ..20
2.1.8. construct_file_name (cnstflnm.c) ..20
2.1.9. convert_report_values (conv_rpt.c) ...20
2.1.10. convert_test_params (convprms.c) ..20
2.1.11. convert_to_unsigned (conv_uns.c) ..20
2.1.12. copy_file (copyfile.c)...21
2.1.13. create_data_file_directories (creatdir.c) ..21
2.1.14. create_directory_path (dir_path.c)...21
2.1.15. create_test_status_file (statfile.c)...21
2.1.16. dac_02_voltage_out (dac02.c) ...21
2.1.17. DasBirth (analogic.c) ...21
2.1.18. DasDeath (analogic.c)..21
2.1.19. DasDisable (analogic.c) ...21

 5

2.1.20. DasEnable (analogic.c) ..22
2.1.21. DasOutput (analogic.c) ..22
2.1.22. DasRead (analogic.c) ...22
2.1.23. DasWrite (analogic.c) ..22
2.1.24. deallocate_extended_memory (dealloc.c)..22
2.1.25. display_battery_connect_message (cnct_msg.c) ...22
2.1.26. display_error_msg (disp_err.c) ..22
2.1.27. final_acq_board_setup (final.c) ...22
2.1.28. final_data_posting (finlpost.c) ...22
2.1.29. find_current_axis_limits (curraxis.c)...23
2.1.30. find_max_currents (max_curr.c)..23
2.1.31. find_time_scale_factor (scl_fctr.c) ..23
2.1.32. find_volt_range (vltrange.c) ..23
2.1.33. find_voltage_axis_limits (voltaxis.c)...23
2.1.34. find_voltage_divider_values (volt_div.c) ..23
2.1.35. find_x_tic_spacing_val (x_tics.c) ..23
2.1.36. find_y_tic_spacing_val (y_tics2.c) ..23
2.1.37. get_dac_conversion_values (dac_conv.c)..24
2.1.38. get_disk_free_space (diskfree.c)..24
2.1.39. get_file_size (filesize.c) ...24
2.1.40. init_all_gpib_devices (init_all.c) ...24
2.1.41. init_gpib_device (initgpdv.c)...24
2.1.42. init_power_supplies (init_ps.c)..24
2.1.43. input_gpib_str (gpibrdst.c)...24
2.1.44. main (ubt_main.c) ..24
2.1.45. midstring (substr.c) ..24
2.1.46. output_current_to_DAC (out_dac.c) ...24
2.1.47. output_gpib (out_gpib.c)..25
2.1.48. pre_fire_setup (pre_fire.c) ...25
2.1.49. print_file (prntfile.c) ..25
2.1.50. print_report (report.c) ..25
2.1.51. process_data_into_files (datafile.c) ...25
2.1.52. ProcessLoop (acq_ctrl.c)..25
2.1.53. read_chans (rd_chans.c)...26
2.1.54. read_chart_recorder_data (rdchtrec.c) ...26
2.1.55. read_load_file (readload.c) ..27
2.1.56. read_test_parameters_file (testprms.c) ..27
2.1.57. read_tester_config_file (tstrcnfg.c)..27
2.1.58. read_tester_info_file (tstrinfo.c) ..27
2.1.59. report_gpib_error (rptgperr.c)..27
2.1.60. reset_all_dio_lines (rsalldio.c)...27
2.1.61. round (round.c) ..27
2.1.62. round_up_to_nearest (nearest.c) ..27
2.1.63. rtrim (rtrim.c) ...27
2.1.64. set_all_loads_on (loads_on.c)..28
2.1.65. set_chart_recorder_for_long_tests (cr_long.c) ..28

 6

2.1.66. set_digital_out (dig_out.c) ...28
2.1.67. set_power_supply (set_ps.c) ..28
2.1.68. set_profile_end_records (prof_end.c) ..28
2.1.69. set_working_directory_to_root (wd_root.c) ..28
2.1.70. setup_chart_recorder (chartrec.c) ..28
2.1.71. setup_plot_parameters (plotprms.c)...28
2.1.72. setup_plots (plot_set.c) ..29
2.1.73. sleep (sleep.c)...29
2.1.74. strichr (strichr.c)...29
2.1.75. wait_for_char (waitchar.c)...29

2.2. TSTSQUIB.EXE..29
2.2.1. cal_setup_chart_recorder (calctrec.c) ..29
2.2.2. main (tstsquib.c)...29
2.2.3. milliseconds_wait (msecwait.c)...30
2.2.4. milliseconds_wait_with_acq (mswtacq.c) ...30

2.3. DACTEST.EXE...30
2.3.1. main (dactest.c) ..30
2.3.2. read_chans (rd_chans.c)...31
2.3.3. setup_dynaload (setup_ld.c) ..31
2.3.4. test_dac_outputs (tstdaout.c)..31

2.4. TESTDIO.EXE ..32
2.4.1. main (testdio.c) ..32

2.5. VERIFYAD.EXE...32
2.5.1. analog_input_verification (inp_ver.c)..32
2.5.2. main (verifyad.c)..32

2.6. TSTMON.EXE ..32
2.6.1. main (tstmon.c) ..32

2.7. PT3660.EXE ..32
2.7.1. BigListBox...32
2.7.2. CalcTime..33
2.7.3. CheckDiskOK..33
2.7.4. CheckDiskOKForWrite ...33
2.7.5. CheckTestSpecs ...33
2.7.6. ClearBackground ...33
2.7.7. ClearTBScreen1Inputs...33
2.7.8. CrossCheckError..33
2.7.9. CrossCheckTDS...33
2.7.10. DisableUIToolbox..33
2.7.11. DisplayDiskFreeSpace...33
2.7.12. DisplayMainMenu ...34
2.7.13. DisplayMessage ...34
2.7.14. EnableUIToolbox...34
2.7.15. FileSelect..34
2.7.16. FindDocumentReference ...34

 7

2.7.17. GetTestStatus ...34
2.7.18. InitAndRunTest..34
2.7.19. InsertTDSFloppy..34
2.7.20. LoadTDSFile..34
2.7.21. OpenLoadFile ..35
2.7.22. PaintBackground..35
2.7.23. ReadConfigurationFiles ...35
2.7.24. ReadCurrentConfig ..35
2.7.25. RecordNotification...35
2.7.26. SelectTDSFile ..35
2.7.27. SelectTDSFile ..35
2.7.28. SetupTestParamFile ...35
2.7.29. TBTestSpecs ..35

2.8. SYSCFG.EXE..35
2.8.1. AlterTesterConfig ..36
2.8.2. AlterTesterInfo...36
2.8.3. BigListBox...36
2.8.4. CheckDiskOK..36
2.8.5. CheckLoadInputs ...36
2.8.6. FileSelect..36
2.8.7. GetLoadInputs..36
2.8.8. GetUserSelection ...36
2.8.9. IdleTime...37
2.8.10. InitLoadRecord ..37
2.8.11. ModLoad..37
2.8.12. OpenLoadFile ..37
2.8.13. OpenTesterInfo ..37
2.8.14. ReadCurrentConfig ..37
2.8.15. ReadLoadTypes ...37
2.8.16. StoreCurrentConfig..37
2.8.17. StoreTesterInfo ..37
2.8.18. WriteRecToDisk ..37

2.9. QACHKSUM.OBJ...37
2.9.1. qachksum ...37
2.9.2. do_exclusive_or ...38
2.9.3. compare_checksums ..38
2.9.4. midstring ..38

 8

1. PT3660 SYSTEM SOFTWARE

1.1. Overview
The PT3660 Destructive Power Source Tester software runs on an IBM-compatible PC
under the MS-DOS operating system (not Windows) and consists of two main executable
programs for setting up and executing a destructive power source test. It also includes a
program for maintaining the current load module configuration within the system as well
as several small programs for testing and verifying hardware components of the system.

The two main testing programs are PT3660.EXE and ACQ_LOOP.EXE. Both reside on
the system hard drive in the root directory (C:\). The PT3660.EXE program processes a
Test Definition System (TDS) file and accepts user inputs necessary to execute the test.
The TDS file contains information needed to control loading of the battery during the
test. This information includes loading parameters (expressed in amps, ohms, or watts)
and corresponding test times at which to set loads to those parameters, and minimum and
maximum voltage specifications and corresponding times. User inputs to PT3660
include (among others) user name, part number, test data storage path names, and
filtering parameters. Filtering parameters are used to reduce the amount of data captured
by the system during a test, as they define a guardband around a data point that has been
recorded in memory. Once a point has been recorded in memory, no other points will be
recorded until a data point’s voltage or current component differs from the last recorded
voltage or current by the specified filter parameter or more. Without filtering, the amount
of data recorded would be overwhelming, since data is taken every millisecond during the
test.

Once all TDS and user inputs are verified for correctness, PT3660.EXE invokes the DOS
system to run ACQ_LOOP.EXE. Before it does, however, PT3660 stores all necessary
setup information in a file (TESTPRMS.DAT). When ACQ_LOOP runs, it reads this
file. ACQ_LOOP then performs the following tasks:

 Establishes global data structures for storage of setup and test data.

 Initializes all system devices on the GPIB interface. This includes two power
supplies, load modules, and the Yokogawa chart recorder.

 Initializes the three data acquisition/load control boards, setting them up to
capture data at 10kHz on each of the eight differential input channels, for a total
of 80,000 readings per second.

 Initializes the Yokogawa chart recorder, setting it up for capture of as many input
signals as will be necessary based on the number of test channels defined by the
TDS file.

 Performs a calibration pulse check for each A/D board and channel accepting
inputs from the battery. This is done to verify the accuracy of the input A/Ds and
the load programming digital-to-analog (D/A) converters.

 9

 Executes the test by repetitively performing each of the following steps every
millisecond until all battery channels fall below termination voltage:

 Captures data from the A/D boards

 Filters the data and records it in memory if necessary.

 Checks for channels below termination voltage.

 Checks for minimum and maximum voltage violations.

 Updates minimum and maximum voltage levels if necessary.

 Updates D/A load programming voltage levels.

 Sends load programming signals from D/A to load modules.

 Updates the real-time graph on the monitor.

 User interface inputs

Figure 1 – PT3660 System Software Diagram

In addition to the main testing programs, there are several other programs that are used
for system configuration, troubleshooting, and calibration:

TDS File
(Load profile,
pass/fail limits)

PT3660.exe

Testprms.dat

Acq_loop.exe

Analogic data
acquisition boards

GPIB devices –
power supplies,
load modules,
chart recorder

Test report and Excel-
compatible data file

 10

SYSCFG.EXE – Allows users to specify the load modules currently resident in the
Dynaload MCL488 Multichannel Load. This information is used when calculating
values for setting D/A outputs for load programming during testing, troubleshooting, and
calibration.

TSTSQUIB.EXE – Performs a test of the battery ignition (squib) and conductance-after-
fire circuitry.

VERIFYAD.EXE – Performs continuous acquisition of voltage readings from one of the
system analog-to-digital (A/D) boards and displays them on the monitor. This allows the
operator to send known voltage signals (from a power supply or calibrator) into the
system sensing inputs to see how accurately the A/Ds are sampling.

TESTDIO.EXE – Allows the operator to set one of the system’s 48 digital I/O lines to a
specified state (low or high) so that signals can be checked within the interconnect
chassis. Each of the three data acquisition boards contains 16 digital I/O lines. Digital
I/O lines are used to set switches for signal routing within the interconnect chassis.

DACTEST.EXE – Tests the accuracy of the Dynaload load modules and loading
circuitry. Allows the operator to specify a load channel and current level at which to set
the load module. DACTEST then reads the corresponding voltage across the channel’s
current-viewing resistor so that the operator can check the accuracy of the current-sensing
circuitry and A/D board.

TSTMON.EXE – Tests the monitor circuit of the PT3660.

1.2. Why DOS and not Windows?
Good question. The answer lies in the timing requirements of the system. Data must be
acquired and loads must be changed on millisecond boundaries. Furthermore, load
changes can be triggered not only by the passing through of a time value, but by the
passing through of a voltage level, especially during a battery’s rise towards its nominal
voltage after ignition. Further still, load programming voltages (sent out by the D/A
converters) must be adjusted as often as possible to coincide with changes in the battery
voltage, as load resistance and power values must be converted to current (amps) values
in order to program the load module to the correct load level. This conversion is based
on Ohm’s Law (Voltage = Current * Resistance). All of this means that battery voltage
values must be examined every millisecond in order to determine load profile step
changes and load programming voltage values. Windows, being a multitasking system,
cannot dedicate itself fully to running an application that requires this precise timing, but
the DOS system, which only runs one program at a time, is able to do this. In fact, the
DOS system clock cannot even be used to perform the timing; its resolution is too coarse.
Timing is performed by checking the data-ready bit in the status register of the A/D
boards and reading the board’s data register to acquire a data reading. When 80 readings
have been taken on each A/D board (a reading on each of the eight channels taken every
100 microseconds), this indicates that another millisecond has passed.

 11

The timing of the data acquisition and load control loop is verified by checking the FIFO
buffer overflow bit on the data acquisition boards. The board has a 128-sample first-in,
first-out (FIFO) to hold data readings as they are captured by the board. Each time a new
reading is captured and stored in the FIFO, an internal pointer (let’s call it the storage
pointer) to the next available storage word in the FIFO is incremented or set to the first
word in the FIFO, depending upon where in the FIFO the latest reading was placed. At
the same time, another internal pointer (called the read pointer) is incremented (or
wrapped around to the first element in the FIFO) every time a sample is read out of the
FIFO using the _inpw call (see the ProcessLoop source code listing in section 1.52 of the
PT3660 Destructive Thermal Battery Tester System Software Source Code Document).
The read pointer should always lag just a little bit behind the storage pointer. However, if
the storage pointer passes the read pointer (is more than 128 samples ahead of the read
pointer), this causes an overflow condition and means that data collection, processing,
load control, and graph updates have taken longer than one millisecond to accomplish.
Detection of an overflow condition causes immediate termination of the data acquisition
and load control software and therefore the termination of the test.

1.3. Development System Software
The ACQ_LOOP.EXE program was written in Microsoft C/C++ Version 7.0, though
only C syntax was used. The file editing and executable file builds are performed using
C/C++’s Programmer’s Workbench environment. This environment can be run from any
release of Windows, although it can produce executable files for both DOS and
Windows. See the Microsoft C/C++ manual set, specifically, the “Environment and
Tools” manual for further details on the use of Programmer’s Workbench.

The PT3660.EXE and SYSCFG.EXE programs were written in Microsoft BASIC
Version 7.1 for DOS. The QBX development environment provided by BASIC 7.1 is
used for editing source code, but is not used for compiling and linking. A batch file,
UI3660.BAT, has been developed to perform this task. Both the QBX environment and
the batch file can be accessed from Windows using DOS emulator windows. The
BASIC.BAT batch file sets up environment variables (in SETBENV.BAT) needed by
QBX, then runs the QBX environment. When modifying BASIC code, you can save a
little time by opening the BASIC 7.1 window to get the QBX environment, then opening
an MS-DOS window and moving to the directory where source files are located. This
way, you can edit the program code in QBX, save the source code file, then move to the
DOS window and run UI3660.BAT to compile and link. BASIC was chosen over C/C++
because of its User Interface Toolbox, which makes it easier to develop a Windows-like
user interface with buttons, input fields, drop-down menus, and mouse click processing.
C/C++ has no such library. For further details, consult the BASIC Language Reference
or Programmer’s Guide.

 12

1.4. Libraries used in PT3660 Software Development

1.4.1. DAS_LIBM.LIB
This library contains routines used to control the Analogic HSDAS, MSDAS, and
LSDAS family of data acquisition and process control boards. The PT3660 system uses
three of these boards; each board has 8 differential analog-to-digital (A/D) channels with
either 12 or 16 bits of resolution, two digital-to-analog (D/A) converters, and 16 digital
I/O (DIO) lines. Board number 1 is used to read voltage signals from all battery
channels, and its D/A converters send load programming signals to loads for battery
channels 1 and 2. Board number 2 is used to read current (actually voltage across a
current-viewing resistor) signals, and its D/As control loads on battery channels 3 and 4.
Board number 3 is used to read voltage signals representing three thermocouples set to
send a signal representing one millivolt per degree centigrade. Its D/As control loads on
battery channels 5 and 6. DIO outputs are used on all three boards to switch on and off
various signals within the interconnect chassis and intermediate load. See the Analogic
DAS-LIB Programmer’s Reference for further details.

1.4.2. XMSIFH.LIB
This library contains routines for setting up extended memory for storage of data during
the course of the test. Disk storage is not possible while the data acquisition/load control
loop is executing, as the timing of the loop would be compromised. Normally, DOS does
not have access to memory past the one-megabyte boundary, but this library makes it
possible to get access to as much extended memory as is available in the system. It does
this by setting up pointers (handles) to large blocks of extended memory, then providing
functions for writing to and reading from specified areas within those blocks. This way,
a small (1 KB) buffer can be used to store recorded data; when the 1 KB block is full, it is
written to the next available area within the current extended memory block. If an
extended memory block becomes full, get the next available memory block handle and
begin writing to the next block. The author of this library has provided a small
documentation package explaining all available routines and how to call them from your
program.

1.4.3. MCIB.LIB
This library was developed by National Instruments for use with the AT-GPIB/TNT
family of IEEE-488 interface boards. The boards use the GPIB (General Purpose
Interface Bus) protocol to communicate with instruments. In the PT3660, GPIB
instruments include the two power supplies (Agilent 6032A and Xantrex XFR 35-35), the
Dynaload MCL488 Multi-channel Electronic Load, and the Yokogawa ORM1300 chart
recorder. The MCIB library contains routines for initializing instruments, writing
commands to and receiving data from GPIB instruments. There are three manuals that
explain the use and programming of the AT-GPIB/TNT boards: (1) Getting Started With
Your AT-GPIB/TNT and the NI-488.2 Software for DOS , Part Number 320718C-01, (2)
NI-488.2 User Manual for DOS, Part Number 320700-01, and (3) NI-488.2 Function
Reference Manual for DOS/Windows, Part Number 320702C-01. All of these manuals
are available for download from the National Instruments web site www.ni.com. They
download in the form of Adobe Acrobat-compatible .pdf files.

 13

http://www.ni.com/

1.4.4. GRAPHICS.LIB
This library is part of the Microsoft C/C++ Version 7.0 development package and
provides both low-level and high-level routines for drawing basic shapes such as lines,
circles, and rectangles, and creating complex charts and graphs. The PT3660 software
uses mostly low-level routines for creating lines and rectangles and placing text on the
screen at specified coordinates. Most of the graphics library functions used in the
PT3660 software can be found in the setup_plots routine in the plot_set.c source file. For
further details on the graphics library, consult the Microsoft C/C++ 7.0 manual set,
specifically chapter 9 of the Programming Techniques manual (titled Communicating
with Graphics) and the Run-Time Library Reference manual.

1.4.5. UI3660.LIB
This is a small library containing miscellaneous low-level routines used by the
PT3660.EXE user interface program. It is made up of routines from the Microsoft
BASIC 7.1 dtfmter.lib library plus the uiasm.obj and intrpt.obj object files.

1.5. Installing the Operating Software on a PT3660 Computer System
NOTE: It is assumed that the computer system has had Windows 98 and all drivers for
the Jaz and CD-ROM drives installed on it.

1.5.1. From the Windows environment
a. Insert the PT3660 Installation Control Disk (AM1A0683) into the CD-ROM drive.

b. Run Windows Explorer (Start -> Programs -> Windows Explorer). Check to see that
the icon for the CD-ROM drive (E:) appears in the left-side window of Explorer. If
there is an icon for drive E:, proceed to step j.

c. Run the Notepad program (Start -> Programs -> Accessories -> Notepad) and open
the autoexec.bat file in the C:\ root folder. Locate the line that references the CD-
ROM driver mscdex.exe. The word “REM” (not necessarily all in capital letters)
should be at the start of the line. Move the cursor to the beginning of the line and
press the Delete key until the word REM disappears.

d. Select the File menu option, then select Open from the drop-down menu.

e. Click the Yes button when asked if the file should be saved.

f. Now type config.sys in the file name box and click on the Open button.

g. Locate the line containing a reference to mscd001 and delete the REM at the
beginning of the line.

h. Select File, then select Exit. Click the Yes button when asked to save changes.

i. Reboot the computer (Start -> Shut Down, select the Restart radio button, then click
OK). When the Windows 98 Startup Menu appears, use the up-arrow key to select
the Normal option, then press the Enter key. When the system boots up into
Windows, run Windows Explorer.

 14

j. Click on the icon for drive E: in the left-side window. Files and folders on the CD-
ROM will appear in the right-side window.

k. Select the Edit menu option on the menu bar, then choose Select All from the drop-
down menu.

l. Click on the selected area and drag it to the C: root folder icon in the left side
Explorer window. This will initiate a copy of all files and folders from the CD-ROM
disk.

m. Run the Notepad program (Start -> Programs -> Accessories -> Notepad) and open
the autoexec.bat file.

n. Insert the letters REM at the very beginning of the line containing the reference to
mscdex.exe.

o. Make sure that the following four lines appear in the file:

path=c:\;c:\at-gpib;d:\;d:\pt3660

c:\ni-pnp

loadhigh c:\tools_95\guest

pt3660.exe

 If one or more of these lines is not present, type them in as the last four lines of
the file.

p. Click on the File menu option, then choose the Open option from the drop-down
menu. Click the Yes button when asked to save the file.

q. When the file selection window appears, type config.sys in the file name box, then
click on the Open button.

r. Insert the letters REM at the very beginning of the line containing the reference to the
CD-ROM driver mscd001.

s. Make sure that the following line appears in the file:

Device=c:\at-gpib\gpib.com

 If this line does not appear in the file, type it in as the last line of the file.

t. Click the File menu option,then select the Exit option. Click the Yes button when the
file save window appears.

u. Restart the system (Start -> Shut Down, select the Restart radio button, then click the
OK button.

v. When the system boots up, the PT3660 software will run automatically.

1.5.2. From the DOS environment
a. Insert the PT3660 Installation Control Disk (AM1A0683, the latest suffix and issue)

into the CD-ROM drive.

b. From then C:\> prompt, type edit autoexec.bat.

 15

c. Look for a line that references the CD-ROM driver mscdex.exe. If the line has the
letters REM (not necessarily case-sensitive) as the first three letters of the line, move
the cursor to the beginning of the line and use the Delete key to erase the three letters.

d. Press the Alt key. Use the down-arrow key to move to the Open menu option and
press Return. When the file selection window appears, type config.sys in the input
box and press Return. Choose the Yes option if you are asked to save changes.

e. When the config.sys file appears on the screen, examine it and look for a reference to
the CD-ROM driver mscd001. If the line has remark statement (REM) in the first
three letters, remove it.

f. Press the Alt key. Use the down-arrow to move to the Exit menu option. If you’re
asked to save the file, choose the Yes option.

g. If you had to remove REM statements from either autoexec.bat or config.sys, press
Ctrl-Alt-Delete to reboot the computer. When the computer boots, it will boot into
the PT3660 program. Press Alt-E to exit from the program.

h. Type xcopy e: /s at the C:\> prompt and press the Enter key. This will install
operating software and driver files for the NI 488 board and the Jaz drive.

i. Type edit autoexec.bat. Locate the line with the reference to the CD-ROM driver
mscdex.exe and insert the letters REM at the very beginning of the line.

j. Now make sure that the following four lines appear in the file:

path=c:\;c:\at-gpib;d:\;d:\pt3660

c:\ni-pnp

loadhigh c:\tools_95\guest

pt3660.exe

 If one or more of these lines is not present, type them in as the last four lines of
the file.

k. Press the Alt key, then use the down-arrow key to move to the Open menu option.
When the file selection window appears, type config.sys in the file name box, then
press the Enter key.

l. Locate the line with the reference to the CD-ROM driver mscd001 and insert the
letters REM at the very beginning of the line.

m. Now make sure that the following line appears in the file:

Device=c:\at-gpib\gpib.com

 If the line is not present, type it as the last line of the file.

n. Press the Alt key and use the down-arrow key to move to the Exit menu option. Press
Return. When you’re asked to save the files, press the Enter key to activate the Yes
option.

o. Press Ctrl-Alt-Delete to reboot the computer.

 16

1.6. Installing the Source Code on Your Computer System
NOTE: Make sure that you have installed the Microsoft C/C++ Version 7.0 and
Microsoft BASIC Version 7.1 development environments before proceeding with this
section. The installation programs can be found on disk 1 of each system’s installation
disk set.

a. Insert the PT3660 Source Code CD into the CD drive on your computer.

b. Run the Windows Explorer program and locate the drive letter of your CD drive in
the left-side window.

c. Click on the CD drive letter and its description. All root folder names on the CD will
appear in the right-side window.

d. Click on the Edit option on the menu bar, then select the Select All option from the
drop-down menu. All files and folder names in the right-side window will be
highlighted.

e. Click somewhere in the highlighted area, and while holding the left mouse button
down, drag the highlighted area to the left-side window to the folder where you want
to install the software. When the target folder name becomes highlighted, release the
left mouse button. This will initiate the copy procedure.

f. In the left-side window, locate the name of the folder where you placed the source
code and development systems. If it is not expanded so that subfolder names are
visible, do so by clicking on the + symbol next to the folder name.

g. Locate the C700 folder icon and expand its subfolder diagram using the + symbol.
Locate the BIN folder icon and left-click on it. A listing of all files and folders in the
BIN folder will appear in the right-side window.

h. Find the PWB.EXE file name and right-click on it. A drop-down menu will appear.
Select the Create Shortcut option from this menu. This will create an item called
Shortcut to PWB at the bottom of the right-side window.

i. Scroll down to the bottom of the right-side window (if necessary) and left-click on the
Shortcut to PWB item. Drag it to somewhere on your Windows desktop, and release
the mouse button.

j. Locate the Shortcut to PWB icon on your Windows desktop. If you wish to rename it,
right-click on it and select the Rename option from the drop-down menu, then type
the new name in the box underneath the desktop icon.

k. Now go back to the Windows Explorer window and click on the BC7 entry in the left-
side window.

l. In the right-side window, locate the BASIC.BAT entry. Right-click on it and select
Create Shortcut from the drop-down menu.

m. Locate the Shortcut to BASIC.BAT entry, left-click on it, and drag it to the desktop. If
you wish, change its name as you did for the PWB icon in step j.

 17

1.7. Building New Executable Versions of the Software

1.7.1. ACQ_LOOP.EXE, DACTEST.EXE, VERIFYAD.EXE, TSTSQUIB.EXE,
TESTDIO.EXE, TSTMON.EXE
Within the Programmer’s Workbench environment, open the desired project by selecting
the Project menu item, selecting Open Project from the drop-down menu, then selecting
filename.mak (where filename refers to ACQ_LOOP, DACTEST, VERIFYAD,
TSTSQUIB, TESTDIO, or TSTMON) from the Open Project window and clicking on
the OK button. Open the files you wish to edit by clicking on the File menu item,
selecting Open from the drop-down menu, highlighting the desired file in the Open File
window, and clicking on the OK button. Modify all source code as needed. When all
source file editing is complete and you wish to attempt to compile and link the program,
click on the Project menu item, then select Build: filename.exe from the drop-down
menu. All files affected by your changes will be compiled, and if there are no fatal
compilation errors, all updated object files will be linked to produce a new version of the
executable file. If any compilation or linking errors have occurred, they will be written to
the Build Results window.

1.7.2. PT3660.EXE
Enter the BASIC 7.1 environment by double-clicking on the BASIC 7.1 icon on the
Windows desktop. This will bring up the QBX development environment. Now you’ll
need to open an MS-DOS window either by double-clicking on the desktop icon (if you
have one) or choosing Start->Programs ->Command Prompt from the desktop. Now
make the working directory (folder) the one where the BASIC source code is. Type the
drive letter of the directory followed by the colon (:) character, then press the Enter key.
Now move to the right directory by using the DOS cd (change directory) command. You
can get help with the use of cd by typing help cd at the prompt.

Return to the QBX window and open the ui3660.bas source code file by clicking on the
File menu item, selecting Open Program from the drop-down menu, highlighting
ui3660.bas in the Open Program window, and clicking on the OK button. You may
have to browse through the Dir/Drives list in the Open Program window to get to the
directory where ui3660.bas is located. Once ui3660.bas is open, you can select functions
and subroutines for editing by clicking on the View menu item, selecting SUBs from the
drop-down menu, highlighting the name of the desired routine in the SUBs window, then
clicking on the Edit in Active button to display the routine’s source code on the screen.
At this point, you can edit the file much as you would a Word document, that is, you can
use the mouse to highlight, cut, and paste text, and use the arrow keys for movement of
the cursor.

When all editing is complete, select the Save option from the File menu item’s drop-
down menu. Move to the DOS Command Prompt window and type ui3660 followed by
the Enter key at the DOS prompt. This will run the BASIC compiler. If all code
compiles successfully, the linker will run so that a new version of PT3660.exe can be
produced.

 18

1.7.3. SYSCFG.EXE
Follow the steps outlined in section 1.7.2 (PT3660.EXE), substituting syscfg.bas for
ui3660.bas when editing the source file and makecnfg for ui3660 when compiling and
linking.

2. DESCRIPTIONS OF SOFTWARE ROUTINES

2.1. ACQ_LOOP.EXE
This section provides a brief description of every routine used in the acq_loop.exe
program. The controlling routines are main() (in source file ubt_main.c), which performs
most of the setup work, and ProcessLoop() (acq_ctrl.c), which controls loads, takes
readings, filters and stores data, and updates real-time screen graphs every millisecond.

2.1.1. all_gpib_devices_offline (gpiboffl.c)
Use the National Instruments GPIB library routines to deinitialize all GPIB devices in the
system (power supplies, loads, and the chart recorder.

2.1.2. all_loads_off (loadsoff.c)
Use the Dynaload GPIB command set to switch off all load modules in the Dynaload
MCL488 chassis.

2.1.3. allocate_extended_memory (allocxms.c)
Using routines from the XMSIF library, set up pointers to blocks of memory in the
extended memory area. This extended memory area is used for storage of data points
during the test. Check the amount of memory still available for allocation. Round the
number down to the nearest 4K multiple. If the number of bytes available is greater than
half a megabyte, allocate another block of extended memory.

2.1.4. apply_and_measure_cal_pulses (calpulse.c)
This routine is performed for each data acquisition channel to be used in an upcoming
test. Its purpose is to ensure that the A/D channels are reading voltages, currents, and the
monitor channel properly. The Agilent 6032A power supply is set to the nominal voltage
of the battery to be tested and its output routed to the specified channels of the voltage
and current viewing A/D boards. The voltage is read from the A/D, then multiplied by the
channel's voltage divider value. Next, the appropriate load module is programmed to the
specified current value, and the current value (actually a voltage across a 0.25-ohm
current-viewing resistor) is read back from the current-viewing A/D. Finally, the 10K-
ohm monitor calibration resistor is switched into the circuit and the monitor channel is
read on the voltage-viewing A/D. All readings are displayed on the CRT along with the
expected values and pass/fail indicators.

 19

2.1.5. build_one_data_file (bld1file.c)
For a multiple-channel battery, combines ASCII data files produced for each channel into
one data file with a .CSV (comma-separated values) file type compatible with Excel.
Delete all individual channel data files used to produce the .CSV file.

2.1.6. cleanup_before_exit (cleanup.c)
This routine runs right before the main program finishes. It stops the D/A converters,
switches off all digital I/O (DIO) signals, switches off all load modules in the load box,
de-initializes all GPIB devices (load box, power supplies, chart recorder), and deallocates
memory used by each data acquisition board. Set working directories on all media to the
root directories.

2.1.7. close_volt_violations (clsvtvio.c)
This routine is called at the end of a test and checks to see if a channel has ended a test
outside of its minimum or maximum voltage tolerances. If that is the case, set the
violation end time to the end-of-test time.

2.1.8. construct_file_name (cnstflnm.c)
Construct a data file name according to the following format:

Bnnnnnnn.00x where nnnnnnn is the battery serial number and x refers to the channel
number (1-6). If only one channel is being tested, make the file extension .CSV.

2.1.9. convert_report_values (conv_rpt.c)
Take values gathered during the main data acquisition/control loop and convert them
from unsigned short (as acquired by the A/D boards) to floating-point values for
presentation on the test report.

2.1.10. convert_test_params (convprms.c)
Convert certain floating-point values to integer representations so that values read from
the A/D board don't have to be converted from integer to floating-point for comparison
during every iteration of the acquisition/control loop.

2.1.11. convert_to_unsigned (conv_uns.c)
Take a floating-point value and convert it to a 12 or 16-bit unsigned value that is the
value's representation on the A/D board. This routine is used primarily to convert values
used for comparison (termination voltages, voltage filters, graph axis limits) before the
data acquisition/load control loop is executed to avoid having to do a lot of time-
consuming conversions each loop iteration.

 20

2.1.12. copy_file (copyfile.c)
Copy a file from one directory to another. Open the source file and read bytes 1 KB at a
time and write the bytes to the destination file. This routine is necessary because there is
not enough system memory available to invoke the "system" library routine to run the
DOS "copy" command while the PT3660 and ACQ_LOOP programs are loaded in
memory.

2.1.13. create_data_file_directories (creatdir.c)
If the user has specified directory paths for storage of test data on the Jaz and/or floppy
drives, call the create_directory_path routine to create the directories if they don't already
exist.

2.1.14. create_directory_path (dir_path.c)
Parse a directory path designation string (such as D:\MC3323A\LOT1) and use library
routines _chdir and _mkdir to create each subdirectory if it does not exist.

2.1.15. create_test_status_file (statfile.c)
This routine is called right before the end of the program and stores the test status
indicator (complete or aborted) in a file so that the PT3660 user interface program can
read the file and display the status for the user.

2.1.16. dac_02_voltage_out (dac02.c)
Outputs the voltage level corresponding to the desired ignitor system current from the
Keithley D/A converter board. This current is used to ignite the battery. Typically, the
voltage value will be the same as the current value, i.e., 4.5 volts sent from the Keithley
board will correspond to an ignitor amplitude of 4.5 amps.

2.1.17. DasBirth (analogic.c)
Call routines from the Analogic DAS_LIBM library to initialize a data acquisition board.
DasBirth sets up the A/D boards to run at the desired sample rate (10 kHz per channel)
and sets up parameters used before, during, and after the test to convert unsigned-integer
readings from the A/D board to floating-point voltage values. DasBirth also configures
the digital-to-analog (D/A) systems used for load programming and configures the
board’s 16 digital I/O (DIO) lines as output-only lines. DasBirth establishes a unique
handle to be used to access the board in subsequent calls to DAS_LIBM routines.

2.1.18. DasDeath (analogic.c)
Deletes the board handle established by DasBirth, in effect cutting off access to the board
from software.

2.1.19. DasDisable (analogic.c)
Use DAS_LIBM routines to stop a board’s A/D and D/A systems at the end of a test,
whether the termination was normal or abnormal.

 21

2.1.20. DasEnable (analogic.c)
Use DAS_LIBM routines to start a board’s A/D and D/A systems after initial
configuration in DasBirth.

2.1.21. DasOutput (analogic.c)
Set the specified board’s D/A converters 0 and 1 to the values passed in the dac0 and
dac1 variables. Set the digital I/O lines to the value specified in the dio variable.

2.1.22. DasRead (analogic.c)
For the board specified in the handle variable, read the contents of the register specified
in code. Read the register as many times as is specified by the trys variable.

2.1.23. DasWrite (analogic.c)
For the board specified in the handle variable, write the value specified in data to the
register specified in code. Write to the register as many times as is specified by the trys
variable.

2.1.24. deallocate_extended_memory (dealloc.c)
Free up blocks of extended memory used for data storage during the test.

2.1.25. display_battery_connect_message (cnct_msg.c)
Display a screen message instructing the operator to connect the battery to the test cable,
then press a key to proceed with the test. Use graphics library routines for color and
centering on the monitor.

2.1.26. display_error_msg (disp_err.c)
This routine is called in the event that a failure in some hardware or software component
has been detected. This includes failures in the GPIB instruments (power supplies, loads,
chart recorder), data acquisition boards, extended memory access, and file I/O.

2.1.27. final_acq_board_setup (final.c)
Perform the necessary steps to do a final setup of the Analogic data acquisition boards
before the test begins. Set all D/A (load programming voltage) outputs to zero, set all
digital output lines to high (default state), start the two D/As on each board (with the
DASEnable routine), issue a software trigger to each A/D board, and finally start each
A/D system as the last thing immediately before the data acquisition loop begins.

2.1.28. final_data_posting (finlpost.c)
At the end of the test, write whatever data points are in the temporary storage buffer
(data_buffer) to a block of extended memory.

 22

2.1.29. find_current_axis_limits (curraxis.c)
Find the upper axis limit for the real-time graph's right-hand y axis, which indicates
current level. Take the maximum current value and add 10 percent. The
find_y_tic_spacing_val routine will then take this value and round it upward to the
closest multiple of 5, 10, 20, 50, or 100.

2.1.30. find_max_currents (max_curr.c)
For each battery channel defined for the test, search through the load profile records
(from the TDS file) to determine the maximum current the channel will experience
during the test. If a load profile record calls out a resistance or power value, use the
channel's nominal voltage value to convert it to a current value.

2.1.31. find_time_scale_factor (scl_fctr.c)
Find the value by which to scale the x-axis tic label values for each real-time graph to be
displayed during the test run.

2.1.32. find_volt_range (vltrange.c)
Based on a channel's maximum current value, set the volt range for the channel's
corresponding input on the chart recorder.

2.1.33. find_voltage_axis_limits (voltaxis.c)
Find the upper axis limit for the real-time graph's left y axis, which indicates voltage
level. Take the nominal voltage value and add 10 percent. The find_y_tic_spacing_val
routine will then take this value and round it upward to the closest multiple of 5, 10, 20,
etc.

2.1.34. find_voltage_divider_values (volt_div.c)
Find the value of the voltage divider in each battery channel's voltage sensing circuit. Set
the Agilent 6032A power supply to 10 volts, then set the DIO lines to route the power
supply's output to each input channel of the voltage sensing A/D board. Measure the
voltage at each input, divide 10 by the voltage, and round to the nearest whole number.

2.1.35. find_x_tic_spacing_val (x_tics.c)
Determine the number of divisions for the x-axis of the real-time graphs based on the
max_x_axis_val variable. If necessary, round max_x_axis_val upward to a nice, round
number.

2.1.36. find_y_tic_spacing_val (y_tics2.c)
Determines the tic spacing value for one of the two y-axes displayed on the PT3660 real-
time graph. If necessary, round max_y_axis_val upward to the the nearest multiple of 5,
10, 20, 50, or 100.

 23

2.1.37. get_dac_conversion_values (dac_conv.c)
Read the tester configuration file, which contains information about each load module in
the system (min and max voltage, current, and power). Set the load current to
programming voltage ratio based on the maximum current value.

2.1.38. get_disk_free_space (diskfree.c)
Find the number of bytes available for storage on a disk drive.

2.1.39. get_file_size (filesize.c)
Determine the byte count of a file.

2.1.40. init_all_gpib_devices (init_all.c)
Initialize each GPIB device in the system. GPIB devices are the Yokogawa chart
recorder, the Agilent 6032A power supply, the Xantrex XFR35-35 power supply, and the
Dynaload MCL488 load module.

2.1.41. init_gpib_device (initgpdv.c)
Establish a "handle" for a GPIB device. This handle value will be used in subsequent
GPIB library calls to the device. Clear the device.

2.1.42. init_power_supplies (init_ps.c)
Initialize each power supply in the system.

2.1.43. input_gpib_str (gpibrdst.c)
Read a string from a GPIB device.

2.1.44. main (ubt_main.c)
- Establish global data structures

- Set up GPIB devices (power supplies, loads, chart recorder)

- Initialize data acquisition boards and corresponding data structures

- Set up chart recorder and load modules

- Perform calibration pulse check for each battery channel

- Call ProcessLoop to perform test

- Deinitialize data acquisition boards and A/D boards.

2.1.45. midstring (substr.c)
Return a string of characters i1 through i2 of str.

2.1.46. output_current_to_DAC (out_dac.c)
Take a current value and determine its programming voltage value. Send the
programming voltage out the appropriate Digital to Analog (D/A) converter.

 24

2.1.47. output_gpib (out_gpib.c)
Send a character string command to a GPIB device.

2.1.48. pre_fire_setup (pre_fire.c)
Switch on digital I/O bits for test indicator, squib/sonalert enable, and conductance after
fire. Program the Keithley D/A board for the ignitor amplitude value, then set the digital
I/O bits to switch load module outputs to each active channel. Set the Xantrex power
supply to 28 volts out, and start the chart recorder and set it to high-speed mode for the
first three seconds of the test.

2.1.49. print_file (prntfile.c)
Open a file, read it line-by-line, make each line's linefeed (10) character a null, then send
it to the printer. It was necessary to write this routine because there is not enough system
memory available to call the "system" library routine with the DOS "print" command.

2.1.50. print_report (report.c)
Generate a post-test report. Store the report in a file, then call the print_file routine to
send the file to the printer.

2.1.51. process_data_into_files (datafile.c)
Extract raw test data from the extended memory area and format it into comma-delimited
ASCII data ready for use by spreadsheet software such as Excel. First create separate
files for each channel's data, then combine all files (if necessary) into one file with the
build_one_data_file routine. If specified by the user, copy the file to the Jaz and/or
floppy drives.

2.1.52. ProcessLoop (acq_ctrl.c)
This is the main data acquisition/process control loop for the PT3660.

 - Disable loads

 - Determine maximum test length

 - Determine which channels are to be tested

 - Set up the real-time CRT graph

 - Allocate extended memory area for data storage

 - Pre-fire setup and final A/D board setup

 - Main acquisition/control loop (1 millisecond duration)

 - Fire squib or CAF if necessary

 - Read data from A/Ds (10kHz per channel)

 - Average 10 readings for each channel

 - For each defined channel

 25

 - If latest reading outside guardband (filter) value

 - Record latest readings for all channels in extended memory along with

 readings from last loop iteration

 - If voltage is below termination voltage

 - Flag it, if all other channels are below termination

 voltage, bail out of acq/control loop

 - Check for minimum and maximum voltage violations

 - Update minimum and maximum voltage levels if necessary

 - Check for activated life and rise time reached

 - If within half a second of a load change on channel 1,

 set chart recorder to high speed

 - Check for time to go to the next load profile step

 - Calculate load programming voltage based on latest voltage

 reading and load requirement (amps, ohms, or watts)

 - Send load programming voltage from D/A to the load module

 - Switch external loads on or off if necessary

 - Check for max CAF, record latest monitor reading

 - Update real-time graph (1 channel per loop iteration)

 - End main data acq/control loop

 - Do final posting of test data from buffer to extended memory

 - Set D/A load programming outputs to 0, switch off all DIO lines

 - Check for A/D timing glitches

 - Generate report and data files

2.1.53. read_chans (rd_chans.c)
Take a set of 80 readings (10 readings on all 8 channels) from the A/D board at 10 kHz
per channel. Average the 10 readings for each channel. This routine is used when a set
of readings is needed in a non-time-critical situation. It uses routines from the Analogic
DAS board library.

2.1.54. read_chart_recorder_data (rdchtrec.c)
Command the Yokogawa chart recorder to send back readings for all of its initialized
channels. The readings come back in the form of a large character string with the reading
value and measurement units occupying 21 characters for each active channel. For
example, if three channels are active, the string returned by the chart recorder will be 63
(3 * 21) characters in length.

 26

2.1.55. read_load_file (readload.c)
Read definition parameters for the load module specified in load_name. These
parameters include minimum and maximum voltage, current, and power. These
parameters are used to calculate the ratio of the load programming voltage to the current
value set by the load. For example, if a load definition calls out a maximum current of 60
amps, the programming voltage to load current ratio is 10 volts to 60 amps, as 10 volts is
the maximum output of the digital-to-analog (D/A) converter on the Analogic DAS
board. Since the D/A is a 12-bit converter, the resolution is 2.44 millivolts per count
(10/0xFFFF), or 14.65 mA per count (2.44 * (60/10)).

2.1.56. read_test_parameters_file (testprms.c)
Read test parameters file created by the PT3660 user interface program. Parameters
come from the Test Definition System (TDS) file or from user inputs.

2.1.57. read_tester_config_file (tstrcnfg.c)
Read tester configuration data from a data file. Configuration data contains information
about which load modules currently exist in the Dynaload. This information is in turn
used to calculate programming voltage values to program the load.

2.1.58. read_tester_info_file (tstrinfo.c)
Read the file containing information such as tester software AM number, suffix, and
issue, tester ID, suffix, and issue, tester serial number, and most recent calibration date.

2.1.59. report_gpib_error (rptgperr.c)
This routine is called in the event that an error has occurred in writing to, reading from,
initializing, or clearing a GPIB device.

2.1.60. reset_all_dio_lines (rsalldio.c)
Set all digital I/O lines on all three DAS boards to high, the default state.

2.1.61. round (round.c)
Round a floating-point number to the nearest whole number.

2.1.62. round_up_to_nearest (nearest.c)
Take num_to_round and round it up to the nearest multiple of multiple. This routine is
used when calculating the upper limit for one of the y-axes for the real-time graph.

2.1.63. rtrim (rtrim.c)
Pass in a string and return a string that is a copy of the original string with trailing blanks
removed.

 27

2.1.64. set_all_loads_on (loads_on.c)
Set all 6 load modules of the Dynaload to external programming mode simultaneously.
Send Dynaload command set commands across the GP-IB.

2.1.65. set_chart_recorder_for_long_tests (cr_long.c)
Call this routine in the event that a maximum test length is greater than 20 minutes.
Normally, the chart recorder is set to print at 5 mm per second. Set it to 1 mm/sec here so
as to avoid having too much paper being put out by the chart recorder.

2.1.66. set_digital_out (dig_out.c)
Set the digital I/O bits on board_num specified in bit_pattern to the state (HIGH or
LOW) specified in bit_state.

2.1.67. set_power_supply (set_ps.c)
Send commands over the GPIB to first set the specified power supply’s limiting current
(IMAX), then set the output voltage and current levels. This routine can be called for
both the Agilent and Xantrex power supplies.

2.1.68. set_profile_end_records (prof_end.c)
Set the last records of each channel's load, max volt, and min volt profiles to the
maximum test length plus 1 second. As the test progresses, it is necessary to look at the
time element of the next profile record to determine when to transition to that load or min
max voltage step. Setting the last record past the end-of-test time will ensure that no
unintended profile transitions are made.

2.1.69. set_working_directory_to_root (wd_root.c)
For the drive specified, use system routines to change the drive's current working
directory to the root directory.

2.1.70. setup_chart_recorder (chartrec.c)
Issue GPIB commands to the Yokogawa chart recorder to initialize chart recorder inputs
for each channel to be monitored. Initialization steps include setting the channel's input
range, upper and lower scale limits, position on the paper, and filter value. For more
information on the chart recorder commands, refer to the Yokogawa OR1400 ORP/ORM
Series GPIB/RS-232-C Interface User's Manual.

2.1.71. setup_plot_parameters (plotprms.c)
Determine various parameters necessary for setting up on-screen graphs used for real-
time data display during the test. These parameters include axis limits for the x axis and
the two y-axes (expressed in terms of A/D board count values), and tic spacing values for
all axes.

 28

2.1.72. setup_plots (plot_set.c)
Use the Microsoft C/C++ Version 7.0 graphics library routines to draw a real-time graph
area on the CRT for each battery channel to be tested. Place the voltage scale on the
leftmost y-axis and the current scale on the rightmost y-axis. Test time will appear on the
x-axis. Also draw lines to indicate the minimum and maximum voltage limit profile as
outlined in the TDS file.

2.1.73. sleep (sleep.c)
This function takes as input a number of seconds and delays for that length of time.

2.1.74. strichr (strichr.c)
Return the array index of the first occurrence of char_to_find in string st.

2.1.75. wait_for_char (waitchar.c)
Monitor user keyboard input until the user enters a character that is in the charset string.

2.2. TSTSQUIB.EXE

2.2.1. cal_setup_chart_recorder (calctrec.c)
Send commands across the GPIB to the Yokogawa chart recorder to initialize it for the
squib and conductance after fire tests. Set channels 13 and 14 to accept inputs of 0 to 10
volts DC with 4 kHz filtering. Specify where on the paper to print the traces from each
channel and specify the chart speed for high-speed mode and the source (external) for
triggering the recorder to operate in high-speed mode.

2.2.2. main (tstsquib.c)
- Initialize data acquisition boards

- Initialize all GPIB devices (loads, power supplies, chart recorder)

- Set the Xantrex power supply for 28-volt output

- Initialize the Yokogawa chart recorder to display data from

 squib/CAF and monitor channels.

- Loop until user wants to quit

 - Get user choice of squib or CAF for test, or quit.

 - If CAF, set conductance after fire DIO bit

 - Prompt user for time length for fire pulse

 - Prompt user for squib current level for fire pulse

 - If squib current selected and current level < 1, set

 29

 conductance after fire DIO bit.

 - Set squib/sonalert DIO bit.

 - Use the Keithley D/A board (DAC02) send the squib current.

 - Set the chart recorder to high-speed mode.

 - Switch the squib fire DIO bit.

 - Wait the user-specified number of milliseconds while acquiring

 data from the conductance-after-fire input channel.

 - Switch off all DIO lines.

 - Display results for user.

- End Loop

- Reset all DIO lines.

- Deinitialize all GPIB devices.

- Set Keithley D/A output to zero volts.

2.2.3. milliseconds_wait (msecwait.c)
This routine uses the A/D sample rate as a timer to pause a specified number of
milliseconds. This is because the resolution of the system clock is too coarse to depend
on for this precise timing. Start the A/D system, then complete as many scans of the A/D
channels that correspond to the specified number of milliseconds to wait. The number of
A/D scans is calculated based on the sampling rate of the A/D board and is equal to the
specified number of milliseconds multiplied by the sampling rate divided by 1000.

2.2.4. milliseconds_wait_with_acq (mswtacq.c)
This routine uses the A/D sample rate as a timer to pause a specified number of
milliseconds. This is because the resolution of the system clock is too coarse to depend
on for this precise timing. Start the A/D system, then complete as many scans of the A/D
channels that correspond to the specified number of milliseconds to wait. The number of
A/D scans is calculated based on the sampling rate of the A/D board and is equal to the
specified number of milliseconds multiplied by the sampling rate divided by 1000.
Calculate the average of ten consecutive readings taken on the specified A/D channel.

2.3. DACTEST.EXE

2.3.1. main (dactest.c)
Program to test the battery loading system digital-to-analog (D/A) converters and
Dynaload MCL488 load modules.

 - Read tester config file with info for converting currents to

 load programming voltage values.

 - Initialize data acq boards and GPIB devices.

 30

 - Set up loads to accept external programming voltages.

2.3.2. read_chans (rd_chans.c)
Use routines from the Analogic DAS board library (DAS_LIBM) to initialize one board
and take a set of readings on each of its A/D channels. Convert the readings to floating-
point voltage values.

2.3.3. setup_dynaload (setup_ld.c)
Send commands over the GPIB to the Dynaload MCL488 to setup one of its load
channels for external programming. When in external programming mode, the load
accepts voltage inputs from 0 to 10 volts at its programming terminals then converts this
voltage to a load level.

2.3.4. test_dac_outputs (tstdaout.c)
Test the digital-to-analog (D/A) conversion systems on one of the three data acquisition
boards. The D/A systems are used to send programming voltage signals to the load
modules in the Dynaload MCL488. Each data acquisition board has two D/A converters;
board 1's D/As control loads for battery channels 1 and 2, board 2's D/As control loads
for channels 3 and 4, and board 3's D/As control loads for channels 5 and 6.

This routine takes as input the handle to one of the data acquisition boards as well as the
board's offset and gain values. It also takes in the number of the D/A converter (0 or 1),
the battery channel, and the conversion value necessary for converting a current value to
a programming voltage value.

- Establish gain and offset values for the specified D/A.

- Set up the Dynaload to accept programming voltage values.

- Start the D/As.

- Set the initial load programming voltage to a very low value.

- Set the DIO line to connect the D/A to the load.

- Loop until user wants to quit

 - Get load current value from user.

 - Determine load programming voltage value based on current.

 - Send voltage to load using _outpw register write.

 - Loop until user wants to quit.

 - Read channel's current value (actually voltage across CVR)

 - Ask user for repeat measurement or quit.

 - End Loop

 31

- End Loop

- Stop D/As and reset DIO outputs.

2.4. TESTDIO.EXE

2.4.1. main (testdio.c)
Allows users to switch on or off one of the digital I/O (DIO) lines on one of the three data
acqusition boards. The user is asked to specify board number (1-3), DIO line number (1-
16), and line state (LOW or HIGH).

2.5. VERIFYAD.EXE

2.5.1. analog_input_verification (inp_ver.c)
Display a screen for presenting voltage readings being taken continuously by the
specified A/D board. Take and display A/D readings until the user presses any key to
quit.

2.5.2. main (verifyad.c)
Initialize the A/D boards, prompt the user for the number of the A/D board to test (1-3),
then call analog_input_verification to continuously take data from all channels of the
board until the user wishes to quit. Deinitialize the A/D boards.

2.6. TSTMON.EXE

2.6.1. main (tstmon.c)
Program for testing the monitor circuit of the PT3660. Set the Xantrex power supply to
put out 28 volts, switch on the monitor connect relay to route the monitor signal to the
assigned A/D channel, and read the A/D channel. The voltage should be close to7 volts.
Allow a 5 percent tolerance band around the expected value.

2.7. PT3660.EXE
NOTE: All routines can be found in the UI3660.BAS source file.

2.7.1. BigListBox
Present the user with a list box from which to select one item from a group of items in the
Filearray$ array. The maximum box size is ten items. If there are more than ten items in
Filearray$, the user can use the scroll bar at the side of the list box to view the next or
previous section of the list. If there are fewer than ten items in Filearray$, the box size
will equal the number of items in Filearray$.

 32

2.7.2. CalcTime
Produce a single-precision number representing a time passed in as a string in
DDHHMMSSmmm form.

2.7.3. CheckDiskOK
Attempt to read a disk in the user-specified drive. First find out how many files on the
disk are TDS files, that is, the have the .tds extension. If there is a problem with the disk
or drive or there are no TDS files on the disk, alert the user. Otherwise, gather the
filenames with no extension characters (*.) into the Filearray$ array.

2.7.4. CheckDiskOKForWrite
Check to see if a disk is OK to receive test data. Check for disk write-protected, disk full,
and general failures.

2.7.5. CheckTestSpecs
Check the validity of user-specified items from the test specification input screen.

2.7.6. ClearBackground
Clear the blue background screen. This background screen is used as a backdrop for gray
informative message windows such as error message or instructions

2.7.7. ClearTBScreen1Inputs
Set data storage for user inputs from the test specification screen to default values.

2.7.8. CrossCheckError
Display an error message based on the error detected in the CrossCheckTDS routine.

2.7.9. CrossCheckTDS
For each relevant record of the TDS file's load profile, compare user-specified parameters
(voltage, current, power, resistance) against maximums and minimums found in the
configuration files for the load modules currently in the Dynaload MCL488.

2.7.10. DisableUIToolbox
Set the monitor back to default mode.

2.7.11. DisplayDiskFreeSpace
Use the Interrupt DOS system call to retrieve free space information about a specified
disk drive (usually the Jaz drive). Calculate the maximum data file size for the
impending test. Display free space information and maximum data file size and allow the
user to either leave the disk in the drive or change it.

 33

2.7.12. DisplayMainMenu
Display the program main menu and accept the user's selection of the function he/she
wishes to perform. If a TDS file has not yet been selected by the user, make the Select
TDS File option the default choice (chosen by pressing the ENTER key). If a TDS file
has already been selected, make Start Test the default choice.

2.7.13. DisplayMessage
Put up or take down a generic message in or from the center of the screen.

2.7.14. EnableUIToolbox
Initialize the monitor, making it ready for use by routines from the BASIC 7.1 User
Interface Toolbox library.

2.7.15. FileSelect
Invoke the BigListBox function to determine which TDS file, if any, was selected by the
user. Pass the file name back in the FileInput$ string.

2.7.16. FindDocumentReference
Peruse the 18 lines of comments in the TDS header section looking for specifications for
the TDS file disk AM number and the battery's product specification. The AM number
will be in the form of AMnnnnnn-sss-i, where nnnnnn is the six-character AM number,
sss is the three-digit suffix, and i is the one-character issue specifier. The product
specification will show up in the form PSnnnnnn-sss-i.

2.7.17. GetTestStatus
Read the test status indicator file set by the data acquisition and control loop software
(acq_loop.exe) in its most recent run.

2.7.18. InitAndRunTest
Invoke the routines to accept user inputs of test parameters, then call the routine to
perform the tests specified in the user's TDS file. If a TDS file has not yet been selected
or an input screen has not been properly filled in, alert the user and prevent
commencement of the test.

2.7.19. InsertTDSFloppy
Instruct the user to select the disk drive from which the TDS file is to be read. This is
done using option buttons. Once a drive has been selected and the OK button has been
pressed, the CheckDiskOK subroutine is called to search the disk for TDS files.

2.7.20. LoadTDSFile
Read the contents of the TDS file specified by the user. Place the file contents into the
relevant data structures. Once the file is read, cross check it against the capabilities of the
tester instruments and produce a test profile that is ready to send to the data acquisition
and control loop program (acq_loop.exe) to execute the test.

 34

2.7.21. OpenLoadFile
Open the configuration file for the load specified in the tester configuration file. Read the
items into numeric values.

2.7.22. PaintBackground
Put up a blue background window as a backdrop for error windows and informative
windows.

2.7.23. ReadConfigurationFiles
Read into memory the contents of the tester configuration file and the contents of the
configuration files for the power supply and load specified in the tester configuration file.

2.7.24. ReadCurrentConfig
Read the current tester configuration file, which contains information about the load
modules currently installed in the system. This information will be used by acq_loop.exe
for calculating load programming voltages during the test.

2.7.25. RecordNotification
Instruct the user to enter information about the impending test in the tester's log book. A
log book should be kept somewhere in the tester equipment rack and should be updated
each time a test is run. Information such as test date, battery ID, lot number, serial
number, and test type should be entered, and the entry should be signed by the test
operator.

2.7.26. SelectTDSFile
Call the routines necessary for the user to select the TDS file he/she wants to define the
load profile of the upcoming test.

2.7.27. SelectTDSFile
Call the routines necessary for the user to select the TDS file he/she wants to define the
load profile of the upcoming test.

2.7.28. SetupTestParamFile
Gather all important information from the TDS file and user inputs and store it in a file
for use by the data acquisition/load control program (acq_loop.exe).

2.7.29. TBTestSpecs
Accept user input of parameters from the first parameter input screen encountered during
the course of setting up a test. Check the parameters for errors, then store them in the
proper data structures.

2.8. SYSCFG.EXE
NOTE: All routines can be found in the SYSCFG.BAS source file

 35

2.8.1. AlterTesterConfig
Change the configuration file containing setup information about the modules currently
installed in the Dynaload MCL488 Multichannel Load. For each load channel (1-6), the
user has the option of selecting the name of a load module from the list of available
modules for which a configuration file exists. Information for load module configuration
files is input in the GetLoadInputs routine.

2.8.2. AlterTesterInfo
Present an input window that allows the user to change certain information about the
tester. This information includes tester ID, suffix, and issue, tester serial number, tester
software AM number, suffix, and issue, and the most recent calibration date.

2.8.3. BigListBox
Present the user with a list box from which to select one item from a group of items in the
Filearray$ array. The maximum box size is ten items. If there are more than ten items in
Filearray$, the user can use the scroll bar at the side of the list box to view the next or
previous section of the list. If there are fewer than ten items in Filearray$, the box size
will equal the number of items in Filearray$.

2.8.4. CheckDiskOK
Search a disk for occurrences of specified file types. Store all matching file names in the
Filearray$ string array. Trap any file access errors and report them.

2.8.5. CheckLoadInputs
Check for errors in the user's input of load module configuration information from the
GetLoadInputs routine.

2.8.6. FileSelect
This routine is called after a list of files of a certain type has been gathered into the
FileArray array. A call is made to the BigListBox routine to display them on the screen
so that the user can select one of them.

2.8.7. GetLoadInputs
Get user input of information about a load module to go into the Dynaload MCL488
Multichannel Load. This information includes minimum and maximum voltage, current,
resistance, and power and is used in calculating voltage values from a digital-to-analog
(D/A) converter to the load when programming it during a test.

2.8.8. GetUserSelection
Present the main menu screen and get the user's choice of changing the load module
configuration, defining a new load module, altering an existing load module definition, or
altering tester information.

 36

2.8.9. IdleTime
Pause for the number of seconds specified by the WaitTime argument.

2.8.10. InitLoadRecord
Set members of the load configuration record to default values.

2.8.11. ModLoad
Process screen inputs that allow the user to modify information in an existing load
module definition and configuration file.

2.8.12. OpenLoadFile
Read a load module definition/configuration file.

2.8.13. OpenTesterInfo
Read the tester information file.

2.8.14. ReadCurrentConfig
Read the tester configuration file containing the load module configuration.

2.8.15. ReadLoadTypes
Build a list of all available load module definition/configuration files so that the user can
choose one when building the tester configuration.

2.8.16. StoreCurrentConfig
Write the current tester configuration record to a file.

2.8.17. StoreTesterInfo
Write the tester information record to a file.

2.8.18. WriteRecToDisk
Write a record of a specified type to a file.

2.9. QACHKSUM.OBJ

2.9.1. qachksum
Perform a quality assurance check on a TDS file that was quality-assurance (QA)
stamped at the time it was built with the TDS program. If a user has used an editor of
some sort to alter any information in the header, load profile, or min/max voltage profile
sections of a QA-stamped file, this routine will detect it and not allow the user to use the
TDS file to control the test.

 37

In a QA-stamped file, the last nine lines are generated by performing exclusive-or
operations on each line of the file. The first of these nine lines is generated by
performing an exclusive-or on all header records of the file. Each of the next eight lines
is generated by performing exclusive-or operations on all load profile and min/max
records for each of the eight potential battery channels.

Each time an 80-character line is read from the TDS file, its equivalent 40-word unsigned
integer buffer is used in an exclusive-or operation with a previously-generated 40-word
buffer to produce a third 40-word buffer. Each Nth word of the first buffer is XORed
with the N+1th word of the second buffer for the first 39 words of buffer 1 and the result
placed in the N+1th word of the third buffer. The first word of the third buffer is
generated by XORing the first word of buffer 1 with the last word of buffer 2.

2.9.2. do_exclusive_or
Perform an exclusive-or operation on two 40-word buffers to produce a third 40-word
buffer. See the synopsis of the qachksum routine for further explanation.

2.9.3. compare_checksums
Compare each Nth element of two 40-word buffers and return the
CHECKSUM_MISMATCH value if two elements don't match.

2.9.4. midstring
Return a string of characters i1 through i2 of str.

 38

DISTRIBUTION:

MS-0451/06515 Brian Murphy-Dye
MS-0512/02500 James K. Rice
MS-0521/02501 J. Thomas Cutchen
MS-0613/02521 Daniel H. Doughty
MS-0613/02525 Rudolph Jungst
MS-0614/02523 Robert Bickes, Jr.
MS-0614/02522 Paul Butler
MS-0614/02523 Roy Morgan
MS-0614/02523 James Norton
MS-0614/02523 David Sawayda
MS-9018/08945-1 Central Technical Files
MS-0612/09612 Review & Approval For DOE/OSTI (1)
MS-0899/09616 Technical Library (2)

 39

	PT3660 Destructive Thermal Battery Tester System Software Overview
	Abstract
	TABLE OF CONTENTS
	1. PT3660 SYSTEM SOFTWARE
	1.1. Overview
	1.2. Why DOS and not Windows?
	1.3. Development System Software
	1.4. Libraries used in PT3660 Software Development
	1.4.1. DAS_LIBM.LIB
	1.4.2. XMSIFH.LIB
	1.4.3. MCIB.LIB
	1.4.4. GRAPHICS.LIB
	1.4.5. UI3660.LIB

	1.5. Installing the Operating Software on a PT3660 Computer System
	1.5.1. From the Windows environment
	1.5.2. From the DOS environment

	1.6. Installing the Source Code on Your Computer System
	1.7. Building New Executable Versions of the Software
	1.7.1. ACQ_LOOP.EXE, DACTEST.EXE, VERIFYAD.EXE, TSTSQUIB.EXE, TESTDIO.EXE, TSTMON.EXE
	1.7.2. PT3660.EXE
	1.7.3. SYSCFG.EXE

	2. DESCRIPTIONS OF SOFTWARE ROUTINES
	2.1. ACQ_LOOP.EXE
	2.1.1. all_gpib_devices_offline (gpiboffl.c)
	2.1.2. all_loads_off (loadsoff.c)
	2.1.3. allocate_extended_memory (allocxms.c)
	2.1.4. apply_and_measure_cal_pulses (calpulse.c)
	2.1.5. build_one_data_file (bld1file.c)
	2.1.6. cleanup_before_exit (cleanup.c)
	2.1.7. close_volt_violations (clsvtvio.c)
	2.1.8. construct_file_name (cnstflnm.c)
	2.1.9. convert_report_values (conv_rpt.c)
	2.1.10. convert_test_params (convprms.c)
	2.1.11. convert_to_unsigned (conv_uns.c)
	2.1.12. copy_file (copyfile.c)
	2.1.13. create_data_file_directories (creatdir.c)
	2.1.14. create_directory_path (dir_path.c)
	2.1.15. create_test_status_file (statfile.c)
	2.1.16. dac_02_voltage_out (dac02.c)
	2.1.17. DasBirth (analogic.c)
	2.1.18. DasDeath (analogic.c)
	2.1.19. DasDisable (analogic.c)
	2.1.20. DasEnable (analogic.c)
	2.1.21. DasOutput (analogic.c)
	2.1.22. DasRead (analogic.c)
	2.1.23. DasWrite (analogic.c)
	2.1.24. deallocate_extended_memory (dealloc.c)
	2.1.25. display_battery_connect_message (cnct_msg.c)
	2.1.26. display_error_msg (disp_err.c)
	2.1.27. final_acq_board_setup (final.c)
	2.1.28. final_data_posting (finlpost.c)
	2.1.29. find_current_axis_limits (curraxis.c)
	2.1.30. find_max_currents (max_curr.c)
	2.1.31. find_time_scale_factor (scl_fctr.c)
	2.1.32. find_volt_range (vltrange.c)
	2.1.33. find_voltage_axis_limits (voltaxis.c)
	2.1.34. find_voltage_divider_values (volt_div.c)
	2.1.35. find_x_tic_spacing_val (x_tics.c)
	2.1.36. find_y_tic_spacing_val (y_tics2.c)
	2.1.37. get_dac_conversion_values (dac_conv.c)
	2.1.38. get_disk_free_space (diskfree.c)
	2.1.39. get_file_size (filesize.c)
	2.1.40. init_all_gpib_devices (init_all.c)
	2.1.41. init_gpib_device (initgpdv.c)
	2.1.42. init_power_supplies (init_ps.c)
	2.1.43. input_gpib_str (gpibrdst.c)
	2.1.44. main (ubt_main.c)
	2.1.45. midstring (substr.c)
	2.1.46. output_current_to_DAC (out_dac.c)
	2.1.47. output_gpib (out_gpib.c)
	2.1.48. pre_fire_setup (pre_fire.c)
	2.1.49. print_file (prntfile.c)
	2.1.50. print_report (report.c)
	2.1.51. process_data_into_files (datafile.c)
	2.1.52. ProcessLoop (acq_ctrl.c)
	2.1.53. read_chans (rd_chans.c)
	2.1.54. read_chart_recorder_data (rdchtrec.c)
	2.1.55. read_load_file (readload.c)
	2.1.56. read_test_parameters_file (testprms.c)
	2.1.57. read_tester_config_file (tstrcnfg.c)
	2.1.58. read_tester_info_file (tstrinfo.c)
	2.1.59. report_gpib_error (rptgperr.c)
	2.1.60. reset_all_dio_lines (rsalldio.c)
	2.1.61. round (round.c)
	2.1.62. round_up_to_nearest (nearest.c)
	2.1.63. rtrim (rtrim.c)
	2.1.64. set_all_loads_on (loads_on.c)
	2.1.65. set_chart_recorder_for_long_tests (cr_long.c)
	2.1.66. set_digital_out (dig_out.c)
	2.1.67. set_power_supply (set_ps.c)
	2.1.68. set_profile_end_records (prof_end.c)
	2.1.69. set_working_directory_to_root (wd_root.c)
	2.1.70. setup_chart_recorder (chartrec.c)
	2.1.71. setup_plot_parameters (plotprms.c)
	2.1.72. setup_plots (plot_set.c)
	2.1.73. sleep (sleep.c)
	2.1.74. strichr (strichr.c)
	2.1.75. wait_for_char (waitchar.c)

	2.2. TSTSQUIB.EXE
	2.2.1. cal_setup_chart_recorder (calctrec.c)
	2.2.2. main (tstsquib.c)
	2.2.3. milliseconds_wait (msecwait.c)
	2.2.4. milliseconds_wait_with_acq (mswtacq.c)

	2.3. DACTEST.EXE
	2.3.1. main (dactest.c)
	2.3.2. read_chans (rd_chans.c)
	2.3.3. setup_dynaload (setup_ld.c)
	2.3.4. test_dac_outputs (tstdaout.c)

	2.4. TESTDIO.EXE
	2.4.1. main (testdio.c)

	2.5. VERIFYAD.EXE
	2.5.1. analog_input_verification (inp_ver.c)
	2.5.2. main (verifyad.c)

	2.6. TSTMON.EXE
	2.6.1. main (tstmon.c)

	2.7. PT3660.EXE
	2.7.1. BigListBox
	2.7.2. CalcTime
	2.7.3. CheckDiskOK
	2.7.4. CheckDiskOKForWrite
	2.7.5. CheckTestSpecs
	2.7.6. ClearBackground
	2.7.7. ClearTBScreen1Inputs
	2.7.8. CrossCheckError
	2.7.9. CrossCheckTDS
	2.7.10. DisableUIToolbox
	2.7.11. DisplayDiskFreeSpace
	2.7.12. DisplayMainMenu
	2.7.13. DisplayMessage
	2.7.14. EnableUIToolbox
	2.7.15. FileSelect
	2.7.16. FindDocumentReference
	2.7.17. GetTestStatus
	2.7.18. InitAndRunTest
	2.7.19. InsertTDSFloppy
	2.7.20. LoadTDSFile
	2.7.21. OpenLoadFile
	2.7.22. PaintBackground
	2.7.23. ReadConfigurationFiles
	2.7.24. ReadCurrentConfig
	2.7.25. RecordNotification
	2.7.26. SelectTDSFile
	2.7.27. SelectTDSFile
	2.7.28. SetupTestParamFile
	2.7.29. TBTestSpecs

	2.8. SYSCFG.EXE
	2.8.1. AlterTesterConfig
	2.8.2. AlterTesterInfo
	2.8.3. BigListBox
	2.8.4. CheckDiskOK
	2.8.5. CheckLoadInputs
	2.8.6. FileSelect
	2.8.7. GetLoadInputs
	2.8.8. GetUserSelection
	2.8.9. IdleTime
	2.8.10. InitLoadRecord
	2.8.11. ModLoad
	2.8.12. OpenLoadFile
	2.8.13. OpenTesterInfo
	2.8.14. ReadCurrentConfig
	2.8.15. ReadLoadTypes
	2.8.16. StoreCurrentConfig
	2.8.17. StoreTesterInfo
	2.8.18. WriteRecToDisk

	2.9. QACHKSUM.OBJ
	2.9.1. qachksum
	2.9.2. do_exclusive_or
	2.9.3. compare_checksums
	2.9.4. midstring

	DISTRIBUTION

