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Abstract 

Many governmental and corporate organizations are interested in tracking 
materials andor information through a network. Often,  as  in the case of the 
U.S. Customs Service, the traffic is recorded as transactions through a large 
number of checkpoints with a correspondingly complex network. These 
networks will contain large numbers of uninteresting transactions that act  as 
noise to conceal the chains of transactions of interest, such as drug trafficking. 
We are interested in finding significant paths in transaction data  containing 
high noise levels, which tend to make traditional graph visualization methods 
complex and hard to understand. This paper covers the evolution of a series of 
graphing methods designed to assist in this search for paths-from 1-D to 2-D 
to  3-D  and  beyond. 
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Introduction 
The US.  Customs  Service has tried to increase the chances of intercepting illicit drugs at the 
border points of entry by entering the transportation processes upstream. Starting  in 1998, the 
Customs  Service initiated the Americas Counter Smuggling Initiative, which sent Customs 
agents throughout Latin America to  develop systems to track shipping  and transportation 
systems starting in foreign ports [ 11. 

The  shipping  systems originate outside the United States and enter through various ports of 
entry. This movement of commodities gives rise to a large network. This network can be 
represented as a graph where one is interested in finding the paths associated with illicit drug 
traffic. These paths potentially provide information about causal  relationships between the 
nodes. The nodes of the graph are points where shipping  containers  are  (or could be) 
inspected, and the arcs of the graph are the flow of the material between these checkpoints. 
The transit time between these points is a variable and can be up to 30 days.  The abstraction 
of this problem is to find paths or patterns in a large graph. Successive  links in the path must 
have increasing start times associated with them. We make the simplifying assumption that 
the  commodity is not subdivided, but stays as a unit until it reaches its destination. This type 
of analysis is known as link analysis. 

A data set of this type is large and contains more noise than data of interest. Noise, in this 
case, consists of normal transactions that occur naturally, but do not contribute  to the types of 
paths we are interested in. Our approach to analyzing this data is to develop 3-D visualization 
techniques that highlight the time dependencies in order to decrease the number of potential 
paths of interest. We  chose to visualize this  data by mapping  it as a graph and using graph- 
visualization techniques. 

A random 2-D graph is the obvious first step. It would be  possible to arrange the nodes 
(geographic locations) so that there are minimal crossing of edges  (transactions), but in a 
large,  highly connected network the minimal number of edge  crossings is likely to be large. 
Graphs with large  number of edge  crossing  contribute to confusion when one tries to trace 
paths of interest. The  data does not lend itself to hierarchical representation, thereby 
eliminating a large  number of graph-visualization techniques such as trees [2], cone trees [3, 
41, or semantic zooming techniques [5]. What we are looking  for involves paths through a 
block of data, so representations that impose order  on the data  seem  like a reasonable 
approach. 

The six methods  for visualizing this data discussed in this report are outlined below. These 
techniques are based on  circle graphs, new and innovative use of parallel-axes  graphs [6], and 
a new technique  for  folding adjacency matrices. 

Method 1 and raw data, 
Method 2 and circle graph, 
Method 3 and 2-D adjacency matrices in three axes, 
Method 4 and 3-D adjacency matrix, 
Method 5 and Parallel axes graph, and 



Method 6 and Dreamcatcher (expanded adjacency matrix). 
Link analysis is the process of mapping connections between entities. The purpose of link 
analysis is to mine the connection data so as to discover previously unexpected paths between 
seemingly unrelated entities. Connections may represent many things: sales, shipments, 
physical contacts or relations, circles of influence, etc. Connections  may be time dependent, 
and duration or volume dependent, etc. Link analysis is used in many fields including market 
research, law  enforcement,  epidemiology, and fraud  detection. 

Linkage data typically can  be modeled as a  graph, with nodes representing entities of interest 
and links (also known as arcs) representing relationships  or transactions. Link analysis 
attempts to infer useful knowledge from  a  large body of textual information. Our approach is 
to represent entities of interest as nodes in  a graph and the relationship or transactions as arcs 
in  a graph. 

Connections between nodes form paths of one  or more links. For  example, we may be 
interested in identifying all paths no more than “ N ’  links  long  from  a given starting entity 
(known as the source node) to  a given ending  entity (called the destination node). As “ N ’  
increases, the number of possible paths increases correspondingly, making analysis of the data 
more complicated. One may be interested in paths between specified entities that occur often 
or in paths that are out of the ordinary. 

Visualization of paths between nodes, especially multi-link paths, is difficult. 

Link analysis may also attempt to answer such questions as: 
Is there a path between selected nodes? 
Which nodes are central to the network? 
Which links  can be disrupted to most effectively impede the network‘s operation? 



Current  Visualization  Methods 
Currently, most link-analysis-visualization methods consist of a simple connected graph or a 
connection matrix. 

The connected graph (Figure 1) shows  links between nodes. Line width or colored edges  can 
convey additional information about the connection, such as transaction type, frequency or 
volume of the transaction, or the transaction’s duration. The  connected graph usually is drawn 
to minimize the number of arc crossings. Some packages allow the user  to drag and drop 
nodes so the  user  can  improve the graph’s layout interactively, 

Figure 1. A connection graph. 

There are several  problems with the connected graph as a visualization method for link 
analysis. First, the graph does not display a time element, making it impossible to determine 
the order of transactions. Second, there is no way  to distinguish the direction of transactions 
(“A to B” is not the same  as “B to A”). Third, multi-link paths are not discemable. 

The  connection matrix (Figure 2) shows what nodes were connected  at  a particular time or 
during  a  specific time period. Again, the use of color  can provide additional information, such 
as type of transaction, duration of transaction, etc. Unlike the connected  graph, the direction 
of transactions is implicit in the connection matrix. 



Figure 2. A connection matrix. 
Green  blocks mark active  connections, and black  blocks show 

impossible  connections. 

There are several problems with using the connection matrix as a visualization method for 
link analysis. First, although there is an implicit time element, the user must examine several 
connection matrices to determine the order and duration of transactions. Second, multi-link 
paths are still not distinguishable. 
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Visualizing  Transactions 

The Data 

We have assumed that the data that we are displaying is the data returned from a database 
query. For  example, a query might be “find all transactions originating from a specified entity 
within a certain period of time.” The result of such a query could be a small number of nodes 
(on the order of 4 to 32), with hundreds of transactions over the queried time  period,  or it 
could be a large  number of nodes and subsequent transactions. 

For  purposes of discussion here we will be using an  example dataset with 243 transactions 
between 16 nodes covering 256 time steps. All values are integers. 

The 2-D Tool 

Our first visualization tool (Figure 3) was developed with a commercial package called 
Interactive Data Language (DL) by Research Systems Inc. of Boulder, Colo.  IDL was 
selected because it runs on a wide range of platforms and operating systems and provides a 
rich set of graphics and user interface tools and because project members were familiar with 
and  have used DL. This visualization tool supports a number of alternative views of the data 
and uses color to enhance the user’s understanding of the data. 

I 
I 

I I 

I ‘ 1  I 

I 

Figure 3. The 2-D visualization tool. 
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There are four primary display windows. The upper left window is a source cut. The source is 
the starting entity. In this  example  our  source is node 0. This display shows what nodes are 
connected (by one  link) to 0 and at what time step.  The upper right window is a destination 
cut.  The destination cut displays all  the  links  coming  into the destination node and  at what 
time step. In this example the destination node is entity 3.The lower left window is a time cut. 
This display shows which nodes are connected at a given time step by a single connection. 
This is the traditional method of displaying a connection matrix. All three cuts  can be 
animated. Color in the  cuts represents the duration of a transaction, its type, or any other data 
of interest associated with the transaction. The legend illustrates the relative meanings of 
colors in the cuts.  The dashed lines  in the cut windows shows  the positions of the other cuts as 
an aid in  user orientation. The lower right window  shows a simple-connection graph. 

Four other views of the data  can replace the  lower right window. The collapsed time cut 
(Figure 4) is an alternate representation of the connection graph. It is easier to identify the 1- 
link transactions between entities in this representation than it was  in the circular connection 
graph because there are  no arc crossings. However, it is still not possible to construct possible 
paths of interest, that is, transactions between successive entities that must occur in  some time 
sequence. 

The collapsed source graph (Figure 4) shows which entity  and at what time step the specified 
source entity is connected to other entities. In this view, the  source initiates the transactions. 
This graph is useful in determining transactions that occur frequently between two given 
entities, may occur infrequently, or may occur with some time regularity. 

The collapsed destination graph (Figure 5 )  is similar  to the collapsed source graph in that it 
also  shows a given entity and at which time step it is connected to  other entities. For  this view 
other  entities initiate transactions, and  the destination entity receives the transactions. Finally, 
the user can use this window to  display  links of interest over time (Figure 5) .  For  example,  the 
user can  enter  pairs of entities. The pairs are displayed on the vertical axis, and time is 
displayed on the horizontal axis. The pairs can be specified so that successive  links  form a 
potential path of interest. In this  example,  the path of interest is (0:3) (3:9) (9:2). If recurrent 
patterns exist,  this graph presents the  information with much of the noise filtered out. 
However, the analyst needs to be able to specify  the path in advance. 

14 
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Figure 4. A collapsed time plot  (left)  and  a collapsed source plot (right). 
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rlgure 5. A collapsed aesmation plot  (left) and a path or "links of interest" plot  (right). 

This visualization tool was  successful in showing that there are many alternative ways  of 
viewing  the data. We  showed that color  could be successfully used to convey  additional 
information to  the user. However, the 2-D representation required that the user continually 
change  views and did little to reduce the difficulty of discovering  interesting  multi-link 
relationships. 



The 3-D Tool 

Our second visualization tool was developed with Flatland,  a 3-D visualization system 
developed  by the Albuquerque  High  Performance  Computing  Center (AHPCC) at the 
University of New Mexico (UNM). Flatland runs on a variety of platforms  and  operating 
systems. It supports a full range of 3-D features,  including hidden surfaces,  volume  rendering, 
and  transparency, and allows the user to “fly through”  the display. Flatland source is available 
for open distribution. We contracted with UNM to develop  a Flatland application  module to 
support  this project. Flatland  provides  capabilities that are unavailable in DL. 
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Methods for Visualizing  Data 

Method 1: The Raw Data 

Figure 6 shows the most basic display of the data possible - a window with a single record. 
The  data  are  made up of many such records, each describing a transaction between two nodes. 
Each transaction has a record number, the input (sending)  node  and output (receiving) node, 
the start time, and a duration. 

Record:. 188 
Input: -1 0 
Output: 6 
start: 59 
Duration: 8 

I 
I 
Figure 6. Details of a  raw record. 

Any record of the input  data can be viewed this way. This method has the advantage of being 
very precise, but it is also quite slow and cumbersome and relies entirely on the user to form a 
mental or hand written picture of the data useful in the search for paths. 

The raw data  is, therefore, not conducive to finding paths. Even if none of the information 
were missed, the user would have to use a pencil and paper to  keep track of possible paths. In 
current practice, most analysis is done with text-based displays. A query returns a list of 
possible entity transaction entity sets (also referred to as arcs or node sets). A query by nature 
filters  the raw data. Subsequent queries can further filter raw data  for one-transaction-at-a- 
time analysis. For  instance,  one  can  specify a node, call it Node A, requesting all possible 
paths. Suppose  it  had  paths to “B,” “C,” and “D.” The query can ask for  other nodes that have 
paths going through “B,” “C,” and/or “D.” The results will return a text-based display that 
shows new nodes and which nodes it has in common ((‘B,” “C,” and/or “D”) with Node A. 

B. Method 2: Circle  Graph 

In Figure 7, we see a graphical representation of the  system of transactions. The window on 
the left shows  the 16 nodes in  our  example data with all transactions. There are many 
transactions in the data that occur between the same nodes at different times, which are not 
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detectable in this diagram. The direction of each transaction also is not discernible from this 
representation. 

Figure 7. A circle graph  representing  transactions. 

In Figure 7, the graph on the left represents all the data returned from  a query. In this example 
all possible paths start at Node 0. These paths can be any length. The circle graph showing all 
connections illustrates nodes that do not have transactions between them, e.g., 6 and 12, or 9 
and 10. The  user may also determine which entities have no transactions between them if the 
graph does not have too many arc crossings. 

This  graph view also supports filtering. The  user  can select any  node and then apply  a filter 
that limits  the display to transactions that are “ N  links  from the selected node, where the 
analyst specifies “ N ,  and a  link is a transaction from  one  entity  to another. The “ N ’  links 
must be temporally sequential, and the source node  for the later transaction must be the same 
as the destination node for  the previous transaction. 

The right window in Figure7 demonstrates a filter that limits  the display to transactions that 
start at Node 2 and are not more than  two  links  from  it.  This view shows the activity between 
nodes and demonstrates which nodes have the largest number of transactions with other 
nodes. 

With the circle graph display, the user can determine which nodes have  paths between them 
and  the length of the paths by successively looking  at paths of various lengths. In both the 
filtered and unfiltered views, the only temporal information is that a  successive link must have 
a start time after the completion of the succeeding link. However, temporally, these links 
could be years apart, and transaction patterns  are hard to detect. The representations need to 
include  more meaningful temporal data  to find the patterns in which we are interested. 

18 



Method 3: Adjacency Matrices 

An adjacency matrix is a good way  to represent arbitrary transactions. The standard adjacency 
matrix would be a slice or volume of time with the input nodes on one  axis and the output 
nodes on an orthogonal axis,  a link of length 1. If all possible time slices of the data  were 
stacked with later slices on top of earlier slices, the data would be contained in a volume with 
inputs, outputs, and time  on orthogonal axes in three dimensions. These two slices  show all 
transactions entering or exiting a given node, respectively. The data then can  be  just as easily 
sliced between time and the  inputs (senders) or time and the outputs (receivers). 

Figure 8 shows  three  different  slices of data, with each slice parallel to one of the axes. The 
upper left window shows time on one axis and outputs on the other. The upper right once 
again shows time on the vertical axis, with inputs on the horizontal axis.  The lower window of 
Figure 8 shows the traditional adjacency matrix. These slices can  be moved through the data 
(the window title bars identify the  slice location in these examples).  To  help with 
understanding, each slice is shown as  a line on the other two  representations. Color-coded 
rectangles represent connections. A spectrum from blue to red represents the duration value, 
which also is represented in the “Input Slice” and “Output Slice” windows by the height of the 
rectangle. Dotted lines  show the intersection of the other planes relative to the view shown. 
These representations are similar to the ones shown in Figures 4 and 5 for  the 2-D model. 

Figure 8. Three windows showing  three  orthogonal  slices of the data. 



The user has selected the highlighted (white) transaction at the intersection of all three slices. 
Data about the transaction is then displayed using Method 1, the raw data. 

rhis method is an improvement over the previous two methods, as it allows the user to view 
the data along any of the three obvious  axes. However, it still requires the user to do a 
tremendous amount of mental visualization and correlation. In order to find a path in  this sort 
of representation, the three views can be used to show the relationships between the 
transactions, but it is still up to the analyst to relate  different transactions and discover they 
belong to the same path. This relationship is not displayed explicitly. 

Since these 2-D representations have limits, we looked at the 3-D  volume associated with the 
2-D slices. 

D. Method 4: 3-D Adjacency Matrix 

The  mental model of Method 3 requires that the analyst keep track of time-related data 
independently of the visual representation. When we stack the tome slices with the 
input/output slices, the result is a 3-D adjacency matrix. 

Figure 9 shows this stacked  data mapped into a three-dimensional space, using the Flatland 
[7] virtual environment (VE). Flatland is a highly configurable research VE developed at 
UNM’s AHPCC. Using shared libraries and run-time configuration, Flatland can be adapted 
to present a wide variety of environments  and  comes with standard example modules for the 
ground, stars, and a sun, and example modules to help developers construct their own Flatland 
module applications. Any visualization that uses OpenGL  can be easily adapted to Flatland, 
and Flatland supports 3-D audio. Application menus and various interaction modules allow 
the user to interact with and manipulate objects  in the environment. Using Flatland allows the 
user to fly around and  into the data, as well as  control  the representation. 

A 
Figure 9. A 3-D mapping of the example  data in the  Flatland  virtual  environment. 
- 



In the Flatland representation of the data, inputs are mapped in the +X direction (left to right), 
outputs in the -Z direction (front to back), and time in the +Y direction (bottom to top).  Slice 
planes (the translucent planes inside the box), similar to those used in  Method 3,  are shown 
for all three axes. Since  it is difficult to see where the slice planes intersect transactions, 
especially when the user’s view is not tangential to the plane,  the slice planes are statically 
reproduced to one  side.  For  example, the planes to the right of the volume  are projections of 
the slice planes inside the volume, Figure 10. An interesting feature is that in the horizontal- 
slice plane (time), the transactions move through the plane, allowing a view of where in the 
duration of a transaction (the white box) the slice  cuts each individual transaction. This is an 
added piece of information unavailable directly in the time-slice view in Method 3. Note also 
that the highlighted transaction described in Method 3 also is highlighted in both the cut 
planes and  the 3-D adjacency-matrix views. 

. 

Figure 10. Static  representations of the slice planes  seen  in  Fig. 9. 
Instead of moving through the data, the same data being sliced 

in  the volume appears  embedded in these nonmoving planes. 

In this representation, the analyst can control the location of the slice planes in the data, the 
location of the static cut planes (left or right side, top or bottom, and front or back),  and 
whether the slice and static cut planes are displayed at all. Additionally, the display of the 
axes and the transaction element size can be controlled interactively. 

In this representation, the analyst can see all of the data at  once, and even  fly  in and look 
“close up” at a specific section. Transaction patterns, especially in long  chains of transactions, 
are still not clearly discernable  partly because most of the data is noise  for our analysis and 
partly because of the inherent limitations of the adjacency-matrix format. The adjacency 
matrix requires the user to trace a connection from an input to an  output, find the  output node 
back on the  input  axis, then repeat, Figure 11. This process is tedious and error prone, and if 
the paths branch frequently, the number of possiblepaths increases quickly, making tracing 
difficult. 



Figure 11. A standard adjacency matrix,  rendered in 3-D. 

The slice data, 3-D adjacency matrix, and the  3-D  slices are not very effective for  finding 
paths. First, the paths are obscured by a large amount of noise. In addition, the paths we are 
looking for  cross time and input  and output plane projections. Thus,  even if the noise was 
suppressed, a 2-D projection does not contain enough information. For instance, to find all the 
paths from Node A to Node B, we need  to span both time and the planes for all the nodes 
through which the path from “A” to “B” passes. A display showing time on  one axis and arcs 
between nodes on a given path on another axis is more conducive to identifying patterns. 

The filtering process described for Method 2 can also be applied to the  3-D adjacency matrix. 
This filtering reduces the data to a manageable number of transactions, but it is not selective 
enough to point out individual transaction chains. To overcome these difficulties, new 
representations need to be  considered. 

Method 5: Parallel Axes Graph 

The parallel axes graph is specifically designed to  find transaction paths in the data. It allows 
the analysis to specify a source  (beginning) node, a destination (ending) node, and the number 
of transactions, or links, between them. For instance, the analyst could elect to see all paths 
from Node 3 to Node 5 that occur in exactly five transactions. 

There are two primary modes for this display. The  first includes minimal temporal 
information. This mode only shows the nodes in a path, not when the transactions occurred 
(even though successive transactions must be later in time than the previous transaction). The 
data displayed in Figure 12 actually corresponds  to seven (possible) paths of interest. In  the 
figure, only five distinct paths are recognizable since  an identical path occurring later  in time 
is overlaid on an earlier path. These paths need to be separated by start time (along the Z-axis, 



or some  other time parameter) to make them distinct. Figure 13 shows the second mode of 
display with the paths projected along a time axis. Each transaction is marked with its 
duration using a banner extending in the -2 direction from the beginning of the transaction. 
This banner is drawn in cooler (blue) colors for short durations and warmer  colors  for  longer 
durations. The width of the banner also is indicative of the duration, with narrower banners  for 
shorter durations and  wider ones for longer durations. 

L I  - 
Figure 12. Parallel  axes graph  without  temporal and duration  information 

A representation of all paths in  the data from Node 0 (the 
bottommost node) to Node 15 (the  topmost node) of Length 3, at a 

start time of 0, and  a  Delta “t” of 68. 
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Figure 13. Parallel axes graph with temporal  and duration information 
The same data as displayed in Fig. 12, with temporal 

and duration info added. 

A small line is drawn from each transaction terminus  to the node placeholders at the front of 
the display.  This makes it easier to  line up the nodes with the corresponding transaction. 

Two  other parameters that can be used to filter the data in this view are start time and Delta 
“t”. Start time is the  earliest time value for which data will be displayed. The start time used in 
the creation of Figs. 12 and 13 was 0, our relative start time. This interactive filtering 
simplifies the visual representation. 

Delta “t” is the allowable idle time at any given node. In other words, a transaction A is 
considered to be part of a path if it starts no longer than Delta “t” time units after another 
transaction, “B,” if the output of transaction “A” is the same as the  input of transaction “B.” 
This reduces a  display of hundreds or thousands of  possible paths to fewer possible paths 
since it  filters out paths that have too  long  a  time  lag  before  the next link 

The bar just below the first column of nodes graphically represents the beginning time plus 
Delta “t.” This visual aid helps keep track of the time interval being considered. 

With  this representation, if a path is displayed,  the analyst can  see there is a path from  the 
input to the output node of a particular length. It also provides a start for  finding particular 
entities and transactions that are of specific significance in  completing  a path. Such entities 
and transactions can be repeated as different paths  are  explored. 
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Paths are found by following transactions that start at the beginning node  and recursively 
finding out where they lead. Paths have to start between the start time and the start time plus 
Delta “t.” For a transaction to be considered as part of a path, it must occur within Delta “t” of 
the last transaction and  exit  from  the last node entered. A path is only found if it terminates at 
the ending node and is the specified length. 

There are two additional arrangements for displaying the nodes in  this  method. Neither 
configuration allows for the display of temporal data, thus limiting the usefulness of these 
displays in this application. One arrangement shows the nodes at each step arranged on a 
square grid. The transactions are drawn between these grid planes. The  second arrangement 
places the nodes in a circle.  These circles of nodes form a cylinder inside of which the 
transactions are drawn, Figure 14. 

Figure 14. Two alternate  representations of the parallel-axes  graph. 

The parallel axes graph seems to be the most intuitive representation for  finding paths of a 
given length between a specific starting and ending point. The user can  control the length of 
the path, the starting node, the ending node, the length of time displayed on the graph, and the 
time between successive links. This  allows  for a representation that has filtered out much of 
the noise so that smaller amounts of data are shown. One also  can scroll across time looking 
for repeated patterns by successively increasing the start time. 

Method 6: Dreamcatcher 

The Dreamcatcher method derives its name from the Native American Dreamcatcher art. It is 
another representation of  an adjacency matrix. 

One of the primary difficulties with an adjacency matrix is tracing successive  links  from  input 
to output. Finding a path requires one to follow a connection from an output to an input,  find 
the output corresponding  to the input, and then start again. See Figure 11 for an example of 
this process. 



If  we take the standard-adjacency matrix depicted in Figure 11 and rotate the  input nodes axis 
(along the top) 270" counterclockwise around the origin (the upper left comer),  leaving the 
output nodes fixed, then rotating the intermediate points along curves of constant radius and 
linearly interpolating their individual angles between those two axes, we get the construct in 
Figure 15. Possible paths are now quite visible as continuous connected loops, and the graph 
now resembles its namesake. 

--- -. 

Figure 15. The standard-adjacency  matrix  (Fig. 11) with  rotated  input notes 
The  input nodes  are  rotated 270 "counterclockwise.  Now the input and 
output nodes  are  coincident and possible  paths  are  more  easily seen. 

In order  to facilitate the search for paths in the data, the Dreamcatcher has several features that 
are all capable of being set dynamically. 

The unused intersection points (those not at  a transaction intersection) can be removed, as 
they can  be distracting. 

The Dreamcatcher can  be folded and unfolded at any time. The  foldhnfold sequence is 
animated, so the user can see how the unfolded representation is derived from the adjacency 
matrix. 

The "grid lines" (the pipes representing the transactions themselves) can be removed, but this 
representation only leaves the  sphere  at  the transaction intersections, which is not particularly 
useful in this application. These  connection  joints remain when the unused intersection points 
are turned off, and they can  also be a different color than normal unused intersection points. 
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The Dreamcatcher provides a history function. Rather than have a transaction abruptly 
disappear when it is no longer  active in the time slice, the transaction fades, using 
transparency, according to how far  in the past it  was active. For instance, if the  current time is 
32, and a transaction ended  at time 30, it would fade an  amount  corresponding  to two time 
units. The fade duration is controllable and can  be set from  zero  (no  history  function) to the 
maximum time represented in the data. 

The Dreamcatcher, like the method in the previous section, can represent the duration of the 
transaction using  banners trailing from the grid lines. These banners are width and color- 
coded according to the duration of the transaction - narrower, cooler  colors  for short durations 
and wider, hotter colors  for longer durations. These widths and  color  spectrum  are normalized 
over the range of the data set being displayed. 

Another dynamic  setting is the pulse generator that generated pulses traveling the grid lines 
counterclockwise. The  idea was to encourage the eye to  follow the lines as they looped around 
the structure. The designers all agree that this is very distracting  and visually busy. The 
feature still exists, but defaults to “OFF.” 

Transactions can  be  chosen  for display in one of two ways. Either the transaction is displayed 
just when the selected time value is the same as the transaction start value, or  the transaction 
can be displayed as  long as the selected time falls within the duration of that transaction. For 
finding paths, the  latter mode is more useful, since having transactions visible after their start 
time often leads to false identification of paths that  do not exist. 

The  concept of Delta “t,” as described in the previous method, also is used to filter data in the 
Dreamcatcher. When  enabled, all transaction paths that have  no more than  Delta “t” time units 
between incoming  and outgoing transactions at every node in  the path are displayed. 
Whenever a path of two  or more. transactions are found, the entire path turns orange to 
differentiate  it  from  chance loops that do not qualify as paths. This is illustrated in Figure 16. 
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Figure 16. Delta “t” enabled. 
The paths  found  are emphasized with a darker color, while 

transactions not participating in  a path are white. 

Occasionally, apparent paths can  form  even  when none are present. This happens when a path 
ends on the same node on which another path starts (in  this situation the starting path starts at 
the currently selected time, while the ending path is arriving at that node  some time in the 
future-they are not temporally coincident).  Figure 16 illustrates this, also. The apparent path 
that goes through Node 15 (the  bottommost  node) is not, in fact,  a path. It is the termination of 
one path and the start of another. 

To help resolve this issue we have introduced “rabbits,” named after the electric lights used on 
airport runways to guide aircraft in for  landing, which originated after the mechanical rabbit 
used at dog racing tracks. These rabbits are  launched at the start of every transaction that is 
not a continuation of a path (i.e.,  the start of a path or  a  single transaction) and circle the 
Dreamcatcher counterclockwise along the transaction pipes  at  a constant angular rate. The 
current depth of the rabbit(s) (the “depth” of a rabbit is how many times the rabbit has touched 
a node, and is, therefore, the path length it has covered so far) is displayed at the end of the 
textual information at the  bottom of the figure  and relates the length of the path in  hops  from 
the start. 

The rabbits are represented by a bead on the connection pipe that is slightly larger than the 
pipe itself and has a complementary color. Figure 16 shows an example containing rabbits. 
This image was taken immediately after  the  rabbits were launched. The white and the orange 
transactions, obviously the first transaction in  a path (or, in the case of the white one,  a single 
transaction), have a rabbit running. The transaction from Node 15 (the bottommost node), 
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which appears to be in the middle of a path, also has a rabbit running. This  indicates that there 
is a path starting  in what appears to be the middle of a path. There must be, therefore, a path 
starting at time 176 at Node 15, a conclusion that would not have been immediately obvious 
by looking  at the graph alone. 

The  “dumbbell” mode is also provided to help detect false paths. In this mode, the input and 
output nodes are slightly separated, and a bar is drawn across the resulting gap when a path 
passes through that node. Figure 17 shows an example where this is useful. 

C 
Showing the same data as Fig. 16. Notice that what  appeared to be a 

path through Node 15 (the bottom-most node)  is  in fact the end  of 
one path and  the  beginning of another. 

=-. . -7. Delta “t” anc Je enabled 

In the adjacency-matrix view of the Dreamcatcher, it is difficult to trace paths, although it 
confirms the existence of paths. The unfolding facilitates the identification of paths. It appears 
to  be useful for identifying possible paths of interest. It is less intuitive to determine if paths 
are repeated.  The ability to cycle through time may be useful for qualitative measures of a 
particular node’s activity. 
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Conclusions 
Analysts of this type of data  currently  employ  a  text-based  analysis  method using only the raw 
results of the database queries. They have  begun some  exploration  into  using  2-D  mappings of 
the  data  without  any  temporal  component, but are  still in the experimental  stage.  Often 
analysts  are not cognizant of the fact that they are  looking  for patterns. The research presented 
here is more  advanced  than the analyst’s  current  tools, so analysts will require  a  great  deal of 
training  before they will be able to use  these  tools to their  fullest  potential. We anticipate that 
people who are unfamiliar with graph theory in interpreting  the  displays  will  encounter  some 
difficulties. 

Our 3-D tool is very robust, but its user interface needs additional work. The navigation 
controls are not intuitive, and it is easy to get hopelessly  lost.  Navigation  by  joystick is much 
more  intuitive, but currently this capability is only  available  under  Microsoft  Windows.  We 
would like to incorporate  a heads-up display (HUD) to provide  the  user with orientation 
information.  We  would  like to support both a control-key interface (such as it has  now) and a 
menu-driven interface  (for  use  by  novice users). 

We would also  like to incorporate  the “links of interest” display from  the 2-D tool into the 3- 
D tool. This  display made it  easy to pick out recurrent patterns in the 2-D tool. We  believe 
that it would  have utility in the three-dimensional tool, too. 

Finally, although the tools  seem to make it easier to detect interesting  connection  paths, we 
would like  to  go  a  step  further  by  automating the detection of interesting,  multi-link paths. 
Initial work  looks  promising, but it  is still far  from  complete. 
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