
SIX Methods of Transaction Visualization
in V i 9 a I Enviror- nts

rand Michael

que High-Performance Computing Center

rpared by
?~:: 'Sandia National Laboratories

:,,.., '! Albuquerque, New Mexico 87185 and Livemore, California 94550
,::1 ,r 9

i(i :&:3 ,;, . ..,
H~,,', , Sandia is a multiprogram laboratoly operated by Sandia Corporation,
i,i : a Lcckheed Martin Company, for the United States Department of

Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE. This report was prepared as an account of work sponsored by an

nor any agency thereof, nor any of their employees, nor any of their contractors,
agency of the United States Government. Neither the United States Government,

subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or

represent that its use would not infringe privately owned rights. Reference herein
usefulness of any information, apparatus, product, or process disclosed, or

to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any
agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
US. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reDorts@adonis.osti.gov
Online ordering: httpf/www.doe.gwhridge

Available to the public from

National Technical Information Service
U S . Department of Commerce

5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900

Online order: httpf/www.ntis.gov/ordering.htm
E-Mail: orders@ntis.fedworld.gov

mailto:reDorts@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

SAND2002-1533
Unlimited Release
Printed April 2002

Six Methods of Transaction Visualization
in Virtual Environments

deanor A Walther and Michael W. Trahan
System Technologies Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-1207

Kenneth L. Summers
Department of Computer Science

Timothy Eyring and Thomas P. Caudell
Department of Electrical and Computer Engineering

University of New Mexico
&

The Albuquerque High-Performance Computing Center
Albuquerque, New Mexico

Abstract

Many governmental and corporate organizations are interested in tracking
materials andor information through a network. Often, as in the case of the
U.S. Customs Service, the traffic is recorded as transactions through a large
number of checkpoints with a correspondingly complex network. These
networks will contain large numbers of uninteresting transactions that act as
noise to conceal the chains of transactions of interest, such as drug trafficking.
We are interested in finding significant paths in transaction data containing
high noise levels, which tend to make traditional graph visualization methods
complex and hard to understand. This paper covers the evolution of a series of
graphing methods designed to assist in this search for paths-from 1-D to 2-D
to 3-D and beyond.

This Page Intentionally
Left Blank

4

Acknowledgements

This work was funded by Sandia National Laboratories’ Laboratory Directed Research and
Development (LDRD) funds. Additional thanks goes to Steve Smith of Los Alamos National
Laboratory for suggesting the name for the Dreamcatcher.

This Page Intentionally
Left Blank

6

Contents

Nomenclature ... 8

Current Visualization Methods 11
Introduction 9

Visualizing Transactions .. 13
The Data ... 13
The 2-D Tool .. 13

Methods for visualizing data .. 17
Method 1: The Raw Data ... 17
B . Method 2: Circle Graph ... 17
Method 3: Adjacency Matrices ... 19
D . Method 4: 3-D Adjacency Matrix ... 20
Method 5: Parallel Axes Graph ... 22
Method 6: Dreamcatcher .. 25

.... 3:

..
..

The 3-D Tool .. 16

Conclusions

Figures

Figure 1 . A connection graph 11
Figure 2 . A connection matrix .. 12
Figure 3 . The 2-D visualization tool .. 13
Figure 4 . A collapsed time plot (left) and a collapsed source plot (right) 15
Figure 5 . A collapsed destination plot (left) and a path or “links of interest” plot (right) 15
Figure 6 . Details of a raw record .. 17
Figure 7 . A circle graph representing transactions ... 18
Figure 8 . Three windows showing three orthogonal slices of the data 19
Figure 9 . A 3-D mapping of the example data in the Flatland virtual environment 20
Figure 10 . Static representations of the slice planes seen in Fig . 9 .. 21
Figure 11 . A standard adjacency matrix, rendered in 3-D ... 22
Figure 12 . Parallel axes graph without temporal and duration information 23
Figure 13 . Parallel axes graph with temporal and duration information 24
Figure 14 . Two alternate representations of the parallel-axes graph 25
Figure 15 . The standard-adjacency matrix (Fig . 11) with rotated input notes 26

... 28
Figure 17 . Delta “t” and dumbbell mode enabled .. 29
Figure 16 . Delta ‘I t I , enabled

AHPCC

HUD

D L

2-D

2-D

UNM

VE

LDRD

Nomenclature
Albuquerque High-Performance Computing Center

heads-up display

Interactive Data Language

three-dimensional

two-dimensional

The University of New Mexico

virtual environment

Laboratory Directed Research and Development

8

Introduction
The US. Customs Service has tried to increase the chances of intercepting illicit drugs at the
border points of entry by entering the transportation processes upstream. Starting in 1998, the
Customs Service initiated the Americas Counter Smuggling Initiative, which sent Customs
agents throughout Latin America to develop systems to track shipping and transportation
systems starting in foreign ports [11.

The shipping systems originate outside the United States and enter through various ports of
entry. This movement of commodities gives rise to a large network. This network can be
represented as a graph where one is interested in finding the paths associated with illicit drug
traffic. These paths potentially provide information about causal relationships between the
nodes. The nodes of the graph are points where shipping containers are (or could be)
inspected, and the arcs of the graph are the flow of the material between these checkpoints.
The transit time between these points is a variable and can be up to 30 days. The abstraction
of this problem is to find paths or patterns in a large graph. Successive links in the path must
have increasing start times associated with them. We make the simplifying assumption that
the commodity is not subdivided, but stays as a unit until it reaches its destination. This type
of analysis is known as link analysis.

A data set of this type is large and contains more noise than data of interest. Noise, in this
case, consists of normal transactions that occur naturally, but do not contribute to the types of
paths we are interested in. Our approach to analyzing this data is to develop 3-D visualization
techniques that highlight the time dependencies in order to decrease the number of potential
paths of interest. We chose to visualize this data by mapping it as a graph and using graph-
visualization techniques.

A random 2-D graph is the obvious first step. It would be possible to arrange the nodes
(geographic locations) so that there are minimal crossing of edges (transactions), but in a
large, highly connected network the minimal number of edge crossings is likely to be large.
Graphs with large number of edge crossing contribute to confusion when one tries to trace
paths of interest. The data does not lend itself to hierarchical representation, thereby
eliminating a large number of graph-visualization techniques such as trees [2], cone trees [3,
41, or semantic zooming techniques [5]. What we are looking for involves paths through a
block of data, so representations that impose order on the data seem like a reasonable
approach.

The six methods for visualizing this data discussed in this report are outlined below. These
techniques are based on circle graphs, new and innovative use of parallel-axes graphs [6], and
a new technique for folding adjacency matrices.

Method 1 and raw data,
Method 2 and circle graph,
Method 3 and 2-D adjacency matrices in three axes,
Method 4 and 3-D adjacency matrix,
Method 5 and Parallel axes graph, and

Method 6 and Dreamcatcher (expanded adjacency matrix).
Link analysis is the process of mapping connections between entities. The purpose of link
analysis is to mine the connection data so as to discover previously unexpected paths between
seemingly unrelated entities. Connections may represent many things: sales, shipments,
physical contacts or relations, circles of influence, etc. Connections may be time dependent,
and duration or volume dependent, etc. Link analysis is used in many fields including market
research, law enforcement, epidemiology, and fraud detection.

Linkage data typically can be modeled as a graph, with nodes representing entities of interest
and links (also known as arcs) representing relationships or transactions. Link analysis
attempts to infer useful knowledge from a large body of textual information. Our approach is
to represent entities of interest as nodes in a graph and the relationship or transactions as arcs
in a graph.

Connections between nodes form paths of one or more links. For example, we may be
interested in identifying all paths no more than “ N ’ links long from a given starting entity
(known as the source node) to a given ending entity (called the destination node). As “ N ’
increases, the number of possible paths increases correspondingly, making analysis of the data
more complicated. One may be interested in paths between specified entities that occur often
or in paths that are out of the ordinary.

Visualization of paths between nodes, especially multi-link paths, is difficult.

Link analysis may also attempt to answer such questions as:
Is there a path between selected nodes?
Which nodes are central to the network?
Which links can be disrupted to most effectively impede the network‘s operation?

Current Visualization Methods
Currently, most link-analysis-visualization methods consist of a simple connected graph or a
connection matrix.

The connected graph (Figure 1) shows links between nodes. Line width or colored edges can
convey additional information about the connection, such as transaction type, frequency or
volume of the transaction, or the transaction’s duration. The connected graph usually is drawn
to minimize the number of arc crossings. Some packages allow the user to drag and drop
nodes so the user can improve the graph’s layout interactively,

Figure 1. A connection graph.

There are several problems with the connected graph as a visualization method for link
analysis. First, the graph does not display a time element, making it impossible to determine
the order of transactions. Second, there is no way to distinguish the direction of transactions
(“A to B” is not the same as “B to A”). Third, multi-link paths are not discemable.

The connection matrix (Figure 2) shows what nodes were connected at a particular time or
during a specific time period. Again, the use of color can provide additional information, such
as type of transaction, duration of transaction, etc. Unlike the connected graph, the direction
of transactions is implicit in the connection matrix.

Figure 2. A connection matrix.
Green blocks mark active connections, and black blocks show

impossible connections.

There are several problems with using the connection matrix as a visualization method for
link analysis. First, although there is an implicit time element, the user must examine several
connection matrices to determine the order and duration of transactions. Second, multi-link
paths are still not distinguishable.

12

Visualizing Transactions

The Data

We have assumed that the data that we are displaying is the data returned from a database
query. For example, a query might be “find all transactions originating from a specified entity
within a certain period of time.” The result of such a query could be a small number of nodes
(on the order of 4 to 32), with hundreds of transactions over the queried time period, or it
could be a large number of nodes and subsequent transactions.

For purposes of discussion here we will be using an example dataset with 243 transactions
between 16 nodes covering 256 time steps. All values are integers.

The 2-D Tool

Our first visualization tool (Figure 3) was developed with a commercial package called
Interactive Data Language (DL) by Research Systems Inc. of Boulder, Colo. IDL was
selected because it runs on a wide range of platforms and operating systems and provides a
rich set of graphics and user interface tools and because project members were familiar with
and have used DL. This visualization tool supports a number of alternative views of the data
and uses color to enhance the user’s understanding of the data.

I
I

I I

I ‘ 1 I

I

Figure 3. The 2-D visualization tool.

13

There are four primary display windows. The upper left window is a source cut. The source is
the starting entity. In this example our source is node 0. This display shows what nodes are
connected (by one link) to 0 and at what time step. The upper right window is a destination
cut. The destination cut displays all the links coming into the destination node and at what
time step. In this example the destination node is entity 3.The lower left window is a time cut.
This display shows which nodes are connected at a given time step by a single connection.
This is the traditional method of displaying a connection matrix. All three cuts can be
animated. Color in the cuts represents the duration of a transaction, its type, or any other data
of interest associated with the transaction. The legend illustrates the relative meanings of
colors in the cuts. The dashed lines in the cut windows shows the positions of the other cuts as
an aid in user orientation. The lower right window shows a simple-connection graph.

Four other views of the data can replace the lower right window. The collapsed time cut
(Figure 4) is an alternate representation of the connection graph. It is easier to identify the 1-
link transactions between entities in this representation than it was in the circular connection
graph because there are no arc crossings. However, it is still not possible to construct possible
paths of interest, that is, transactions between successive entities that must occur in some time
sequence.

The collapsed source graph (Figure 4) shows which entity and at what time step the specified
source entity is connected to other entities. In this view, the source initiates the transactions.
This graph is useful in determining transactions that occur frequently between two given
entities, may occur infrequently, or may occur with some time regularity.

The collapsed destination graph (Figure 5) is similar to the collapsed source graph in that it
also shows a given entity and at which time step it is connected to other entities. For this view
other entities initiate transactions, and the destination entity receives the transactions. Finally,
the user can use this window to display links of interest over time (Figure 5) . For example, the
user can enter pairs of entities. The pairs are displayed on the vertical axis, and time is
displayed on the horizontal axis. The pairs can be specified so that successive links form a
potential path of interest. In this example, the path of interest is (0:3) (3:9) (9:2). If recurrent
patterns exist, this graph presents the information with much of the noise filtered out.
However, the analyst needs to be able to specify the path in advance.

14

0 15 0
Source

1s
Destination

~~ ~~~~~~

Figure 4. A collapsed time plot (left) and a collapsed source plot (right).

Links of Interest

I

I
0

l ime

y
255 I

rlgure 5. A collapsed aesmation plot (left) and a path or "links of interest" plot (right).

This visualization tool was successful in showing that there are many alternative ways of
viewing the data. We showed that color could be successfully used to convey additional
information to the user. However, the 2-D representation required that the user continually
change views and did little to reduce the difficulty of discovering interesting multi-link
relationships.

The 3-D Tool

Our second visualization tool was developed with Flatland, a 3-D visualization system
developed by the Albuquerque High Performance Computing Center (AHPCC) at the
University of New Mexico (UNM). Flatland runs on a variety of platforms and operating
systems. It supports a full range of 3-D features, including hidden surfaces, volume rendering,
and transparency, and allows the user to “fly through” the display. Flatland source is available
for open distribution. We contracted with UNM to develop a Flatland application module to
support this project. Flatland provides capabilities that are unavailable in DL.

16

Methods for Visualizing Data

Method 1: The Raw Data

Figure 6 shows the most basic display of the data possible - a window with a single record.
The data are made up of many such records, each describing a transaction between two nodes.
Each transaction has a record number, the input (sending) node and output (receiving) node,
the start time, and a duration.

Record:. 188
Input: -1 0
Output: 6
start: 59
Duration: 8

I
I
Figure 6. Details of a raw record.

Any record of the input data can be viewed this way. This method has the advantage of being
very precise, but it is also quite slow and cumbersome and relies entirely on the user to form a
mental or hand written picture of the data useful in the search for paths.

The raw data is, therefore, not conducive to finding paths. Even if none of the information
were missed, the user would have to use a pencil and paper to keep track of possible paths. In
current practice, most analysis is done with text-based displays. A query returns a list of
possible entity transaction entity sets (also referred to as arcs or node sets). A query by nature
filters the raw data. Subsequent queries can further filter raw data for one-transaction-at-a-
time analysis. For instance, one can specify a node, call it Node A, requesting all possible
paths. Suppose it had paths to “B,” “C,” and “D.” The query can ask for other nodes that have
paths going through “B,” “C,” and/or “D.” The results will return a text-based display that
shows new nodes and which nodes it has in common ((‘B,” “C,” and/or “D”) with Node A.

B. Method 2: Circle Graph

In Figure 7, we see a graphical representation of the system of transactions. The window on
the left shows the 16 nodes in our example data with all transactions. There are many
transactions in the data that occur between the same nodes at different times, which are not

17

detectable in this diagram. The direction of each transaction also is not discernible from this
representation.

Figure 7. A circle graph representing transactions.

In Figure 7, the graph on the left represents all the data returned from a query. In this example
all possible paths start at Node 0. These paths can be any length. The circle graph showing all
connections illustrates nodes that do not have transactions between them, e.g., 6 and 12, or 9
and 10. The user may also determine which entities have no transactions between them if the
graph does not have too many arc crossings.

This graph view also supports filtering. The user can select any node and then apply a filter
that limits the display to transactions that are “ N links from the selected node, where the
analyst specifies “ N , and a link is a transaction from one entity to another. The “ N ’ links
must be temporally sequential, and the source node for the later transaction must be the same
as the destination node for the previous transaction.

The right window in Figure7 demonstrates a filter that limits the display to transactions that
start at Node 2 and are not more than two links from it. This view shows the activity between
nodes and demonstrates which nodes have the largest number of transactions with other
nodes.

With the circle graph display, the user can determine which nodes have paths between them
and the length of the paths by successively looking at paths of various lengths. In both the
filtered and unfiltered views, the only temporal information is that a successive link must have
a start time after the completion of the succeeding link. However, temporally, these links
could be years apart, and transaction patterns are hard to detect. The representations need to
include more meaningful temporal data to find the patterns in which we are interested.

18

Method 3: Adjacency Matrices

An adjacency matrix is a good way to represent arbitrary transactions. The standard adjacency
matrix would be a slice or volume of time with the input nodes on one axis and the output
nodes on an orthogonal axis, a link of length 1. If all possible time slices of the data were
stacked with later slices on top of earlier slices, the data would be contained in a volume with
inputs, outputs, and time on orthogonal axes in three dimensions. These two slices show all
transactions entering or exiting a given node, respectively. The data then can be just as easily
sliced between time and the inputs (senders) or time and the outputs (receivers).

Figure 8 shows three different slices of data, with each slice parallel to one of the axes. The
upper left window shows time on one axis and outputs on the other. The upper right once
again shows time on the vertical axis, with inputs on the horizontal axis. The lower window of
Figure 8 shows the traditional adjacency matrix. These slices can be moved through the data
(the window title bars identify the slice location in these examples). To help with
understanding, each slice is shown as a line on the other two representations. Color-coded
rectangles represent connections. A spectrum from blue to red represents the duration value,
which also is represented in the “Input Slice” and “Output Slice” windows by the height of the
rectangle. Dotted lines show the intersection of the other planes relative to the view shown.
These representations are similar to the ones shown in Figures 4 and 5 for the 2-D model.

Figure 8. Three windows showing three orthogonal slices of the data.

The user has selected the highlighted (white) transaction at the intersection of all three slices.
Data about the transaction is then displayed using Method 1, the raw data.

rhis method is an improvement over the previous two methods, as it allows the user to view
the data along any of the three obvious axes. However, it still requires the user to do a
tremendous amount of mental visualization and correlation. In order to find a path in this sort
of representation, the three views can be used to show the relationships between the
transactions, but it is still up to the analyst to relate different transactions and discover they
belong to the same path. This relationship is not displayed explicitly.

Since these 2-D representations have limits, we looked at the 3-D volume associated with the
2-D slices.

D. Method 4: 3-D Adjacency Matrix

The mental model of Method 3 requires that the analyst keep track of time-related data
independently of the visual representation. When we stack the tome slices with the
input/output slices, the result is a 3-D adjacency matrix.

Figure 9 shows this stacked data mapped into a three-dimensional space, using the Flatland
[7] virtual environment (VE). Flatland is a highly configurable research VE developed at
UNM’s AHPCC. Using shared libraries and run-time configuration, Flatland can be adapted
to present a wide variety of environments and comes with standard example modules for the
ground, stars, and a sun, and example modules to help developers construct their own Flatland
module applications. Any visualization that uses OpenGL can be easily adapted to Flatland,
and Flatland supports 3-D audio. Application menus and various interaction modules allow
the user to interact with and manipulate objects in the environment. Using Flatland allows the
user to fly around and into the data, as well as control the representation.

A
Figure 9. A 3-D mapping of the example data in the Flatland virtual environment.
-

In the Flatland representation of the data, inputs are mapped in the +X direction (left to right),
outputs in the -Z direction (front to back), and time in the +Y direction (bottom to top). Slice
planes (the translucent planes inside the box), similar to those used in Method 3, are shown
for all three axes. Since it is difficult to see where the slice planes intersect transactions,
especially when the user’s view is not tangential to the plane, the slice planes are statically
reproduced to one side. For example, the planes to the right of the volume are projections of
the slice planes inside the volume, Figure 10. An interesting feature is that in the horizontal-
slice plane (time), the transactions move through the plane, allowing a view of where in the
duration of a transaction (the white box) the slice cuts each individual transaction. This is an
added piece of information unavailable directly in the time-slice view in Method 3. Note also
that the highlighted transaction described in Method 3 also is highlighted in both the cut
planes and the 3-D adjacency-matrix views.

.

Figure 10. Static representations of the slice planes seen in Fig. 9.
Instead of moving through the data, the same data being sliced

in the volume appears embedded in these nonmoving planes.

In this representation, the analyst can control the location of the slice planes in the data, the
location of the static cut planes (left or right side, top or bottom, and front or back), and
whether the slice and static cut planes are displayed at all. Additionally, the display of the
axes and the transaction element size can be controlled interactively.

In this representation, the analyst can see all of the data at once, and even fly in and look
“close up” at a specific section. Transaction patterns, especially in long chains of transactions,
are still not clearly discernable partly because most of the data is noise for our analysis and
partly because of the inherent limitations of the adjacency-matrix format. The adjacency
matrix requires the user to trace a connection from an input to an output, find the output node
back on the input axis, then repeat, Figure 11. This process is tedious and error prone, and if
the paths branch frequently, the number of possiblepaths increases quickly, making tracing
difficult.

Figure 11. A standard adjacency matrix, rendered in 3-D.

The slice data, 3-D adjacency matrix, and the 3-D slices are not very effective for finding
paths. First, the paths are obscured by a large amount of noise. In addition, the paths we are
looking for cross time and input and output plane projections. Thus, even if the noise was
suppressed, a 2-D projection does not contain enough information. For instance, to find all the
paths from Node A to Node B, we need to span both time and the planes for all the nodes
through which the path from “A” to “B” passes. A display showing time on one axis and arcs
between nodes on a given path on another axis is more conducive to identifying patterns.

The filtering process described for Method 2 can also be applied to the 3-D adjacency matrix.
This filtering reduces the data to a manageable number of transactions, but it is not selective
enough to point out individual transaction chains. To overcome these difficulties, new
representations need to be considered.

Method 5: Parallel Axes Graph

The parallel axes graph is specifically designed to find transaction paths in the data. It allows
the analysis to specify a source (beginning) node, a destination (ending) node, and the number
of transactions, or links, between them. For instance, the analyst could elect to see all paths
from Node 3 to Node 5 that occur in exactly five transactions.

There are two primary modes for this display. The first includes minimal temporal
information. This mode only shows the nodes in a path, not when the transactions occurred
(even though successive transactions must be later in time than the previous transaction). The
data displayed in Figure 12 actually corresponds to seven (possible) paths of interest. In the
figure, only five distinct paths are recognizable since an identical path occurring later in time
is overlaid on an earlier path. These paths need to be separated by start time (along the Z-axis,

or some other time parameter) to make them distinct. Figure 13 shows the second mode of
display with the paths projected along a time axis. Each transaction is marked with its
duration using a banner extending in the -2 direction from the beginning of the transaction.
This banner is drawn in cooler (blue) colors for short durations and warmer colors for longer
durations. The width of the banner also is indicative of the duration, with narrower banners for
shorter durations and wider ones for longer durations.

L I -
Figure 12. Parallel axes graph without temporal and duration information

A representation of all paths in the data from Node 0 (the
bottommost node) to Node 15 (the topmost node) of Length 3, at a

start time of 0, and a Delta “t” of 68.

23

Figure 13. Parallel axes graph with temporal and duration information
The same data as displayed in Fig. 12, with temporal

and duration info added.

A small line is drawn from each transaction terminus to the node placeholders at the front of
the display. This makes it easier to line up the nodes with the corresponding transaction.

Two other parameters that can be used to filter the data in this view are start time and Delta
“t”. Start time is the earliest time value for which data will be displayed. The start time used in
the creation of Figs. 12 and 13 was 0, our relative start time. This interactive filtering
simplifies the visual representation.

Delta “t” is the allowable idle time at any given node. In other words, a transaction A is
considered to be part of a path if it starts no longer than Delta “t” time units after another
transaction, “B,” if the output of transaction “A” is the same as the input of transaction “B.”
This reduces a display of hundreds or thousands of possible paths to fewer possible paths
since it filters out paths that have too long a time lag before the next link

The bar just below the first column of nodes graphically represents the beginning time plus
Delta “t.” This visual aid helps keep track of the time interval being considered.

With this representation, if a path is displayed, the analyst can see there is a path from the
input to the output node of a particular length. It also provides a start for finding particular
entities and transactions that are of specific significance in completing a path. Such entities
and transactions can be repeated as different paths are explored.

24

Paths are found by following transactions that start at the beginning node and recursively
finding out where they lead. Paths have to start between the start time and the start time plus
Delta “t.” For a transaction to be considered as part of a path, it must occur within Delta “t” of
the last transaction and exit from the last node entered. A path is only found if it terminates at
the ending node and is the specified length.

There are two additional arrangements for displaying the nodes in this method. Neither
configuration allows for the display of temporal data, thus limiting the usefulness of these
displays in this application. One arrangement shows the nodes at each step arranged on a
square grid. The transactions are drawn between these grid planes. The second arrangement
places the nodes in a circle. These circles of nodes form a cylinder inside of which the
transactions are drawn, Figure 14.

Figure 14. Two alternate representations of the parallel-axes graph.

The parallel axes graph seems to be the most intuitive representation for finding paths of a
given length between a specific starting and ending point. The user can control the length of
the path, the starting node, the ending node, the length of time displayed on the graph, and the
time between successive links. This allows for a representation that has filtered out much of
the noise so that smaller amounts of data are shown. One also can scroll across time looking
for repeated patterns by successively increasing the start time.

Method 6: Dreamcatcher

The Dreamcatcher method derives its name from the Native American Dreamcatcher art. It is
another representation of an adjacency matrix.

One of the primary difficulties with an adjacency matrix is tracing successive links from input
to output. Finding a path requires one to follow a connection from an output to an input, find
the output corresponding to the input, and then start again. See Figure 11 for an example of
this process.

If we take the standard-adjacency matrix depicted in Figure 11 and rotate the input nodes axis
(along the top) 270" counterclockwise around the origin (the upper left comer), leaving the
output nodes fixed, then rotating the intermediate points along curves of constant radius and
linearly interpolating their individual angles between those two axes, we get the construct in
Figure 15. Possible paths are now quite visible as continuous connected loops, and the graph
now resembles its namesake.

--- -.

Figure 15. The standard-adjacency matrix (Fig. 11) with rotated input notes
The input nodes are rotated 270 "counterclockwise. Now the input and
output nodes are coincident and possible paths are more easily seen.

In order to facilitate the search for paths in the data, the Dreamcatcher has several features that
are all capable of being set dynamically.

The unused intersection points (those not at a transaction intersection) can be removed, as
they can be distracting.

The Dreamcatcher can be folded and unfolded at any time. The foldhnfold sequence is
animated, so the user can see how the unfolded representation is derived from the adjacency
matrix.

The "grid lines" (the pipes representing the transactions themselves) can be removed, but this
representation only leaves the sphere at the transaction intersections, which is not particularly
useful in this application. These connection joints remain when the unused intersection points
are turned off, and they can also be a different color than normal unused intersection points.

26

The Dreamcatcher provides a history function. Rather than have a transaction abruptly
disappear when it is no longer active in the time slice, the transaction fades, using
transparency, according to how far in the past it was active. For instance, if the current time is
32, and a transaction ended at time 30, it would fade an amount corresponding to two time
units. The fade duration is controllable and can be set from zero (no history function) to the
maximum time represented in the data.

The Dreamcatcher, like the method in the previous section, can represent the duration of the
transaction using banners trailing from the grid lines. These banners are width and color-
coded according to the duration of the transaction - narrower, cooler colors for short durations
and wider, hotter colors for longer durations. These widths and color spectrum are normalized
over the range of the data set being displayed.

Another dynamic setting is the pulse generator that generated pulses traveling the grid lines
counterclockwise. The idea was to encourage the eye to follow the lines as they looped around
the structure. The designers all agree that this is very distracting and visually busy. The
feature still exists, but defaults to “OFF.”

Transactions can be chosen for display in one of two ways. Either the transaction is displayed
just when the selected time value is the same as the transaction start value, or the transaction
can be displayed as long as the selected time falls within the duration of that transaction. For
finding paths, the latter mode is more useful, since having transactions visible after their start
time often leads to false identification of paths that do not exist.

The concept of Delta “t,” as described in the previous method, also is used to filter data in the
Dreamcatcher. When enabled, all transaction paths that have no more than Delta “t” time units
between incoming and outgoing transactions at every node in the path are displayed.
Whenever a path of two or more. transactions are found, the entire path turns orange to
differentiate it from chance loops that do not qualify as paths. This is illustrated in Figure 16.

21

Figure 16. Delta “t” enabled.
The paths found are emphasized with a darker color, while

transactions not participating in a path are white.

Occasionally, apparent paths can form even when none are present. This happens when a path
ends on the same node on which another path starts (in this situation the starting path starts at
the currently selected time, while the ending path is arriving at that node some time in the
future-they are not temporally coincident). Figure 16 illustrates this, also. The apparent path
that goes through Node 15 (the bottommost node) is not, in fact, a path. It is the termination of
one path and the start of another.

To help resolve this issue we have introduced “rabbits,” named after the electric lights used on
airport runways to guide aircraft in for landing, which originated after the mechanical rabbit
used at dog racing tracks. These rabbits are launched at the start of every transaction that is
not a continuation of a path (i.e., the start of a path or a single transaction) and circle the
Dreamcatcher counterclockwise along the transaction pipes at a constant angular rate. The
current depth of the rabbit(s) (the “depth” of a rabbit is how many times the rabbit has touched
a node, and is, therefore, the path length it has covered so far) is displayed at the end of the
textual information at the bottom of the figure and relates the length of the path in hops from
the start.

The rabbits are represented by a bead on the connection pipe that is slightly larger than the
pipe itself and has a complementary color. Figure 16 shows an example containing rabbits.
This image was taken immediately after the rabbits were launched. The white and the orange
transactions, obviously the first transaction in a path (or, in the case of the white one, a single
transaction), have a rabbit running. The transaction from Node 15 (the bottommost node),

28

which appears to be in the middle of a path, also has a rabbit running. This indicates that there
is a path starting in what appears to be the middle of a path. There must be, therefore, a path
starting at time 176 at Node 15, a conclusion that would not have been immediately obvious
by looking at the graph alone.

The “dumbbell” mode is also provided to help detect false paths. In this mode, the input and
output nodes are slightly separated, and a bar is drawn across the resulting gap when a path
passes through that node. Figure 17 shows an example where this is useful.

C
Showing the same data as Fig. 16. Notice that what appeared to be a

path through Node 15 (the bottom-most node) is in fact the end of
one path and the beginning of another.

=-. . -7. Delta “t” anc Je enabled

In the adjacency-matrix view of the Dreamcatcher, it is difficult to trace paths, although it
confirms the existence of paths. The unfolding facilitates the identification of paths. It appears
to be useful for identifying possible paths of interest. It is less intuitive to determine if paths
are repeated. The ability to cycle through time may be useful for qualitative measures of a
particular node’s activity.

This Page Intentionally
Left Blank

30

Conclusions
Analysts of this type of data currently employ a text-based analysis method using only the raw
results of the database queries. They have begun some exploration into using 2-D mappings of
the data without any temporal component, but are still in the experimental stage. Often
analysts are not cognizant of the fact that they are looking for patterns. The research presented
here is more advanced than the analyst’s current tools, so analysts will require a great deal of
training before they will be able to use these tools to their fullest potential. We anticipate that
people who are unfamiliar with graph theory in interpreting the displays will encounter some
difficulties.

Our 3-D tool is very robust, but its user interface needs additional work. The navigation
controls are not intuitive, and it is easy to get hopelessly lost. Navigation by joystick is much
more intuitive, but currently this capability is only available under Microsoft Windows. We
would like to incorporate a heads-up display (HUD) to provide the user with orientation
information. We would like to support both a control-key interface (such as it has now) and a
menu-driven interface (for use by novice users).

We would also like to incorporate the “links of interest” display from the 2-D tool into the 3-
D tool. This display made it easy to pick out recurrent patterns in the 2-D tool. We believe
that it would have utility in the three-dimensional tool, too.

Finally, although the tools seem to make it easier to detect interesting connection paths, we
would like to go a step further by automating the detection of interesting, multi-link paths.
Initial work looks promising, but it is still far from complete.

31

This Page Intentionally
Left Blank

32

References
[11 S.E. Flynn, Beyond Border Control, in Foreign Aflfairs, vol. 79(6), pp. 57-68,2000.

[2] L. Tweedie, Characterizing Interactive Externalizations, in Proceedings of the I997
Conference on Human Factors in Computing Systems, Computer Human Interactions,
Atlanta, Ga., USA, March 22-27, 1997, pp. 375-382.

[3] S.K. Card, J.D. Mackinlay, and B. Shneiderman, Readings in Information Visualization-
Using Vision to Think, Morgan Kaufmann, 1999, pp. 308-309, 523,525-526,619.

[4] G.G. Robertson, S.K. Card, and J.D. Mackinlay, Information Visualization Using 3D
Interactive Animation, in Communications of the ACM, vol. 36(4), pp. 57-71, 1993.

[5] K.L. Summers, J. Greenfield, and B.T. Smith, A Survey of Parallel Program Performance
Evaluation Techniques Using Visualization and Virtual Reality, in Proceedings of the IEEE
Aerospace Conference, Big Sky, Montana, 2000.

[6] A. Inselberg, Multidimensional Detective, in Proceedings of InfoVis '97, IEEE
Symposium on Information Visualization, IEEE Information Visualization, 1997, pp. 1%
107.

[7] A Guide to Flatland, unpublished Albuquerque High Performance Computing Center
Technical Document, 2000.

33

Distribution:
1 Dr. Kate Cherry

Lockheed Martin

12506 Lake Underhill, Orlando FL 32825
MP- 166

University of New Mexico
Attn: Kenneth L. Summers

Timothy Eying
Thomas P. Caudell

Albuquerque, NM 87131

I

1
1
5
10
1
2
2

MS 1202
1217
1205
1207
1207
1207
9018
0899
0619

Roxanna M. Jausma, 5931
William M. Miller, 59 13
K. David Nokes, 5900
J. Yoder, 5914
M.W. Trahan, 5914
E.A. Walther, 5914
Central Technical Files, 8945-1
Technical Library, 9616
Review and Approval Desk, 9612, For DOE/OSTI

34

	Abstract
	Acknowledgements
	Contents
	Nomenclature
	Introduction
	Current Visualization Methods
	Visualizing Transactions
	The Data
	The 2-D Tool
	3-D Tool

	Methods for visualizing data
	Method 1: The Raw Data
	Method 2: Circle Graph
	Method 3: Adjacency Matrices
	Method 4: 3-D Adjacency Matrix
	Method 5: Parallel Axes Graph
	Method 6: Dreamcatcher

	Conclusions
	References
	Distribution

