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Abstract

The blast parameters for the 6-foot diameter by 200-foot long, explosively driven shock tube are
presented in this report. The purpose, main characteristics, and blast simulation capabilities of
this PETN Primacord, explosively driven facility are included. Experimental data are presented
for air and Sulfurhexaflouride (SF6) test gases with initial pressures between 0.5 to 12.1 psia
(ambient). Experimental data are presented and include shock wave time of arrival at various
test stations, flow duration, static or side-on overpressure, and stagnation or head-on
overpressure. The blast parameters calculated from the above measured parameters and
presented in this report include shock wave velocity, shock strength, shock Mach number, flow
Mach Number, reflected pressure, dynamic pressure, particle velocity, density, and temperature.
Graphical data for the above parameters are included. Algorithms and least squares fit equations
are also included.
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Nomenclature

Test gas sound velocity (fps)

Sound velocity behind the shock wave (fps)
Test gas sound speed (fps)

Specific heat at constant pressure
Specific heat at constant volume

Shock tube diameter (ft)

Calibration Test Unit

Static impulse (psig-ms)

Laboratory Test Unit

Flow Mach number

Shock Mach number

Reynold’s number

Static or Side-on pressure (psia)

Initial test gas pressure (psia)
Stagnation or head-on pressure (psia)
Reflected pressure (psia)

Static overpressure (psig)

Dynamic pressure (psia)

Temperature behind shock

Shock arrival time relative to the initiation of explosive (ms)
Flow duration time (ms)

Temperature behind the shock wave (F)
Initial test gas temperature (F)
Stagnation temperature

Flow velocity behind the shock wave (fps)
Shock wave velocity (fps)

Explosive weight (1b)

Density behind the shock wave (1b/ft*3)
Initial test gas density (Ib/ft"3)

Test gas specific heat ratio

Viscosity
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DISTRIBUTED EXPLOSIVE-DRIVEN SIX-FOOT DIAMETER by
TWO-HUNDRED FOOT LONG SHOCK TUBE

1.0 Introduction

Sandia National Laboratories (SNL) has been extensively engaged in the design of aerodynamic
structures to withstand blast loading. As part of this program, SNL has devoted a considerable
effort to the development of facilities for blast simulation, instrumentation to measure structural
response and blast environment, and analytical techniques to analyze structure-environment
interactions as documented in References 1 through 20.

Current interest in the blast testing of the W76-1/MK-4 system has required that available
explosively driven shock tube facilities be evaluated to conduct this program. Sandia National
Laboratories (SNL) explosively driven shock tube facilities were last used on the W88/MK-5
blast program in about 1986. Therefore, SNL must make a decision whether to re-start or
refurbish the shock tube facilities here or to conduct the W76-1/MK-4 blast program at an
outside facility if a qualified site is found. As part of the evaluation of shock tube facilities and
to help in the decision-making, this report is one of several (Reference 1 and 20) documenting
SNL shock tube facilities and their performance parameters.

This report is similar to and compliments the report documented in reference 1 for a 6-foot
diameter by 60-foot long, concentrated explosive-driven shock tube and reference 20 for a 19-
foot diameter explosively driven blast simulator. The distributed, PETN Primacord,
explosively-driven and longer shock tube described in this report differs from the shock tube
described in reference 1 as follows:

Distributed, PETN Primacord, explosive with much lower density (1.0 versus 1.65 g/cc),
Re-usable, thick-walled, driver section,

Longer flow duration times (25 ms versus 5 ms),

Longer static impulses, and

Lower static and stagnation pressures.

Nk v

Designing any structure to survive a dynamically applied load such as blast is a complex task. In
terms of re-entry vehicles, the blast loads on the structure are caused by the vehicle velocity, as
well as by the density, pressure, and particle velocity of the blast wave. The complexity of the
blast environment experienced by the structure demands that design be experimentally verified
and proof tested.

There are two general methods for blast testing structures: move the structure through the blast
environment, or hold the structure stationary in a blast environment. SNL chose the approach of
combining a stationary vehicle (and hard-wire instrumentation) with an explosive-driven flow
environment in a shock tube.



Loading Characteristics of Stationary Structures

The loads imposed on a stationary structure in a shock tube are caused only by conditions behind

the shock wave. These conditions, and the load pulse shape, depend upon the initial conditions

in the tube, tube configuration, and load level. The important considerations in this type of

blast-loading can be summarized as follows:

1. The maximum load level prescribes a limit to the shock strength and velocity,

2. The shock velocity controls the load rise time,

3. The length of the shock tube and the shock strength determine the duration of the load pulse,
and

4. The flow Mach number behind the shock wave, which influences the pressure distribution on
the structure, depends upon the driven gas, initial test gas pressure, and the shock strength.

These interdependent parameters determine the nature and configuration of a shock tube for a
given application. However, considerable control over the shock tube performance at a given
load level can be exercised by appropriate selection of the test gas and initial pressure in the tube.

For example, one major limitation of shock tube testing, or for that matter, any other blast
simulation technique, is in obtaining a pressure distribution around the structure that is
representative of actual high-velocity flight intercepts. This pressure distribution depends upon
the Mach number of the flow. Thus, relatively high Mach numbers are desirable behind the
shock for blast testing of aerodynamic structures.

Purpose
The six-foot diameter by two-hundred foot long explosively driven shock tube at Sandia

National Laboratories has been used to simulate the blast environment on a Re-entry Vehicles
(RV) resultant from the detonation of an enemy RV in the vicinity. The ability of the
components within the RV to survive this hostile blast environment is verified by subjecting the

RV to similar blast environments in the shock tube. This shock tube has been in service since
the fall of 1964.

Shock Tube Blast Parameters

The blast parameters for the 6-foot diameter by 200-foot long, explosively driven shock tube are
presented in this report. The purpose, main characteristics, and blast simulation capabilities of
this PETN Primacord, explosive driven facility are included. Experimental data are presented
for air and Sulfurhexaflouride (SF6) test gases with initial pressures between 0.5 to 12.1 psia
(ambient). Experimental measured data are presented for the following blast parameters:

Shock wave time of arrival at various distances,
Test gas sound velocity measurements,

Flow duration,

Static or side-on overpressure, and

Stagnation or head-on overpressure.
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The blast parameters calculated from the above measured parameters and presented in this report
include:

Shock wave velocity,

Shock strength,

Shock Mach number,

Flow Mach Number,
Reflected pressure,

Dynamic pressure,

Particle velocity,

Density behind the shock, and
Temperature behind the shock.

W 0NN W=

Graphical data for the above parameters are included. Algorithms and least squares fit equations
are also included.

2.0. Shock Tube Configuration

General

The 6-foot diameter by 220-foot long shock tube configuration is shown in Figures 1 - 3. Figure
1 shows the pre-test configuration. Figure 2 shows this shock tube and the 6-foot diameter by
60-foot long shock tube documented in reference 1. Figure 3 shows the detonation product
gases venting from the driver end shortly after initiation of the explosive and also shows the
shock tube shortly after the blast wave has propagated beyond the muzzle end. The total shock
tube length can vary between 200 to 220 feet depending on the test section used at the muzzle

end. Table 1 lists some of the shock tube sections along with length, weight, and wall thickness
data.

Driver

The driver section is 50 feet long with a 3-inch thick wall. The driver is made of T-1 steel. The
yield stress for this material 1s 120,000 psi. The driver has steel pad eyes welded to the top and
bottom of the driver that are used to suspend and distribute the PETN Primacord explosive
strands. The driver end has an “O” ring groove machined into the 3 inch wall thickness used to
seal between the one in thick steel, closure plate and the driver for reduced test gas pressure tests.
The driver end has threaded holes in the 3 inch was face that are used for the bolts that hold the 1
inch thick steel plate to seal the driver end. The shock tube sections are suspended by adjustable
screw jacks as shown in Figure 4.

Driver End/Tamping Mass

The driver end tamping mass has been used to prevent the early venting of the high-test gas
pressures until after the blast wave has reached the test section. The driver end blows out when
the explosive is detonated, eliminating the thrust to the pipe. This no thrust feature is an
important part of the design. Since small wall discontinuities are not important compared to the
six-foot diameter, flanges or other mechanical joint fastenings were eliminated at a considerable
savings in cost and fabrication time.
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The tamping mass configurations have included the following on any given test:

1. One inch thick steel plate(1300 1b),

2. Nine to 18 inch thick plywood plug (1600 Ib) attached to the 1 inch steel plate to be
cantilevered inside the driver section, and

3. Plywood plug, 1 inch steel plate, and 5 or 6-foot cube concrete blocks.

One to three concrete block blocks have been used. The weight of each concrete block is about
27,000 to 30,000 pounds. The maximum tamping weight has been about 91,000 pounds. The
driver, 18-inch plywood plug, one-inch steel plate and two concrete blocks are shown in Figure 5
prior to being installed. Figure 6 shows these tamping masses installed behind the driver.
Plywood sheets are used between the tamping masses to distribute the loads over the area of the
concrete blocks to minimize the chipping of the block surfaces.

Explosive Loading

Four hundred grain per foot (0.0571 Ib/ft), PETN Primacord explosive is used to drive this shock
tube. The PETN explosive density is about 1.0 gram per cubic centimeter. The explosive is
housed 1n a 0.5 inch outside diameter nylon tube or cord with about a 0.014-inch wall thickness.

Therefore the explosive diameter is about 0.47 inches. The explosive and nylon tubing weigh
about 0.076 1b/ft.

The PETN Primacord is evenly distributed over the cross-sectional area of the driver, and
various charge lengths have been used. The maximum explosive loading, linear density is 8
pounds per foot. The maximum loading generates stresses in the T-1 steel, 3-inch thick wall
driver that are at the safe operating levels. Previous tests have limited the explosive loading to
7.4 pounds per foot. Typically, 100 grain/foot PETN Primacord explosive stringers are installed
vertically to support 400 grain/foot horizontally positioned strands. The 100 and 400 grain/foot
explosive has a thin, nylon re-enforced sheath to provide strength or support. The vertical
stringers are tied in knots to steel eyebolts welded to the top and bottom of the driver.

Figure 7 shows the Primacord strands installed in the driver section. Per Figure 7, the ends of the
Primacord strands are grouped into two bundles. An SE-1, RP-1, or similar detonator is taped in
the center of each bundle to be used to initiate the explosive in each bundle. The distribution

geometry of the Primacord strands of explosive in the six foot-diameter driver is shown in Figure
8.

Test Section

The driver is 50 feet long with a 3-inch wall thickness, the next 42 foot long section has a 1.0-
inch wall thickness, and the remainder of the shock tube has a 0.75-inch wall thickness. The
tube sections are not rigidly joined: however, a vacuum seal is provided by rubber boots placed
over the joints. The total shock tube length can vary between 200 and 220 feet. The last section
and typically the test section can include a 45 or 90-degree muzzle end as shown in Figures 9 and
10, respectively. The 45-degree end section is used to allow larger test units at large angles of
attack to fly free after blast arrival and to clear the test section. The 45-degree test section end
also tends to reduce the relatively high base pressure, which is a result of reflections from the
diaphragm (for reduced initial test gas pressure tests only) on the muzzle end.
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Test Unit Suspension

Lighter test units are typically suspended from the top of the test section by light fiberglass
straps, which are broken or sheared by the blast wave. Heavier test units are typically suspended
from the top of the test section by a wire rope or cable. The cable is explosively cut when the
blast wave arrives at the nose of the test unit. The test unit is then free to respond to the blast
wave. Figure 11 shows a conical test unit suspended the test section.

Test Unit Soft Recovery

When it is desired to have the test unit free to response to the blast wave, ejected from the test
section and to be soft recovered, a sawdust recovery pit is used. The length, width, and depth
depend on the trajectory and geometry of the test unit. Nylon parachutes vertically suspended
along the trajectory of the test unit have been used to decelerate the test unit and reduce the
length of the test unit flight. Sand bags or other masses have been attached along the edges and
bottoms of the parachute to aid in the deceleration process. This technique has been used on a
19-foot diameter shock tube and is shown in Figure 12.

Reduced Pressure Tests

The shock tube can be sealed for reduced initial test gas pressure tests. Initial test gas pressures
from 0.5 to 12.1 (ambient) psia have been used. Test gases have included air, sulfurhexaflouride
(SF6), and Octofluorocyclobutane (FREON C-318). A 1-inch thick steel plate and rubber “O”
ring have been used to seal the driver end. Strands of thick rubber have been used to seal at the
interfaces between sections of the shock tube. Two large radiator type clamps are used to hold
the rubber strands on the shock tube surface. A thin (0.04 inches thick) aluminum diaphragm
along with a steel ring holder and an “O” ring has been used to seal the muzzle end of the shock
tube. Puddy has been used to seal any small air leaks throughout the shock tube. Figure 13
shows the muzzle end sealed with an aluminum diaphragm.

3.0. Test Gas

Explosively driven shock tubes are used to simulate the effects of blast waves on structures.
Successful simulation depends upon attaining a desired load level, duration, and spatial
distribution. The flow parameters behind a shock wave which determine the character of loads
on structures are uniquely determined by the shock velocity and the initial conditions and
chemical composition of the test gas. The maximum load level in a test may easily be altered by
changing the initial pressure. However, the spatial load distribution depends upon the flow Mach
number behind the shock; and, thus, upon the shock strength and the specific heat ratio (k) of the
gas. The variation in flow Mach number versus shock strength and specific heat ratios is
illustrated in Figure 14 3

The maximum Mach number (M ) in an ideal gas at very high shock strengths is approximated
by the following equation *:

M = {(2)/[k (k-1)]}*°

Where,
k=cp/cy
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Thus, it is obvious that heavy gases, which have low specific heat ratios, are desirable test gases
to approximate the pressure distributions, which are associated with blast waves encountered in
high-speed flight.

Though heavy, nontoxic gases are the more favorable for testing, they have several
disadvantages. Their lack of equilibrium under shock tube conditions and their chemical
instability frequently lead to solid deposits or burning; moreover, these factors make it difficult
to calculate the conditions that will exist behind the shocks.

Previous experience for testing with Freon C-318 has shown that significant amount of graphite
is produced behind the initial moving shock wave. This graphite production causes the values of
the stagnation pressures to be uncertain since the graphite particles impacting the transducers can
cause unrealistic spikes on the measured pressure profiles. In addition, the arbitrariness of the
reaction and its probable spatial non-homogeneity may well account for the large fluctuations in
static pressures. Freon C-318 is stable only at temperatures below 1000 ° K and therefore, the
gas is suitable for use only in cold driven shock tubes or explosive driven shock tubes long
enough to permit cooling of the combustion or detonation product gases below 1000 ° K.

Shock tube tests have shown that for shock mach numbers greater than 4 (shock strength = 20),
Freon C318 decomposes resulting in a non-planar shock front at the test station. The thermal
decomposition value is approximately 1200 degrees Kelvin for Freon C-318.

Previous development work at Sandia National Laboratories has shown that Sulfurhexaflouride
(SF6) is chemically stable in an explosively driven shock tube blast environment. For SF6,
shock photographs in the shock tube indicate more planar shock fronts (using PETN Primacord
distributed explosives) with transparent shocked gas. SF6 was analytically determined to be
thermally stable to twice the temperature of Freon C-318.

Shock tube tests indicate that Freon C-318 and SF6, molecular weights of 200 and 144,
respectively, were capable of producing flow Mach numbers twice that obtained in air for
equivalent shock strengths.

4. Measurements and Instrumentation

Typically, measurements for a test include static (side-on) and stagnation (head-on) pressures
along the total length of the shock tube, shock arrival times, test gas sound velocity,
shadowgraphs of the shock wave to measure planarity, photography including the trajectory of
the test unit from the test section to the soft recovery pit, and flow duration measurements.
Measurements on the test unit include surface pressures, accelerations, velocities, and strains.
Previously, a maximum of 200 channels of data per test have been recorded. These have
included about 150 channels of piezoresistive and about 50 channels of piezoelectric
measurements.

The instrumentation cables are routed out of the center of the test unit base plate. A 3 or 4-inch
diameter radiator hose is used to protect the instrumentation bundle from the blast wave. The
cable bundle is explosively cut after the blast wave has propagated beyond the test unit. For tests
where the impulse induced on the test unit is relatively short and the test unit trajectory is short

13



and directed downward, the instrumentation bundle is not cut. For this case, the test unit can be
re-suspended in the test section and tested again without having to re-splice the instrumentation
cables.

5. Calibration Test Unit (CTU)

The CTU is typically a thick, walled boilerplate model of the actual Laboratory Test Unit (LTU)
or Re-entry Vehicle (RV). The CTU geometry, total weight, and center of gravity are identical
to the LTU. The CTU is usually made of aluminum. Typically about 150 pressure
measurements have been made on the surface of the CTU. For a typical CTU test, about 50
channels are used to record shock tube pressures, CTU internal component accelerations,
velocities, and strains.

6. Laboratory Test Unit (LTU)

The LTU is a prototype vehicle of the actual Re-entry Vehicle (RV). Total instrumentation
includes about 150 channels of data. A few surface pressure measurements are recorded (about
25). A few shock tube static and stagnation pressure measurements are recorded primarily in the
test section area. The remainder of the recorded channels include accelerometer, velocity, and
strain gage measurements.

7. Measured Static and Stagnation Pressure Profiles

A typical, measured static pressure versus time profile is shown in Figure 15. A typical,
measured stagnation pressure versus time profile is shown in Figure 16. These pressure
measurements were obtained from a shock tube test with air as the test gas and a 12.1 psia

(ambient) initial test gas pressure. The measurements were obtained at a test station of 210 feet
from the driver end.

8. Maximum Performance Blast Parameters

The blast wave generated in an explosively driven shock tubes is a shock wave followed by a
rarefaction wave. The flow duration is dependant on the explosive weight, distribution in the
driver section, driver tamping mass, test gas, and initial test gas pressure. The duration also
strongly depends on the shock tube length.

The distribution of the explosive over the various lengths requires a shock tube length of at least
15 diameters before a good planar shock front is formed.

The maximum PETN Primacord explosive charge weight was 320 pounds uniformly distributed
over a 40 foot length. The maximum explosive linear loading density is 8.0 pounds per foot.
The maximum blast parameters at a test station about 210 feet from the driver end are as follows:

Shock velocity: 8000 feet/second,

Shock Mach number: 11.0

Flow Mach number: 6.0

Overpressure: 200 psi

Shock strength: 130

Flow duration: 30 milliseconds

Flow duration to 50% of maximum pressure: 10 milliseconds

Nk wn =

The above maximum conditions are not all obtained with the same initial shock tube parameters
(test gas, initial test gas pressure, explosive weight, etc.).

14



9. Shock Tube Blast Parameters

The Rankine-Hugoniot equations used to calculate some of the blast parameters are listed in
Table 2. Constants for various gases are listed in table 3.

Test Gas: Air

The shock tube parameters for air as the test gas are shown in Figures 17 — 25. Figure 17 shows,
the static overpressure (Ps), flow duration (Td), and static overpressure impulse (I) versus driver
explosive weight (W). Figures 18 through 20 show static overpressure (Ps), shock mach
number (Ms), and shock time-of-arrival (Ta) versus driver explosive weight, respectively.

Figure 21 shows the static overpressure (Ps), shock mach number (Ms), flow mach number (Mf),
and static to stagnation pressure ratio (Ps/Pt) versus driver explosive weight to initial test gas
pressure ratio (W/Po). Figures 22 through 25 show shock strength [(Ps/Po) = static pressure to
initial test gas pressure ratio), shock mach number (Ms), flow mach number (Mf), stagnation to
static pressure ratio (Pt/Ps), and shock time-of-arrival (Ta) versus driver explosive weight to
initial test gas pressure (W/Po), respectively.

Measured Time-Distance Data/air

Table 4 lists the measured time - distance data for a test with a relatively low explosive weight
(72 pounds) in the driver. Table 5 lists the blast parameters calculated from the shock velocity
which was calculated from the measured time-distance data. This table lists the calculated shock
velocity, shock and flow Mach numbers, static pressure P(S), stagnation pressure P(T), dynamic
pressure p(D), density ratio across the shock ETA, and shock strength (static to initial test gas
pressure ratio).

Table 6 lists the measured time - distance data for a test with a relatively higher explosive
weight (160 pounds) in the driver. Table 7 lists the blast parameters calculated from the shock
velocity which was calculated from the measured time-distance data. This table lists the
calculated shock velocity, shock and flow Mach numbers, static pressure P(S), stagnation
pressure P(T), dynamic pressure p(D), density ratio across the shock ETA, and shock strength
(static to initial test gas pressure ratio). Table 8 lists a summary of the shock tube flow
parameters for the above 72 and 160 pound explosive weight tests.

Test Gas: Sulferhexafluoride (SF6)

The shock tube parameters for sulferhexaflouride as the test gas are shown in Figures 26 — 29.
Figures 26 through 29 show shock strength [(Ps/Po) = static pressure to initial test gas pressure
ratio), shock mach number (Ms), flow mach number (Mf), stagnation to static pressure ratio
(Pt/Ps), and shock time-of-arrival (Ta) versus driver explosive weight to initial test gas pressure
(W/Po), respectively.

10.Test Gas Sound Speed

Test gas: Air
The sound speed in air (Co) versus initial test gas temperature (To) is shown in Figure 30.

Test gas: Sulferhexafluoride (SF6)
The sound speed in sulferhexafluoride (Co) versus initial test gas temperature (To) is shown in
Figure 31.
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11.Shock Wave Planarity

The measured shock wave planarity across the 6 foot diameter cross-section is shown in Figure
32. The shock wave was measured through a one quarter inch gap between tube sections. The
test parameters for this test were as follows:

Test gas: air

Initial test gas pressure: 12.1 psia (ambient)
Distance from driver end: 150 feet

Static overpressure: 130 psig

Shock velocity: 3550 feet/second

Test No.: E72-159

Test Date: (10/11/72)

NN RE R

12. Structural Dynamic Model Correlation

Two major objectives of the blast programs conducted at SNL have been:

1. Evaluation of the structural dynamic model from known forcing functions, and
2. Partial "proof" testing of vehicle structures in a blast environment.

Computer programs have been developed to transform the measured pressure data in digitized
form from a CTU test into calculated forcing functions. To minimize the perturbation to the
structural response from transducer systems, a two step process has typically been used to obtain
forcing functions for structural analysis.

First, a CTU, which is extensively instrumented with pressure transducers, along with some
accelerometers, is used to fully define the low environment and prove the test condition’
acceptable for the L'TU of the prototype vehicle. Acceleration and strain transducers are the
primary instrumentation for an LTU, with only a few pressure transducers to confirm the
equivalency of the LTU test conditions to that of the CTU test.

Typically, with the use of a mean value theorem computer program, digitized "continuous”
pressure data is transformed into discrete points for a given time span. Each vehicle pressure for
a given test is sampled similarly, so that only one set of time values is needed to describe the
pressure points with respect to the pressure rise or shock front arrival.

After a uniform time scale has been obtained from the measured shock velocity and vehicle
geometry, these faired pressures from multiple locations on the CTU are interpolated linearly in
time and space by a second program. The resulting time-space pressure distribution is integrated
by this program over aerodynamic areas corresponding to masses in the structural dynamic
model to obtain force and moment time functions. These forcing functions are then used as the
inputs into the spring-mass structural model of the prototype vehicle, the objective being the
prediction of vehicle response equivalent to that of the LTU when subjected to the same
environment. Typically, one CTU test has been required to define the environment and obtain
the forcing functions for an LTU test.

Besides the forcing functions, a "rigid body" load history can also be calculated from the CTU
pressure measurements and compared with the on-board accelerometers to further verify the
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defined environment. Measured strain data from the LTU test can be compared to the calculated
strain from a structural dynamic model to confirm the match of pulse shape and peak values.

13. Summary and Conclusions

Sandia National Laboratories (SNL) has developed a 6-foot diameter by 200-foot long, explosive
driven shock tube for blast simulation on aerodynamic structures. Tailoring of the shock tube
design and the test gas (pressure and molecular weight) will produce a wide range of load pulses.
The 6-foot diameter by 200-foot long shock tube historical background, characteristics, and flow
parameters has been presented in this report.

SNL has developed methods for blast testing structures and verifying analytically and
experimentally their capabilities in blast environments.
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Table 1. Six foot diameter by 200 foot long shock tube sections, lengths, and weights

DRIVER MATERIAL: USS T-1 STEEL, YIELD STRENGTH:
105,000psi, TENSILE STRENGTH: 118,000 psi

SECTION | DESCRIPTION LENGTH TOTAL WEIGHT WALL .
NUMBER (feet) LENGTH (Ib) THICKNESS
(feet) (inches)
1 DRIVER 22.18 22.18 53,430 3.0
2 DRIVER 14.8 36.98 35,653 3.0
3 DRIVER 14.8 51.78 35,653 3.0
4 42.0 93.78 32,826 1.0
5 T 490 142.78 28,625 0.75
6 35.0 177.78 20,446 0.75
7 TEST 28.0 * 205.78 * 16,357 0.75
SECTION

* - Length varies depending on whether 45 or 90 degrees test section is installed

20




Table 2. Rankine-Hugoniot Relations across the shock

Parameter

Equation

Shock Mach No,
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Table 3. Ideal gas parameters

GAS PARAMETERS

MOLECULAR Y R cp CV it ” ] NOTLING I SYMIGE,
7 m .
CAS HEIGHT (1 AT, BT/ B/ ) U/ VISCOSITY 1HDEX OF m(>{m (-‘~LL~P“”‘>
{0-25°¢ LEN-°R LI#t-°R LE4-°R (MICROPOISE)| REFRACT. C) {\ Lbn-"
AIR 20.8 .ok L0695 .2h1s 0.172 185 1.00029 53.34 AIR
ARGOMH 39.00 1,667 L0y 0.12% 0.075 oe? 1.con28 -1685.7} 38.66 A
CARBON LW 03, 1.300 .olt5 0.196 0.151 150 1.0600ks - 78. 5.1 0
DIOXIDE 4 > p 5 35.] co,
CAMDOH TETRA . . -
CHLONIDE 153.8% 1.13C L0153 0.132 0.1167 1co 1.00188 16.0 cely,
ISOVETANE 72.13 1.086 .0358 Lohs2 0.h16 Y4 r.oemy o T
ETHANE 30.05 1.22 .0695 3055 0.316 05 1.,0004 ~88.3 G,
ETHYLENE 28.03 1.255 .0729 -3492 0.28062 100 1.00072 -103.9 C M),
FREOW 12 { 120,90 1.139 .018 YV 0.1297 123 -20 cel ¥
HELIUM L.0o3 1.667 Aigrs )..2hh 0.7h6 19% 1.000035 | -268.9 | 186 e
HYDROQEN 2.016 1.407 L9045 3.0k 2.4 88 2.0001h0 | -252.8 | 766.h iy
KRYPTOX 82.9 1.689 . 0248 L0608 0.036 2L6 1.00043 -152.9 K
METHANE 16.03 1.313 .1254 LH270 0.ho2 109 1.0000% -101.% ci,
HEOCH 20.18 1.642 L0956 L2uL6 0.1h9 312 1.00067 -2ls5,9 He
NTTROCEN 2n.02 1.hoh F0715 L2hily 0.177 16 1.00030 ~tan, ",
SULFUR HEX- . e . PPz .
AFLUORIDE 146,06 1'096 .0134% vl)") 0.1h1 150 1.0C076 -63.0 10.99 Ol"J
XETON 131.3 1.667 L0153 L0303 0.023 o6 1.00070 -107.1 Xn
OXYUEN 32.0 1.394 .06 0.8 0.15uh Ly, on o,
- 2¢0.0h 1.055 0.000Y2 0.19Y 0.1 T2 | o,
1 »
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Table 4. Measured time — distance data/Test 1

Explosive weight : 72 Ib, PETN Primacord

Explosive length: 10 feet

Tamping mass: 18 in. plywood plug, 1 in. steel plate, & 56,900 1b concrete (2 blks)
Test gas: air

Test gas pressure: 12.1 psia (ambient)

Initial test gas temperature: 548 degrees Rankine

Test gas sound speed: 1147 feet per second

Test Number: Event 71-176

DISTANCE FROM DRIVER TIME AFTER EXPLOSIVE
END INITIATION
(feet) (milliseconds)
108.26 23.25
116.25 25.29
120.28 26.34

124.81 27.52
132.11 29.39
158.46 36.24
163.48 38.19
168.48 39.62
193.00 47.06
198.00 48.52
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Table 6. Measured time — distance data/Test 2

Explosive weight : 160 1b, PETN Primacord

Explosive length: 21.5 feet

Tamping mass: 18 in. plywood plug, 1 in. steel plate, & 56,900 Ib concrete blocks(2ea)
Test gas: air

Test gas pressure: 12.1 psia (ambient)

Initial test gas temperature: 545 degrees Rankine

Test gas sound speed: 1142 feet per second

Test Number: Event 71-137

DISTANCE FROM DRIVER END TIME AFTER EXPLOSIVE
INTTTATION
(feet) (milliseconds)
92.75 . 15.92
100.29 17.57
108.26 19.27
116.25 21.42
120.28 22.53
124.76 23.61
132.11 25.41
139.95 27.35
147.84 29.33
153.47 30.78
158.46 32.09
163.48 33.40
168.48 34.90
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Table 8. Six foot diameter by 200 foot long shock tube test / example data

TEST SECTION: 200 feet

EXPLOSIVE: PETN Primacord, 400 grain/foot
Po = INITIAL TEST GAS PRESSURE: 12.1 psia (air)

To = INITIAL TEST GAS TEMPERATURE = 545 degrees Rankine
Co = TEST GAS SOUND SPEED = 1145 feet/second
W L Ta Vs Ms M{ Ps Pt Pd RHOr Ps/Po Td*
HE. | HE. | ARR. | VEL. | MACH | FLOW | STATIC | STAG. | DYN. | DEN. ' SHOCK FLOW
WT. | LEN. | TIME | (fps) NO. | MACH | PRESS. | PRESS. | PRESS. | RATIO | STREN. | DUR.
(1b) (f0) (ms) NO. | (psia) (psia) | (psia) . TIME
________ (ms)
72 10 47 3085 | 2.69 1.29 1012 | 2729 | 1174 | 36 | 837 6.5
160 22 42 3510 3.07 142 | 1333 4149 | 185.1 4.0 o2 . 70

* - FLOW DURATION TIME TO 50% of peak static pressure
W = EXPLOSIVE WEIGHT

L = EXLOSIVE LENGTH

Ta=SHOCK ARRIVAL TIME

Vs = SHOCK VELOCITY

Pt =STAGNATION PRESSURE
RHOr = DENSITY RATIO ACROSS SHOCK
Ps/Po = SHOCK STRENGTH = STATIC TO INITIAL TEST GAS PRESSURE RATIO
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Figure 7. Distributed, Primacord explosive installed in driver
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Figure 8. Primacord explosive geometrical configuration over cross-section
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Figure 11. Suspension, instrumentation cable in radiator hose, and conical test unit
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Figure 14. Flow Mach number versus shock strength and specific heat ratio
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CALIBRATE = 250.0

PRESSURE IN PSI

100

40 50 60
TIME FROM ZERO FIDU IN MILLISECONDS

CONE-CYLINDER MODEL EVENT 70-30
P-210.0-225

Figure 15. Measured static overpressure — time profile at test station 210 feet
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Figure 16. Measured stagnation overpressure — time profile at test station 213 feet
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2350 ¢ P

040 | ©-FOOT DIAMETER BY 220 - FOOT LONG EXPLOSIVELY DRIVEN SHOCK TUBE
40 ¢ TEST GAS: air (Co = SOUND SPEED = 344.5 meters/second = 1130 feet/second
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Figure 17. Static overpressure, flow duration, and impulse versus explosive weight
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Figure 18. Static overpressure versus explosive weight
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Figure 19. Shock Mach number versus explosive weight
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Ta - SHOCK TIME OF ARRIVAL - (milliseconds)
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TEST GAS: AIR

INITIAL TEST GAS PRESSURE: 12.1 psia (AMBIENT)
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& 25,00 CONCRETE BLOCK

TEST STATION: 205 feet
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Figure 20. Shock time of arrival versus explosive weight

47



-y
~
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16 F TEST GAS: air ”
E TEST STATION: 210 feet FROM DRIVER END ]
15 F DRIVER TAMPING MASS: 15,000 Ib CONCRETE BLOCK, :
E 9-INCH THICK PLYWOOD PLUG, 1-INCH STEEL PLATE, ]
14 | EXPLOSIVE: PETN PRIMACORD, 400 grain/foot :
13
E Ps = STATIC OVERPRESSURE 5
12t Pt = STAGNATION PRESSURE 3
11 | Ms = SHOCK MACH NUMBER = Vs/Co ]
F Vs = SHOCK VELOCITY ]
10 | Co = TEST GAS SOUND SPEED Ps = +0.478 (W/Po) + 4.50 ;
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9f R ? = 00992 ]
Y :
7t :
6 :
5 3
ol Ms = +0.0839 (W/Po) + 1.81, max dev: 0.351, R 2 = 0.922 3
F i & ]
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Figure 21. Static overpressure, shock Mach number, flow Mach number & stagnation to
static pressure ratio versus explosive weight to initial test gas pressure
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Figure 22. Shock strength versus explosive weight to initial test gas pressure
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Figure 23. Shock and flow Mach number versus explosive weight to initial test gas
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(Pt/Ps) - STAGNATION TO STATIC PRESSURE RATIO |
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Figure 24. Stagnation to static pressure ratio versus explosive weight to initial test gas
pressure
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Ta - SHOCK TIME OF ARRIVAL - (milliseconds)
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Figure 25. Shock time of arrival versus explosive weight to initial test gas pressure

Ta = - 0.00340 (W/Po)’ +0.177 (W/Po)? - 3.58 (W/Po) + 68.0
max dev: 1.10

r* = 0.995

6 FT. DIAMETER BY 200 FT. LONG SHOCK TUBE

TEST GAS: AIR

DRIVER END TAMPING: 9" PLYWOOD PLUG, 1" STEEL PLATE,
& 25,00 CONCRETE BLOCK

TEST STATION: 200 feet

5 10 15 20
(W/Po) - EXPLOSIVE WEIGHT/INITIAL TEST GAS PRESSURE - (Ib/psia)

52

25




(Ps/Po) - SHOCK STRENGTH
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Figure 26. Shock strength versus explosive weight to initial test gas pressure/SF6
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6 FOOT DIAMETER BY 216 FOOT LONG EXPLOSIVELY DRIVEN SHOCK TUBE
DRIVER TAMPING MASS: 9" PLYWOOD PLUG, 1" THICK STEEL PLATE,
g [ & 25,000 Ib CONCRETE BLOCK

TEST GAS : SULFURHEXAFLOURIDE (SF6)
TEST STATION : 210 feet

Ms = - 1.49E-4 (W/Po)? + 0.0704 (W/Po) + 1.95
max dev: 0.203, r? = 0.998

MACH NUMBER
3

Mf = + 1.18E-6 (W/Po)® - 4.42E-4 (W/Po)? + 0.0562 (W/Po) + 1.25
max dev: 0.129, r? = 0.992
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Figure 27. Shock and flow Mach number versus explosive weight to initial test gas
pressure/SF6
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(Pt/Ps) - STAGNATION TO STATIC PRESSURE RATIO
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Figure 28. Stagnation to static pressure ratio versus explosive weight to initial test gas
pressure/SKF6
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Ta - SHOCK ARRIVAL TIME - (milliseconds)
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EXPLOSIVE: PETN PRIMACORD, 400 gr/ft

DRIVER TAMPING: 9" PLYWOOD PLUG, 1" STEEL PLATE, &
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Figure 29. Shock arrival time versus explosive weight to initial test gas pressure/SF6
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Figure 30. Sound speed versus initial test gas temperature/air
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Co - SOUND SPEED - (feet/second)
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Figure 31. Sound speed versus initial test gas temperature/SF6
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Figure 32. Shadowgraph of shock wave at a distance of 150 feet from driver end
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