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Abstract 

The final report for a Laboratory Directed Research and Development project 
entitled, From Atom-Picoseconds to Centimeter-Years in Simulation and Experiment 
is presented. In this project, separate modeling methods at the atomic scale were 
used to bridge gaps in time and space with higher scales. For understanding of 
continuum mechanics quantities at various scales atomistic simulations that 
ranged from nanometers to microns were performed and experiments from 
centimeters to millimeters were performed. Certain continuum mechanical 
quantities were clearly defined as a function of size scale, for example, the yield 
stress. Several techniques were used to extend the time scale of simulations, 
including calculating prefactors and activation energies for diffusion events and 
mapping complex atomic motions onto more tractable lattice models. In the case 
of transport of small molecules in polymeric and nanoporous materials, new 
Monte Carlo methods for sampling transition rates were developed. 
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1. Introduction 

Stockpile stewardship is perhaps Sandia’s most important mission and 
understanding aging effects is a critical aspect of that stewardship. Couple this 
with the desire for smaller components for *weight-savings, a design must then 
include complexities of various size and time scales that must be understood. 
Experiments cannot be performed at all the pertinent size and time scales to satisfy 
responsible stewardship requirements upon design. Careful experiments coupled 
with computational tools can, however, allow for better examination of physical 
phenomena that relate to designs with a concern for aging of small components. As 
a result, this LDRD was proposed to give mechanistic understanding of the various 
time/size scales related to various materials. In Chapter 2, we describe results 
based on molecular dynamic simulations using Embedded-Atom-Method (EAM) 
potentials that relate to continuum mechanical quantities of interest to mechanical 
designers. In Chapter 3, we describe atomistic calculations of prefactors and 
activation rates for clusters of atoms diffusing on surfaces. These calculations 
illustrate how reaction rates can be derived from atomistic models. In Chapter 4, 
we describe a mesoscopic model of a grain boundary phase transition. This model 
allows a statistical mechanical understanding of an important materials process 
that could not have been derived without an atomistic model. In Chapter 5 we 
describe methods that we have developed to calculate activated diffusion rates of 
small molecules in amorphous materials where no a priori information about the 
location of cavities and transition states is available. These calculations assuming 
a low solute concentration, so that interactions between solues can be ignored. In 
Chapter 6 new Monte Carlo sampling approaches for the calculation of escape rates 
in zeolite cavities at arbitrary concentration are presented. In this case, the zeolite 
structure is very regular, and so locations of the cavities and the transition states 
are known. 
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Chapter 2 

Size Scale and Time Scale Effects on Plastic Flow of FCC Metals 

If one is to determine structure-property relations for plasticity at different size scales, 
one must be able to bridge concepts from the continuum level down to the atomic level. In this 

study we probe the kinematic and thermodyamic force variables by running molecular 

dynamics simulations, finite element simulations (with different material models), and 

experiments. We mainly focus on the molecular dynamics simulations and build up from 

lower size specimens. In order to make qualitative correlations in the structure-property 

relations, we evaluated various parameters (temperature, strain rate, specimen size, 

deformation path, and crystal orientation) to understand their relative importance on influencing 

the macroscopic stress. Before quantifying the structure-property relation for a particular 

parameter, we first examined each parameter’s relative importance with respect to each other. 

To accomplish this, we conducted a Design Of Experiments (DOE) study, which employs 

orthogonality principles to reduce the number of atomistic simulations, to gain qualitative 

insight into their relative influence on the continuum stress state. After determining the most 

important influences, we then focused on each individual parameter to gain quantitative 

understanding. To support the molecular dynamics results, we also include finite element 

simulations and physical experiments to help elucidate the size scale effects on the yield stress 

and kinematics. Before we proceed to the results, we first briefly describe the atomistic 

modeling background. 

2.1 Atomistic Background 

For the molecular dynamics simulations we used EAh4 [Daw and Baskes, 1984; Daw et 

al., 19931 potentials. The notion of embedding energy was first suggested by Friedel [1952] 

and further developed by Stott and Zaremba [1980]. Daw and Baskes [1984] proposed a 

numerical method for calculating atomic energetics. Daw et al. [1993] summarize many 

applications of EAM. Essentially, EAM comprises a cohesive energy of an atom in terms of the 

local electron density into which that atom is placed. A function, p(r), describes the 

contribution to the electron density at a site due to the neighboring atoms. The embedding 

energy F is associated with placing an atom in that electron environment. The functional form 

of the total energy is written as 
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(2.1) 



where i refers to the atom in question and j refers to a neighboring atom, r” is the separation 

distance between atoms i and j parameterized by their separation, and 4” is the pair potential. 

Because each atom is counted, contravariant and covariant index notation is not used here. 

Subscripts denote the rank of the tensor, for example, one subscript denotes a vector, two 

subscripts denote a second rank tensor, and so on. Superscripts identify the atom of interest. 

In molecular dynamics, the energy is used to determine the forces on each atom. Once the 

forces at each atom are determined, the dipole force tensor, p, can be determined and is given 

(2.2) 

where i refers to the atom in question andj refers to the neighboring atom, fk is the force vector 

between atoms, r, is a displacement vector between atoms i and j, N is the number of nearest 

neighbor atoms, and &2’ is the atomic volume. In this way, fi would be analogous to the - 
stress tensor at the atomic site. Since stress is defined at a continuum point, we interpret the 

stress tensor as a volume average over the block of material, 

(2.3) 

in which N* is the total number of atoms in the volume. 

The correspondence between an atomistic local stress, p, and a global stress, CJ, has - 
been the focus of several studies. Irving and Kirkwood [1950] derived a microscopic 

hydrodynamic formula for stress based on an infinite series expansion that could only be 
calculated by approximation. The contributions of interatomic forces to the stress tensor were 

derived on a statistical theory embedded into the continuity equation, equation of motion, and 

equation of energy transport. Hardy [1982] introduced an envelope function that considers 

atoms from a surrounding field, in effect a nonlocal quantity, into molecular dynamics 

calculations to modify the Irvin, 0 and Kirkwood [1950] stress equation. The notion of 

including nonlocal terms was implicitly argued by Rowlinson [1993] who stated that unique 

local thermodynamic functions in inhomogeneous systems could be defined if the spatial length 
scale of the inhomogeneity is macroscopic, much larger than the interatomic distances. 

Furthermore, Cheung and Yip [1991] showed that the distribution of local stress could be 

calculated from the mechanical definition of force per unit area. They derived an expression for 

a homogeneous system equivalent to the viral theorem (thermodynamic definition); when 

inhomogeneities are present, the equivalence can be demonstrated when a volume average is 

considered. These results motivate our use of equation (2.3). 
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The question of spatial size scale on mechanical properties has been around for 

sometime now. The Cosserat brothers (1909) developed a nonlocal theory to determine the 

stress state of a material in which case the stress tensor was asymmetric. Recently, Fleck et al. 

(1994) have focused on strain gradients that would affect the stress state, and Bammann and 
Dawson (1997) have developed a dislocation density evolution equation that includes a spatial 

length scale. This short list of references does not cover the amount of research related to 

spatial length scale effects on mechanical properties, but at least gives the reader an idea of the 

various topics related to spatial size scales and continuum level quantities considered. 

Because molecular dynamics starts at the scale of an atom and the time on the order of 

femtoseconds, running simulations to large sizes and times is prohibitive. In fact, there is a 

competition between the time and size scales as illustrated in Figure 2.1 in terms of computing 

power. Figure 2.1 shows that as the total time (inversely related to the applied strain rate) 

needed for a simulation is increased, the computational constraint will allow an upper limit on 

the size of the atomic block of material. Similarly, as the block size increases, the 

computational times require and fairly large applied strain rate. Hence, we still cannot achieve 

macroscopic size scale specimens that include time frames on the order of seconds. Even with 

these constraints, we performed scoping studies that gave insight into the plastic behavior of 

metals at different size scales. Strain rates on the order of 106/sec or lower are not feasible at 

this time in atomistic simulations. Later in this chapter we will analyze strain rates down 

1 06/sec. 

2.2 Computational Set-up 

We perform classical molecular dynamics simulations using the following Embedded 

Atom Method (EAM) potentials (Daw and Baskes, 1984): for nickel (Angelo et al. 1995); for 

copper (Foiles, 1985); and for aluminum (Baskes et al., 1996; Baskes et al., 1997). The EAM 

potentials were determined from using the lattice parameter, cohesive energy, and elastic 

moduli for the pertinent metal. Though different deformation paths were examined in this study 
(torsion, simple shear, tension, and compression), most of the investigation focused on simple 
shear. In order to illustrate the boundary conditions, we describe fixed-end, simple shear for 

different cross-sectional sample sizes and crystal orientations. As illustrated in Figure 2.2a, the 

computational block of material had free surfaces in the x- and y-directions with an aspect ratio 

of roughly 2:l in x:y and was periodic in the z-direction. The crystal orientation was 

[lOO,Ol l,Oil], and the shear loading on y-face was in the [loo] direction. In Horstemeyer 
and Baskes (1999), the global continuum stress saturates if the z-direction is four or more unit 
cells in thickness; smaller samples introduce a separate size scale effect. Since one of our goals 
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After creating the sample size, a few planes of atoms at the top and bottom (xz planes at 

the +y and -y extrema) were frozen on their perfect lattice sites. The remainder of the atoms 

were allowed to relax to minimum energy to accommodate any surface relaxation at the two 

remaining free surfaces (yz planes). Velocities of the interior (or active, non-frozen atoms) 

were then initialized using a Boltzmann distribution at a chosen temperature (300 K). For 
simple shear, a strain rate was then applied to the block of atoms by setting the x-velocity of the 
frozen xz planes to a constant value. The bottom atomic plane had a prescribed x-velocity of 

zero for the duration of the dynamics simulation, and the top atomic plane had a prescribed 

constant velocity to create a strained sample as shown in Figure 2.2b. 

A 

L 

If just the top row of atoms initially experienced the prescribed velocity without the 

active internal atoms experiencing the same velocity field, a shock would be induced into the 

block of material because of the high strain rates. In our calculations, we introduced an initial 

velocity field that mitigated the shock wave and then applied the boundary velocity fields. To 
accomplish this, the interior atoms in the model were also given an initial x-velocity 

(superposed on their thermal 300 K velocities) that varied linearly from 0.0 to the prescribed 
velocity at the top atomic plane depending on their y-coordinates in the simulation box. This 

initial velocity was introduced to produce the strict simple shear boundary conditions, but only 

to alleviate the shock. In fact, the rigorous continuum description of simple shear demands that 

the x-faces remain planar. In these simulations, they are free surfaces. Our goal was to match 

experiments, which usually have a large length-to-height aspect ratio but with free edges. In 
these simulations, the prescribed velocity was chosen to model strain rates ranging from 10’ s-’ 
to lo*’ s-‘. 

5 

Following initialization, a constant number of atoms, constant volume, and constant 

temperature (NVT) simulation was performed with a 0.001 ps time step until the block of 

atoms had undergone strain sufficient to create yield, typically a few percent strain or more. 

Because straining via moving the frozen planes adds considerable energy to the active atoms, a 

Nose-Hoover thermostat (Nose, 1984; Hoover, 1985) was used during the molecular 

dynamics simulation to keep the active atoms at constant temperature. The thermostat applies a 

damping (or acceleration) factor to the active atoms based on the difference between their 
current temperature and the desired temperature (300 K). We computed the instantaneous 

temperature of the ensemble of active atoms after first subtracting from each atom the non- 

thermal x-velocity that was initially prescribed, since the active atoms essentially maintain the 

same component of x-velocity for the simulation. 

L 

L 
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Before we mention the results, we must first discuss the notion of a yield. In this 

context, we define two micro-yield points and a macro-yield point. First, the average global 

stress of the active atoms was computed by using Equation (2.3), and a stress-strain curve was 

generated. Figure 2.3 shows stress-strain curves for atom&tic simulations of ten thousand and 

ten million atoms just to illustrate the behavior at different material block sizes. We identify 

three locations on the curve. The first location is defined as micro-yield 1, where the stress- 

strain behavior first deviates from elastic linearity, i.e., the proportional limit. At this point, 

initial dislocations are emitted from the surface because of the local stress gradients in the 

comers due to the boundary conditions. The second location is micro-yield 2, which is defined 
by the macro-scale continuum concept of a 0.2% offset strain. The third location is defined as 

macro-yield, the point at which the maximum stress occurs. We also define the quantity 

“yield’ which is the difference in strain between the macro-yield and micro-yield 2. Because 

we start with a perfect lattice, there are no initial defects. As such the stress-strain responses, 

in terms of the stress drop-off, look very similar to experimental data of metal “whiskers” 
which have essentially no initial defects (cf. Yoshida et al., 1966). In whiskers, yield is 

typically defined at the “macro-yield” point. At this point, the stress required to activate a 

certain density of dislocations is reached and the material plastically deforms precipitating 

dislocations with subsequent propagation of local Luders bands that lead to irregular 

fluctuations in the plateau region of the stress-strain curve after the macro-yield stress drop-off. 

These two curves illustrate that micro-yield 1 and micro-yield 2 are essentially the same and in 

many cases, as exemplified in the ten thousand atom simulation, macro-yield is very close to 

the other two micro-yield points. 
In determining the yield points in many of the simulations, we also unloaded the 

material block at each of the micro-yield and macro-yield points to give information regarding 

permanent set and the influence of dislocations on the yield points. In Figure 2.4, we show the 

atom positions at different locations along a simple shear deformation path for a block of nickel 

with 2242 atoms. Here, we unloaded at micro-yield 1 and macro-yield. It is clear from this 

simulation that the unload at micro-yield 1 returns the atoms to their original positions and at 
macro-yield almost returns the atoms to their original positions with permanent set realized. 

This type of simulation as shown in Figure 2.4 was typical of the ones that we 

performed with differing block sizes of material that ranged from 100 atoms to 100 million 

atoms, and the time steps from a few thousand to many millions depending on the applied 

strain rate. The largest simulations were run using a parallel version of the EAM code designed 

for distributed memory supercomputers (cf. Plimpton, 1995). Consequently, the CPU cost of 

the simulations also varied from a few seconds on a single processor workstation to many 

19 



2.3 Design of Experiments Study 

The Design Of Experiment (DOE) analysis of variance approach is a statistical method 

[Box et al., 19781 that employs orthogonality principles to quantify the relative influence of a 

set of uncorrelated parameters. In our case we examine the effects of various atomic scale 

features on the volume averaged single crystal stress state. The DOE approach was intended 
primarily to give guidance as to which parameters played a dominant role in determining the 

stress state of a material in an efficient and objective manner. This is especially important since 

the very high applied strain rates and small sizes inherent to molecular dynamics calculations 

subject the material to extreme conditions. Once the most important parameter is determined, 

its levels can be varied for more detailed analyses. 
Table 2.1 summarizes the ZeveZs chosen for each parameter. For the DOE, an 

investigator can select a number of levels for each parameter in an orthogonal array and then 
run numerical experiments to evaluate the parametric effect in an efficient manner. The levels 

were chosen based upon physical phenomenology (for example, crystal orientation) and 

computational constraints (for example, applied strain rate). Certainly, the results might 

qualitatively change as the levels change, but this method is first good cut at determining 

qualitative trends and then quantitative simulations can be performed later. Orthogonality refers 

to statistically independent parameters that make up the columns of the array. Once the number 

of levels and parameters are determined, an orthogonal array is setup to determine the number 

of experiments needed. The terminology of orthogonal array L,(y”) goes as follows: “x” 

denotes the number of calculations, “y” denotes the number of levels, and “z” denotes the 

number of parameters. For example, to examine seven parameters at two levels, one would 
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have an orthogonal array represented by Ls(2’) which would reduce the number of 128 

calculations if done linearly in series to 8, which was used for our study. 
Seven parameters were of interest for our study: crystal orientation, temperature, strain 

rate, deformation path, x-dimension, y-dimension, and z-dimension. For the purpose of 

understanding the relative influence of the various parameters on the responses (yield and 

plastic energy resulting from plastic flow) pertaining to this study, only two levels were chosen 

with the seven independent parameters. As such, the appropriate orthogonal array is the Ls 

array. The Ls represents an orthogonal array of equations represented by eight numerical 

experiments. The Ls array allows up to seven independent parameters with two levels for each 

parameter. Each level can be characterized by an appropriate value. For example, the two 

hours on hundreds of processors on the SandiaZIntel Teraflop machine. In fact, the largest 

simulation took 13 CPU hours on 3000 processors. 



I = 

ZeveZs for the strain rate were 1.8e9/sec and 1.8e8/sec. Although a full factorial set of 

calculations could be performed to vary each parameter in a linear fashion, a DOE reduces the 

set of calculations in a repeatable, timely manner such that data can be easily translated into 

meaningful and verifiable conclusions. With this technique, relevant data can be extracted from 

a relatively small number of experiments (or numerical calculations). Clearly, the advantages of 

DOE as a screening process for parameter influence grow exponentially as the number of 

parameter variations increases. This type of analysis has been used for examining parametric 

effects related to void growth in ductile metals [Horstemeyer and Ramaswamy, 20001 and for 

examining attributes of crystal plasticity [Horstemeyer et al., 19991. For details of the DOE 

analysis, the reader can refer to these articles. 

Figure 2.5 shows the effective (von Mises) stress-strain curves for each of the DOE 

calculations, indicating a wide variety of behaviors. Some calculations experienced very large 

yield stresses compared to the others, and other calculations experienced fairly large elastic 

strains before plastic flow set in. From these simulations, we used the yield stress and plastic 
energy to determine the parametric influences. 

The yield stress was determined from micro-yield 1, and the plastic energy was 

determined by integrating the total energy under the stress-strain curve and subtracting the 

elastic energy. The elastic strain energy is determined from just integrating the area under the 

elastic region. The plastic energy gives us a measure for the dissipation occurting within the 

block of material. 
Table 2.1 Design of Experiments L, orthogonal array. 



It is instructive to discuss the atomic action at yield and sometime later when plastic 

flow occurs. Figures 2.6 and 2.7 show the shear stress-strain response of calculation DOE #8 

and the related atomic positions in Figure 2.6 and the dislocations in Figure 2.7 at different 

strain levels. In Figure 2.7, the centrosymmetry parameter [Kelchner et. al., 19981 was used to 

signify the locations of dislocations. At microyield 1, one can observe that dislocation 

nucleation occurs at the comers of the block. The relative displacement vector at the lower left 

hand comer of the material block illustrates the local incompatibility evidenced by the presence 

of a dislocation. As the calculation proceeds, one can observe more dislocations nucleating 

from the comers and x-face edges until finally at 30% strain, one can observe very large atomic 

displacements as shown in Figure 2.6b and dislocation interactions in Figure 2.7f. Figure 2.6~ 

also shows the elastically unloaded atomic state after the forward straining proceeded just 

beyond yield. In this case, the boundary condition on the uppermost atoms was removed and 
the block of material could return to the elastically unloaded state (that is, the stress free 

intermediate configuration, not the initial reference configuration), 

Figure 2.7 shows clearly the evolution of dislocation nucleation and motion. In 

macroscale specimens, shear bands can be observed in simple shear experiments, but at this 

scale, Figure 2.7 clearly shows dislocation glide along crystallographic planes. This may 

imply that as the scale decreases down to nanodimensions as in this study that underlying 

mechanisms for macroscopic shear banding is dislocation glide. 
Figure 2.8 shows the DOE responses for yield and plastic energy at 15% effective 

strain. The effective strain (or von Mises strain) equals the shear strain divided by the square 

root of three for the case of simple shear. The results were normalized by the maximum change 

of yield and plastic energy, respectively, observed for the eight tests so that the relative 

influence could easily be determined. Figure 2.8 shows that the crystal orientation had the 

primary influence on yield and the plastic energy at 15% effective strain, and the strain rate had 
a secondary influence. The type of boundary condition, spatial length scale, and temperature 
differences had minor influences compared to the orientation differences. Remember that the 

relative values depicted in Figure 2.8 arise because of the limits chosen for the parameters. 

Increasing the limit variations in the size and strain rate leads to a greater effect on both yield 

and plastic energy, even to the point that the size influence will override that of the orientation 

at some point. The broader disparate length/time scales are examined next. Regardless, these 

levels were chosen to determine the relative parametric influences of small size scale differences 

so that macroscale experimental observations, which also have small size scale differences, 
might be asserted in the discussion of the crystal orientation results. 
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2.4 Crystal Orientation Effects 

Since the aforementioned DOE study showed that orientation has the strongest 

influence for these small size scale simulations, we now describe the orientation effects in more 

detail in the following section. Our goal is to explore the yield and plastic flow behavior with 
respect to slip within the crystal lattice for these very small size scale and high rate simulations. 

The following EAM molecular dynamics simulations were performed under fixed-end, 

simple shear boundary conditions on a block of atoms that is eight by four by four unit cells of 

nickel. Each computational block of material had about 1300 atoms and free surfaces in the x- 

and y-directions with periodicity in the z-direction. Strain rates were approximately -lelO/sec. 

Like in the DOE simulations, a displacement was applied to the top row of atoms, and the 

bottom row of atoms was fixed. A constant number of atoms, constant volume, and constant 

temperature analysis at 300K was used for all orientations. 

The stress state of a metal single crystal is dependent upon the crystallographic 

orientation, deformation path, temperature, applied strain rate, and size of specimen (if it is at 

or below the micron range). Extensive experimental studies have shown that yield and plastic 

flow exhibit a strong dependence on all of these parameters. For example, from the initial 

experiments of Ludwig and Scheu [1925], many researchers have shown that ductile metals 

experience a higher work hardening rate, and thus higher flow stress, in tension than in torsion 
(simple shear) d ue to texture evolution. Fleck et al. [1994] showed that the stress state is 

dependent upon the specimen size. In particular, as the size decreased, the stress increased. 

For much smaller sizes, on the order of nanometers, Horstemeyer and Baskes [1999] have 

shown using the Embedded Atom Method (EAM) that global yield and plastic flow are size 

dependent. The question of orientation effects has been addressed analytically, initially by 

Schmid [1931] and more recently by Kocks et al. [1998] using crystal plasticity simulations 
and texture analyses. A summary of early experimental results on FCC single crystals as a 
function of orientation is found in Nabarro et al. [ 19641. 

Important aspects of single crystal experiments related to this study are worth noting. 
Kochendorfer [ 19501 tried to perform simple shear on single crystal FCC aluminum specimens 

but a multiaxial stress state developed. Matsuda [ 19771 and Rauch et al. [1990] performed 

simple shear experiments on single crystal BCC iron. Phillips [1962] performed direct shear 
tests on single crystal aluminum and copper specimens to analyze orientation effects. Unlike 

the case of a polycrystal, torsion of a single crystal may not approximate simple shear too 
closely, since different slip systems will be active around the circumference of the sample [cf. 
Boukadia and Sidoroff, 19881. 

Orientation effects have changed yield strength and flow stress by up to a factor of four 

as observed in measurements of tensile, uniaxial compression, and channel die compression 
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deformation of single crystals at quasi-static strain rates on the order of lo-” to 10e2sM’ [e.g., 

Lange and Lucke, 1953; Diehl, 1956; Davis et al. 1957; Haasen, 1958; Staubwasser, 1959; 
Driver, Juul Jensen and Hansen, 19941. Similar effects were observed in the shock recovery 
experiments with high strains rates on the order of 105s-’ [cf. Follansbee and Gray, 19911. 

Trends in the relationship between the yield/flow stress and the orientation, represented by the 

number of equally and maximally stressed slip systems in the experimental data do not follow a 

simple rule in simple shear, but depend on deformation path and other factors related to the 

interactions of the main glide dislocations. For example in tension, <ill> oriented single 

crystals with sextuple slip consistently have the highest yield stress, rather than the <loo> with 

octal slip. This is true for FCC aluminum, nickel and copper single crystals at both quasi-static 
and shock loading strain rates bange and Lucke, 1953; Diehl, 1956; Davis et al. 1957; 

Haasen, 1958; Staubwasser, 1959; Phillips, 1962; Follansbee and Gray, 19911. 

Figure 2.9 illustrates four different crystal orientations employed in this study. We 

oriented the lattice such that a different number of glide planes would be available for 

crystallographic slip in the different simulations. As Figure 2.9 shows, we examined crystals 

that were initially oriented for single, double, quadruple, and octal slip. 

Figure 2.10a shows shear stress-strain and Figure 2.10b axial-stress, shear-strain 
curves from crystals oriented for single, double, quadruple, and octal slip under fixed-end 

simple shear. To determine a polycrystalline response from the single crystal simulations, we 

averaged the single crystal stress-strain curves. This curve is labeled in Figure 2.10 as 

“pseudopolycrystal”. The shear component of the stress tensor for each single crystal 

calculation was determined as the average of the shear component of the dipole stress tensor 

described in equation (2.3). These crystal responses were averaged together to approximate 

results for a polycrystal and also plotted in Figure 2.10 (in this approximation, intergranular 
effects are not included). A clear trend is shown in Figure 2.10a with respect to crystal 
orientation. The flow stress increases with an increase in the number of slip systems. Thus the 

crystal oriented for octal slip exhibits the highest flow stress with the quadruple slip crystal 

next and so on. Essentially more active slip systems are in operation thus increasing the 

dislocation density and resulting stress level. The trends observed for the values of yield, total 

energy, elastic energy, and plastic strain energy are shown in Table 2.2. Note that the yield 

stress for the double slip case is nearly double the single slip case. One might suspect this 
result since the number of active slip systems has doubled. However, the quadruple slip case 

is less than four times the single slip case, and the octal slip case is less than eight times the 

single slip case. These two cases indicate that dislocation activity is not just occurring on the 

primary slip systems. The pseudopolycrystal seems to track with the double slip orientation 
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(Table 2.2). To our knowledge, these trends have never been examined before in the context of 
atomistic simulations. 

The shape of the stress-strain curves in Figure 2.10 are different than the classical Stage 

I to III hardening curves measured in bulk FCC single crystals at quasi-static strain rates 

[Lange and Lucke, 1953; Diehl, 19561. No initial easy glide region with very low flow stress 

and strain hardening, Stage I, was observed in the simulations. Instead, an initially high 

hardening rate to a sharp peak in the flow stress is followed by strain softening occurs for all 

orientations. If the smaller flow stress oscillations are dampened out, the shape of the stress- 

strain curve is similar to the shape of the stress-strain curve for single crystal whiskers. 

Whiskers share a similar characteristic to these simulations in that no dislocations are initially 

present. Essentially, the stress drops off to a low level as an avalanche of new dislocations that 

are emitted from the edge [cf. Brenner, 19581. We should mention that Phillips’ [1962] direct 

shear experiments of single crystal Cu and Al did not experience Stage I hardening and none of 

the specimens experienced the stress drop-off observed in the atomistic simulations. 

Table 2.2 Crystal orientation effects on stress state. 

We also show that the axial stress resulting from these fixed-end type simulations was 

similar in all orientations in Figure 2.10b. This second order response has been attributed to 

dislocation substructure [Horstemeyer and McDowell, 19981 and texture development [Harren 

et al. 1989, Neale et al. 19901. Although the magnitude of the axial stresses is higher for these 

atom&tic simulations than for large scale polycrystalline material, the slope of the curve is 

qualitatively similar to the polycrystalline results [cf. Montheillet et al. 1984; Lipkin and Lowe, 

1989; Anand and Kalidindi, 19941. 
Direct comparison of experimental measurements and other types of 

analyses/simulations with Figure 2.10 do not exist, since the molecular dynamics simulations 

comprise very small crystal sizes and very high strain rates. No data for single crystal FCC 
simple shear experiments at these strain rates and sizes could be found, perhaps due to the great 

difficulty in performing this type of test. Even at a larger size scale and at quasi-static strain 

rates, few single crystal simple shear or torsion experiments have been conducted. 
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The results in Table 2.2 and Figure 2.10 illustrate the stress state dependence on crystal 

orientation in simple shear using atomistic simulations. We also ran various crystal 

orientations in tension. Figure 2.11 shows that the uniaxial stresses in tension do not follow 

the trend that simple shear exhibited with respect to crystal orientation. In fact, the sextuple 

slip case is higher than the octal, single, and double slip cases at early strains. This 

observation is consistent with experimental observations as discussed in the introduction of this 

paper. 
Since the earliest work on single crystals, these orientation effects have been considered 

with respect to deformation occurring by slip on discrete glide planes. Schmid [1931] and 

Schmid and Boas [1935] proposed that a fundamental measure of stress was the stress 

resolved onto the glide plane and in the glide direction. Slip and thus yield would commence 

once the resolved shear stress reached a critical value. They further proposed and demonstrated 

for single glide HCP metals, that the stress-strain curves of single crystals could be normalized 

to a single curve by plotting the maximum resolved shear stress based on the Schmid factor. 

This widely used normalization, however, fits the behavior of FCC crystals less well, 
especially for those orientations in which the direction of the tensile axis is near the boundaries 

or vertices of the unit stereographic triangle [e.g. Nabarro et al., 19641. Multiple slip instead of 

single slip occurs for orientations in these boundary regions. Deviations as large as factor of 

two occur for the resolved shear stress of multiple slip orientations compared to single slip 

orientations Lange and Lucke, 1953; Diehl, 1956; Davis et al., 1957; Haasen, 1958; 

Staubwasser, 19591. Note that other normalization schemes such as a Taylor [ 19381 factor are 

also common but are not considered herein. To compare the differences between Taylor factors 
and Schmid factors as a function of orientation see both Calnan and Clews [ 19511 and Chin 

and Mammel [ 19671. 
In Figure 2.12, we apply a Schmid factor to the flow stress curves of Figure 2.10 for 

the four orientations under simple shear straining conditions. The primary slip system has a 

Schmid factor of 1.0 for initially oriented single slip crystal, 0.707 for the initially oriented 

double slip crystal, 0.577 for the initially oriented quadruple slip crystal, and 0.408 for the 

initially oriented octal slip crystal. As shown in Figure 2.12 the stress-strain curves are 
brought together when normalized by the appropriate Schmid factor, though a maximum of 

20% difference exists for the stress value. This difference reflects the additional contribution to 
yield and flow stress of dislocation-dislocation reactions, interactions, and trapping. These 

dislocation interactions are more related to the geometry of slip, the dislocation line directions, 

and Burgers vectors than just by a single parameter related to one slip plane. Deviations of this 

extent have also been observed experimentally in studies of single crystals [cf. Reid, 19731, 

but these experiments are conducted with larger specimens and at much lower strain rates. 
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Various dislocation reactions, interactions, and trappings can break up a single crystal 

into regions of differing orientations thus inducing differences in the normalized flow stress. 
This pattern of subdivision in which the regions are separated by dislocation boundaries can 

affect the flow stress [Huang and Hansen, 19971. This break up into subdomains has 

experimentally been shown to occur over two or three spatial length scales. The particular 

pattern is dependent on the initial orientation and deformation geometry [cf. Driver et al., 1994; 

Godfrey et al., 1998; Liu and Hansen, 1998; Huang et al., 19981. 
One further reason for disparity in the normalized peak flow stress is due to the implicit 

assumption that only those dislocations in the system with the highest resolved shear stress are 

active. In reality, even at very low strains, transmission electron microscope analysis shows 

significant slip activity on other slip systems [Hughes, 19961. At a strain of 30% in a 

compressed initial single crystal of aluminum, Hughes [1996] estimated that over 30% of the 

dislocations stored in the microstructure are not associated with either the primary (highest 

resolved shear stress) or secondary systems. For this orientation at 30% strain, standard 

crystal plasticity formulations predict a crystal rotation that is uniform in nature. For a more 

physically-based continuum level crystal plasticity formulation, one must include other effects, 

such as, non-Schmid effects. 

We now describe the statistical nature of the stress distributions within a crystal. 

Figures 2.13-2.16 show local shear stresses for each orientation described earlier at yield and 

at 30% shear strain for each single crystal. The dark colors in Figures 2.13-2.16 represent the 

highest shear stresses, and the lighter color represents the lowest shear stresses. The values 

for shear stress used in Table 2.2, and for the stress-strain responses in Figures 2.10 and 2.12 
were based on the volume average as described by equation (2.3). In Figures 2.13-2.16, each 

local value is actually the shear component of the dipole force tensor as described by equation 

(2.2). At yield, we see that the highest stresses occur at the comers near the free surface of the 

material block and a fairly uniform low stress state is present within the block interior. This 

observation illustrates the effect of the local stress gradient on the location where dislocations 
nucleate. This behavior is fairly consistent for all the orientations. At 30% strain, the 

distribution of the high and low values for the atomic stresses appears to be more random. 
Figures 2.17-2.18 show the distribution of the shear component of the dipole force 

tensor at yield for the different orientations. Figure 2.17 shows that most of the atoms (several 

thousand) experience just an elastic shear stress. When the peak atom count is limited to 150 in 

a bin (for a zoom into the regions of higher stressed regions), we see in Figure 2.18 that the 

character of the single slip, double slip, and quadruple slip distribution looks similar. Each of 

these crystals seems to have a lower limit of about -0.5 GPa and an upper limit of about 1.7 

GPa. For the octal slip system, a broader distribution is observed wherein the upper limit, 
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approximately 3 GPa, is greater than the others. At 30% strain, we see in Figure 2.19 that a 

large number of atoms still experience a small elastic shear stress. 
When examining the distribution of local atomic shear stresses, we see some interesting 

trends. When comparing Figures 2.18 and 2.20, which show the distributions with a peak 

atom count of 150 in a bin, we see that the double and quadruple slip cases become more 

diffused but the octal slip case is less diffuse as deformation proceeds. The octal slip case gave 

a similar distribution as deformation proceeded. 

By.examining the stress distributions, we find that a Gaussian distribution matches the 

results extremely well when the small elastic stress atoms are not included. Note that other 

distributions could be used, for example a Lorentzian distribution, but for simplicity, we use a 

Gaussian here. Figure 2.21 shows a Gaussian fit versus a histogram of an atomistic 

simulation at a strain level of 30% effective strain for the local shear stress in the double slip 

orientation. The other orientations showed similar shear stress distribution comparisons. This 

evolving distribution predominantly represents the atomic regions experiencing plastic 

deformation and reflects the plastic work hardening. Figure 2.22 shows the evolving mean 

value of the Gaussian distribution as a function of strain for the double slip case when all the 

atoms are included and when the small elastic stress atoms are not included. The mean values 

follow the stress-strain curve. Figure 2.22 also shows the mean and standard deviation of the 

actual shear stress distributions as a function of effective strain. Because the evolving 

distribution becomes more diffuse as strain is applied, the standard deviation (or width) 

increases. The plastic flow can then be represented as a distribution function, F, with the 

mean, ,M, and standard deviation, sd, functions of applied strain level, Y,?. The following 

equations reflect this evolving stress distribution with constants C, through C, that are 
determined from the atomistic simulations, 

(2.4) 

(2.5) 

(2.6) 

In equation (2.6) C, and C, reflect the short range and long range strain values at which 
the peak and saturation stress values occur as observed in the stress-strain response from the 

atomistic simulations. The values for C, and C, are a function of orientation but since C, and 
C, relate to the long range saturation stresses, they essentially remain the same regardless of the 

orientation. For the double slip case, C,=O.25, C,=O.15, C,=O.l, C,=O.2, C,=lO, and 

28 



C,=O.O4. We note that the constants determined by these limited amount of simulations here 

may not represent a general deformation field. 

The changing yield and work hardenin, u distribution functions based on crystal 

orientations could be used in a continuum crystal plasticity formulation to account for the 

orientation changes. From a macroscale continuum perspective, one could develop a shear 

stress distribution function either by employing a smaller number of bins to capture effects 

from the lower length scale causes or by approximating the distributions with an evolving 

orientation function [cf. Prantil et al., 19931. This work has yet to be done. 

2.5 Strain Rate Effects 

The two main themes we would like to discuss separately regarding the results, which 

are the effects of size scale and time scale. Unfortunately, they are linked together so 

discussing one of these topics independently is difficult without begging questions about the 

other. However, we will try to do so by first starting with time scale issues as related to strain 

rate effects on dislocation nucleation, motion, and interaction. Recall from Figure 2.1 that a 

competition between the size scale and time scale in performing atomistic simulations exists. If 

a strain rate of 10’ s-’ is to be achieved in the current molecular dynamics paradigm, one must 

have a small number of atoms. The converse is also true. If a large block of atoms is desired, 

the applied strain must be rather high (-lo9 s-l). The reason for this time-space relation in the 

computations is related to the time scale of the atomic period involved, and this in turn affects 

the applied strain rates. With this in mind, we briefly address the time domains pertinent to our 
simulations. 

There are several time domains to consider when the considering strain rate effects on 
small specimens. First, the highest frequency component will arise in relation to the atomic 

frequency. These vibrations occur on the order of 10-i’ seconds. If shock is involved, then 

the longitudinal elastic shock wave velocity can be derived from the wave equation given by 

and the plastic wave speed as 

c K 
plasrc = - ’ ,’ P 

and the shear (or distortional) wave speed as 

c -G 
shear - 

J P 

(2.7) 

(2-Q 

(2.9) 
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in which p is the density of nickel, K is the bulk modulus, and G is the shear modulus. 

Typical sound speeds are -20 A-ps-‘. Since our blocks of material are small, shock waves 
propagate through the material many times on the time scale of our simulations which achieve 

large strains (-30%). However, in our simulations, we avoid the shock by initializing all the 

atoms with an initial velocity gradient in the x-direction as discussed above, thus alleviating the 

time issue with the shock wave. 

Another time domain to consider is that of the dislocation motion. Baskes and Daw 
(1990) showed that the modified Leibfried (1950) continuum equation for dislocation velocity 
can be used to explain the atomistic simulations in simple shear for nickel: 

(2.10) 

where m is the dislocation per unit mass length (0.2 atoms/Burger’s distance), c is the 

dislocation terminal velocity or sound speed (20 A-ps-I), (r is the applied stress, o, is the 

friction stress (4 MYPa), b is the Burger’s vector of the dislocation (2.5 A for nickel), and a is a 

dimensionless drag constant (0.98). The above values for nickel were determined in Baskes 
and Daw (1990). A closed form solution can then be used to track the dislocation motion. The 
left-hand-side is the time rate of change of the dislocation momentum. The first term on the 
right hand side is the driving force for motion, and the second term is the dissipation due to 
dislocation-phonon drag, which is the important factor related to the applied strain rate. 
Consider a dislocation nucleated a distance x, from a free surface. We modify equation (2.10) 

where cr, is the stress due to image forces and is related to the nucleation stress, o*, as follows: 

0, A+* 
x 

(2.13) 

where x is the current dislocation position, and M is the orientation factor related to the 

resolved shear stress. Here, we assume that the dislocation is nucleated at time zero at position 

x0 from the surface when the applied shear stress equals the nucleation stress. The dislocation 
accelerates under increasing load. When a 0.2% plastic strain offset is assumed for yield, the 

only free parameter in the model is the nucleation stress o*, which is chosen to agree with the 

atomistic simulations. The nucleation stress is the only size dependent quantity in the model. 

The next important time domain of importance is related to the applied strain rate. In 
our simulations, we start with a strain rate on the order of the atomic period (10” s-i) and then 

decrease it five orders of magnitude (10’ s-l). A critical peak strain rate exists in which the 

stress is so high that the lattice strength of the crystal is reached and immediate fracture occurs 

between the atoms with the applied boundary condition and the adjacent atoms. The results 
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that we show do not include these data, since we are not concerned with fracture in our study. 

When the applied strain rate is between the peak fracture strain rate and the time domain in 

which dislocation inertial effects are important, the global yield stress increases with increasing 

model size. When the applied strain rate is below this regime, then the yield stress increases 

with decreasing spatial size. In any event, as the applied strain rate increases, the yield stress 

and the magnitude of the stress-drop increases as expected from phonon drag. 

Given this information, we ran several atomistic simulations at different sizes and 

applied strain rates and determined the yield stresses based on a 0.2% strain offset. The stress 

strain curves are presented in Figures 2.23-2.29 for different atomistic model sizes, These 

figures show that as the strain rate increases, the flow stress increases. The yield stresses, 

normalized by the shear modulus, for the different nickel simulations are shown in Figure 

2.30. The full gamut of strain rate behavior as discussed above is only seen for the 
intermediate size samples. For these samples we see that at relatively small strain rates, the 

yield stress is independent of strain rate, while at higher strain rates the yield stress increases 

rapidly. For the small samples the extreme increase in yield stress is subsumed by the fracture 

regime (not shown). For the large samples, due to computer limitations, we were not able to 

calculate strain rates low enough to reach the strain rate independent regime. In Figure 2.30 we 

also compare the same atomistic data to the simple model presented above. The choice of the 

nucleation stress as a function of size is discussed below. We see that the simple model 

captures the qualitative features of the data: strain rate independence at low strain rate; a rapid 
increase in yield stress at a critical strain rate; and an increase in the critical strain rate with 

decreasing sample size. The decrease in the low strain rate plateau with increasing sample size 

is not a prediction of the model, but was input as the size dependence of the dislocation 

nucleation stress. The dislocation model predicts an increase in yield stress at high strain rates 

more rapid than the atomistic simulations. This effect is due to the fact that we have only 

allowed the nucleation of one dislocation, that is, the dislocation density is constant. At the 

higher strain rates, multiple dislocations are nucleated, lowering the yield stress from the model 

calculation prediction. To analyze the trend, Figure 2.31 shows experimental curves for single 
crystal copper illustrating that the trend for increasing flow stress with increasing applied strain 

rate occurs for other metals as well. All of the strain rate features noted above for the 

simulations and the dislocation model have also seen in the experimental data (cf, Edington, 

1969; Follansbee, 1988). 

Again referring to Figures 2.23-2.29, we see that the micro-yield points and macro- 

yield point both increase with increasing applied strain rate. However, an increase in applied 

strain rate increases the strain difference (A&+J between the micro-yield points and macro- 
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yield point. This effect also occurs as the model size increases as shown in Figure 2.3. For 

the high applied strain rate, the reason that the strain difference increases between the micro- 

yield points and macro-yield point point is due to the time domains in which the dislocation 
nucleation rate and velocity are of different magnitudes than the applied strain rate. As such, at 

low dislocation densities and at low dislocation velocities, the applied strain cannot be fully 

accommodated by dislocation propagation, so a lower modulus arises that looks like work 

hardening between the micro-yield points and macro-yield point. The larger size blocks of 

atoms exacerbate this effect. 

2.6 Size Scale Effects 
These simulations comprise sizes from 100 atoms to 100 million atoms and strain rates 

ranging from lo7 to 10” s-l. We compare our atom&tic simulation results to experimental data 
obtained from inter-facial force microscopy (IFM), nano-indentation, micro-indentation, and 

small-scale torsion. The data is found to scale with a geometric length scale parameter defined 

by the ratio of volume to surface area of the samples. The atomistic simulations reveal that 

dislocations nucleating at free surfaces are critical to causing micro-yield and macro-yield in 
pristine material. The increase of flow stress at increasing strain rates results from phonon 

drag, and a simple model is developed to demonstrate this effect. Another important aspect of 

this study reveals that plasticity as reflected by the global averaged stress-strain behavior is 
characterized by four different length scales: (1) below lo4 atoms, (2) between lo4 to IO6 

atoms (2 pm), (3) between 2 pm and 300 pm, and (4) above 300 ,um. 

Analysis of size scale effects and strain rate effects related to plasticity are studied in the 

context of molecular dynamics simulations. Few studies, if any, couple these size scale and 

strain rate effects in plasticity. At the macro-scale, strain rate and temperature effects have been 
studied for many ductile metals (Johnson and Holmquist, 1989; Bammann et al., 1993; Gray et 

al., 1994). 
Attention to plasticity at smaller size scales has included independent studies of 

indentation experiments, thin wire torsion tests, and atom&tic simulations. Experimental and 

some theoretical studies on size scale dependence related to plastic deformation follow after the 

seminal work of Hall (1951) and Petch (1953). For example, recent studies such as Ma and 

Clarke (1995) McElhaney et al. (1997), and Michalske and Houston (1998) examined grain 
size effects on yield and hardness for different FCC metals. Nix and Gao (1998) and Begley 

and Hutchinson (1998) explained this plastic indentor size effect by modifying classical 
plasticity theory to include strain gradients, which are attributed to the presence of 

geometrically necessary dislocations. Thin wire experiments like those of Fleck et al. (1994) 
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included wires with diameters down to 12 pm. In these experiments, a definite size scale effect 

was observed in torsion on the yield stress and plasticity of the wires. Fleck and Hutchinson 

(1993, 1997) later applied a strain gradient theory to analyze the size scale effects they found. 

Holian and Lomdahl(1998), Daw and Baskes (1990), and Hoagland and Baskes (1998) have 

studied effects of dislocations on plastic response using atomistic methods. Kitamura et al. 

(1997) examined nano-scale tensile bars of nickel employing molecular dynamics. The 

purpose of our study is to analyze spatial size scale and strain rate issues on yield and plasticity 

at the atomic scale since little work has focused on this coupling. 

The upper limit of atomic size is determined by the capability of the computing 

platform. In our simulations, we were trying to reach a certain strain level. As the model size 

is increased, the strain rates must be large to run the simulation in a reasonable time. This 

trade-off of model size and strain rate is illustrated schematically in Figure 2.1. If lower strain 

rates are desired, it is necessary to decrease the size of the atomic model. Our purpose in this 

manuscript is to broach the limits of current atomistic computing for examination of yield and 

plasticity of single crystal metals (mostly nickel) by using serial and parallel computing 
platforms. The schematic in Figure 2.1 indicates the regions where local and non-local 

continuum theories are applicable based on this study. Here, a nonlocal continuum theory is 

one in which a size scale is included within the structure of the governing equations. 

When the nickel data in Figures 2.23-2.29 are rearranged according to spatial size, we 

can see that a size scale effect arises as shown by the stress-strain curves in Figure 2.32 at a 

strain rate of 2.4~10’ se’. This size scale effect is also observed in copper as shown in Figure 

2.33 at a strain rate of lo9 s-l. 
We may also compare the rate-independent (plateau) yield stresses as a function of 

specimen size. In Figure 2.34 we show the normalized yield stress as a function of the x- 

dimension size of the model. Note that the models considered here have the z-dimension 

constant and the x:y aspect ratio fixed at -2: 1, so that the single x-dimension fully 

characterizes the model. We see a clear power law dependence of the rate-independent yield 

stress with the stress varying as model size to the -l/4 power. This dependence was used to 

define the size dependence of the dislocation nucleation stress cr* in the dislocation model 

calculations presented above in Fig. 2.30. 
Figures 2.32and 2.33 show size scale effects in the stress-strain response for single 

crystal nickel and copper. The goal here was to illustrate that another FCC metal, besides 

nickel, experiences a similar size scale effect in terms of increasing size decreases the yield 

stress. If this size scale effect is universal, what is an appropriate length scale parameter? 
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In trying to understand yield at different length scales, we need to have a common 

length scale parameter. For this purpose, we choose a volume-to-surface-area as our metric. 

This volume-to-surface area can be defined very clearly for each test method and atomistic 

simulation. Table 2.3 summarizes the values for the analysis performed in this study related to I 

the specimen geometries. 

Table 2.3. Volume-to-surface areas for various geometries. 
Y 

Geometry volume surface area volume/surface area 

simple shear XCYA 2YCZC xJ2 
(cell dimensions, x,, y,,zJ 
torsion nr2h 2nrh r-12 
(cylinder radius, r; height, h) 

2/3na3 7ra2 2l3a 
(contact radius, a;) 
indentation 2/37ra3 7ca2 2/3a=2/3*h/tan0 
(contact radius, a; 
indentation depth, h; 
indentor tip angle, 0) 

Figure 2.35 shows a log-log plot of yield stress under simple shear (atomistics) and 

torsion and indentation (experiment) normalized by elastic shear modulus and resolved on a 
(111) slip plane as a function of the characteristic length scale given by the volume-to-surface- Z 

area ratio. This plot shows a clear size scale effect. The atomistic results come from the 

current molecular dynamics calculations in the rate-independent region of strain rates. A 
5 

resolved shear stress factor of 0.577 was applied to the data of Figure 2.34. 
The experimental torsion data (Fleck et al. 1994) shown in Figure 2.35 is from small- 

scale torsion tests of polycrystalline copper at a strain rate of 10m3 s-l at room temperature. The 

volume-to-surface-area was chosen to be the torsion specimen radius divided by two (Table 
2.3). To obtain the maximum shear stress at the surface of the cylinder, the normalized torque 

data presented in the manuscript was multiplied by 7c/3 and divided by the shear modulus of 

copper. It was assumed that at least one grain in the polycrystalline sample was orientated 

perfectly for slip, hence no resolution factor was applied. This analysis gives an upper bound 
on the resolved yield stress. 

Indentation hardness, H of ductile metals is considered a measure of the yield stress in 

compression, H=3*yield (Tabor, 1951). Although inadequate measurement techniques and 

surface contaminants can cause apparent increases in hardness at small loads, the bulk of the i 

data from many experimenters illustrates a common thread of increased hardness, and 

subsequently yield, as the size scale decreases. McElhaney et al. (1997) illustrated the size 
i 

dependence on yield for both single crystal and polycrystalline copper. The McElhaney et al. 

(1997) single crystal data is included in Figure 2.35. To determine the appropriate length 
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scale, we consider the size of the volume of copper under the indentor that is has plastically 

deformed. A reasonable assumption is to take that volume as a hemisphere with radius equal to 

the contact radius (Nix and Gao, 1998). The surface area is taken as the contact area. A 

resolved shear stress factor of 0.228 (Kiely and Houston, 1998) and tip angle of tan0= 0.358 

were used. 

Inter-facial force microscopy @FM) data for gold from Michalske and Houston (1998), 

which is also plotted on Figure 2.35, appears to align very nicely, albeit a bit higher, with the 

atomistic results. The difference may be due to the fact that the atomistic data are quasi-static 

values and a higher, changing strain rate occurs in the IFM data. Here, the total-volume-to- 

surface area was determined for the spherical indentor as 2/3 of the contact radius (see Table I), 

which is determined by simple geometry from the tip radius and the indentor depth at yield. 

The yield stress was calculated using the Hertz model and the shear stress data presented in the 

experimental manuscript. A resolution factor of 0.228 (Kiely and Houston, 1998) was applied 

to the applied stress. Michalske and Houston’s argument that dislocation nucleation governs 

yield stress at this length scale compares extremely well wi.th the work of Horstemeyer and 

Baskes (1999). 

We have also examined nanocrystalline metals in the context of the volume-to-surface 

area but found much scatter in the data and as such the data is not plotted here. Masumura et 

al. (1998) have reviewed many studies on nanocrystalline materials and concluded that above a 

certain length scale, the Hall-Petch relation operates but not below that particular level. Their 

data indicate that that the Hall-Petch relation does not work in tension. As mentioned earlier, by 
analyzing the length scale effect in tension other competing dissipative mechanisms can 

contribute to the stress-strain or hardness behavior, in particular, void nucleation or growth. 

With these different mechanisms involved we deemed it unfruitful to pursue this data. 

One last comment regarding the size scale effect is warranted. In Figure 2.35 are the 

results of a simple model using the concept of geometrically necessary dislocations by Nix and 

Gao (1998). The model was fit to the McElhaney et al. (1997) single crystal data. We see that 
extrapolation of this model to smaller length scales yields good agreement with the Michalske 

and Houston (1998) data and fair agreement with the atomistic simulations. Note that the 
model does not agree at all with the torsion data. In contrast, a simple power law seems to 
represent all of the data reasonably well in which the only argument needed is that related to 

dislocation nucleation. 

By examining the global stress-strain responses of the atomistic simulations, we 

observed two forms of bulk plastic behavior depending on the size of blocks of atoms. 
Coupling this computational information with experimental data from others (cf. Fleck et al., 
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1994), we assert that four regions of bulk plastic behavior exist based upon the size scale of the 

solid medium as summarized by the schematic in Figure 2.36. The first spatial domain is 

roughly below about ten thousand atoms, less than 2OOA. The exact size varies depending 

upon the crystal orientation, strain rate, temperature, and boundary conditions but it is 

approximately this scale. Here, the local atomic vibrations play a critical role, and three 

characteristics of the stress-strain curve are demonstrated: high frequency stress oscillations 

throughout the stress-strain curve, a large difference between micro-yield and macro-yield, and 

a stress drop-off after macro-yield. To employ a continuum plasticity model in this spatial 

domain, a vibration analogy with a size scale parameter would be appropriate (cf. Horstemeyer 

and Baskes, 1999). In terms of computations, these simulations were performed in a serial 

environment. 

Above several thousand atoms and below one hundred million atoms (about 2 pm), the 

high frequency stress oscillations are damped out because of the averaging procedure used to 

determine the global continuum stress. However, the stress drop-off occurs at a macro-yield 
still giving rise to a difference between the micro-yield points and the macro-yield point. To 

model this spatial domain with a continuum plasticity model, a theory that includes a size scale 

is needed. In terms of computations, these simulations were performed in a parallel 

environment. 

Both of these regions are dominated by dislocation nucleation and not by the 

morphological distribution or number density of dislocations, because the material is initially 

dislocation free. As discussed earlier, the stress-strain response looks much like a whisker in 
this region. Figure 2.36 shows a comparison of stress-strain responses for two different sizes 

illustrating the two different plasticity regions. Note as the size increases, the yield stress 

decreases. We discuss these trends with relatively small blocks of atoms in Horstemeyer and 

Baskes (1999). 

In the third spatial domain between 2 pm (approximately) and 300 pm, the stress drop- 

off does not exist and micro-yield and macro-yield start to converge, but a length scale 

dependence is still obtained as evidenced in Fleck et al. (1994). Above 300 pm, a power law 

function without a size scale parameter can describe the stress-strain response. Although single 

crystal whiskers can be obtained in spatial domains 2 and 3, the Fleck et al. (1994) data relate 

to polycrystalline metals. For the polycrystals, dislocation nucleation is not as dominant as the 

dislocation number density and morphological distribution in determining the stress state. 

Hence, there is a gradual influence change from dislocation nucleation at much smaller scales to 
dislocation number density and distribution at larger scales. Fleck et al. (1994) conducted 



torsion tests of polycrystalline copper that ranged from 12 pm to about 300 pm. Their data 

revealed that a stress drop-off did not exist after macro-yield but a length scale effect did indeed 

exist when determining yield and the work hardening rate. The length scale effect seems to 

disappear at about 300 urn thus defining the demarcation between the third and fourth spatial 

domains of plasticity. In this fourth spatial domain, atomistic simulations are currently out of 

reach for even parallel computing. However, as computers get faster, atomistic simulations 
will be able to be performed in this region in the near future. As far as continuum modeling, 

Fleck and Hutchinson (1993; 1997) have employed a strain gradient theory to analyze the 

length scale effects. 

The fourth spatial domain is above 300 microns. For the most part, one can expect 

different stress-strain behavior between a single crystal and polycrystal, yet qualitatively once 

both types of materials reach a large enough size the dislocation distribution and morphology is 

such that a size scale dependence is not realized. One can think of it in terms of a plastic zone 

size. Once the plastic zone is on the order of the material block, size scale effects can be 

expected. In considering a polycrystal without second phases, once the plastic zone is small 

compared to the material block of interest, no stress oscillations, stress drop-offs, or size scale 

dependence are observed. Local continuum models have been used to solve engineering 

problems in this spatial domain fairly well. 

2.7 Comparisons of EAM and FEM Analysis 

In this section, we examine FCC nickel undergoing simple shear by using three 
different numerical frameworks formulated at three different size scales. The three frameworks 

included Embedded Atom Method (EAM) potentials used in molecular dynamics simulations, 

crystal plasticity used in finite element simulations, and a macroscale internal state variable 

formulation used in finite element simulations. Simple shear simulations were performed in 

which the specimen aspect ratio was varied to give insight into the homogeneous and 

inhomogeneous aspects of large deformation. This study revealed that as the length-to-height 
aspect ratio of the specimen increased, the yield stress increased until the ratio reached about 

8:l in which the yield stress saturated. The three disparate numerical frameworks also gave 

similar qualitative responses related to inhomogeneous stress and strain distributions in the 

comer regions of the specimens and also similar responses in the centralized homogeneous 

deformation region. However, when comparing the shear stress distribution for the finite 

element analyses to the atomistic simulations, a much narrower distribution arose for the finite 

element analyses due to the lack of thermal vibrations experienced in the atom&tic simulations 
at 300K. At 10K an atomistic simulation which dampened out the high frequency thermal 
vibrations verified this reasoning. Three different sizes of blocks of atoms were also used in 
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the atomistic simulations and the results showed very similar stress and strain distributions 

with respect to each other indicating that no size scale effect is evidenced in the morphology 

when normalized by the global shear stress. However, a size scale effect exists related to the 

global (volume average) shear stress in the block of material. As the specimen size increased, 

the yield stress decreased. Finally, when comparing the three different numerical frameworks, 

the location of maximum dislocation nucleation occurred at the location of the maximum plastic 

spin, stress gradients, and strain gradients. 

Starting from the atomistic to the crystal plasticity and then to the macroscale internal 

state variable frameworks, the degrees of freedom in the simulations decrease. The atornistic 

simulations start from one atom and build up. The crystal plasticity formulation starts at the 

scale of the grain and builds up. And the macroscale internal state variable starts from a 

macroscale continuum point, which usually represents a polycrystalline material but in this case 
was tuned to single crystal experiments. As such, the macroscale internal state variable 

formulation does not include explicit details about the plastic spin (texture effect), but the 

crystal plasticity and atomistic formulations do. Furthermore, the macroscale internal state 

variable theory and crystal plasticity formulations do not include the thermal velocity (and 

vibration) effects related to atomic rearrangement or subgrain division arising from large 

strains, but the atomistic formulation does. 

In order to bridge length scales, one can perform physical experiments to quantify the 

appropriate cause-effect relations between the microstructure and mechanical properties. 
However, these experiments are costly and to date are wanting. An alternative view is to use 

“numerical” experiments by using different numerical methods that clearly describe the cause- 

effect relations at different size scales. This is the motivation for the current study. Before this 

writing, neither multiscale physical experiments nor multiscale numerical experiments have 

been performed on a material like single crystal nickel; hence, this is our contribution. 
Researchers have examined constitutive models via simple shear or torsion for years, 

because crystallographic slip occurs on shear planes. In this study, we do not strictly examine 

simple shear although the terminology is used henceforth for ease of communication. Simple 

shear requires that the traction-free face of the continuum point planar and parallel, strictly 

speaking. We loosen that requirement to analyze the inhomogeneous and homogeneous 

portions of the material block for the modeling frameworks. Our ultimate goal was to examine 

simple shear experiments, which do not constrain the x-faces to be planar and parallel and as 

such our boundary conditions are more applicable to simple shear experiments. 
In this section, we briefly describe the pertinent attributes of the three numerical 

methods related plasticity at different length scales for nickel. The atomistic simulations were 



conducted using Embedded Atom Method @AM) potentials (Daw and Baskes, 1984). Finite 

element simulations using ABAQUS were conducted using two different constitutive models. 
One model was a crystal plasticity formulation based on the Cuitino and Ortiz (1992) 

kinematics but with the hardening equations from Horstemeyer et al. (1999). Another constitutive 

model used was a macroscale internal state variable theory from the work of the Bammann et al. 

(1990; 1993; 1996). 

For the single crystal kinematics, the multiplicative decomposition of the deformation 

gradient into elastic (including rigid lattice rotation) and plastic parts is assumed, i.e. _F=_F’_Fp. 

_Fp is computed at the end of the time step by applying the Cayley-Hamilton theorem, 

E,P,Af = exp(_LPAt)_FP (2.14) 

where Ef and _Fp+ ti are the plastic deformation gradients at the beginning and end of the time 

step, respectively. _Lp is the plastic velocity gradient in the intermediate configuration that occurs 

during the time step, which is determined by (Asaro, 1983) 

(2.15) 

where N is the number of slip systems, fj is the continuum slip or shear rate on the i” slip 

system, si is the slip direction vector, and mi is the slip plane normal vector. The hyperelastic 

stress-strain relation is specified in the intermediate, or stress-free, configuration as 

(2.16) 

where the elastic stiffness tensor, g, is invariant for a given crystal in the intermediate 

configuration (cf. Asaro, 1983). The intermediate configuration is aligned with the crystalline 

axes. & is the second Piola-Kirchhoff stress in the intermediate configuration, and E is the 

conjugate Green elastic strain. 

The viscoplastic kinetic relation used is a kinematic hardening generalization of the form 

employed by Hutchinson (1976) i.e. 

(2.17) 

where the plastic slip rate on the i” slip system, pi, is a function of a fixed reference strain rate, 

9,) the reference shear strength, g, , the resolved shear stress on the slip system, z, , the rate 

sensitivity exponent for the material, M, and an internal state variable representing kinematic 

hardening effects resulting from backstress at the slip system level, ai. The isotropic hardening 

evolution law for the internal hardening state variable, gi , on i” slip system is given by 

& = 2 h,jj 
i.j=l (2.18) 
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where hq are the hardening (or plastic) moduli. The self-hardening components arise when i=j 

and the latent hardening components arise when i # j . The increase or decrease of flow stress on 

a secondary slip system due to crystallographic slip on an active slip system is referred to as latent 

hardening. A modified hardening-recovery equation was used with the PAN rule (Peirce et al., 

1982) given by 

hil = F(y )( Sij + Zhr(1 - ~~)), (2.19) 

where Zhr is the latent hardening ratio. The modified Armstrong and Frederick (1966) hardening- 

recovery equation that was also used is given by 

(2.20) 

where R is a material constant. We employ a substructural internal variable evolution equation 

(Horstemeyer and McDowell, 1998) that is assumed to evolve at the level of the grain. For the 

Armstrong-Frederick form, we employ the following form for each crystal 

(2.2 1) 

where C,,,, controls the rate of evolution, and C,,, is the saturation level of the backstress and 

were chosen to fit the experimental data. The substructural hardening internal state variable reflects 

dislocation interactions within the grain (cf. Rice, 1971) and follows the Coleman and Gurtin 

(1967) postulate that the rate must be governed by a differential equation in which the plastic rate 

of deformation appears. 
Once the material constants were determined from single crystal nickel experiments 

(Edington, 1969), simple shear simulations were run with different geometries, and the volume 

average of the shear stress was used for the discussion purposes to follow. 

For the internal state variable (IS\‘) plasticity model (Bammann et al., 1990; 1993; 1996) 

used in this study, the kinematics and work hardening equations are similar to the crystal 

plasticity formulation except that the intermediate configuration is not aligned necessarily to the 

crystalline axis of a single crystal due to the absence of a plastic spin component. The pertinent 

equations in this model are denoted by the rate of change of the observable and internal state 

variables. The equations used within the context of the finite element method are given by, 

(2.22) 

(2.23) 

_D,, = f(T)sinh 
IId -alI - {R + Y(T)} 
- 

@--a 

V(T) I II!?all 
(2.24) 

I (2.25) 
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> (2.26) 

The rate equations are generally written as objective rates (6, %) with indifference to the 

continuum frame of reference assuming a Jaumann rate in which the continuum spin equals the 

elastic spin ( W = We). The internal state variable (ISV) Equations (2.25)-(2.26) are functions - - 

of the observable variables (temperature, stress state, and rate of deformation). In general, the 

rate equations of generalized displacements, or thermodynamics fluxes, describing the rate of 

change may be written as independent equations for each ISV or as derivatives of a suitably 

chosen potential function arising from the hypothesis of generalized normality (Rice, 1971). In 

Equation (2.22), the elastic Lame constants are denoted by A and p. The elastic rate of 

deformation (D”) results when the flow rule as shown in Equation (2.24) is subtracted from the 

total deformation (D), which is defined by the boundary conditions. 

The independent variables for the inelastic rate of deformation are given in Equation 

(2.24) as the stress, temperature, and internal state variables. The deviatoric inelastic flow rule, 

_Din, encompasses the regimes of creep and plasticity and is a function of the temperature, the 

kinematic hardening internal state variable (a), the isotropic hardening internal state variable 

( R), and the functions f(T), V(T), and Y(T), which are related to yielding with Arrhenius- 

type temperature dependence. The function Y(T) is the rate-independent yield stress. The 

function f(T) determines when the rate-dependence affects initial yielding. The function V(T) 

determines the magnitude of rate-dependence on yielding. These functions are determined from 

isothermal compression tests with different strain rates and temperatures. 

V(T) = Cl exp( -‘d), Y(T) = C, exp( ‘A), f(T) = C, exP( -‘$) (2.27) 

The kinematic hardening internal state variable, a, reflects the effect of anisotropic 

dislocation density, and the isotropic hardening internal state variable R, reflects the effect of 

the global dislocation density. The functions ‘;(T) and R,(T) are scalar in nature and describe 

the diffusion-controlled static or thermal recovery, while rd(T) and R,(T) are scalar functions 

describing dynamic recovery. Hence, the two main types of recovery that are exhibited by 

populations of dislocations within crystallographic materials are captured in the ISVs. Note that 

the discrete dislocations that are present in the EAM similuations are not explicitly included here. 

In the context of this paper, the static recovery terms are set to zero. The anisotropic hardening 

modulus is h(T) , and the isotropic hardening modulus is H(T). 
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rd(T) = C,ex P( 4 -c, 
T 

(2.29) 
h(T) = C, - C,,T 

(2.30) 

(2.31) 

(2.32) 
H = C,, - C,,T 

W) = c,, exp( -“A) (2.33) 

Once the material constants were determined from single nickel experiments (Edington, 

1969) simple shear simulations were run with different geometries, and the volume average of 
the shear stress in the elements was used for the discussion purposes to follow. 

For all three numerical frameworks, fixed-end simple shear boundary conditions were 

prescribed in which the computational block of material had free surfaces in the x- and y- 

directions and was periodic in the z-direction, The initial temperature was set at 300 K. The 

applied strain rate for the atomistic simulations was very large (- le9/sec), while the parameters for 

the crystal plasticity and macroscale ISV models were determined from rate independent strain 

rates (-le4/sec). This introduces a contrast in stresses since the larger applied strain rate would 
induce a larger stress level. Hence, there exists not only a size scale difference but a time scale 

difference between the atornistic simulations and the continuum level simulations. For the EL4M 

and crystal plasticity simulations, the crystal orientation was [lOO,Oll, 07 11, and the loading on 

y-face was in the [loo] direction. For the macroscale ISV model, single crystal properties were 

used but the crystallographic orientation cannot be represented discretely. In a sense, it responds 

like an isotropic polycrystal. 
A few other notes are warranted. First, we focused on fixed-end simple shear at the three 

size scales because we had planned a complementary experimental study that is yet to be 

completed with different size specimens in this condition. Second, we discuss the qualitative 

comparisons of the results from the three types of simulations and then discuss the quantitative 

differences and describe the underlying mechanisms that are attributed to the aspect ratio of the 

specimen, material model, stress state, and kinetics. 

In all of the atomistic simulations, dislocations would nucleate from the free-surfaces of 

the x-faces and in particular, near the specimen comers where inhomogeneous deformation arose. 
Figure 2.37 illustrates this point for an eight-by-one x/y aspect ratio. Figure 2.37a shows a close- 

up view of the comer in which the dislocations were nucleated. Clearly, the shear stresses as 

designated by the brown colors are higher near the comer when contrasted with the bulk atomic 
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shear stresses, which show an almost homogeneous distribution of yellow atoms in Figure 2.37b. 

Figure 2.37~ shows that as deformation proceeds to 30% strain that the dislocations populate the 

whole material bulk. 

To further illustrate the flow of dislocations, we employ the centrosymmetry parameter of 

Kelchner et al. (1998), which shows deviations of the atomic positions from original lattice 

positions. Figure 2.38 shows color contours of the centrosymmetry parameter at different strains 

in the stress-strain response. The second picture in Figure 2.38 approximately corresponds to 

Figure 2.37a and Figure 2.37b near yield. Also, Figure 2.37~ corresponds to the last picture in 

Figure 2.38 at 30% strain. When comparing Figures 2.37 and 2.38, one can see that the stress 

response (Figure 2.37) and centrosymmetry parameter (Figure 2.38) correlate fairly well in 

signifying the dislocation nucleation, motion, and interaction. 
Figures 2.39 and 2.40 compare the shear stress and shear strain responses, respectively, 

of the three numerical frameworks for the one-by-one block of material. Figures 2.41 and 2..42 

show the same comparisons for the eight-by-one block of material. Interestingly, the material 

response at the comers due to the simple shear boundary conditions is the same for each numerical 

framework whether you examine the stress or strain. Although the magnitude of the stress is 

different for each framework (because of the size scale and applied strain rate), the kinematic 

response is essentially the same. This is extremely important for development of the kinematics of 

higher scale modeling such as a crystal plasticity model or a macroscale ISV model. One can also 

see that the center region of the crystal plasticity simulation is qualitatively different than the 

macroscale ISV simulation due to the rate of change of the crystal orientation. Figure 2.42d 

shows that for one of the Euler angles with an initialization of 90 degrees throughout the bulk at 

yield we see an angle decrease in some elements by 5 degrees at the comers indicating that local 

rotations play a role in accommodating the simple shear boundary conditions. When you couple 

this information with the atomistic simulation results of dislocation nucleation, you can deduce 

that the gradient in rotation plays a role in the nucleation of dislocations. 
Similar to Figures 2.39-2.42 at yield, we show the simulation responses at 30% strain, 

which puts the simulations well into the plasticity region in Figures 2.43-2.46. The stress and 

strain plots in Figures 2.43-2.46 shows similar trends as the yield plots. The similarities between 

the three different numerical methods is again very close when considering the kinematic 

responses and is qualitatively similar for the stress distributions. One interesting observation 

related to Figure 2.46d is that the crystal orientation has changed from an initial orientation of 90 

degrees to almost 30 degrees for some elements for the x/y aspect ratio of eight, indicating a very 
large difference in rotations for some elements of the crystal plasticity simulation. 

Another similarity between the three computational methods can be seen in Figure 2.47. 

Figure 2.47 shows the volume averaged yield stresses normalized by the shear modulus over the 

block of material with varying aspect ratios for the macroscale internal state variable theory 
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simulations, crystal plasticity simulations, and the atom&tic simulations. This plot illustrates that 

as the x/y aspect ratio of the specimen increases, the yield stress increases until a saturation is 
achieved. Further, as the y/x aspect ratio of the specimen increases, the yield stress decreases. In 

Figure 2.47a, the yield stress increases as the x/y ratio increases until a saturation level is reached 

at an aspect ratio of approximately eight. Horstemeyer and Baskes (1999) proposed that this could 
arise for two reasons. Because the stress gradients near comers induced dislocations that 

determine the yield point, as more bulk response arises as the material in the x-direction is 

increased, then the global effect of dislocations nucleating from the comer decreases. Another 

notion to describe the x/y ratio increase in shear stress comes from an argument that image force 

effects could aid the nucleation event. However, the crystal plasticity and macroscale ISV theory 

show the same qualitative stress and strain gradients, and these numerical treatments do not 
include explicit functions for dislocation nucleation or image force effects. 

Now that we have discussed the qualitative similarities of the three computational 

methods, we know discuss their quantitative differences. In Figures 2.39-2.46, at yield and at 

large strains, we saw similar trends in the kinematic and stress response. In Figure 2.47, we saw 

that the specimen aspect ratio differences gave similar trends in the stress response. However, in 

each of the cases the stress magnitudes are different for the three different numerical methods. 
In Figure 2.47 note that the ordinate has logarithmic units so as the size of the material 

decreases, the yield stress significantly increases. This occurs because the strength of a solid is 

inversely proportional to the material size as described by Horstemeyer and Baskes (1999). For 

the atomistic simulations, we conducted simulations with the same aspect ratios for the blocks of 

material but with different absolute sizes to illustrate the length scale effect. The macroscale ISV 

theory and crystal plasticity formulation do not have an inherent length scale included. However, 

with the crystal plasticity and macroscale ISV theory do show the general trend of size scale 

dependence as the material model parameters were determined from large scale single crystal data 
and polycrystalline data 

Now we would like to discuss the contrasting results from the varying aspect ratios of the 

specimens. Using the macroscale ISV theory Figure 2.48 illustrates that when the x/y aspect ratio 

transitions from eight to unity, the stress distribution is more diffuse because of the influence of 

the gradients. When the y/x aspect ratio transitions from unity to eight, the stress distribution 

becomes less diffuse as shown in Figure 2.48. One can think of large x/y ratios as “pure” shear 

and large y/x ratios as “pure” bending. When the ratio approaches unity, a combined response 

results. Note that if the distribution of stresses is averaged, like in the data in Figure 2.47, as the 
x/y aspect ratio increases, the stress increases. This occurs even though a very similar stress 

distribution occurs in the comers of specimens for the x/y aspect ratios of unity and eight as 

shown in Figure 2.49 (which exaggerates the effect from the yield point because these stress 

contours at shown at 30% strain). However, when the x/y aspect ratio is near unity, the gradients 
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in stress from the comers play more of role than the average values in the center of the specimen. 

Essentially, the comers introduce inhomogeneous deformation, but the center of the specimen 
accommodates homogeneous deformation. As the aspect ratio size increases in either direction, 

the average stress swamps out the gradient effects. Based on these observations, we can conclude 

that the stress gradients drive the atomic level dislocation nucleation events as well. 

From Figure 2.47b, one can see that as the y/x ratio increases, the yield stress decreases. 

Horstemeyer and Baskes (1999) claimed that volume per surface area of the block of material 

represents a length scale that correlates to yield and is illustrated by increasing the surface area on 

the y-face of the material block. This is indeed true, but the crystal plasticity and macroscale ISV 

theory also provide some insight into the response. Essentially, as the height increases, the 

mechanism for inducing yield changes because the stress state changes from simple shear to one 

in which normal stresses are dramatically increased. As such, the volume averaged yield is 

lowered. Figure 2.50 shows the relative displacements of the atoms and the corresponding shear 

stress by the color at yield and 30% strain. Clearly, the response in Figure 2.51 is different when 

compared to Figure 2.37, which shows a block of material with a y/x ratio of 0.125. The larger 

y/x ratio appears to not only have more surface area available for dislocation nucleation, but 

experiences material thinning and a inhomogeneous deformation from beam bending, where the 
smaller x/y ratio (or larger x/y ratio) shows a more “homogeneous” deformation. 

When a distribution of the angles is monitored and compared to the x/y aspect ratio of 

unity as shown in Figure 2.51, we see that the x/y aspect ratio of eight has a less diffuse 

distribution of angles than the x/y aspect ratio of unity. The smaller x/y aspect ratio almost has an 

even distribution from 69 to 75 degrees, but the larger x/y aspect ratio has a distribution that 

mostly saturates at 77 degrees. Hence, the width and mean value of the distributions are different. 

This observation is consistent with those made with the stresses. In fact, the gradient in crystal 
rotation corresponds well with the gradients shown by the shear stresses and shear strains as 

illustrated in Figure 2.52, which shows the x/y aspect ratio of unity at 30% strain. 
Although these three different numerical frameworks show stress and strain gradients at 

the same locations within the block of material, the magnitude of the stress gradients are slightly 

different and can be illustrated when the results from the different simulations are normalized as 

shown in Figure 2.53. The ordinate in Figure 2.53 is the relative frequency of the local value for 
the shear stress divided by the total number of elements (for the FEM simulations) or number of 

atoms (for the EAM simulations). This helps to normalize the number density of the different 
simulations. The abscissa in Figure 2.53 is the local shear stress (eqtn 2.2) divided by the 

average global stress (eqtn 2.3). The results in Figure 2.53 show that the mean values are 

normalized at unity. The data to the right of the mean value illustrates the stress gradients that 

arise from the specimen comers with higher local shear stresses than average. The data to the left 

of the mean value represent the atoms and elements on the left and right x-faces away from the 
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comers. The stress and strain gradients that arise from the transition of the comer to the face occur 
where the dislocations nucleate in the atomistic simulations. Note from the atomistic simulations 
that as the size increases, the normalized distribution does not change. However, the crystal 

plasticity and internal state variable theory distributions have a much narrower distribution than the 

atomistic simulations. Furthermore, the lower bump that is observed to the right of the mean 

value in the atomistic simulations is to the left in the finite element simulations at 300 K. These 

two differences can be explained from a kinetics perspective. The 300 K simulations include 

fluctuations of local stresses from thermal vibrations, and these vibrations do not exist in the finite 
element simulations. To illustrate this point, we ran the smallest block of atoms (372 atoms) at 

almost 0 K (actually 10 K) with the same boundary conditions. The results in Figure 2.54 show 

that the 10 K simulation has a much narrower distribution and a lower bump to the left of the 

mean, much like the finite element simulations. In the 10 K simulation, the thermal vibrations are 

reduced to a minimum. 

Other analyses that we performed were on simple shear and torsion of single crystal 

copper by employing experiments, molecular dynamics simulations, and finite element 

simulations. In particular, we focused on micro/macroyield stress and the kinematic response. 

Pure FCC Cu has enjoyed a breadth of mechanical property studies. Although many Cu 

compression and tension tests have been done, few torsion and simple shear tests been conducted. 

Moreover, even fewer torsion and simple shear tests have been conducted on single crystals. 

Schmid and Boas (1950), Phillips (1962) Jackson and Basinski (1967), Honeycombe (1984), 

and Quilici et al. (1998) have noted critical resolved shear stresses under various loading 

conditions for single crystal Cu. In this work, we perform torsion tests of solid bars of single 

crystal Cu. Historically, little research has been presented with this type of test for several 

reasons. First, it is a difficult test to achieve accurate load-rotation responses. In this paper, we 

describe how our method yields repeatable responses. Second, researchers typically would use 

compression or tension tests to determine the yield strength. Third, researchers typically used 

thin-walled torsion tests to achieve large strains. By performing the single crystal solid bar torsion 

test (performed by W.Y. Lu and J. Lim) with a “minimal” amount of dislocations present, we 

show qualitatively the effects of dislocation nucleation on the yield point. 

Two Cu single crystal bars with 99.999% purity were grown from a seed. The diameter of 

the specimens was 13 mm and the length was 50 mm with the [l lo] crystallographic direction 

parallel to the axial direction of the specimen. This orientation allowed for quadruple slip. 

Referring to Figure 2.55, in order to clamp the specimen to the torsional testing machine, each end 

of the specimen was epoxied inside an aluminum end cap. Figure 2.56 shows that the aluminum 

end caps were then clamped to a MTS multiaxial test system with one end clamped to the torque 

cell and the other end to the torsional actuator. The effective gage length of the specimen then 
became 17.6 mm. 
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Rotations were applied by the torsional actuator at a rotation rate of 0.25”/s. The torque- 

rotation curves of two different specimens (1 and 2) are plotted in Figure 2.57. The stress state 

can accurately be calculated using an elastic analysis at yield but will become more inaccurate as 

the deformation proceeds into the plastic regime. As such, we quote only stresses using the 

elastic formula near yield. Both curves in Figure 2.57 show that Cu single crystal yields at a very 

low stress level (near 10 Ml?a), but the work hardening rate after yield is very high. In the context 

of this section, we use microyield 1 and 2 for the analysis. Recall that microyield 2 is defined 

from the 0.2% strain offset. Microyield 1 is defined at the proportional limit, when deviation 

from linearity starts. Table 1 shows the microyield 1 and 2 values for the two specimens. The 

stress values in Table 2.4 were evaluated at the outer radius of the specimen only since the 

specimens experienced a gradient in plastic stresses as the deformation proceeded. 

Table 2.4. Yield values of the torsion specimens. 

Specimen # Microyield 1 Microyield 2 
1 3.5 MPa 9.8 MPa 
2 4.8 MPa 10.6 h4Pa 

An observation related to the kinematics of deformation on the outside surface of the 

specimen was made. As evidenced in Figure 2.58 from the machining marks on the surface of the 

specimens, a wavy pattern developed during torsion. These machining marks were initially 

straight before torsion. The sinusoidal wave illustrates material motion and is comprised of four 

periods resulting from the fourfold symmetry of the dislocation glide planes around the 

circumference with an average “amplitude” of approximately 0.35 mm at the center of the gage 

section. This wavy periodic deformation is shown in Figure 2.58 at strain level of 35%. 
Table 2.5 summarizes the atomistic simulation parameters for simple shear and torsion. 

For the simple shear simulations, the two different size computational blocks of material had free 
surfaces in the x- and y-directions with periodicity in the z-direction. The x/y ratio was identical 

to the ratio of the circumference of the torsion specimen to its axial length for both the large and 

small atomistic specimens. For simple shear, the atoms in the top row in the y-direction were 

prescribed to move in the x-direction and the bottom row of atoms were fixed. For the torsion 

simulations, two different size computational blocks of material were fixed on one end with a 

rotation prescribed at the other end. An applied strain rate of -1e9Lsec was used for both types of 
simulations. A constant volume, a fixed number of atoms, and temperature of 300 K were used 
for the material that was oriented initially for quadruple slip. No initial defects were introduced 

into the material. An initial velocity in the x-direction scaled according to the height (y-direction) 

was introduced to alleviate a shock that would have otherwise been introduced. The atoms inside 

of the boundary atoms were used to determine the average stress of the block. 
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Table 2.5. Summary of information regarding atomistic simulations. 

attribute Large block Small block Large block Small block 

torsion torsion simple shear simple shear 

number of 41,630 5298 23,628 332 
atoms 

length (x-dir) 
heighth (y-dir) 
depth (z-dir), 

250 & 28 Lfl 
20 A 14A 108 A 12A 

7A 7A 
periodic 
radius 

lattice parameter 
85A. 41 A 

3.615 A 3.615 A 3.615 A 3.615 A 
0) 

boundary 
condition 
crystal 

orientation 
temperature 

applied strain 

torsion torsion simple shear 
Cl001 w01 EW 

(ooi,iio,iio) (ooi,iio,iio) (001~ io,rio) 
300 K 300 K 300 K 
le9/sec le9Lsec le9/sec 

simple shear 
WI 

(ooi,iio,iio) 
300 K 
1 e9/sec 

Figure 2.59 shows relative displacement results from a simulation at 35% shear strain for 

both sizes of material under simple shear. Similarly, Figure 2.60 shows relative displacement 

results from a simulation at 24% shear strain for both sizes of material under torsion. The vectors i 
show the relative displacements from the original positions. One can see that the sinusoidal wave 

observed in the torsional experiment is also observed here in both types of simulations and at 

different size specimens. One thing is clear: that dislocations are emitted from the comers of the 

block of material (cf. Horstemeyer and Baskes, 1999). After the dislocations are nucleated, they 
propagate into the interior of the block of material and the wavy pattern results. 

The simple shear simulations showed that the microyield 1 and 2 stresses from the 

atomistic simulations for the small block of atoms were 7.25 and 7.62 GPa, respectively. For the 

large block of atoms, the microyield 1 and 2 stresses were 1.95 and 3.1 GPa, respectively. 

Figure 2.61 shows the stress-strain responses of the two blocks of atoms. Note that the yield 

stress is higher for the smaller specimen. 
Finite element simulations employin, 0 the crystal plasticity constitutive model described 

earlier was used to give insight into the rotations related to the observed pattern on the outside 

surface of the experimental torsion specimen. The crystal orientation, rotational rate, gage length, 

and diameter were the same as the experiment. A simple shear simulation was also performed 

with the correlating geometry. Figures 2.62 and 2.63 show the relation of one of the Euler angles i 

and the relative displacement of the material at large strain under simple shear and torsion, 

respectively. For the simple shear case, note that two peaks are observed in the specimen (Figure 

2.62b) and this arises because of the plastic spin that was induced by the continuum spin (Figure 
2.62a). For the torsion simulation shown in Figure 2.63, we observe that rotation angles are of 
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opposite sign on opposite sides of the specimen. On the left hand side, we see a peak CW 

rotation and on the right hand side, we see a peak CCW rotation. These opposing rotations push 

material up and down in the specimen to induce the wavy pattern. Note that the minimum and 

maximum rotation angles correlate with the peaks and troughs of the displacement oscillations. 

We now discuss the similarities and differences in the experiments, molecular dynamics 

simulations, and finite element simulations. First, we will discuss the wavy pattern (kinematics) 

observed on the outside circumference of the specimen and then differences in the kinematics and 

in micro-yield stress responses. Before we make comparisons though, we must first clarify a 

point regarding simple shear and torsion. If one assumes that the curvature in the circumferential 

normal strain is negligible, then the stress response in simple shear and torsion is the same from a 

continuum perspective. In moving from the cylindrical coordinate system for torsion to the 

Cartesian coordinate system for simple shear the coordinates r, 8, z map to z, x, y, respectively. 

Note then that in the torsion experiments and simulations, the free surface is the 0 z plane, but the 

free surface in the simple shear simulations is the zy plane. 
The main similarity observed in all the simulations and experiments was a wavy pattern 

that was observed on the outer radius of the specimen. The wavy pattern occurred because the 

kinematics are qualitatively the same in the MD, finite element simulations, and experiments. 

However, the magnitude and period of the oscillating waves are different in simple shear and 

torsion. The waviness arises because the cubic symmetry of the FCC crystal and the symmetry of 

the loading are not identical, since the 0z shear plane changes orientation around the circumference 

of the specimen. The finite element simulation shows this in Figures 2.62 and 2.63. For the 

torsion case (experiments, MD simulations, and finite element simulations), four peaks were 

observed, but in the simple shear case (MD simulations and finite element simulations) only two 

peaks were observed. The differences between torsion and simple shear were also observed by 

Boukadia and Sidoroff (1988) but at much larger strains. In this study, the four peaks in the 

torsion and two peaks in the simple shear start to develop at the beginning of the deformation. 
This reflects the fourfold slip activity revealed in the torsion experiment and planar double slip 
exhibited in the simple shear simulations. These two types of slip activity clearly reflect that the 

plastic spin operates differently when comparing simple shear to torsion. 

Not only are the number of periods different between torsion and simple shear, but the 

wave amplitudes were also different when we compare the ratio of the wave amplitude divided by 

the cylinder circumference for torsion and length for simple shear. We kept the ratio of the 

circumference of the cylinder to the axial gage length of the torsion equal to the ratio of the length 

to height in the atomistic simulation (0.43). Similarly, we kept the same ratio for simple shear 
when comparing the length-to-height. Table 2.6. shows a comparison of the wave amplitude 

ratios at 35% strain. 
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Table 2.6. Ratio of wave amplitude divided by circumference (torsion) or 
length 
I Condition/Method I wave amplitude ratio I 

Torsion 

experiment 0.02 

t finite elements 
I 

I 0.05 I 
molecular dynamics (large specimen) 

molecular dynamics (small specimen) 

Simple Shear 

finite elements 

molecular dynamics (large specimen) 

molecular dynamics (small specimen) 

0.06 

0.07 

0.25 

0.23 

0.26 

The value of the peak and trough to determine the wave amplitude is fairly simple for the 

experiment, but these values need to be considered only approximate for the MD simulations and 

finite element simulations. Note that both the torsion wave amplitude ratio and simple shear wave 

amplitude ratio were consistent within their own domains, but different when comparing torsion 

to simple shear. For torsion, the wave amplitude was much smaller than in simple shear. This 

difference may have to do with either the differences in plastic spin related to slip activity as 

discussed earlier or related to different free surfaces in each type of boundary condition. Although 

both have traction free planes orthogonal to the loading direction, the planes are opposite to the 

coordinate mapping from a cylindrical to the Cartesian coordinate system as r, 8, z map to z, x, y , 

respectively. If torsion and simple shear were identical, the 8z plane in torsion would map to the 

xy plane in simple shear. The 8z plane in torsion is traction free, but the xy plane is not traction 

free but is constrained by periodic conditions. The yz plane in simple shear is traction free. 
Table 2.6 makes three points. (1) Simple shear and torsion boundary conditions incur 

different kinematics. (2) The wave amplitude is very similar in torsion for the experiments, finite 
elements, and atomistic simulations, although there is minor trend from the larger specimen 

having a wave amplitude ratio of 0.02 and the smaller atomistic simulation having a wave 

amplitude ratio of 0.07. Also, there exists a difference between the crystal plasticity simulation 

and the experiment from 0.02 to 0.05, respectively, even though these two simulations are 

considered to be on the same scale. The difference could arise for several reasons, but the main 
one is that the crystal plasticity formulation does not explicitly account for substructural 

development that is observed in finite deformations (cf. Hughes, 1995). (3) The simple shear 
wave amplitude ratio is essentially the same for the finite element simulations and the atomistic 
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simulations. This result reveals that no specimen size scale effect exists related to the kinematics 

in torsion. 

Now we turn from the kinematics to the stress response of the different methods and 
boundary conditions. For the MD simulations in this study, the microyield stresses were 
7.25/7.62 GPa (small block of atoms) and 1.95/3.1 GPa (large block of atoms) compared to 3.5- 

4.8110 MPa for the larger scale torsion experiment. Hence, three orders of magnitude difference 

were observed when comparing the atomistic to experimental results. Other experiments 

qualitatively validate the experimental yield stresses observed in our experiments. S&mid and 

Boas (1950) experimentally showed a microyield stress of 4.5 MPa for single crystal Cu in 

tension. Phillips (1962) performed direct shear on single crystal Cu with different orientations and 
observed a value of 0.6 MPa for yield. Jackson and Basinski (1967) conducted tension tests on 

single crystal Cu specimens with different crystal orientations and found a range of 0.50-1.24 

MPa for the critical resolved shear stress. Honeycombe (1984) experimentally showed a critical 

resolved shear stress of 0.34-0.98 MPa for single crystal Cu-depending on the purity level. These 

values are on the same order as our large scale torsion results. Quilici et al. (1998) obtained a 

critical resolved shear stress of 0.8 MPa for 1 mm diameter torsion specimens of single crystal 

Cu. Even for polycrystalline Cu this size scale trend has been observed. Fleck et al. (1994) 
performed micron scale solid torsion experiments of polycrystalline Cu with different radii. The 

radii were 12, 15, 20, 30, and 170 pm, and the corresponding yield stresses taken from a 0.2% 

strain offset were 229, 205, 140, 130, and 120 h4Pa, respectively. Again, as the size increased, 

the yield stress decreased. Figure 2.64 shows the yield stress divided by elastic shear modulus as 

a function of volume-per-surface-area of various copper and nickel experiments with the atomistic 

data. 

In summary of this section, we compared and contrasted three disparate numerical 

methods representing three different size scales of simulations (atomistic modeling, crystal 

plasticity using finite elements, and internal state variable theory using finite elements). 

Qualitative similarities were found related to the yield stress of the specimens as a function of 
aspect ratio. As the x/y aspect ratio of the block of material increased (close to simple shear 

conditions), the yield stress increased until the ratio reached about 8:l in which the yield stress 

saturated. Similarly, as the y/x aspect ratio of the block of material increased (close to bending 

conditions), the yield stress decreased until the ratio reached about 8:l in which the yield stress 

saturated. The three different numerical methods also gave similar qualitative responses related to 

inhomogeneous stress and strain distributions in the comer regions of the specimens and a 

centralized homogeneous deformation region. However, several differences in the three numerical 
methods were evidenced. When comparing the distribution for the finite element analyses to the 

atomistic simulations, a much narrower stress distribution arose for the finite element analyses due 

to the lack of thermal vibrations experienced in the atom&tic simulations. A 10 K atomistic 
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simulation which dampened out the high frequency thermal vibrations verified this notion. A size 

scale effect related to the volume averaged shear stress in the block of material was evidenced. As 

the specimen size increased, the yield stress decreased. Finally, when comparing the three 

different numerical methods, the place of highest dislocation nucleation occurred where the 
highest plastic spin, highest stress gradients, and highest strain gradients occurred. 

2.8 Summary 

In this scoping study, atomistic simulations were performed in order to understand 

structure-property relations at different size scale as related to plasticity of metals. In particular, 
various parametric effects on the stress .state and kinematics has been quantified. The parameters 

included the following: crystal orientation (single slip, double slip, quadruple slip, octal slip), 

temperature (300 K and 500 K), applied strain rate (lo6 to 1012/sec), specimen size (10 atoms to 2 

microns), specimen aspect ratio size (1:8 to 8:1), deformation path (compression, tension, simple 

shear, and torsion), and material (nickel, aluminum, and copper). Although many conclusions 

can be drawn from these studies and has provided fodder for more studies, several major 

conclusions can be drawn. 

(1) The yield stress is a function of a size scale parameter (volume-per-surface-area) that was 

determined from atomistic simulations coupled with experiments. As the size decreases, 

the yield stress increases. 

(2) Although the thermodynamic force (stress) varies at different size scales, the kinematics 

of deformation appears to be very similar based on atomistic simulations, finite element 

simulations, and physical experiments. 

(3) Atomistic simulations, although inherently including extreme strain rates and size scales, 

give results that agree with the phenomenological attributes of plasticity observed in 

macroscale experiments. These include (I) strain rate dependence of the flow stress into 

a rate independent regime, (II) approximate S&mid type behavior, (III) size scale 

dependence on the flow stress, (IV) kinematic behavior of large deformation plasticity, 

(VI * 
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Chapter 3 

Atomistic Calculations of Diffusion Rates: 

Compact Surface Cluster Diffusion by Concerted Rotation and Translation 

Island diffusion on surfaces has historically been explained by single atom mechanisms 

including edge-running and evaporation-condensation. More recently, cooperative 

mechanisms for island diffusion including glide’, dislocations2, and dimer-shea? have been 

proposed theoretically although experimental evidence for some of these mechanisms remains 

limited. Island glide, defined as the nearly simultaneous translation of all island atoms parallel 

to the surface, could be related to fiiction,4*5 since both phenomena require a layer of one 

material to slide past another material. The detailed atomic mechanisms for island glide and 

friction represent a challenging problem for theoretical and experimental investigation. 
Field ion microscopy studie$,’ of 19-atom Ir clusters on the Ir( 111) surface have 

documented several remarkable diffusion behaviors as follows: 1) The clusters exhibit an 

excess of long jumps (i.e. beyond nearest stable fee configurations) relative to single jumps. 

2) The prefactor for diffusion is almost four orders of magnitude larger than usual prefactors. 

3) Edge-running and evaporation-condensation apparently can be ruled out as mechanisms for 

diffusion. These unusual experimental observations motivate a detailed theoretical examination 

of the possibility raised by Ehrlich and coauthors 6.7 that the clusters glide by simultaneous 

translation of the cluster atoms over bridge sites. 

The experimental results show that an 18-atom cluster moves by periphery diffusion, 
but that a compact hexagonal 19-atom cluster moves by some other mechanism. The compact 

hexagonal clusters are of special interest because of the high diffusion prefactors and novel 

diffusion mechanisms. For this reason we will limit ourselves here to the motion of compact 

hexagonal clusters by collective mechanisms including but not limited to bridge glide. This 

chapter has two main sections. First we consider the ener,y of a pseudomorphic monolayer of 

Ir on Ir( 111). This is relevant since a compact 19-atom Ir cluster is a pseudomorphic island. 

We find, in dramatic contrast to a single adatom, that a pseudomorphic monolayer has a low- 

lying local energy minimum at the on-top position. This raises the novel possibility that on-top 

sites could easily be involved in island glide. In the second section we examine island glide in 

detail and propose a new mechanism, “cartwheel-shuffle”, for island glide. This mechanism 

involves concerted rotation and translation of the cluster as a whole. We have investigated four 

possible glide mechanisms for long jumps of the 1Patom cluster. Of these, cartwheel-shuffle 

has the lowest activation energy. 
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The first principles energies presented here were calculated within the generalized 

gradient approximation (GGA).* We used the plane wave (E,,, = 191eV) and ultrasoft 

pseudopotential’ based code, VASP, developed by G. Kresse and J. Furthmuller.‘” All 

activation energies for diffusion have been calculated using the nudged elastic band method.’ ’ 

As mentioned previously, a 19-atom compact Ir island on Ir(ll1) is basically a 

hexagonal portion of a pseudomorphic Ir monolayer on Ir( 111). The island will differ from a 

pseudomorphic film mainly at its perimeter where the atoms will relax inward slightly. 

Because of the similarity between island glide and monolayer shear, it is relevant to calculate 

the energies required to shear a pseudomorphic monolayer of Ir across an Ir( 111) surface. In 

table 3.1, we contrast these energies for a pseudomorphic film with the energies for an adatom 

in the fee, hcp, bridge and on-top sites. All of the energies are expressed per atom in 

meV/atom and were calculated using first principles. For an adatom, the calculations of the 

relative fee, hcp, and bridge energies are within about 10% of the experimental 

measurements. l2 This gives us considerable confidence in these first principles calculations. 

As expected, the energy is a maximum at the on-top site and an adatom will avoid that site. 

The calculations for the pseudomorphic monolayer present a very different story. The energy 

required to place the layer in the on-top site is only slightly larger than the hcp energy and is 
much less than the bridge energy. Surprisingly, the on-top site is met&able for the 

pseudomorphic monolayer. To our knowledge this is the first time that this behavior has been 

reported for a transition metal. As shown here, it is different from the well known behavior of 

a single adatom. It is also different from the well known slip behavior of bulk fee metals 

represented in table 3.1 by a bulk calculation with 5 and 4 layers of iridium on the sides of a 

(111) slip plane, which reproduces the measured bulk stacking fault energy with fortuitously 
good agreement. 

We have also performed semiempirical many-body calculations with two different 
iridium potentials.‘3~‘4 These calculations fail to predict the important metastable on-top state 

and differ from first principles calculations by almost an order of magnitude for the energy of 

this state.” Thus, relying on semiempirical calculations (e.,. 0 embedded atom method [EAM], 

effective medium theory [EMT], or Finnis-Sinclair potentials) to provide even a qualitative 
understanding of Ir island glide on Ir(l11) seems unwise. We did resort to semiempirical 

calculations to perform exhaustive preliminary searches for metastable states of rotated and 

translated clusters and to estimate prefactors for diffusion since such calculations are presently 
well beyond the capability of first-principles methods. 

In figure 3.1 we show the energy per atom of an iridium adatom and of a 

pseudomorphic iridium monolayer plotted as a function of position. These plots are based on 

the calculations given in table 3.1 and on calculations at intermediate positions. This figure 
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emphasizes the dramatic difference between moving a single atom across a surface and moving 

a pseudomorphic overlayer over a surface. For a single atom, diffusion will occur from an fee 
site to an hcp site and then to an fee site. The probability of a long jump over the top site is 

insignificant. For a monolayer of iridium atoms (as in a pseudomorphic island), one can 

imagine other paths, such as diffusion from an fee site to the metastable on-top site and then to 

the opposite hcp site. Since the energy surface is relatively flat for the monolayer, it also seems 

conceivable that an island could rotate in addition to translating across the surface. 

Simultaneous translation and rotation can produce a cartwheel-like motion. Cartwheel-like 

motion has been reported for gold nanocrystal diffusion on graphite16, but to find it possible in 

a homoepitaxial pseudomorphic island is unexpected. 

In figure 3.2 we show four different collective diffusion mechanisms which we have 
studied using first principles calculations of activation energies. (We have also considered a 

mechanism in which the cluster first rotates, then translates several times, then rotates again. 

Since this mechanism also has a high activation energy, we will not discuss it here). The first 

two mechanisms, bridge-glide and top-glide, are almost pure translational mechanisms. The 

second two mechanisms, cartwheel-shuffle and cartwheel-glide, involve simultaneous 

translation and rotation. These mechanisms are shown for the 19-atom cluster. For the 7-atom 

cluster the mechanisms are similar except that cartwheel-shuffle and cartwheel-glide both 

involve a 30” rotation to reach a metastable state. For the 7-atom cluster cartwheel-shuffle and 

cartwheel-glide are equivalent by symmetry if jumps in and out of the metastable state are 

uncorrelated. The first principles activation energies for these glide diffusion mechanisms are 

given in table 3.2. In all cases the stable island configuration has all atoms near the fee sites in 

agreement with experiment. The calculations suggest that bridge-glide is the favored diffusion 

mechanism with an activation energy of 1.54 eV in excellent agreement with the 1.49 eV 

measured experimentally. The experimental data shows no excess of “long jumps”. Our 

calculations and the experimental data appear consistent with bridge-glide as a cluster diffusion 

mechanism for the 7-atom cluster. 

For the 19-atom cluster, the calculations show that top-glide and cartwheel-glide can be 

ruled out as diffusion mechanisms, since their activation energies of 5.2 and 5.1 eV, 

respectively, are much higher than for bridge-glide and cartwheel-shuffle. The experimental 

activation energy for diffusion of the 19-atom cluster is 2.54 eV. This is significantly lower 

than the 3.2 eV and 3.6 eV activation barriers calculated for bridge-glide and cartwheel-shuffle 

respectively. The discrepancy between experiment and theory may be due to computational 
inaccuracies which we were forced to accept in order to perform first principles calculations for 

such a large number of atoms. The intensive computational requirements limited the first 
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principles nudged elastic band calculation to a small unit cell and sparse k-point sampling. The 
errors associated with these compromises are difficult to quantify without exceeding all 

available computational resources. Since the calculations are not fully converged, we cannot 

make a definitive conclusion regarding whether bridge-glide or cartwheel-shuffle has the lower 

activation energy. It is also conceivable some other diffusion mechanism may exist which has 

a lower activation energy than bridge-glide or cartwheel-shuffle. 

What theoretical conclusions can we draw with confidence regarding glide mechanisms 

of a 19-atom cluster? First, we are sure that the cartwheel-shuffle and bridge-glide have a 

much lower activation energy than the on-top glide or cartwheel-glide. The low activation 

energy of the cartwheel-shuffle can be understood by noticing that several of the atoms in the 

cluster remain near the fee sites during the transition from the fee to the metastable 

configuration. The other atoms in the cluster move over on-top sites in an asynchronous 

fashion as the cluster moves in a cartwheel fashion from fee to the metastable state. This 

means that only a portion of the atoms in the cluster will be in energetically unfavorable 

positions at any time during the cartwheel-shuffle. We suspect that cartwheel shuffle has the 

lowest activation energy of all mechanisms involving glide of the center of mass of the cluster 

over the top site. Returning to the experiments on diffusion of 19-atom Ir clusters on Ir( 11 l), 

we consider possible explanations for the long jumps. We are not able to understand how 

bridge-glide could produce an excess of long jumps, since it moves a cluster from an fee site 

to an adjacent hcp site (and then to an adjacent fee site). For this reason we believe that 

cartwheel shuffle (probably in combination with bridge-glide) should be given serious 

consideration as a possible explanation for the remarkable experimental observations. 

Finally we consider the high prefactors measured experimentally for diffusion of 

compact clusters. Prefactors for diffusion can be calculated from the harmonic approximation 
to transition state theory using the result derived by Vineyard,” 

n=l.m / n=l.m-l 

where vfcc are the phonon frequencies at the fee confi,~ation and v, are the phonon 

frequencies at the transition state. Unfortunately, calculation of the phonon frequencies is well 

beyond the capability of first principles calculations for systems of this size. Figure 3.3 shows 

the energy as a function of position during the cartwheel-shuffle diffusion process. In this plot 

the energy rises abruptly from the global minimum at the fee cluster configuration. However 

the energy varies very slowly in the vicinity of the maxima (the transition states) on this curve. 

This is consistent with the type of flat energy surface shown in figure 3. lb and suggests that 

some of the phonon modes (other than the reaction coordinate) at the transition state may have 

lower frequencies than the phonon modes at the fee state, thereby producing a high prefactor. 
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In order to estimate the prefactors for diffusion of Ir clusters on Ir( 111) we used two 

semiempirical potentials. The calculated prefactors for various mechanisms and two different 

potentials are given in table 3.3. We also compare these results to the experimental values for 

diffusion of single atoms, 7-atom and 19-atom clusters. One can only hope for a qualitative 

prediction here, both because of the inaccuracies involved in the semiempirical approach and 

possible errors associated with the harmonic approximation. Nonetheless, we find that the 

prefactors for cartwheel-shuffle and bridge-glide are much larger than for single atom 

diffusion. We also performed this prefactor calculation for Au, Ag, Cu, Ni, Pd, and Pt using 

18 different commonly used EAM and EMT potentials. For a 19-atom cluster, the prefactors 

for bridge glide ranged from 1 x 1012 to 2 x 1015 whereas the prefactors for cartwheel-shuffle 

ranged from 1 x 1014 to 1 x lo’*. This shows that the high theoretical prefactors for these 

cooperative mechanisms are not just an artifact of the particular iridium potentials used. 

To summarize, we find that a monolayer of Ir on Ir( 111) is me&stable in the on-top 

configuration. This low on-top energy suggests that some cluster atoms may pass close to on- 

top sites during diffusion by a glide mechanism. In particular, a cartwheel-shuffle mechanism 

is proposed which may be competitive with other diffusion mechanisms. This mechanism, 

probably in combination with bridge-glide, appears capable of explaining the long jumps and 

high prefactors observed in diffusion experiments. In view of the complexity of this problem, 

additional theoretical and experimental investigation (perhaps examining the intermediate-sized, 

compact 12 atom cluster and/or other FlM metals) will doubtless be required to determine a 

definitive diffusion mechanism. 

We gratefully acknowledge help plotting figure 3.1 by Vidvuds Ozolins. 
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TABLE 3.1 

Calculated relative energies (meV/atom) for a single adatom, for a pseudomorphic monolayer, 

and for four pseudomorphic layers in high symmetry sites. Experimental values (adatom from 

reference 12, bulk from reference 18) are given in parenthesis. All energies are referenced to 

the energy of the stable configuration. Note the remarkably low energy for the metastable on- 

top monolayer. 

FCC HcP Bridge On-Top 

Adatom 18 0 meV 251 1565 
meV (0) meV rl-leV 

(22) (269) 
Mono- 0 meV 81 meV 243 113 meV 

layer meV 
Bulk 0 meV 120 234 403 meV 

(0) mev mev 

(120) 
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s 
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TABLE 3.2: Calculated activation energies for glide by mechanisms shown in figure 3.2. For 
7-atom cluster calculations should be reasonably accurate. For IPatom cluster, computational 

requirements limited calculation to a 19-atom cluster on a 3 layer slab with 2 fixed layers, 

limited lateral dimensions for the periodic cell, and limited k-point sampling. Thus 19-atom 
cluster calculations are only approximations. 

Cluster Bridge Top- Cartwhe Cartwheel. 

Size - Glide el- Glide 
Glide Shuffle 

7-atoms 1.54 3.02 1.92 eV 1.92 eV 

eV eV 
19- 3.2 5.2 3.6 eV 5.1 eV 

atoms eV eV 



TABLE 3.3: Prefactors calculated using semiempirical potentials from references 13 and 14. 

All prefactors are in Hz. Values from experiments are also given. 

experiment’ 
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Chapter 5 

Single Particle Activated Transport in Amorphous Materials 

Transport of small molecules through amorphous materials such as non-crystalline 

polymers can often be characterized by a hopping process. The molecule will remain trapped 

within a single cavity for a substantial period of time, and then jump to an adjacent cavity. 

The overall rate of transport is controlled by the jump rate and the distance jumped. In the 

case of amorphous polymers, this picture has been confirmed by molecular dynamics 

simulation. However, the observed jump rates vary over many orders of magnitude from one 

cavity to the next. The jump distances show a moderate variation. Molecular dynamics 

simulations, while very useful for rapidly diffusing systems, become computationally 

expensive for diffusion coefficients slower than lo-” cm2/s, as the required length of the 

simulation is roughly inversely proportional to the diffusion coefficient. Transition state 

theory (TST) provides an alternative way of predicting diffusion rates. The jump rate from 

one cavity to the next can be expressed as the ratio of the partition function for the dividing 

surface (transition state) between the two cavities divided by the partition function for the 

initial cavity (reactant state). Both of these quantities can be evaluated efficiently using 

equilibrium simulation methods, and the computational effort is independent of the actual 

diffusion coefficient. The accuracy of the TST method is very dependent on how it is 

implemented. Most important of all is the choice of which degrees of freedom to include in 

the partition functions. This is particularly important in the case of diffusion in polymers, 

where neglect of polymer mobility effectively eliminates all solute transport. 

This chapter is divided into two sections. In the first, a method for exhaustively 

finding all the cavities and dividing surfaces in a polymer sample is described. Only the 

solute coordinates are treated explicitly. The polymer motion is either ignored or treated in a 

mean-field manner (isotropic harmonic approximation). The computationally efficient 

kinetic Monte Carlo method is then used to simulate diffusion on the resultant network of 

cavities. Results from the isotropic harmonic approximation for oxygen in EPDM are 

comparable to the results from a direct molecular dynamics simulation. In the second 

section, a method is described for finding transition states in which the polymer coordinates 
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are treated explicitly. This provides a very accurate description of particular cavity-cavity 

transitions, and is used to examine the competing roles of entropic and energetic selectivity 

for nitrogen and oxygen diffusing in polypropylene. 

5.1 Determination of Cavities and Transition States in 3-D Space 

5.1.1 Cavity Analysis Code 

The basic problem is to divide up the 3-D configurational space into a set of cavities, 

and then to evaluate the volume configurational integral for each cavity, and the surface 

configurational integral for each pair of adjacent cavities. Our approach to this problem is 

the same as that used by Gusev and Suter 30, and by June, Bell and Theodorou 31, which rests 

on sampling the energy on a 3-D grid of points with a sufficiently fine spacing to converge to 

the result that would be obtained in the limit of infinite resolution. There are three novel 

features of the current implementation. Firstly, assignment of grid-points to cavities was done 

using just two sweeps across the entire grid, with no additional energy evaluations required. 

This method works because the set of grid-points belonging to a cavity is mathematically 

equivalent to a directed tree graph, a fact which was came out of discussions with Steve 

Plimpton and David Greenberg. Previous implementations assigned grid-points to cavities 

using an off-grid steepest-descent search from each grid-point to the nearest minimum, 

requiring many additional energy-evaluations per grid-point. Secondly, the calculation is 

implemented in a parallel scheme which is embedded within the LAMMPS MD code. This 

streamlines the preparation of the polymer samples, and also enables the treatment of very 

large samples, which would easily exceed the memory available on a single workstation. 

Thirdly, we have used sub-grid sampling to obtain a higher accuracy for the configurational 

integrals without using more grid-points. 

The 3D configurational space was discretized as a cubic grid of volume elements or 

voxels, with a grid spacing a. The energy of interaction Upolyepen between the polymer and a 

penetrant particle located at the center of each voxel was calculated. Voxels with energies 

beyond a cut-off value of 75kT were dropped from the subsequent analysis. For each voxel, 

the lowest energy was determined from the 27 values occurring in the 3x3x3 cube centered 

on the current voxel. If the central voxel has the lowest energy, then this point is a local 
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Once this has been done, it is computationally inexpensive to partition the voxels into 

a set of cavities, which cover the entire three-dimensional volume of the polymer. To 

understand this, it is helpful to imagine an arrow drawn from each voxel to its minimum 

energy neighbor. According to the procedure described above, a voxel can have zero, one, 

two or more arrows entering it, but only arrow leaving, or zero if it is a minimum. These 

properties result in the arrows forming a set of arborescences, which are directed graphs with 

no loops and only one root. Hence there is a one-to-one correspondence between cavities 

and root voxels. In addition, all points belonging to a given cavity can be found by starting at 

the root voxel, and finding all the voxels, which are connected to it. Computationally, this 

was done by identifying which of the twenty-six neighbors of the root voxel had it as their 

minimum energy neighbor. These voxels belong to the same cavity as the root voxel. Their 

neighbors were checked in turn, and the process was repeated in an iterative fashion until no 

more members of the current cavity are found. By repeating this for all the root voxels, 

every voxel is attributed to one and only one cavity. 

Once the voxels have been partitioned into cavities, we can proceed to evaluate 

properties of the cavities, and the dividing surfaces between cavities. The physical volume V, 

of cavity i is simply the number of voxels in the cavity, multiplied by a3. The partition 

function Q, of cavity i is the integral of the Boltzmann factor exp(-U,,,,,/k7’) over the cavity 

volume. We computed this by summing the Boltzmann factors calculated for each voxel: 

Q, = I. exp (- Upo,r--pen /kT br = a3 x ek (5.1) 
-I, 

where ek is the Boltzmann factor for voxel k located in cavity i. In our implementation, we 

obtained improved accuracy for a given grid spacing by using subgrid Monte Carlo sampling. 

Instead of just using the value of the energy at the midpoint of each voxel to estimate ek, we 

sampled the Boltzmann factor at N, randomly selected points within each voxel volume, and 

then stored the average value. 

* 

Il 

ek = +&xP(- Upojj-pen (rn)/kT) (5.2) 
1v s /=I 

147 

minimum. Ties were resolved by always choosing the voxel, which occurs later in the 

arbitrary ordering of the voxels by position. 



The reason for doing the integrals in this way is that the resolution required to 

identify cavity boundaries is significantly less than that required to accurately evaluate the 

important parts of the Boltzmann integral. Since the memory-intensive grid structure is 

required only for the first task, it makes sense to use subgrid sampling for the second task. 

Typically, the value used for N, was 100. 

In order to find transition states, it is first necessary to locate the boundaries or 

dividing surfaces between cavities. We define cavity boundaries by boundary voxels, for 

which one or more of the six nearest neighbors belongs to a different cavity. The physical 

area of a dividing surface between two cavities i andj was calculated as the sum of the areas 

of all the voxels belonging to the set S,, which have nearest-neighbors inj. 

(5.3) 

where fin) is a factor which accounts for the increased surface area which exists when a 

voxel has IZ neighbors on the other cavity. Values of 1, 42, and 43 for one, two and three 

neighbors respectively ensure that the areas of the 100, 110 and 111 cutting planes are 

exactly reproduced. Once the grid spacin, 0 is smaller than the curvature of the boundary, 

larger values of y1 occur rarely, and so in these cases we used the same value as was used for 

three neighbors. The partition function for the dividing surfaces was evaluated in the same 

manner as the cavity partition functions. 

Qq = Js 
v 
exp(- UPoIy-pe,, /kT)‘r 5 a2 x f bk >k 

kG, 
(5.4) 

According to transition state theory k, the first-order rate constant for hopping from 

cavity i to cavityj is 

-- (5.5) 

Finally, the transition state between two cavities is approximated by the boundary 

voxel with the lowest energy. 

E,; = 
min min 

u 
k5-,, /=l,izrs .&y-pen 6-lk > (5.6) 
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The location of the transition state is taken to be the center of the minimum energy 

voxel. 

The finite grid spacing inevitably results in small differences between the calculated values 

of Q, and Q,,, @$ and E7i, as well the location of the transition states. 

The above cavity analysis is implemented as a module with the LAMMPS MD code. 

It is run using the command “t s t” in the LAMMPS input script. The arguments are as 

follows: 

tst q type grid e-cut r-min temp ns iseed 

delrms delr 

where 

cl = the charge on the penetrant species (e) 

Wee = the atom type of the penetrant species 

grid = the spacing for the energy grid (A) 

e-cut = the maximum grid energy (k7’) 

r-min = the hard-core separation (A) 

temp 

ns 

iseed 

= the temperature (K) 

= the number of subgrid points sampled 

= the seed used for the subgrid random number generator 

The calculation assumes that periodic boundaries are in effect in all three directions. 

Before issuing the tst command, LAMMPS must load a configuration of “matrix” atoms, 

either from a LAMMPS data file or a restart file, and the appropriate pair interaction 

potentials must have been specified. The primary output of the cavity analysis is the file 

cavity-tst . dat. This contains a list of all the cavities, including position, physical 

volume, configurational integral and minimum energy, followed by a list of all the dividing 

surfaces, including the physical area, the configurational integral, the location of the 

transition state and the transition state energy. 
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5.1.2 Clustering and Percolation Analysis 

Once the set of all cavities and surfaces has been generated, the problem is much 

more manageable, and all further analysis is done on a single workstation. The many 

millions of energy grid-points have been reduced to a few hundred cavities. To further refine 

the data, we perform to three additional operations: clustering, separation and percolation 

analysis. Clustering is used to filter out very high transition rates between cavities that are 

separated by very small energy barriers. Such cavities are referred to as microcavities, and 

can be grouped together to form a macrocavities without changing the overall diffusion rate. 

A variety of different criteria can be used to determine when two cavities should be clustered. 

We have used the size of the dividing surface configurational integral, as it is symmetric 

w.r.t. i and j. For typical polymer-penetrant systems, a value of 10 A” gives good results. 

When two cavities are combined, their configurational integrals are summed, and the new 

position for the macrocavity is calculated as the weighted average of the microcavity 

positions, with the configurational integrals used as weighting factors. Three or more 

cavities can be combined by using these pair-wise rules. Separation is used to filter out very 

low transition rates, by removing these transition states from the network. Once again, we 

use the dividing surface configurational integral as the threshold criterion. For polymer- 

solute systems, lo-” A2 gives good results. Hence only surfaces lying on the range 10-i’ 

A’=&?,,<10 A” remain after clustering and separation has been completed. At this point, the 

system can be viewed as a graph consisting of vertices (macrocavities, from now on referred 

to as cavities) and edges (dividing surfaces). The graph may not be fully connected, and 

typically contains many disconnected components. In order for diffusion to occur, at least 

one of the components must span the system volume, so that penetrant particles hopping on 

the network can move indefinitely in the x, y, and z directions. To determine if this is so, we 

perform a percolation analysis. Two different measures of percolation are considered, SPAN 

and WRAP, which differ in how the periodic boundaries are treated. The first step is to map 

all the connected clusters, without regard to whether they cross periodic boundaries. We call 

these the PERIODIC clusters. 

To check SPAN, we then map APERIODIC clusters, with connectivity across 

periodic boundaries turned off. The number of edges crossing each of the six boundaries are 

counted for that cluster, and stored in nspan-tmp(idir). If nspan-tmp(idir) > 0 for idir=l and 
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2, the cluster SPANS in the x-direction, likewise for y, z. If spanning occurs, then these 

boundary connections are added to the total sum nspan(idir) for the periodic cluster to which 

the aperiodic cluster belongs. The final count nspan(idir) for a given periodic cluster reflects 

the number of edges at each boundary from which a path leads to the other side of the box. 

So a periodic cluster SPAN percolates in the x-direction when nspan(idir) > 0 for i = 1 AND 

2. NOTE: In general, nspan(1) will not equal nspan(2), but if one of them is zero, then they 

both are. However, they will tend to come out roughly equal for a homogeneous network. 

‘ 

. 

. 

z 

5.1.3 Kinetic Monte Carlo Simulation of Diffusion 

A 

-’ 
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To check WRAP, we also use the aperiodic clusters. In this case we count edges 

crossing each boundary which connect to the same aperiodic cluster. Each bond where this 

occurs will actually be encountered twice, at the upper and lower boundaries, but will only be 

recognized the second time. Hence the assignment to the upper or lower boundary is entirely 

arbitrary, and there is no real need to differentiate them but we do. Once again, the counts 

for the aperiodic clusters are summed to the underlying periodic cluster. A periodic cluster 

WRAP percolates in the x-direction when nwrap(idir) > 0 for i = 1 OR 2. NOTE: nwrap(1) 

and nwrap(2) depend on the order of the search, but their sum is a fixed property of the 

network. There is a tendency for one to be much larger than the other, because the search 

order spatially correlated. Given the above discussion, I have decided that it makes sense to 

report only the pair sums for both SPAN and WRAP. The following inequality holds: 

nspan( l)+nspan(2) 2 2 (nwrap( l)+nwrap(2)). 

Note: WRAP is a sufficient condition for an infinite random walk on the periodic network. 

SPAN is neither sufficient not necessary, but is still a pretty useful indicator. For physically 

reasonable systems, most of the sites belong to a single large cluster which satisfies both 

SPAN and WRAP in all three directions. For the purposes of kinetic Monte Carlo 

simulation, sites in the remaining non-percolating clusters are ignored. 

For systems with a well-defined structure, such as zeolites, the macroscopic transport 

properties can be deduced directly from the local hopping rates, assuming that successive 

hops are uncorrelated. For amorphous materials, similar arguments can be made, provided 

that good estimates for the average hopping rate and hopping distance can be made. 



However, in the case of light gases diffusing in polymers, we see hopping rates distributed 

over many orders of magnitude, and so the definition of an average rate becomes 

problematic. To avoid this problem, we can directly simulate diffusion on the network using 

the kinetic Monte Carlo method. In this method, a set of penetrant particles are placed on 

different cavities of the network, according to the equilibrium distribution. The particles do 

not interact with each other, and are assumed to hop from one cavity to each of the 

neighboring cavityies with rates given by Eq. (5.5). For a sufficiently large number of 

particle hops on a percolated network, the average mean-square displacement of the particles 

from there starting points should increase linearly with time. The basic scheme that we have 

used to simulate this model is as follows. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Set the time t = 0. For each of N particles, randomly assign it to one of the cavities of the 

percolating cluster, chosen with probability proportional to Qi. The number particles is 

arbitrary, but it makes sense to choose N roughly equal to the number of cavities. 

For each cavity i, record the number of particles Ni, the hopping rate to each of its 

neighbors R, = N,k,, the total hopping rate for the cavity R, = CR,,, and the total hopping 

rate for the system R,,, = CR, . 

Increment the time by a waiting time At chosen with probability density R,,, exp(-At R,,,). 

This is done by choosin, 0 a uniform random number 5 E (O,l), and then calculating 

-ln(kYR,,,. 

Select a move with the correct probability. The simplest way to do this is to select a 

cavity with probability R,IR,,,, a transition state with probability RJR,, and then select one 

of the N, particles with equal probability. 

Perform the move, update R,, N, for the old and new cavities, as well as R,,,. Record the 

new cavity of the particle, and increment the periodic image counter for the particle if a 

boundary has been crossed. 

Repeat Steps 2,3, and 4 Nblock times, then output t and the particle positions using the 

current cavity and image counter. 

Repeat Step 6 NblocLjNsrep times. 
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This scheme enables a very large number of moves to be performed on a workstation, e.g. 

5x10’ moves with 1000 particles on a network of 1000 cavities takes about 10 hours on an 

SGI RlOOOO workstation. For systems of this size, most of the time is spent selecting a 

cavity, as this requires a loop over a11 cavities, and so scales with the volume of the system. 

This could be improved upon by using a binary search tree to select a particle instead of a 

cavity, which would then scale logarithmically with system volume. 

51.4 Results 

The first problem that the code was applied to was very simple: a single Lennard- 

Jones atom moving in a fixed cubic array of identical atoms, with the potential energy cut 

and shifted at r,: 

We chose the lattice spacin, 0 to be 2a, o=1.4a, and r,=2a, where a is an arbitrary unit of 

length. This resulted in a simple potential energy surface with a minimum at the center of 

each cubic cell, and a saddle point on each face. Figure 5.1 shows a comparison of the 

residence time within one of the cubic cells versus reduced inverse temperature. The TST 

result from the cavity analysis is compared with the analytic results of harmonic TST, which 

assumes a quadratic energy surface at the minimum and saddle points. The two calculations 

agree well at low temperatures, where the harmonic approximation is very accurate. At 

higher temperatures, the full TST result gives lower residence times, due to the non-quadratic 

shape of the Lennard-Jones potentia1. 

As a second test, we used the cavity analysis code to map out the cavities and 

dividing surfaces for a nitrogen molecule in the zeolite 3A. The zeolite forms a cubic array 

of a-cages, each connected to six neighboring cages by an eight-member ring of oxygen 

atoms. We used an eight unit cell sample, approximately 24.6A on each side. Figure 5.2 

shows how the estimated diffusion coefficient for nitrogen decreases with 

increasing level of resolution, until a converged value is reach at a grid-spacing 

of 0.125-k. 
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We then applied the code to the calculation of oxygen diffusion in EPDM, which is a 

polymer widely used in the nuclear stockpile for rubber o-ring seals. EPDM is a random 

copolymer of ethylene and propylene monomers. United-atom sites were used to 

represent each methyl and methylene group, and the TraPPE forcefield was 

used for all the non-bond and bonded interactions. The oxygen molecule was 

represented by a pair of Lennard-Jones atoms, with a fixed bond length. We used 

the SIGNATURE builder to construct a large cubic sample of EPDM, approximately 60 A 

on a side. The sample consisted of 65 linear polymer chains, containing on 

average 25 ethylene and 25 propylene monomers, to give a total of 8026 united- 

atom sites, and a density of 0.86 g/cc. We used a 0.5 A grid-spacing and 10 sub- 

grid samples, requiring a total of about 20 million energy calculations. This 

calculation required about 10 minutes on 64 nodes of ASCI Red. 

Figure 5.3 shows the network which is obtained from the cavity analysis. 

Dividing surfaces are drawn as cylinders joining the centers of adjacent cavities. 

The radius of each cylinder is scaled proportionally with the logarithm of the 

configurational integral for the dividing surface, and so gives a measure of the 

jump rate for that dividing surface. The cavities themselves are not drawn 

explicitly. The key observation from this of this image is that there is no 

percolation cluster, which was confirmed using percolation analysis. This 

demonstrates that if the mobility of the polymer is not accounted for, the 

diffusion coefficient of oxygen in EPDM is essentially zero. 

Figure 5.4 shows a plot, of mean square displacement versus time for 

-CH2- groups in EPDM, obtained from a molecular dynamics simulation using 

the same model as described above. The plot shows a distinctive plateau in the 

range l-10 picoseconds, where the mean square displacement is constant at 

about 1 AZ. This is indicative of a vibrational mode which is probably due to 

oscillation of the backbone dihedral angles back and forth with a particle tram 

or gauche conformation. Rega-rdless of the cause, Figure 5.4 suggests that the 

motion of the polymer over a significant time range can be well represented by 

the motion of a particle trapped in a quadratic energy well. This is exactly what _ 
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was done by Gusev and Suterg. They further assumed that the trapping 

potential was spherically symmetric, and referred to this assumption as the 

isotropic elastic approximation, which highlights the connection with the 

thermal motion of solids. The effective interaction u,“f/ between a penetrant 

atom and an isotropic elastic polymer atom a can then be formally written as: 

u$- (s)= -kT log (5.8) 

where s is the vector distance from the penetrant site to the average position of 

the polymer atom, and A, is the displacement of the polymer atom from its 

equilibrium position. (Aa2) is an adjustable parameter describing the mean square 

displacement of the polymer atom. U,(T) is the bare interaction potential between the 

penetrant atom and the polymer site a. The integral is over the entire three- 

dimensional volume. For very small values of (A?), this potential is identical to the bare 

potential. As (A,?) is increased, the effective potential becomes more smeared; the attractive 

well becomes shallower, and the repulsive interaction increases less steeply at short 

separations. By switchin, 0 to bipolar coordinates, we can reduce this down to a one- 

dimensional integral: 

(5.8) 

where y = s/(A,‘). For a particular interaction potential U,(T) and mean square displacement 

(AO’), the effective potential function is evaluated numerically at the start of the cavity 

analysis and stored in a look-up table. (Aa2) is assumed to be the same for all the polymer 

sites. To implement this with the LAMME code, two additional arguments were added to 

the t s t command: 

delrms = the root mean square displacement of the polymer atoms (A) 

delr = (A:)‘R, the grid spacing for the tabulation of uaeff (A) 

If delrms is set to zero, then the bare potential is used as before. 
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We applied the isotropic elastic approximation to the 60 A EPDM sample with three 

different choices for (A?)“‘: 0.6 A, 0.9 A and 1.2 A. Note that the plateau in Figure 5.4 

occurs at about 1.4 A2, which corresponds to (Aa2)1’2 = 1.2 A. As before, we used a 0.5 A 

grid-spacing and 10 sub-grid samples. The calculations took a little longer, 

about 40 minutes on 64 nodes of ASCI Red. The longer run-time was due to the 

significantly larger number of points with energies less than 75kT, which 

account for most of the computational effort. Figure 5.6 shows a visualization of 

the cavity network obtained for (A,“)‘” = 1.2 A. Most of the cavities belong to a single 

highly-percolated network. The same was found for (Az)“2 = 0.9 A and 0.6 A. So clearly 

adding in even a small amount of polymer mobility has a large impact on the transport 

properties. For each of the three cases, we performed a kinetic Monte Carlo simulation 

consisting of 5~10~ moves with 1000 particles. The mean square displacement of the 

particles from their starting positions are shown in Figure 5.6. The very large number of 

timesteps simulated ensures that the asymptotic regime is reached in all cases, so that we can 

calculate the diffusion coefficient for oxygen using II,,- -(hr’)/6t. The resultant diffusion 

coefficients are plotted versus (Aa2)1’2 in Figure 5.7. The dependence on (Ae2)“2 is very 

strong. II,, increases roughly as the fourth power of (Aa’). This is to be expected, The figure 

also shows a diffusion coefficient obtained by molecular dynamics simulation, and using 

(Aa2)1’2 = 1.2 A, taken from Figure 5.4. This point lies close to the TST “master curve”, 

suggesting that the TST calculation is fairly accurate. However, the extreme sensitivity of 

the diffusivity to the input parameter (Aa2)“’ makes it difficult to use the theory as a 

predictive tool, although it ‘computationally a lot more efficient than molecular dynamics. 

5.2 Determination of Multidimensional Transition States in Flexible Polymers 

52.1 Introduction 

Permeation of small molecules in polymers occurs via the “solution-diffusion” 

mechanism. 1 As the name suggests, in this mode, permeation occurs in two distinct steps: 

solvation of the penetrant in the polymer matrix and subsequent diffusion of the same 

through the polymer. Hence the permeability P can be written concisely as P = D S, where D 
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(5.9) 

Both permeability and selectivity are important in evaluating the performance of a material. 

Whereas the former is equivalent to the throughput of a separation process, the latter 

measures the effectiveness of separation. Equation (5.9) clearly shows that selectivity is 

affected by two separate quantities: diffusivity and solubility. Although these quantities in 

general are functions of gas composition across the membrane, at low gas loadings such 

dependencies may be neglected, and aA,B is referred to as the ideal selectivity. 

When dealing with mixtures of non-polar gases of similar sizes, separation based on 

solubility is not very attractive. In such cases, one instead exploits differences in the 

diffusivities of the components. To understand the process of penetrant diffusion through 

glassy polymers, the microstructure in these materials can be pictured as a network of free 

volume packets. These packets, where the penetrant molecules spend most of their time, are 

connected by narrow constrictions or “necks. ” Diffusion occurs as thermal motion of the 

polymer and/or thermal activation of the penetrant allows crossings through these necks. 

Hence, the diffusivity of a penetrant depends on the physico-chemical properties of the 

polymer matrix, such as the fractional free volume (determined by the interchain packing) 

and the stiffness of the polymer backbone (related to the glass transition temperature, r,). An 

ideal membrane material would be composed of high free volume that facilitates diffusion 

and tight constrictions that provide effective sieving. Glassy polymers, which possess these 

favorable characteristics, have been successfully used as membranes in effecting several 

industrially important separations. Rubbery polymers, on the other hand, give high 

permeation rates but are poor sieves due to the absence of rigid necks.273 

Much success has been gained by chemically modifying polymers to create better 

materials for gas separation. 2y3 However, the performance of diffusion-selective polymers 

has been observed to be limited by an inverse relationship between permeability and 

selectivity. Conceptually, this occurs because the magnitudes of the diffusion barriers are 

generally increased when enhancing the selectivity. Robeson carried out an extensive 

is the diffusivity and S is the solubility of the penetrant. In a binary mixture of gases A and B, 

the selectivity of A with respect to B is given by 



survey of the performance of polymeric membranes in separating several pairs of gases, 

clearly demonstratin, u this permeability-selectivity tradeoff. Singh and Koros5 further 

analyzed Robeson’s data to point out that the performance of the available polymeric 

membranes falls short of the economically attractive region currently occupied by zeolites 

and molecular sieves. 

Singh and Koros5 reasoned that this difference in performance between polymers and 

inorganic molecular sieves is caused by the superior entropic selectivity offered by the latter 

materials. Using transition-state theory (TST), the ratio of diffusivities of species A and B in 

a gas mixture can be written as 

$$ = exp[F] exp[-$1 (5.10) 

where kB is the Boltzmann constant, T is the temperature, and ASA B and AU,,, are, 

respectively, the differences in entropy and energy barriers encountered by species A and B 

AS,,, = AS/, - AS, (5.1 la) 

AU/,* = AU, -AU, (5.1 lb) 

Loosely speakin,, 0 the activation entropy for a jump event is a measure of the difference in 

confinement of the molecule between the transition state and the minimum. The first 

exponential term on the right-hand side of Eq. (5.10) is the entropic selectivity, while the 

second exponential term is the energetic selectivity. By correlating experimentally measured 

02/N2 separation data using Eq. (5.10), Singh and Koros concluded that whereas 4A zeolite 

and carbon molecular sieves offer significant entropic as well as energetic selectivities, even 

the best current polymers (e.g. polypyrrolone) offer entropic selectivities close to unity. 

Singh and Koros5 hypothesized that this loss in entropic selectivity is consistent with the 

picture of a penetrant being relatively “unconfined” by a sieving neck in a polymer, due to 

the relatively large thermal motion of the polymer chains. That is, the local structure of the 

polymer will relax during a penetrant hoppin g event, allowing the penetrant significant 

rotational freedom in the transition state. Zimmerman and Korose subsequently presented 

several other possible molecular-level scenarios, based on free volume arguments, that would 

lead to a lack of entropic selectivity. They pointed out that situations where the penetrants 
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are tightly confined in the miniwla might be expected in polymers, and that this would tend to 

decrease the entropic barriers for the individual penetrants as well as the entropic selectivity. 

The reason for the relatively small entropic selectivities of polymers is still a matter 

of speculation, especially with regard to the relative contributions of free volume and 

inherent molecular-level flexibility. The main aim of this paper is to begin using molecular- 

level modeling to address these issues, by studying the effects of matrix flexibility on the 

entropic and energetic selectivities in model glassy polymers. Such analysis will yield 

valuable information regarding the significant factors that contribute to the performance of 

polymer membranes. This in turn could provide new directions in research aimed at design of 

better polymers with superior separation capabilities. 

Molecular modeling, and molecular dynamics simulation .in particular, have developed into 

useful tools for probing penetrant diffusion in polymers.7 Because of the time-scale 

limitations of molecular dynamics, several groups have recently developed alternative 

theoretical approaches based on combinations of TST and molecular models;*-12 these 

approaches have allowed time scales on the order of mircoseconds, and even milliseconds, to 

be accessed. Gusev and coworkers used TST to study gas diffusion in polymer models 

which were perfectly rigid* and which included mean-field thermal motiomg inclusion of the 

thermal motion of the polymer atoms was seen to have a significant impact on the calculated 

diffusion coefficients. Greenfield and Theodorou I1912 devised a novel way to directly 

include the polymer degrees of freedom (d.o.f.‘s) that contribute to the diffusive jump of a 

penetrant in the TST formalism. Using this methodology, a number of hopping events of a 

spherical methane molecule in glassy atactic polypropylene (aPP) were studied, and rates of 

hopping were calculated by making a harmonic approximation in all relevant degrees of 

freedom. In this work, we used their method to study the entropic selectivity offered by aPP 

in the sieving of 0, and N,, but our penetrants are modeled as rigid dumbbells with their 

rotational degrees of freedom explicitly included, as opposed to idealized spheres. 

A brief discussion of the transition-state theory formulation of Greenfield and 

Theodorou l2 . IS presented in the next section. Details of the model systems are given in 

Section 5.2.3. The calculation details are described in Section 5.2.4. Section 5.2.5 discusses 

the results of the present study, and conclusions are given in Section 5.2.6. 
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Transition-state theory addresses the rate of occurrence of rare events, such as 

penetrant diffusion in glassy polymers, where adjacent sorption sites are separated by energy 

t 

barriers much greater than the thermal energy. 13-15 These events happen on time scales that 

are beyond the range amenable to study by conventional molecular dynamics simulations. 

i 

For an activated process, the rate of occurrence can be written as1617 

kTsT _ bT Q’ --- 
h Q” 

= yexp(--paA) (5.12) 

where kTsT . IS the rate constant (with units of inverse time), Q is the partition function, AA is 

the free energy barrier, p = llk,T, and h is the Planck constant. The superscripts $ and 0 

indicate the transition state and the minimum respectively. Using the definition of Helmholtz 

free energy, this equation can be used to derive the selectivity equation, Eq. (5.10). 

Previous molecular dynamics studies have revealed the involvement of the torsional 

motion of chains in the hopping motion of the penetrant during diffusion in polymers.l* 

Hence it is important to incorporate the polymer d.o.f.‘s in the search for transition states and 

the subsequent evaluation of the partition functions and the rate constants. As mentioned 

above, Greenfield and Theodorou 1 1 7 l2 studied a number of hopping events of a (spherical) 

methane molecule in atomic-level models of glassy polymer structures. The authors 

developed an efficient technique to incorporate polymer degrees of freedom, such as 

torsional motions and bond angle vibrations, in a self-consistent manner when describing the 

motion of the penetrant during diffusion. The authors also derived an expression for the rate 

of hopping within the harmonic approximation: the potential energy of the system was 

treated as a simple harmonic function in all d.o.f.‘s, including those of the participating 

polymer segments, in the transition state and the minimum.19 Due care was taken to ensure 

that the end result was independent of the coordinate system used. Using the quantum 

mechanical vibrational partition function, the resulting rate expression for a hop involving a 

total of n d.o.f.‘s was given by . 

k “* = k, exp(-/3AU) (5.13a) 
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where 

kBT =- 
h 

and 

AU=(U’-U”) 

(5.13b) 

(5.13c) 

with vs the vibration frequency of mode i in the minimum and v’ the vibration frequency of 

mode i in the transition state. Note that in the denominator of Eq. (5.13b), i = 1 corresponds 

to the diffusion direction (along which the vibration frequency is imaginary), so this term is 

not included in the product. The entropy barrier AS can be calculated using the relation12 

(5.14) 

Given a jump event of a penetrant from one minimum energy position to another through a 

transition state, the energy and entropy barriers can be determined from Eq. (5.13c), (5.13b), 

and (5.14), and the total rate for that jump event can be obtained from Eq. (5.13a). 

The approach taken in this paper will be to consider individual jump events, calculate 

the energetic and entropic barriers for each penetrant (02 and N,) separately, and then use 

Eq. (5.11) to estimate an entropic and an energetic selectivity for each jump. Since the 

macroscopic selectivity is ultimately determined by the selectivities of individual hopping 

events, our results will provide insight on macroscopic behavior. However, note that we do 

not actually predict a ratio of macroscopic diffusion coefficients. Such macroscopic 

properties could be estimated, but significantly more effort and statistical analysis is 

necessary; this will be the subject of future work. 

In order to proceed with our analysis of transport in a polymer, we must first prescribe an 

atomic-level model of a polymer/penetrant system, including interaction potentials. Then we 

must locate transition states and associated minima to define hopping events, and evaluate 

rate constants based on the information at the transition states and minima. 
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5.2.3. Model and potential details 

The atactic polypropylene (aPP) models used in this study were very similar to those 

used by Greenfield and Theodorou. lIy12 These structures were parameterized in terms of the 

various bond lengths, Eulerian, bond, and torsional angles, and chain-start positions 

following Theodorou and Suter. 20 We review only the most important features here; the 

interested reader is referred to their publications for details. We employed polymer structures 

with three polymer chains of 50 monomers each at a density of 0.892 g/cm3; this is equal to 

the experimental density at 233 K, which is ca. 20 K below the Tg of aPP.20 The polymer 

model, which was cubic and periodic in all three dimensions, had a side length of 22.79A. 

The repeat unit of the polymer is depicted in Figure .5.8; we followed the previous 

authorslIT12y20 in using the “united atom” model for the methyl units, and explicit atom 

models for the rest of the species. The C-C and C-H bond lengths are constrained at their 

mean values. Whereas Greenfield and Theodoroul 1 312 considered the bond-angles to be 

flexible, we considered them also to be constrained at their mean values to reduce the 

computational requirement. A molecular dynamics study by van Gunsteren and Karplus2l 

demonstrated that the assumption of rigid bond-angles can affect the dynamics of complex 

model molecules, damping positional fluctuations and dihedral angle transition rates relative 

to those in unconstrained models. Our flexible polymer model will therefore be somewhat 

less flexible than that of Greenfield and Theodorou, I l~I2 but we expect that our comparative 

study of flexible and perfectly rigid polymers will not be qualitatively affected by this 

assumption. 

The initial polymer structures were generated at the given density and temperature 

using the Polymer Builder module of the CERIUS~ software from Molecular Simulations 

Inc.22 This module samples the torsional angles using the RIS method23 while avoiding 

significant overlaps between polymer atoms. 2O After the polymer structure was built, the 

Energy Minimizer module of the software was used to obtain a preliminary glassy matrix. 

The AMBER force-field was employed during this step, with the bond-length and angle- 

bending spring constants modified to very high values; this led to a minimized structure with 
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bond lengths and angles essentially fixed at the desired values. The final glassy polymer 

structure was created by further minimizin, 0 the potential energy in terms of only the 

torsional angles, chain start positions, and Eulerian angles.24 The BFGS algorithm, as 

implemented in FORTRAN by Byrd et IzZ.,~~ was used for this purpose; no penetrants were 

present in the polymer matrix during energy minimization. The penetrant jump results 

presented here were obtained from studies carried out in three independently-built glassy 

polymer structures. 

The diatomic penetrant molecules, 0, and N2, were modeled as rigid dumbbells with 

the two force centers separated by a distance equal to the equilibrium bond-length (1.0166 A 

and 1.0897A respectively). Unlike spherical molecules, these penetrants have five degrees of 

freedom: the three Cartesian coordinates of its center of mass and two Eulerian angles.24 

The total energy of the penetrant-polymer system is given by 

u = u,*r + qdy-poly + Upolppen (5.15) 

where Uroris the torsional energy associated with the rotation of the skeletal bonds, Upoly-poly 

is a pair-wise sum of the non-bonded interactions between the polymer segments, and 

Upo&-pen is the corresponding quantity evaluated between polymer segments and the two 

force-centers on the penetrant. The potential energy expressions and most of the parameters 

employed therein were taken from Theodorou and Suter, -20 these are briefly described below. 

The torsional energy is given by 

u,,&N = :(I - cos34 (5.16) 

where $J is the torsional angle. A value of 2.8 kcaVmo1 was used for ko. 

The polymer-polymer and polymer-penetrant non-bonded interactions were modeled 

with the site-site 12-6 Lennard-Jones (LJ) potential. To ensure that the energy function and 

its first and second derivatives were continuous in the entire range of the center-to-center 

distance Y between two species, the attractive tail of the potential was approximated by a 

quintic spline. 2o Periodic boundary conditions with the usual minimum image convention26 

were employed to eliminate surface effects. 
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5.2.4. Details of Calculation 

5.2.4.1 Geometric analysis of polymer structures 

The first step in studying the hopping motion of a penetrant is the location of the 

transition state, i.e. the lowest-energy point on the (hyper) surface that separates the 

“reactant” and the “product” states. In general, the transition state is physically located in the 

vicinity of the neck that separates two adjacent packets of free volume present in a 

microporous material, such as a polymer. In a material made of atoms arranged in a relatively 

simple geometrical pattern, e.g. in a zeolite with well-defined cages and sieving windows 

arranged on a regular lattice, the transition states can be located in a straightforward way. In a 

polymer model, on the other hand, the energy landscape is very complex and hence the 

location of the transition states is not trivial. This task becomes even more difficult when the 

polymer d.o.f.‘s are considered as flexible, i.e. when the polymer structure is allowed to 

rearrange in response to the presence of the penetrant. Hence the location of transition states 

in a flexible polymer model requires the use of sophisticated search techniques. The success 

of these algorithms in yielding a viable transition state depends on the proximity of the initial 

guess configuration to that in the transition state. 

Since the physical “terrain” in a polymer matrix does correspond to the energy 

landscape (e.g. constrictions roughly correspond to the energy maxima), geometric analysis 

of the polymer structures is useful. Several researcers have employed Delaunay 

tessellation27~28 or fine grid maps 29 to visualize the free volume clusters accessible to hard- 

sphere probes of different diameters, and to locate possible constrictions bridging two 

adjacent cavities. 

In our work, we used the three-dimensional cavity analysis for a single site penetrant 

in a rigid polymer sample, which is described in section 5.1.1 above. 

5.2.4.2 Methods for location of transition states and minima 

In the transition state (TS), which is a first order saddle point, all but one of the 

normal modes (which corresponds to the diffusion direction) have real frequencies. Hence 

the Hessian (the matrix of second derivatives of total potential energy) evaluated at the TS 

has a single negative eigenvalue. The work of Cerjan and Miller32 provides the basis for 

164 



most techniques employed in the literature for saddle point searches. Baker33 summarized 

the original work along with the later developments and made an algorithmic presentation of 

the technique, which is popular among researchers. Greenfield and Theodorou11T12 also 

employed Baker’s algorithm33 in their work. Wales34y35 followed a slightly different 

approach in formulating the optimization problem. Whereas two different shift parameters, 

referred to asd, and dn, are used for the maximizing and minimizing modes in Baker’s 

algorithm,33 Wales introduced separate shift factors along all normal modes; a larger variety 

of high-dimensional problems could be solved more effectively using Wales’ algorithm. In 

the present work, which involves systems with anywhere from 100 to 200 total d.o.f.‘s, 

Wales’ algorithm was also generally found to be more efficient. We caution the readers here 

that this statement is not intended to be a general prescription since no systematic and 

thorough comparison of the performance of the two methods was carried out. 

Once a TS is located, the corresponding minima were located by following Fukui’s 

intrinsic reaction coordinate (IRC) methodology.36 Banerjee and AdamsS7 appropriately 

modified the original prescription to make it consistent with the use of generalized 

coordinates (q), as opposed to mass weighted Cartesian coordinates. As mentioned earlier, 

the generalized coordinates include the five penetrant d.o.f.‘s, the polymer torsional and 

Eulerian angles, and chain start positions. The reaction path involving generalized 

coordinates is described by the following prescription l2 for a step dq 

a0 dq = V,Udr (5.17) 

where a0 is the covariant metric tensor calculated based on the flexible d.o.f.‘s and dr is a 

scaling factor used to adjust the step size. The size of the multidimensional step, ds, was 

calculated by the equation 12 

ds2 = (dq)Tao(dq) (5.18) 

Since the gradient of potential energy with respect to all flexible d.o.f.‘s is zero in the 

TS, the first step from the TS must be treated differently than prescribed in Eq. (5.17). 

Generally the pathways to each of the minima were initiated along the eigenvector 
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corresponding to the single negative eigenvalue of the following generalized eigenvalue 

problem12y37 

(H,, - A a’)dq = 0 (5.19) 

where H,, is the Hessian with the derivatives evaluated with respect to the flexible degrees 

of freedom and d are the eigenvalues. 

5.2.4.3 Implementation of rate calculations 

Rigid polymer. Each search for a transition state was initiated by inserting a single 

penetrant molecule into the energy-minimized polymer structure. The center of mass of the 

diatomic gas molecule was first placed at the coordinates of a TS located by the geometric 

analysis detailed above; the orientation of the penetrant was chosen randomly. Since the 

penetrant used in the geometric analysis was a spherical oxygen molecule, as opposed to a 

dumbbell model used in the rest of the steps, a new transition state in penetrant d.o.f.‘s was 

found using Wales’ algorithm. The two minima associated with this TS were located by 

following the IRC prescription discussed earlier; a step size ds of 0.001 (glmol)‘nXA 

(calculated using Eq. (5.18)) was used in calculating the diffusion path. Finally the rates of 

hopping in both directions were evaluated using Eq. (5.13) with the frequencies calculated 

from the eigenvalues of the Hessian matrix at the appropriate locations. 

Flexible polymer. The presence of a penetrant naturally perturbs the polymer 

structure in its immediate vicinity, and the polymer degrees of freedom, such as torsional 

motions, in turn affect the hopping process of the gas molecule. Hence determining which of 

the polymer d.o.f.‘s are to be treated as flexible is important for obtaining an accurate 

estimate of the hopping rate. As pointed out by Greenfield, too many polymer d.o.f.‘s 

cannot be treated as flexible due to the constraints on computational power and, more 

importantly, to avoid studying the effects of long range chain rearrangements as opposed to 

the more relevant, local segmental motions. On the other hand, one might expect that at least 

those polymer segments which enter the potential range of the penetrant during a hop event 

should be treated as flexible. Following Greenfield and Theodorou,I2 when segment i along 

the chain is found within the potential cutoff from the penetrant, the nearest six torsional 
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. 

. 

Since the penetrant travels significant distances in the course of a hop, it is important 

to include the polymer d.o.f.‘s alon g the diffusion path. Greenfield and Theodoroul 2 

addressed this issue by including additional d.o.f.‘s in the IRC calculation whenever a new 

polymer segment was found within the penetrant’s sphere of interaction. We believe that it is 

more desirable to make an apriori estimate of all of the d.o.f.‘s along the path that need to be 

treated as flexible, and find the transition state in all of these relevant d.o.f.‘s. Our initial 

estimate for the relevant degrees of freedom is obtained from the hopping event in the rigid 

polymer model. At the transition state in the rigid polymer, we note all polymer segments 

that are within the potential cutoff from the two penetrant centers. Subsequently as the 

penetrant moves along the diffusion path during the rigid-polymer IRC calculation, this list is 

augmented with the new polymer segments encountered by the penetrant. All degrees of 

freedom associated with the final list of atoms, after locating the two minima, are treated as 

flexible in studying the corresponding hop in flexible polymer model. 

. 

Next we discuss the actual search for the transition state in this high-dimensional 

space. Starting with the TS configuration in the rigid polymer and a list of d.o.f.‘s from the 

rigid case, a higher dimensional transition state in the penetrant and polymer d.o.f.‘s was 

found by “releasing” the latter set in an incremental fashion. This procedure is similar to the 

one suggested by Greenfield and Theodorou, l2 who found that the TS search is much 

quicker when polymer d.o.f.‘s are included in steps than when all were treated as flexible 

simultaneously. We first picked the five polymer segments closest to each of the centers of 

the penetrant dumbbell and treated all the torsional angles associated with them as flexible. 

After the higher dimensional transition state was found, the dimensionality of the problem 

was further increased by releasing more polymer d.o.f.‘s. This process was continued until 

we treat as flexible all the torsional angles associated with the polymer segments found 

within the potential cutoff distance from the penetrant. After this we also released all the 

d.o.f.‘s in the list compiled earlier along the IRC path in the rigid polymer, and found the 

corresponding transition state. Subsequently, the IRC-following was initiated and the two 

minima were found. As before the rates of hopping were found using Eq. (5.13). 
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Interestingly, the inclusion of additional degrees of freedom in the calculation (beyond those 

relevant at the transition state) did not significantly alter the energy and entropy barriers and 

selectivities. 

As a consistency check, a list of d.o.f.‘s that should be treated as flexible was 

compiled along the high-dimensional IRC path in the flexible polymer, and it was compared 

with the original list based on the rigid polymer. In most cases, fewer than six new torsional 

angles were added to the list, which on average corresponds to one more polymer segment 

being treated as flexible. We found that including these new d.o.f.‘s further in the transition 

state search and IRC path evaluation did not alter the rate constant values significantly; hence 

they were not included in obtaining the results reported here. For those cases where many 

more new polymer d.o.f.‘s were added (about 15% of the total), the spatial locations of the 

transition state and/or minima were observed to change substantially (> 2 A) relative to the 

positions in the rigid case. This indicated that the character and path of the hop had changed 

significantly upon introducing polymer degrees of freedom. There is nothing physically 

unrealistic about such a result, so these hops were included in the calculation of aggregate 

statistics such as median energy and entropy barriers. However, since these hops are no 

longer correlated with the original hop in the rigid polymer, we chose not to include them 

when the rigid and flexible polymer models were directly contrasted. Since the nitrogen 

molecule is larger than the oxygen molecule, more polymer d.o.f.‘s are treated as flexible 

during its hop. The TS configuration found for the latter is used as the initial guess for the 

former to save computer time. 

We studied several hops of the penetrants starting with different initial guesses for the 

penetrant placement in three independent glassy polymer structures. In almost all cases the 

negative eigenvalue occurred in one of the penetrant degrees of freedom; similar behavior 

was also observed by Greenfield. 38 In some instances, the transition state search in the rigid 

polymer yielded configurations in which the negative eigenvalue was seen along one of the 

Eulerian angles of the penetrant. These jumps were observed to be not diffusive, but rather 

related to molecular rotation; the jump length in such cases was virtually zero. Hence we 

present here only those results where the negative eigenvalue occurs in one of the Cartesian 

directions of the penetrant. In all, 42 distinct hopping events were studied. Since each jump 

has two rate constants (forward and reverse) associated with it, we have 84 rate constants. 
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5.2.5. Results 

Energy and entropy barriers in rigid polymer models. The energy and entropy 

barriers for oxygen in rigid polymer models are plotted against the hopping distance d (i.e. 

displacement of the penetrant center of mass from the transition state to the minimum, which 

is different from the “path length” of the hop) in Figures 5.9a and b respectively. As can be 

seen from the plots both barriers take on a range of values: - 0.01 to - 10 k*T in the case of 

AU and 1 to 10 ks in the case of AS. The distance d ranges from near 0 to 7.5 A; this wide 

range of values signifies the heterogeneity of the local microstructural features within the 

polymer matrix. We would like to point out that the entropy barriers are negative because the 

penetrant is more constrained and hence has lower entropy in the transition state compared to 

when it is in the minimum. Similar ranges of activation barriers were seen by Greenfield and 

Theodoroul2 during the hopping of a spherical methane molecule. 

Based on the free energy values of the two minima, each of the two rates in a given 

jump event can be assigned a direction. By analogy with chemical kinetics, the “forward” 

event is defined as movement from the minimum of higher free energy to that of lower free 

energy, and the “reverse” event is of course defined as the opposite. A significant correlation 

between the direction of motion and the magnitude of the energy barrier might be expected, 

but none was detected in this work; the “forward” and “reverse” rate data were well-mixed in 

plots like Figure 5.9 (not explicitly shown). 

We can see from Figures 5.9a and b that both AU and -AS are positively correlated 

with distance d. Interestingly, the energy and entropy barriers exhibit different behaviors 

above and below a d of - 2 A. Typically, AU’s below this hop distance are less than or close 

to kBT. Hence the corresponding hops are not activated. Entropy barriers also behave 

differently above and below a d of 2 pi. For d < 2 A, A,S values do not show much scatter, but 

tend to be in a narrow range between -2 and -4 ks. Based on the small distances, these jumps 

likely occur within the sorption site; they are so-called “intra-macrostate” hops that do not 

contribute to the overall diffusion of the penetrant. 12 The hops with d > 2 A are likely the 

“inter-macrostate” jumps that take the penetrant from one sorption site to an adjacent one. 
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A similar range of values for barriers and hopping distances were seen for nitrogen. 

The AU values for oxygen are plotted versus those for nitrogen in Figure 5.10a; a 

corresponding plot of AS values is given in Figure 5.1 Ob. By comparing the data against the y 

= x lines given on the plots, one can see that whereas AU values for 02 are in general lower 

than those for N2, no such trend is obvious in the case of AS. The former observation can be 

explained based on the sizes of the penetrants: since nitrogen is larger than oxygen, it 

overlaps more with the polymer atoms comprising the neck, thus possessing higher potential 

energy in the transition state. In the cavity, depending on the local packing of polymer 

segments, nitrogen may have higher or lower energy compared to oxygen. Since the 

difference in penetrant energies in the minimum are expected to be much smaller compared 

to that in the transition state, the energy barrier itself is higher for nitrogen compared to that 

of oxygen. 

Based on the sizes of the penetrants, one would expect that nitrogen would also have 

a higher entropy barrier. Judging from the magnitudes of the normal-mode frequencies, 

nitrogen is indeed more constrained (i.e. has lower entropy) in the transition state compared 

to oxygen. However, our data indicated that nitrogen is often more constrained compared to 

oxygen in the minimum as well, leading to a decrease in the overall entropic selectivity for 

the ‘hopping event. Further discussion of this phenomenon and its consequences for the 

selectivity behavior will be given below. 

Energy and entropy barriers inflexible polymer models. Flexibility of the polymer matrix is 

expected to lower the energy barriers, since the polymer segments can rearrange to reduce 

overlaps with the penetrant. The same effect is expected in the case of entropy barriers, since 

the penetrant presumably is trapped less tightly in a flexible polymer compared to a rigid one. 

The energy barrier values for oxygen in the flexible polymer are plotted against those in the 

rigid models in Figure 5.1 la; the corresponding plot of entropy barriers is shown in Figure 

5.1 lb. 

As expected, these plots show that both activation energies and activation entropies 

decrease as a result of polymer flexibility; however, the effect is seen to be more pronounced 

in the case of energies, where order of magnitude differences can be seen. Interestingly, 

when the energy barriers are relatively low (< -3 kBT ), the values in flexible and rigid 

models seem to be equal to each other. In the case of entropy barriers, similar behavior tends 
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to occur when AS is in the range between -2 and -4 kB. This is probably another indication 

that the these jumps are happening within a macrostate. 

Rates of hopping. Now we shall consider the rate constants calculated for various 

hops in this study. Figures 5.12a and b show the hopping rates kTsT plotted against d for 

oxygen and nitrogen respectively; values in both rigid and flexible models are shown in these 

plots. We can see that kTST values are spread over a wide range; this is a direct consequence 

of the wide spread in the energy and entropic barriers seen earlier. A similar range of values 

for rate constants was seen by Greenfield and Theodorou 117 12 for methane in flexible model 

systems. Since both barriers are lower in the flexible polymer case than in the rigid one, the 

rates of hopping are generaIly faster in the former case. We can also see that the nitrogen 

hops are, in general, slower compared to those of oxygen; this is consistent with the 

experimental observation that the former species has a lower diffusion coefficient in 

polymers compared to the latter species. 

The behavior of kTsT values for d < 2 A requires some discussion. The rate constants 

in this region have similar values, in the range of 1 05-lo6 p-l, for both penetrants; a very 

similar range of values was seen by Greenfield and Theodoroul2 for the hopping of methane 

in the course of intra-macrostate jumps. This behavior seems to suggest that intra-macrostate 

hops do not closely distinguish between penetrants. Interestingly, hopping rates in this region 

seem to be unaffected by the flexibility of the polymer matrix. 

Energetic and entropic selectivities. As given in Eq. (5.10), selectivity is the 

exponential of the difference between the corresponding barriers for oxygen and nitrogen. 

Hence the simple difference between AU’s (or AS’s) for the two gases is enhanced when 

converted into the corresponding selectivity. Energetic and entropic selectivities for the 

different hops are plotted against d in Figures 5.13a and b respectively. We can see from 

Figure 5.13a that energetic selectivity, in general, is greater than unity, i.e. relative to 

nitrogen, oxygen encounters smaller potential energy barriers during diffusion. In this plot, 

we can also see the clear difference in behavior in going from a rigid polymer to a flexible 

model; evidently, rigidity of the constriction helps to distinguish the two penetrants much 

more effectively based on potential energy barriers. As the polymer is made locally flexible 

and capable of responding to the penetrant’s presence, the overlaps are decreased, leading to 

a substantial lowering of the energy barriers, and as a consequence the difference between 
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AU’s also decreases. One statistic that illuminates this discussion is the median value of the 

energy barriers in different situations: the median values of AU’s in the rigid polymer 

models for 02 and N2, respectively, are 7.48 and 12.42 kBT, whereas the corresponding 

values in the flexible case are 3.89 and 4.96 kBT. These findings are consistent with the 

hypothesis developed by Koros and co-workers * that the activation energy for penetrant 

diffusion should increase with segmental rigidity. 

In contrast to energetic selectivity, entropic selectivity (Figure 5.13b) cannot be said 

to be always favorable to oxygen relative to nitrogen. Again looking at the median values of 

entropy barriers for oxygen and nitrogen, in the rigid models the values are -5.46 and -5.47 

kB respectively, and in flexible models the values are -4.59 and -4.30 kB respectively. We 

can also see from these numbers that rigid and flexible polymer models do not seem to be 

much different in terms of the entropic selectivity they offer. To look more closely at the 

effect of flexibility on the two kinds of selectivity, we consider the ratio of the selectivity 

value in the flexible polymer to the corresponding value in a rigid matrix. Figures 5.14a and 

b, respectively, show energetic and entropic selectivity ratios plotted against d. Figure 5.14a 

clearly shows that the flexible polymer has a significantly smaller energetic selectivity than 

the rigid one, except for jump lengths smaller than - 2w (likely intra-macrostate jumps). We 

believe that this is an indication that polymer d.o.f.‘s do not participate significantly in a 

intra-macrostate jump; similar results were seen by Greenfield and Theodorou.1 1 ,12 

In contrast to the energetic selectivity ratio, Figure 5.14b shows that the entropic 

selectivity ratio is never very small, and in fact is often greater than unity. There is also a 

great deal of scatter in the data. This would seem to suggest that polymer flexibility does not 

have a significant effect on entropic selectivity, although the contributions for the individual 

penetrant species are affected (ref. Figure 5.11 b). There also appears to be some difference in 

the magnitude of the scatter for the intra- and inter-macrostate jumps, with less scatter below 

d=2A. 

5.2.6 Discussion 

First we shall summarize the results of the current study. We saw above that a variety 

of penetrant hopping events is possible in polymers, in which the activation entropies and 

energies assume a wide range of values. These events are seen to fall into two general 
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categories: ones that occur within a cavity and those that occur across cavities. Both energy 

and entropy barriers are lower in the former cases, where the minima are located typically 

within 2 A from the transition state. Moreover, since polymer degrees of freedom do not 

seem to participate in these hops, barrier and selectivity values are not affected due to 

flexibility of the polymer matrix. The intra-cavity hops do not contribute to the overall 

diffusion of the penetrant, and hence are relatively unimportant for us. In contrast, the inter- 

cavity jumps do contribute to diffusion and will be discussed further below. 

For jumps that occur across. cavities, where the penetrant passes through a 

constricting neck to move to an adjacent packet of free volume, the activation barriers are 

typically higher. Whereas the energetic selectivity is seen to be favorable to oxygen 

compared to nitrogen, the entropic selectivity fluctuated about unity. The introduction of 

matrix flexibility substantially lowers the energy barriers and the corresponding selectivities. 

As mentioned above, this observation is consistent with the hypothesis of a positive 

correlation between penetrant activation energy and polymer segmental rigidity, as 

developed in the literature by Koros and coworkers. 2 The entropy barriers for each penetrant 

are also lowered due to matrix flexibility, although the effect is not as substantial as in the 

case of energy barriers. However, entropic selectivities are apparently not influenced 

strongly, or in any particular direction, by flexibility. 

The lack of clear effect of polymer flexibility on entropic selectivity is directly at 

odds with the view of Singh and Koros, 5 who proposed that thermal motion of the polymer 

chains leads to loss of entropic selectivity in these materials. However, our result is perhaps 

not very surprising in view of a recent simulation study by Rallabandi and Ford3 g, who 

calculated diffusivity selectivities for the oxygen/nitrogen separation in model sieving 

windows. Their approach was based on statistical mechanics and transition-state theory, and 

did not use the harmonic approximation to evaluate the partition functions. Instead, the 

required free energy differences were directly estimated using a Monte Carlo scheme 

proposed by Voter. 40 Molecular-level flexibility was included by tethering the solid atoms 

to their equilibrium positions with harmonic springs. Simulations were performed at several 

window widths and flexibilities, i.e. different values of the spring constants (values as low as 

- 0.01 of the C-C bond strength were used). The results from that study showed that while 

the energetic part of the total selectivity was quite sensitive to the window flexibility, the 
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change in entropic contribution was never more than about 20%, even for very flexible 

windows. 

As mentioned above, our data indicated that nitrogen is often more constrained than oxygen 

in the minimum as well as in the transition state, leading to a decrease in the overall entropic 

selectivity for the hopping event. These findings support the hypothesis of Zimmerman and 

Koros6 that the small cavity volumes associated with the minima in polymers can have a 

significant negative impact on entropic selectivity. In particular, our results generally support 

the picture in Figure 4 of Zimmerman and Koros, 6 .where the entropy barrier of nitrogen is 

lowered due to a high degree of confinement in the minimum. Therefore we believe that the 

apparent lack of entropic selectivity in polymers is more likely caused by factors associated 

with the molecular-level distribution of the free volume, rather than the inherent rigidity of 

the matrix. 

The relatively good entropic selectivity in inorganic materials can also be explained 

on the basis of free volume. 6 The microstructure of inorganic materials such as zeolites and 

carbon molecular sieves differs substantially from that of polymers. In the inorganic 

materials, the structure often consists of wide cages (radius - 6 A or more) where the motion 

of small molecules is relatively free, joined by small windows that provide the sieving.4 1 In 

polymers, the distribution of free volume is believed to be much different, although direct 

experimental determination of free volume distribution in polymers is not a straightforward 

task. Positron annihilation lifetime spectroscopy (PALS) measurements in polymers revealed 

that the average hole radius in polymers typically ranges from 2.8 to 3.7 A.42 We note that 

there has been some criticism of the assumptions made in interpreting PALS results4 3 so 

these reported cavity sizes should be regarded with some caution. Molecular modeling using 

hard-sphere penetrant probes provides another method for estimating the free volume 

distribution in polymers.27-29744-48 Th ese studies: performed on a range of polymer types, 

have revealed that the accessible free volume fraction is a sharply decreasing function of 

probe size and that very little of the unoccupied volume is accessible to probes having radii 

greater than ca. 2 A. Of course, larger cavities do exist and can have a significant impact on 

the overall transport properties. However, based on the results of either PALS or molecular 

modeling, the typical free volume elements in polymers are expected to be much smaller than 
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the cages seen in the inorganic materials. This scenario may mean that nitrogen tends to be 

more confined compared to oxygen not only in the sieving neck, but also in the cavity. These 

differences tend to offset those in the transition state, resulting in an overall decrease in 

entropic selectivity. 

If these conclusions are accurate, materials design efforts for increasing entropic 

selectivity in polymers should not be targeted towards increasing rigidity per se, but rather 

towards manipulating the free volume. The ideal would be to create structures similar to 

those of inorganic molecular sieves, with cavities which are large enough to allow free 

movement (rotation) of the penetrants. This idea has been considered before.3 In fact, 

Zhang4 g synthesized isotactic polyphenyl silsequioxane, a polymer containing 8-member 

silicone rings; unfortunately, this polymer did not show much higher selectivities in the 

separation of Oz/‘N2 and C02/CH4 than other silicone polymers with similar 

permeabilities. 50 In light of our results, such approaches may be worthy of reconsideration 

by experimentalists. 

Energetic and entropic selectivities for oxygen over nitrogen were calculated in 

atomic models of glassy atactic polypropylene, built following Theodorou and Suter.2 0 

Geometric and energetic analyses were performed on these structures with a spherical probe 

molecule to gain knowledge of the microstructure in the models; the locations of possible 

sieving constrictions, to be used as initial guesses in the transition state searches, were also 

located in this step. The transition-state theory method developed by Greenfield and 

Theodoroull ’ I2 was used to incorporate the polymer degrees of freedom in the simulation 

of the penetrant hopping process. Almost 100 diffusive hops of oxygen and nitrogen were 

studied in rigid as well as flexible models and rate constants were evaluated within the 

harmonic approximation. Subsequently the separation selectivity of each hop was partitioned 

into distinct energetic and entropic contributions. 

Our data showed a wide range of activation barrier values; consequently, the observed rates 

of hopping varied over several orders of magnitude. A strong positive correlation between 

energetic selectivity and polymer rigidity was observed, in accordance with previous 

literature discussions.2 Furthermore, our model polymer offered low entropic selectivity, in 

accordance with the observations of Singh and Koros. 5 However, the entropic selectivity 

was not correlated with rigidity of the polymer, as speculated by those authors. Rather, our 
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data indicated that entropic selectivity is lost due to the fact the cavities in polymers tend to 

be smaller than those in inorganic materials, as proposed by Zimmerman and Koros.6 The 

nitrogen molecule was confined more than oxygen not only in the necks but also in the 

cavities, thus the entropic selectivity seen in the neck regions is offset by a comparable 

selectivity in the cavities. The key to improving the performance of polymer membranes 

seems to lie in producing larger free volume packets and not just in improving the rigidity of 

the necks. 

We note that the results obtained in this study depend on the validity of the harmonic 

approximation, which is difficult to estimate. This approximation, which assumes small 

oscillations about a stationary point, might not be applicable in situations where the 

frequencies of oscillations are low, and hence the corresponding modes might explore 

configurations away from the stationary point of interest. 38 Hence it is desirable to calculate 

the rates of hopping using free energy methods, analogous to the one adopted in our previous 

study39. However, attempts in that direction require considerably more complex calculations 

and computational power. Efforts are currently underway in our group to implement methods 

to rigorously evaluate free energy barriers to penetrant hopping in polymer matrices. We 

also plan to study more technologically relevant polymers and state conditions. 
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Figure 5.1: Residence time versus reduced inverse temperature for a 
single Lennard-Jones particle moving within a fixed cubic array of 
identical particles. The figure compares the results of the full 3-D 
transition state theory calculation (circles) with the harmonic 
approximation (squares and line). The full TST calculation mapped a 
periodic cell containing 8 atoms and 8 cavities using a grid-spacing of 
O.O3125a, or 2 million points. 
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Figure 5.2: Plot of the calculated diffusion coefficient of nitrogen in zeolite 
3A versus the number of grid-points used. The calculation used a 24.6A x 
24.6A x 24.6A sample containing 8 unit cells and 8 macrocavities. 
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Figure 5.3: Visualization of the dividin, 0 surfaces obtained using cavity analysis for 
oxygen in a 60 A x 60 A x 60 A sample of EPDM, assuming no polymer motion. 
Dividing surfaces are drawn as cylinders joining the centers of adjacent 
cavities. The radius of each cylinder is scaled proportionally with the 
logarithm of the configurational integral for the dividing surface, and so 
gives a measure of the jump rate for that dividing surface. The cavities 
themselves are not drawn explicitly. The dividing surfaces do not form a 
percolated network 
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Figure 5.4: Plot of mean square displacement versus time for -CH3- groups 
in EPDM, obtained from a molecular dynamics simulation. 
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Figure 5.5: Visualization of the dividing surfaces obtained using cavity analysis for 
oxygen in a 60 x 60 x 60 sample of EPDM. The polymer motion was represented 
using the isotropic elastic approximation, with (Aa2)l’* = 1.2 . Dividing surfaces are 
drawn as cylinders joining the centers of adjacent cavities. The radius of 
each cylinder is scaled proportionally with the logarithm of the 
configurational integral for the dividing surface, and so gives a measure of 
the jump rate for that dividing surface. The cavities themselves are not 
drawn explicitly. The dividing surfaces form a strongly percolated network. 
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Figure 5.6: Plot of mean square displacement of oxygen molecules in EPDM versus 
time obtained by kinetic Monte Carlo simulation. The three curves are for (Aa2)l’* = 0.6 
7 0.9 and 1.2 , going from bottom to top. The thick dashed line serves only to 

illustrate the expected asymptotic linear behavior. 
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Figure 5.7: Plot of oxygen diffusion coefficient in EPDM versus RMS polymer 
displacement. The diamonds are from the kinetic Monte Carto simulations. The star is 
fi-om molecular dynamics. The straight line is a power law fit to the kinetic Monte Carlo 
data. 

183 



Bond lengths ( j 

c-c 1.53 

C-H 1.10 

C-CHj 1.53 

Bond angle sutwlements (degrees) 

intradyad C-C-C 66.0 

interdyad C-C-C 68.0 

intradyad C-C-H 71.0 

interdyad C-C-CH3 

interdyad C-C-H 73.2 

68.0 

Figure 5.8. 

184 



0.1 

I IIll 1111 IIll IIll ‘I” IIll Il. 

1234567 
J 

Figure 5.9a. 

185 



. 0 . 
l 0 

9 &? 
. 

=. 0 
5 .* . 

.* . 
, 0. . 0 

0 0 
. 

*. 0.. 

.* s 0. 
+. l 

. 
8 

d (A> 

1 
L 

i 

I 

f 

Figure 5.9b. 

186 



60 

II lllllllll llllII 

0 20 40 60 

Figure 5.10a. 

187 



Figure 5.10b. 
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Chapter 6 

Multi-Particle Activated Transport of Small Molecules in Ordered 
Nanoporous Materials 

6.1. INTRODUCTION 

A major challenge for TST is the prediction of the concentration dependence of 

diffusion rates in nanoporous materials. This is generally a difficult problem because the 

TST partition functions increase in dimensionality with the number of particles involved in a 

hopping event, and just defining the limits on the integrals may quickly become unfeasible.3 

The development of practical and accurate approximations is therefore necessary, but the 

type of approximation that will be adequate depends strongly on the nature of the particular 

system being modeled. 3-6 A recent example is the use of mean-field corrections to treat 

many-body effects in benzene-NaX systems, where the sorbate-sorbate interactions are 

perturbations on the very strong sorbate-host interactions.2 

In a recent paper, (also funded under this LDRD, but due to space-limitations we have 

not included it in this report; instead we summarize the results below) Tunca and Ford’ have 

addressed a different situation, where adsorption is not highly localized and the sorbate- 

sorbate interactions are comparable in strength to the sorbate-host interactions. Such a 

situation can be realized within the cages of highly siliceous zeolites or within the nanopores 

of carbon materials. Tunca and Ford modeled the particular case of methane and xenon 

escaping from a loaded a cage in aluminum-free ZK4 into empty neighboring cages. They 

developed a physically reasonable “low-dimensional approximation” to make the many- 

dimensional TST partition functions tractable, and they solved the integrals with a method 

introduced by Kaminsky7 that employs Widom* test insertions. Although the nested 

approach of Kaminsky avoided problems associated with the inefficiencies of inserting many 

particles, the single-particle Widom insertions still suffered from statistical inefficiencies at 

higher loadings. 

Recently, expanded ensemble methods (EEMs) have been developed and used 

successfully to calculate the chemical potentials of dense fluids and polymers.g-17 The basic 

idea is to have one particle in the system that couples to the rest of the particles in 
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incremental stages, with sampling of these stages included in the Monte Carlo walk. 

Although the intermediate configurations of the test particle do not contribute directly to the 

statistics, they provide a smooth pathway between a full particle and a ghost particle. 

Furthermore, transitions along this pathway are greatly enhanced with the use of bias 

functions that equalize the occupation probabilities of the stages. Improvements of many 

orders of magnitude in statistical quality can be achieved with EEM in chemical potential 

calculations for dense and complex fluids. 

There are two main goals of this work. One goal is to extend our study of escape 

rates to cases where neighboring cages are occupied; this is of course necessary for the 

development of realistic stochastic models of diffusion. We will meet this goal by 

calculating the rate of adsorbate hopping between two adjacent cages, each at an arbitrary 

loading. Another goal is to incorporate an EEM into Kaminsky’s scheme for evaluating 

multidimensional partition functions of fluids in pores. To our knowledge, this work is the 

first to use an EEM to evaluate such partition functions. In Sec. 6.2, we present the 

necessary background and develop our extended theory. In Sec. 6.3, the model systems and 

calculational details are described. The results are presented and discussed in Sec. 6.4. 

Conclusions are outlined in Sec. 6.5. 

6.2. THEORY 

6.2.1. Background 

Vineyard4 has derived the following classical TST rate expression for a system with 

F degrees of freedom. For two adjacent local potential energy minima, denoted by i an 

the average transition rate from i toj (in units of inverse time) is given by 

I dyl...dyF e -PU 
qy = (27&‘2 s 

-PU (6. 

where P=l/kBT with T the temperature and ks the Boltzmann constant, S is the hypersurface 

connecting minimum i with minimumj, Y is the hypervolume associated with minimum i, yk 

is the mass-weighted coordinate for the degree of freedom k, and U is the potential energy of 

the system. The denominator of Eq. (6.1) is an F-dimensional integral with the system 

constrained to hypervolume V. The numerator of Eq. (6.1) is an (F- I)-dimensional integral 
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with the system constrained to the hypersurface S. For a single spherical molecule in a rigid 

zeolite matrix, there are three degrees of freedom, so the numerator will be two-dimensional 

and the denominator will be three-dimensional. 

6.2.2. Low-dimensional (LD) approximation 

Equation (6.1) is rigorous, but not always useful in practice. As mentioned above, for 

large F it is difficult to even define the limits on the integrals, much less calculate them. 

Tunca and Ford1 developed a useful approximate expression for the case of spherical 

molecules escaping from a loaded cage to neighboring empty cages. Here we extend the 

derivation of that “low-dimensional” (LD) approximation to include arbitrary loading in the 

neighboring cages. More specifically, we consider the rate of transition of molecules from 

one cage (A) to a single neighboring cage (B), as a function of loading in both A and B. As 

will be discussed later, we believe that such a “pairwise” consideration of cages is justified. 

First, we assume that the (three-dimensional) volume associated with each cage, and 

the (two-dimensional) surface which joins the two cages, are well-defined. This information 

may be obtained through geometric considerations, or through calculations using a single 

spherical adsorbate probe molecule. t,l* Next, we consider a system with iV spherical 

molecules distributed between the two cages A and B. In particular, we consider the state 

where N, molecules are in cage A, and Ns = N - NA molecules are in the neighboring cage B. 

Within the LD approximation, the transition rate from this state to the state where one 

molecule has moved from A to B (i.e., the state where NA - 1 molecules are in A and NB f 1 

molecules are in B) is given as 

In Eq. (6.2), m is the mass of a molecule, SAs is the two-dimensional surface joining 

the two cages, VA is the three-dimensional volume of cage A, VB is the three-dimensional 

volume of cage B, and rkK is the position of the kth molecule in cage K. The notation 

A + B indicates that a molecule is leaving cage A and going to the surface SAB. The 

superscripts on the integration variables give the dimensional@ of the corresponding 
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integrals. The integral in the numerator is over the positions of all N adsorbate molecules, 

with molecule 1 from cage A constrained to the surface SAB, and the rest of the molecules 

constrained to their respective cage volumes. The integral in the denominator is also over the 

positions of all N adsorbate molecules, with all of them constrained to their respective cage 

volumes. Thus, in writing Eq. (6.2), we have approximated the true (3N-1) dimensional 

hypersurface by the hypersurface on which one of the molecules is confined to the dividing 

surface SAB, and the rest of the molecules are confined to their cage volume. Likewise, we 

have approximated the true 3N-dimensional hypervolume by the hypervolume in which all of 

the molecules are confined to their cage volume. Note that for the case of NB = 0, Eq. (6.2) 

reduces to Eq. (2) from Ref. 1. 

In writing Eq. (6.2) from Eq. (6. l), we have assumed that the intra-cage dynamics are 

always fast compared to inter-cage hopping events and that the potential energy barriers at 

the cage windows are not much perturbed by the presence of multiple molecules. Thus, the 

LD approximation works best for cages that are large enough to allow multiple occupancy, 

connected to each other by very narrow necks, and energetically “uncorrugated.“l 

Recognizing that the numerator and denominator of Eq. (6.2) represent 

configurational partition functions, we can re-write the equation in more convenient notation 

as 

(6.3 

Although the LD approximation makes the problem tractable in terms of providing 

well-defined partition function integrals, those integrals are still challenging to evaluate. We 

have previously employed’ a method introduced by Kaminsky,T in which the partition 

functions are built up in a sequential fashion using single-particle Widom insertions. For 

example, the ratio of the volume integrals involving NA and NA-~ adsorbates in cage A, at 

constant loading of cage B, can be written as 

‘dNAyNB) = v ,-put 
zv(NA -l&) A ( > 

(6.4) 
N, -AN, 

where uf is the potential energy of a single inserted test molecule and the brackets represent 

an average over a canonical Monte Carlo (MC) simulation. In this example, the MC 
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simulation would consist of N,4-1 molecules sampling cage A and NB molecules sampling 

cage B, and the Widom test insertions would be performed in cage A. An equation analogous 

to Eq. (6.4) can also be written for the ratio of area integrals. Given that the NA = 1 integral 

can be determined accurately through crude MC (or some other technique), Eq. (6.4) 

provides an efficient step-wise route to all integrals with NA > 2. 

Although this method was used in our previous work (for ~VB = 0), it began to suffer from 

statistical inefficiencies at higher loadings in A, as reflected in the error bars of Figs. 2 and 3 

of Ref. 1. This is a well-known phenomenon when applying Widom’s technique to very 

dense fluids.15 In the present work, we use a more efficient technique, expanded ensembles, 

to evaluate the partition function ratios. 

6.2.3. Expanded ensemble methods (EEMs) 

EEMs improve the efficiency with which free energy differences (i.e., partition 

function ratios) are determined. g-17 The basic idea is to employ intermediate states which 

connect the two end states of interest, and sample these states throughout a single simulation. 

The intermediate states themselves are generally not of interest, but they can greatly facilitate 

sampling between the two end points, especially when bias functions are employed. 

For example, to determine the free energy difference between two canonical systems 

that differ by exactly one molecule (as in Eq. (6.4) above), one begins by writing the partition 

function for an expanded ensemble as12~13~17 

Q(a) = 5 exp(%JZ(hJ (6.5) 

n=O 

where A is a parameter that represents the degree of coupling of one molecule to the rest of 

the system, n is an index over the possible d states (with A4 the total number of such states), 17 

is a bias function, and Z(A) is the configurational canonical partition function of the system in 

a particular h state. The number of intermediate A states and their characteristics can be 

chosen in different ways, but the two end points, n=O and n=A4, should correspond to fully 

decoupled and coupled states. 

A MC walk is then performed over the degrees of freedom of the expanded ensemble. 

This involves two types of moves. One is the usual displacement of molecules at a fixed 
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value of ~1, and the other is the change of n at fixed coordinates of the molecules. The 

transition probability for either type of move is given by the Metropolis criterion for the 

expanded ensemble,tO mini 1 ,exp[A( U+r)] >. 

The probability of visiting a particular state 3L, during the MC walk is 

p 
n 
= exPhJz(aJJ 

i-2 

so that the ratio of partition functions for two arbitrary states i andj is given by 

$5J = Pi exP(-%) 

z(aj) Pj exP(-)7j) 

(6.6) 

(6.7) 

The partition function ratio for two systems that differ by one molecule can then be 

calculated by simply counting the number of times that each of the tivo end states (~0 and 

n=A4) is sampled during the MC walk. To gain the maximum benefit from the EEM, the bias 

factors should be optimized. Certain d states will be naturally less favored than others, and 

such disparities generally cause bottlenecks in sampling that result in poor connection 

between the two end points. The goal is to select values of the Q such that all & states have 

roughly equal probabilities of occupation during the walk; the states are then smoothly and 

equally sampled, and statistical efficiency is high. Corrections for the biasing are present in 

Eq. (6.7). 

Applying the EEM concept to our example of two systems which differ by one 

molecule in cage A at constant loading of cage B (Sec. 6.2.2) we find that the ratio of volume 

integrals can be written as 

ZV(NA&) 

ZV(NA - 1, h3) 

= vA PM exp(-qM) 

PO exp( --770) 

Here: we would perform an extended ensemble MC simulation with N,4-1 full 

molecules sampling cage A and n;B full molecules sampling cage B; in addition, one special 

“coupling” molecule would sample different states and positions within cage A. The ratio of 

probabilities of the fully coupled @I) and fully decoupled (0) states of this molecule, 

corrected by the applied bias factors, yields the partition function ratio. As in Eq. (6.4), the 

factor of VA in Eq. (6.8) represents the ideal contribution of the NA-th molecule to the 

configurational integral; even if this molecule has no interaction with the others, it 
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contributes one factor of volume to the partition function. An equation analogous to Eq. 

(6.8) can be written for the ratio of area integrals. For that calculation, one molecule would 

be confined to the surface between cages, and the coupling molecule would still be placed in 

the volume of cage A. 

6.3. MODEL SYSTEMS 

6.3.1. Zeolite and adsorbate models 

The same model zeolite employed previously,1 pure silica (cation-free) ZK4, was 

used here. Spherical methane was the model adsorbate. For this model system, we 

previously concluded that the rate-limiting step in methane diffusion is the hop between two 

neighboring a cages through the 8-membered oxygen ring. Using an atomic-level model of 

the ZK4 and a single methane probe, we mapped out the relevant volurne of an a cage and 

the surface joining two neighboring cages, using the voxel method of June et al. I8 Those 

volume and surface data will be used here; the reader is referred to Ref. 1 for details. 

Our zeolite model consisted of a full unit cell of ZK4, which had eight a cages and an 

edge length of 24.6 A. Two directly neighboring cages within this model, denoted as A and 

B, were used for the calculations. Periodic boundary conditions were employed when 

calculating the adsorbate-zeolite interactions. However, they were turned off for the 

adsorbate-adsorbate interactions, because we wanted to model a single, isolated pair of 

occupied cages. 

One small difference between the present and previous results should be noted. In the 

previous work,l we presented transition rates from one a cage to any of the 6 empty 

neighboring cages. In this paper, we are considering only the jump to one specific 

neighboring cage, B. Therefore, the values for the transition rates to an empty B cage 

reported here are systematically lower (by a factor of 6) than the escape rates given in the 

previous paper. 

6.3.2. Potentials 

Since the silicon atoms are shielded by oxygen atoms in the zeolite framework, only 

the oxygen atoms were taken into account in the caIculation of potential energy. The zeolite 
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lattice was assumed to be rigid. The methane molecules were taken as spherical. The 12-6 

Lennard-Jones potential was used to calculate methane-methane and methane-oxygen 

interactions. 

uij (r) = 4&ij 

(6.9) 

The potential parameters are listed in Table I. The cutoff was taken to be rcut=2.50ii. 

6.3.3. Evaluation of integrals 

The nested scheme indicated by Eq. (6.8) was used to evaluate the TST integrals, 

with the area and volume integrals determined separately. Loadings of up to 12 

molecules/cage were considered in both A and B. For convenience, the area or volume 

integrals can be indexed as elements in a matrix, z(iV~,Ng). Since the A cage cannot be 

empty (there must be at least one molecule to make the transition) but the B cage can be 

empty, NA ranges from 1 to 12 and NB ranges from 0 to 12. Thus we have a 12x13 matrix for 

both the area and volume integrals. Due to the fact that the A and B cages are structurally 

equivalent, both matrices have a great deal of symmetry, which reduces the computational 

requirements. 

For the volume integrals, the symmetry relationship is simple: ZV(NA,NB) is equal to 

ZV(NB,&). The starting points for the nested scheme, Zdl,O) and Z,{l, l), were calculated 

using crude MC integration. From these points, we explicitly calculated volume integrals for 

the rest of the columns Zd(NA,O) and ZdNA, 1) using Eq. (6.8). Due to symmetry, the row 

Zb{l,Ns) was then also known, from the column zv(N~,l). Next we generated the Zv(N,,2) 

column with Eq. (6.8), starting from the known element Z41,2). The row ZV(;Z,NB) was then 

also known by symmetry. We continued in this fashion, calculating parts of columns and 

generating corresponding symmetric parts of rows, until we obtained all the matrix elements. 

Thus, it was sufficient to explicitly calculate only those volume integrals on and below the 

matrix diagonal. 
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For the area integrals, the symmetry relationship is slightly more complex. The 

integral Z~(NA,NB) corresponds to having NA-~ molecules in A, one molecule on the surface 

between A and B, and NB molecules in B. The equivalent “mirror” conformation has NB 

molecules in A, one molecule on the surface, and NA-~ molecules in B, and is thus denoted by 

Zs(NB+I,NA-I). The area matrix was obtained in a similar way to that described above for 

the volume integrals, with a few small differences. Only one starting point, Zs(l,O), was 

required from crude MC integration. The remainder of the column Zs(NA,O) was then 

calculated using Eq. (6.8); by symmetry, this yielded the row Zs(l,Ns) as well. The known 

Zs(l, 1) was then used as the starting point for calculation of the column ZS(NA, 1) by Eq. 

(6.8). Calculation of column zs(N~,l) also yielded elements in the row zs(2,N~) by 

symmetry. Again, we continued in this fashion until the area matrix was complete. We note 

that for the area matrix, we needed to calculate integrals for NA=13 (for Ns values from 0 to 

11) to obtain the desired elements Zs(Ns+l, 12). For the area matrix, it was sufficient to 

explicitly calculate only those elements below the matrix diagonal. 

For the area integrals, one molecule was confined to the surface and the remaining 

ones were confined to their respective a cage volume. For the volume integrals, all of the 

penetrants were confined in their respective a cage volume. The “coupled particle” in the 

EEM was always constrained to the A cage. The constraint of a molecule to a volume 

(surface) was accomplished by rejecting MC moves that attempted to place this molecule 

outside that volume (surface). The corresponding rate constants were then calculated using 

Eq. (6.3). 

The potential parameters for the intermediate states of the coupled methane particle 

were taken from Kaminsky’s paper. lj 

An) = o( rz / kf4 for 1 I 12 I (M - 1) 

(6.10) 

&) = &(rz / My3 for 1 I n 6 (M - 1) 

The total number of states, it4, was taken as 8. Lorentz-Berthelot mixing rulesI were 

used for the interactions between full and intermediate methane. 

The procedure given by Wilding and Mtiller12 was employed to determine optimum 

values for the bias factors Q. First, an estimate of the probability of each state was obtained, 

208 



using a short MC simulation of 100,000 steps with all bias factors set to zero. Those 

probabilities were plugged into the following equation to get an initial estimate of the bias 

factor for each n. 

(6.11) 

Another short MC simulation was then performed with the updated bias factor to 

obtain new probabilities. This procedure was repeated until every state had roughly equal 

probability of being visited. Usually two iterations were sufficient to accomplish this. Four 

different long runs (1 O7 MC steps) with different starting states were then initiated to get final 

probabilities for n=O and n=8. Those results were used to calculate the ratio of partition 

functions, using Eq. (8). 

6.4. RESULTS AND DISCUSSION 

Figure 6.1 shows the escape rate of methane from A to B as a function of NA, for three 

values of NB. The escape rate increases strongly with increasing N.4, covering three orders of 

magnitude. This increase in escape rate is due to the decrease of available free volume upon 

addition of adsorbate molecules in cage A. This entropic effect is apparently quite dominant 

over the attractive adsorbate-adsorbate interactions, which should tend to decrease the 

potential energy (and the escape rate) with increased loading. Although the rates are clearly 

not as sensitive to NB as they are to NA, an interesting non-monotonic trend is seen in Fig. 6.1, 

with the NB=O curve lying between the NB=6 and NB=12 curves. 

Figure 6.2 provides more insight into the effects of loading in cage B. Initially, the 

escape rates increase slightly with NB. This is due to the fact that the molecule on the surface 

is “stabilized” by attractive interactions with the molecules in cage B. However, as cage B 

becomes increasingly crowded, the surface molecule becomes “de-stabilized” by excluded 

volume interactions with those molecules. This leads to the decreases in escape rate seen at 

higher Ns values. This behavior explains the non-monotonic trend seen in Fig. 6.1 with 

varying NB. Note that the standard deviations are very small in Figs. 1 and 2 even at high 

loadings, due to the use of the EEM. 

Further insight on the transition rate behavior can be obtained by examining the area 

and volume contributions independently. Figure 6.3 shows the values of the area and volume 
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integrals as a function of NA for three values of N B. Note that the integral values grow very 

quickly as either NA or NB increases, because each molecule in the system carries one factor 

of a-cage volume (1165.8 A3). For example, for NA =I and NB =6, the volume integral is on 

the order of V7 - 1 02’ A3. Although the general order of magnitude of the integrals is set by 

the total number of molecules, the important physics is captured in the Boltzmann factor 

integrand, exp(-/?U), which determines the shape of the curves in Fig. 6.3. There are three 

main points to note about these curves: (1) for a given NB, the volume curves lie above the 

area curves, (2) the slope of each curve decreases with increasing NA, and (3) for a given NB, 

this decrease in slope is greater for the volume integral than the area integral, causing the two 

curves to become closer at higher NA. 

These observations can be understood in the following way. The volume integrals 

tend to have higher values than the corresponding area integrals for two reasons. First, the 

volume integrals contain an extra factor of cage length (- 10 A). Second, the molecule 

constrained to the dividing surface in an area integral typically has a higher potential energy 

than its counterpart in the volume integral, so the average value of the Boltzmann factor is 

lower for the area integral. This energy effect becomes less important at higher loadings, as 

will be discussed momentarily. The slope of each curve decreases with increasing NA 

because of entropic effects; there are more “overlap” configurations in the integrals at higher 

NA, and the average value of the Boltzmann factor decreases. The magnitude of this decrease 

in slope is slightly smaller for the area integrals because one of the molecules is confined to 

the surface, leaving more free space in the cage. Because of this difference in slope, the area 

and volume curves for a given NB approach each other at higher NA; in principle, the curves 

could cross, although this was not observed for the loadings studied here. Note that this 

behavior leads directly to the increases in escape rate with NA observed in Fig. 6.1. 

Another issue of interest is how strongly the molecules in one cage are affected by the 

presence of molecules in the neighboring cage. To study this, we employed MC simulations 

with an empty A cage and different numbers of methane molecules in cage B. During these 

MC walks, Widom test insertions of a methane molecule were performed either in the empty 

A cage, or on the surface between the two cages. The average Boltzmann factors for the 

inserted molecule are shown in Fig. 6.4. Clearly, the test insertions in the volume were not 

affected by the loading in cage B, except very slightly at the highest loadings. This is very 
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interesting because it indicates a high level of screening of inter-cage adsorbate-adsorbate 

interactions by the zeolite atoms, which in turn suggests that a “cage-pair-wise” additivity of 

the free energy will be quite accurate for these model systems. The Boltzmann factors for 

the test insertions on the surface showed a non-monotonic behavior similar to that seen in 

Fig. 6.2. There is an initial increase due to favorable energetic interactions with the 

molecules in B, but crowding in the B cage eventually leads to less favorable energetic 

interactions and a consequent decrease in the Boltzmann factor. The results in Fig. 6.4 

suggest that focusing on one pair of cages at a time will be sufficient in this model system; 

other nearby cages, not directly involved in the hopping event, will not perturb that event 

significantly. 

Finally, we note that the results and conclusions reported here are based on TST rate 

constants that have not been dynamically corrected. That is, our rate constants assume no 

fast barrier recrossings. However, such recrossings may be important in our model system, 

especially at higher loadings in cage B. Calculations of dynamical correction factors are 

underway and will be presented in a future paper. 

6.5. CONCLUSIONS 

Transition rates of molecules between adjacent zeolite cages at arbitrary loadings 

were calculated using an approximate multidimensional TST approach. An extended 

ensemble method within a nested integral scheme was used to calculate the partition 

functions of interest. This proved to be an efficient combination, producing low standard 

deviations in the rate constants even at very high loadings. The rate constants increased 

sharply with the number of molecules in the original cage but exhibited a weaker, non- 

monotonic dependence on the loading in the destination cage. These trends were explained 

in terms of the behavior of the individual area and volume integrals, based on entropic and 

energetic arguments. Furthermore, our results indicated that a “cage-pair-wise” additivity of 

free energy is a good approximation in our model system, which should greatly simplify 

future analysis. 

Work is in progress to calculate dynamical correction factors to the transition-state 

theory rate constants. The corrected rate constants will then be used as input in a stochastic 
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dynamics simulation to obtain self-diffusivities as a function of loading. Future work will 

also examine cases where diffusion occurs under a concentration gradient across the zeolite 

lattice. 
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7. Achievements 

The most significant achievements in our LDRD were the following: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

determined yield stress as a function of size scale 

distinguish pertinent parameters influence on mechanical state with respect to each 
other (strain rate, temperature, crystal orientation, specimen size, deformation path) 

developed mechanistic model to capture size scale, strain rate, and orientation effects. 

explored the use of accelerated molecular dynamics methods to solve materials 
problems. 

used first-principles nudged elastic band method to calculate activation barriers for 
complex materials process and verified calculations by comparison with experiment. 

developed mesoscale model of grain boundary defaceting phase transition. 

developed a parallel code for locating 3-D cavities transition states in amorphous 
materials 

determined that for oxygen/nitrogen transport, entropic selectivity is much weaker in 
polymeric materials than in nanoporous solids. 

developed an accurate and efficient transition state theory approach to transport in 
zeolites at non-zero loading 
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