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Abstract

High �delity numerical simulation of wall-bounded turbulence requires physically sound

representation of the small scale unsteady processes governing near-wall momentum, heat,

and mass transfer. Conventional wall treatments do not capture the diverse multiphysics


ow regimes relevant to engineering applications.

To obtain a robust yet computationally a�ordable near-wall submodel for turbulent 
ow

computations, the �ne-grained spatial structure and time evolution of the near-wall 
ow

is simulated using a model formulated on a 1D domain corresponding to the wall-normal

direction. This approach captures the strong variation of 
ow properties in the wall-normal

direction and the transient interactions between this highly inhomogeneous region and the

more nearly homogeneous (at �ne scales) 
ow farther from the wall.

The 1D simulation utilizes the One Dimensional Turbulence (ODT) methodology, whose

formulation for the present application is described in detail. Demonstrations of ODT per-

formance with regard to aspects of 
ow physics relevant to near-wall 
ow modeling are

presented.

The coupling of ODT to a large eddy simulation (LES) of con�ned turbulent 
ow is de-

scribed, and the performance of the coupled formulation is demonstrated. It is concluded

that this formulation has the potential to provide the �delity needed for engineering appli-

cations at an a�ordable computational cost.
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1 Motivation

1.1 Current Modeling Capabilities and Needed Improvements

Computational modeling of turbulent 
ows has traditionally been based on ensemble or

time averaging the governing equations. Reynolds-averaged Navier-Stokes (RANS) methods

provide evolution equations for moments of the velocity �eld. Owing to the nonlinearity of

the Navier-Stokes (NS) equations, these equations express the evolution of moments of given

order in terms of moments of higher order, leading to an unclosed hierarchy of equations.

This hierarchy is closed by modeling the unclosed terms at some level of the hierarchy.

It is widely recognized that steady-state RANS formulations omit large-scale unsteadiness

that is a vital feature of many engineering and environmental 
ows. In many instances,

it is important for 
ow models to capture time-resolved features because transient 
ow

or thermochemical processes may impact system performance. Heat transfer, combustion,

acoustics, multiphase couplings, and 
uid-structure interactions are well-known examples of

processes sensitive to 
ow transients.

For this reason, it has long been desirable to develop time-resolved models. Unsteady

RANS formulations have been developed that capture the dominant unsteady features of

some 
ows of interest.

A related but distinct development is the introduction of the large-eddy-simulation (LES)

approach. This involves unsteady 
ow simulation with su�cient resolution (ideally) so that

the 
ow scales that are not resolved presumably correspond to the regime of `universal' 
ow

behavior. Namely, the unresolved scales are assumed to consist of the inertial subrange of

turbulence, and, at the �nest scales, the viscous-dissipation subrange.

To the extent that this assumption is satis�ed, it is hoped that a su�cient characteri-

zation of the universal 
ow properties below the resolution scale and their coupling to the

resolved scales will ultimately provide a fundamentally sound basis for high �delity turbu-

lence modeling.

Signi�cant process toward this goal has been achieved. However, there are several ob-

stacles to the full achievement of this goal. It is widely recognized that foremost among

these obstacles is the complexity and multiscale nature of turbulent 
ow interactions with

boundary conditions imposed by walls (no-slip boundary conditions) or other surfaces (e.g.,

free-slip boundary condition for turbulent gas 
ow over a liquid surface).

The ideal case of a steadily forced turbulent boundary layer over a 
at wall exhibits a

universal structure embodied in the `law of the wall.' This phenomenology has motivated the

use of empirical wall functions in both RANS and LES models, with some degree of success.

However, complex 
ows of practical interest do not conform to this ideal picture. Near-wall


ows are subject to unsteady forcing and multiphysics processes (thermally induced property

5



variations, gravitational and other body forces, multiphase couplings, etc.) whose dynamical

interactions with the bulk 
ow are not captured by currently available wall treatments. These

complications arise also in the bulk 
ow, but in many instances their dominant in
uences

are at large scales resolved by the computation and are thereby modeled adequately.

The particular di�culty of near-wall modeling arises because the dominant 
ow scale at a

given distance from the wall is of the order of that distance, so all scales down to the viscous

dissipation scale (below which turbulent motions are suppressed) become nonnegligible as

the wall is approached. If �ne scales are important near the wall and the dynamics of

those scales depend on the details of the unsteady forcing and multiphysics processes, then

both LES and RANS approaches face the challenge of adequately capturing these �ne-scale

processes and their coupling to the bulk 
ow. Success in this regard is important for reliable

modeling of the bulk 
ow as well as modeling of near-wall processes per se.

A brute-force approach to this problem is to resolve all relevant near-wall scales in three

dimensions (3D) by performing direct numerical simulation (DNS) in the near-wall region of

the LES. The strategy adopted here is to capture, to the extent possible, the advantages of

this approach while simplifying it so as to make it computationally a�ordable. The approach

that is proposed achieves the needed spatial resolution in a lower dimensional formulation.

To minimize the computational expense, a one-dimensional (1D) methodology is formulated.

The details of this approach and its performance as a near-wall closure for LES are the subject

of this report.

1.2 Modeling Strategy

The considerations outlined in Sec. 1.1 motivate the formulation of a fully resolved, unsteady,

time-accurate 1D simulation of turbulent 
ow. Modeling assumptions needed to obtain a 1D

formulation necessarily preclude an exact representation of 3D turbulence. The approxima-

tions that are introduced are guided by the intended use of the model. Recognizing that the

model will not be quantitatively precise in all instances, the goal in formulating the model

is to base it on physical principles that are robust, albeit empirical, within a framework that

is general enough to incorporate turbulence interactions with diverse physical and chemical

processes. It is hoped that this approach will yield a formulation that degrades gracefully as

increasingly complex 
ows and/or multiphysics phenomena are addressed.

The 1D model may be viewed as a simulation of evolving pro�les of 
ow velocity and


uid properties along a 1D line of sight through 3D turbulent 
ow. The 1D model domain is

treated as a closed system, so that applicable conservation laws (mass, momentum, energy,

and species) can be enforced. This is not locally accurate, because the physical line of sight

is not a closed system. However, the 1D model is applied here to 
ows that are nearly

homogeneous in directions normal to the line of sight, so the time-averaged properties of the
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model are analogous to conventional boundary-layer approximations, as employed, e.g., in

some 1D RANS formulations.

Specializing to solenoidal (incompressible) 
ow, the only continuous motion permitted in

a closed 1D system is rigid translation of the entire domain. Therefore advection on the 1D

domain is not based on motions prescribed by the velocity pro�le.

To motivate the ODT representation of vortical advection, Prandtl's application of the

mixing-length concept to shear 
ow is considered. Denoting the wall-normal pro�le of stream-

wise velocity as u(y), Prandtl represented turbulent advection e�ects as wall-normal 
uid

displacements of magnitude l(y), where l is the local (in y) mixing length. These displace-

ments do not change any properties of the 
uid being displaced. In particular, the u value

of a 
uid element is invariant under displacement.

In general, displacements carry 
uid to locations where the mean u value, denoted hui,

di�ers from the u value of the 
uid being displaced. The displacements thus introduce


uctuations of u at a given location. The associated 
uctuations of u2 (relative to hui2)

are interpreted as the turbulent kinetic energy of the u velocity component (here omitting

constant multiplicative factors), and the displacements accordingly constitute a turbulent

kinetic energy production mechanism.

In addition, the displacements transfer mean momentum, thereby representing turbulent

transport of momentum. If dhui=dy is positive, then equal-and-opposite upward and down-

ward displacements will tend to induce a net downward displacement of u momentum. This

is the momentum 
ux generated by motions parallel to the momentum gradient.

At this stage of the development, the mixing-length concept does not speci�cally im-

ply the gradient-transport relation J = ���erhui, where J is the 
ux of mean u mo-

mentum and �e is a transport coe�cient, termed the eddy viscosity. In fact, the mixing-

length concept admits more general possibilities because it postulates direct interactions

between y locations separated by a �nite distance l. For example, the more general relation

J(y) = ��
R
dŷ �e(y; ŷ)rhu(ŷ)i, where �e(y; ŷ) is a kernel (sometimes termed the `spectral

viscosity' in Fourier-space formulations), is likewise consistent with, and perhaps physically

more faithful to, the mixing-length picture.

Thus, it is important to distinguish between the mixing-length concept and formal as-

sumptions, such as gradient transport, that are often introduced on the basis of mathematical

convenience rather than physical realism. The mixing-length concept in its general form is

a suitable starting point for the introduction of ODT.

The mixing-length concept provides a framework for quantitative representation of co-

herent motions over �nite distances within turbulent 
ow. Any such motion is characterized

by a length scale l and a time scale � that can be interpreted as either its time duration

or the characteristic time between motions of the given type. In the derivation of RANS

and other conventional models, and also in ODT, these motions are treated for modeling

7



purposes as instantaneous displacements. In RANS models, this assumption is not readily

apparent owing to the ensemble averaging that is applied in deriving the �nal formulation.

ODT is a time-resolved simulation, so details of the displacement mechanism are central to

the method.

As noted, gradient transport is a simplifying assumption often adopted within the mixing-

length framework. It is not universally adopted, as illustrated by the more general spectral

viscosity approach (as well as other generalizations not mentioned here). Another key as-

sumption that is widely, though not universally, adopted is that there is a single mixing

length l and mixing time � , i.e. a single relevant coherent motion, at any given location (in

steady-state models) or at any given location and time (in unsteady RANS and LES models).

An alternative to this assumption in a RANS context is spectral transport modeling, which

is in a developmental stage.

The single-scale assumption is another convenient simpli�cation that is not dictated by

the underlying physics, hence the e�ort to develop a more general approach. Even for cases

in which this assumption is reasonable, the known physics of turbulent 
ow often does not

uniquely specify the parameter dependencies of l.

There are many notable examples of successful turbulence modeling based on gradient

transport and/or the single-mixing-length assumption. For example, Prandtl's assumption

that l and �
�1 scale as y and dhu(y)i=dy, respectively, in the 
at-plate boundary layer was

the foundation of the present-day law of the wall.

The approach adopted in ODT is faithful to the mixing-length concept but involves min-

imal additional simpli�cations. The justi�cation for this approach is that the mixing-length

concept, despite its ad hoc nature, has proven to be a robust conceptual tool for turbulence

modeling. Its main limitation is that it is typically applied in a manner that requires the

introduction of 
ow-speci�c assumptions, resulting in the proliferation of models that are

limited in scope. Here, a formulation is sought that captures the e�cacy of the mixing-length

concept while avoiding narrowly based assumptions that might constrain its applicability.

These considerations anticipate some features of ODT that are elaborated in Sec. 2. First,

vortical advection is represented by instantaneous events, each characterized by a location

y0 on the 1D domain, a size l, and a time scale � characterizing the frequency of the event

type. Second, each event generates 
uid displacements that obey all applicable conservation

laws. Third, the model admits every event location and size permitted by the boundary

conditions, and therefore does not require the designation of a unique l value at given y0.

Within this modeling framework, it may turn out that a dominant scale l can be identi�ed

for each y0, and that the dependence of the dominant scale on y0 has a simple form. If this

turns out to be the case, then ODT may help identify simpler formulations applicable to

particular 
ows. It is emphasized, however, that this simpli�cation would be an outcome of

the model rather than a predetermined input to ODT.
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2 Near-Wall Model Formulation

2.1 Overview

Since it was �rst introduced, ODT has undergone an evolutionary development process.

Here, the formulation adopted in Sec. 5 as a near-wall momentum closure for LES is de-

scribed. Some of the model demonstrations presented in Sec. 4 predate this formulation.

The di�erences among formulations and their impact on computed results are discussed in

the context of speci�c applications.

Operationally, ODT de�nes initial-value problems for a three-component vector velocity

�eld vi(y) on a 1D spatial domain, denoted the y coordinate. (Consistent with boundary-layer

nomenclature, v2 corresponds to motion in the y direction.) Scalar �elds �(y), representing

thermodynamic quantities, species concentrations, etc., may also be included. The numeri-

cal method consists of a conventional time-stepping solution of partial di�erential equations

representing viscous dissipation and any other molecular processes that are included (such

as di�usion of scalars �), punctuated by a random sequence of instantaneous events repre-

senting individual turbulent eddies. This computed evolution may be viewed as a sequence

of initial-value problems, each running from a given eddy event until the next one, with each

eddy creating a modi�ed starting condition for subsequent time evolution. The molecular

evolution equations used here are �
@t � �@

2
y

�
vi(y; t) = 0 (1)�

@t � �@
2
y

�
�(y; t) = 0; (2)

where � is the kinematic viscosity and � is the di�usivity of the property �. The model

accommodates multiple species, multicomponent di�usion, and variable properties, including

density variations, but these extensions are not considered here.

ODT is a stochastic model because the eddy events are determined by a random sampling

procedure. When ODT is used to simulate a time-developing 
ow, statistics are gathered by

running multiple realizations to form ensemble averages. For statistically stationary 
ows,

statistics can be gathered by running a single realization and time averaging during the

statistically stationary evolution that follows relaxation of initial transients.

The mathematical operations that constitute eddy implementation are speci�ed (Sec. 2.2),

and then the rules governing the random sampling of events are formulated (Secs. 2.3 and

2.4). Finally (Sec. 2.5), statistical analysis and physical interpretation of computed quantities

are discussed.
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2.2 Eddy Implementation

The mathematical operations that comprise an eddy event can be represented symbolically

as

vi(y)! vi(f(y)) + ciK(y) (3)

�(y)! �(f(y)):

Here and below, the argument t of vi and functions of vi is suppressed.

Equation (3) indicates that 
uid properties at location f(y) prior to the eddy are mapped

to location y, corresponding to 
uid displacement y� f(y). In addition, a kernel K(y) with

a multiplicative coe�cient ci is added to vi(y). Before specifying the assumed forms of f(y)

and K(y), the motivation for this eddy formulation is explained.

In keeping with the mixing-length concept, the eddy event includes a mapping opera-

tion that displaces 
uid in a manner that is consistent with conservation laws and other

requirements. The key requirement is that any y interval must be mapped into an an inter-

val or collection of intervals of the same total length, thereby enforcing incompressibility in

the closed 1D system. Mathematically, the mapping is required to be measure-preserving.

This property assures global conservation of 
uid properties, including arbitrary powers of

velocity.

The additive terms ciK(y) incorporate a physical mechanism that is not re
ected in

the mixing-length picture of property-invariant 
uid displacements. Namely, pressure gra-

dients acting on the velocity vector during eddy motion can reorient the vector, thereby

redistributing 
ow kinetic energy among the velocity components. This pressure-scrambling

mechanism has been incorporated into second-order RANS closures through the introduc-

tion of the return-to-isotropy concept (Pope 2000). It is assumed that random eddy motions

reduce 
ow anisotropy because they reorient 
uid in a manner that does not depend on the

forcings or boundary conditions that cause anisotropy. Subject to the constraint of energy

conservation, return to isotropy is incorporated into ODT by choosing the amplitudes ci in

the additive terms so that the component energies

Ei �
�0

2

Z
dy v

2
i
(y); (4)

where �0 is the 
uid density (here assumed constant), tend to be equalized. (In the present

1D formulation, �0 is de�ned as mass per unit length. Conventional units can be recovered

by de�ning the model domain to be a pencil with �xed cross-sectional area and no property

variations in the cross-sectional plane.) Momentum conservation is enforced by requiring

K(y) to obey
R
dy K(y) = 0.

Within the stated constraints, there is considerable latitude in the choice of the functions

f(y) and K(y) and coe�cients ci. The speci�c choices and their motivations are presented
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next. Provided that these quantities satisfy the stated constraints and other physical re-

quirements that are noted, it is likely that the trends and features of the computed results

are insensitive to the speci�c choices, and that sensitivity of quantitative predictions to the

choices is largely subsumed in the adjustment of model parameters. Adjustable parameters

are introduced in the eddy selection process (Sec. 2.3).

The function f(y) is taken to be the triplet map,

f(y) � y0 +

8>>>>>>>>>>>><>>>>>>>>>>>>:

3(y � y0) if y0 � y � y0 +
1
3
l,

2l � 3(y � y0) if y0 +
1
3
l � y � y0 +

2
3
l,

3(y � y0)� 2l if y0 +
2
3
l � y � y0 + l,

y � y0 otherwise.

(5)

The triplet map was originally introduced in the linear-eddy model (LEM), the antecedent of

ODT (Kerstein 1991). It induces nonzero displacements only within the y range [y0; y0 + l].

The eddy parameters y0 (nominal eddy location) and l (nominal eddy size) are determined

for a given event by selection process described in Sec. 2.3.

The triplet map shrinks the interval [y0; y0+ l] to a third of its original length and places

three copies in the original interval. The middle copy is reversed, so that the mapping does

not introduce discontinuities into any �eld de�ned on y.

The physical interpretation of the triplet map has been discussed in detail (Kerstein 1991,

Kerstein 1999). Salient features are (i) the multiplicative increase of property gradients, anal-

ogous to vortical strain e�ects (`vortex stretching') in turbulence, (ii) wrinkling of initially

monotonic property pro�les, introducing the 1D analog of 
ame wrinkling and consequent


ame-
ame interactions in combusting 
ows, and (iii) a 1D analog of vortical overturning

and consequent mixing enhancement by turbulence. These features are interrelated, and in

fact, their common mechanistic origins facilitate the concise representation of a turbulent

eddy by the triplet map.

The kernel K(y) in Eq. (3) is taken to be K(y) � y � f(y), i.e., the y pro�le of dis-

placements induced by the triplet map. This is a convenient form that obeys the applicable

conservation laws and introduces no discontinuities when implemented in Eq. (3).

Additional modeling is required to determine the pressure-scrambling amplitudes ci.

Based on substitution of the identity
R
dy K

2(y) = 4
27
l
3 and the de�nition

vi;K �
1

l
2

Z
dy vi(f(y))K(y) =

4

9l2

Z
y0+l

y0

dy vi(y)[l� 2(y � y0)] (6)

(where the rightmost expression follows from the de�nitions of f(y) and K(y)) into Eq. (4),
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the change in the kinetic energy of component i due to eddy implementation is

�Ei =
1

2
�o

Z
dy

h
(vi(f(y)) + ciK(y))2 � vi(y)

2
i
= �ol

2
ci

�
vi;K +

2

27
lci

�
: (7)

The requirement
P

i�Ei = 0 implies only one constraint on the three amplitudes ci.

An additional constraint arises by requiring invariance under exchange of indices in order

to satisfy reference frame invariance. With these constraints, the kinetic energy changes

imposed on the velocity components must be of the form

�Ei = �

X
j

TijQj (8)

where Qj (j = 1, 2, or 3) is a quantity with units of energy that depends on vj(y) and

scalars, � is a free parameter, and the transfer matrix T is de�ned by

T �
1

2

0BBBBBBBB@

�2 1 1

1 �2 1

1 1 �2

1CCCCCCCCA
: (9)

This matrix is constructed to obey energy conservation (
P

i�Ei = 0) and to be invariant

under permutation of indices. These requirements uniquely de�ne T except for an arbitrary

multiplicative constant, which is absorbed in the parameter �. Using Eq. (7), the amplitudes

ci are determined by the choice of the quantities Qi and the value of �. Here, � is a transfer

coe�cient that speci�es the fraction of Qi that is redistributed to the other components.

Speci�cation of Qi is guided by the conceptual framework of the ODT model. Because

each eddy event is meant to represent the local physics of turbulence on a single length

scale (the mapping size l), Qi should be a local measure of the turbulent kinetic energy of

velocity component vi on that length scale. The pressure-scrambling mechanism would then

redistribute some of this energy among the three components. A natural choice arises when

one considers the speci�c mathematical structure of the operations de�ned in Eq. (7). While

addition of ciK(y) to vi makes it possible to add an arbitrarily large quantity of energy,

only a �nite amount may be removed. The maximum value of ��Ei based on Eq. (7) is

denoted the `available kinetic energy' of vi, because it indicates the maximum amount of

energy which may be removed from vi by this method.

The available energy concept arises in other contexts, such as the thermodynamic concept

of available work (Callen 1960) and the available potential energy concept applied to density-

strati�ed 
ow (Lorenz 1955). Here it introduced as a model construct, motivated as follows.

Energy transfers associated with an eddy motion of given size are assumed to be governed

by velocity 
uctuations of comparable size. This assumption is analogous to the commonly

assumed locality, in wavenumber space, of energy transfers in the turbulent cascade. The
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function K(y) introduced in Eq. (3) concisely embodies this scale locality principle by as-

suring that (i) the scale of velocity 
uctuations induced by energy transfers is comparable

to the eddy size, (ii) 
uctuations that determine the energy available for transfer, based on

Eq. (7), are of comparable size, and (iii) scale locality is likewise incorporated into the eddy

selection process (Sec. 2.3).

Therefore Qi is taken to be the available kinetic energy of vi determined by maximization

of ��Ei, giving

Qi �
27

8
�olv

2
i;K
: (10)

Using this choice of Qi, the exchange amplitudes are given by

ci =
27

4l

0@�vi;K + sgn(vi;K)
s
v
2
i;K

+ �

X
j

Tijv
2
j;K

1A
: (11)

The solution is guaranteed to be real for 0 � � � 1. Because Qi is the maximum energy

available for exchange, the physical model requires the transfer coe�cient to fall within this

range.

Unless otherwise noted, � is set equal to 2=3, corresponding to equalization of component

available energies. This re
ects the intuitive notion that an eddy turnover erases memory

of 
uid orientation in any �xed reference frame, so there should be no bias in the post-eddy

distribution of available energy among velocity components that re
ects the distribution

prior to the turnover. This may be an overly literal interpretation of the correspondence

between ODT eddy events and eddies in turbulent 
ow, so other values of � should not be

ruled out a priori.

In Eq. (11), the sign ambiguity in the solution to the quadratic equation for ci is resolved

by requiring that ci ! 0 as � ! 0. Velocity components that are initially zero everywhere

are seeded with small initial random perturbations to prevent sign ambiguities in these

components. The perturbations are symmetric about zero, assuring that these components

have zero mean.

2.3 Eddy Selection

The �nal ingredient required in the model is the determination of the sequence of eddy

mappings, parameterized by position y0 and size l, that should take place. An estimated

time scale � (y0; l) for each mapping is based on the eddy turnover time as determined from

the velocity pro�les vi(y; t). In real turbulence, this is roughly the time required for an eddy

to mix a region of size l. In ODT, eddy events are implemented instantaneously, but should

occur with frequencies comparable to the turnover frequencies of corresponding eddies.

For a quantititive de�nition of � , a measure of the turbulent kinetic energy associated

with each possible mapping interval is employed. The most general dimensionally consistent
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form for the time scales � (y0; l) is

�ol
3

�
2
�
X
j

BjQj (12)

whereBj are arbitrary dimensionless constants, and the quantitiesQj are again somemeasure

of energy in the velocity components. Here again, Qj is taken to be the available kinetic

energy of component j, based on the same considerations as in Sec. 2.2. Because eddy

events represent motion in the y direction, the quantities Bj are chosen so that the right-

hand side of Eq. (12) corresponds to the available kinetic energy in component v2 (the y

velocity component) upon completion of eddy implementation. Based on Eqs. (8)-(10), this

yields  
l

�

!2
� v

2
2;K + �

X
j

T2jv
2
j;K

: (13)

This choice breaks the symmetry under index exchange only in determining the sequence of

mappings, while maintaining it during the implementation of each individual eddy mapping

event.

There is one additional consideration in determining � . Due to the damping e�ects of

viscosity, very small eddies should not occur. Any eddy with a time scale much longer than

the corresponding viscous time scale �� � l
2
=� for that eddy size should be prohibited. This

suggests including a `viscous penalty' in the relation determining the eddy turnover time.

The eddy time scale, with the viscous penalty, is then governed by 
l

�

!2
� v

2
2;K + �

X
j

T2jv
2
j;K
� Z

�
2

l
2
: (14)

The constant of proportionality Z in the viscous penalty is an order-unity parameter of the

model. For most applications, computed results are insensitive to Z for su�ciently small

Z because transport by marginally allowed eddies becomes negligible compared to viscous

transport due to the concurrent molecular evolution, Eq. (1). Thus, Z can be either a physical

parameter or a numerical parameter used to eliminate small, inconsequential events.

In Eq. (14), the available energy is evaluated at the completion of eddy implementation in

order to incorporate several relevant energy transfer processes. For example, consider a 
ow

with a spatially varying v1 or v3 pro�le but v2 identically zero. Then intercomponent energy

transfer is the only source of available energy, and this transfer, if it occurs, corresponds to

the onset of higher-dimensional motion. This raises the possibility (not yet investigated in

detail) that the present formulation may encompass the transition to turbulence as well as

fully developed turbulence.

A model generalization discussed in Sec. 4 is the incorporation of buoyancy. If the ODT

domain is vertically oriented, then triplet mapping of a variable-density interval induces a

potential-energy change that implies to an equal-and-opposite change of v2 kinetic energy. To
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simulate the onset of turbulence in a quiescent, unstably strati�ed 
uid, the available energy

must again be evaluated after energy exchange, or there will be no identi�ed energy source to

drive the 
ow. Likewise, the inhibiting e�ect of stable strati�cation is captured by evaluating

the available energy at eddy completion; to do otherwise might lead to energetically forbidden

motions.

As in the previous versions of ODT, the time scales � for all possible eddies are translated

into an event rate distribution �, de�ned as

�(y0; l; t) �
C

l
2
� (y0; l; t)

=
C�

l
4

vuuut v2;Kl
�

!2
+ �

X
j

T2j

 
vj;Kl

�

!2
� Z (15)

using (14) for the turnover time. If the right-hand side of Eq. (14) is negative, the eddy is

deemed to be suppressed by viscous damping and � is taken to be zero for that case. In

the square-root term of Eq. (15), the quantities preceding Z involve groups that have the

form of a Reynolds number. Z can be viewed in this context as a parameter controlling the

critical Reynolds number for eddy turnover. This Reynolds-number threshold is conceptually

(though not necessarily quantitatively) related to the threshold for transition to turbulence

(Kraichnan 1962).

The foregoing construction of the ODT eddy rate involves three free parameters: C,

�, and Z. The overall rate constant C determines the strength of the turbulence in the

model; hence it determines the Reynolds number Re or equivalent measures of turbulence

intensity. The transfer coe�cient � determines the degree of kinetic energy exchange among

components. For � = 0 (no exchange), this formulation reduces to a specialization of the

buoyant strati�ed 
ow model of Wunsch & Kerstein (2001) to constant density 
ows (see

Sec. 4). The small-scale cuto� parameter Z determines the smallest eddy size for given local

strain conditions.

The sequence of eddies implemented during a simulated realization is sampled from the

rate distribution �. During a time increment dt, the probability of occurrence of an eddy

whose location and size are within the ranges [y0; y0 + dy0] and [l; l + dl] respectively is

�(y0; l; t) dy0 dl dt.

Each event, as well as the viscous evolution, Eq. (1), between events, changes the velocity

pro�les vi and therefore modi�es the rate distribution �. This interaction between the

rate distribution and simulated 
ow evolution is largely responsible for key features of the

model such as emulation of the inertial-range turbulent cascade (Kerstein 1999, Wunsch &

Kerstein 2001). From a computational viewpoint, it causes explicit construction of, and

sampling from, the rate distribution to be una�ordable owing to the need to reconstruct

this distribution repeatedly. Instead, an indirect but mathematically equivalent procedure

is employed, as explained in Sec. 3.3.
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2.4 Large-Eddy Anomaly

For time-developing 
ows, the statistical sampling procedure used in ODT introduces an

artifact associated with the occasional selection of an event much larger than the momentum

thickness (or equivalent characteristic size) of the 
ow. These events are rare because the

dimensional scalings underlying the method are consistent with scale locality (i.e., events of

given size are driven most e�ectively by forcings of comparable scale). However, the rare

large events permitted by the statistical sampling procedure contribute disproportionately to

transport, which scales as the square of the event size. Thus, they can dominate transport,

and potentially introduce spurious divergences.

Several ways of mitigating this artifact have been employed previously (Kerstein 1999,

Kerstein & Dreeben 2000). Here, a large-eddy suppression mechanism is introduced that is

physically motivated, parameter free, and broadly applicable.

To suppress rare large events, the rate � for a given event is evaluated two di�erent ways,

and the smaller of the two results is used in the sampling procedure outlined in Sec. 2.3.

One evaluation is by the method already described in Sec. 2.3, based on Eq. (15). The other

evaluation involves replacement of each velocity pro�le vi(y; t) by a pro�le that is linear in

y, and evaluation of Eq. (15) based on these linear pro�les. The slope of each pro�le is taken

to be the median value of jdvi=dyj within the eddy range [y0; y0 + l].

The key attribute of this procedure is that it assigns a zero rate to any event for which

each velocity pro�le is 
at (zero slope) in more than half of the eddy range. Thus, an event

encompassing a y interval that is more than twice the width of the active zone of an entraining

shear 
ow is strictly excluded. The median of absolute slope is used in order to avoid a

balance of positive and negative values that would result in a zero median for events whose

exclusion is not intended. In addition to preventing unphysically large eddies, this procedure

reduces the likelihood of events whose available energy is dominated by contributions from

a small subinterval of the eddy range. Thus, the procedure further enforces scale locality,

which is the conceptual basis of ODT.

The median procedure could be used as a replacement, rather than an augmentation,

of the procedure of Sec. 2.3. However, the model is internally most consistent if the true

pro�les, which must be used in eddy implementation (mapping and energy exchange), are

also used in eddy selection. The median procedure as implemented can only reduce the

likelihood of a given event, consistent with the objective of excluding certain events with

minimal modi�cation of other aspects of the model.

2.5 Statistical Properties of Flow Realizations

ODT is formulated as a closed system on a 1D domain. The model can be viewed as a

simulation of a 1D line of sight in a 3D 
ow. However, such a line of sight is not a closed
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system. Modeling it as a closed system is an artifact that may be the cause of some of the

discrepancies between model predictions and measured turbulence properties. However, it

is unlikely that this is the most severe approximation within the model.

A key bene�t of taking the 1D domain to be a closed system is that conservation laws

can be enforced. The measure-preserving property of the triplet map enforces conservation

of mass. In fact, this property assures that the triplet map conserves all domain-integrated

quantities, including velocity moments of all orders. The pressure-scrambling mechanism is

formulated so as to conserve momentum and total energy while redistributing energy among

velocity components. Viscous dissipation, implemented in a conventional manner, removes

kinetic energy while conserving momentum.

Accordingly, momentum and energy budgets can be formulated for ODT that are broadly

analogous to the usual relations based on the Navier-Stokes equations. Here, ODT budgets

are formulated both to re�ne the analogy to Navier-Stokes turbulence and to provide oper-

ational de�nitions of relevant 
ow statistics.

For this purpose, a notional instantaneous evolution equation is written for ODT as

follows:
@vi

@t

= �

@
2
vi

@y
2
+Mi +Ki: (16)

This equation formally represents the three processes that can change the value of vi at a

given location y and time t. The viscous term has its usual form. Mi and Ki represent

changes induced by triplet-map and and pressure-scrambling operations, respectively. For

example, if a triplet map at time t0 replaces the vi value at given y, denoted v̂i, by a new value

~vi, thenMi(y) = (~vi�v̂i)�(t�t0). The formal de�nition ofKi is analogous, with v̂i and ~vi now

evaluated before and after the pressure-scrambling operation. Numerical implementation of

statistical data analysis is based on ensemble-averaged equations derived from Eq. (16).

Before averaging Eq. (16), the role of Ki in the context of momentum and energy balances

is considered. Though the kernel addition (Sec. 2.1) during eddy implementation is intended

to incorporate pressure-scrambling e�ects, this operation may be interpreted formally as a

combination of scrambling and transport contributions to balance equations. In particular,

a given kernel-induced change Ki(y) may re
ect energy and momentum transfers to other

velocity components (scrambling) and/or to the same velocity component at other spatial

locations (transport). Accordingly, Ki is expressed as a sum, Ki = Si + Ti, of scrambling

and transport contributions.

The kernel K is de�ned so that
R
K dy = 0 so that the pressure-scrambling operation

conserves momentum. Accordingly, for a given eddy
R
Ki dy = 0. The transport contribution

Ti should be de�ned so that its integral is zero, because it represents i-component momentum

transfer along the y coordinate and therefore is not a net momentum source or sink for this

component. These integral constraints are satis�ed only if
R
Si dy = 0.

The latter result does not uniquely de�ne Si, but the choice Si � 0 is clearly preferred

17



because it corresponds to the absence of a pressure-scrambling contribution to the ODT mean

momentum equation, in accordance with the absence of pressure scrambling in the Navier-

Stokes mean momentum equation. In fact, this equation lacks any pressure-
uctuation

terms, so Ti should not be regarded as a pressure-transport contribution. Rather, Mi and Ti

together determine the ODT analog of mean advective transport.

The ODT mean momentum equation is obtained by taking the ensemble average of

Eq. (16). Substituting Ti for Ki, this gives

@

@t

hvii = �

@
2

@y
2
hvii+ hMii+ hTii; (17)

which may be compared to the constant density Navier-Stokes mean momentum equation

for planar time-developing 
ow (Moser et al. 1998),

@

@t

hv1i = �

@
2

@y
2
hv1i �

@

@y

hv01v
0

2i; (18)

where v0
i
� vi � hvii. (Owing to planar symmetry, hv2i and hv3i are identically zero.) The

comparison identi�es the ODT analog of the Reynolds-stress component hv01v
0

2i for this class

of 
ows. Assuming an in�nite domain with a turbulent zone of �nite lateral extent, hv01v
0

2i = 0

at y =1, so at any location y
�, Eqs. (17) and (18) give

hv01(y
�)v02(y

�)i =
Z
1

y�
dy (hM1i+ hT1i) � I1(y

�): (19)

The notation Ii(y
�) is introduced in order to distinguish the operational evaluation of

hv0
i
(y�)v02(y

�)i in ODT from the conventional Navier-Stokes de�nition of this quantity. (Gen-

eralization of the derivation of Eq. (19) to i 6= 1 is straightforward.) Equation (19) is likewise

applicable if the upper bound of the integral is any �nite y value at which hv01v
0

2i = 0, e.g.,

at a wall.

Equation (18) is consistent with the physical interpretation that hv01(y
�)v02(y

�)i represents

the rate of increase of
R
1

y�
dy v2(y

�) due to turbulent transfer of the v1 velocity component

across y = y
�. The terms on the right-hand size of Eq. (19) are the contributions of the

ODT turbulent transfer mechanisms to this integral.

Operationally, these contributions are evaluated by gathering statistics from ODT real-

izations in �nite time bins. Omitting for now the viscous contribution, Eq. (17) implies that

the mean velocity increment over a time increment �t is

h�v1i = hM1�ti+ hT1�ti; (20)

whereM1�t and T1�t are determined, for a given realization, by summing the respective �v1

contributions over all eddies occurring during the designated time interval. This summation

is performed separately at each location y, though the y argument has been suppressed in

the analysis. An average of these contributions over an ensemble of realizations yields h�v1i.
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Dividing by �t, a discrete-time estimate of the advective terms on the right-hand side of

Eq. (17), specialized to i = 1, is obtained. Substitution into Eq. (19) then yields the ODT

analog of hv01v
0

2i.

This result is di�erent from what would be obtained by evaluating hv01v
0

2i based on ODT

velocity pro�les v1 and v2. ODT velocities do not literally advect 
uid, so their use in this way

would not be physically meaningful. However, ODT is formulated so that energetics based on

these pro�les are meaningful. In particular, budgets of the component contributions, hv02
i
i,

to the turbulent kinetic energy are analogous to their Navier-Stokes counterparts. Flux

terms within these budgets must be evaluated, as in the derivation of Eq. (19), based on the

conservation laws obeyed by ODT.

Therefore the ODT budget of hv02
i
i is obtained by �rst reconsidering Eq. (16). The usual

approach is to multiply this equation by vi, average, and then combine the result with hvii

times Eq. (17) to obtain an evolution equation for hv02
i
i. However, this approach is again

inapplicable to the advective terms because of the limited role of the velocity pro�les in

ODT. Therefore the appropriate starting point is the formal equation

@v
2
i

@t

= 2�vi
@
2
vi

@y
2
+Mii +Kii; (21)

whereMii andKii represent the e�ects of the triplet-map and pressure-scrambling operations,

respectively, on v2
i
at given y. For the illustrative case below Eq. (16), Mii(y) = (~v2

i
� v̂2

i
)�(t�

t0), and the evaluation of Kii is analogous.

Kii, like Ki, is expressed as a sum of scrambling and transport contributions, Kii =

Sii + Tii. For a given eddy, transport by de�nition conserves v2
i
globally, so

R
Tii dy = 0.

UnlikeKi, Kii is not globally conserved, so
R
Kii dy is nonzero in general. Sii is not uniquely

de�ned, though its dy-integral for a given eddy is unique. We choose to de�ne Sii within

an eddy as its eddy average, Sii =
1
l

R
Kii dy. Though arbitrary, this choice does not have

a signi�cant impact on computed results because it only a�ects the spatial distribution of

scrambling within an eddy subject to the integral constraint.

It was noted that Ti should not be interpreted as a pressure-transport e�ect although

it is based on the model subprocess that nominally represents pressure-
uctuation e�ects.

Likewise, Tii is not speci�cally a pressure-transport e�ect, although the hv02
i
i budget, unlike

the hvii budget, has a pressure-transport as well as a turbulent transport term. The sum of

Mii and Tii contributions can be interpreted as the ODT analog of the sum of Navier-Stokes

pressure-transport and turbulent transport terms, but the Mii and Tii contributions cannot

be decomposed consistently into the individual Navier-Stokes terms. Therefore the advective

transport term of the hv02
i
i budget combines these two terms.

The ODT evolution equation for hv2
i
i is

@

@t

hv2
i
i = �

@
2

@y
2
hv2

i
i � 2�

* 
@vi

@y

!2+
+ hMiii + hTiii+ hSiii; (22)
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where the viscous contribution has been rearranged in the usual manner. To obtain the

evolution equation for hv02
i
i, @

@t
hvii2 = 2hvii

@

@t
hvii is subtracted from Eq. (22). The subtracted

term is evaluated by multiplying Eq. (17) by 2hvii. This multiplication is valid because it

does not involve subsequent averaging that would require the evaluation of advective 
uxes.

Performing the subtraction and rearranging the viscous terms in the usual manner gives

@

@t

hv02
i
i = �

@
2

@y
2
hv02

i
i � 2�

* 
@v

0

i

@y

!2+
+ hMii + Tii + Siii � 2hMi + Tiihvii: (23)

Adopting the Ii notation introduced in Eq. (19) and introducing the notation Iii(y) �R
1

y
dy (hMiii+hTiii), addition and subtraction of �2Ii

@

@y
hvii on the right-hand side of Eq. (23)

gives

@

@t

hv02
i
i = �

@
2

@y
2
hv02

i
i � 2�

* 
@v

0

i

@y

!2+
� 2Ii

@

@y

hvii �
@

@y

(Iii � 2hviiIi) + hSiii (24)

after some rearrangement. This is not the most useful representation for data reduction.

The terms in Eq. (24) have been organized so that their counterparts in conventional Navier-

Stokes budgets (as formulated by Moser et al. 1998) can be readily identi�ed.

The �rst term on the right-hand side of Eq. (24) is the viscous di�usion term, identical

in form to the corresponding term of the conventional hv02
i
i budget. The second term is the

ODT analog of the conventional dissipation term �2�
D�

@v
0

i

@xi

� �
@v

0

i

@xj

�E
, which is summed over

j but not over i. In ODT, property variations are represented only on the y coordinate, so

the ODT dissipation term corresponds to the j = 2 term of this sum. This does not imply

that ODT necessarily underestimates the viscous dissipation. The conservation laws obeyed

by ODT assure that it will exhibit a balance between total (y-integrated) production and

total dissipation plus storage (time derivative), and the model can in principle reproduce all

these quantities accurately. Because the model is con�ned to one spatial dimension, velocity

derivatives will be larger in magnitude to achieve a given dissipation level than they are in 3D


ow. This illustrates that ODT may provide a reasonable representation of 
ow energetics

although its representation of 
ow kinematics di�ers from 3D turbulence.

As noted earlier, Ii is the ODT analog of the Reynolds-stress component hv0
i
v
0

2i. Ac-

cordingly, the third term on the right-hand side of Eq. (24) corresponds precisely to the

conventional production term.

The next term is a transport term because its form precludes a net gain or loss of total

hv02
i
i. It subsumes the ODT advective processes (triplet map and kernel implementation),

and in this regard is analogous to the sum of conventional turbulent transport and pressure

transport, here denoted `advective transport.' There does not appear to be a physically valid

decomposition of the ODT term into the two conventional transport terms. Therefore the

sum of conventional terms should be compared to the ODT advective transport in computed

budgets.
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The quantity Sii has been de�ned so that its properties are analogous to the conventional

pressure-strain term. Though there is some arbitrariness in the de�nition, it was noted that

an integral constraint limits its quantitative impact. hSiii measures pressure scrambling by

the mechanism introduced in Sec. 2.2. The transport induced by this mechanism is subsumed

in the transport term of Eq. (24). Sii has been de�ned so that its sum over components i is

zero at all y. Thus, there is no scrambling contribution to the ODT budget of q2 (the sum of

component variances), just as there is no pressure-strain term in the conventional q2 budget.

3 Numerical Implementation

3.1 Molecular Evolution

The numerical implementation of an ODT simulation involves four subprocesses: eddy selec-

tion, eddy implementation, molecular evolution, and data gathering. The �rst three subpro-

cesses are considered in their order of introduction in Sec. 2. Data gathering is not discussed

further because data gathering procedures that are speci�c to ODT implementation are

discussed in Sec. 2.5.

Molecular evolution according to Eqs. (1) and (2) is computed in a conventional man-

ner, although the choice of the numerical scheme is in
uenced by the occurrence of eddy

events. The eddy events a�ect the time-step and spatial resolution requirements. To see

why, the typical time between eddy events is compared to the di�usive time scale that con-

trols molecular evolution. In a turbulent cascade, the smallest eddies occur most frequently,

so the eddy event frequency is determined primarily by the smallest eddies. Assume that

the smallest eddy size lmin in an ODT simulation is much smaller than the computational

domain size Y . (In turbulence, lmin=Y typically scales as Re�3=4.) The smallest eddy in tur-

bulence is the eddy whose contribution to transport is comparable to the kinematic viscosity

�. The corresponding eddy transport coe�cient is of order l2min=�min, where �min is the eddy

turnover time. Analysis of 
uid displacements induced by triplet maps suggests the relation
2
27
l
2
min=�min = � (Kerstein 1991). Though this relation neglects the transport contribution of

kernel implementation (Sec. 2.5), it is adequate for estimation purposes.

In the ODT context, �min is the typical time between eddy events that include a given

location. This is not the same as the typical time between eddy events in the simulation.

If each size-lmin interval is subject to one event per time interval �min (an idealization for

estimation purposes), then then the total number of events during that time interval is

Y=lmin. Therefore the eddy event time scale for the simulation is lmin�min=Y .

This time scale is compared to the CFL time scale for marginal stability of the numerical

solution of the viscous evolution equation, which is 1
2
(�y)2=�, where �y is the cell size on the
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discretized 1D domain. There is generally no need for �y to be extremely small compared

to lmin because lmin by de�nition is the scale below which velocity 
uctuations are strongly

damped by viscosity. (�y � lmin may be required in special cases such as 
ows with scalars

whose di�usivity � is much less than �. Some cases of this sort are considered in Sec. 4. The

spatial and temporal resolution requirements for these cases are modi�ed accordingly.)

Nevertheless, �y should be somewhat smaller than lmin so that the spatially discrete

implementation of the triplet map and the scrambling kernel are su�ciently accurate ap-

proximations of their continuum de�nitions. As noted shortly, a minimum of six cells are

required to implement the a discrete eddy, and more are required for a reasonable represen-

tation of the continuum formulation. For estimate purposes, the relation �y = lmin=10 is

assumed for a marginally resolved computation.

Combining results, the eddy event time scale is estimated to be a factor 150�y=Y smaller

than the viscous CFL time scale. This factor is of order unity or less for any physically

meaningful application of ODT. Therefore molecular evolution uninterrupted by triplet maps

does not occur for time scales much longer than the viscous CFL time scale. However,

acceptable accuracy is obtained in some instances if the molecular evolution time step is

taken to be larger than the eddy event time scale. In this case, the eddy events scheduled

to be implemented during the molecular time step are implemented instead at the end of

the time step. This approach improves e�ciency through the use of implicit methods for

the solution of Eqs. (1) and (2). The CFL time scale for Eq. (2) is smaller than the eddy

event time scale for �� � (due to more stringent resolution requirements) and for � � �,

so implicit methods are particularly advantageous for these cases, and were used for some of

the computations discussed in Sec. 4.

This lengthening of the the molecular time step, and associated delay of the implemen-

tation of concurrent eddies, may cause an arti�cial cyclic variation of property gradients.

The bunched implementation of eddy events can lead to excessively smooth property pro-

�les immediately before they are implemented and excessively rough pro�les immediately

afterward. Time-step sensitivity studies are needed on a case-by-case basis to determine the

largest time step such that 
ow statistics of interest are not unduly a�ected by this cyclic

variation.

3.2 Eddy Implementation

Eddy implementation on a discretized domain requires a de�nition of the discrete triplet

map. For conservative implementation, the discrete triplet map is de�ned as a permutation

of the cells of the discrete domain. The eddy interval is taken to be an integer multiple of

three cells. The discrete map, applied to 3k cells sequentially labeled 1, 2, : : : , 3k, yields

the sequence 1, 4, 7, : : : , 3k � 8, 3k � 5, 3k � 2, 3k � 1, 3k � 4, 3k � 7, : : : , 8, 5, 2, 3, 6,
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9, : : : , 3k � 6, 3k � 3, 3k. The smallest consistently de�ned permutation involves six cells

(k = 2), corresponding to the permuted sequence 1, 4, 5, 2, 3, 6. Note that only 3k � 2 of

the cells in a nominal size-3k map are permuted. Continuous and discrete representations of

the triplet map are illustrated in Fig. 1.

It is straightforward to show that the mean-square displacement, 1
l

R
y0+l
y0

dy [y� f(y)]2, of

points in the eddy interval is 4
27
l
2. Based on random walk theory, this implies a di�usivity

2
27
Nl

2 of a 
uid marker that is subject to successive size-l mappings with mean frequency N .

Taking the eddy time scale � to be an estimate of 1=N , the relation used earlier for time-step

estimation is obtained.

It is likewise straightforward to show that the mean-square displacement of cells by a

size-3k discrete triplet map is 4
27

�
1� 1

k

�
(3k)2, which is a factor 1 � 1

k
smaller than the

corresponding continuum result. The e�ect of this deviation on advective transport, and a

compensatory correction, are presented in the discussion of eddy selection, which is consid-

ered next.

3.3 Eddy Selection

As explained in Sec. 2.3, the sequence of eddy events implemented during a simulated real-

ization is sampled from the rate distribution �. Each event, as well as the viscous evolution,

Eq. (1), between events, changes the velocity pro�les vi and therefore modi�es the rate dis-

tribution. This interaction between the rate distribution and simulated 
ow evolution is

largely responsible for key features of the model such as emulation of the inertial-range tur-

bulent cascade (Kerstein 1999, Wunsch & Kerstein 2001). From a computational viewpoint,

it causes explicit construction of, and sampling from, the rate distribution to be una�ordable

owing to the need to reconstruct this distribution repeatedly.

Instead, an indirect but mathematically equivalent procedure is employed. A rate dis-

tribution that remains unchanged during the simulation is speci�ed arbitrarily, though the

procedure is most e�cient if it approximates the true distribution. Events are sampled from

this �xed distribution. For a given sampled event, parameterized by y0 and l, the true value

of � at that instant is computed based on the smaller of two values: the value given by

Eq. (15) and the value given by the procedure of Sec. 2.4. This true value is compared

to the value speci�ed by the �xed distribution. The comparison determines an acceptance

probability for the event. This two-step procedure - random sampling followed by a random

trial determining acceptance or rejection - results in an event sequence that is governed by

the true rate distribution. The advantage of this approach is that each invocation procedure

requires determination of the true value of � for only one eddy, rather than for all possible

(y0; l) pairs.

This procedure is implemented as follows. A �xed rate distribution �(y0; l) is preassigned,
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(a)

(b)

(c)

Figure 1. E�ect of the triplet map on an initially linear 
uid-property pro�le.
(a) Initial pro�le. (b) Velocity pro�le after applying the triplet map to the interval
denoted by ticks. (c) Discrete representation of the initial pro�le, and illustration of
the e�ect of a triplet map on an interval consisting of nine cells. For clarity, arrows
indicating formation of the central of the three images of the original interval are
dashed.
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such that � is nonzero for any (y0; l) pair allowed in the simulation. One eddy sampling occurs

per time step �t, where �t is chosen to obtain an adequate approximation of eddy sampling

in continuous time.

One condition that �t must satisfy is that the expected number N of eddies during the

time interval [t; t+�t], which equals
R
dy0 dl

R
t+�t
t

dt �(y0; l; t), must be much less than unity.

This is required because at most one eddy is implemented per �t interval. This sampling

can adequately approximate the true eddy sequence only if the true sequence rarely involves

two or more eddies during a �t interval. This requires N � 1 because the probability of

two or more events during this interval is of order N2 (assuming independent events for

estimation purposes). For example, if N2 = 0:01 provides su�cient accuracy, then this

requires a sampling rate at least ten times higher than the true eddy rate. Physically based

estimates (Sec. 3.1) indicate that the true eddy rate determines the shortest time scale in

the model, so �t is by far the smallest time step in the simulation. If the sampling rate is

at least 10 times higher than the true eddy rate (a nominal factor, because the numbers are

illustrative), then the fraction of sampled eddies that are implemented must be less than 0:1

in order for the eddy implementation rate in the numerical simulation to equal the true rate

de�ned by the model.

These estimates are based on the rate of occurrence of all eddies. In the foregoing ex-

pression for N , this corresponds to integration over all values of y0 and l. Likewise, one may

compare the true event rate and the numerical implementation rate for events corresponding

to any di�erential increment dy0 dl of these parameters. The true rate is �(y0; l; t) dy0 dl and

the numerical implementation rate is the sampling rate �(y0; l) dy0 dl times the probability

P that the sampled event is implemented. Thus, to match the true rate, implementation of

a sampled event is determined by a Bernoulli trial with acceptance probability

P = �(y0; l; t)=�(y0; l): (25)

Operationally, this procedure is implemented as follows. At each time step �t, eddy pa-

rameters y0 and l are sampled from the preassigned joint probability density function (PDF)

of y0 and l, �(y0; l)�t. Based on the current state of the system, �(y0; l; t) is computed and

P is evaluated based on Eq. (25). The speci�ed eddy is then implemented with probability

P . If it is not implemented, then no further trials are performed during the current time step.

It is convenient to preassign the sampling PDF �(y0; l)�t rather than �(y0; l) because the

sampling is then independent of �t, which can vary during the simulation. Then P is eval-

uated by multiplying the numerator and denominator in Eq. (25) by �t. The denominator

is then preassigned and the numerator depends explicitly on �t.

Expressed in this form, Eq. (25) indicates that P is proportional to �t. Therefore a

requirement for accurate emulation of the true rate for eddies in any dy0 dl range is that �t

must be small enough so that the P values for eddies within that range rarely exceed unity.
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This requirement indicates the advantage of choosing a sampling PDF �(y0; l)�t that is

close to the true PDF, which is approximately �(y0; l; t)�t=N . If these PDFs di�er greatly,

then a �t value that is small enough to assure that P < 1 for all eddies may result in P << 1

for eddies in particular ranges of y0 and l. This implies oversampling of some eddies. If the

oversampled eddies are eddies that are relatively rare, then the overall sampling rate may

not be raised signi�cantly. However, ine�ciency can result if the oversampled eddies are

those with the highest true rates. To avoid the latter outcome, it is advantageous to choose

a sampling PDF that weights the rare eddies (typically the large eddies) somewhat more

heavily than simple scaling estimates would prescribe. This will assure that it is the rarer

eddies that are oversampled, even when 
uctuations cause temporary deviations from the

expected scalings.

For transient 
ows, it can be advantageous to adjust �t and the sampling PDF dynami-

cally. Several procedures have been applied successfully. One way to adjust �t is to compute

a moving average of P values and periodically reset �t to keep this moving average close to a

target value. Fluctuations can cause P to vary by an order of magnitude or more, even with

an accurate (in an average sense) sampling PDF, so a target value of order 0.1 is prudent.

Owing to the 
ow dependence of statistical properties of the simulation, no universally valid

criterion can be established. The most reliable procedure is to perform runs with succes-

sively smaller target probabilities until convergence of 
ow statistics is obtained. Likewise,

determination of the required spatial resolution by successive grid re�nements until statistics

converge is recommended.

Dynamical adjustment of the sampling PDF has proven e�ective, and even essential for

a�ordable computations, in some instances. This is an elaborate, 
ow dependent procedure.

As outlined thus far, the eddy selection procedure accounts for the time discretization of

the sampling process but not the spatial discretization of y0 and l. The discretization of l is

of particular concern because numerical implementation requires l to be an exact multiple

of three times the cell size (Sec. 3.2). The discretization of l is thus a factor of three coarser

than the discretization of y0.

There is not a unique procedure to compensate for this discretization because eddies have

multiple e�ects (transport, length scale reduction, energy transfer, etc.), each of which might

require a di�erent correction. A transport correction has been developed and implemented

that has provided signi�cant reduction of the spatial resolution requirements for numeri-

cal convergence of several simulated 
ows. The correction addresses only the triplet-map

contribution to transport, omitting any transport correction due to discrete implementation

of the kernel. (As shown in Sec. 2.5, kernel implementation induces transport as well as

scrambling.)

In Sec. 3.2, it is noted that a discretized triplet map applied to an interval consisting

of 3k cells induces a mean-square cell displacement that is a factor 1 � 1
k
smaller than a
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continuum triplet map of that size. If the interval size 3k is di�erent from the sampled l

value due to roundo� of l

3
to the nearest integer value k, then the mean-square displacement

of the discretized map is a factor (3k=l)2 times the continuum displacement. Combining

these factors, the ratio of the mean-square displacements of the discrete and corresponding

continuum maps is (k � 1)(3k=l)2.

The di�usivity corresponding to mapping-induced transport of 
uid cells in the simulation

is proportional to the mean-square cell displacement times the frequency of mappings that

contain a given 
uid element. This frequency is proportional to the eddy event rate times

a correction factor re
ecting the dependence of the amount of a�ected 
uid on the eddy

size. Thus, for a given event rate, the frequency of discrete eddies that contain a given 
uid

element di�ers by a factor 3k=l from the corresponding continuum frequency. Combining

this and the displacement correction, it is concluded that the discrete-eddy di�usivity for

a given event rate di�ers from the corresponding continuum-eddy di�usivity by a factor

(k � 1)(3k=l)3.

To compensate for this spatial discretization e�ect, the right-hand side of Eq. (25) is

divided by this factor. This modi�es the rate of implemented events so that the simulation

better approximates the advective transport prescribed by the model.

Various approaches to convergence enhancement have been used in the computations

discussed in this report. The speci�c correction factor derived above has not yet been used,

but it is recommended for future use be cause it accounts for more e�ects than approaches

used to date.

Spatial discretization requires care in the determination of the eddy location as well as

the eddy event rate. It has been noted that eddy size l is discretized to an integer multiple

of three cells, a coarser discretization than for the eddy location y0. Therefore only one of

the two ends of the eddy interval can be speci�ed to within one cell width, because the other

is determined by the eddy size. This asymmetry implies that eddy intervals in wall-bounded


ow should be selected by �rst choosing the location of the endpoint closer to the wall and

then determining the other endpoint based on the eddy size. This maximizes the precision

of the numerical algorithm in the near-wall region, where property gradients are steepest.

Numerical tests indicate that this approach is advantageous, although other methods are

adequate if the spatial resolution is su�cient.
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4 Near-Wall Model Demonstrations

4.1 Free Shear Flow

In this section, applications of ODT to various canonical 
ows are presented in order to

demonstrate the performance of the model, including several variants not discussed in Sec. 2.

Applications of earlier formulations of ODT to homogeneous turbulence have been discussed

in detail previously (Kerstein 1999, Wunsch & Kerstein 2001). Although the formulation

presented in Sec. 2 has some new features with signi�cant implications for homogeneous

shear 
ow, this 
ow is not examined here because the method of Sec. 2.4 for suppressing the

large-eddy anomaly is ine�ective for this 
ow. A more e�ective method has been formulated

but has not yet been implemented because it greatly complicates the model but broadens

its applicability only slightly.

The model formulation of Sec. 2 is �rst applied to two time-developing free shear 
ows,

a planar mixing layer and a wake. Results are compared to DNS of these 
ows by Rogers

& Moser (1994) and Moser et al. (1998), respectively. Many features of turbulent free

shear 
ows are insensitive to viscous transport, so they provide direct tests of the model

representation of advective processes.

For each 
ow, the ODT results are based on 5000 simulated realizations. To facilitate

initial transient relaxation, it is convenient to choose the initial velocity pro�les to be con-

tinuous functions of y. Accordingly, the initial v1 pro�le for the mixing layer is a linear ramp

between two semi-in�nite 
at regions whose velocity di�erence is denoted �U . The initial

v1 pro�le for the wake is a symmetric tent. The initial v2 and v3 pro�les for both 
ows are

nominally zero, but are seeded with small random perturbations as explained in Sec. 2.2.

For both 
ows, the computational domain is taken to be large enough so that it is e�ectively

in�nite, i.e., the turbulent region does not extend close enough to the boundaries during the

simulations to be a�ected by their presence.

Owing to the coordinate invariance of the pressure-scrambling mechanism (Sec. 2.2),

the statistical evolution of velocity components subject to the same initial and boundary

conditions (in this instance, the v2 and v3 components) is indistinguishable in the present

formulation of ODT. A more general formulation that breaks this symmetry while maintain-

ing required invariance properties has been formulated and tested. This formulation involves

three eddy types, each of which allows energy exchange between two of the three velocity

components. Because eddy selection is based on the v2-component available kinetic energy

(Sec. 2.3), this generalization breaks the (v2; v3) symmetry. In particular, it captures the

2D (v1; v2) character of the dominant shear instabilities. However, this formulation is not

adopted here because its performance is not commensurate with the additional complexity

and parameter tuning that it entails. The formulation presented in Sec. 2 captures the prin-
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cipal manifestation of anisotropy, resulting from the imposition of the initial shear solely on

the v1 component, but not the secondary manifestations that break (v2; v3) symmetry.

The high-Re regime of self-similar 
ow evolution is examined. For the wake, ODT results

are presented for Reynolds number, de�ned as Re = 1
�

R
1

�1
hv1i dy, equal to 2000, the same

value as in the DNS comparison case. In the time-developing wake, Re remains constant

during the simulations. For the mixing layer, the initial value of Re based on �U and the

momentum thickness �m =
R
1

�1

h
1
4
� (hv1i=�U)2

i
dy is 427, compared to an initial DNS

value of 800. (The de�nition of �m is based on nominal v1 values of ��U=2 in the 
at

regions.)

The 
ow statistics considered here are large-scale dominated, and accordingly, are insen-

sitive to viscous transport for the Re values considered. (This insensitivity has been veri�ed

by performing parameter excursions.) Accordingly, the results are insensitive not only to

the kinematic viscosity �, but also to the model parameter Z that controls the strength

of the viscous penalty in the eddy rate distribution, Eq. (15). The results presented here

correspond to Z = 0:02.

The model parameter C is an overall rescaling of the eddy rate distribution. In 
ow

regimes that are insensitive to the strength of viscous processes, this distribution controls

the evolution of 
ow structure in ODT simulations. Therefore modi�cation of C is equivalent

to rescaling of the time coordinate, and hence rescaling of the growth rate, in these regimes.

For the self-similar regimes of both 
ows considered here, it has been veri�ed that variation of

C changes only the growth rate, with no e�ect on other properties other than proportionate

rescaling of quantities dependent on the growth rate.

These self-similar regimes exhibit the same growth laws as the corresponding DNS results.

The numerical coe�cients in the DNS growth laws, 1
�U

d�m

dt
= 0:014 for the mixing layer and

1
U0

db

dt
= 0:12 for the wake (where b is the full width at half-maximum of the mean velocity

pro�le, growing as t1=2, and U0 is the centerline mean velocity, decaying as t�1=2), are matched

for C = 3:78 and 5:55 for the mixing layer and wake, respectively. These C values were used

for all � values considered because the growth rates were found to be insensitive to �.

For each of the 
ow statistics considered, the onset of self-similarity was demonstrated

by verifying the collapse of normalized quantities computed within time bands. Once the

self-similar time regime was identi�ed, all the normalized data within the self-similar regime

was pooled.

Lateral pro�les of mean velocity, Reynolds shear stress, velocity 
uctuations, and veloc-

ity 
uctuation budgets obtained from the self-similar regime of the ODT simulations are

compared to DNS results in Figs. 2-6. All quantities are normalized as in the DNS studies.

Lengths are scaled by �m and b, and velocities are scaled by �U and U0, for the mixing layer

and wake, respectively.

As explained in Sec. 2.1, advection on the 1D domain is implemented in ODT as a se-
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quence of instantaneous events rather than as continuous motion governed by the velocity

pro�les. Therefore the 
ux interpretation of quantities such as the Reynolds stress com-

ponent hv01v
0

2i is not applicable if these quantities are computed in ODT directly from the

velocity components. In Navier-Stokes 
ow, hv01v
0

2i can be interpreted as the advection of

v1 
uctuations by v2 
uctuations, but in ODT, the v2 velocity does not directly prescribe

the advection of v1 (or of any other 
uid property). Therefore the Reynolds stresses and

other advective 
uxes (arising, e.g., in velocity 
uctuation budgets) are evaluated in ODT by

monitoring eddy-induced 
uxes during simulated realizations. This assures that conservation

laws and balance equations are satis�ed exactly. The formal development of this approach

is presented in Sec. 2.5.
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Figure 2. Lateral pro�le of mean streamwise velocity, scaled by �U for the mixing
layer (left frame) and by U0 for the wake (right frame): { { {, ODT; ||, DNS.
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Figure 3. Lateral pro�le of Reynolds shear stress hv01v
0

2i, scaled by (�U)2 for the
mixing layer (left frame) and by U

2
0 for the wake (right frame): { { {, ODT; ||,

DNS.
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Figures 2 and 3 indicate reasonable agreement with the DNS mean axial velocity and

Reynolds shear stress pro�les of both 
ows. The shapes of these pro�les are largely dictated

by the mean spreading rate. ODT spreading rates have been matched to the DNS spreading

rates for these 
ows by parameter adjustment, so these comparisons are not stringent tests

of model performance.

Lateral pro�les of ODT velocity-component variances hv021 i, hv
02
2 i, and hv

02
3 i, and their sum

q
2, are compared to DNS results in Fig. 4. The ODT results for the the v2 and v3 veloc-

ity components are identical because the model formulation of Sec. 2 does not distinguish

between the v2 and v3 velocity components in the 
ows considered here. The DNS results

indicate that the di�erences between the statistics of these components are smaller than the

di�erences between either of them and the v1-component statistics. This is consistent with

the physical origins of the anisotropy, discussed earlier.
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Figure 4. Lateral pro�les: ||, q2; ||, hv021 i; | �|, hv022 i; { { {, hv
02
3 i, scaled

by (�U)2 for the mixing layer (left frame) and by U
2
0 for the wake (right frame).

ODT and DNS results are plotted right and left of centerline, respectively. (The
ODT hv023 i pro�les are identical to the ODT hv022 i pro�les.)

It is seen that hv021 i is consistently overpredicted and the other component variances are

underpredicted. The comparison of ODT and DNS budgets of hv021 i in Fig. 5 indicates the

likely origin of these trends. The transfer of turbulent kinetic energy from the v1 component

to the other components by the pressure-scrambling mechanism is lower in ODT than in

DNS. This transfer is controlled by the parameter � introduced in Sec. 2.2. The value

2=3 was selected based on a physical interpretation of the ODT scrambling mechanism. If

instead, the largest allowed value � = 1 is chosen in order to maximize the transfer, the

ODT component variances are found to be signi�cantly closer to their DNS counterparts,

although the aforementioned trend is not entirely eliminated. Other properties such as the

q
2 pro�le and the budget of q2 (Fig. 6) are not much a�ected by the change. Moreover, � = 1
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does not give better results for channel 
ow (Sec. 4.2), so for present purposes, � = 2=3 is

adopted as the baseline value.
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Figure 5. Budget of hv021 i, scaled by �U3
=�m for the mixing layer (left frame) and

by U3
0 =b for the wake (right frame): ||, production (upper), dissipation (lower);

{ { {, time derivative; � � �, advective transport; | �|, scrambling. ODT and DNS
results are plotted right and left of centerline, respectively.
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Figure 6. Budget of q2. Format as in �gure 5.

It is apparent that ODT provides a reasonable overall representation of free shear 
ow

structure and energetics (e.g., q2 pro�le and budget), although details of the kinematics

(e.g., evolution and coupling of the velocity components) are not consistently reproduced.

Comparable performance is seen in the channel-
ow results considered next.
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4.2 Channel Flow

Channel 
ow is the validation case for the coupled ODT/LES formulation, so it is considered

in detail in Sec. 6.1. For comparison purposes, ODT simulations of this 
ow are presented.

Time-developing turbulent 
ow in a planar channel of width h is simulated by applying the

boundary conditions vi = 0 to all velocity components on a size-h domain, and introducing

a �xed source term �1
�

@P

dx
on the right hand side of Eq. (1) for i = 1. This term introduces

an imposed mean pressure gradient in the streamwise (x) direction, but does not include

pressure 
uctuations. (Pressure 
uctuations are not modeled explicitly, but their e�ects are

represented in the implementation of eddy events.)

ODT results for statistically steady 
ow are compared to corresponding DNS results

of Moser et al. (1999). DNS results are reported for Re� = 180, 395, and 590. Here,

Re� = u�h=(2�), where u� =
q
�dv1=dyjy=0 is the friction velocity.

ODT channel simulations have been performed for various values of the parameters C

and Z and for two values of �, the base case � = 2=3 and the alternate case � = 1. As

noted in Sec. 4.1, the � variation had little e�ect on the overall performance of the model.

Results for � = 2=3 are shown here. The parameters C and Z were adjusted to obtain the

best overall match to the DNS friction law and mean velocity pro�le. The friction law is

sensitive mainly to C, which controls the turbulence intensity. By controlling the frequency

of small eddies, Z mainly a�ects the transition of the mean velocity pro�le from near-wall

viscous structure to a pro�le shape farther from the wall that re
ects turbulence e�ects. The

results shown here correspond to C = 12:73 and Z = 98, chosen to match the DNS mean

velocity pro�le and the DNS value of the friction coe�cient Cf = 2(u�= �U)
2 at Re� = 590.

(Here, �U is the mean bulk velocity.) It is noted in Sec. 6.1 that a slightly lower C value is

preferable in ODT/LES simulations.

Figure 7 shows good agreement with the DNS Cf value at Re� = 395 and slight overpre-

diction of Cf at Re� = 180. ODT is formulated based on scalings applicable to high-intensity

turbulence, so it may provide a less accurate representation of the weak turbulence at this

Re� value. For the other 
ow properties considered here, neither DNS nor ODT exhibit

much sensitivity to Re� , so results are shown only for Re� = 590.

Lateral pro�les of 
ow properties are plotted in the wall coordinate y+ = yu�=�. In Fig. 8,

the scaled mean velocity hv1i=u� is denoted u
+. Good agreement with the DNS pro�le is

obtained.

The diagonal components, and the nonvanishing o�-diagonal component, of the scaled

Reynolds-stress tensor are shown in Fig. 9. The diagonal components are underpredicted

by ODT. In Sec. 6.1, it is shown that ODT/LES results for the diagonal components are in

better agreement with DNS results, perhaps due to more realistic forcing of the near-wall

region by the bulk 
ow.

Despite the discrepancies seen in Fig. 9, the ODT predictions of the terms of the v1
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Figure 7. Computed friction coe�cient for channel 
ow. 2, ODT; �, DNS.

Figure 8. Semilog plot of the mean velocity pro�le for channel 
ow at Re� = 590,
in wall coordinates. { { {, ODT; ||, DNS.
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Figure 9. Lateral pro�les of Reynolds stress components in channel 
ow, scaled
by u2

�
: ||, hv021 i; | � � �|, hv022 i; | �|, hv023 i; { { {, hv

0

1v
0

2i. (The ODT hv
02
3 i pro�le

is identical to the ODT hv022 i pro�le.) ODT and DNS results are plotted right and
left of centerline, respectively.

Figure 10. Budget of hv021 i in channel 
ow, in wall coordinates: ||, production
(upper), dissipation (lower); { { {, advective transport; | �|, viscous transport;
| � � �|, scrambling. ODT and DNS results are plotted right and left of centerline,
respectively.
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variance budget (Fig. 10) are in good overall agreement with the corresponding DNS terms.

This indicates that ODT is a fundamentally sound model of near-wall 
ow energetics.

4.3 Rayleigh-B�enard Convection

Here and in Sec. 4.4, the model formulation of Sec. 2 is generalized to incorporate buoy-

ant strati�ed 
ow. These applications predate the vector velocity formulation of ODT, so

they involve a single velocity component v. The vector velocity formulation reduces to a

one-component formulation by setting the scrambling parameter � equal to zero. This re-

duction is physically reasonable if only one velocity component is subject to external forcing

and if 
ow anisotropy does not play an essential role in the phenomena of interest. Oper-

ationally, the reduced formulation is obtained by substituting v for v2 and taking � = 0 in

the formulation of Sec. 2.

Buoyancy e�ects are introduced in the Boussinesq approximation. Namely, a constant

reference density �0 is assumed in all terms except those involving the gravitational accelera-

tion g. The density appearing in those terms evolves like any other scalar in the simulation,

subject to the appropriate initial and boundary conditions.

Two new terms appear in the most general Boussinesq formulation of ODT. They are

identi�ed by decomposing the gravity vector into components parallel and orthogonal to the

ODT computational domain. To simplify the discussion, the two special cases of parallel

and orthogonal gravity are considered separately.

In the �rst case, the ODT domain is vertically oriented. Triplet maps rearrange the

vertical pro�le of density, thereby changing the gravitational potential energy. To conserve

total energy, an equal-and-opposite change of the 
ow kinetic energy is implemented during

each eddy event. This is accomplished by kernel implementation with amplitude c chosen to

obtain the desired energy change. A sign ambiguity in the determination of c is resolved in

the same manner as in Sec. 2.2.

This procedure can add any amount of energy to the 
ow, but it cannot extract more than

the available kinetic energy de�ned in Sec. 2.2. Therefore an increase in the gravitational

potential energy by more than this amount is energetically prohibited.

Accordingly, a gravitational term is added to the right-hand side of Eq. (14) that has

the following properties: it is proportional to the mapping-induced gravitational potential

energy change, and it causes the right hand side to be negative (for � = Z = 0) if and only if

the event is energetically prohibited. These requirements uniquely determine the additional

term, which is � 8
27

�K

�0
gl, where �K is de�ned by substituting � for vi in Eq. (6).

If, however, the ODT domain is horizontally oriented, then rearrangement of the density

pro�le does not change the gravitational potential energy. Now, buoyancy e�ects are intro-

duced (again within the Boussinesq approximation) by interpreting v as the vertical velocity
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component (or, in the vector formulation, designating either v1 or v3 as the vertical compo-

nent) and adding a forcing term g(�0 � �) to the right hand side of the evolution equation,

Eq. (1), for that component.

In this section, a vertically oriented domain is used to simulate Rayleigh-B�enard convec-

tion. In Sec. 4.4, a horizontally oriented domain is applied to a di�erent buoyancy-driven


ow.

In Rayleigh-B�enard convection there is no mean 
ow, so v serves solely as a reservoir

of turbulent kinetic energy. For 
ows involving horizontal mean motion as well as buoyant

strati�cation, v is taken to be the streamwise velocity component, here assuming a vertically

oriented ODT domain. Results of simulations for this class of 
ows, as well as for Rayleigh-

B�enard convection, were reported previously (Kerstein 1999), but the formulation used in

that study lacked the conservative representation of energy-conversion processes that is used

here.

Rayleigh-B�enard convection is simulated in ODT by applying constant-density boundary

conditions at the top and bottom of an ODT domain whose size is denoted h, where the

upper boundary is held at density �� larger than the lower boundary. The velocity boundary

condition at both boundaries is v = 0. Molecular evolution is governed by Eq. (2) with �

substituted for �. The initial condition is arbitrary because the simulation is run to a state

of statistically steady evolution before data is gathered.

The large-eddy suppression mechanism introduced in Sec. 2.4 is omitted from the Rayleigh-

B�enard simulations. Although this mechanism can in principle be extended to dynamically

active scalars such as density in buoyancy-driven 
ow, it may not accurately re
ect the

physics of buoyancy-driven 
ows. Large-scale motion driven by wall-layer density gradients

is an important feature of this class of 
ows, so the scale-locality property of the large-eddy

suppression mechanism may be inapplicable. Computed results supporting this viewpoint

are presented shortly. The large-eddy suppression mechanism is likewise omitted from the

buoyant-
ow formulation used for the computations discussed in Sec. 4.4.

Large-eddy suppression is omitted from the subgrid implementation of ODT because ODT

in this case represents a restricted subdomain of the 
ow. This subdomain is not typically

large enough to include eddies that could cause a signi�cant transport anomaly.

The governing parameters of the Rayleigh-B�enard simulation are the same as for the

physical con�guration. The strength of the buoyant forcing relative to dissipative mecha-

nisms, which controls the turbulence intensity, is measured by the Rayleigh number, Ra =

g��h3=(�0��). The combination of molecular transport coe�cients in the denominator is

somewhat arbitrary in the present context, though it has a theoretical basis in other con-

texts. Re
ecting this arbitrariness, the second governing parameter is the Prandtl number,

Pr = �=�. Ra times any power p of Pr yields a new dimensionless group with denominator

�
1�p

�
1+p.
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Pr is a fundamental parameter because it is the ratio of the two relevant 
uid properties.

Thus, Pr is varied by the choice of 
uid and Ra is varied, for a given 
uid, by changing

the 
ow con�guration (boundary conditions, domain size, and gravitational acceleration).

Therefore measured quantities are typically plotted versus Ra, with one curve for each Pr

value considered.

The normalized mean heat 
ux, Nu = Q=Q0, is shown in Fig. 11. Here, Q0 is the steady

state heat 
ux in the absence of 
uid motion, in which case Eq. (2) and the boundary

conditions imply Q0 = ���=h. Density is used here as a surrogate for enthalpy, which is

valid for computing normalized quantities in the Boussinesq approximation. Accordingly,

Q = �h(d�=dy)jwi, where the subscript denotes the wall value of the density derivative.

Measured curves for three Pr values are shown. Nu is multiplied by Ra
�1=3 to remove

the trend representing the classical scaling Nu � Ra
1=3, which is dimensionally prescribed

if it is assumed that wall-layer structure is independent of domain size h. Deviations from

a horizontal line in the �gure therefore re
ect the in
uence of the far wall on the boundary

layer. The measurements indicate the presence of this in
uence. The measured deviations

from classical scaling exhibit Pr dependencies that have not yet been explained satisfactorily

from �rst principles.

The ODT results are based on parameter values C = 26:1 and Z = 1:21 that were chosen

to match the measurements. Though the close correspondence between computed results and

measurements is partly attributable to this parameter adjustment, the comparison clearly

indicates that the model captures 
ow properties that cause deviation from classical scaling.

Interaction across the 
ow domain is presumably due to large scale motions such as plumes

emanating from the boundaries. It is remarkable that ODT, in which advective motions

are instantaneous, can capture e�ects that appear to re
ect a signi�cant degree of space-

time coherence. This suggests that the imprint of mapping events on the evolving v and �

�elds and the consequent in
uence on future events provides a physically realistic degree of

coherence. One might expect this coherence to be somewhat less than in physical 
ows due

to the stochastic nature of the model. An indication that this may the case is the apparent

reduction of the slopes of the computed curves with increasing Ra, suggesting suppression

of the interaction mechanism at high turbulence intensity.

Further indication that the model provides a fundamentally sound representation of

Rayleigh-B�enard convection is provided in Fig. 12. The plot shows computed midpoint

density 
uctuations for the cases plotted in Fig. 11 and corresponding measurements for

the only Pr at which this measurement has been made. The agreement clearly indicates

that the model has predictive capability because it is obtained with no additional parameter

adjustment.

The ODT representation of Rayleigh-B�enard convection is di�erent from the other 
ows

considered in this section in that the eddies in this 
ow are driven predominantly by gravita-
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Figure 11. Rayleigh-number (Ra) dependence of the normalized mean heat 
ux
Nu in Rayleigh-B�enard convection, compensated so that the classical scaling Nu �
Ra

1=3 corresponds to a horizontal line on the plot. ODT computations: �, Pr =
0:025; +, Pr = 0:7; 2 , Pr = 2750. Measurements: | �|, Pr = 0:025 (Cioni et
al. 1997); ||, Pr = 0:7 (Niemela et al. 2000); { { {, Pr = 2750 (Goldstein et al.

1990).

Figure 12. Normalized midpoint density 
uctuations in Rayleigh-B�enard con-
vection. ODT computations: �, Pr = 0:025; +, Pr = 0:7; 2 , Pr = 2750.
Measurements: ||, Pr = 0:7 (Niemela et al. 2000).
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tional forcing rather than shear. (In the ODT representation of the buoyancy-driven vertical

channel, gravitational forcing generates shear which then drives the eddies; see Sec. 4.4.) Pos-

sibly re
ecting this distinction, the empirically determined value of C for Rayleigh-B�enard

convection is about �ve times larger than the typical value for the other 
ows. (Values for

the other 
ows range from 3 to 7.) The present formulation of ODT will not provide quan-

titative accuracy for the full range of multiphysics environments due to the 
ow dependence

of the parameter �t. Extensive testing will be needed to determine whether the performance

of ODT as an LES subgrid model is subject to analogous limitations.

4.4 Buoyancy-Driven Vertical Channel

In Rayleigh-B�enard convection, the heat 
ux is parallel to the gravitational forcing. Buoyancy-

driven 
ows in which the heat 
ux and the gravitational forcing are not aligned are partic-

ularly di�cult to model using conventional methods (Petukhov & Polyakov 1988). Here, a


ow of this type is considered.

The con�guration that is selected for study is 
ow between parallel vertical plates with

�xed density boundary conditions imposed at the plates, maintaining a density di�erence ��

across the plates, whose separation is denoted h. This is the Rayleigh-B�enard con�guration

with �=2 rotation of the gravity vector. Ra and Pr as de�ned in Sec. 4.3 are again the

governing parameters.

As explained in Sec. 4.3, this 
ow is modeled using an ODT formulation with a single

velocity component that is interpreted as the vertical component. The evolution (apart

from eddy events) of this component is governed by Eq. (1) with a forcing term g(�0 � �)

added to the right hand side. Adopting the conventional notation for this 
ow, this velocity

component is denoted w.

The ODT coordinate y is now horizontal, so eddy events do not change the gravitational

potential energy. Indeed, there is no longer a gravitational potential energy concept within

the formulation. The forcing term introduces a kinematic emulation of buoyancy e�ects

without accounting for the implied energy exchanges. In this context, there is no basis for

use of the kernel function of Sec. 2 to change the kinetic energy of the w pro�le. Therefore

an eddy event now involves only a triplet map.

Eq. (15) for the event rate distribution is applicable, where now � = 0 and v2;K is replaced

by wK. wK can be evaluated by substituting w for vi in the rightmost expression of Eq. (6).

This is the recommended procedure, but the computed results shown here were obtained

with an earlier formulation (Dreeben & Kerstein 2000) in which

wK =
4

l

Z
y0+l

y0

dy w(y) sgn(y � y0 � l=2): (26)

In addition, the procedure of Sec. 2.4 for suppressing the large-eddy anomaly was not incor-
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porated.

The large-eddy anomaly is not likely to have much e�ect on the results presented here,

though it may a�ect model predictions of a subtle relaminarization e�ect seen in a related

con�guration involving pressure forcing as well as buoyant forcing. The e�ect of using

Eq. (26) instead of Eq. (6) can be estimated by assuming a linear velocity pro�le of given

slope within [y0; y0 + l]. This gives jwK=vKj = 13:5. Computed results for several 
ows

have been compared by using this factor to estimate the C value for one method that is

equivalent to the C value for the other. The two sets of results were close, indicating that

this parameter conversion largely accounts for the di�erence between the formulations.

For the computed results shown here, parameter values converted on this basis into esti-

mated values for the model formulation of Sec. 2 are C = 3:1 and Z = 0:27. The parameters

were assigned by comparing channel-
ow simulations to measurements (involving one free

parameter because one parameter was assigned by a priori analysis). Comparisons to the

buoyancy-driven 
ow involve no further parameter adjustment.

As in the simulations of Rayleigh-B�enard convection, runs were started from a convenient

initial condition and statistics were gathered following relaxation to statistically steady evo-

lution. The dependence of Nu (de�ned as in Sec. 4.3) and of the mean velocity pro�le on

Ra and Pr is examined. DNS results, and some measurements, are available for Pr = 0:71

(air).

ODT mean velocity pro�les are compared to measurements in Fig. 13. (Following con-

vention, the wall-normal coordinate for this 
ow is denoted x rather than y.) Substantial

quantitative di�erences are apparent, although pro�le shapes and the Ra dependence are well

represented. The measured temperature pro�le is matched well in the bulk 
ow (Fig. 14),

but the thermal boundary layer thickness is overpredicted. The measurements, performed

in a closed high-aspect-ratio channel rather than an uncon�ned system, may be subject to

recirculation and other e�ects that would not occur in the ideal uncon�ned 
ow.

The buoyant forcing, odd symmetry, and no-slip boundary condition result in a nonmono-

tonic mean velocity pro�le. The conventional law of the wall is not applicable to this 
ow. In

an e�ort to develop a suitable alternative, Versteegh and Nieuwstadt (1999) performed DNS

of this 
ow for a range of Ra values. They found classical Ra dependence of Nu (Fig. 15;

see Sec. 4.3 for background) but nonclassical Ra dependence (not conforming to dimensional

analysis based on either wall or bulk properties) of the maximum velocity (Fig. 16) and the

location of the maximum (Fig. 17).

Although the plots indicate that ODT does not match the numerical results, it found that

ODT reproduces the Ra dependencies of all these properties, and complements the DNS by

demonstrating these dependencies over a wider Ra range. ODT has been used to further

broaden the investigation by varying Pr. The Ra dependencies of w-pro�le properties are

found to be independent of Pr (Figs. 18 and 19). Moreover, the maximum velocity appears
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Figure 13. Computed and measured (Betts & Bokhari 1996) mean velocity pro-
�les in buoyancy-driven vertical-channel 
ow.
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Figure 14. Computed and measured (Betts & Bokhari 1996) mean temperature
pro�les in buoyancy-driven vertical-channel 
ow.
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Figure 15. Computed dependence of Nu on Ra in buoyancy-driven vertical-
channel 
ow for Pr = 0:71. { { {, classical scaling.

to scale as (RaPr)1=2, which is the outer (bulk) scaling predicted if �� is substituted for

the mean heat 
ux in the dimensional analysis (Dreeben & Kerstein 2000). Nieuwstadt &

Versteegh (1997) note a theoretical inconsistency of this scaling, so the signi�cance of this

observation is unclear. No theoretical interpretation of the Ra�1=6 dependence of the location

of the maximum has been proposed.

Curiously, the Nu scaling at Pr = 0:71 is the property most consistent with theory, but

ODT suggests that it is the least tractable property when a range of Pr values is considered.

Figure 20 indicates that the scaling exponent is an increasing function of Pr, suggesting

that the apparent classical scaling re
ects crossing of the classical value at a particular Pr.

This surprising result indicates that parameter studies using ODT may be useful for physics

discovery and for identi�cation of interesting parameter regimes for follow-up DNS studies.

These results also provide some indication of the potential strengths and weaknesses of

ODT as a near-wall subgrid model for LES. The capability of ODT to reproduce parameter

dependencies of turbulent 
ows has not yet been explained. Though the demonstrated

performance of ODT indicates its potential value as a subgrid model, the lack of theoretical

explanation requires that extrapolation of the model far beyond validated regimes should

be regarded as plausible but speculative. In many respects, ODT has shown itself to be the

tool of choice for subgrid modeling, but it should not be considered the de�nitive solution

to the LES subgrid closure problem.
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Figure 16. Computed dependence of the maximum value of the scaled mean
velocity pro�le on Ra in buoyancy-driven vertical-channel 
ow for Pr = 0:71.
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Figure 17. Computed dependence of the scaled location of the maximumvelocity
on Ra in buoyancy-driven vertical-channel 
ow for Pr = 0:71.
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Figure 18. Computed dependence of the maximum value of the scaled mean
velocity pro�le on RaPr in buoyancy-driven vertical-channel 
ow.
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Figure 19. Computed dependence of the scaled location of the maximumvelocity
on Ra in buoyancy-driven vertical-channel 
ow for three Pr values.
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Figure 20. Computed dependence of Nu on Ra in buoyancy-driven vertical-
channel 
ow for three Pr values.

5 Incorporation of the Near-Wall Model into a Large Eddy Sim-

ulation

5.1 Problem De�nition

To understand the role of ODT as a subgrid closure coupled to an LES code, it is �rst neces-

sary to examine the physical assumptions and approximations underlying the LES method.

Speci�cally, an LES model of the incompressible Navier-Stokes equations is considered.

At a minimum, LES is intended to reproduce the structure and time evolution of the

largest scales of turbulent 
ow. These scales are forced by applied shear (free shear or shear

at walls) and/or by applied pressure gradients. Here, only constant property (including

density) 
ow is considered. The vortical 
ow that develops in response to these forcings

cascades to �ne scales where the vortical kinetic energy is dissipated by viscosity.

If the viscous dissipation scales are not resolved, a model must be introduced in order

to dissipate the vortical kinetic energy. Conceptually, this is accomplished by introducing

an eddy viscosity designed to dissipate, at or near the grid resolution scale, the amount of

energy that would otherwise (in a fully resolved 
ow) 
ux to smaller scales and ultimately

dissipate. The primary challenge of LES development is to formulate a dissipation mechanism

that achieves this goal.

Though accurate energy dissipation is a key objective of LES modeling, it is recognized
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that physical interaction between the �ne scales and the large scales involves more than one-

way energy transfer. The `back-scatter' of energy from �ne to large scales is represented in

some LES formulations. For multiphysics problems involving �ne-scale vorticity generation,

e.g., due to combustion-driven thermal expansion, this reverse energy 
ow can be a dominant

feature of the overall 
ow.

The ODT subgrid implementation introduced here is intended to be the �rst step toward

a full multiphysics subgrid treatment. The results presented in Sec. 4 provide an indication

of the potential usefulness of ODT in this regard. Rather than tackling this problem in its

full generality, a more limited yet almost universal issue confronting LES is addressed. This

issue is near-wall momentum closure.

As discussed in Sec. 1, the dominant 
ow scale in turbulent 
ow near a wall is the distance

from the wall. Thus, increasingly �ne scales must be resolved to maintain accuracy of the

LES model as the wall is approached, ultimately requiring some resolution of the viscous

scale. Some LES formulations provide the needed resolution, but the computational cost

limits the applicability of this approach. The common alternative is to use empirical wall

functions or related empirical approaches.

Recognizing the inevitability of some empiricism in an a�ordable general-purpose wall

treatment, it is proposed that ODT may provide a cost-e�ective framework for introducing

the needed empiricism. ODT has two key attributes in this regard. First, it introduces a

time-lagged response of near-wall 
ow and wall stress to bulk forcing, and of bulk 
ow to wall

e�ects. In particular, near-wall response to 
ow reversals and other transients should evolve

more realistically than the response of an empirical wall function. Second, the model should

readily generalize to at least some of the multiphysics regimes of practical importance.

Near-wall momentum closure is a practical near-term target for ODT because the near-

wall region is a small fraction of the total 
uid volume. Detailed simulation within this

region is a�ordable relative to the total computational cost of the LES, as shown in Sec. 6.2.

Moreover, the region of interest is �xed in time (unlike combustion problems in which the


ame region requiring submodeling is advected by the 
ow), and property variations are

strongest in a �xed direction (wall normal), implying �xed locations and orientations of the

ODT domains.

Another motivation for attempting near-wall momentum closure is the strong interest in

this problem in the academic research community. A successful approach to this problem

will engage the attention and involvement of this community and thereby accelerate progress

toward high �delity turbulent multiphysics simulation.
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5.2 Formulation of the LES Equations

5.2.1 Filtering and the Filtered Equations

A fundamental component of all LES models is the de�nition of spatially �ltered variables

(generally denoted by the overbar) such that the following relationship holds:

� = �
�+ �

0
: (27)

Here � is a generic physical quantity, with �
� its �ltered value and �

0 the instantaneous

di�erence between � and �
�. (Note that each of these values are functions of x, y, z, and t.)

The �ltering operation is de�ned as

�
�(x; t) =

Z
D

�(x; t)G(x� z;�) dz; (28)

where G is a normalized �lter kernel, D is the domain of the 
ow, and � is the �lter width

in each spatial direction. The shape and spatial extent of the �lter applied is a modeling

choice. For example, if the �lter is de�ned as a box �lter, then the value of �� is simply the

instantaneous average value of � within the domain enclosed by the box.

The classic way to develop the LES equations of motion is to begin by making the as-

sumption that the �ltering operation commutes with di�erentiation. Under this assumption,

one can directly apply the �ltering operation to the continuity and Navier-Stokes equations.

For an incompressible 
uid with constant properties this yields the following LES equations

of motion:

�

@�ui

@t

+ �

@

@xj

(uiuj) = �
@�p

@xi

+
@

@xj

"
�

 
@�ui

@xj

!#
+ �

�
fi (29)

@�ui

@xi

= 0: (30)

At this point a closure model must be chosen for the nonlinear advective term that arises

(see the second term in Eq. (29)). Examples of these will be reviewed later.

Finally, since exact solutions of these equations are not possible, one cannot avoid the

further step of choosing and implementing a numerical discretization scheme (e.g., �nite

di�erence, control volume, �nite element, etc.) in order to de�ne a set of discrete LES

equations that can be solved on a �nite grid.

An alternative way to develop the discrete LES equations is described by Schumann

(1973, 1975). In this approach, called the `volume-balance method,' the averaged quantities

correspond to a discrete number of volumes that are �xed in space (i.e., the mesh). In essence,

it is simply a control-volume numerical scheme developed for LES. The governing equations

are integrated by parts to obtain discrete budget equations for the individual mesh cells.

The modeling problem then reduces to how to represent accurately the unresolved surface


uxes in terms of the spatially averaged quantities that are available. An advantage of this
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method is that irregular or anisotropic meshes do not introduce fundamental errors. (For

the classic approach with non-uniform meshes, �lter commutativity becomes a problem.)

Adopting Schumann's notation, the discrete momentum equation that would correspond to

Eq. (29) above can be written as

�

@�ui

@t

+ ��j(uiuj
S) = ��i�p + �j

24
�

0@ @ui

@xj

S
1A35+ �

�
fi; (31)

where � denotes a numerical-di�erence operator, and the advective and di�usive 
ux terms

are averages over surfaces, not volume averages.

5.2.2 Gradient-Di�usion Closure

It is common in the literature to de�ne a subgrid-scale stress tensor as follows:

�ij = uiuj � �ui�uj: (32)

Dropping the body-force term for simplicity, Eq. (29) is then rewritten as

�
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Gradient-di�usion models (other models will not be reviewed here) adopt the following hy-

pothesis, which consists of assuming that the anisotropic part of the subgrid-scale stress

tensor � is proportional to the resolved (large scale) strain-rate tensor S:

�ij �
1

3
�ij�kk = �2�S �Sij (34)

�Sij =
1

2

 
@�ui
@xj

+
@�uj
@xi

!
; (35)

where �S is a subgrid eddy viscosity, which must be computed from an appropriate model,

and �ij is the Kronecker delta. By de�ning a modi�ed pressure �
P that includes the subgrid

kinetic energy (i.e., the trace of � ) and performing the appropriate algebraic substitutions

and manipulations (see for example Ciofalo 1994), Eq. (33) can be expressed as

�

@�ui

@t

+ �

@

@xj

(�ui�uj) = �
@
�
P

@xi

+
@

@xj

"
(�+ �S)

 
@�ui

@xj

!#
: (36)

5.2.3 Smagorinsky Model for the Subgrid Eddy Viscosity

The �rst model for the subgrid eddy viscosity was introduced by Smagorinsky (1963) and it

remains, together with its variants, a widely applied model. It can be written compactly as

�S = �(CS�)2(2�Sij �Sij)
1=2 (37)
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where CS is called the Smagorinsky constant, and the characteristic �lter width � is generally

computed as the cube root of the local cell volume:

� = (�x1�x2�x3)
1=3
: (38)

Substitution of Eq. (37) into Eq. (34) yields

�ij �
1

3
�ij�kk = �2�(CS�)2j�Sj �Sij (39)

where j�Sj = (2�Sij �Sij)
1=2.

5.2.4 Dynamic Smagorinsky Model for the Subgrid Eddy Viscosity

A method for dynamically adjusting the Smagorinsky constant to the local features of the


ow was �rst suggested by Germano et al. (1991). The basic idea is to assume that the

constant in the eddy-viscosity relationship is the same for a second �lter of larger width

�0. Given this second �lter, typically referred to as the test �lter, we can de�ne a second

subgrid-scale stress tensor Tij as follows,

Tij = g
uiuj � ~�ui~�uj: (40)

Tilde denotes the test �lter, here applied to quantities that have already been subject to a

�lter of width �. We now note that the di�erence between this tensor T and the �ltered

value of � (using the test �lter) can be written in terms of quantities that can be computed,

i.e.,

Lij = Tij � ~�ij = g�ui�uj � ~�ui~�uj: (41)

If we apply the assumption that the Smagorinsky constant is the same at both �lter widths,

then we can write

g�ui�uj � ~�ui~�uj = 2�(CS�
0)2j�S0j �S0

ij
� g2�(CS�)2j�Sj �Sij; (42)

where the wide tilde over the rightmost term indicates test �ltering of the entire term. This

is an overdetermined but closed system of equations for the Smagorinsky constant CS. The

most common method of dealing with the overdeterminancy is to use the least-squares so-

lution described by Lilly (1992). However, the fact that CS appears inside the �ltering

operation (second term on the right-hand side of Eq. (42)) introduces some additional math-

ematical and practical problems for which various solutions have been proposed. These are

discussed by Ghosal et al. (1995), and a dynamic localization procedure is proposed which

uses a constrained variational formulation.

For 
ows with two homogeneous directions, such as fully developed turbulent 
ow between

parallel plates, the following formula is obtained:

(CS(y; t))
2 =

"
hmijLijixz
hmklmklixz

#
+

; (43)

50



where mij = 2�(�0)2j�S0j �S0
ij
� g2�(�)2j�Sj �Sij , hixz denotes integration over a layer of �nite

thickness in the xz plane, and the brackets with a + subscript denote the operation of taking

the positive part, i.e., [x]+ = 1
2
(x+ jxj) for any real number x.

5.3 Formulation of an ODT-Based Near-Wall Subgrid Model

5.3.1 Modeling Approach

The conceptual idea and overall goal behind coupling ODT to LES in the near wall region

is quite simple. We seek a method which allows us to use the highly resolved (in 1D space)

ODT model near all no-slip walls, and some form of traditional 3D LES turbulence modeling

everywhere else.

As one considers the di�erences between LES and ODT, it is clear that several fundamen-

tal issues must be addressed in order for this conceptual idea to be realized. These include

questions about how to:

1. relate 1D ODT variables to spatially �ltered LES variables, and provide appropriate

ODT/LES interface boundary conditions,

2. account for 3D advection e�ects when ODT is 1D,

3. address 3D continuity constraints on control volumes associated with 1D ODT domains,

4. allow for eddy events to span between ODT and LES resolved space, and

5. couple small ODT time-integration steps with much larger LES time-integration steps.

One approach (there may be others) for which each of these questions has been worked out

is described below.

5.3.2 Geometric Considerations

The ODT/LES wall model developed here a�ects the LES equations in two distinct near-

wall regions, as illustrated in Fig. 21. For reference purposes, we will call the layer of LES

cells that are immediately adjacent to the no-slip wall the ODT inner region. It is in this

region that the ODT model will be primarily active. An additional set of LES cell layers,

the number of which will be a model parameter, de�nes the ODT outer region. The 
ow

in this domain is primarily controlled by standard LES equations, but is also a�ected by an

ODT/LES coupling that diminishes in strength with distance from the wall (details to be

described below).

From an LES perspective, we begin by conceptualizing all LES cells that lie adjacent to

solid walls (i.e., the inner ODT region) in the framework of the volume-balance LES model
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Figure 22.  ODT sub-volumes imbedded in an ‘inner-region’ LES control volume.

Figure 21.  Illustration of the ODT inner and outer region domains in the LES mesh.
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developed by Schumann (1975) (see Eq. (31)). Associated with each of these inner-region

control volumes, we de�ne an ODT line that begins at the no-slip wall and extends upward

to the top of the control volume. All three ODT velocity components as well as any scalar

quantities of interest, except pressure, are spatially resolved in the wall-normal direction on

the ODT lines. Pressure is only resolved on the LES-scale mesh (i.e., one value per LES

control volume), re
ecting that 3D continuity constraints are only imposed by pressure on

the LES grid.

We now de�ne a relationship between ODT variables in the inner region and their corre-

sponding instantaneous spatially averaged LES values as follows:

�
� =

1

NODT

NODTX
m=1

�m; (44)

where � denotes a generic variable, and NODT is the number of ODT points on the ODT

line. Equation (44) implies that the ODT-resolved variable �m represents an instantaneous

volume average over a control volume of height �Y=NODT at location y = ym. This is

illustrated pictorially in Fig. 22, where an array of ODT sub-volumes imbedded in a near-

wall LES control volume is depicted. In e�ect, each point on the ODT line is conceptualized

as an LES sub-control volume in exactly the same sense as developed by Schumann, only in

this case, the resolution in the wall-normal direction is very �ne.

5.3.3 Revised ODT Evolution Equations

ODT as a standalone model is a closed system that consists of a single ODT line. However,

as a near-wall LES subgrid model, the formulation must be extended to allow for advective

transport between neighboring ODT sub-volumes in adjacent LES control volumes. En-

forcement of continuity within these control volumes then implies a wall-normal LES-scale

advective-transport contribution. (Wall-normal LES-scale advective transport induced by

eddy events is discussed in Sec. 5.3.4.) This is accomplished by modifying the ODT evolu-

tion equations (see Eqs. (1) and (2)) to include advective transport terms as follows:

�
@t � �@

2
x2

�
vi(y; t) + @xj

(Vj(y; t)vi(y; t)) +
1

�

@
�
P

@xi

�����
i6=2

= 0 (45)

�
@t � �@

2
x2

�
�(y; t) + @xj

(Vj(y; t)�(y; t)) = 0: (46)

Here, the mean pressure gradient has been included except in the wall-normal direction

(i = 2), and a local advective velocity �eld Vj(y; t), has been introduced. Taking V1(y; t) and

V3(y; t) to be v1(y; t) and v3(y; t) respectively gives a formally valid representation of lateral

transport. However, de�nitions of V1 and V3 that involve temporal �ltering of v1 and v3 are

preferred because the spatial derivatives in the i = 1 and i = 3 directions in Eqs. (45) and
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(46) are implemented numerically as spatial di�erences over LES-scale spatial increments�X

and �Z, respectively, as illustrated by the ODT/LES control-volume geometry sketched in

Fig. 22. In view of the coarseness of the X and Z resolution relative to the Y resolution, the

convective time scale for property transfer between laterally adjacent ODT sub-volumes is

the LES time scale �t rather than the �ne-grained time scale on which other ODT processes,

governed by Eqs. (45) and (46), evolve. Accordingly, temporal �ltering suppresses unphysical

high-frequency 
uctuations due to the more rapid evolution processes implemented in the

vertical direction (which can be resolved temporally owing to the �ner spatial resolution

in that direction). These considerations are analogous to time-stepping issues that arise

in any numerical scheme involving high-aspect-ratio control volumes. From an operational

standpoint, the temporal �ltering is useful when implementing the ODT/LES model in the

context of a pressure-projection type numerical time-integration method. The numerical

integration method used in the present implementation is described in Sec. 5.5.

A simple temporal �lter that would serve this purpose is

V1(y; t) =
1

�t

Z
t

t��t
v1(y; t

0) dt0 (47)

V3(y; t) =
1

�t

Z
t

t��t
v3(y; t

0) dt0; (48)

where �t is the LES time step. A computationally more convenient de�nition that serves

the same purpose is introduced in Sec. 5.5.2.

There is an important distinction between the instantaneous wall-normal velocity com-

ponent v2 and the instantaneous tangential velocity components v1 and v3. In the approach

developed here, v1 and v3 are treated as `real' velocities, i.e., they are advecting velocities,

and we compute V1 and V3 from them as described in Sec. 5.5.2. However, v2 is not con-

sidered an advecting velocity because eddy events are the model for turbulent transport in

the wall-normal direction. Instead we conceptualize v2 as simply related to the wall-normal

velocity component kinetic energy (actually the square root of that energy). Thus, no pres-

sure gradient is included in the evolution equation for v2. To compute the mean advective

transport velocity in the wall-normal direction, V2, we simply apply continuity and integrate

from the wall, as follows:

V2(y; t) = �
Z

y

0

 
@V1

@x1

+
@V3

@x3

!
dy: (49)

Note that this automatically satis�es continuity within the LES-scale control volume.

The ODT evolution equations are only solved in the inner region. Thus, boundary condi-

tions must be applied both at the wall (y = 0) and at the top of the inner region (y = �Y ).

At y = �Y this is accomplished by assuming a linear variation of all velocity components

at every instant in time between the last ODT node (y = �Y ) and the corresponding LES
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values in the outer region at y = 3
2
�Y . Given this assumption, all required boundary 
uxes

(both advective and di�usive) can be computed based on the boundary conditions at y = 0:

v1 = v2 = v3 = 0

V2 = 0 (50)

and at y = �Y :
@vi

@x2

=
�
�uijy=(3=2)�Y � vijy=�Y

�
=[(3=2)�Y ]: (51)

Note that in Eq. (51), �uijy=(3=2)�Y denotes the current value of the corresponding LES velocity

at a distance from the wall equal to 3
2
�Y .

5.3.4 ODT/LES Eddy Events

Although the ODT evolution equations are only solved in the inner region, eddy events can

extend from any location within the inner region out into the LES domain. In standalone

ODT, the length scale of the largest possible eddy event, Lmax, corresponds to the integral

scale of the 
ow problem. For example, in channel 
ow the largest possible eddy is limited

by the distance between the two walls. However, as an LES subgrid model ODT must only

model the unresolved small scale eddies. Independent of �lter type, the smallest possible

eddy that can be resolved on the grid by an LES is 2� (sometimes called the Nyquist limit),

and this will not be a very accurate representation. In practice, both the numerical method

and the particular �lter type chosen will determine the length-scale range over which the

resolution of smaller eddies degrades. When ODT is modeling the LES subgrid processes,

the value for Lmax must correspond to these same limits. In other words, the largest length

scales modeled by ODT must correspond to the smallest length scales captured by the LES.

Figure 23 illustrates how all eddy events must extend down into the inner region, but

that given a large eddy, it is possible for one to extend out as far as �Y + Lmax. Thus, the

value of Lmax determines the length of the outer (or overlap) region.

To obtain ODT-resolved information in the outer region, linear interpolation of the LES-

scale variables is used to provide `ghost-node' ODT values at any location that is required.

Eddy events that extend across LES control volumes result in transfer of 
uid properties

(momentum, mass fractions, etc.) across those LES control-volume boundaries. Therefore

the 
uxes corresponding to these transfers are summed at each interface. These accumu-

lated 
uxes are incorporated into the LES time-stepping scheme, both to enforce consistency

between ODT and LES evolution and to evaluate unclosed terms in the LES evolution equa-

tions. Note that the LES-scale properties at the LES node points are considered unchanged

during the �ne-grained ODT time evolution.
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5.3.5 Synopsis of the Coupled ODT/LES Model

As modeled here, the equations simulating the turbulent 
ow are distinct in each of the

three 
ow regions, i.e., the ODT inner region, the ODT/LES overlap region, and the LES

core-
ow region.

In the ODT inner region, Eqs. (45) and (46) are solved subject to the boundary conditions

given by Eqs. (50) and (51), and the de�nition of the advecting velocities in Sec. 5.5.2 (with

V2(y; t) de�ned by Eq. (49)).

In the ODT/LES overlap region, Eq. (31) is solved subject to a 
ux-matching condition at

the ODT/LES interface (i.e., y = �Y ). This 
ux includes both a time-continuous contribu-

tion from Eq. (49) and the instantaneous transport across wall-normal LES control-volume

interfaces due to eddy events extending outward from the ODT inner region (see Fig. 23).

When an instantaneous eddy event occurs, time-accurate implementation of conservation

laws would require all a�ected LES quantities to be adjusted based on the net transport

across each LES control-volume face. However, in practice, the LES equations of motion are

solved numerically using time steps that are much larger than those required by the ODT

subgrid model. In the current numerical implementation, explicit ODT/LES coupling across

is accomplished by accumulating the net transfer across each LES control-volume interface

(from all processes) during the ODT evolution within an LES time step. The net transfer

is summed during this time period and then divided by the LES time step - thus providing

an explicit 
ux value for input to the LES equations, in lieu of instantaneous adjustment of

LES values when eddy events occur. These inputs supplement LES 
uxes in the ODT/LES

overlap region that are modeled based on the LES model chosen for the bulk 
ow. Details

are provided in Sec. 5.5.

In the LES core-
ow region, the LES equations associated with the base LES model

chosen for the simulation are solved without modi�cation. The LES code used in this work

incorporates gradient-di�usion closure (Sec. 5.2.2) with the dynamic Smagorinsky model for

the subgrid eddy viscosity (Sec. 5.2.4).

5.4 Description of the LES Simulation Code

The base LES code used for testing the near-wall ODT subgrid model is a structured-grid

second-order �nite-di�erence code speci�cally designed for doing channel 
ow (Morinishi

1995), and was obtained from Stanford University through our collaboration with the Center

for Turbulence Research. In this code, periodic boundary conditions are imposed in the

streamwise (x) and spanwise (z) directions and the 
ow is driven by a constant pressure

gradient in the streamwise direction. The grid is staggered (Harlow & Welch 1965, Patankar

1980, also used by Schumann 1975) and can be stretched in the wall-normal direction using

a hyperbolic-tangent mapping if desired.
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A semi-implicit time-integration algorithm is used where the di�usion terms in the wall-

normal direction (y) are treated implicitly with the Crank-Nicholson scheme, and a third-

order Runge-Kutta scheme (Spalart et al. 1991) is used for all other terms. The fractional-

step method of Dukowicz & Dvinsky (1992) is used in conjunction with a Van Kan (1986)

type of pressure term. The corresponding Poisson equation for pressure is solved using a

tri-diagonal matrix algorithm in the wall-normal direction and fast Fourier transforms (FFT)

in the periodic directions.

The three-step time-advancement scheme used in the base LES code can be written in

the following way:

�uk
i
� �uk�1

i

�t
= �kLy(�u

k�1
i

) + �kLy(�u
k

i
) + (�k + �k)Lxz(�u

k�1
i

)

� 
kN(�uk�1
i

)� �kN(�uk�2
i

)� (�k + �k)
1

�

�
�
P
k

�xi

� (�k + �k)
PGi

�

(52)

��uk
i

�xi

= 0; (53)

where k = 1, 2, 3 denotes the sub-step number, k� 2 is ignored for k = 1; �u0
i
and �u3

i
are the

LES velocities at the beginning and end of the time step; PGi denotes the constant portion

of the pressure gradient driving the channel 
ow (zero for i = 2 and 3); �=�xi denotes a

�nite-di�erence operator; and N(�ui) represents the following second-order �nite-di�erence

approximation to the advection terms:

N(�ui) =
�

�xj

(�ui�uj): (54)

Two distinct second-order �nite-di�erence operators for the viscous terms, Lxz(�ui) and

Ly(�ui), are de�ned so that the implicit treatment of the wall-normal di�usion terms can

be clearly distinguished:

Lxz(�ui) =
�

�xj

"
(� + �S)

 
��ui

�xj

!#
(55)

Ly(�ui) =
�

�x2

"
(�+ �S)

 
��ui

�x2

!#
; (56)

where the right hand side of Eq. (55) is summed over j = 1 and 3. The time-advancement

coe�cients �k, �k, 
k, and �k, k = 1, 2, 3, are constants selected such that third-order

accuracy is obtained for the advection term and second-order accuracy for the viscous term.

The values of these coe�cients are
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1 = 8=15 
2 = 5=12 
3 = 3=4

�1 = 0 �2 = �17=60 �3 = �5=12

�1 = 4=15 �2 = 1=15 �3 = 1=6

�1 = 4=15 �2 = 1=15 �3 = 1=6:

The e�ective sub-time-step for this method is (�k + �k)�t.

Applying the fractional-step method of Dukowicz & Dvinsky (1992) to Eqs. (52) and (53),

we obtain

�̂u
k

i
� �uk�1

i

�t
= �kLy(�u

k�1
i

) + �kLy(�̂u
k

i
) + (�k + �k)Lxz(�u

k�1
i

)

� 
kN(�uk�1
i

)� �kN(�uk�2
i

)� (�k + �k)
1

�

�
�
P
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�xi

� (�k + �k)
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�

(57)

�uk
i
� �̂u

k

i

�t
= �

��
k

�xi

; (58)

where �k and �
P are related by

��
k

�xi

= (�k + �k)
1

�

�

�xi

( �P k � �
P
k�1)� �kLy(�u

k

i
� �̂u

k

i
); (59)

and the hat symbol placed over a variable denotes an intermediate value which has not

yet been corrected. For clarity we note that Eq. (52) can be recovered by solving for �̂u
k

i

in Eq. (58), and then substituting this identity and that of Eq. (59) back into Eq. (57).

In practice, the rightmost term in Eq. (59) is neglected, resulting in the `splitting' error

associated with this method.

Solving for �uk
i
in Eq. (58) and applying the divergence-free constraint, Eq. (53), we obtain

the discrete Poisson equation,

1

�t

� �̂u
k

i

�xi

=
�
2
�
k

�xi�xi

: (60)

The subgrid-scale model used to compute the subgrid eddy viscosity �S is the dynamic

Smagorinsky model of Germano (Germano et al. 1991) with the least-square technique of

Lilly (1992) as described in Sec. 5.2.4. Averaging in homogeneous directions is used and

�ltering is performed in the spanwise and streamwise directions (see Eq. (43)). The ratio of

the test �lter to the grid �lter is taken to be 2.0.

59



5.5 Numerical Implementation of the Near-WallModelWithin the Large-Eddy-

Simulation Code

5.5.1 Overview

In Schumann's method for deriving LES equations, a direct relationship exists between the

numerical discretization (mesh) and the LES �lter. Thus, when associating ODT lines, care

must be taken to assure that the spatial location of the ODT velocity components is con-

sistent with the LES numerical discretization. In the staggered-grid method, the control

volumes for mass and momentum are o�set from one another such that the velocity com-

ponents are calculated for the points that lie on the faces of the mass-conservation control

volumes. Figure 24 illustrates this concept for a two-dimensional 
ow problem. The impor-

tant point here is that the ODT velocity components must be spatially located in a consistent

fashion. This is illustrated in Fig. 25, where the LES-scale velocities are represented with

large arrow heads, and the locations of the associated ODT velocity components are given

by the points that lie on the lines shown.

The modi�cations to the LES code needed to implement the ODT near-wall model can

be described best by reference to the LES time-integration scheme outlined in Sec. 5.4. In

this method, each of the three substeps in the Runga-Kutta algorithm consists of a two-part

fractional-step cycle. The �rst part involves solving Eq. (57) for �̂u
k

i
, the interim velocity �eld.

The second part is the continuity-enforcing pressure-projection step that involves solving a

discrete Poisson equation for a pressure-adjusted velocity �eld �uk
i
. To use the ODT wall

model, we modify this cycle to include two additional parts speci�c to the near-wall ODT

model. In the new part 1, the ODT equations are evolved and the momentum exchange at

LES interfaces due to the ODT processes are summed. Also, at the end of this part, values for

�̂u
k

i
corresponding to the ODT inner region (i.e., the layer of control volumes adjacent to the

walls) are computed from these results. Details are given in Sec. 5.5.2. In part 2, a modi�ed

form of Eq. (57) is solved for �̂u
k

i
throughout the rest of the domain. The modi�cations

correspond to ODT contributions to the surface 
uxes in the ODT/LES overlap region.

(Details are provided in Sec. 5.5.3.) Part 3 is the continuity-enforcing pressure-projection

step that involves solving a discrete Poisson equation for a pressure-adjusted velocity �eld

�uk
i
. This part is unchanged. The fourth and �nal part consists of adjusting the ODT-resolved

pro�les of Vi(y) and vi(y) to be consistent with the new pressure-adjusted LES velocity �eld

in the inner region.
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Figure 24.  Illustration of offset control volumes for mass and momentum in a staggered grid. 

Figure 25.  Spatial location of ODT and LES velocity components on a staggered grid. 
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5.5.2 Details of Part 1

We begin by de�ning an ODT time step �t0, and the associated ODT time-step index k
0.

The value of �t0 is much smaller than the LES time step �t so that a signi�cant number of

ODT time steps must be taken to advance in time from LES substep index k to k + 1.

Each ODT time step consists of (a) the evolution of the molecular equations from time t

to t+�t0, and (b) the stochastic sampling procedure by which eddy events are determined.

The molecular equations are numerically integrated using the following explicit numerical

approximation to Eq. (45):

v
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i
� v
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i

�
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�

; (61)

where PGi denotes the constant pressure gradient imposed on the 
ow, which in channel


ow is zero for i = 2 and 3. This term does not re
ect the 
uctuating pressure �eld that

arises due to the turbulent 
uctuations in the 
ow. This part of the pressure �eld is modeled

through the pressure projection (see parts 3 and 4 below). Second-order central di�erencing

is used to compute all gradients, and boundary conditions are imposed as per Eqs. (50) and

(51).

To compute the new ODT advecting velocity �eld V
k0

i
, an alternative to Eqs. (47) and

(48) has been implemented that avoids the need to maintain a memory-intensive history of

the instantaneous ODT velocity �eld. Namely, a temporal `mixing-cup' approach is adopted.

Given the values of Vi at time index k0 � 1, the values at k0 are computed as

V
k
0

i
=

 
1�

�t0

�t

!
V

k
0
�1

i
+

 
�t0

�t

!
v
k
0

i
(62)

for i = 1 and 3 and Eq. (49) is applied for i = 2. We note that an alternative to using

Eq. (62) (not implemented here) would be to hold V
k
0

i
constant over the LES sub-step k to

k + 1, and update these values at the same time the LES velocity �eld is updated.

After the molecular processes have evolved from time t to t + �t0, the possibility of an

eddy event is evaluated through the standard ODT stochastic-sampling procedure (Sec. 3.3).

However, allowable eddies are limited to those that extend into the inner region (as illustrated

in Fig. 23), and the length of the largest possible eddy, Lmax, is a model parameter of order

4�Y (i.e., the smallest length scale resolved by LES). If a trial-eddy location and length are

chosen such that the eddy extends into the overlap region, ODT-resolved values are obtained

in that region by linear interpolation of the LES �eld variables.

Although eddy events implemented in the usual manner would modify property pro�les in

the ODT/LES overlap region, the modi�cations are not implemented in that region. Rather,

statistics are gathered, as described next, that subsequently enable LES-scale implementation

of the implied property transfers across LES control-volume interfaces.
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As the ODT velocity �elds are advanced in time from LES substep index k to k+1, mo-

mentum is transferred across the ODT/LES interface through three mechanisms: molecular

di�usion, wall-normal advection, and eddy events. In addition, eddy events that extend to

points greater than y = 2�Y induce an exchange of momentum between LES cells in the

overlap region. In order for the ODT model to properly couple to the LES, a running sum

of the net transport across all LES control-volume interfaces due to ODT processes must be

maintained. For convenience in explaining the model, we de�ne these sums as follows:

S
1
i
= i

th component momentumtransport (per unit time, mass, and area) across an interface

between a near-wall LES control volume and a second-layer LES control volume.

S
1
Di

= that portion of S1
i
due entirely to molecular di�usion.

S
1
Ai

= that portion of S1
i
due entirely to mean advection.

S
1
Ei

= that portion of S1
i
due entirely to ODT eddy events.

S
n

Ei
= i

th component momentum transport (per unit time, mass, and area) across an in-

terface between an n
th-layer LES control volume (n > 1) and its adjacent (n+ 1)-layer

LES control volume that is due to ODT eddy events.

These sums can be computed as

S
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(63)

S

n;k

Ei
=

1

�t

X
m

E
n

m;i
; (64)

where En

m;i
denotes a transfer of i-component momentum across an interface between LES

layers n and n+1 due to an eddy event m. It is easily computed as the di�erence in momen-

tum (after minus before) on one side of the interface following an eddy event. In Eqs. (63)

and (64), the additional superscript k has been added to denote that these quantities are

computed during the interval from LES substep k to k + 1 (see Sec. 5.4).

At the end of part 1, the ODT velocity �eld has evolved due to advection, di�usion, and

eddy events, but without a two-way coupling with the LES velocity �eld (which has been

held constant). Part 1 is the ODT analog to solving Eq. (57) for the interim LES velocity

�̂u
k

i
. For later use in part 3 below, we apply Eq. (44) to the ODT advecting velocities to

calculate the ODT-based values for interim LES velocities in the ODT inner region:

�̂u
k

i

���
inner region

= �̂
V i =

1

NODT

NODTX
m=1

Vi;m (65)

for i = 1 and 3. Equation (65) is not valid for the wall-normal velocity, i = 2, because of

the de�nition of the ODT control volumes and locations as illustrated in Figs. 22 and 25.
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At the top of the inner region, the spatial location of the ODT advecting velocity V2jy=�Y
corresponds exactly to that of the LES velocity. However, the LES velocity is spatially

�ltered over a height �Y , and the ODT velocity over a height �Y=NODT. For use in part 3

below, the ODT velocity is actually a more accurate approximation for the desired quantity,

thus we simply set

�̂u
k

2

���
inner region

= V2jy=�Y (66)

for later use in part 3 (described in Sec. 5.5.4).

5.5.3 Details of Part 2

In part 2, modi�ed forms of Eq. (57) are solved for all values of �̂u
k

i
outside of the ODT inner

region. These modi�cations correspond to ODT contributions to the surface 
uxes in the

ODT/LES overlap region.

In the �rst LES layer of the overlap region, the transport across the ODT/LES interface

at the top of the inner region is completely speci�ed by the values computed in part 1

(see Sec. 5.5.2). Also, the advective 
ux across the top of this layer is enhanced by any

contributions due to eddy events bridging this face. To account for these e�ects, Eq. (57)

must be modi�ed (in this layer only) as follows:
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: (67)

Here, the modi�ed convection operator Nxz is de�ned as

Nxz(�ui) =
�

�xj

(�ui�uj); (68)

where the right-hand side is summed over j = 1 and 3. Note that the di�erence between

Eq. (57) and Eq. (67) is that all �nite-di�erence terms associated with transport across the

ODT/LES interface have been replaced by the explicit sums computed in part 1.

For all other LES nodes located within the overlap region (denoted by the superscript n,

with n > 1), Eq. (57) is revised to look as follows:
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Note that the only di�erence between Eq. (57) and Eq. (69) is the addition of wall-normal

transport terms coming from the ODT eddy events crossing LES boundaries as computed

in part 1.

For LES nodes located outside of the ODT/LES overlap region, Eq. (57) is solved without

modi�cation.

5.5.4 Details of Part 3

After completing parts 1 and 2, all values of the interim velocity �eld have been computed.

Part 3 begins by solving the discrete Poisson equation, Eq. (60), for �. Knowing �k, Eq. (59)

is integrated (with the rightmost term omitted, as explained in Sec. 5.4) to compute the

change in pressure from k � 1 to k. The new pressure is then given by

�
P
k = �

P
k�1 +

�
k

�k + �k

: (70)

Next, Eq. (58) can be applied to solve for the new velocity �eld:

�uk
i
= �̂u

k

i
��t

��
k

�xi

: (71)

5.5.5 Details of Part 4

The fourth and �nal part of the cycle consists of adjusting the ODT-resolved pro�les of

V
k

i
(y) and v

k

i
(y) to be consistent with the new pressure-adjusted velocity �eld in the inner

region. Figure 26 is useful in explaining how this is done.

Consider an ODT advective velocity �eld V
k

i
(y) in the inner region after the completion

of part 1. Since it has not been adjusted by the pressure-projection procedure, we denote

this pro�le hereafter as V̂ k

i
(y). It has an average value �̂

V

k

i
(see Eq. (65)), but may have an

irregular variation with y. A linear pro�le can be drawn from y = 0 to y = �Y that passes

through the value of �̂
V

k

i
at exactly y = �Y=2. At any location y from the wall, one can

compute a di�erence or `variation' between the local value of V̂ k

i
(y) and this linear function.
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Figure 26.  Illustration of how the ODT velocity field is adjusted following
a pressure-projection update.
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After part 3 is completed, a new adjusted value for �uk
i
in the inner region is known.

We impose the requirement that the di�erence (as a function of y) between the new V
k

i
(y)

and a line drawn through �uk
i
is unchanged from the di�erence function before the pressure

projection. Put another way, we obtain V
k

i
(y) by adding a linear pro�le to V̂

k

i
(y) that

enforces �
V

k

i
= �uk

i
. This gives

V
k

i
(y)� 2

�uk
i
y

�Y
= V̂

k

i
(y)� 2

�̂
V

k

i
y

�Y
(72)

for i = 1 and 3. After V1(y) and V3(y) are found, V2(y) is computed using Eq. (49).

In exactly analogous fashion, the ODT instantaneous velocity pro�les are adjusted based

on the relationship

v
k

i
(y)� 2

�uk
i
y

�Y
= v̂

k

i
(y)� 2

�̂
V

k

i
y

�Y
(73)

for i = 1 and 3. At the end of part 4, all values have been advanced from LES sub-time step

k � 1 to k.

5.5.6 Remarks

The LES velocity adjustment based on the updated pressure �eld (Sec. 5.5.4) is the means

by which the global e�ects of boundary conditions, inlet and outlet conditions, and other

imposed forcings are communicated to the LES-resolved 
ow �eld. The corresponding ad-

justment of ODT velocity pro�les (Sec. 5.5.5) reconciles the ODT pro�les to the adjusted

LES-resolved 
ow. The latter adjustment is formulated so that the ODT pro�les are brought

into conformance with the LES-resolved 
ow without modifying the microstructure of the

ODT pro�les. ODT internal processes are formulated to provide a physically sound represen-

tation of the communication of LES-scale forcings down to the microscales. Accordingly, the

ODT/LES subprocesses and couplings are formulated to be complementary, each providing

the other with the information needed to simulate 
ow evolution within the range of scales

that it represents.

The ODT velocity adjustment thus accounts for the e�ects of large-scale forcings not

incorporated into ODT microscale evolution. This does not preclude the incorporation of

such forcings into ODT evolution to the extent that this can be done in a physically consistent

manner. Indeed, to do so is advantageous because the adjustment procedure is approximate

at best, so numerical accuracy is improved if ODT and LES evolution are well enough

synchronized so that the magnitude of the adjustment is small. This is the motivation

for including the mean pressure gradient in the ODT momentum equation, Eq. (45). In

principle, it would likewise be advantageous to incorporate an estimate of the LES-scale

pressure-gradient 
uctuation, then viewing the adjustment in Sec. 5.5.5 as the correction

step of a predictor-corrector procedure. To date, we have found that stability problems
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typically encountered in such formulations negate the potential advantages of this approach.

This does not preclude the possibility that a procedure of this type might prove advantageous

in the future.

Finally, it is noted that neither the ODT momentum equation, Eq. (45), nor the adjust-

ment in Sec. 5.5.5 communicates the large-scale forcing to the wall-normal (i = 2) ODT

velocity component. As noted in Sec. 5.3.3, it is neither necessary nor desirable to couple

v2 to these forcings. Continuity is su�cient to determine the advective velocity V2 that

provides an LES-scale representation of the e�ect of ODT evolution on wall-normal 
ow. As

in ODT standalone implementation, v2 is a kinetic-energy reservoir that is incorporated to

improve the �delity of the ODT representation of energy transfers among the three velocity

components. Owing to the distinctive role of v2 in the formulation of the ODT event-rate

distribution (Sec. 2.3), v2 may have additional physical signi�cance in future applications to

transition and other phenomena that are sensitive to details of this formulation.

6 Performance of the Coupled ODT/LES Formulation

6.1 Computed Results and Comparison to DNS

Turbulent channel 
ow is chosen as the �rst validation test of the coupled ODT/LES model.

This problem has been studied extensively in the past and both experimental and numerical

DNS data is available for comparison purposes.

Figure 27 illustrates the 
ow domain chosen for the simulations performed here. The com-

putational domain is 2�, 2�=3, and 2 in the streamwise (x), spanwise (z), and wall-normal

(y) directions, respectively. For all but the highest-Reynolds-number 
ows considered, the

domain is discretized by a uniform 32� 32 � 32 grid in the streamwise, spanwise, and wall-

normal directions. As is common in the literature, the Reynolds number used herein is based

on the bulk velocity and the channel half-width (except where noted otherwise).

To perform a set of coupled ODT/LES calculations, the ODT model constants C, Z, �,

and Lmax must be speci�ed. As in Sec. 4.2, � = 2=3 is used for all results shown in this

section. Z is again assigned the value 98. These values, together with the choice C = 12:73,

are shown in Sec. 4.2 to yield a good �t of DNS data by standalone ODT.

For ODT/LES, it is found that a slightly lower C value, C = 9:9, is the best value for

matching the DNS mean velocity pro�le at Re� = 590. This value also yields accurate results

for the friction coe�cient. The performance of the model for this C value is demonstrated

in the remainder of this section. Figure 28 shows the standalone ODT mean velocity pro�le

for this C value compared to the best standalone case, C = 12:73. It is seen that the

sensitivity is slight, but nevertheless su�cient to imply a distinction between the coupling
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Figure 27.  Illustration of the ODT/LES channel-flow validation problem domain.

Figure 28.  Sensitivity of the predicted near-wall mean velocity profiles of standalone
ODT to different values of C and Z.
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of near-wall and bulk regions in standalone ODT and ODT/LES, respectively. Also shown

in Fig. 28 is a computed mean pro�le for Z = 0:02, a value chosen to be small enough

so that Z is e�ectively eliminated as a model parameter (i.e., further reduction of Z does

not change the computed results). C for this case is chosen to match the DNS friction

coe�cient. As anticipated, the reduced viscous suppression of eddies reduces the y+ range

of the viscosity-dominated 
ow regime. Though this case is less accurate than the others, it

is noteworthy that a useful degree of predictive capability is obtained when standalone ODT

is implemented as an e�ectively one-parameter model. In fact, 
uctuation statistics for this

case are only slightly less accurate than the results shown in Figs. 9 and 10.

Coupling ODT to LES requires the speci�cation of the maximum eddy length, Lmax. This

value determines the length of the overlap region (as illustrated in Fig. 21). It corresponds

physically to the largest length scale captured by ODT, and should also correspond approx-

imately to the smallest length scales resolved by the LES. Thus, one can also think of an

overlap region of length scales in which both ODT and LES models are active.

To determine the appropriate value of Lmax, a simple parametric sensitivity study was

performed. Figure 29 illustrates the results of this exercise for 
ow at Re� = 600. Four

di�erent simulations were performed, keeping all other values and conditions constant except

for the value of Lmax. A large change is seen as Lmax is increased from 2�Y to 3�Y , but

very little di�erence is seen as its value is increased from 3:5�Y to 4�Y . These results

con�rm our intuition that this value should correspond approximately to 4�Y based on the

resolution limitations of the numerical mesh. For all other calculations shown in this section,

we use the value Lmax = 3:5�Y .

The last issue of importance here is to determine the numerical resolution required by

the ODT mesh. Figure 30 shows the sensitivity of the near-wall mean velocity pro�les to

ODT grid resolution at Re� = 1200. At this Reynolds number, a value of NODT equal to

64 corresponds to an ODT near-wall mesh thickness of approximately 1.2 wall units (y+).

These results suggest that an ODT resolution of about �y+ = 1 is su�cient to achieve

grid-independent results. Thus, for all subsequent calculations, the ODT mesh was chosen

to satisfy this criterion.

Table 1 summarizes calculations performed and discussed here as a test of the current

ODT/LES coupled model. In each of these runs, the values of C, Z, �, and Lmax were

constant and unchanged from the values speci�ed as above. For cases E and F, the LES grid

in the wall-normal direction was stretched using a constant geometric multiplier in order to

obtain the desired near-wall grid thickness.

All calculations were performed on single-processor SGI workstations with run times vary-

ing from several hours for the lower-Reynolds-number 
ows to several days for the highest-

Reynolds-number 
ows. However, extensive optimization of the code and model algorithms

has not yet been attempted.
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Figure 29.  Sensitivity of the near-wall mean velocity profiles to different values of Lmax.
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Figure 31.  Near-wall mean and sample instantaneous velocity profiles, normalized by uτ.
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Case Re� Re NODT �y+ODT Nx Ny Nz

A 395 7010 24 1.03 32 32 32

B 600 11236 32 1.17 32 32 32

C 1200 24668 64 1.17 32 32 32

D 2400 54312 128 1.17 32 32 32

E 4800 117166 128 1.15 32 48� 32

F 10000 262133 100 1.02 48 64� 48

�Grid was stretched to produce a �ner resolution near the wall.

Table 1. Computed cases.

Figure 31 helps illuminate the dynamics of the coupled ODT/LES model by showing near-

wall mean and instantaneous velocity pro�les for an example calculation at Re� = 1200. In

contrast to the smoothly varying time-averaged pro�le that is shown, instantaneous pro�les

are highly irregular. Of particular note are the wrinkling e�ects of eddy events on the velocity

pro�les in the ODT inner region. At the particular instant shown, the e�ects of both large

and small eddy events can be clearly seen. Furthermore, the smoothing e�ect of molecular

processes over time can be seen and contrasted to the sharp gradients imposed by recent

eddy events.

Figure 32 provides a summary illustration of model results for the mean velocity pro�les

over the Reynolds-number range indicated in Table 1. For cases A and B, the DNS data of

Moser et al. (1999) are available and are used for direct comparison. For all cases, the inner

law (u+ = y
+) and a commonly accepted log law (u+ = 2:44 ln(y+) + 5:2) are also plotted

for comparison. Data symbols are used to denote ODT/LES node-point values in order to

highlight the increased resolution of the model in the ODT domain.

At all Reynolds numbers, the simulations produce a physically realistic viscous sublayer

smoothly transitioning through the bu�er zone into a log layer. At the edge of the overlap

region (between the second and third LES nodal values), a slight rise in the mean pro�le can

be noticed in the lower-Reynolds-number cases. This is likely due to imperfect transitioning

from ODT-based modeling of the turbulent transport to the LES modeling in the overlap

region - an aspect that is likely to improve with model re�nement. At the highest Reynolds

numbers (cases E and F), the mean pro�le in the LES region above the ODT domain is
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Figure 33.  ODT/LES computed friction coefficient as a function of Reynolds number.
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somewhat high. It is possible that this is due to the stretched grid near the wall, but it

may also re
ect a combination of underresolved LES e�ects coupled with imperfections in

the overlap-region transition to the ODT near-wall domain. Further investigation will be

needed to better understand the performance of the coupled model at these higher Reynolds

numbers. Overall, the coupled ODT/LES model performs remarkably well at predicting the

mean velocity pro�les for this 
ow and compares very favorably with other recent work in

this area (e.g., Nikitin et al. 2000, Kravchenko et al. 1996, Piomelli 1993).

Figure 33 is a semilog plot of the friction factor as a function of Reynolds number. The

ODT/LES results, extending over a wide range of the bulk-
ow Reynolds number, are in

good agreement with DNS and experimental results.

Figures 34-43 are plots of RMS velocity pro�les, normalized by u� . These results are

important because they illustrate near-wall dynamic information that cannot be obtained

from low-order RANS-based models. The dynamic 
uctuations that are re
ected in the RMS

velocity pro�les are also important to multiphysics applications where physical processes such

as heat transfer and chemical reactions are strongly a�ected.

Note that the wall-normal RMS velocities shown in these �gures are computed from the

ODT advecting-velocity pro�le V2(y; t), not the instantaneous wall-normal ODT velocity-

component pro�le v2. As explained previously, this is because the instantaneous wall-normal

ODT component is treated here as simply a measure of subgrid kinetic energy in the model,

and does not re
ect local continuity constraints.

Figures 34 and 35 compare ODT/LES computed RMS velocity pro�les at Re� = 395 with

those of the DNS calculations of Moser et al. (1999). Figure 34 shows the entire channel

halfwidth whereas Fig. 35 focuses only on the narrow ODT inner region.

Near the wall, the ODT/LES prediction of the peak in the urms pro�le is remarkably close

to the DNS considering the relatively poor comparison seen in the standalone ODT results

presented in Sec. 4.2 (see Fig. 9). This re
ects the in
uence of the LES coupling to the

inner-region ODT. In the LES domain, the urms pro�le is somewhat elevated as it comes

closer to the wall. This is a symptom noted by many others of an underresolved LES near

the wall (e.g., Kravchenko et al. 1996).

Near the wall, the relative magnitudes of the predicted wrms and vrms pro�les are correct,

although somewhat lower than the DNS values. In the ODT inner region, however, the

pro�le for vrms is very close to the DNS values. In both cases, there is a discontinuity in

slope at the ODT/LES interface re
ecting the abrupt jump from a �nely resolved ODT mesh

to the much coarser LES mesh. Overall, the magnitudes and shapes of these pro�les are not

strongly in error and in fact are considered quite good considering the nature of the model.

Figures 36 and 37 show results at Re� = 600 that are analogous to those given in Figs. 34

and 35 for Re� = 395. The only di�erence of note is that the ODT/LES pro�le for vrms is

not quite as close to the DNS values. (The DNS values are somewhat elevated.)
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Figure 34.  DNS versus ODT/LES RMS velocity profiles for  Reτ = 395.

Figure 35.  DNS versus ODT/LES RMS velocity profiles in the near-wall region for Reτ = 395.
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Figure 36.  DNS  versus ODT/LES RMS velocity profiles for  Reτ = 600.

Figure 37.  DNS versus ODT/ LES RMS velocity profiles in the near-wall region for
 Reτ = 600.
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Figures 38 and 39 show the ODT/LES computed urms pro�les for the higher-Reynolds-

number 
ows (cases C through F). Away from the very-near-wall region, cases C and D

(Re� = 1200 and 2400) are nearly indistinguishable. Although not directly compared here,

they would also compare very closely to cases A and B. This re
ects the fact that cases A

through D were each computed on the same uniform LES mesh with the same ODT/LES

overlap region. Only in the very-near-wall region, where behavior scales on inner variables,

would di�erences be expected (Wei & Willmarth 1989). This is exactly what is shown in

Fig. 39, where we see that the urms pro�les peak closer and closer to the wall as Re� increases.

For cases E and F (Re� = 4800 and 10,000) the LES mesh has been re�ned and stretched

in the wall-normal direction (and also re�ned in the other directions for Case F). Figure 38

shows that in each case, the LES pro�le of urms is somewhat elevated as it comes closer to the

wall, and drops down as it transitions to the ODT inner region. However, the more highly

elevated near-wall values of Case F imply that for better �delity, the ODT domain would

need to extend farther out into the 
ow �eld. This suggests that in general, the required

height of the ODT inner region may not scale only on inner variables. These results highlight

the need to explore the high-Re cases more thoroughly in future work.

Figures 40-43 show predicted vrms and wrms pro�les for the higher-Reynolds-number 
ows

(cases C through F). These results suggest similar conclusions to those drawn by looking at

Figs. 38 and 39. Pro�les for E and F show symptoms of being inadequately resolved in the

ODT/LES overlap region, while results for cases C and D are very similar to each other and

to cases A and B.

6.2 Cost/Performance Results and Extrapolation to Engineering Problems

An important issue with development of ODT as a near-wall LES subgrid model is the

relative computational cost of using the model. The approach is only attractive if the model

is both a�ordable and accurate. To assess this aspect of the model, some preliminary timing

results are presented and discussed here, particularly as they relate to scaling up to bigger

problems and higher-Reynolds-number 
ow.

As a means of comparing results from di�erent runs, a computational cost �gure-of-merit

`FCPU' has been computed for each case. FCPU is de�ned in such a way as to normalize out

di�erences in each of the runs that would tend to obscure a direct comparison of timings.

The method for computing FCPU is as follows. First, adjustments to the ODT cpu time

per LES time step are made so as to estimate this value for runs at a constant CFL of 0.5,

and a fractional acceptance rate of 0.05. The ODT CPU time per LES time step is then

divided by the total number of ODT nodes in the calculation. These values are plotted in

Fig. 44. Because of the nature of the estimation process, these results can only be taken as

indicative of a general trend. However, even with a very conservative extrapolation of these
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Figure 38.  ODT/LES profiles of streamwise RMS velocity for higher-Reynolds-number flows.

Figure 39.  ODT/LES profiles of streamwise RMS velocity in the near-wall region for
higher-Reynolds-number flows.
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Figure 40.  ODT/ LES profiles of spanwise RMS velocity for higher-Reynolds-number flows.

Figure 41.  ODT/LES profiles of spanwise RMS velocity in the near-wall region for
higher-Reynolds-number flows.
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Figure 42.  ODT/LES profiles of  wall-normal RMS velocity for higher-Reynolds-number
flows.

Figure 43.  LES/ODT wall-normal RMS velocity profiles in the near-wall region for
higher-Reynolds-number flows.

82



0

20

40

60

80

100

1000 104 105

10
5  * 

F cp
u  

(s
ec

 p
er

 L
ES

 s
te

p)
 / 

(N
um

be
r o

f O
D

T 
ce

lls
)

Re
τ
 

Curve fit:
F

cpu
 = -107 + 42.8 log(Re

τ
)

Figure 44.  Normalized ODT subgrid-model CPU cost as a function of Reynolds
number.

83



trends, the results indicate that the cost per ODT node of going from R� = 104 to R� = 105

would increase by less than a factor of 2.

When using these results to estimate the cost of using ODT as a near-wall model, two

additional factors must be recognized. First, the cost of using ODT as a near-wall model

scales with the surface area that needs to be modeled. Thus, the particular geometry of

interest a�ects this estimate. Second, the cost of doing the LES portion of the problem

scales di�erently with problem size than the ODT part. This scaling will depend strongly

on the numerical and parallel algorithms used in the LES code, but would not be expected

to scale as favorably as does the ODT part of the problem. Thus, the bigger the overall LES

problem, the smaller the relative cost of doing the ODT part of the problem compared to

the LES portion of the problem.

7 Discussion

The complexity of turbulent 
ow renders exact numerical solution una�ordable for cases of

practical interest and greatly complicates e�orts to develop reliable approximations. The

approach introduced here is is an attempt to develop a turbulence model based on physical

principles that, though empirical, are hopefully robust. To achieve this, the mixing-length

concept is applied on a local time-resolved basis, rather than applying it to averaged quan-

tities. It is hoped that this strengthens the tie between the physical concept and its formal

implementation within the model.

By focusing on this attribute of the model, the connection between unfamiliar elements

of the model and more familiar turbulence modeling concepts has been emphasized. The

eddy events within ODT provide a concise representation of turbulence production, trans-

port, energy-transfer, and length-scale-reduction mechanisms. The feedback resulting from

the dependence of the governing random process on 
ow and 
uid-property pro�les, and

modi�cation of those pro�les by eddy implementation, leads to a 
ow evolution process that

more faithfully emulates continuum motion than might be expected at �rst glance. The

key advantage of this construct is that it enables a 1D formulation that is computationally

a�ordable as a subgrid model as well as a standalone tool.

Representative standalone applications have been presented that indicate the potential

performance characteristics of ODT as a near-wall subgrid closure for LES. These examples

address relevant energy-conversion processes, including turbulent-kinetic-energy production,

dissipation, redistribution among velocity components, and conversion to or from gravita-

tional potential energy. The complexity of the couplings among shear and gravitational

forcings, boundary conditions, and 
uid-property evolution (e.g., di�usive mixing of density


uctuations) result in turbulence scaling properties that defy analysis, yet are reproduced
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by ODT. These results indicate that the relevant couplings are represented in ODT with a

�delity not previously achieved, short of multidimensional simulation.

To demonstrate the performance of ODT as a subgrid model for LES, ODT has been

implemented as a near-wall momentumclosure. A variety of physical modeling and numerical

implementation issues have been addressed in this regard. Computed results have been

compared to DNS of channel 
ow. Both the predictive capability and the computational

e�ciency of this formulation indicate the likelihood that ODT near-wall momentum closure

will be a practical, cost-e�ective contribution to the �delity of turbulence computations.

Possible extensions of the work reported here fall in two categories: incorporation of more

physics into ODT and broadening of the subgrid modeling role of ODT within LES. Addi-

tional physics that may be incorporated into ODT includes nonBoussinesq variable-density

e�ects, compressibility, and multiphase 
ow. New subgrid applications under consideration

are bulk-
ow momentum closure and closures for mixing and combustion. It may be cost-

e�ective to implement the latter in a Lagrangian framework, using ODT to simulate the �ne

structure of a 
ame brush that is tracked on the LES grid. Investigation of some of these

possibilities has begun.
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