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Abstract 

The availability of new commercial hyperspectral imaging infrared spectrometers makes possible 
the quantitative analysis of materials without the need for standards. In the course of achieving 
this goal, we have developed a new family of augmented classical least-squares (ACLS) 
algorithms that have important improvements over other quantitative multivariate calibration 
methods. The new ACLS methods are described and their application to hyperspectral image 
analysis is presented. Demonstration is given for the use of ACLS methods to improve the 
quantitative analysis of hyperspectral image data when chromatic aberrations are present in the 
system. A comparison of several multivariate curve resolution methods to estimate pure- 
component spectra without standards is presented. Finally, improvements to the multivariate 
curve resolution methods used to perform quantitative spectral analysis without standards are 
also presented. This report is a compilation of unpublished works describing these methods. 
Along with reference published and accepted journal papers, this body of work demonstrates the 
successful completion of the goals of this project. 
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INTRODUCTION 

In this three-year research project, we set out to develop new methods of analysis of two- 
dimensional hyperspectral Fourier transform infrared (FT-IR) images collected from a new 
generation of commercial FT-IR imaging spectrometers. The goal was to develop and apply new 
hyperspectral image analysis methods to the investigation of the aging of polymeric materials. 
We have accomplished this goal and have developed a whole new family of multivariate 
calibration methods that significantly improve the qualitative and quantitative analysis of 
spectral data whether the data are from hyperspectral images or from other sources. This report 
is a compilation of appendices from journal preprints, a patent specification, and another report 
that were all generated in part or in whole from this Laboratory Directed Research and 
Development (LDRD) project. Patent applications, published journal papers, and submitted 
journal papers related to this project are referenced but not included in this report. 

Because hyperspectral image data were not available at the beginning of this project, we 
initiated the development of a new classical least squares/ partial least squares (CLSPLS) hybrid 
multivariate analysis algorithm that was to create the basis of our hyperspectral image analyses. 
This hybrid algorithm was developed and programmed into several software codes. Celeste 
Drewien documented the implementation of the CLS/PLS hybrid algorithm for parallel 
processing computers.[l] The theory of the hybrid algorithm and an application to updating 
multivariate calibration models for the presence of unmodeled sources of near-infrared spectral 
variation in dilute aqueous solutions has also been published. [2] 

In the course of developing the hybrid algorithm, a significant improvement to the 
original CLS multivariate analysis algorithm[3-51 was developed. The improvement was called 
prediction-augmented classical least squares (PACLS). The theory and application of the new 
PACLS algorithm to updating CLS models for new sources of unmodeled spectral variation in 
the unknown samples has also been published.[6] 

The concept of the PACLS algorithm was then hrther extended to a whole family of 
generalized multivariate augmented classical least squares (ACLS) methods. [7] Among these 
algorithms are the concentration-residual augmented CLS (CRACLS) algorithm,[8] spectral- 
residual augmented CLS (SRACLS), and the scores augmented CLS (SACLS) algorithm. The 
new augmented methods and the hybrid algorithm have been the subject of two patent 
applications[9, 101 and two provisional patent applications.[l 11 The advantage of these new 
algorithms lies in their ability to rapidly update multivariate calibration models for the presence 
of unmodeled sources of spectral variation, e.g., for unmodeled chemical species, spectrometer 
drift, or changes in the spectra due to changes in spectrometers. 

The addition of the PACLS method to the hybrid algorithm (PACLWCLS) has been 
demonstrated to be effective for converting a constant temperature calibration model into one 
that corrects for temperature variations in dilute aqueous solutions, [2] for maintaining a 
calibration in the presence of significant instrument drift,[ 121 and for transferring quantitative 
calibrations between spectrometers. [ 131 

The CRACLS algorithm has also been demonstrated to have comparable prediction 
ability as the more common partial least squares (PLS) method. However, it has also been 
demonstrated to achieve greater qualitative information from the calibration data and to rapidly 
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update the calibration during prediction to maintain calibrations in the presence of significant 
spectrometer drift for the dilute aqueous solution system. The theoretical development of the 
CRACLS algorithm and the demonstration of its ability to maintain the calibration in the 
presence of severe instrument drift has been documented in a paper recently accepted for 
publication. [ 81 

A description of all the generalized augmented methods is presented in Appendix A of 
this report. A portion of this Appendix along with a demonstration of the SRACLS algorithm to 
rapidly update the calibration when different spectrometers are used in the collection of the 
unknown samples is presented in a paper that has recently been accepted for publication in 
Vibrational Spectroscopy. [7] 

Appendix B of this report documents the hyperspectral infrared analysis of ink jet printer 
inks using end-member analysis from commercial software and compares these commercial 
software results to those obtained from the use of the PACLS algorithm. The PACLS algorithm 
is shown in Appendix B to be able to correct the quantitative analysis of the ink image spectra 
for the presence of chromatic aberration in the data. This Appendix serves the basis of a paper to 
be submitted to Applied Spectroscopy. 

Appendix C compares a variety of multivariate curve resolution techniques applied to the 
quantitative analysis of an aged neoprene polymer sample without the use of calibration 
standards. It compares SIMPLISMA, constrained alternating least squares, and an errors-in- 
variables approach to MCR. 

Appendix D documents the development of new approaches in the application of equality 
constraints in the application of multivariate curve resolution (MCR) methods that form the basis 
of the methods used for performing quantitative analysis of hyperspectral images without the use 
of calibration standards. The implementation of equality constraints is important for using the 
augmented CLS methods in quantitative hyperspectral image analysis. A separate report has 
been prepared that demonstrates the use of MCR with non-negativity and equality constraints to 
perform quantitative analysis of hyperspectral images of aged neoprene without the use of 
calibration standards. [ 141 The ACLS methods in combination with equality constraints added to 
the MCR analysis demonstrate dramatic improvements in estimating the pure-component spectra 
and in generating concentration maps of the images for each chemical component present in the 
image data when significant instrument artifacts contaminate the hyperspectral image data. 

This report demonstrates the successful completion of the original goals of our LDRD 
project. The unanticipated development of an entire family of new calibration algorithms that 
have high commercial value both in the analysis of hyperspectral images as well as in the 
analysis of any quantitative spectral data has make the significance of this research far beyond 
the original goals of the project. 
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CONCLUSIONS 

The publications, submitted publications, and patent applications that arose from this 
three-year project represent new capabilities in the area of qualitative and quantitative 
multivariate spectral calibration. The new ACLS and hybrid algorithms represent a family of 
multivariate calibration algorithms that can be rapidly updated during prediction to accommodate 
unmodeled sources of spectral variation such as unmodeled chemical species, spectrometer drift, 
or changes in spectrometers. These new methods have extensive use in the quantitative analysis 
of hyperspectral image data also. We have demonstrated that the new ACLS methods allows 
quantitative analysis of infrared spectral image data even when severe chromatic aberrations are 
present in the system. The general usefulness of these new algorithms has been demonstrated by 
the successful licensing of the related patents to Thermo Nicolet for use in vibrational 
spectroscopy. 

Multivariate curve resolution methods have been employed to accomplish the 
quantitative analysis of hyperspectral image data without standards. The standard non-negativity 
constrained alternating least squares MCR methods have been improved significantly with the 
implementation of ACLS features in the alternating least squares concept. The incorporation of 
the ACLS methods have been incorporated into the MCR methods with the use of improved 
equality constraints added to the alternating least squares iterative procedure. Although these 
methods have been demonstrated with infrared image data, their application can be extended far 
beyond this single area of research. The continued and further development of these methods 
continues with other projects in the areas of remote sensing, kinetic analysis, and the general 
improvement of quantitative spectral analysis. 
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Appendix A. 

Generalized Augmented Classical Least Squares Methods 

David Haaland and David Melgaard 
Sandia National Laboratories 

Albuquerque, New Mexico 871 85-0886 

The prediction-augmented classical least squares (PACLS) algorithm [ 11 provides a basis 
for rapidly updating a classical least squares (CLS) model [2-41 during prediction of 
component values of the target unknown sample. PACLS allows models to be updated 
for the presence of spectrometer drift, changes in spectrometer parts or changes in whole 
spectrometers, unmodeled chemical or non-chemical spectral components, as well as 
updating for more generalized changes such as changes in starting materials, the presence 
of nonlinearities, chromatic aberrations, or stray light, etc. However, the PACLS 
algorithm is limited by the fact that accurate predictions require all interfering spectral 
components (including chemical and non-chemical sources of spectral variation) to be 
explicitly included in the calibration. Alternatively, if one or more spectral interferences 
were left out of the calibration, then their spectral influence would have to be added 
during prediction of the unknown sample to correct for their absence in the model. These 
limitations can be reduced and even eliminated by the development of a new generalized 
family of algorithms that we call augmented classical least squares (ACLS).[S] This 
family of algorithms includes one method that has been previously published by Martens 
and Naes,[6] which they call the extended Beer’s law model. The other members of the 
ACLS family have not been previously published or disclosed. When the new ACLS 
methods are combined with our proprietary PACLS algorithm, we have a powerful set of 
new multivariate capabilities such that analyses can be performed with incomplete 
knowledge of interferences in the calibration data. Thus, the ACLS methods can be used 
even if an incomplete set of component values is known during the calibration step. The 
augmented methods can yield accurate predictions even in the presence of unknown 
sources of spectral variation, nonlinear responses, and non-uniform and correlated errors. 
Yet, the new algorithm can still use the PACLS capabilities to rapidly update the model 
during prediction to accommodate unmodeled sources of spectral variation in the 
unknown sample spectra to be predicted. Below is given the broad ACLS algorithm and 
specific examples of its implementation. 

The standard CLS model is 
A = C K + E *  (1) 

where A is the set of n objects (e.g., sample spectra) each consisting ofp  responses, C is 

reference responses for the m unique components, and EA is the n x p  set of errors and 
noise not fit by the model. For an incompletely specified and/or nonlinear model, the 
error matrix EA will consist of a set of correlated, non-uniform errors that can be further 
decomposed into a sum of correlated errors due to unmodeled spectral components, 
nonlinearities, or system-related correlated errors and uncorrelated random errors 

1. the set of reference values for the n objects with m unique components, K is the set o fp  

L 
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representing system noise and/or spectral variation that is not relevant to prediction. 
Factor analysis methods can be applied to EA to separate these error sources. Thus, EA 
can be described as: 

where T and P are the set of n x r scores and r x p  loading vectors, respectively, obtained 
from the factor analysis of EA, and E is the set of n x p  random errors and spectral 
variations not usehl for prediction. The dimension Y is the rank of the EA matrix or the 
number of factors that are required for optimal prediction. Therefore, Eq. 1 can be 
written 

EA can be determined from the CLS estimated K matrix, i.e., 

where K is the CLS estimated response of the known pure components. A CLS solution 
for K can be obtained from 

where C+ is the generalized inverse. The approximately equals sign is appropriate if only 
selected factors are used in the generalized inverse. An equals sign would be appropriate 
for the right-hand side of Eq. ( 5 )  if all factors of the generalized inverse are used in the 
solution. 

E A = T P + E  (2) 

A = CK + TP + E (3) 

E, =A-CK (4) 

K = (CTC)-'CTA = C'A ( 5 )  

The rows of the K matrix in Eq. ( 5 )  can be augmented directly with all or selected 
spectral residuals from Eq. (4) to correct the CLS model for unmodeled spectral 
components. The augmented K matrix can then be used in the augmented CLS 
prediction step to solve for an augmented C matrix (called E ,  where the - symbol 

indicates an augmented matrix). The augmented CLS prediction estimate E can be 
obtained from 

A 

A A A A  A 
N N N  E = AK(KK~)-' = AE+ (6) 

Alternatively, Eq. (2) can be factor analyzed by any factor analysis method. Common 
methods include principal component analysis (PCA), partial least squares (PLS), or 
principal component regression (PCR). If PLS or PCR are used, then concentration 
residuals must be included in the calibration process, and the method becomes one of the 
hybrid method described in SD6256.[7] The factor analysis can use either an orthogonal 
factor analysis method or any non-orthogonal factor analysis method. Once the factor 
analysis is completed, the scores, T, or the loadings, P, can be used to improve the CLS 
calibration model. If PCA is used as the factor analysis method applied to the calibration 
spectral residuals, then the eigenvectors, P (i.e., the rows of P), can augment the rows of 
the K matrix during the CLS prediction step to improve the prediction ability of the CLS 
model. The augmented CLS solution for component values then proceeds according to 
Eq. (6). This procedure represents the extended Beer's law model method previously 
described by Martens and Naes.[6] We prefer to call this algorithm spectral-residual 
augmented classical least squares (SRACLS) to differentiate it from other augmented 
CLS methods. When combined with PACLS augmented by spectral responses obtained 
from data or information that is independent of the calibration data set, the SRACLS 

. 
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I -  

algorithm can be updated in a PACLS prediction step (see SD6227[8]) for the presence of 
unmodeled changes in the responses of the prediction samples. 

We can also use the scores T to correct the CLS model for unknown components. In this 
case, the columns of T can be added to C to augment the column dimension of C. 
Recalibrating with this augmented CLS method as in Eq. (7) results in an augmented 

K matrix that allows the augmented CLS model to have better predictive properties than 
the original CLS model. 

When augmentation makes use of scores, we call this method scores-augmented classical 
least squares (SACLS). 

n 

n 

= (ETE)-lETA m E+A (7) 

The process can be generalized further to augment the column dimension of C with 
selected calibration concentration residuals obtained from the predicted calibration 
reference values (see Eq. (8)) after CLS calibration and prediction or cross-validated 
prediction on the calibration samples or true prediction on a set of validation samples. 

where Ec represents the errors for the known component values (e.g., concentration 
values) after performing the CLS calibration and prediction steps. This method, which 
we call concentration-residual augmented classical least squares (CRACLS), develops 
new estimated responses that are then included as new rows of K in an augmented CLS 
prediction. CRACLS is an iterative method that adds one column of concentration 
residuals (arbitrarily selected from the errors of one of the components included in the 
calibration) during each iteration that then generates new residuals to be added to the first 

augmented E matrix.[9] New component value residuals are then generated and used in 
a second iteration step. The process is continued until all factors required for optimal 
prediction are added. In all augmented CLS methods, the optimal number of factors can 
be determined using the same method for PLS factor selection that has been previously 
published for PLS and PCR[ lo]. The component value residuals in this method can be 
generated from the either the full models or the cross-validated models. 

,. 
E, =C-C (8) 

n 

Further generalizing the method, the C matrix can be augmented by one or more columns 
of random numbers to form another augmented CLS method. Random numbers can also 
be added to augment the K matrix to improve the prediction ability of CLS. In general, 
any set of vectors of the correct dimension for T or P can be used to improve the CLS 
model as long as they each contain some independent information relative to themselves, 
the original C matrix, or initially estimated K matrix, i.e., they cannot be collinear with 
each other, C, or K . 

The fact that the new augmented CLS methods can be performed either during calibration 
(augmenting with scores) or during prediction (augmenting with loading vectors) gives us 
the opportunity to greatly improve the alternating least squares (ALS) multivariate curve 
resolution (MCR) method for decomposing a series of spectra into their pure-component 
spectra and concentrations. [ 1 1 - 151 MCR methods are extremely valuable for quantitative 
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multi-spectral and hyperspectral image analysis, kinetics studies, or any problem where 
quantitative results are desired when there are no standards or inadequate knowledge of 
the pure-component spectra or component concentrations. Most often alternating least 
squares MCR is performed with constraints applied. For example, constraints that have 
been applied in the literature are non-negativity, closure, unimodality, baseline 
constraints, etc. For any alternating least-squares multivariate curve resolution method, 
we can augment the calibration and prediction least-squares steps with information that 
we want the least-squares fits to ignore, e.g., known or estimated spectral components or 
any estimate of the error covariance of the system. An estimate of the error covariance 
can be obtained for example by taking repeat spectra or in the case of spectral imaging, 
repeat spectral images. Each least-squares calibration step in MCR iteration is 
augmented by the scores obtained from the factor analysis of the error covariance matrix 
and each least-squares prediction step is augmented by the loading vectors from the same 
matrix. Any constraints are applied only to the non-augmented portion of the augmented 
matrices. In this manner, quantitative analysis of spectral images can proceed without the 
need for standards even in the presence of large error covariance structure in the data. An 
example of this new method applied to hyperspectral infrared image analysis without 
standards is presented in a related report. [ 161 

. 
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APPENDIX B 

Quantitative Analysis of Ink-jet Inks with an FT-IR Imaging Spectrometer 

Frederick W. Koehler IV and David M. Haaland 
Sandia National Laboratories 

Albuquerque, New Mexico 87185-0086 

INTRODUCTION 

Fourier transform infrared (FT-IR) hyperspectral imaging is a recent development of increasing 
importance in the analysis of heterogeneous samples. First introduced in the analytical chemistry 
literature in 1995 by Lewis et al.,' this new analytical tool represents the union of a FT-IR step- 
scan spectrometer, an IR microscope, and most importantly, an IR focal plane array detector. 
The result is an instrument that has expanded opportunities for the characterization of 
hetero eneous samples through the collection of near-IR and mid-IR spectroscopic image 

microscopic or macroscopic spatial region. While there is some sacrifice in the signal-to-noise 
of the spectra at each pixel relative to traditional IR mapping experiments, the FT-IR imaging 
spectrometer can collect hyperspectral images in a matter of minutes instead of many hours. 

The imaging FT-IR system permits rapid collection of thousands of IR spectra across a 

Data collected from the imaging spectrometer can be organized as a three dimensional matrix 
composed of an infrared spectrum at each pixel to yield one spectral dimension and two spatial 
dimensions. Because there are hundreds of wavelength channels, this image data set is termed a 
hyperspectral image. Image maps are easily created using intensities at individual spectral 
channels or linear combinations of all or selected channels obtained with methods such as 
principal component analysis (PCA).*l 

Since the introduction of imaging FT-IR spectrometers, several groups have published 
qualitative results for the characterization of a wide variety of samples. Lewis et al.' first 
published spectral images of resolution targets and surfactant systems. More recent papers have 
been published that present qualitative and semi-quantitative imaging results for a variety of 
biological  system^.^,^,^ Koenig et al. 8,12,14-16 have published qualitative and semi-quantitative 
results of analyses of polymer dispersed liquid crystal systems. Marcott et al. 17-19 have 
investigated biological, agricultural, and pol mer samples combining two-dimensional 
techniques with FT-IR imaging. Budevska has demonstrated improvements in spatial 
resolution through the use of a multivariate curve resolution technique. 

yo 

Previous studies have demonstrated the strong potential of hyperspectral imaging in 
characterizing spatially heterogeneous samples in the IR, but few have performed accurate 
quantitative analyses. This trend is not surprising given the rapid commercial development of 
the first-generation FT-IR hyperspectral imaging systems and the limitations of these early 
instruments. The first IR imaging systems used refractive optics that introduced chromatic 
aberrations in the image data. Chromatic aberrations can seriously limit quantitative analysis of 
the hyperspectral image data set. Quantitative analyses and qualitative interpretation will be 



greatly improved if the data are corrected for chromatic aberration. 

Given the large amounts of data produced by FT-IR imaging spectrometers, qualitative or 
quantitative analyses can be enhanced with multivariate data reduction. Software originally 
developed for satellite remote sensing can play an important role in visualization and qualitative 
analysis of hyperspectral image data. One software package of note is the Environment for 
Visualizing Images (ENVI), which is an interactive software environment.22 By transforming 
the image data with a noise-adjusted principal component analysis algorithm, i.e., the minimum 
noise fraction (MNF) transform, the ENVI software allows rapid visualization and mapping of 
the spectral images while bringing the highest signal-to-noise information in the spectra to the 
forefront. Combined with routines written in house with Matlab and Grams software, the work 
in this paper will describe the integration of various multivariate algorithms into a quantitative 
analysis solution. 

Because changes in pathlength and concentration are often confounded in IR spectra, we first 
describe a new approach to identify the best spectral region to use in normalizing the spectra for 
variations in the pathlength across the sample image. An additional challenge common in the 
analysis of heterogeneous samples is the lack of suitable standards to construct traditional 
quantitative multivariate spectral calibration models. We will demonstrate methods for 
extracting pure-component spectra from hyperspectral images of heterogeneous samples to be 
used in developing quantitative composition image maps of the samples. We evaluate the 
performance of existing and new multivariate algorithms and demonstrate new algorithms that 
can yield quantitative analyses of heterogeneous samples even in the presence of chromatic 
aberrations. 

FT-IR spectroscopic image data are analyzed for a sample containing a small number of 
components deposited onto a known substrate in a semi-quantitative manner. The sample was 
created with microscopic features of pure and binary mixtures of three components by printing a 
pattern of yellow, magenta, and cyan inks on aluminum foil using an inkjet printer. The apparent 
simplicity of this sample belies the complex optical and spectroscopic artifacts that will be 
demonstrated in our quantitative hyperspectral image analysis of the ink sample. 

THEORY 

Pathlength Variation. When pathlength varies over the imaged area of the sample, 
concentration information will be confounded with pathlength changes since pathlength and 
concentration changes are generally indistinguishable. These pathlength variations can be 
largely corrected if the Beer-Lambert law is closely followed and if a spectral region can be 
identified that represents only pathlength variations. The identification of the optimal spectral 
region related to pathlength is critical since spectral variation due to pathlength variations can be 
greater than those caused by concentration changes. The first requirement in selecting a band for 
pathlength correction is to identify, if present, a spectral band shared by all IR active species in 
the heterogeneous sample. Isolating and baseline correcting all the candidate bands in the image 
spectra facilitates selection of appropriate spectral bands for correcting pathlength variations. 
The second step in selection of the optimal pathlength-related spectral band is the identification 
of a band that exhibits primarily multiplicative changes with no significant changes in spectral 
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shape caused by composition variations. If a spectral band common to all components represents 
only linear pathlength variation, then only one source of spectral variation will be present in the 
band above the noise and that spectral variation will have a spectral shape that is the same as the 
average spectrum for the band. PCA can be used to identify spectral bands that meet this second 
set of requirements. A necessary, but not sufficient, condition for a multiplicative pathlength 
effect is that the first eigenvector of the identified band both closely match the shape of the 
band’s average spectrum and account for the vast majority of the spectral variance in the band. 
The criterion for the amount of spectral variance contained in the first eigenvector is dependent 
on the amount of noise present in the spectra, the linearity of the system, and the level of 
quantitative accuracy required. If pathlength variations exist in the sample but a spectral band 
cannot be found that adequately meets these criteria, then quantitative accuracy will be limited 
because pathlength and concentration variations are confounded. 

Once an appropriate spectral band has been selected for pathlength correction, pathlength 
correction terms must be determined for each spectrum in the hyperspectral image. Assuming 
the sample absorbances follow the Beer-Lambert law, the image spectra can be normalized for 
the measured relative pathlength variations by dividing each spectrum by its estimated relative 
pathlength. We recommend that classical least squares (CLS) analysis with simultaneous linear 
baseline fitting2’ be used to estimate the relative pathlength for each spectrum. The mean 
spectrum of the band is chosen as a low noise representation of the spectral band, and we assign 
it a relative pathlength of one in the CLS analysis. 

PCA, MNF Transform, ENVI and the Pixel-Purity Index. To obtain optimal qualitative and 
quantitative results in multicomponent systems, multivariate techniques such as principal 
component analysis and partial least squares (PLS) are often employed to analyze FT-IR spectral 
data. Multivariate methods use a large number of spectral channels to take advantage of the 
signal averaging and resolving power inherent in spectral data. The multivariate nature of the 
spectra and the massive amount of data in hyperspectral FT-IR images allow the characterization 
of systems with low signal-to-noise ratios and with multiple components whose spectral features 
overlap. Multivariate data also provide the opportunity to correct systematic spectral artifacts 
and aberrations introduced by the instrument. 

While PCA remains the most common multivariate technique for visualizing and analyzing 
hyperspectral image data, several assumptions at the heart of PCA have been demonstrated to be 
problematic for some hyperspectral image data. PCA is a maximum likelihood method when the 
noise is uncorrelated and has constant variance across the spectrum. However, hyperspectral 
image data produced from the commercial FT-IR imaging spectrometers displays heteroscedastic 
and correlated noise.23 Thus, the magnitude of the noise is wavelength dependent, and the noise 
is correlated between wavelength channels. When noise is heteroscedastic and correlated, PCA 
may order factors in a non-optimal fashion. In this case, important sources of spectral variation 
can become relegated to latter factors where they are often not seen. Additionally, subtle but 
important differences between factors can become lost. 

Investigators working on satellite remote sensing data proposed a solution in the form of a noise- 
adjusted principal components analysis called the minimum (or sometimes maximum) noise 
fraction (MNF) t r a n ~ f o r m . ~ ~ ’ ~ ~  The MNF algorithm seeks to decorrelate and whiten the spectral 



noise before performing PCA. The MNF transform orders factors according to signal-to-noise 
ratio rather than spectral variance. The mathematical approach outlined by the authors is simple 
but requires apriori knowledge or empirical estimation of the noise covariance of the data. The 
MNF transform is similar in its goals to the maximum likelihood PCA approach described by 
Wentzell et a1.26 but is computed differently. The MNF transform first performs an eigen 
analysis on an estimate of the noise covariance matrix, Vn, of the spectral image resulting in the 
normalized eigenvector matrix E, 

where Dn is the diagonal matrix of eigenvalues. PCA is then performed on FTV~F, where F = 

ED;’” and VR is the sample covariance matrix. Thus, the MNF transform involves two PCA 
transforms. The first PCA both whitens and decorrelates the noise. The second PCA transform 
is then performed on the corrected data that follows the assumptions inherent in PCA. 

ETVnE = Dn 

Several methods are described in the literature for estimating the noise covariance m a t r i ~ . ~ ~ ’ ~ ~  
The MNF technique was originally developed for satellite spectral image data where there was 
no opportunity to collect repeat images. Therefore, a noise covariance estimation technique 
suitable for single-image spectra was d e ~ e l o p e d . ~ ~ , ~ ~  It is assumed that the signal in the image is 
slowly varying while the noise varies from pixel to pixel. Thus, the error covariance matrix can 
be estimated by a shift difference procedure. In the ENVI software, the noise covariance 
estimate is obtained by subtracting the spectrum of neighboring pixel to the left from that of the 
current pixel. The resulting difference spectrum is averaged with the difference spectrum 
obtained by subtracting the neighboring pixel above. This mean difference is calculated for 
every pixel, resulting in an estimate of the noise covariance matrix of the spectral image. The 
ENVI noise covariance estimation assumes the major difference between neighboring pixels is 
noise; an assumption that may not be valid when distinct boundaries exist in the image. ENVI 
also allows noise estimates to be imported from other external sources, such as a dark current 
measurement or from the difference between repeat spectra of the entire image. 

ENVI contains several software tools that use MNF scores to obtain pure-component spectra 
from heterogeneous spectral image data. The pixel-purity index (PPI) isolates the most extreme 
pixels in the data space and can be used to select specified numbers of spectra representative of 
the purest @e., the most extreme) pixels in the image. The PPI is computed iteratively through 
the projection of a random unit vector onto the MNF score space. The location of the projection 
of the scores onto the unit vector is recorded as a purity index value. By retaining only those 
pixels whose purity index falls above a threshold, one is able to isolate spectra of pixels with the 
most unique information while eliminating background and mixed pixels. 

Finally, ENVI enables the MNF score space to be visualized as it is rotated through the various 
dimensions in all possible combinations of factors. Thus, by watching numerous rotations, the 
researcher can observe data clusters and distributions in more than three dimensions. Pixels on 
the extreme vertices of clusters are separately selected and their spectra averaged. These 
averaged extreme vertex spectra represent estimates of the pure-component spectra. The 
accuracy of these estimated pure-component spectra is dependent on the existence of pixels 
representative of the pure-component species somewhere in the image. ENVI simply allows the 
analyst to identify the purest pixels in the image and to export them for further use. ENVI also 
allows mapping of selected vertex clusters to pixels in the original image to provide a visual 
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distribution of pure pixels throughout the sample image. 

Once pure-component spectra are estimated from the image data, CLS methods can be used to 
obtain concentration estimates for all species represented by the pure-component spectra. Thus, 
quantitative composition maps of the images can be generated if pure pixels are present in the 
image. However, we have found that chromatic aberrations present in the FT-IR hyperspectral 
images can greatly degrade the quantitative CLS analysis of the image data. 

Chromatic Aberration. Various aberrations are possible in optical systems where higher order 
terms detract from the idealized first-order models of Gaussian optics. Of these aberrations, 
chromatic aberrations can severely impact multivariate qualitative and quantitative analyses 
since their effects vary as a function of wavelength throughout the IR spectral image. Chromatic 
aberrations are caused by the wavelength-dependence of the index of refraction of a lens, which 
in turn changes the focal length of the lens as a function of wavelength. Chromatic aberration 
can contain both lateral and axial components. The axial component of chromatic aberration 
changes the location of the focal point as a function of wavelength, and the lateral aberration can 
change the position of the image as a fwnction of wavelength. Thus, chromatic aberrations can 
cause changes in the relative intensities of the spectral bands, image shifts, and changes in the 
magnification of the image that are each wavelength dependent. We will demonstrate that 
chromatic aberrations can generate significant deviations in the Beer-Lambert law. 

Chromatic aberrations are apparent in the image as blurring and spatial shifting of the image. IR 
radiation "spills" across pixels resulting in spectral mixing which varies as a function of 
wavelength. Light spills across areas of low absorption onto areas of high absorption reducing 
the measured absorbance of the higher absorbing pixels in a wavelength dependent manner. This 
effect is greatest for pixels lying on the boarder between one spatial region and another. 

To a multivariate analysis technique, which simply processes the data as a two dimensional stack 
of data, these changes in the spectra appear to introduce wavelength-dependent changes in 
spectral intensities that are indistinguishable from chemical changes in the sample. Thus, 
chromatic aberrations greatly hamper the estimation of pure-component spectra from spectral 
image data and degrade the multivariate quantitative analysis even if true pure-component 
spectra are known. 

Classical Least Squares and Prediction-Augmented Classical Least Squares. The CLS 
method is a standard multivariate method for quantitative analysis of spectral data?7-36 It is a 
linear least-squares method based on adherence to the Beer-Lambert law. Since the presence of 
chromatic aberrations is highly detrimental to the quantitative multivariate CLS analysis of the 
image spectra, new methods are required to correct for wavelength-dependent aberrations. We 
have recently introduced prediction-augmented classical least squares (PACLS). 37 The PACLS 

unmodeled spectral components. If estimates of the unmodeled spectral components can be 
obtained, PACLS corrects the prediction results for the presence of the unmodeled components. 
The spectral influences of chromatic aberration are mathematically equivalent to the addition of 
spectral components to the image data. We can obtain linear estimates of the effect of chromatic 
aberration on each pure-component spectrum by subtracting the pure pixel spectra from the 

algorithm improves CLS by allowing a calibration model to be corrected during prediction for 

* 
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chromatic aberrated spectra located at the spatial boundaries of each region of the heterogeneous 
sample. Once the linear estimates of the spectral shapes of chromatic aberration for each 
component are obtained, they can be added to the CLS prediction to correct the analysis of the 
pure components for the presence of the chromatic aberration. In addition to composition maps 
of the pure components obtained with the PACLS analysis, quantitative maps of the magnitude 
of the chromatic aberrations for each component can also be generated. 

EXPERIMENTAL 

BioRad Stingray FT-IR Spectrometer. Spectra were collected at the BioRad facility during 
evaluation of the BioRad Stingray (BioRad Laboratories, Cambridge, Massachusetts) FT-IR 
imaging system. The system included the BioRad FTS-6000 step-scan FT-IR bench and the 
Biorad UMA-500 IR microscope. Detectors included a single-point mercury-cadmium-telluride 
(MCT) detector and a 64 x 64 pixel MCT focal plane array (FPA) detector (Santa Barbara 
Focalplane, Goleta, California). A single-element ZnSe lens transferred the output of the 
microscope image from the UMA-500 to the FPA detector. Single-beam image spectra were 
collected in reflectance using the microscope with a spot size of approximately 400 pm x 400 
pm. The step-scan system used a stepping rate of 2.5 Hz with 80 frames coadded for each 
spectrum. Triangular apodization and Mertz phase correction were applied to the interferograms. 
Spectra at a nominal resolution of 16 cm-' were collected with an undersampling rate (UDR) of 4 
to yield a maximum digitized frequency of 3904 cm-'. Spectra were truncated to the sensitive 
range of the detector, i.e., 900 to 3900 cm-l. A glass microscope slide vapor-deposited with gold 
was used as a background for both the point and image spectra. Final reflection-absorption 
spectra were obtained by ratioing each sample single-beam spectrum by the corresponding gold 
reflection single-beam spectrum followed by taking the negative log of the ratio. Collection of 
high-quality single-point microscope spectra of the center of each of the three pure components 
on the sample was obtained with the single-point MCT detector. For these data collections, the 
UDR were set to 2 and 128 scans were coadded. Norton-Beer medium apodization and Mertz 
phase correction were applied to the interferograms collected at a nominal resolution of four 
wavenumber s . 

Chromatic Aberration Characterization. To characterize chromatic aberration in the imaging 
spectrometer, an xacto blade was used to block a portion of the IR image. For this study, single- 
beam image data were collected in macro-mode (spot size of 4 mm by 4 mm) with 16 cm-' 
spectral resolution and an under sampling ratio of 4. A 2.5 Hz stepping rate was used with 80 
frames coadded for each interferogram point. 

Inkjet Sample. To evaluate the FT-IR imaging spectrometer and the algorithms developed for 
data analysis, a simple, reproducible, and at least semi-quantitative sample was needed. The 
difficulty in sample selection was exaggerated by the small image size, 400 pm by 400 pm. We 
generated an appropriate sample by printing ink spots on an aluminum foil with the use of an 
inkjet printer. For the observed color of the printed ink spots to be correct, the programmed 
colors of the inkjet spots should be at least semi-quantitative in the mixture of the three 
complementary color inks: yellow, magenta, and cyan. Therefore, a strip of commonly available 
Reynolds Wrap kitchen grade aluminum foil was taped to paper and fed through a Hewlett 
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Packard DeskJet 722C printer. The printer printed a pattern of single-pixel spots specially 
designed in Adobe Photoshop. The magnified pattern is shown in Figure 1. The pattern 
contains each pure ink as well as the three 50:50 binary mixtures of the pure inks. In practice, 
the inkjet printer rarely gets all the colored ink drops for each of the six spots perfectly aligned 
on a microscopic scale. Therefore, a large matrix of these patterns was printed, and a 
microscope was used to identify a group that visually had optimal mixing and spatial 
characteristics. The area around this group was cut out and 3M-brand spray-on glue was used to 
fasten the sample onto a glass microscope slide. A visible image of the pattern collected on the 
FT-IR imaging microscope spectrometer is shown in Figure 2. The visible image is slightly 
translated relative to the image collected in the IR. However, distinct yellow, magenta and cyan 
spots are visible along with their binary mixtures of yellow + magenta (red), yellow + cyan 
(green), and magenta + cyan (blue). Rolling marks are also visible on the aluminum substrate, 
indicative of the commercial aluminum foil that was used. 

Data Analysis. The BioRad-supplied WinIR Pro/ImageIR software was used for data 
acquisition and initial spectral processing. Image spectra were exported to Grams/32 SPC format 
for use with Sandia-developed chemometrics software. The Sandia software was used to isolate 
spectral regions and separately baseline correct each spectral region of each spectrum before 
final analysis. Our software was also used in the eigen analysis determination of the best 
pathlength-correction band and in the creation of CLS and PACLS calibration and prediction 
models used in estimating relative pathlength correction terms and relative concentrations of the 
species of interest. ENVI version 3.2 (RSI, Inc., Boulder, Colorado) was used for visualizing the 
data and isolating spectra most representative of the pure-component spectra. Matlab version 5.3 
(The Mathworks, Inc., Natick, Massachusetts) was used to plot the results. Calculations were 
performed on a Dell Precision 610, dual processor Intel 5OOMHz Pentium I1 Xeon system with 
5 12MB of RAM running Microsoft Windows NT4.0. 

RESULTS AND DISCUSSION 

Chromatic Aberration Characterization. An investigation was performed to demonstrate the 
chromatic aberration present in spectra collected from the imaging system. To minimize the 
effects of diffraction, a hyperspectral image of the xacto blade was obtained in macroscopic 
mode with a spot size of 4 mm by 4mm. In the absence of chromatic aberration and diffraction, 
the IR radiation should be completely blocked at all IR wavelengths for all pixels obscured by 
the blade. However, with chromatic aberration present, IR radiation at low energy (long 
wavelength) will be out of focus and blurred compared to high-energy radiation if the high- 
energy portion of the IR beam is focused sharply on the edge of the xacto blade. Thus, pixels in 
locations where the blade edge has blocked the radiation at short wavelengths will have some 
transmission at longer wavelengths. 

This trend is clearly seen in Figures 3A and 3B where images of the IR transmission of the xacto 
blade are shown for the 3657 and 957 cm-' bands, which are near the extreme ends of the 
spectral range. The outline of the xacto blade is clearly sharper in the short-wavelength image 
than in the long-wavelength image. In addition, Figure 3C shows a profile of the transmission 
intensity across row 15 for pixels in columns 22 through 34 that span the transition across the 
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edge of the xacto blade. Clearly the transition is significantly sharper for the short-wavelength, 
demonstrating the dramatic effects of chromatic aberration. 

As can be seen in Figure 3A and B, not only does the image blur at long wavelength, it also 
appears to spatially shift. This effect is most likely due to the lateral component of the chromatic 
aberration caused by a tilt in the image plane relative to the sample. The xacto blade image 
clearly demonstrates a portion of the chromatic aberration problem for the imaging FT-IR 
system, and suggests that qualitative and certainly quantitative analyses will require corrections 
for these effects in order to produce useful results with high fidelity for the samples being 
measured. 

Spectral Analysis. Following the chromatic aberration study, experiments were performed to 
evaluate a quantitative analysis methodology for FT-IR image data obtained from a 
heterogeneous sample. Samples of pure and binary mixtures of inks on an aluminum substrate 
were used to test analysis methods on simple microscale samples. 

The inks dispensed by the HP printer are standard commercial products shipped with the printer. 
In order to be useful for this study, the individual inks must contain chemical species with IR 
spectral bands that uniquely differentiate them from each other. High-quality IR spectra were 
collected using the single-point detector imaged on the three pure ink spots. The resulting 
yellow, magenta, and cyan spectra are shown in Figure 4. Spectral bands characteristic of the 0- 
H stretch, C-H stretch, as well as peaks throughout the fingerprint region are clear. 
Unfortunately, most of the same IR bands are shared in common by all three inks. The clearest 
differences between the spectral features present in the inks can be seen in the 0-H stretching 
region, where yellow has a narrower band shape and the peak maximum is shifted. In addition, 
intensity and shape differences are clear in the 1300 to 1450 cm-' region where, again, yellow 
has a characteristically strong absorbance followed by magenta and finally cyan. Differentiation 
between magenta and cyan is limited to this 1300 to 1450 cm-' region, since their C-H and 0-H 
stretching bands are very similar. While the degree of differentiation for yellow spectral features 
relative to the other inks is adequate for this study, the degree of overlap for the IR bands 
produced by the magenta and cyan ink spots suggests that they are in fact chemically very 
similar. Discussions with the manufacturer verified that the IR features apparent at this spectral 
resolution originate primarily from the binders, and that magenta and cyan share a common 
binder that differs only in pH. 

Using the MCT array detector, 4096 (64 x 64) spectra were collected in a single image of the ink 
sample. For clarity, Figure 5 contains representative absorbance spectra from every fiftieth pixel 
spanning the image. There is a large background offset in many pixels. Examination of the 
sample and background single-beam spectra revealed that the background image varied spatially 
in a systematic manner consistent with the gold mirror background slide being tilted relative to 
the image plane. The non-absorbing features of the sample single-beam sample spectra did not 
have this systematic variation indicating that it was placed parallel to the image plane. 
Compared to spectra collected with the single point detector, the image spectra have a lower 
signal-to-noise ratio due to the small size of each pixel in the FPA detector and the lower amount 

of signal averaging. Nevertheless, the strong IR bands in the 1300 to 1450 cm-' region, C-H 
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stretch region, and 0-H stretch region are clearly present in the image spectra of the ink sample. 

. 

The effect of chromatic aberration in the image spectra is readily apparent upon close inspection 
of pixels from the center and edge of individual ink spots as well as in the relative intensity of 
long wavelength spectral bands in some mixture ink spots. Figure 6 demonstrates the edge 
versus center pixel chromatic effect as well as the way in which Beer's Law is no longer 
followed for spectra from the green ink spot. In this case, the lowest energy region from the 
green spot clearly illustrates a non-additive effect when compared to the yellow and cyan pure- 
component spectra that make up the green mixture. Positive linear combinations of the yellow 
and cyan ink spectra cannot yield the relative intensities observed in the green spot presented in 
Figure 6. Note that relative to the OH stretching vibration, the lower energy band of the green 
spot is lower in intensity than either the yellow or cyan bands of which it is composed. The 
spatial location of this latter chromatic aberration suggests that lateral chromatic effects are 
present across the dimensions of the imaged sample 

Pathlength Correction and Windowing. The first step to quantitative analysis requires the 
determination of a spectral band to be used to characterize the relative pathlength for each pixel 
in the image. An inspection of the spectral bands yielded three bands that did not appear to 
visually display spectral shape changes as a function of ink composition. The mean spectrum 
and first eigenvector for each of the three regions after separate linear baseline corrections are 
shown in Figure 7. The first band lies between 930 and 970 cm-' and has a first eigenvector 
explaining only 87% of the total variance in band absorbance suggesting that shape changes are 
present in this particular ink band. In addition, the mean spectrum of the band does not closely 
resemble the shape of the first eigenvector further suggesting that this band changes shape with 
position and is not the best candidate for pathlength correction. The second band was a stronger 
peak between 1003 and 1070 cm-'. This region better hlfilled our requirements for a candidate 
pathlength correction band since the first eigenvector explained over 96% of the variation in the 
band. However, the third peak in the C-H stretching region equally hlfilled our requirements 
and had a more regular baseline overall. In addition, since this third band is centered in a higher 
energy, shorter wavelength region, it is less affected by chromatic aberration compared to either 
of the other two longer wavelength regions. Therefore, this third band was selected for use as a 
monitor of the relative pathlength of the sample. 

The relative pathlength correction factors for each pixel were determined by the use of a standard 
multivariate CLS prediction of the C-H stretching region for each pixel. The CLS prediction 
included the mean spectrum of the pathlength band and offset and linear spectral terms in the 
model to simultaneously fit the pathlength and a linear baseline. Relative pathlengths 
determined for each pixel are shown in Figure 8. Regions of the image where ink was present 
are clearly seen, and generally the pathlengths are consistent across all the inks except the red 
ink. The center of the red spot demonstrates a striking increase in the relative pathlength 
indicative of a particularly heavy application of ink for this spot. 

Following the CLS estimation of relative pathlength terms, pathlengths with values below 0.1 
(primarily from the background aluminum foil pixels) were set to a value of one to prevent 
values near zero from inappropriately inflating the intensities of the pathlength-corrected spectra. 
The spectrum from each pixel was divided by the corresponding pathlength to normalize the 
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spectra for pathlength and remove this source of variation from the spectra. Following 
pathlength correction, the FT-IR image spectra were further processed to isolate and baseline 
correct the three main bands used in the quantitative analysis. The results of this preprocessing 
are shown in Figure 9, which demonstrates the same representative subset of spectra as shown in 
Figure 5 .  

MNF Transform and Chromatic Aberration. Once the image spectra were windowed to 
isolate bands of interest and preprocessed to remove linear baseline and pathlength variations, 
ENVI was used to perform the MNF transform on the ink spectra as the first step in determining 
pure-component spectra. Initially, only the left half of the image was analyzed with the MNF 
transform since this was where the pure ink pixels were located. Since repeat images were not 
available, the shift-difference method of ENVI was used to estimate the noise covariance matrix 
of the spectral image. Two different noise covariance matrices were calculated and used to 
obtain MNF scores. In the first case, the entire spatial region of the spectral image was used in 
estimating the noise covariance. However, since there are sharp boundaries between different 
spatial regions in the sample (i.e. inks spots and the background), a second calculation of the 
covariance estimate was performed using the central spatial region consisting only of 
background pixels including columns 26 to 32 and rows 1 to 64. Starting with scores from the 
first MNF calculation, the pixel purity index (PPI) was determined after 100,000 iterations using 
a threshold of 1.5 in order to select a subset of spectra from the approximately 2000 total pixels 
that contain the most unique information. The resulting 760 pixels that were selected were used 
for plotting and further study discussed below. 

Ordinary PCA scores as well as MNF scores computed using each of the two covariance 
estimation methods were plotted for factors one, two, and three as shown in Figure 10 for the 
760 selected pixels. Although scores in each case were calculated using the spectra from the left 
half of the image, for clarity only the 760 scores for pixels selected by the PPI calculation shown. 
PCA scores (Figure 1 OA) contain only two distinct clusters of pixels, a cluster containing scores 
from yellow ink spot pixels and a second cluster with magenta and cyan scores mixed together. 
Figure 1 OB with MNF scores computed using only a central background spatial region for the 
noise covariance estimation yields a similar result. However, Figure 1 OC shows three distinct 
clusters, one for each of the pure inks when the MNF transform was computed using the entire 
left half of the image. If pseudo-color images are constructed from these latter MNF scores by 
mapping the intensity of the first, second and third factor to red, green, and blue, each of the 
three ink spot regions have unique contrast. If PCA or the second MNF technique is used, the 
resulting pseudo-color image shows no contrast differentiating magenta and cyan due to the fact 
that these PCA or MNF scores do not differentiate magenta and cyan spectra. 

In order to comprehend the results presented above, it is important to understand the MNF 
transform and the effect of using a shift difference spectrum for estimating the noise covariance 
matrix. One goal of the MNF transform is to correct the eigenvector decomposition of the 
spectral data in the image for the detrimental effects of non-uniform and correlated noise. If the 
spatial variations of the image are slowly varying, the shift difference calculation performed by 
ENVI should provide a reasonable estimate of the error covariance matrix used to correct the 
MNF scores for non-uniform and correlated noise sources. However, for an image with sharp 
spatial boundaries, the ENVI shift difference estimate of the error covariance can be dominated 
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by spectral differences on opposing sides of the boundaries. In this case, the error covariance 
estimate can contain spectral signal of the analytes that the MNF transform treats as correlated 
error that is to be ignored. For spectra from an image without chromatic aberration, we might 
expect full image MNF transformed scores to yield poor results when the spectral differences 
used to compute the error covariance estimate are dominated by spectral features at the edges of 
the homogeneous regions in the image. The MNF transform attempts to isolate the signal that is 
orthogonal to the error covariance, but the error covariance estimate from the shift difference of 
the entire set of image spectra will be dominated by the contrast between the boundaries of the 
aluminum and ink spots. However, in our case, the spectra found at these boundaries are 
strongly affected by chromatic aberration. Thus, the shift-difference approach using the entire 
image to estimate the error covariance is dominated by chromatic aberration, and the MNF 
transform actually aids in removing the effects of chromatic aberration in the MNF scores. Since 
these scores minimize the chromatic aberration, distinct clusters for each of the three inks are 
observed. Using only homogeneous A1 regions in the image to estimate the noise covariance 
matrix, little benefit is derived from the MNF transform over the PCA transform and unique 
clusters of scores are not apparent for all of these species. In spectral images not dominated by 
chromatic aberration, care must be taken that the noise covariance estimate truly represents the 
noise in the data and is not dominated by spectral features of the analytes. If analyte spectral 
features due to sharp compositional boundaries in the image dominate the noise covariance 
estimate, then the MNF transform will treat the analyte features as correlated noise and will 
simply serve to eliminate the true analyte spectral features. Poor predictions might then be 
expected. 

Pure-Component Determination and Prediction Results. MNF scores that were computed 
with the full image noise covariance estimate were used in an interactive analysis in ENVI to 
isolate pure-component spectra. By viewing and rotating the projection of the MNF scores from 
multiple dimensions (1 0 in this case) onto a two-dimensional plot, we were able to identify and 
select distinct clusters of scores for each ink as well as pixels on the borders of inks affected by 
chromatic aberration. By noting the location of pixels corresponding to the scores selected in 
each cluster, it was possible to assign each cluster to specific ink spots. Pure-component spectra 
were generated by obtaining the mean of each ink spectrum and aberration cluster and are shown 
in Figure 10. Pairs of spectra, one for pure ink and a second representative of the spectra 
affected by chromatic aberration, are shown. Once again, the yellow pure components have 
distinct features while the magenta and cyan are similar. 

The mean spectra representing the pure-component inks were then used in a CLS prediction step 
to obtain relative concentration terms for each component across the entire pathlength-corrected 
image data set. Concentration image maps for each component were then created where 
intensity at each pixel is mapped to relative concentration. Results of these predictions for the 
case where only the three ink pure-component spectra were used in the CLS prediction are 
shown in Figure 10. Prediction results of yellow (Figure 1 OA) show strong selectivity for the 
pure yellow ink spot, with no false prediction in either the magenta or cyan pure ink spots. With 
the binary mixture spots, the yellow component of the red spot was predicted with values 
matching the expected result of approximately half the value of the yellow pure ink spot. 
However, the predictions for the yellow component of the green spot were uniformly low and 
below expectation. Examination of the spectra at these points demonstrated bands in the 1350 
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cm-l region that clearly did not show a linear mixing of yellow and magenta spectra as 
demonstrated in Fig. 6 .  Instead spectral features in this range were of low intensity and most 
closely resembled magenta features. It is likely that the CLS predictions are contaminated by 
chromatic aberration varying across the sample if lateral components of chromatic aberration are 
present in the image. CLS prediction results for the magenta pure ink component (Figure 1 1B) 
once again demonstrated strong prediction for the pure magenta spot as well as the red binary 
mixture. However, the blue spot is under predicted and some predicted magenta concentration is 
apparent in the green region where there should be no magenta present. Prediction results for 
cyan (Figure 1 1 C) indicate strong prediction for the pure cyan ink spot, but also some predicted 
concentration on the border of the magenta pure spot. This false prediction on magenta using the 
cyan pure component is due to the fact that the cyan pure closely resembles magenta when the 
long wavelength 1340 cm-' magenta band is diminished by chromatic aberration. The green 
binary mixture prediction results for cyan again show diminished concentration for this 
component, however cyan prediction results are strong for the blue mixtures spot. 

Since the magenta and cyan pure-component spectra are nearly identical (i.e., highly collinear), it 
was very difficult to separately quantify these two components in mixture spectra. Therefore, we 
used the pure magenta spectrum as representative of both the magenta and cyan pure spectra in 
further analyses. We then applied the yellow and magenta pure spectra in a CLS prediction to 
obtain quantitative results that represent the concentrations of the yellow dye and the sum of the 
magenta and cyan. PACLS models were also constructed using the yellow and magenta pure- 
component spectra and difference spectra which represent linear approximations of the 
chromatic aberration for yellow and magenta spots (i.e., difference of mean edge spectra and 
mean center spectra calculated separately for the yellow and the magenta inks). 

The two-component CLS prediction results are shown in Figure 12A for yellow and 12B for the 
combined magenta and cyan component. The four component PACLS predictions including 
correction for chromatic aberration are shown in Figure 12C for yellow and D for combined 
magenta and cyan. Figure 12E and 13F show PACLS predictions for the yellow chromatic 
aberration component and the combined magenta and cyan chromatic aberration component, 
respectively. Figure 12C results when compared to Figure 12A demonstrate improved 
predictions for yellow where the borders of the yellow pure ink are predicted more correctly 
when the chromatic aberration pure spectra were included in the predictions. Prediction results 
for the red and blue ink spots are also somewhat better for the case where chromatic aberration 
pure-component spectra were included in the analysis. By including the chromatic aberration 
components in the PACLS prediction step, this previously unmodeled spectral change is now 
explained within the model thereby correcting the prediction results for the pure ink components. 

In addition to clear improvements in the yellow component predictions, Figure 12B shows much 
higher predicted concentrations for the combined magenta-cyan concentrations. By combining 
the highly collinear magenta and cyan pure components into one component, the PACLS 
prediction results now much more closely match the expected concentrations. In the case of the 
blue spot (50% magenta, 50% cyan), the predicted concentration now closely matches that of the 
pure magenta and cyan spots, as expected. For the red and green spots, in each case their 
predicted results are approximately half that of the other ink spots, due to the fact that half their 
composition is yellow ink. These concentration predictions further improve when the spectral 
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shapes representing chromatic aberration pure components are included in the PACLS model as 
shown in Fig. 12D. Once again, edges of the pure-component ink spots for both magenta and 
cyan are more correctly predicted once the chromatic aberration component is included in the 
model. 

Figure 12E and 13F represent the prediction results of the yellow and magenta-cyan chromatic 
aberration components, respectively. These results clearly show the edge effects where 
chromatic aberration is the strongest. The prediction results for the edges of the ink spots were 
also markedly improved through the inclusion of the chromatic aberration components in the 
PACLS predictions. 

CONCLUSIONS 

By printing pure and binary mixture spots on an aluminum foil with an inkjet printer, we have 
been able to generate a simple semi-quantitative micro sample for testing various quantitative 
analysis methods applied to FT-IR spectral image data. Since the sample exhibited appreciable 
pathlength variations over the area of the image, a new method for selecting the appropriate 
spectral band for pathlength normalization was devised. A necessary condition for a spectral 
absorption band to represent primarily pathlength information was that the first eigenvector of 
the baseline-corrected band from the ink spectra in the image contain almost all of the spectral 
variance and that it closely resemble the average spectrum. Pathlength correction factors for the 
identified path-related band were determined with the use of a CLS prediction step that included 
the average spectral band and linear baseline spectral components in the CLS model. 

Once the spectra were pathlength corrected, a variety of quantitative analysis tools were applied 
to the spectral images. However, refractive optics in the FT-IR imaging system generated 
wavelength-dependent chromatic aberrations that were found to be detrimental to some 
quantitative analysis methods. The MNF transform using the ENVI error covariance estimate 
calculated from the shift difference of the spectra in the image was more effective than PCA at 
separating the three pure ink spectra. The pixel purity index was applied to the MNF 
transformed data to identify those spectra that represented the purest spectra in the spectral 
image. These purest spectra mapped to the centers of the pure ink spots on the AI sample. 
Standard CLS models using linear baseline spectral components and the three pure ink spectra 
identified during the PPI analysis failed to yield the expected concentration maps for the ink 
spots on the sample. This failure was a result of the similarity of the magenta and cyan pure- 
component spectra and the presence of wavelength-dependant chromatic aberration effects in the 
spectra. The first problem was minimized by using the magenta pure spectrum as a 
representation of both the magenta and cyan dyes and predicting the sum of the magenta and 
cyan component concentrations in the spectral image. The chromatic aberration effects were 
corrected by obtaining linear estimates of the chromatic aberration of the pure ink spectra and 
adding these estimated chromatic spectra to the PACLS analysis of the image. PACLS was 
shown to be an effective multivariate tool that could minimize the detrimental effects of 
chromatic aberration on the concentration maps of the pure inks and improve both the 
quantitative accuracy of the predictions and the spatial resolution of the concentration maps. 
Diffraction effects in the spectral image are analogous in nature to chromatic aberration in that 



they are similarly dependent on wavelength. Thus, we would suggest that the PACLS algorithm 
could also be used to improve the spatial resolution of composition maps derived from 
diffraction-limited spectral images. 

The MNF transform was an effective method in the analysis of these data since the shift 
difference estimate of the error covariance matrix resulted in MNF scores that were forced to 
ignore the detrimental effects of chromatic aberration. We speculate that the application of the 
MNF transform using shift difference estimates of the error covariance matrix might actually 
degrade the quality of the quantitative composition maps obtained from spectral image data that 
does not have wavelength-dependent chromatic aberrations or diffraction effects present. Since 
new FT-IR imaging spectrometers are now sold without the presence of refractive optics that 
generate chromatic aberration, the positive experience of researchers applying the MNF 
transform may not carry over to these new instruments. 
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Figure 1. Pattern of ink spots created in Pllutushop to be printed on the aluminum foil 
substrate. Yellow, magenta and cyan spots from top to bottom on the left represent the 
pure inks. Red, green and blue from top to bottom on the right represent 50% binary 
mixtures of each of the pure inks. 
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Figure 2. Visible image (slightly offset and tilted) of the actual ink spots 
used in the IR image data collection and analysis. In each of the mixture 
spots, the red, green, and blue color is apparent indicative of the fact that 
the ink droplets from each of the pure inks mixed correctly in each case. 
Note the clear rolling marks indicative of the commercial aluminum foil 
used as a substrate for the reflectance measurement. 
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Figure 3. IR transmission intensity image with an xacto blade in the field of view at 
A) 3657 cm-' and B) 957 cm-'. Note the blurring of the edge and shifting of the image 
of the xacto at the longer wavelength. C) Normalized intensity at 957 cm-1 (solid line) 
and 3657 cm" (dashed line) across row 30 from columns 23 to 33. 
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Figure 4. IR refectance spectra collected with a single-point MCT detector for yellow 
(solid line), magenta (dashed line) and cyan (line with dashes and dots) pure ink spots. 
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Figure 5. Representative absorbance spectra (1 out of every fifty) collected with the 
64x64 pixel MCT focal plane array detector. 
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Figure 6. Windowed and linear baseline corrected spectra from the center and edge of the 
yellow ink spot (solid line), center and edge of the cyan ink spot (dashed line), and center and 
edge of the green (50% yellow, 50% cyan) ink spot (line with dashes and dots). 
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Figure 7. A) Average and B) fmt eigenvector for the 930-97Ocm" region. Eigenvector 
explains 87% of the total variance in that band. C) Average and D) first eigenvector for 
the 1003-1070cm" region. Eigenvector explains 96% of the variance in that band. E) 
Average and F) first eigenvector for the C-H stretch region between 2785-3016 cm-'. 
Eigenvector describes 97% of the variance in that band. 
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Figure 8. Pathlength correction terms computed using CLS from the mean of the C-H 
stretch region plotted as a 3 dimensional image. 
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Figure 9. Results of applying pathlength correction to the windowed, baseline corrected 
absorbance spectra. Every fiftieth spectrum plotted for clarity. 
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Figure 10. A subset of pixels were isolated using PPI on MNF transformed spectra. 
f i e  spectra from these pixels were then used in calculating scores with three different 
techniques. A) PCA scores for factors 1 through 3. B) MNF scores 1 through 3 
computed using a central background region of the image to compute the noise 
covariance estimate. C) MNF scores for factors 1 through 3 computing using the 
entire image data cube to estimate the noise covariance matrix: 
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Figure 11. CLS prediction results for pathlength corrected spectra A) yellow component, 
B) magenta component and C) cyan component. 
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Figure 12. CLS prediction results for pathlength corrected spectra using A) the yellow pure 
component and B) the combined magenta and cyan pure component. C) Represents PACLS 
prediction results for the yellow component D) for the combined magenta and cyan 
component where a chromatic aberration component was included in the model. PACLS 
prediction results for the chromatic aberration terms for E) yellow and F) combined magenta 
and cyan. 
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APPENDIX C. 

MULTIVARIATE CURVE RESOLUTION VIA AN 
ERRORS-IN-VARIABLES MODEL 

Edward V. Thomas 
Sandia National Laboratories 

Albuquerque, NM 87185-0829, U.S.A. 

SUMMARY 

A new procedure has been developed for multivariate curve resolution. This method 
assumes that initial estimates of the pure-component spectra are available along with 
representative spectra from the chemical system. The method re-estimates the pure- 
component spectra by using the initial estimates, the representative spectra and an errors- 
in-variables model. Estimates of the component concentrations associated with the 
representative spectra are also obtained. The errors-in-variables model takes into account 
the uncertainty of the initial estimates of the pure-component spectra relative to the 
measurement error of the representative spectra. A family of refined pure-component 
estimates can be obtained by varying the assumed relative uncertainty of the initial 
estimates. This method is also well suited to be used in a bootstrap format such that 
reasonable estimates of the uncertainty in the refined pure-component spectra can be 
obtained through re-sampling. The method is illustrated with synthetic data and with real 
data from a hyperspectral image. 

KEY WORDS: Bootstrap, Hyperspectral Imaging 

1. INTRODUCTION 
The purpose of curve resolution methods is to decompose a bilinear data matrix into 
dimensions that have physical and chemical meaning (see [ 11, [2], and [3]). Here, the 
intent is to estimate the pure-component spectra of a system from a representative data 
set without knowledge of the specific components in the system. It is assumed that the 
number of components is known. In addition, the method that is presented here assumes 
that some initial estimates of the pure component spectral shapes are available. The 
relative concentration of any component across samples in the data set can be estimated. 

The proposed method re-estimates the pure-component spectra by using the initial 
estimates, the representative spectra and an errors-in-variables model. The errors-in- 
variables model takes into account the uncertainty of the initial estimates of the pure- 
component spectra relative to the measurement error of the representative spectra. The 
errors-in-variable modeling assumes a certain error structure, which may or not be 
accurate. Strictly speaking, inferences derived from the errors-in-variables modeling 
depend on the assumed error structure being accurate. However, even if the assumed 
error structure is not totally accurate, the errors-in-variables model can be useful. 



The remainder of this paper is as follows. First, the underlying theory of the method is 
presented. Following the theoretical discussion, the method is illustrated in two 
hyperspectral imaging contexts (one with synthetic data where truth is known and the 
other with laboratory data). A MATLAB script implementing the method is presented to 
the reader in an appendix. 

2. THEORY 
The basis for the proposed method is the use of an errors-in-variables model to represent 
the prediction phase during multivariate calibration (see [4], [5], and [6]). To begin, 
assume that there are n 2 1 independent measured spectra that are representative of the 
system withp components and q wavelengths. We consider the idealized causal model 
Yo = Bo . X ,  , where X ,  represents the p x n matrix of component concentrations, Bo 
represents the q x p matrix of true pure component spectra, and Yo represents the 
unobserved set of idealized spectra (measured without error) corresponding to the 
component concentrations in X ,  . Collectively, the measured spectra are denoted by Y, 
where Y = Yo + AY with AY representing the spectral measurement error. We also 
assume that there exists a prior estimate of Bo given by B . The relationship between 
Bo and B is given by B = Bo + AB , where AB represents the error in estimating Bo.  

The proposed method uses B, Y, and the assumed distribution of the errors in B and Y 
(AB and AY ) to construct an improved estimate of B o .  For purposes of developing this 
method we will make some additional assumptions regarding the relative uncertainties in 
Band Y. 

In order to proceed it is useful to cast this process into the framework of a linear 
functional model where errors in both Y and B are considered and where X ,  and Bo are 
considered as parameters to be estimated (see [7]). The errors in Y in B are grouped 
together in the q x (n + p )  matrix E = [AY MI. We assume that the rows of Eare 
independent and identically distributed multivariate normal with mean zero and 
covariance Z = o Z a .  It is assumed that Zis  known to within a scalar factor (see [4], 
[5], and [6]). Let the tth row of each of Y, Yo, B, and Bo be given byyt,yot, br, and bot, 
respectively, 

Given the assumed distribution of the errors, the maximum likelihood estimates (MLEs) 
of Xo and Bo are obtained by maximizing the log likelihood, 

with respect to Xo and Bo (see [7], Chapter 4). Let A ,2 A, 2.. .2 A,,, be the eigenvalues 

of a-1’2 M and let G = [GI G2] be the matrix of corresponding orthonormal 
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4 

eigenvectors such that Ll-1/2 M Ll-1’2 G, = G,A , where M = q-’ 

St = (Yt b t ) ,  A = diag(A p+l,  

Ll-’ . Further, let D = 

Sf S, , 
f =I 

. . , Ap+n) , and Ll-1’2 is the matrix square root of 

G,. 

The maximum likelihood estimator of Xo is go = -D, ,Di ,  where Dnn consists of the 

first n rows of D, while Dpnconsists of the last p rows of D. go is the estimate of 
component concentrations associated with the n independent spectra. 

The maximum likelihood estimator of Bo , Bo, is given by the last p columns of 
S - 
estimated pure-component spectra. 

- D DT - a), where St is the th row of S. The columns of Bo are the re- 

In practice, one might have initial estimates of the pure-component spectra, B, that are 
inaccurate in terms of scale, yet are accurate in terms of shape. In such cases, there is a 
scale ambiguity that will affect both 2, and Bo. Thus, the estimated concentrations of a 

given component across a row of xo should be considered on a relative basis only. 

Furthermore, the columns of Bo will represent only the shapes of the pure component 
spectra. 

For a fixed set of observables (Y and B), the estimation procedure depends entirely on the 
selection of a, which summarizes the assumed relative uncertainties of the elements 

within Y and B. In general, has the form, Ll = [ z: ::I. If we assume no 

[? LB], correlation between the elements of AY and AB , then Llreduces to LR = 

where & is nxn and L~BB is pxp. In general, this method will allow & and L~BB to take 
the form of any regular covariance matrix. One possibility (that we will use here) is to let 

Llyy = Zn and LIBB = k - I , ,  in which case Ll = [: :zp] . In the illustrative 

examples, families of pure-component spectra are developed by varying k. It is assumed 
that the variance of each row of E (i.e. wavelength) has an identical error structure. 
Furthermore, it is assumed that the rows of E are independent. It may be necessary to 
transform Y (see [4]) in order to produce E with these characteristics. Note also that Ll 
might also have a special structure when B is obtained from a separate calibration study 
(see ~41, [51, and [61). 
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Suppose that the initial estimates of the pure-component spectra, B, are accurate in terms 
of scale and the distributional assumptions regarding E are accurate. Then, the errors-in- 
variables estimation procedure described above will lead to valid inferences concerning 
X ,  andB, (see [4], [5], [6], and [7]). In fact, it can be shown that the estimates of 
X ,  and Bo will converge to their respective true values without the assumption of 
normality (see [7]). In practice, it is unlikely that we will have perfect knowledge of 0. 
Nevertheless, the proposed estimation method can provide usefbl estimates of X ,  and Bo.  

To summarize, the proposed method consists of estimating the pure component spectra 
associated with a chemical system where there are viable prior estimates of the pure 
component spectra. The prior estimates could be based on subject-matter knowledge, an 
earlier calibration experiment, or from a preliminary analysis of the current data (Y) using 
a method like SIMPLISMA [3]. One must also provide some assessment of the 
uncertainties of the prior estimates relative to the noise in Y. The final estimates of the 
pure-component spectra depend on the quality of the prior estimates as well as estimates 
of the relative uncertainties of Y and B. It is implicitly assumed that that the dimension of 
the chemical system is known and represented by the column dimension (p) of B. The 
proposed method does not involve non-negativity constraints. As is the case of applying 
other existing curve resolution methods, the proposed method is sensitive to the 
correlation pattern among components in X as well as similarities among the pure- 
component shapes. Appendix 1 contains a MATLAB SCRIPT for performing this MLE- 
based Curve Resolution 

3. ILLUSTRATIVE EXAMPLES 
Here, the proposed method will be applied in two different situations. In the first 
situation, we simulate a hyperspectral image with known spectral shapes and Beer’s Law. 
The second situation involves a hyperspectral image of an aged neoprene specimen. 

3.1 Simulated Hyperspectral Image 
For this example, we constructed a hyperspectral image consisting of the mixture spectra 
of three components that vary spatially in concentration over a surface. The image 
consists of a 16x1 6 array of pixels with 100 spectral channels. The signal portion of the 
image (Yo) is assumed to follow Beer’s Law. The observed image (Y) consists of this 
signal plus independent Gaussian errors with mean zero and standard deviation of 
1 ~ 1 0 ~  . Figure 1 presents the true pure-component spectra (Bo) that are used in this 
simulation. Figure 2 presents the initial estimates of these pure-component spectra 
(possibly obtained by an earlier calibration experiment with low signal to noise). 
Figure 3 presents the spatial distribution of the concentrations ( X ,  ) of each of the three 
components (labeled A, B, and C). By construction, the pairwise correlation of 

0 
0 k * I ,  

component concentrations is zero. For this simulation it is known that LR = , 

where k = 5.  



The procedure described in Section 2 was applied to the simulated hyperspectral image 

by using 0 = [‘a . Figure 4 presents the final pure-component estimates 

(columns of Bo) .  Figure 5 presents the difference between these estimates and the true 
pure component spectra. Note that this figure shows some “non-white-noise” error 
structure that is a consequence of dB and AY interacting with X ,  and Bo in a complex 
way. Note that something comparable to curves in Figure 4 could not be obtained by 
simply “smoothing” the curves in Figure 2. For example, underlying sharp features of 
the “true curves” would tend to be under-estimated as both the signal and noise would be 
smoothed. 

Figures 6 and 7 present a 3D perspective of the estimated concentrations and associated 
errors for each component. The errors displayed in Figure 7 are a consequence of the 
errors in E,. 

In this particular simulation context the effect of perturbing k within the range from .5 to 
50 on the final pure-component estimates is minimal. In the limit as k + 0 ,  the final 
pure component estimates are unchanged from the initial estimates since the data in Y 
have zero relative weight in influencing the final estimates. Conversely, as k + amore 
and more emphasis is given to Y. Another way to look at it is as follows. In the limit as 
k + 0 , a particular realization of AY has no effect on Bo. On the other hand, as k + a 

a particular realization of AY can have an enormous effect on Bo. In practice, if one does 
not have a good idea for an appropriate value of k, it may to do the analysis with a range 
of values for k. 

Uncorrelated rows of X ,  are helpfid for estimating BO. In cases where the components 
are correlated, there will be some negative effect on performance. To demonstrate this, 
consider a slight modification of the earlier simulation such that Bo AB, and AY are 
unchanged. The third row of X ,  is modified such that the levels of components B and C 
are highly correlated over the image surface (see Figure 8). The signal portion of the 
image (YO) is defined by Bo and the new version of X ,  . Upon applying the MLE 
procedure to B and the resulting Y (i.e. Y = Y, + AY ) with the appropriate value of k 
(k=5), the final pure component estimates illustrated in Figure 9 were obtained. Note the 
inverse correlation between the fine structures of the green curve (component B) and the 
red curve (component C). This symptom, directly a consequence of the correlation 
across rows of X ,  , is a problem for any curve resolution method. That is, the correlation 
of components across the image confounds the estimated pure component spectra of the 
involved components. In general, there isn’t a way around this difficulty without 
experimental control of the component levels across spectra used for curve resolution. 



3.2 Aged Neoprene Image 

In this example, the sample consists of a microtomed section of aged neoprene that was 
produced as part of a polymer aging study. The spectral image covers a 4mm by 4mm 
region and consists of 4096 pixels (or spectra). The image was reduced to 1454 spectra. 
The spectra (‘spectra6np’ obtained from Fred Koehler) were windowed and baseline 
corrected. After windowing, the spectral dimension was reduced to 194. For this 
purpose it was assumed that there are three fundamental sources of spectral variation. 
Note, however, that it is clear (via an analysis of the distribution of the eigenvalues of 
Y T Y )  that there are many other sources of variation. Two standard curve resolution 
methods (MCR [ 11 and SIMPLISMA [3]) were then applied to the spectral. The 
resulting curves (‘purspec6np’ for Simplisma and ‘s6npnn’ for MCR obtained from Fred 
Koehler) were used as the initial estimates of the pure components for the proposed MLE 
method. Note that (like in the case of the proposed method) MCR requires an initial 
estimate of the pure components, whereas SIMPLISMA does not. In the case of MCR, 
the initial estimates were supplied by SIMPLISMA. 

The proposed MLE method was implemented in the following ways. First, in order to 
hasten the computation associated with applying the proposed method, the image was 
reduced to 100 spectra by randomly sampling the available 1454 spectra. The output pure 
component estimates from SIMPLISMA or MCR were used as the initial estimates of the 
pure component spectra were for the MLE method. For the first implementation of the 

MLE with these spectra we let a= [: k.:p],withk=l. Figures10,11,and12 

exhibit the estimates of the pure components (averaged over 1 0 independent realizations 
of sample spectra) obtained by both versions of the MLE along with the pure components 
obtained SIMPLISMA and MCR. It is interesting to note that the MLE estimates (given 
SIMPLISMA as initial estimates) are significantly different than the SIMPLISMA 
estimates. The MLE estimates (given MCR as initial estimates) are relatively close to the 
MCR estimates. This suggests a close kinship between the MCR and MLE procedures. 
On the other hand, there are some notable differences between MCR and MLE (given 
SIMPLISMA). This comparison is interesting since both methods start with the 
SIMPLISMA estimates. 

It is also interesting to consider the effects of using different values for k in this context 
since we really don’t have solid information regarding the uncertainties in the spectra 
relative to those in the initial estimates. Figures 13-1 5 provide some idea regarding the 
sensitivity of the resulting estimates to the value of k. In these cases, the results pertain to 
the situation where the MLE method was used with the same set of 100 random spectra 
and when SIMPLISMA provided the initial pure component estimates for values of k 
spanning 2 decades (k = . 1 , 1, 10). Note that there are only minor changes in the pure 
component estimates across theses different conditions for k. 

For large values of k, the final estimates may depend more significantly on the particular 
realization of AY. To see this consider the case where three different random sets of 100 
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spectra are used with the MLE method with k = 10. Figures 16-1 8 illustrate the 
variability in the MLE estimates over these three different random sets. Thus, at least in 
this context, the variability induced by varying the set of spectra is more important than 
the choice of k. 

This re-sampling process could be extended to establish “bootstrap confidence limits” for 
the pure component spectra. Figures 19 and 20 illustrate the approach. MLE estimates 
of the three components were obtained for each of one hundred different random sets of 
100 spectra. The estimates associated with the first component are displayed in Figure 
19. For each channel the 100 estimates were sorted and the gfh smallest and largest 
values were saved. These 5th and 95fh percentiles of the estimated pure component 
spectra delimit 90% bootstrap confidence intervals for the “true” pure component and are 
displayed in Figure 2 1. Of course, this inference is subject to the validity of a number of 
assumptions: such as an underlying linear model and an appropriate value for k. 

4. CONCLUSIONS 
The proposed method for curve resolution requires representative spectra of the chemical 
system, knowledge of the dimension of the chemical system, a preliminary estimate of 
the underlying pure components, as well some knowledge about the relative uncertainty 
of the preliminary estimates. With this method one can easily produce a family of pure 
component estimates by varying the relative uncertainty parameter k. Through the 
covariance matrix, L2 , this method allows for a very flexible characterization of the 
relative uncertainties of the preliminary estimates that is not fully discussed here. 
Finally, as is the case with any other curve resolution method, the proposed method 
produces estimates that depend on the correlation of components across the 
‘representative spectra. ’ 
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Figure 13 - MLE Estimatts of  Spectrum of 1" Component (SDlPLISMA Prkv) 
A =  . l ,  1,10 



F i e  14 - MLE Estimates of Spectrum of 2* Component (SIMPLISMA Prior) 
k =  . I ,  1, 10 
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Figure 15 - MLE Estimates of Speetrum of 3d Component (SIMPLISMA Prior) 
k =  . I ,  1 ,  10 
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Figure 17 - MLE Estimates of Spectrum of 20d Component (SIMPLISMA Prior) 
3 different sets of spectra, k=lO 



w-1- 18 - MLE Estimates of Speftrum of 3d Component (SIMP1 mMA Drier) 
3 different sets of spectra, k=10 





Figure 20 -Approximate 90% Confidence Interval for I* Component 
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Appendix 1 - MATLAB SCRIPT for MLE-based Curve Resolution 

function [conc_profile,newpcs~est]=mle(spectra,pcs~est,err~cov); 
% 
% Description: Obtain estimates of pure component spectra 
YO via maximum likelihood 
% 
% Input 
% 
% 
% 
YO 
% output 
% 
% 
YO 
[n,q]=size(spectra); 
[p,q]=size(pcs-est); 
c=inv( sqrtm( err-cov)) ; 
z=[spectra; pcs-est]'; 
m=z'*z/q; 
[ev,dd]=eig(c*m*c); 
[lambda,k]=sort(diag( -dd)); 
g=ev(: ,k) ; 
% g contains eigenvectors sorted by associated e-value (small to large) 
g2=g(:,(p+l):n+p); 
% g2 contains eigenvectors associated with n smallest e-values 
d=c*g2; 
concqrofile=-d(n+l :n+p, 1 :n)*inv(d( 1 :n,l :n)); 
nw=z* (eye(n+p)-d*d'* err - cov); 
newpcs-est=nw(:,n+l :n+p)'; 

spectra = nxq matrix of spectra 
pcs-est = pxq matrix of intial estimates of pure component spectra 
err-cov = (n+p)x(n+p) covariance matrix of errors in [spectralpcs-est] 

(to within a scale factor) 

concqrofile = nxp matrix of estimated conc associated with spectra 
newpcs-est = pxq matrix of final estimates of pure component spectra 
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APPLICATION OF EQUALITY CONSTRAINTS ON VARIABLES DURING 
ALTERNATING LEAST SQUARES PROCEDURES 

Mark H. Van Benthem, Michael R. Keenan and David M. Haaland 

Sandia National Laboratories, 
Albuquerque, NM 87 1 85-0886 

INTRODUCTION 

The technique of alternating least squares (ALS) is frequently used in factor analysis of chemical 
data. Methods like PARAFAC’-6 and multivariate curve resolution (MCR)7-25 seek to identify 
components of a data set by iteratively obtaining solutions to least squares problems for each set 
of factors that putatively constitute the data. For example, one may have a data matrix composed 
of near infrared spectra collected for several mixtures of anal ytes at varying concentrations. The 
analytical objective may be to obtain the concentration profiles and spectra of the individual 
species or components of the mixture. Frequently these methods necessitate the use of 
constraints to achieve meaningful solutions. 

One constraint often applied is nonnegativity, 7-15, 17-21, 23-31 since concentrations and measured 
having the sum of concentrations spectral signals are positive or zero. Closure, 

in a mixture equal to some value (often l), for all solutions in a data set is another common 
is a constraint that sets the concentration value to zero for constraint. Zero concentration 

species known to be absent in a mixture. Selectivity 13-15, 34 exists when there is a portion of the 
data that only contains contributions from a single component. In addition, one may find it 
necessary to apply equality constraints to accommodate a baseline offset, slope or c~rvature?~-~* 
or the spectrum of a species known to be present in the data.33 

7, 9, 13, 14, 21, 25,32, 33 

8-11, 13, 14 

The obvious approach to the equality constraint problem” is to estimate the coefficients in a 
least squares sense followed by substitution of the constrained value into the coefficients. This 
approach is similar to an oft-used method employed for nonnegativity, where all negative values 
from a least squares solution are set to zero. Direct substitution of the constraint is convenient 
and fast, but it fails to obtain a least squares solution to the problem as illustrated by Bro4’ for the 
nonnegativity constraint. Following Bro’s example for nonnegativity, consider the equality 
constraint example below. The model for an n x I matrix of independent variables Z, an n x 1 
vector of dependent variables x, and an I x I vector of unknown coefficients d is 

4 
where 

0 

Z =  

x = Z d  

73 71 52 
87 74 46 
72 2 7 
80 89 71 

and x =  

49’ 
67 
68 
20 
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The least squares solution to ( 1 )  is 
1.123 

1- 2.068 

2 
This solution has a root mean square error (RMS), i.e., IIx - Zd(( , of 6. Suppose one knows that 
the value of the first coefficient in d is 2. Merely substituting this value in after least squares 
gives d = [2 0.917 - 2.068]T and yields a RMS of 69. However, a true least squares estimate 
gives d = [2 1 .I  39 - 3.606IT and yields a RMS of 31. Just as in the nonnegative case, the 
solutions are substantially different and improperly derived solutions (by substitution) could 
cause undesirable behavior in ALS and yield erroneous results. Employing a least squares 
criterion on solutions in ALS techniques means that subsequent iterations of estimates will 
always improve (yield smaller RMS) or remain unchanged. This desired least squares behavior 
is not the case for substitution. 

In order to obtain a least squares solution and retain the strength of the bilinear model, it is 
important to employ a least squares method while applying constraints. Fortunately, Lawson and 
Hanson41 describe three techniques for applying equality constraints in least squares problems. 
Each of the three methods yields an identical least squares solution to the equality-constrained 
problem, and none is particularly onerous to use; although, one or another may be more 
advantageous to an individual user. We will briefly review these three techniques and discuss 
their application and some special cases of their use, 

This note explains the theory and implementation of equality constrained least squares and gives 
a brief MCR example of its use. Notation is typical of this type of work: scalars are lowercase 
italics, vectors are lowercase bold, matrices are uppercase bold, transpose of vectors and matrices 
are indicated by a superscript T, vide supra. 

GENERAL CASE OF EQUALITY CONSTRAINED LEAST SQUARES 

Employing the basis vectors of the null space 

In the example above, we sought to minimize 

IIX - Zdl12 

subject to the constraint 
d, = 2  

We can write a constraint equation, following Lawson and Hanson, as 
y = C d ,  (2) 

where y is the m x 1 vector of constrained values and C is the m x I constraint matrix, whose 
rank is k(=m). For this example, y and C are equal to [2] and [I 0 01, respectively. Note that 
m e I ,  otherwise if m = I the problem would be fully constrained with a trivial solution. The first 
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method described by Lawson and Hanson uses an orthogonal set of basis vectors that span the 
null space of the constraint matrix to transform C and Z to ensure a unique solution to the least 
squares problem. They recommend using this method if the problem to be solved is 
underdetermined. 

An orthogonal decomposition of C can be performed using the familiar SVD. However, it is 
more computationally convenient to use another orthogonal decomposition of C such as the LQ 
factorization, which is given by 

C = L Q ~ ,  (3) 

where L is an m x m lower triangular matrix and Q is the Z x I orthonormal basis set matrix. 

Let e,, be the m x m transformation matrix of C that contains the first m columns of CQ. And 

let z be the n x I transformation matrix of Z, which is computed from the product of ZQ. Then 
partition z into two matrices 2, and 2, , which are matrices composed of the first m columns 

of 2 and the last Z-m columns of 3, respectively. The equality constrained least squares 
solution for x is computed as follows. 

Compute the least squares solution for the equation - -  
Y =C,d, 

e 

l 
, 
I 

Direct elimination 

h 

for the vector a,. Then use this result to calculate 
h - -  

1 = x -Z,,d,, 

and solve the least squares solution to 
ii = z/a/, 

(4) 

A 

for the vector a , .  The solution for d is then accomplished by transformation of the augmented 

A 

d=QG (7) 

a 

I transformation is not necessary. 

The second method used by Lawson and Hanson is the method of direct elimination. Here like 
the null space method, the solution vector is obtained piecewise, however, orthogonal 

Let C, be the m x m partition matrix that contains the first m linearly independent columns of C 
and let C, be the m x I partition matrix that contains the last Z - m columns of C. Likewise, let 
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d,, and d, be the conformable partitions of d. We can separate Equation 2 and rewrite it as 
y = C,d, + C,d, , and rearrange it as 

d, = C: (y - C,d,) .  (8) 

Similarly partitioning Z and rewriting Equation 1 yields 
x = Z,d, + Z,d, . (9) 

Substituting Equation 8 into Equation 9 and rearranging gives 

x - Z,Cilly = (Z, - ZnIC;C,)d,. (10) 

- 
We can now define 

z, = z, -Z,Clr,lC, 

and 
- x = x - z,,crr,ly. 

Now Equation 10 can be rewritten as a least squares problem for d, 
- x = Z,d, .  

After solving Equation 13, one can then solve Equation 8 for d, . 

Weighting 

The final method for applying equality constraints described by Lawson and Hanson is 
weighting. Here the augmented vector containing y and a heavily down weighted x is projected 
into the space of the augmented matrix containing C and an identically down weighted Z. The 
model is written as 

where E is the weighting factor. Two important issues that must be addressed with this 
technique are how small to make E and the method of solving the least squares problem above. 
First, E must be small enough to ensure that the equality condition is met, but not so small that it 
is effectively zero in terms of computer precision. Second, because E is very small this will lead 
to a poorly conditioned matrix in C and E, so inversion will probably be inaccurate. These 
issues are fairly easy to deal with and make this method appealing for most ALS problems. 

The choice of E is based upon the machine precision and the magnitude of the data.42 Hanson 
and Haskell suggest the following for the value of E .  

&=$- 10-~ 

Y 

D-4 



Wher q is the relative machine precision and y is the infinity norm of the augmented matrix in 
C and E, which is the largest row sum in that matrix. Inversion of the poorly conditioned 
augmented and weighted matrix can be accomplished using an orthogonal factorization method 
to obtain a stable solution. 

. 
Using the weighting method allows a quick, direct computation of d without having to partition 
the matrices and vectors. 

All three of these methods can be used for the variety of equality constraints found in ALS 
routines. These equality constraints include fixed values as demonstrated in our example, zero 
concentrations, and closure. The closure constraint application is exemplified in the appendix of 
this paper. 

a 

SPECIAL CASES OF EQUALITY CONSTRAINED LEAST SQUARES 

Known concentration or spectral intensity 

When one is faced with a known concentration (e.g., zero concentration) or spectral intensity 
(e.g., baseline offset and slope or a known spectral pure component present in the data) the 
equality constraint problem becomes identical to our example above with the exception that it 
represents a multivariate constraint. In this special case, the method of the basis of the null space 
and the method of direct elimination become identical. To illustrate the steps in the solutions to 
this problem, we will use the example presented earlier. 

The first step in the null space basis method is to decompose the constraint matrix to obtain the 
orthonormal basis matrix, Q, in Equation 3. The resulting Q matrix in the case of our equality 
constraint C is the identity matrix 

C=[l 0 O]=LQ=[l 0 0 

This formulation of the problem makes the remaining computations in the method trivial since 
the transformations are identity, hence e = C and 2 = Z . We can now write our partitioned 
transformed matrices 

71 52 
74 46 
2 7  
89 71 

a and commence with our computations. Since the solution for Equation 4 is trivial, we now solve 
for Equation 5. 

0 
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72 - 76 
80 -140 

A 

Now we solve the least squares problem in Equation 6, which yields a, = [1.139 -3.606r and 

finally, a = [2 1.139 - 3.6O6lT. Again, the transformation in Equation 7 is trivial, and we 
have our result. 

A 

For this special case, the method of direct elimination reduces to an identical set of equations as 
the null space method because C, is a zero matrix. Specifically, Equations 4 and 8 are identical, 
Equation 10 reduces to Equation 5 ,  and Equation 6 and 13 are the only least squares problems 
that must be solved. In effect, one simply subtracts the product of the constrained components, 
whose coefficients are contained in Z, and y , from the data in x prior to the least squares step. 
These least squares equality constraint methods are simple to employ and actually reduce the 
time required for computation over the commonly used method of substitution. Here the least 
squares problem to be solved is smaller in rank by the number of constraints than the full rank 
problem one would solve using the substitution method. This is, in fact, the method that 
Gampp” employs in dealing with known spectral components for rank annihilation by evolving 
factor analysis. A graphical depiction of this method is presented in Figure 1. 

In the event one also wants to apply nonnegativity constraints to the part of the solution that is 
not equality constrained, one simply applies the nonnegative least squares algorithm to solve 
Equation 13. This method should be used with caution since the nonnegative solution will apply 
only to the last I - rn variables in d that are determined in Equation 13. Attempting to apply this 
method for closure constraints while simultaneously seeking a nonnegative solution is improper. 
See the Appendix on closure constraints for example. 

c 

‘1, 
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Linear five-factor absorbance model with two 
constrained spectral factors (e.g., offset and slope) 

= 111111 x 
1. Solve for concentrations 

2. Subtract out equality constrained factors 

3. Solve for equality unconstrained spectral factors 

4. Check convergence 
5. Stop or return to Step 1 

Figure 1. Application of dired elimination for equality constraints during ALS. Depicted here are two 
equality constrained spectral components represented by the dark - and the hashed - blocks 
The ‘1’ represents right matrix division and the 9’ is left matrix division. 

The closure constraint. 

The closure constraint most frequently used is that for sum-to-one concentration. An example 
may be a set of mixtures containing several component species prepared by adding varying 
volumes of each component to fil l  a fixed volume. Of course, in order for the closure constraint 
to be unity, the behavior of the mixtures should approach ideality so the free energy of mixing 

4 

e 

I 
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and the change in volume are both very small. In addition, for closure to exist in the case of 
spectral data, all species must be spectrally active in the spectral region analyzed. Consider our 
initial example for the closure constraint where the sum of the elements of d is one. Thus, the 
components of constraint equation are 

C = [l 1 11 and y = [I]. 

- I x = x- z m c , y  = 

Equations 11 and 12 produce z, 

67 
68 

[71 52 
- 74 46 

1 2  7 
z, = z, -zmc;z'c/ = 

189 711 

and X 
[49' 

120. 

Now Equation 13 yields 

72 
80 

,731 

[ - 2  -212 
-13 -41 
-70 -65 

-I [l 1]= 

1 9  -9  

r- 24' 

80 - 60 

r- I .3531 
d,=z:X=L 1.392 1 

where zf is the generalized inverse of z, . Finally, Equation 8 gives 

d, = C: (y - C,d, ) = [I]-' [ [1] - [l 1 [;1:;:]) = [0.961] 

and d = [0.961 - 1.353 1.392]T whose column sum is 1, q.e.d. This is a substantially different 
result than one would get by normalizing to unit sum the unconstrained least-squares result. 

One drawback of the direct elimination method for the closure constraint is that one cannot 
simply enforce a nonnegativity constraint on the solution for all variables using nonnegative 
least squares. One can use the nonnegative least-squares algorithm to solve Equation 13 and 
enforce nonnegativity on the l - m variables, but his does not guarantee that the first m variables 
will be nonnegativity. Instead, one must use an inequality condition that states that the l - m 
variables are nonnegative and that their sum is less than the closure condition. These conditions 
ensure that the solution to Equation 8 is greater than or equal to zero. A more flexible tool for 
obtaining the closure constraint (and other equality constraints) is to use weighted nonnegative 
least squares, WNNLS. 42,43 

DEMONSTRATION ON SIMULATED DATA 

The method of direct elimination for applying equality constraints to variables was compared to 
the more intuitive but flawed method of substitution. Three spectral pure components were 
generated using combinations of Gaussian-shaped curves (Figure 2). Each pure spectrum was 
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normalized to unit-vector length. A corresponding set of 600 pure component concentrations 
was generated from a uniform distribution of random numbers. The cross product of the random 
con&ntrations and the pure spectral components produce the 600 spectra "sed in the simulation. 
Random positive amounts of offset and random positive amounts of a sloping baseline were 
separately added to each spectrum. The sloping baseline was a unit length vector with positive 
and negative endpoints having identical absolute values and a zero midpoint. Three percent 
noise, based upon the maximum signal intensity of all samples, was added to each spectrum in 
the form of normally distributed homoxedastic errors. 

The data were analyzed and the results compared using the rigorous method of applying equality 
constraints and the commonly applied method of substitution using code written by the authors. 
AU processing and analysis was performed on  atl lab@ version 6.0 (The Mathworks, Natick 
MA). 

Spectral Charnels 

Figwe 2. Rue sp&ral components with offset and s l o p e d  in rimnlation 

Starting points for MCR were chosen as three random vectors and an offset and a slope. We 
generated three spectral vectors using the  atl lab" "rand" function, which produces elemeats of a 
vector chosen from a uniform distribution with values between zero and one. These vectors were 
normalized to unit length prior to analysis. Additionally, their corresponding spectral-mode 
solutions were normalized after each ALS iteration. The offset and slope weE identical to thoge 
in the data described above. Equality constraints were applied to the offset d slope. The 
rigorous constrained least squares method we chose to apply was the method of direct 
elimination. Nornegativity constraints were rigorously applied to the least squares solutioflg of 
the three spectral vectors, to their corresponding concentrations and to the magnitudes of the 
offset and slope. MCR was computed for 500 iterations. 



The spectral component results for the rigorous method and substitution method are shown in 
Figure 3 and Figure 4, respectively. 
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Spectral Channels 

Fignre 3. MCR-resolved spectral components for rigorously applied equality co&ts. Broken lines are 
offset and slope, which wen? fixed throughout MCR. 
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Figure 4. MCR-resolved spectral components for equality constraints applied by substitution. Brokee 1- 
are offset and slope, which were rvred throughout MCR 

The results for the spectral components from the two methods were very similar and matched 
well with the input pure components. Likewise, the concentrations for each were very similar 
and well matched. However, the RMS curves in Figure 5, in which RMS was determined after 
each iteration, provided a more telling result. 



6'.m31 0 4, 100 i., am 2;0 do 36. A0 dO 
Iteration 

Figure 5. RMS for MCR using snbstitution method (top) and new method @o#om) of maatraiat 
Note that ordinate is broken to expand scale. 

Note first the RMS for the method of direct elimination for applying equality constraints on the 
bottom of Figure 5. The RMS curve displays the monotonically decreasing behavior one expects 
from the ALS procedure. This behavior was observed for all 500 iterations performed; indeed 
this behavior was found in all other simulations that we performed, even out to thousands of 
iterations. Conversely, the substitution method displayed on the top of Figure 5 does not exhibit 
a well-behaved least squares behavior. Unfortunately the RMS values from the substitution 
method reach a minimum and then increases briefly before finding another minimum and then 
increase for the remainder of the 500 iterations. This behavior in RMS emtr causes several 
problems. One must now choose which set of coefficients to use: the minimum in RMS or the 
last iteration. Also, one must wonder in what direction the minimization was proceeding at each 
iteration. Finally, the minimum for the substitution method does not indicate as good a fit to the 
data as the new method described here. Clearly, substitution is not the optimal way to obtain a 
least squares solution when applying equality constraints to variables. 

CONCLUSION 

We have presented mathematically correct ways of equality constraining or fixing variab1es 
during least squares procedures. Using simulated data, we have compared one of these methods A t 

to the simple and intuitive, but flawed technique of substitution that is commonly used to&a~. -_ 

The rigorous methods are easily implemented in ALS routines and have been demonstrated to 
provide lower RMS results with faster convergence. Therefore, we recommend the use of these 
true least squares methods of applying equality constraints to multivariate curve resolution 
problems. 
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APPENDIX 
1, 

The closure constraint in ALS 

The method of enforcing the closure constraint commonly used in ALS is that of normalization. 
In ALS one solves by the method of least squares for one set of factors, then uses that result to 
solve for the other set of factors. So, an n x p matrix of absorbance spectra, X, composed of I 
factors, would be modeled by an n x I concentration matrix Z and an I x p pure-component 
spectra matrix D. The sequence would proceed as follows: 

The model is, 
X = Z D .  

Starting with initial guess for spectra (arbitrarily), one solves for concentrations 
Step 1 Z = X D ~  (DD~)-'  

and then uses that result to solve for pure component spectra 
Step 2 D = (ZTZ)-'ZTx. 

Step 3 2 Check convergence, i.e., IIX - ZDII 

Step 4 Return to Step 1 or Stop if convergence obtained. 

Closure is commonly accomplished by normalizing the rows of the concentration matrix to unit 
sum after Step 1. This is equivalent to left-multiplying the concentration matrix by a diagonal 
normalization matrix S, whose elements are the reciprocals of the row sums, thus 

Step l a  Z=SZ 

Here one has met the constraint for closure to unit concentration. However, if one now continues 
into Step 2 and solves for D, the least squares solution obtained in Step 1 is lost unless the data 
in X are also left-multiplied by S, specifically, 
Step lb  x = s x  

D4 3 
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