
SANDIA REPORT
SAND2001-3780
Unlimited Release
Printed November 2001

Applications of Transport/Reaction
Codes to Problems in Cell Modeling

Shawn A. Means, Mark D. Rintoul and John N. Shadid

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

3

SAND2001-3780
Unlimited Release

Printed November 2001

Applications of Transport/Reaction Codes to Problems in Cell Modeling

Shawn A. Means
Computational Materials and Molecular Biology

Mark D. Rintoul
New Initiatives

John N. Shadid
Computational Sciences

Sandia National Laboratories
P.O. Box 5800

Albuqeruque, NM 87185-0316

Abstract
We demonstrate two specific examples that show how our exiting capabilities in solving
large systems of partial differential equations associated with transport / reaction systems
can be easily applied to outstanding problems in computational biology. First, we
examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis
frog egg and verify that a proposed model for the distribution of calcium release sites
agrees with experimental results as a function of both space and time. Next, we create a
model of the neuron’s terminus based on experimental observations and show that the
sodium-calcium exchanger is not the route of sodium’s modulation of neurotransmitter
release. These state-of-the-art simulations were performed on massively parallel
platforms and required almost no modification of existing Sandia codes.

4

Acknowledgements
We would like to acknowledge a large number of colleagues who helped make this work
possible. First, we would like to thank Jason Shepherd and the CUBIT meshing team for
providing us with tools and assistance for generating the meshes used in these
computations. This includes Rob Leland who encouraged his already busy staff to help
us with this project. The authors would also like to acknowledge Gary Hennigan,
Andrew Salinger and Roger Pawlowski of the MPSalsa transport / reaction system
modeling team for contributions in developing the MPSalsa code and applications to cell
modeling. We also would like to acknowledge the contributions of our external
collaborations with John Wagner and Boris Slepchenko (University of Connecticut
Health Center) regarding the Xenopus egg simulations, and Pedro Embid and Eric
Toolson (University of New Mexico Mathematics and Biology Departments,
respectively) regarding the neuron terminus model. Finally, we are grateful for the
funding for this project through Gerry Yonas and the LDRD office, and for the help of
Mark Derzon in securing this funding. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-ALO4-94AL8500.

5

Contents

1. Introduction...
2. Overview of MPSalsa Solution for Diffusion/Reaction Systems................................8

2.1. Introduction... 8
2.1.1. Brief Overview of the Glaerkin Finite Element Formulation..................... 9
2.1.2. Discrete Equations; Interpolation Functions and Quadrature Rules........... 9

2.2. Solution Procedures .. 10
2.2.1. Implementation on Multiple Processors ... 10
2.2.2. Distributed Vectors ... 14
2.2.3. Distributed Matrices.. 15

2.3. Numerical methods ... 15
2.3.1. Transient Solution Methods.. 16
2.3.2. Nonlinear Solvers.. 16
2.3.3. Linear Solvers ... 17

3. Calcium Wave Propagation in a Xenopus Laevis Frog Egg......................................18
3.1. Meshing and partitioning of the spherical egg domain..................................... 19
3.2. Results... 20

4. The Impact of Sodium on Intracellular Calcium and its Implications for
Neurotransmitter Release.. 29

4.1. Introduction... 29
4.2. Spatial Discretization (Meshing) of 2D Terminal Bulb Representation and
Partition into Subdomains... 32
4.3. Results... 32
4.4. Summary of the Neuronal Terminal Bulb Simulation...................................... 43

5. Conclusions..
6. References...

6

Figures
Figure 1. Division of the modes of an element amongst the processors, and the further

differentiation of the nodes into interior (�), border (�), and external (�)
categories on Processor 0.. 14

Figure 3. Egg surface, t = 1 s. .. 21
Figure 4. Slice plane along axis of symmetry, t = 1 s. ... 21
Figure 5. Egg surface, t = 20 s. .. 22
Figure 6. Slice plane along axis of symmetry, t = 20 s. ... 22
Figure 7. Egg surface, t = 40 s. .. 23
Figure 8. Slice plane along axis of symmetry, t = 40 s. ... 23
Figure 9. Egg surface, t = 60 s. .. 24
Figure 10. Slice plane along axis of symmetry, t = 60 s. ... 24
Figure 11. Egg surface, t = 80 s. .. 25
Figure 12. Slice plane along axis of symmetry, t = 80 s. ... 25
Figure 13. Egg surface, t = 100 s. .. 26
Figure 14. Slice plane along axis of symmetry, t = 100 s. ... 26
Figure 15. Egg surface, t = 120 s. .. 27
Figure 16. Slice plane along axis of symmetry, t = 120 s. ... 27
Figure 17. Egg surface, t = 140 s. .. 28
Figure 18. Slice plane along axis of symmetry, t = 140 s. ... 28
Figure 19. Egg surface, t = 150 s. .. 29
Figure 20. Slice plane along axis of symmetry, t = 150 s. ... 29
Figure 21. Neuronal Terminal Bulb –model's geometric representation of the neuron's

axon terminus using a simple rectangular geometry with dimensions of 2 �m by
about 1.35 �m. Distribution of ion channels, pumps and the exchanger noted as in
the legend. ... 31

Figure 22. The mesh (small regions) and partitions (different colors) for the terminal
bulb. .. 32

Figure 23 ... 33
Figure 24 ... 33
Figure 25 ... 34
Figure 26 ... 34
Figure 27 ... 35
Figure 28 ... 36
Figure 29 ... 36
Figure 30 ... 37
Figure 31 ... 38
Figure 32 ... 38
Figure 33 ... 39
Figure 34 ... 39
Figure 35 ... 40
Figure 36 ... 41
Figure 37. Difference in Calcium Concentrations at Ion-Channel Mouths 42

7

1. Introduction

The cell is the fundamental unit of all life. Cells are simple structures bound by
membranes and generally filled with an aqueous solution that contains various chemicals.
The most remarkable (and in a sense, defining) property of cells is their ability to grow
and reproduce. As the basic unit of living things, almost all biological processes related
to the health of an organism must be studied at the cellular level. For this reason, much
of the scientific community is interested in having a comprehensive computational model
of various types of cells in order to better understand how cells behave with respect to
different environments.

Unfortunately, most typical cells are impossible to model at the most fundamental level
using today’s computational power. Each cell can contain billions of proteins
(representing thousands of different species of protein), billions of base pairs of nucleic
acid, millions of RNA molecules, millions of ribosomes, and dozens of mitochondria that
are themselves almost as complex as cells. Besides these major important cellular
constituents, there are countless other organic molecules and ions that are used as part of
the building and signaling processes within the cell. Even if the individual cellular
components are considered at a whole and not at the molecular level, a truly
comprehensive cell model is still probably decades away from being computationally
feasible.

Despite the fact that a comprehensive cell model is presently not possible, there are still
many ways in which slightly more limited cell models can provide a useful tool for
performing simulations. One way of doing this is by just simulating the individual
molecules of interest in a specific reaction. This is useful when considering the spatial
and temporal effects in a reaction that involves a small number of reacting components in
a specified geometry. However, with this type of simulation, each individual reactant
must be followed (limiting the total number of reacting molecules to perhaps a million at
most) and the effects of all other molecules of the systems must be ignored. Another type
of cell simulation involves treating all of the species in the cells as nodes on a graph and
all the reactions as edges. This model is intended to use experimental data to build initial
networks and test the effect of changing the concentrations of various components. This
model has the problem that it is often difficult to experimentally determine the given
concentrations and reaction rates, and it does not take into account the geometry of the
cell.

There is another type of cell model that has gained in popularity due to the relative
strengths of its assumptions and practicality of its applications. This model is often
referred to as a continuum model of a cell. In this model, all of the species of interest are
modeled not as individual objects but as a concentration that varies as a function of space
and time. Their interactions are handled by means of partial differential equations
(generally known as diffusion/reaction equations) that specify the result of having certain
concentrations of various interacting species together in a given place at a given time.

8

One of the primary advantages to this method is that now the large number of individual
molecules actually benefits the method since there is an assumption that there will be a
relatively continuous distributions of reactants throughout the volume of interest.
Another advantage to this type of model is that it reflects many problems of interest in
real biological applications, such as activity in neuronal cells and cardiac cells. It is
important to note that while the initial concentrations are necessary as input parameters to
the model, details of the individual reactions do not necessarily have to be experimentally
determined, but can be constructed given knowledge about the biochemistry of the
reactants.

The disadvantages associated with continuum cell modeling are primarily related to the
computational challenges. There will generally be many coupled partial differential
equations that describe the behavior of the system as a function of time and space. Also,
because this model is a spatial model, one must incorporate the effects of the cell
geometry into the solution. As a general rule, solving the resulting equations is a very
challenging computational problem that requires specialized algorithms and large
amounts of computing power. However, Sandia has already invested many man-years of
effort developing both the algorithms and the actual computer programs to solve these
problems on massively parallel computers. This is due to the need to models the flow of
interacting fluids in stockpile-related simulations. With these capabilities already in
hand, we were able to apply these methods quickly and easily to various unsolved
problems in biology in order to explain observations that had previously been not clearly
understood.

We will first present here an explanation of the algorithms used to solve the equations
that arise in our models, and then apply them to questions related to calcium waves in egg
fertilization and the question of the role of sodium on intracellular calcium and its role in
neurotransmitter release.

2. Overview of MPSalsa Solution for Diffusion/Reaction
Systems

2.1. Introduction

This section briefly overviews the numerical solution methodology that is currently used
in MPSalsa to approximate the solution of the multi-species diffusion/reaction equations
that are used in the continuum biological cell simualtions. MPSalsa [12] is a general
parallel transport/reaction solver that is used to solve the governing transport/reaction
PDEs describing fluid flow, thermal energy transfer, mass transfer and non-equilibrium
chemical reactions in complex engineering domains. In the current study we take
advantage of the general framework and limit the transport mechanisms that are included
to only a multi-species diffusion transport by mass fraction gradients as described by
Fick’s law.

9

2.1.1. Brief Overview of the Galerkin Finite Element
Formulation

The governing PDEs for multi-componet diffusion mass transfer and non-equilibrium
chemical reactions are presented in Table 1 in residual form. This residual definition is
used in the subsequent brief discussion of the Galerkin FE formulation. The continuous
problem, defined by the transport / reaction equations, is approximated by a Galerkin FE
formulation. The resulting weak form of the equations are shown in Table 2.

 Table 1. Governing Diffusion / Reaction PDE s

Species Mass
Fraction for
Species k

[]
k

k
Y k k k k

Y
R D Y W

t
�

�
� ��� � �

�
� 1,2,..,k N�

Table 2. Galerkin Formulation of Diffusion / Reaction PDEs

Species Mass
Fraction for
Species k

2.1.2. Discrete Equations; Interpolation Functions and
Quadrature Rules

Within each element the species mass fractions are approximated by the expansion

1

ˆ(,) () () ()
nodesN

k k J J
J

Y t Y t
�

� ��x x

where ()J� x is the standard polynomial finite element basis function associated with the
Jth global node and Nnodes is the total number of global nodes in the domain.

Thermodynamic and transport properties, as well as volumetric source terms, are
interpolated from their nodal values using the finite element shape functions. Evaluation
of volumetric integrals is performed by standard Gaussian quadrature. For quadrilateral

[]
k

k
Y k k k k

Y
F D Y W d

t
�

�

�
� � ��� � � �

�
� �

10

and hexahedral elements, two-point quadrature (in each dimension) is used with linear
basis functions, while three-point quadrature is used for quadratic interpolated elements.
For example, for tri-linear hexahedral elements, eight Gaussian quadrature points within
an element are used to evaluate its volumetric integrals.
Evaluation of surface integrals is performed by standard Gaussian quadrature on the side
of the element. As with the volumetric integrals, two-point quadrature (in each direction)
is used with linear shape functions, while three-point quadrature is used with quadratic
shape functions. For example, for a three-dimensional problem with linear shape
functions, four Gaussian quadrature points located on the side of an element are used to
evaluate its surface integrals.

2.2. Solution Procedures
In this section, we present the general procedures used in MPSalsa for the steady state
and the time dependent solution of equations that describe the discrete problem. The
choice of numerical methods in MPSalsa has been made from the standpoint of
robustness, efficiency of implementation on parallel architectures, and the ease of
including new solution kernels. The major solution kernels used in MPSalsa are the first-
and second-order implicit time integration routines, an inexact Newton procedure and the
linear system solvers of the Aztec [6] parallel Krylov solver library, developed in
conjunction with MPSalsa. Next we give a brief overview of the implementation of the
unstructured finite element method on multiple processors, since this aspect underlies
much of the discussion and implementation of the solution algorithms for the linear
system.

2.2.1. Implementation on Multiple Processors

MPSalsa is designed to solve problems on massively parallel (MP) multiple instruction
multiple data (MIMD) computers with distributed memory. For this reason the basic
parallelization of the finite element problem is accomplished by a domain partitioning
approach. The initial task on an MP computer is to partition the domain among the
available processors, where each processor is assigned a subdomain of the original
domain. It communicates with its neighboring processors along the boundaries of each
subdomain. There are two fundamental ways to partition the FE domain among
processors: either element or node assignment. Each method has its own advantages and
fundamentally affects the solution strategies and interprocessor communications.
Dividing the mesh according to elements quite naturally can lead to an element-by-
element (EBE) solution scheme, whereas dividing the mesh according to nodes leads
most naturally to a fully-summed distributed matrix solutions. In the EBE case, each
element’s matrix is stored separately and is not summed with its contributions from
neighboring elements. All matrix-vector operations are performed with these dense
elemental block matrices and the vector result is obtained only after summing over all
elements. This scheme substantially increases the matrix storage requirements and the
amount of computation needed relative to fully-summed distributed matrix solution

11

strategies. For example, for 3-D linear hexahedral elements, this method requires
approximately 60% more storage and greater than three times as many floating point
computations are required for the EBE approach. Although the larger block sizes
associated with the EBE approach may yield an increase in the number of operations
performed per second, this improved performance is unlikely to compensate for the
increased operation count. Because of this, nodal decomposition was chosen in MPSalsa
to allow the implementation of computationally efficient, minimum flop algorithms for
the matrix-vector multiply kernel. Also, storing the fully summed equations allows the
use of robust general preconditioners, such as domain decomposition incomplete
factorizations and direct sparse subdomain solvers.
The parallel solution of a particular FE problem proceeds as follows. At the start of the
problem, each processor is “assigned” a set of finite element nodes that it “owns.” A
processor is responsible for forming the residual and the corresponding row in the fully
summed distributed matrix for the unknowns at each of its assigned FE nodes. To
calculate the residual for unknowns at each assigned node, the processor must perform
element integrations over all elements for which it owns at least one element node. To do
this the processor requires 1) the local geometry of the element and 2) the value of all
unknowns at each of the FE nodes in each element for which it owns at least one node.
The required elemental geometry is made available to the processor through the initial
partitioning and database distribution part of the algorithm. Here, a broadcast of all
information in a serial EXODUS database to all processors is used in MPSalsa. Then,
each processor extracts its geometry information form the FE database. In addition to the
broadcast algorithm, MPSalsa has the capability to use a parallel FE database for
geometry input as well as all parallel I/O. The unstructured interprocessor communication
of FE unknowns is handled by an Aztec routine that exchanges the necessary
interprocessor information.

Figure 1, which depicts a partitioning scheme of an unstructured mesh, graphically repre-
sents the above concepts. An unstructured mesh is divided into four regions by assigning
ownership of the nodes. Nodes in each processor are classified as “border” and “internal”
nodes, at which border and internal unknowns, respectively, are defined. Border
unknowns are those unknowns whose values must be communicated to neighboring
processors so they may complete their element integrations; the remaining “owned”
unknowns on a processor are designated as internal unknowns. Those unknowns required
for a processor’s element integrations but assigned to a neighboring processor are stored
in the local solution vector and designated as “external” unknowns. Interprocessor
communication occurs when an owning processor communicates the values of its border
unknowns to a neighboring processor to update the value of the neighboring processor’s
corresponding external unknowns. Figure 1 demonstrates how Processor 0 would classify
the nodes in the internal, border, and external categories. Processor 0 has three
neighboring processors. During the interprocessor communication phase, it sends each
neighboring processor a message containing the values of each border unknown that the
neighboring processor needs. The value of each border unknown may be needed by more
than one processor, as it may appear in the external node lists of more than one of the
neighboring processors. Processor 0 also receives a message from each of its surrounding
processors containing the values of its external unknowns. Processor 0 doesn’t have to

12

know about unknowns defined at elemental nodes, which are not internal, boarder or
external nodes for this processor.

13

14

Figure 1. Division of the modes of an element amongst the processors, and the further differentiation
of the nodes into interior (�), border (�), and external (�) categories on Processor 0

2.2.2. Distributed Vectors

On each processor, a solution vector is stored which corresponds to the internal, border,
and external unknowns defined on that processor. The solution vector is reordered locally
so that local internal unknowns appear first, border unknowns appear second, and
external unknowns, grouped by the owning neighboring processor, appear last. A local-
to-global mapping vector is maintained, so that the global solution vector may be
regenerated using “fan-in” operations. This local reordering scheme minimizes the
gather/scatter operations involved in the interprocessor communication step. Only a
gather operation at the originating processor to gather all of the border unknowns needed
by a single neighboring processor into a contiguous space in memory is required. This
message can then be directly sent to the contiguous space in the destination processor’s
solution vector corresponding to the external unknowns owned by the originating
processor. No scatter operations are needed on the destination processor. Moreover, the
communications stencil required for this operation may be calculated once and used over
and over again for a static mesh discretization. The communications stencil refers to the
content of the message that each processor needs to send to each of its neighboring

15

processors and the length of the return message containing the external unknown values
from each neighboring processor.

2.2.3. Distributed Matrices

MPSalsa stores the Jacobian matrix in a distributed version of the Variable Block Row
(VBR) sparse matrix format. Each processor is responsible for storing rows of the
Jacobian corresponding to its unknowns. Once a specific partition and assignment of the
unknowns to internal, border, and external sets has been defined and the local solution
vector has been reordered a distributed VBR sparse matrix is constructed. Each row of
the Jacobian may include column entries corresponding to internal, border, and external
unknowns defined on that processor. During the matrix-vector multiply kernel of the
Krylov subspace iterative methods, each processor is responsible for carrying this out for
its rows. This necessitates an interprocessor communication step wherein all external
entries in the vector are updated with values from the neighboring unknowns, before the
start of the operation. Calculation of matrix-vector products on rows corresponding to the
internal unknowns requires no external node values and can therefore proceed
simultaneously with the communication step.

Much of MPSalsa’s parallel implementation is designed with the goal of maximizing the
speed of this matrix-vector multiplication, which essentially requires minimizing the time
needed to perform the communications. This subsection has described several strategies
employed by MPSalsa to achieve rapid interprocessor communications: reordering of the
solution vector to minimize work involved with the communications step, the pre-setup
of the communications stencil, and the ability to do calculations during the
communications step. The other basic algorithmic aspect of highly efficient unstructured
communication is the partitioning of the FE mesh in a way that reduces the total
communication volume and message start-ups while achieving load balance over all of
the processors. To do this, MPSalsa currently uses a static partitioning generated by
Chaco [4], a general graph partitioning code that was developed in conjunction with
MPSalsa. Chaco supports a variety of new and established graph partitioning heuristics,
such as spectral techniques, geometric methods, multilevel algorithms and the Kernighan-
Lin method. All of these approaches may be applied in bisection, quadrisection, or
octasection mode to recursively partition general graphs for mapping onto hypercube and
mesh architectures of arbitrary size. Using these techniques, a problem mapping with low
communications volume, good load balancing, minimum message start-ups and small
amounts of congestion can be generated.

2.3. Numerical methods

The system of diffusion/reaction equations is a system of nonlinear self-adjoint PDEs.
The stiffness and the strongly coupled nature of the reaction operators, combined with the

16

elliptic behavior of the pressure for incompressible flows, lead to a natural choice of fully
implicit time integration techniques to provide stable time integration.

2.3.1. Transient Solution Methods

The transient time integration methods used in MPSalsa follow closely the development
of Gartling [2] in the NACHOS II code and the work of Gresho [3]. Two types of implicit
predictor/corrector integrators are used in MPSalsa: Forward/Backward Euler and
Adams-Bashforth/Trapezoidal Rule. As discussed above, implicit solution methods are
preferred for diffusion-reaction equations. Explicit methods suffer from a number of
difficulties, including a) the strong elliptic nature of the diffusion operator, b) severe time
step limitation for the stiff terms to maintain stability, c) consistent mass matrices require
inversion –thereby defeating the efficiency of the explicit method, d) the reduction of
accuracy due to mass lumping to avoid (c). Though computationally expensive, implicit
methods are desirable because of their stability and ability to integrate efficiently to
steady state solutions for problems where the diffusion operator is important. The implicit
time integrators in MPSalsa are based on predictor/corrector methods to improve their
accuracy and efficiency. Both integrators may be used with either a constant or dynamic
time step selection algorithm. A solution of the resulting nonlinear, algebraic system for
each time plane is obtained by the inexact Newton method described in Section 3.4

The time integration procedures above can be used with either a user-defined constant
time step or a dynamically controlled time step that is initialized with the user-defined
time step size. In general, the a priori selection of a time step size can be a very difficult
task, especially for stiff reacting flow equations with complex fluid flows. One of the
benefits of using the predictor/corrector algorithms is that they provide a rational basis
for dynamically selecting the time step size.

The details of time step control algorithm can be found in Gresho et al. [3]. The general
formulation of the time step selection process comes from well established ODE and
DAE literature (e.g. [5]). By using a comparison of the time truncation errors for two
time integration methods of comparable order, a formula can be developed for selecting
the next time step, based on a specified user error tolerance

2.3.2. Nonlinear Solvers

In this section, we briefly discuss an implementation of Newton’s method that uses
approximate iterative solution techniques to solve the sequence of linear problems
produce by the Newton linearization scheme. The particular implementation we use
follows the work of Eisenstat and Walker [1]. This method differs from standard Newton
implementations as follows. First the inexact Newton scheme uses iterative solution

17

techniques rather than direct matrix inversion methods. Second, at each stage of the
Newton iteration, the algorithm selects an appropriate level of convergence required for
the iterative linear solver. This strategy is used to increase robustness of the nonlinear
algorithm and to ensure that the linear equations are not over-solved at early stages of the
Newton iteration when the Jacobian matrix is not very accurate. Third, this algorithm re-
quires that at each step of the Newton iteration, the nonlinear residual must decrease. If
this condition is not satisfied, a backtracking algorithm decreases the Newton step size
and re-evaluates the residual at this new proposed solution. The backtracking algorithm is
called recursively until the residual reduction criteria is satisfied and a new approximate
solution is obtained. More details on the perfomance of this algorithm can be found in
[7,10].

Two separate convergence requirements are enforced for the Newton scheme. The first
requires that the ratio of the norm of the current nonlinear residual to the norm of the
initial residual be reduced by a preset factor (default: 10-2). The second criterion requires
that the Newton correction for any variable be suitably “small” compared to the
magnitude of the variable. This criterion is very similar to the ratio used to dynamically
control the time step size and is standard in general purpose ODE packages.

This convergence criterion is given by

2

1

1 1.0
unkN

i

iunk r i a

V

N V� �
�

� ��
�� �� ��� 	

�

This criterion requires the ratio of the Newton correction iV� to be small relative to the

variable iV with constant r� , and to be small in absolute terms compared to a� . This
assures that all variables, even variables with small magnitude (e.g., trace species), are
considered in determining when to halt the Newton iteration.

2.3.3. Linear Solvers

The linear subproblems generated from the inexact Newton method are solved by
preconditioned Krylov methods as implemented in our Aztec solver library [6]. The
parallel Krylov algorithms implemented in Aztec include techniques such as the
conjugate gradient methods (CG), the restarted generalized minimal residual
[GMRES(k)] and transpose-free quasi-minimal residual techniques for nonsymmetric
systems. All Krylov methods rely on a small, well defined set of basic kernel routines.
These kernel routines consist of parallel matrix-vector, vector-vector, vector inner-
product, and preconditioning operations [9,11,13].

It is well known that the overall performance of Krylov methods can be substantially
improved when one uses preconditioning. The basic idea is that instead of solving the

system Ax = b , the system -1AM y = b is solved where ��
� is an approximation to

-1A and is easily computed, since only matrix-vector products are needed, it is not
necessary to explicitly form -1AM (only software to solve Mv = y is needed). We note
that the preconditioning described here corresponds to “right” preconditioning and that is
that it is also possible to precondition on the “left” (i.e. -1M A). In this paper only right
preconditioning is considered as the comparisons are more straightforward. Specifically,
when left preconditioning is used the computed residual corresponds to a preconditioned
residual. Thus, if convergence is based on the size of the residual, changing the
preconditioner effectively changes the convergence criteria.

In our numerical experiments, we use Aztec [6] to implement the 1-level Schwarz
preconditioning techniques. Aztec automatically constructs the overlapping submatrices.
While a direct factorization could be used on the subdomains, our experience indicates
that this is rarely practical as the storage and time associated with this directed
factorization is too high. Instead of solving the submatrix systems exactly we use
incomplete factorization technique on each subdomain (processors). In this study we use
two specific ILU factorizations. The standard ILU(0) method with no fill-in. As well as
the ILUT (fill-in, drop) incomplete factorization, which allows specification of a user-
specified fill-in parameter (1.0fill in� �) and a drop tolerance. In this nomenclature a
fill-in of 1.5 denotes an ILU factor with up to 1.5 times as many nonzeroes as the original
matrix. In future studies we will use the ML multi-level solver library [14] to implement
the coarse grid solve for a 2-level domain decomposition methods that can exhibit
optimal convergence characteristics.

3. Calcium Wave Propagation in a Xenopus Laevis Frog
Egg

One of the classic experimental models in biology is the Xenopus Laevis frog egg. The
egg cell is approximately 1mm in diameter, making it especially easy to study. At
fertilization, a Ca2+ wave travels across the egg at a speed of 5-10��m/s. This wave can
be observed visually under the right experimental conditions and its behavior as a

function of time has been well documented. There are a number of features about this
Ca2+ wave that are worth noting. The wave front is a very sharp and well-defined
concave wave (and not convex as expected with simple diffusion), with the wake of the
wave containing approximately an order of magnitude more Ca2+ than the part of the cell
18

in front of the wave. The wave speed also varies along the wave front, with higher
speeds near the edges. This causes the wave to initiate as a crescent shape and propagate
in a concave shape until it reaches the edge of the wave. Further, the concentrations of
calcium in the egg are maintained at this new, elevated level illustrating the so-called
bistability of calcium levels in the Xenopus egg. These observations indicate that there is
a somewhat complicated mechanism that causes the release of Ca2+ into the cell
cytoplasm, facilitating not only the characteristic shape of the wave front, but the bistable
concentration levels for intracellular calcium.

19

A possible mechanism modulating the release of Ca2+ from internal stores of the egg (i.e.,
Endoplasmic Reticulum), and hence resulting in the concave wave front, was explored.
Based upon the two-dimensional simulations performed by J. Wagner, et. al. [15], we
implemented a full three-dimensional simulation of a Calcium wave initiated after a
fertilization event. The primary mechanism simulated which releases calcium from said
internal stores is the inositol triphosphate receptor calcium channel (IP3R) located on the
endoplasmic reticulum.

Evidently, IP3R’s are densely distributed in the cortical region of the egg while sparsely
distributed in the interior of the egg, and this distribution is reflected in the three-
dimensional simulation. We employed a diffusive representation of calcium and a non-
diffusive representation of IP3R in a diffusion/reaction system of equations, as well as a
non-homogeneous radial distribution of the IP3R, whose depiction is given below.

� � CD
kC

C
vCCh

dC

C

dI

I
v

t

C

P
per

act
L

2
22

2
3

33

1

1
��

�
�

�

�

�
�

�

�

�
		

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�
�

�

� �� � 0�hdCd
dt

dh
inhinh ���

� �
�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
��
�

�
��
�

�
��	 w

c
hsr I

r

r
IIIP 1exp13

Here C represents Ca2+, h represents the fraction of inactivated IP3R, and I = [IP3]r. This
distribution of IP3R strongly modulates the shape and progression of the Ca2+ wave front,
which is a natural result since these are the channels responsible for release of calcium
from the internal stores. One can see in the initial results for the simulations this
preferential, radial distribution in Figure 3 at time t = 1 immediately after the fertilization
event.

3.1. Meshing and partitioning of the spherical egg domain
In order to perform the finite element calculation, the egg must be broken down into a
mesh. Hexahedral (6 sided) elements were used due to the increased quality of the
solution over tetrahedral (4 sided) elements. The egg is represented as a 500 �m radius
sphere. Illustrated on the left of Figure 2 is the meshed form of the spherical region.
Radially symmetric partitions extend from the outer region toward the surface, with a
cube of rectangular elements at the center. This resulted in 371,200 elements and
376,185 of nodes. Additionally, the mesh was partitioned into 512 subregions for
solution on 512 processors. The partitioning is illustrated in Figure 2 on the right
(surface view).

20

3.2. Results
We show here the results of the simulation as a function of time. Figures 3-20 illustrate
the calcium wave propagating across the surface, and the concave wavefront through the
interior. Note the change in scales as time progresses for the color indicators, where Ca2+

concentrations are in �M, and the rotation of surface views following the wavefront. At
time t = 1s the slide shows the initial distribution of ions as localized on the `left’ face of
the egg; this is the result of utilizing a distribution function for the protein channels,
IP3R, localized similarly as a sub-spherical shell. The data here agrees very well with the
experimental data, and strongly suggests that the hypothesis regarding the distribution of
IP3 receptors is correct. This was the first fully three-dimensional verification of this
hypothesis.

Figure 2. The left shows the meshed spherical domain representing the egg, while the domain partitioning across the
512 processors is shown on the right.

21

Figure 3. Egg surface, t = 1 s.

Figure 4. Slice plane along axis of symmetry, t = 1 s.

22

Figure 5. Egg surface, t = 20 s.

Figure 6. Slice plane along axis of symmetry, t = 20 s.

23

Figure 7. Egg surface, t = 40 s.

Figure 8. Slice plane along axis of symmetry, t = 40 s.

24

Figure 9. Egg surface, t = 60 s.

Figure 10. Slice plane along axis of symmetry, t = 60 s.

25

Figure 11. Egg surface, t = 80 s.

Figure 12. Slice plane along axis of symmetry, t = 80 s.

26

Figure 13. Egg surface, t = 100 s.

Figure 14. Slice plane along axis of symmetry, t = 100 s.

27

Figure 15. Egg surface, t = 120 s.

Figure 16. Slice plane along axis of symmetry, t = 120 s.

28

Figure 17. Egg surface, t = 140 s.

Figure 18. Slice plane along axis of symmetry, t = 140 s.

29

Figure 19. Egg surface, t = 150 s.

Figure 20. Slice plane along axis of symmetry, t = 150 s.

4. The Impact of Sodium on Intracellular Calcium and its
Implications for Neurotransmitter Release

4.1. Introduction
Neurotransmitter release propagates signals between neurons, is instrumental in receiving
information from sensory organs, and maintains control of muscles. A general description

30

of the process involved in release of the chemicals and proteins known as
neurotransmitters is well established. Calcium ions flood the terminus of a neuron and
initiate machinery in the cell to release these neurotransmitters.

Sodium is the primary ion responsible for signal propagation down a neuron. After
receiving a signal from a previous neuron, a sequence of sodium influxes triggered in a
domino effect down its body and axon propagates to the neuronal terminus, where the
calcium mediated release occurs. Evidence suggests that sodium indeed has a modulatory
control over neurotransmitter release, either directly or indirectly via calcium.

In order to explore that hypothesis, we constructed a model of the neuron's terminus
utilizing a continuum, diffusion/reaction representation, including two ionic species
(sodium and calcium) and two protein species (mobile and immobile calcium buffer).
Included in the model are depictions of voltage-gated ion channels, ionic pumping
mechanisms (calcium ATP-ase and the sodium/potassium ATP-ase), and of paramount
interest here, the sodium-calcium exchanger. The geometric representation used is given
in Figure 21. The details of the differential equations and concentrations used in the
model are given in Shawn Means’ master’s thesis [16], and we provide a brief summary
of the equations below.

ND
t

N
N

2
��

�

�

� �ICISSSSBCCD
t

C
CC ,,4,3,2,1,,2

����
�

�

� �1,,2 SBCBD
t

B
BB ����

�

�

� �2,1,,11
1

2
1 SSBCSD

t

S
SS ����

�

�

� �3,2,1,22
2

2
2 SSSCSD

t

S
SS ����

�

�

� �4,3,2,33
3

2
3 SSSCSD

t

S
SS ����

�

�

� �4,3,44
4

2
4 SSCSD

t

S
SS ����

�

�

� �ICIC
t

I
I ,,��

�

�

� �ICIC
t

IC
I ,,���

�

�

In the equations above, N represents sodium, C calcium, B unbound mobile protein
calcium buffer, S1-S4 the site-bound mobile buffer, I and IC the unbound and bound
immobile calcium buffers respectively. Each source term is unique for the individual
species, yet coupling between the mobile buffers occurs only with the ‘neighboring’ site
bound species (i.e., S1 with B and S2, not S3 or S4).

31

The primary mechanism of interest, however, is not protein calcium buffering. Of
potential impact on intracellular levels of calcium is the sodium-calcium exchanger, as
noted earlier. This term is represented as a boundary flux source/sink for calcium.
Typically, the exchanger ejects intracellular calcium at the expense of sodium uptake; but
reverses operation under certain conditions during the activation of a neuron. A
mathematical depiction of this exchanger is presented below, which was provided by
considerable prior work performed - see Hilgemann (1988) [17] for a summary.

� � � � � �� � 6070120
22 75.07.0
���

����� apap tttt

m eetV

� � � ��
�

��

�

���
e

eee tCNq
x

xx,,

� � � � � �� � � �nMCHtCNtCNKtCN ee 400,, 13
00

3
����

�

���

� �
� �

RT

F
tVm

et 2
��

Again, N indicates sodium, C calcium – but internal species. The ‘o’ subscript indicates
external species that are held constant for the simulation. A difference of gaussian
exponentials is utilized to simulate the variation in membrane voltage during neuronal
excitation (function ‘V’), modulating the response of the hyperbolic sine function � as
shown above.

Figure 21. Neuronal Terminal Bulb –model's geometric representation of the neuron's axon
terminus using a simple rectangular geometry with dimensions of 2 �m by about 1.35 �m.
Distribution of ion channels, pumps and the exchanger noted as in the legend.

32

4.2. Spatial Discretization (Meshing) of 2D Terminal Bulb
Representation and Partition into Subdomains

Meshing the terminal bulb representation (shown in Figure 22) requires many more
elements near the boundary then the interior, since dramatic concentration changes occur
when the ion channel mouths open and the pumping mechanisms respond. Only
buffering protein-Calcium ion reactions occur in the interior. This mesh has 6292
elements and 6962 nodes. The partition of the mesh (above) is for 128 subregions and
hence 128 processors.

Figure 22. The mesh (small regions) and partitions (different colors) for the terminal bulb.

4.3. Results
Figures 23-26 show respective concentrations for sodium, calcium, mobile and immobile
calcium-buffer complexes at time t = 1.0 ms (maximal activation event) for a solution run
done over t = 1–55 ms. Surface plots are initially shown for the ionic species to illustrate
the dramatic change in calcium concentration (from baseline of 0.1 �M to peak of ~26
�M, and the relatively nominal change for sodium (from baseline of 10 mM to about 10.1
mM) at maximal neuronal activation. Contour plots for the calcium-buffer complexes
show their response to the rapid increase in calcium levels at the synaptic face. Notably,
the calcium-bound mobile buffers increase an order of magnitude, whereas the immobile
hardly increases at all.

33

Figure 23

Figure 24

34

Figure 25

Figure 26

35

Slides 27-30 show respective concentrations for sodium, calcium and calcium-buffer
complexes at time t = 13.0 ms where action potential are at maximum effect during a
third stimulation event, and activation of ion-channels and depolarization occurs at this
time step. Sodium ion channels dominate the distributions toward the axonal side, yet the
maximum levels are still are mere 0.3 mM above baseline. Maximal calcium levels are
elevated a bit more than the single event (compare 25.3 �M to 25.6) due to the activity of
protein buffers, yet the minimal levels are fully an order of magnitude greater than
baseline. Consequently, we also see an increase in the levels of calcium-buffer
complexes as well, with however, still a minor impact on the immobile species.

Figure 27

36

Figure 28

Figure 29

37

Figure 30

Slides 31-34 show respective concentrations for sodium, calcium and calcium-buffer
complexes at time t = 55.0 ms, during the tenth activation event. Sodium levels elevate a
mere 1 mM or so over baseline, whereas maximal calcium rises to a little more than 26
�� – still about the same as during a single event. Minimal calcium levels are still quite
a bit higher than at baseline, around 2 �M instead of the initial 0.13 �M. Mobile buffer-
calcium complex continues to rise, although saturation is not quite evident at this point
(initial unbound buffers set at 360 �M). The immobile buffer-calcium complex remains
relatively unaffected – an increase of only 1 mM overall after ten stimulations.

38

Figure 31

Figure 32

39

Figure 33

Figure 34

40

Figures 35 and 36 show the initial recovery of the neuron after the ten stimulation
sequence for both sodium and calcium. The activity of the sodium-calcium exchanger is
evident in both the plots – slight increases for sodium at the upper end of the region and
drops in concentrations for calcium as expected.

Figure 35

41

Figure 36

It is the impact of the sodium-calcium exchanger on calcium levels at the
neurotransmitter release sites that are of interest here, so we present the difference plot
for the simulations both with the exchanger enabled and disabled. Clearly, the only
impact of the exchanger is to decrease calcium levels – see Figure 37.

42

Figure 37. Difference in Calcium Concentrations at Ion-Channel Mouths

43

4.4. Summary of the Neuronal Terminal Bulb Simulation
The sodium-calcium exchanger usually ejects calcium ions at the expense of sodium
uptake. Under certain conditions, this exchanger reverses operation, and hence may
increase intracellular calcium levels. Simulations of the neuronal terminus indicate that
given the increases in calcium levels during stimulation, the intracellular concentrations
of sodium are insufficient to induce reversal of the exchanger. Only reduction in calcium
concentrations were evident due to the exchanger activity and no increases were
observed. We thus conclude that the sodium-calcium exchanger is not the route of
sodium's modulation of neurotransmitter release.

5. Conclusions
The two simulations described here are an important demonstration of how massively
parallel computing can be applied to solve problems in biology related to reaction and
transport on at a continuum scale. More importantly, they show that the existing Sandia
software and hardware that was developed for issues related to stockpile stewardship can
also be easily applied to fundamental problems in medicine and biology. As such
problems become more critical to the nation, we believe that there are many more
applications (such as cardiac cell simulation and more extensive neurological cell
simulation) that can be addressed using the technologies described here.

44

6. References
1. Eisenstat, S. C., and Walker, H. F., “Globally convergent inexact Newton methods”, SIAM J.

Optimization, 4 (1994) 393-422
2. Gartling, D. K., “NACHOS II: A Finite Element Computer Program for Incompressible Flow

Problems. Part 1 – Theoretical Background,” Sandia National Laboratories Report, SAND86– 1816,
Albuquerque, NM (1986).

3. Gresho, P. M., Lee, R. L., Sani, R. L., “On the time dependent solution of the incompressible Navier-
Stokes equations in two and three dimensions,” Recent Advances in Numerical Methods in Fluids, Vol.
1, Pineridge Press, Swansea, U. K., 27–81 (1980).

4. B. Hendrickson and R. Leland. “A user’s guide to Chaco, Version 1.0.” Sandia National Laboratories
Technical Report, SAND93-2339, Albuquerque, NM, (1993).

5. A. C. Hindmarsh, “LSODE and LSODEI: Two new Initial Value Ordinary Differential Equation
Solvers”, ACM Signum Newsletter, 15, No. 4, pp 10-11, 1980

6. S. A. Hutchinson, L., Prevost, J. N. Shadid, C. Tong, and R. S. Tuminaro, “Aztec User’s Guide
Version 2.0", Sandia National Laboratories Technical Report, Sand99-8801J 1999

7. J. N. Shadid, “A Fully-coupled Newton-Krylov Solution Method for Parallel Unstructured Finite
Element Fluid Flow, Heat and Mass Transfer Simulations”, Int J. CFD, Vol 12, pp. 199-211, 1999

8. J. N. Shadid, “A Comparison of Parallel Preconditioners for Solution of Unstructured Finite Element
Fluid Flow, Heat and Mass Transfer Simulations”, Proceedings of the Fourth japan-US Symposium on
Finite Element Methods in Large-Scale Computational Fluid Dynamics, Nihon University, Tokyo
Japan, April 2- 4, 1998

9. Shadid, J.N., Hutchinson, S.A., Hennigan, G.L., Moffat, H.K., Devine, K.D., Salinger, A. G.,
“Efficient Parallel Computation of Unstructured Finite Element Reacting Flow Solutions”, Parallel
Computing 23, 1307-1325, 1997

10. Shadid, J.N., Tuminaro, R.S., and Walker, H.F., “An Inexact Newton Method for Fully-Coupled
Solution of the Navier-Stokes Equations with Heat and Mass Transport.” J. Comput. Phys., 137, 155-
185 (1997)

11. Shadid, J.N., and Tuminaro, R.S., “A Comparison of Preconditioned Nonsymmetric Krylov Methods
on a Large-Scale MIMD Machine,” SIAM J. Sci. Comput., Vol 15, No. 2, pp 440-459, March 1994

12. Shadid, J., Salinger, A., Schmidt, R., Smith, T., Hutchinson, S., Hennigan, G., Devine, K., Moffat, H.,
“MPSalsa Version 1.5: A “MPSalsa: A Finite Element Computer Program for Reacting Flow Problems;
Part 1 - Theoretical Development”, Sandia National Laboratories Technical Report, SAND98-2864

13. R. S. Tuminaro, J. N. Shadid, and S. A. Hutchinson, “Parallel Sparse Matrix-Vector Multiply Software
for Matrices with Data Locality”, Concurrency: Practice and Experience, Vol 10(3), 229--247, March
1998

14. R. S. Tuminaro, C. H. Tong, J.N. Shadid, K.D. Devine, D.M. Day, “On a Multilevel Preconditioning
Module for Unstructured Mesh Krylov Solvers: Two -level Schwarz”, Submitted to Comm. Numer.
Meth. Eng,

15. J.Wagner, Y.Li, J.Pearson, J.Keizer, “Simulation of the Fertilization Ca2+ Wave in Xenopus laevis
Eggs”, Biophysical J. Vol. 75, 2088-2097, October 1988

16. S. A. Means, Master’s thesis, The University of New Mexico, July 2001
17. D.W. Hilgemann, “Numerical Approximation of Sodium-Calcium Exchange”, Progress in Biophysics

and Molecular Biology, Vol. 51, 1-45, 1988.

45

Distribution
MS 0151 T. Hunter, 9000
MS 0321 W. Camp, 9200
MS 1110 D. Womble, 9211
MS 0847 R. Leland, 9220
MS 0310 P. Yarrington, 9230
MS 0310 G. Heffelfinger, 9209
MS 0316 S. Dosanjh, 9233
MS 0316 J. Aidun, 9235
MS 0318 G. Davidson, 9200
MS 0316 M. Rintoul, 9209 (10)
MS 0847 J. Shepherd, 9226
MS 1111 J. Shadid, 9233 (5)
MS 1111 A. Salinger, 9233
MS 0316 R. Pawlowski, 9233
MS 0316 G. Hennigan, 9233
MS 0196 S. Means, 9235 (5)

MS 0513 A. Romig, 1000
MS 1427 J. Phillips, 1100
MS 1425 M. Derzon, 1740
MS 0885 M. Cieslak, 1801

MS 9004 J. Vitko, 8100
MS 9951 L. Napolitano, 8130

MS 0839 G. Yonas, 16000

MS 9016 Central Technical Files, 8945-1
MS 0899 Technical Library, 9616
MS 0612 Review & Approval Desk, 9612

For DOE/OSTI

	Introduction
	Overview of MPSalsa Solution for Diffusion/Reaction Systems
	Introduction
	Brief Overview of the Galerkin Finite Element Formulation
	Discrete Equations; Interpolation Functions and Quadrature Rules

	Solution Procedures
	Implementation on Multiple Processors
	Distributed Vectors
	Distributed Matrices

	Numerical methods
	Transient Solution Methods
	Nonlinear Solvers
	Linear Solvers

	Calcium Wave Propagation in a Xenopus Laevis Frog Egg
	Meshing and partitioning of the spherical egg domain
	Results

	The Impact of Sodium on Intracellular Calcium and its Implications for Neurotransmitter Release
	Introduction
	Spatial Discretization (Meshing) of 2D Terminal Bulb Representation and Partition into Subdomains
	Results
	Summary of the Neuronal Terminal Bulb Simulation

	Conclusions
	References

