
A

SAND REPORT
SAND2001 -3769
Unlimited Release

omponent

Livennore, California 94550

rated by Sandia Corporation,
ited States DeDartment of

ic release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: rePorts@adonis.osti.gov
Online ordering: http:/lwww.doe.govlbridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

2

I

mailto:rePorts@adonis.osti.gov
http:/lwww.doe.govlbridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

2001-3769
Unlimited Release
Printed July 2002

Kernel Near Principal Component
Analysis

Shawn Martin
Computational Biology

Sandia National Laboratories PO Box 5800
Albuquerque, NM 871 85-0318

smart in@sandia. gov

July 17, 2002

Abstract

We propose a novel algorithm based on Principal Component Analysis
(PCA). First, we present an interesting approximation of PCA using Gram-
Schmidt orthonormalization. Next, we combine our approximation with the
kernel functions from Support Vector Machines (SVMs) to provide a nonlinear
generalization of PCA. After benchmarking our algorithm in the linear case, we
explore its use in both the linear and nonlinear cases. We include applications
to face data analysis, handwritten digit recognition, and fluid flow.

Keywords: nonlinear Principal Component Analysis, Support Vector Machine
kernels, Gram-Schmidt

Acknowledgement

This work was supported by MICS project 547 task 01.11,

4

Contents
1 Introduction
2 Background

Gram-Schmidt
PCA
SVM Kernels

3 Algorithm
4 Benchmarks
5 Applications
6 Discussion

Relation to PCA

Comparisons
Computational Complexity . . .

7 Extensions
8 Conclusion . .

. .
. . .
. .

..................................

..................................
.

. 7
. 8
. 8
. 9
. 9

. 10
.. 12
.. 16

. 22
. 2 2
. 2 3

. 23
. 25
.................. 25

Figures
1 Ellipse and Parabola

. . .
..........
..........

. . .
2
3 Face Data Analysis
4 Parabola Revisited
5 Clusters
6 USPS Handwritten Digits . .
7 Taylor-Couette Flow
8 Taylor-Couette Projections

Numerical Stability of nPCA . . .
. 1 3
. 1 4
. 1 5
. 1 7
. 1 8
. 19
. 2 0
. 2 1

5

Kernel Near Principal
Component Analysis

1 Introduction

The goal of Principal Component Analysis (PCA) is to find a coordinate represen-
tation for a given data set such that the most variance in the data is captured in
the least number of coordinates. This representation is typically found by perform-
ing a linear transformation of the original data via the Singular Value Decomposition
(SVD). The resulting singular vectors provide an orthonormal basis for the data while
the singular values provide information on the importance of each basis vector. A
review of PCA, its history, examples of applications, and information about the SVD
can be found in [13], [15], [7], and [26]. Some of the original papers on PCA include
[19] and [lo].

In addition to the standard linear version of PCA, some nonlinear variants have
been proposed. These methods include Hebbian networks, multi-layer perceptrons,
Principal Curves, and kernel PCA. The linear PCA neuron [MI, [7] in a Hebbian
network can be replaced by a nonlinear neuron to perform nonlinear PCA; a multi-
layer perceptron having enough layers and using nonliner activation functions can be
considered a type of nonlinear PCA [16], [7]; Principal Curves [9] pass through the
“middle” of a given data set and can be shown to be principal components when
constrained to be linear; and kernel PCA [24] performs linear PCA after implicitly
remapping the original data by a nonlinear function. In addition, there are other
methods in data analysis similar in spirit to PCA. These include Projection Pursuit
[8] and Independent Component Analysis [141, [111.

In this paper we propose another version of PCA. Our version includes a mod-
ification of linear PCA coupled with a nonlinear extension. In our modification of
linear PCA we locate a basis using the same criterion employed by PCA but subject
to an additional constraint. Our basis is required to correspond directly to a lin-
early independent subset of our original data. Essentially, we find an ordered linearly
independent subset of our data which best approximates the PCA expansion when
used with Gram-Schmidt orthonormalization. We call this approximation near PCA
(nPCA).

Our nonlinear extension of nPCA is based on the use of Support Vector Machine
(SVM) type kernels. SVM kernels allow us to remap our data implicitly using non-

linear functions. Following such remappings we apply nPCA. Hence our nonlinear
version of PCA is called kernel near PCA (knPCA).

Our paper is organized as follows: in Section 2 we provide the background nec-
essary to describe knPCA; in Section 3 we give the actual description of knPCA;
in Section 4 we benchmark knPCA using the linear kernel; in Section 5 we provide
some applications and examples of knPCA; in Section 6 we discuss the properties of
knPCA and compare it with other algorithms for nonlinear PCA; in Section 7 we
describe how knPCA could be modified/extended for other uses; and in Section 8 we
conclude the paper.

2 Background

KnPCA is a combination of Gram-Schmidt orthonormalization and PCA all rewritten
in terms of inner products so that SVM type kernel functions can be used. We there-
fore provide some background on Gram-Schmidt7 PCA, and SVM kernel functions.

Gram- Schmidt

Gram-Schmidt orthonormalization [26] is a procedure for transforming a set of linearly
independent vectors { X I , . . . xm} into an orthonormal basis {ul, . . . urn}. This basis
is constructed iteratively via projetions. Specifically,

where we use (x,y) to denote the inner product (dot product) of x with y. Now we
can represent our original data {xl,. . . h} in the new basis as the upper triangular
matrix

(x1, U l) * * . (xm7 Ul)

(x1, urn) * * (x m 7 urn)

8

We can also include linearly dependent data {x,+1, . . . , x,} as additional columns in
the matrix

PCA

PCA is typically formulated as an eigenvalue problem which is closely related to the
SVD [15], [7]. It also typically described as a procedure for successively capturing the
maximal variance in the data. The PCA eigenvectors (singular vectors) satisfy [15]

u1 maximizes (xi, ~ 1) ~

u2 maximizes ‘&(u2, xi - (xi, u1)u1)2

where {ul,. . . , u,} are also required to be orthonormal. (When we write ‘5.1~ max-
imizes xy=l(xi,u1)2,” we mean u1 = u such that u maximizes Cy=1(%,u)2, with
similar meanings for u2, . . . , u,.)

PCA is often illustrated by finding the major and minor axes in a cloud of data
filling an ellipse. The first eigenvector corresponds to the major axis of the ellipse
while the second eigenvector corresponds to the minor axis. This example is shown
later in Figure 1.

SVM Kernels

SVMs (Support Vector Machines) [6], [4], [28] are classifiers which use kernels from
integral operators to remap data implicitly via nonlinear functions [3], [4]. A function
k : R” x R” ---f R is a kernel for a nonlinear map <I, : R” + F if

k(X> Y) = W X) , @(Y>>,

where F is a Hilbert space.

Such nonlinear maps can be useful in classification by transforming data which
is not linearly separable in the original space into linearly separable data in some

9

higher dimensional space. This technique is well illustrated when applying the map
a(., y) = (x2, d x y , y2) to the planar two class exclusive-or problem. In this problem
the first class consists of two clusters, one centered about the point (1,l) and the other
centered about (-1, -1). The second class consists of two additional clusters, one
centered about (1, -1) and another centered about (-1,l).

The kernels corresponding to the nonlinear maps are computational devices. They
allow the use of the nonlinear maps while avoiding calculations in their high (possibly
infinite) dimensional ranges. Any algorithm which can be written in terms of inner
products can use the kernel functions. When the inner products in the algorithm are
replaced by kernels, the algorithm is effectivley transported into the range of some
nonlinear map.

Some examples of kernels are

0 the polynomial kernel k(x, y) = ((x, y) + c)~, c 2 0, d E Z,o,

0 the radial basis function (RBF) kernel k(x,y) = e*, (I # 0,

0 the neural network kernel k(x, y) = tanh(a(x, y) + b) , a, b 2 0.

For more on kernel functions see [4], [5] .

3 Algorithm

Having provided the background on Gram-Schmidt, PCA, and SVM kernels, we can
describe the basic strategy of knPCA. First, a linearly independent subset of our
data is chosen using the PCA criterion. Next, a kernel version of Gram-Schmidt is
performed using that subset. The implementation of this strategy involves rewriting
Gram-Schmidt in terms of inner products and constraining the PCA criterion so that
each ui corresponds directly to an actual data point. This is nPCA. By replacing
inner products with kernels we get knPCA.

KnPCA is based on a reformulation of the Gram-Schmidt procedure. To describe
this reformulation we observe that Gram-Schmidt is recursive and that we can rewrite

10

it as follows [17]

and in general

This formula can also be used for

L k=l J

the remainder of our (linearly dependent) data
{x,+~, . . . , x,} to arrive at the matrix U in the Section 2.

Another useful addition to Gram-Schmidt is a change of basis matrix for switching
from {ul,. . . , urn} to {XI,. . .) G}. This matrix, T = (tl, . . . , tm), can be computed
columnwise by

1

1
tl = - (x1 ,Ill) el
t z = - (x2,u2) [e2 - (x2 , udt11

where {el,. . . ,em} are the standard basis vectors. Now TU expresses our data in
terms of the basis {XI,. . . , xm}.

This formulation of Gram-Schmidt has two principal advantages over the standard
formulation for use with knPCA. First, it is expressed in terms of inner products to
allow the use of SVM kernels. Second, the change of basis matrix T allows us to
express our data in terms of actual examples in our data set. This will allow us to
interpret the results of any nonlinear remapping of our data.

We next modify our reformulation of Gram-Schmidt by a constrained version of the
PCA criterion. Specifically, we use the PCA criterion to select the linearly indepen-
dent subset used in Gram-Schmidt. Abandoning our previous labeling {XI, . . . , x,}

11

in favor of the more accurate labeling {xil, . . . , % m } , this subset is selected by

where the inner products (x., ul) are computed using the reformulation of the Gram-
Schmidt procedure described above. (For an explanation of the “maximizes” notation
see Section 2.)

This combination of Gram-Schmidt and PCA is nPCA (near PCA). NPCA pro-
vides an interesting approximation of PCA because it selects points in the actual data
set with properties similar to those of PCA. In addition, nPCA is readily general-
ized to knPCA (kernel near PCA) by replacing inner products with kernels. KnPCA
then combines the advantages of our reformulation of Gram-Schmidt (kernel use and
interpretation after remapping) with the approximate statistical properties of nPCA.

4 Benchmarks

We first benchmark knPCA using the linear kernel k(x,y) = (x,y). In this case
knPCA reduces to nPCA. For benchmarks, we use toy examples, an example to test
the numerical stability of nPCA, and an application to face data analysis.

Our first test uses two toy examples in the plane. We compare the singular vectors
found by PCA with those found by nPCA on the ellipse filling data cloud mentioned
in Section 2, and on a parabola with gaussian noise. These examples are shown in
Figure 1.

We next test nPCA for numerical stability on an example found in [26]. In this
example we construct an 80 x 80 matrix A = U W T , where U and V are random
orthogonal matrices, and C is a diagonal matrix with entries 2-l, 2-2, . . . , 2-80. We
use Gram-Schmidt, Modified Gram-Schmidt, the SVD, and nPCA to find the singular
values of A (for Gram-Schmidt and Modified Gram-Schmidt, the diagonal entries in
R of the QR decomposition can be used to approximate the singular values [26]). The
results, shown in Figure 2, show that nPCA compares favorably to SVD and Modified

12

f

Figure 1. Ellipse and Parabola. In this illustration we
compare the singular vectors found by PCA with those found
by nPCA for an ellipse (left) and a parabola (right). In both
examples, a PCA singular vector is shown as a solid line,
while an nPCA singular vector (an actual point in the data
set) is marked with an X.

Gram-Schmidt, although it stops before finding all 80 dimensions. (NPCA stops early
because the singular values found by nPCA must be obtained by projecting onto
actual data points. These values will be less than the true singular values, so nPCA
reaches machine precision before either SVD or Modified Gram-Schmidt . Finally,
since nPCA stops when it has captured the data to machine precision, it stops before
finding all 80 dimensions.)

In [26], this example is used to demonstrate that Modified Gram-Schmidt is stable,
while the classical version is not. We use this example to provide evidence (but not
proof) than nPCA is stable, despite the fact that it is based on classical Gram-
Schmidt. Apparently, our modifications of Gram-Schmidt were sufficient to provide
additional stability, thouh we do not investigate this claim further.

In our final example, we compare nPCA to PCA using a database of faces (formerly
the ORL database of faces) from AT&T Laboratories in Cambridge, UK [2], [20]. This
database consists of four hundred 112 x 92 gray-scale images of forty people in various
poses. We performed both PCA and nPCA on the images to obtain the eigenfaces
and near eigenfaces in Figure 3. Although difficult to interpret, it is worth noting
that the faces are comparable. In the first PCA eigenface, the actual face is light gray
with the hint of a beard while the background progresses from black at the bottom to
dark gray at the top. In comparison, the first nPCA eigenface is light, the second has
a dark background and beard, and the third nPCA eigenface has a background with
a light upper half and a dark lower half. In the second PCA eigenface, glasses can be

13

Figure 2. Numerical Stability of nPCA. Here we compare
the stability of Gram-Schmidt (GS), Modified Gram-Schmidt
(Mod. GS), SVD, and nPCA when finding the singular values
of a matrix A, where A = UCVT, with U and V random
orthognal matrices, and C a diagonal matrix having entries
from 2-l to Po.

14

I- I

I

I

Figure 3. Face Data Analysis. In this figure we compare
PCA to nPCA using the AT&T database of faces. On the
top row are the first four eigenfaces from standard PCA. On
the bottom row are the first four near eigenfaces from nPCA.

15

seen. In comparison, the fourth nPCA eigenface has glasses. Finally, the position of
the eyes can be seen to play a role in both the PCA and nPCA eigenfaces.

As a final test, we added the top three PCA eigenfaces back into the data set and
re-ran nPCA on this augmented data set. NPCA returned, as expected, the PCA
eigenfaces as its top choices.

5 Applications

In this section we investigate the nonlinear aspects of knPCA and include some ap-
plications to larger data sets. To provide some insight into knPCA, we first analyze
two more toy problems, this time using polynomial and RBF kernels. Following these
examples, we give applications to problems in handwritten digit recognition and fluid
flow analysis.

Our first nonlinear toy example is another parabola with Gaussian noise. In this
parabola, s-values are drawn from a uniform distribution on [-1,1] and y-values are
the squares of the s-values plus Gaussian noise with a standard deviation of .2. This
example was also used in 1241 so provides a comparison with that work. Following
[24] we use polynomial kernels with c = 1 and d = 2, 3, and 4. Our results are
shown in Figure 4. In the cases d = 2 and d = 3 the first two singular vectors point
in the directions of the arms of the parabola and the third singular vector points in
the direction of the noise. When d = 4, the first two singular vectors point in the
directions of the parabola arms, the second two point in the directions of the noise
in the arms, and the fifth points in the direction of overall noise.

Another toy example [22], found in an expanded version [21] of [24], consists of
three Gaussian clusters in the region [-1) 11 x [-.5,1]. Each cluster has a standard
deviation of .l. In this example we use knPCA with an RBF kernel (following [21])
of width IS = .22. Our results are shown in Figure 5 . Since we are using a Gaussian
kernel which matches our Gaussian clusters, knPCA performs center selection. This
occurs because the three centers given by the first three singular vectors are most
representative of the data when viewed through the eyes of our Gaussian kernel. This
is illustrated by both the singular vectors, which are seen to be centers, and the
singular values, which are dominated by the first three nearly equal values.

Our first application is to handwritten digit recognition. We use a United States
Postal Service (USPS) database containing 16 x 16 gray-scale images of handwritten
digits from 0 to 9. Of the 9298 images in the database, 7291 are set aside for training

16

Figure 4. Parabola Revisited. Illustrated here are the sin-
gular vectors found by knPCA using the polynomial kernel
with c = 1 and d = 2,, 3 and 4 for a parabola. The first
column (from top to bottom) shows the first three singu-
lar vectors when d = 2, the second column shows the first
three singular vectors when d = 3, and the third and fourth
columns show the first five singular vectors when d = 4. In
each plot, the origin is marked with a circle, the singular
vector is marked with an X, and there is a line connecting
the two. In addition, contours are shown that correspond
to evenly spaced hyperplanes in the remapped data space,
where the hyperplanes are perpendicular to the (remapped)
singular vector. These contours are scaled according to the
singular value energy (percentage of all singular values), with
the actual singular value energy for the given singular vector
labeled and shown as a thicker contour.

17

Figure 5. Clusters. Here we show singular vectors and
values for three Gaussian clusters found using knPCA with
an RBF kernel. The first three plots show the singular vectors
and the last plot shows the singular values. The singular
vectors are displayed as in Figure 4, with the origin marked by
a circle, each singular vector marked with an X, and contours
shown corresponding to hyperplanes in the remapped data
space.

and 2007 are set aside for testing. This database was first used with SVMs in [23]
and later in [24]. It can be downloaded from [27].

Our main interest in this database is the use of knPCA to visualize how the kernels
in SVMs yield good classifiers. With this in mind, we used the kernels and paramters
found in [23] with knPCA. Specifically, we used nPCA, knPCA with an RBF kernel
of width o = 10, and knPCA with the kernel k(x,y) = (&(x,Y))~. Our results are
shown in Figure 6. The plots in Figure 6 suggest that the nonlinear kernels project
different digits onto different axes during remapping. This is a desirable situation for
a classifier and might explain why nonlinear SVMs work better than linear SVMs on
the USPS database. In particular, the polynomial kernel seems to provide the best
such projections, corresponding to the fact that the polynomial SVM best classifies
the handwritten digits. Using SVM1'ght [12] to train SVMs we obtained a 4.5% error
rate using the polynomial classifier, a 5.1% error rate using the RBF classifier, and a
10% error rate using the linear SVM. (We had to divide data by 17 before training
the linear SVM.) We also trained linear SVMs on the polynomial and RBF knPCA
representations. Using the first 256 coordinates (the first 256 rows of the matrix
U) , we obtained a 6.1% error rate with the polynomial representation and a 6.6%
error rate with the RBF representation. Since knPCA is in no way optimized for
classification, it is not surprising that our error rates were higher. It is worth noting,
however, that our error rates were similar to the corresponding nonlinear SVMs, and
of course lower than the linear SVMs.

18

X r- 0

L

0
0 0

...

Figure 6. USPS Handwritten Digits. In this figure we com-
pare representations of handwritten digits using nPCA (left
column), knPCA with an RBF kernel (center column), and
knPCA with a polynomial kernel (right column). In each plot
we display three different digits using representations corre-
sponding to these digits. In the upper left plot, for example,
we display the digits 0, 1, and 7 using the lst, 2nd, and 5th
coordinates (lst, 2nd, and 5th rows of the matrix U) of the
nPCA expansion. We use these coordinates because the cor-
responding nPCA eigendigits are 1, 0, and 7. In the top row,
points marked with an X correspond to the digit zero, points
marked with an 0 correspond to the digit one, and points
marked with a correspond to the digit seven. The second
row uses the same scheme with the digits 3,4 , and 6, and the
last row uses the digits 2, 5 , and 9.

15

Figure 7. Taylor-Couette Flow. Shown here are the first
four nPCA eigenflows from left to right. Each plot shows
streamlines of the flow based on the radial and axial veloci-
ties.

Our second application is to Taylor-Couette fluid flow analysis. Taylor-Couette
flow occurs in fluid trapped between concentric cylinders. When the cylinders are
rotated independently, the resulting flow often contains toroidal vortices known as
Taylor-Couette cells. Our Taylor-Couette data was generated by numerical simulation
[l], [25] and consists of 799 cross-sectional snapshots of the flow as time progresses.
Each snapshot contains three velocities and one pressure at points on a 49 x 21
dimensional grid. We reshaped each snapshot into a 4116 dimensional vector and put
the data into a 4116 x 799 matrix. We performed nPCA on this matrix to obtain the
first four eigenflows shown in Figure 7.

Our first remark concerning these eigenilows is that the corresponding singular
values account for 96% of the energy of the flow. In other words, the first four
singular values added together make up 96% of the sum of all the singular values.
This means that the eigenflows under consideration characterize the flow to a high
degree of accuracy.

Next we remark that when we project the entire flow onto these eigenflows, we
get periodic graphs, as shown in Figure 8. Based on our previous remark, we may
conclude with high confidence that the flow under consideration is periodic.

Finally, we remark on the eigenflows themselves. These particular snapshots of
the flow represent what the flow is doing most of the time. In this case, the flow
consists of three Taylor-Couette cells. The upper cell is stable while the lower cells
periodically grow and shrink, at some point even spawning and re-absorbing smaller

20

I
3 0 0 200 300 400 600 800 700 800 -1 00;

I
100 200 300 400 600 e00 700 800 -60 1

Figure 8. Taylor-Couette Projections. These plots show
the projections of the entire Taylor-Couette flow onto the
first four eigenflows. The top plot is for the projection onto
the first eigenflow, the next plot is for the projection onto the
second eigenflow, et cetera. In each plot the x-axis represents
time and the y-axis the value of the projection.

21

sub-cells. All these events are captured by the eigenfiows in Figure 7. In fact, by
comparing Figures 7 and 8, it is almost possible to visualize the entire flow, including
the appearance and disappearance of the sub-cells in the fourth eigenflow.

6 Discussion

Having made a case for the utility of knPCA we now disucss its relation to PCA,
its computational complexity, and how it compares with other methods of nonlinear
PCA.

Relation to PCA

KnPCA is based on an approximation of PCA. Consequently, knPCA has approxi-
mately the same properties as PCA. Some of these properties are [15]:

0 maximization of the statistical variance,

0 minimization of the mean square truncation error,

0 maximization of the mean squared projection,

0 minimization of entropy.

In the case of nPCA these properties are directly approximated. In the case of knPCA
these properties apply (approximately) after the nonlinear remapping.

In practice, PCA is often used for low dimensional representation and for visu-
alization of data. KnPCA inherits these attributes with the additional advantage of
the interpretability of the knPCA singular vectors. This advantage was illustrated in
Section 5 with the applications of knPCA to the USPS handwritten digit data and
to the Taylor-Couette simulation data. In the case of the USPS database, we were
able to produce insightful plots because we knew both which coordinates were most
important and which digits corresponded to these coordinates. With standard PCA
the latter information would be missing. In the case of the Taylor-Couette data we
were able to produce actual instances in the flow which best represented the entire
flow. This provided a very useful visualization of the flow, especially in the case of
the sub-cells in the fourth nPCA eigenflow.

22

Computational Complexity

KnPCA is straightforward to implement, requiring only a page of MATLAB code, and
fast enough to use on reasonably large data sets. We used a MATLAB version of
knPCA for both the AT&T database of faces and the Taylor-Couette flow. Both
computations took an hour on a SUN UltraSparc I1 computer. For the USPS database
of handwritten digits we used a C++ code running on a Pentium I11 computer. The
USPS runs took 2 days each (computations were stopped after 256 eigendigits were
found). The disparity in these calculation times is not due to the computer speeds,
but rather to the number of data points in the various applications. The AT&T
database contained 400 points, the Taylor-Couette flow 799 points, and the USPS
database 7291 points.

To explain these disparities further, we point to the fact that knPCA spends most
of its time computing variances. This is an O(qrnn2 + rn2n2) computation, where Q is
the ambient dimension of the problem (each data point is in Rq), m is the number of
singular vectors computed, and n is the number of data points. In our applications, we
reduced this computation to O(rn2n2) by using a kernel cache, but the n2 dependence
still caused disporportionately slower times when using the much larger USPS data
set.

It is also worth noting that the knPCA algorithm has room for improvement.
First of all, the algorithm contains many redunandant calculations. If even the most
obvious of these redundancies (recomputing the projections onto the known singular
vectors during each iteration) were eliminated, the algorithm would be O(mn2). Sec-
ond, the algorithm is parallelizable. Third, the kernel cache mentioned previously is
unnecessary. This may or may not be an improvement depending on the computer
being used, but allows a trade off between processor speed and memory use.

Comparisons

Hebbian network algorithms can be used for computing principal components [HI,
[7]. These algorithms can then be modified using nonlinear activaction functions to
compute nonlinear principal components. These components, however, are difficult
to interpret both in theory and in practice. KnPCA, on the other hand, produces
nonlinear principal components which have a definite geometric explanation and are
also interpretable in practice.

Multi-Layer Perceptrons can be used to extract nonlinear principal compo-

23

nents by training the identity function on the data using a five layer bottleneck
architecture with nonlinear activation functions [16], [7]. The bottleneck layer yields
the nonlinear principal components. These components are also difficult to interpret.
In addition, the number of desired components must be decided upon before using
the algorithm, and the algorithm itself requires nonlinear optimization. (With non-
linear optimization there is the possibility of becoming trapped in a local minima.)
In comparison, knPCA can find any number of nonlinear principal components and
uses a deterministic, essentially linear (after nonlinear remapping) algorithm.

Principal Curves are smooth curves which pass through the “middle” of a data
set [9]. They are computed iteratively (requiring nonlinear optimization) by averaging
nearby points in the data set. Principal Curves correspond to principal components
when constrained to be linear so that they are a generalization of PCA with a direct
geometric interpretation. Principal Curves have been generalized to surfaces but
there exist no higher dimensional analogues. In comparison, knPCA is a more direct
generalization of PCA (requiring only linear optimization) and can be used to produce
higher dimensional representations.

Kernel PCA is very similar to knPCA. Kernel PCA is computed by perform-
ing an eigenvalue decomposition of a kernel version of the covariance matrix. When
using the linear kernel k(x,y) = (x,y), kernel PCA reduces to PCA. Thus kernel
PCA is a direct generalization of PCA and requires only linear optimization. In fact,
the only difference between kernel PCA and knPCA is that knPCA uses nPCA to
approximate PCA before using an SVM kernel. This gives knPCA two advantages
over kernel PCA. First, the nonlinear principal components found by kernel PCA do
not, in general, correspond to points in the original data set. In fact, a kernel PCA
component may not correspond to any point in the original data space. In compari-
son, each nonlinear principal component found by knPCA corresponds directly to a
point in the original data set. This is an advantage when interpreting the principal
components that knPCA finds. Second, the computation of kernel PCA requires an
eigenvalue decomposition of an n x n matrix, where n is the number of data points
under consideration. Although linear, this is a difficult calculation for large n. In
comparison, knPCA is matrix free. KnPCA uses the same matrix, but the explicit
formulation of the matrix is not required. Even if the matrix is formed, an eigenvalue
decomposition is not necessary.

7 Extensions

In this paper we presented knPCA as a combination of Gram-Schmidt and PCA. We
modified Gram-Schmidt and used the PCA criterion to select the linearly independent
subset required by Gram-Schmidt. Of course, there is no reason to constrain ourselves
to the PCA criterion. Any criterion that can be written in terms of inner products will
work. In [17] we used points with maximal norm to arrive at our original kernel version
of Gram-Schmidt. This algorithm, kernel Gram-Schmidt, is faster than knPCA (since
most of the time spent by knPCA is spent computing variances), but produces a more
generic representation of the data. Other useful criterion might provide clustering
representations or representations using independent components.

Another way to extend the usefulness of knPCA is by combining it with other
algorithms. This might be more useful in practice with kernel Gram-Scmidt than with
knPCA but the idea is the same: perform knPCA, apply any algorithm (probably
linear), then translate back to the original space using the change of basis matrix T
(see Section 3) to rewrite the results in terms of the original data points. We executed
the first two steps of this sequence on the handwritten digit data in Section 5 , where
we used a linear SVM in the second step. It might be interesting to apply different
classification algorithms here as well as algorithms for regresssion.

8 Conclusion

We have introduced both an interesting appoximation to PCA and a nonlinear ex-
tension of that approximation. NPCA performs PCA constrained to the original
data set. This makes the singular vectors found by nPCA more interpretable than
the analagous singular vectors found by standard PCA. Thus nPCA provides in-
formation that is difficult to obtain by PCA alone. This was illustrated using the
Taylor-Couette simulation data in Section 5.

KnPCA provides a nonlinear generalization of nPCA and so can be considered a
nonlinear generalization of PCA. KnPCA provides the interpretability of nPCA in a
nonlinear setting. In Section 5 this was shown to be useful for interpreting the actions
of nonlinear SVMs on the USPS database of handwritten digits.

The algorithm which performs knPCA is also capable of data analysis on very
large data sets. It is parallelizable and can be implemented to exploit computers with
large memory capacities. (It can also be used with minimal memory requirements.)

25

In addition, the knPCA algorithm is modular and can be easily changed to perform
other tasks. It can be extended for use with other algorithms such as regression and
classification. All told, knPCA appears to be a very useful and adaptable tool for
data analysis.

1 1

References

[l] R. Adair. Simulations of Taylor-Couette Flow. PhD thesis, Colorado State
University, 1997.

[2] AT&T database of faces. http://www.uk.research.att.com/
facedatabase.htm1, 2001. AT&T Laboratories, Cambridge, UK.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT,
pages 144-152, Pittsburgh, PA, 1992. ACM Press.

[4] C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Knowledge Discovery and Data Mining, 2(2), 1998.

[5] C. J. C. Burges. Geometry and invariance in kernel based methods. In
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, pages 89-116, Cambridge, MA, 1999. MIT
Press.

[6] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273 -
297, 1995.

[7] K.I. Diamantaras and S.Y. Kung. Principal Component Neural Networks. John
Wiley & Sons, 1996.

[8] J. H. Friedman. Exploratory projection pursuit. Journal of the American Sta-
tistical Association, 82:249-266, 1987.

[9] T. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical

[lo] H. Hotelling. Analysis of a complex of statistical variables into principal compo-

Association, 84:502-5 16, 1989.

nents. Journal of Educational Psychology, 24:417-441 and 498-520, 1933.

[ll] Aapo Hyvkinen. Survey on Independent Component Analysis. Neural Comput-
ing Surveys, 2:94-128, 1999.

26

http://www.uk.research.att.com

[12] T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.

[13] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[14] C. Jutten and J. Herault. Blind separation of sources, part I: An adaptive
algorithm based on neuromimetic architecture, 1991.

[15] Michael Kirby. Geometric Data Analysis. John Wiley & Sons, 2001.

[16] M. A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, 37:233-243, 1991.

[17] S. Martin, M. Kirby, and R. Miranda. Kernel/feature selection for support
vector machines applied to materials design. In IFAC Symposium on Artificial
Intelligence in Real Time Control AIRTC-2000, pages 29-34. Elsevier Science,
Ltd., 2000.

[18] E. Oja. A simplified neuron model as a principal component analyzer. Journal
of Mathematical Biology, 15(3):267-273, 1982.

[19] K. Pearson. On lines and planes of closest fit to systems of points in space. Phil.
Mag., 2:559-572, 1901.

[20] F. Samaria and A. Harter. Parameterisation of a stochastic model for human
face identification. In 2nd IEEE Workshop on Applications of Computer Vision,
1994.

[21] B. Scholkopf. Support Vector Learning. Oldenbourg Verlag, Munich, 1997. Dok-
torarbeit, T U Berlin.

[22] B. Scholkopf. kpcah0y.m MATLAB software. ht tp: / /www .kernel-machines .org,
1998.

[23] B. Scholkopf, C. Burges, and V. Vapnik. Extracting support data for a given task.
In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International
Conference on Knowledge Discovery & Data Mining, Menlo Park, 1995. AAAI
Press.

[24] B. Scholkopf, A. Smola, and K.-R. Muller. Kernel principal component analysis.
In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods - SV Learning, pages 327-352. MIT Press, Cambridge, MA, 1999.

27

[25] J. Thomas. Taylor-Couette simulation data. Colorado State University, 1998.
Private Communication.

[26] L. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[27] United States Postal Service database of handwritten digits. http://www.kernel-
machines.org, 1991.

[28] V. Vapnik. Statistical Learning Theory. Wiley Interscience, New York, 1998.

28

http://www.kernel
http://machines.org

Distribution

1 MS 1110 D. Womble, 9214
1 MS 0310 M. Rintoul, 9212
1 MS 0318 G. S. Davidson, 9212
1 MS 1110 W. E. Hart, 9211
5 MS 0318 S. Martin, 9212

1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616
1 MS 0612 Review and Approval Desk for DOE/OSTI, 9612

29

	Abstract
	Acknowledgement
	Contents
	1 Introduction
	2 Background
	Gram-Schmidt
	PCA
	SVM Kernels

	3 Algorithm
	4 Benchmarks
	5 Applications
	6 Discussion
	Relation to PCA
	Computational Complexity
	Comparisons

	7 Extensions
	8 Conclusion
	References
	Distribution

