SAND REPORT

SAND2001-3318
Unlimited Release
Printed October 2001

ACME

Algorithms for Contact in a
Multiphysics Environment
APl Version 1.0

Kevin H. Brown, Randall M. Summers, Micheal W. Glass, Arne S. Gullerud,
Martin W. Heinstein, and Reese E. Jones

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

(Ah) sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O.Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/ordering.htm




SAND2001-3318
Unlimited Release
Printed October 2001

ACME
Algorithmsfor Contact in a M ultiphysics Environment
APl Verson 1.0

Kevin H. Brown and Randall M. Summers
Computational Physics R&D Department

Micheal W. Glass
Thermal/Fluid Computational Engineering Sciences Department

Arne S. Gullerud and Martin W. Heinstein
Computational Solid Mechanics & Structural Mechanics Department

Reese E. Jones
Science-Based Materials Modeling Department

Sandia National Laboratories
P O. Box 5800
Albuquerque, NM 87185-0819

Abstract

An effort is underway at Sandia National Laboratories to develop a library of algorithms
to search for potentia interactions between surfaces represented by anaytic and dis-
cretized topological entities. This effort is aso developing algorithms to determine forces
due to these interactions for transient dynamics applications. This document describes the
Application Programming Interface (API) for the ACME (Algorithms for Contact in a
Multiphysics Environment) library.
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Introduction

1. Introduction

Contact algorithms play an important role in many research and production codes that
simulate various interfacial aspects of continuum solid and fluid mechanics and energy
transport. Because of the difficult nature of contact in general and in order to concentrate
and leverage devel opment efforts, an effort is underway at Sandia National Laboratoriesto
develop alibrary of algorithmsto search for potential interactions between surfaces repre-
sented by finite element meshes and other topological entities. The requirements for such
a library, along with other pertinent information, are documented at the following World
Wide Web site:

http://ww. jal.sandi a. gov/ SEACAS/ cont act /i ndex. ht m

This document describes the Application Programming Interface (API) for the ACME
search and transient dynamics enforcement library. (In an attempt to avoid confusion, cap-
italized terms are used in this document to refer to specific terminology for which detailed
definitions are provided. A glossary of thesetermsisgivenin Appendix A.) Thisintroduc-
tory section gives an overview of the concepts and design of the ACME interface and out-
lines the building blocks that make up the data ACME needs from the host code and the
data it returns to the host code. Section 2 describes various utility functions used to extract
information about the package and its operation. Section 3 describes the functions needed
to access and utilize the search capabilities of ACME. Section 4 describes functions that
can be used to remove an initial overlap for a mesh prior to beginning a transient. Section
5 describes the functions provided by ACME to enforce the results of the search to explicit
transient dynamics. Finally, Section 6 provides an example of how to use the API within a
C++ application.

The basic philosophy of the ACME interface is to provide a separate function to support
each activity. Efforts have been made to have the C++, C, and Fortran interfaces appear as
similar as possible. It is important to note that al array indexes will use the Fortran con-
vention (i.e., indexes start with 1) and all floating-point data are double precision.

Thisrelease of the ACME library contains only a subset of the algorithms and functional -
ity required to meet al the needs of the application codes. Currently, ACME supports
three-dimensional (3D) topologies in serial and in parallel processing modes. No multi-
state support is provided in this release (i.e., ACME has no ability to revert to previous
states). ACME only supports conventional nodes (shell nodes and smooth particle hydro-
dynamics nodes are not yet supported) and a limited set of face types (a linear 4-node
guadrilateral, a quadratic 8-node quadrilateral, alinear 3-node triangle, and a quadratic 6-
node triangle) in this release. Additional algorithms and functionality will be added in
subsequent releases.

1.1 Topology

The topology for ACME is determined by the host code. The first step in using the library
is for the host code to provide to ACME a topological description of the surfaces to be
checked for interactions. Currently, the topology consists of collections of nodes, faces,
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I ntroduction

and analytic surfaces. Nodes and faces are supplied to ACME in groups called blocks. A
Node Block may contain only one type of node. A Face Block may contain only onetype
of face and al faces will have the same Entity Key (Entity Keys are used to extract user-
specified parameters from the Search_Data array for pairs of interacting topological enti-
ties, as explained in Section 1.1.4). Providing the full functionality required of ACME will
necessitate adding Edge Blocks and Element Blocks. When added, these items will be
analogous to the Face Blocks (see the description in Section 1.1.2). Also, the full func-
tionality required of ACME will necessitate adding multiple states; for this initial release
of ACME, only asingle state (with one or two configurations) will be supported.

1.1.1 Node Blocks

A Node Block is a collection of nodes of the same type. Currently, the only type of node
supported in ACME is a conventional node that has a position attribute and an optional
projection direction attribute (for face/face search; see Section 1.3.3). Eventually three
types of nodes will be supported:

NODE: A traditional node with position and an optional projection direction attribute.

NODE_WITH_SL OPE: A shell node that has afirst derivative as an attribute and an optional pro-
jection direction attribute.

NODE_WITH_RADIUS: A node that has aradius as an attribute and an optional projection direc-
tion attribute. Thisradiusis associated with the size of a spherical domain, as with smooth
particle hydrodynamics (SPH) particles.

In thisrelease only NODE Node_Blocks are supported. All of the nodes that are connect-
ed to faces must be in the first Node Block. Other Node Blocks can be used for nodes not
connected to faces in the ContactSearch topology. These additional Node Blocks can be
used for SPH particles (neglecting the radius of the particle) or for finding the Gauss point
locations on the other side of an interface. The implication for requiring all nodes connect-
ed to facesbein Node Block 1 isthat the nodal communication lists only refer to nodesin
Node Block 1.

Each Node Block is assigned an integer identifier (ID). This ID corresponds to the order
the blocks were specified, using the Fortran numbering convention (i.e., thefirst block has
an ID of 1, the second block hasan ID of 2, etc.). ThisID isused in specifying configura-
tions for Node Blocks and for returning NodeFace Interactions and
NodeSurface Interactions, discussed later in Section 1.3.

1.1.2 Face Blocks

A Face Block is a collection of faces of the same type that have the same Entity_Key
(Entity_Keys are used to extract user-specified parameters from the Search_Data array, as
explained in Section 1.1.4). Currently, a linear 4-node quadrilateral face called
QUADFACELA4, a quadratic 8-node quadrilateral face called QUADFACEQS, a linear 3-
node triangular face called TRIFACEL3, and a quadratic 6-node triangular face called
TRIFACEQE6 are supported. Other face types will be added as needed. These are provided
in an enumeration in the ContactSearch header file:
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enum Cont act Face_Type {
QUADFACEL4 = 1,
QUADFACEGS,
TRI FACEL3,
TRI FACEQS }

Each Face Block is assigned an ID. This ID corresponds to the order the blocks were
specified, in the same manner IDs were assigned to Node Blocks. This ID isused in re-
turning NodeFace_Interactions.

1.1.3 Analytic_Surfaces

In many instances, it is advantageous to search for interactions against rigid analytic sur-
faces (referred to as Analytic_Surfaces throughout this document) rather than mesh such a
surface. Examples include atire rolling on aflat road or dropping a shipping container on
a post. Currently, ACME is designed to handle only geometric analytic surfaces (e.g.,
planes, cylinders, etc), and for now, only planar, spherical and cylindrica
Analytic_Surfaces are supported. Other geometric Analytic_Surfaces will be added in the
future as needed. Eventually, Analytic_Surfaces defined by Non-Uniform Rational B-
Splines (NURBS) will be supported. The ACME API will need to be extended to support
Analytic_Surfaces defined by NURBS.

Analytic_Surfaces, if any, are provided by the host code to ACME after the Node Blocks
and Face_Blocks have been specified. Analytic_Surfaces are given an ID that corresponds
to the total number of Face Blocks plus the order the Analytic_Surface was added (e.g., if
three Face Blocks exist in the topology, the ID of thefirst Analytic_Surface is 4, the ID of
the second Anaytic Surface is 5, etc). This ID is wused in returning
NodeSurface |Interactions.

1.1.4 Search_Data

The Search_Data array contains data that describe how the various topological entities are
allowed to interact. The host code may specify, for example, that only nodes on surface A
interact with faces on surface B, or that only nodes on surface B interact with faces on sur-
face A, or both. The Search_Data array is the only place where such user-specified data
are kept.

Currently the Search_Data array holds only three parameters for each Entity Key pair.
The first parameter is a status flag indicating what type of interactions should be defined
for this pair. Seven values are currently permitted, provided in an enumeration in the Con-
tactSearch header file:

enum Sear ch_I nteraction_Type{
NO_I NTERACTI ON = O,
SLI DI NG_I NTERACTI ON,
TI ED_| NTERACTI ON,
FACE_FACE_| NTERACTI ON,
FACE_COVERACE_| NTERACTI CON,
NFI _AND_FFI ,
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NFI _AND FCl};

NO_INTERACTION (avalue of 0) requests that no interactions be defined for this pair of
entities. SLIDING_INTERACTION (a vaue of 1) requests that ACME search for new
node/face or node/surface interactions between entities each time a search is executed.
TIED_INTERACTION (avalue of 2) requests that a node/face or node/surface interaction
between entities persist over multiple time steps, thus allowing it to be used for mesh ty-
ing. FACE_FACE_INTERACTION (a value of 3) requests that ACME search for new
face/face interactions between entities each time a search is executed.
FACE_COVERAGE_INTERACTION (avaue of 4) requests that ACME search for new
face/coverage interactions between entities each time a search is executed. In addition, it
requires that a face/face search also be performed. NFI_AND_FFI (avalue of 5) requests
that ACME search for new node/face or node/surface interactions and face/face interac-
tions between entities each time a search is executed. NFI_AND_FCI (a value of 6) re-
guests that ACME search for new node/face or node/surface interactions and face/
coverage interactions between entities each time a search is executed. In addition, it re-
quires that a face/face search aso be performed

The second parameter in the Search_Data array isthe Search_ Normal_Tolerance, whichis
used to determine whether the entity pair should interact, based on the separation between
the entities (see Figure 1). Note that the Search_Normal_Tolerance is an absolute distance,
so it is dependent on the units of the problem. The third parameter is the
Search_Tangential_Tolerance, also used to determine whether the entity pair should inter-
act, but taking into account distances tangential to aface, rather than normal to it.

Every face and node is assigned an Entity Key to allow retrieval of data from the
Search_Data array. For faces, the Entity Key corresponds to the Face Block ID. Current-
ly, anode inherits its Entity_Key from the first face that containsit. Thisis alimitation of
the current implementation, since a node can be connected to two or more facesthat arein
different Face Blocks.

The Search_Data array is athree-dimensional Fortran array with the following size
di rensi on search_data(3, numentity_keys, numentity_keys)

The first index represents one of the three parameters described previously for each entity
pair, currently either a node-face or a node-Analytic_Surface pair. The second index indi-
cates the Entity_Key for the node in an interaction, and the third index indicates the
Entity Key for the face or Analytic_Surface in an interaction.

1.2 Search Algorithms

ACME provides three different algorithms for determining interactions. The data types re-
turned in the interactions are the same for each type of search. The host code may use dif-
ferent types of search agorithms during an analysis (e.g., a static 1-configuration search to
determine overlaps in the mesh before starting the analysis and then a dynamic search
once time stepping begins in atransient dynamics code).
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As an aid to understanding the differences between the search algorithms, consider the
idealized 2D face of Figure 1. In thisidealized example, the subtleties of what happens at
the edge of aface are ignored. Any entity that is outside the face, where “outside” is de-
fined by the outward unit normal n, is not penetrating and has a positive Gap. Any entity
that ison the face (i.e., azero Gap) or inside the face (i.e., anegative Gap) is considered to
be penetrating. The host code controls the Search_Normal_Tolerance as part of the
Search_Data array (see Section 1.1.4). The Motion_Tolerance accounts for movement of
the node if two configurations are used and is computed by ACME.

I Face

—>

Not Penetrating

Search_Normal_Tol erance (positive Gap) within

Search_Normal_Tolerance

Search_Normal_Tolerance

Penetrating

m (zero or negative Gap) within

Motion_Tolerance Search_Normal_Tolerance

I:I Penetrating
within Motion_Tolerance

Figure 1 Idealized 2D face with Search_Normal _Tolerance

A separate tolerance, Search_Tangential_Tolerance, is used to specify the behavior of the
search agorithms along the edge of aface. As shown in Figure 2, a NodeFace _Interaction
will be defined for any node that is outside the face tangentially but within the
Search_Tangential_Tolerance. The host code controls the Search_Tangential_Tolerance as
part of the Search_Data array (see Section 1.1.4).

——— [gce

Face Extension for
Search_Tangential_Tolerance
Search _Tangential_Tolerance

O Node interacting with Face
o !+—

@ Nodeinteracting with Face
within Search_Tangential_Tolerance

O  Nodenot interacting with Face

Figure 2 Idealized 2D face with Search_Tangential _Tolerance
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1.2.1 Static 1-Configuration Search Algorithm

The static 1-configuration search algorithm uses only one configuration for the topology.
The interactions are determined using only a closest point projection agorithm. Interac-
tions are defined only for entities that are within the Search_ Normal_Tolerance (either
negative or positive Gap) and the Search Tangential Tolerance since the
Motion_Tolerance isimplied to be zero.

1.2.2 Static 2-Configuration Search Algorithm

The static 2-configuration search algorithm requires two configurations (Current and Pre-
dicted) for the topology. This search algorithm uses closest point projection on the predict-
ed configuration but it has the added information of the movement of the topology. The
motion tolerance implied by the two configurations is used along with the Search_Data to
determine what interactions are physically realistic. Specifically, any node that has a posi-
tive Gap within the Search_Normal_Tolerance or any node that has a negative Gap within
the Search_Normal_Tolerance plus the motion tolerance will result in an interaction being
defined, provided that the node's projection falls within the face boundary as extended |at-
erally by the Search_Tangential_Tolerance.

1.2.3 Dynamic 2-Configuration Search Algorithm

The dynamic 2-configuration search algorithm also requires two configurations (Current
and Predicted) for the topology. A dynamic intersection algorithm based on linear interpo-
lation of the motion is used to initiate interaction if the current and predicted Gaps are on
opposing sides of the face (e.g., the current configuration has a positive Gap and the pre-
dicted configuration has a negative Gap). A closest point projection algorithm is used for
subsequent interaction definition and to initiate interaction if the current and predicted
Gaps are on the same side of the face. In these cases, interactions are defined by the same
criteriaasin the static 2-configuration search algorithm (see Figure 1).

1.2.4 Dynamic Augmented 2-Configuration Search Algorithm

The dynamic augmented 2-configuration search algorithm is a more accurate implementa-
tion of the dynamic 2-configuration search algorithm. This search can only be used in con-
junction with the ContactTDEnforcement enforcement algorithm. It uses information
from the enforcement on the previous step to compute an augmented configuration that
yields more accurate interactions.

1.3 Interactions

The output of ACME following a search is a collection of interactions based on the topol -
ogy, configuration(s), Search_Data, and search algorithm. Currently, four types of interac-
tions are supported: NodeFace |nteractions, NodeSurface Interactions,
FaceFace Interactions and FaceCoverage Interactions. ACME does not determine the
best interaction between these types (i.e, ACME does not compete a
NodeFace |nteraction against a NodeSurface |Interaction when the same node is involved;
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both are returned to the host code). Other interaction types (e.g., EdgeFace Interaction)
will be added in the future. The FaceFace Interactions and FaceCoverage Interactions are
only available in the static 1-configuration search.

1.3.1 NodeFace Interactions

A NodeFace Interaction is returned as a set of data to the host code: a node (indicated by
the Node Block ID and the index in that Node Block), a face (indicated by the
Face Block ID and the index in that Face Block) and data describing the interaction.
Consider the examples shown in Figure 3. The first diagram illustrates an interaction de-
fined using the dynamic intersection algorithm. Here, a node, lightly shaded in its current
configuration and black in its predicted configuration, intersectsa TRIFACEL3 at X in an
intermediate configuration denoted with white nodes. The motion of the node is represent-
ed by the vector vs. Also shown are the data that are returned for this interaction. Specifi-
cally, the pushback direction is given by the vector from the penetrating node’s predicted
position to the position of the contact point convected into the predicted configuration. In
the second diagram, the contact point X, determined by closest point projection for asin-
gle configuration, is shown in local coordinate space for a QUADFACELA4. Table 1 gives
the Fortran layout of how the data are returned. It should be noted that only two local coor-
dinates are returned. For triangular faces, the third local coordinate is simply unity minus
the sum of the other two local coordinates.

n
4 A 3
¢ (1,.1)
X -
(E1.n2)
1. o 2

(_1!_1)

Local Coordinates; &, = -2—1 Local Coordinates: &1 = &1
(of contact point X) AT (of contact point X)
& = ‘A_‘i =M
— A3
TR
Gap: g (not returned) Gap: g (not shown)
Unit Pushback Vector: p Unit Pushback Vector: p (not shown)
Unit Surface Normal: # Unit Surface Normal: A (not shown)
Algorithm: Dynamic I ntersection Algorithm: Closest Point Projection

(1-Configuration)

Figure 3 3D NodeFace Interactions
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Table 1 NodeFace Interaction Datafor 3D

Location Quantit
(Fortran Indexing) y
1 Local Coordinate 1 (§, for Q4 or Q8, &, for T3 or T6)
2 Local Coordinate 2 (n4 for Q4 or Q8, &, for T3 or T6)
3 Gap
4-6 Unit Pushback Vector (x, y & z components)
7-9 Unit Surface Normal (X, y & z components)
10 Algorithm Used to Define Interaction
{1=Closest Point Projection (1 Configuration),
2=Closest Point Projection (2 Configuration),
3=Dynamic Intersection (2 Configuration)}

1.3.2 NodeSurface Interactions

A NodeSurface Interaction is returned as a set of data a node (indicated by the
Node Block ID and the index in that Node Block), an Analytic_Surface (indicated by its
ID) and the data describing the interaction. Figure 4 shows the interaction data that are re-
turned to the host code for each interaction. Table 2 gives the layout for the data for a
NodeSurface_|Interaction.

For this release of ACME, NodeSurface_Interactions are determined using a closest point
projection agorithm. Therefore, only one configuration is required for the
Analytic_Surfaces. The configuration used for the nodes is based on the current configura-
tion for a 1-configuration static search and the predicted configuration for the 2-configura-
tion static search or the dynamic searches. This limitation will be removed in a future
release.

Table 2 NodeSurface Interaction Datafor 3D

Location - Quantity
(Fortran Indexing)
1-3 Interaction Point (X, y & z coordinates)
4 Gap
5-7 Unit Surface Normal (X, y & z components)
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Interaction Point;

Gap:
Unit Surface Normal:

> Q X

Figure 4 3D NodeSurface Interaction Data

1.3.3 FaceFace Interactions

A FaceFace Interaction isreturned as a set of datato the host code: a slave face (indicated
by the Face Block ID and the index in that Face Block), a master face (indicated by the
Face Block ID and the index in that Face Block), and data describing the interaction.
Thisinteraction isonly valid for faces of type QUADFACEL4 and TRIFACEL 3. Consider
the example shown in Figure 5. Here, two faces are in proximity and the
FaceFace Interaction needs to be determined. The master face is transformed into a mas-
ter volume by projecting the nodes in the +/- projection direction by the
Search_Normal_Tolerance. By default, the projection direction for each node on the mas-
ter face is the normal at that node (with or without smoothing). Optionally, the projection
direction can be user-specified as a node attribute. This permits “mortarising” to be per-
formed under user control (see Figure 6). Once the master face has been converted to a
master volume, the intersection between the slave face and master volume is computed.
This intersection is described with a closed polygon having N sides, E;,, and nodes, P,
The points on the slave face that define the polygon are stored in the local coordinates of
the dlave face. These points are also computed as local coordinates of the master volume
and projected onto the master face by setting &3 = 0 and then stored in the local coordi-
nates of the master face. The resulting convex polygon can be triangularized by the host by
calculating the centroid of the polygon, Py+1, and connecting it to each node. Two addi-
tional arrays (of length N) are defined that indicate with which edge, if any, of the master
or slave face an edge of the polygon is coincident. Table 3 gives the Fortran layout of how
the data are returned. It should be noted that only two local coordinates are returned. For
triangular faces, the third local coordinate is simply unity minus the sum of the other two
local coordinates.
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Polygon centroid =Pg

Figure 5 3D FaceFace Interactions
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(a) with node normal (b) with user defined
projection direction projection direction

Figure 6 2D example of using PROJECTION_DIRECTION
attribute to obtain user defined mortarising.

Table 3 FaceFace Interaction Datafor 3D

Location _ Quantity
(Fortran Indexing)
1 number of vertexes (and edges), N
1+n slave edge flag for edge n=1,...,N
(N+1)+n master edge flag for edge n=1,...,N

(2*N+1)+4*(n-1)+1 Local Coordinate 1 on slave face for polygon node X,,
n=1,...,N

(2*N+1)+4* (n-1)+2 Local Coordinate 2 on slave face for polygon node X,,
n=1,...,N

(2*N+1)+4*(n-1)+3 Local Coordinate 1 on master face for polygon node X,
n=1,...,N

(2*N+1)+4*(n-1)+4 Local Coordinate 2 on master face for polygon node X,
n=1,...,N

23



I ntroduction

1.3.4 FaceCoverage Interactions

A FaceCoverage Interaction isreturned as a set of datato the host code: a face (indicated
by the Face Block ID and the index in that Face Block) and data describing the interac-
tion. Each FaceCoverage Interaction is a closed polygon that describes an exposed (i.e.,
uncovered) portion of aface. The FaceCoverage Interaction is computed by post-process-
ing the FaceFace Interactions for each face. A directed edge graph is constructed using
the edges of the polygon from all the FaceFace | nteractions associated with each face and
any portions of each face edge that are not part of a FaceFace Interaction polygon. Closed
polygons are then extracted from the directed edge graph to produce one or more
FaceCoverage Interactions for each face, as shown in Figure 7 . Table 4 gives the Fortran
layout of how the data are returned. For triangular faces, the third local coordinate is sim-
ply unity minus the sum of the other two local coordinates.

FCI
FCl, 2
FCl,
(a) One FaceCoverage Interaction (b) Two FaceCoverage Interactions
produced from post-processing produced from post-processing
the FaceFace Interactions. the FaceFace Interactions.

FaceFace Interaction Polygon

- [FaceCoverage |nteraction Polygon Edge

Figure 7 Post-processing of FaceFace Interactionsto produce
FaceCoverage Interactions.
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Table 4 FaceCoverage Interaction Datafor 3D

Location .
(Fortran Indexing) Quantity
1 Number of vertexes (and edges), N
2*(n-1)+2 Local Coordinate 1 for polygon node P,,, n=1,...,N
2*(n-1)+3 Local Coordinate 2for polygon node P,,, n=1,...,N

1.4 Search Options
1.4.1 MultipleInteractionsat a Node

By default, ACME defines only one interaction at a node. If potentia interactions with
more than one face are detected, ACME will return only one interaction (the best one, ac-
cording to the algorithm used for competition between two interactions) to the host code.
However, to get better behavior at a true corner of a body, multiple interactions with the
faces surrounding the corner should be considered. Therefore, if desired, ACME can de-
fine multiple interactions at a node. When this feature is activated, the host code must
specify an angle (in degrees) called SHARP_NON_SHARP_ANGLE. If the angle be-
tween connected faces (computed as the angle between the normals to the faces, as shown
in Figure 8) is greater than SHARP_NON_SHARP_ANGLE, then an interaction will be
defined for each face, instead of competition between the two to define one interaction. If
the multiple interactions feature is not active, interactions with only one of two discon-
nected faces will be returned (see Figure 9). Interactions with disconnected faces will be
returned to the host code regardless of the angle.

0 0 is the angle between faces

Figure 8 Definition of Angle Between Faces
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Interactions for I nteractions with

Configuration | ) ; .
Single Interaction Multiple Interactions

Figure 9 Interactionsfor Single vs. Multiple Interaction Definition
1.4.2 Normal Smoothing

As previously noted, a NodeFace Interaction consists of a contact point, a normal gap, a
pushback direction, and a normal direction. The normal direction is an approximation of
the normal to the surface at the contact point, which by default is simply the normal to the
face. In some cases, however, it is necessary to have a continually varying normal without
abrupt changes (e.g., when transitioning across an edge). The normal smoothing capability
computes, if appropriate, a “smoothed” normal that varies continuously as a node transi-
tions between faces. Smoothing occurs if the contact point is within a user-specified dis-
tance to the edge and if the included angle between the faces is less than the
SHARP_NON_SHARP_ANGLE (see Figure 10). The contact point, normal gap, and
pushback direction are not modified by normal smoothing.

Lttt e

m— NOrmal Smoothing Area

Figure 10 Normal Smoothing Across an Edge

When  activating this feature, the host code must specify a
SHARP_NON_SHARP_ANGLE (in degrees), a norma smoothing distance, and a
RESOLUTION_METHOD for cases when a unique solution cannot be determined. If the
angle between two faces is greater than the SHARP_NON_SHARP_ANGLE, then the
edge is considered SHARP and no smoothing will be done to the normal. The angle spec-
ified for normal smoothing must match the angle specified for multiple interactions if that
capability is active.

The normal smoothing distance (SD) specifies the region over which normal smoothing
occurs (see Figure 11). This distance is in isoparametric coordinates, so its value ranges
from O to 1 (in theory), but for practical purposes, 0.5 is an upper bound.
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(1.1)

007 ol
/ /\(1'8[)11'3[)) L Areawithout normal smoothing

7 § Areawith normal smoothing

%
//// / (.,.) Isoparametric Coordinates

Figure 11 Region of Normal Smoothing for a QuadFacel 4

For the case when a unique solution does not exist for a smoothed normal, two resolution
methods are provided: USE_NODE_NORMAL and USE_EDGE_BASED NORMAL.
To illustrate the differences between these two approaches, consider Figure 12. This ex-
ample consists of five faces in the configuration shown, and uses a
SHARP_NON_SHARP_ANGLE of 30 degrees. The angles between faces 1 and 5 and be-
tween faces 3 and 4 are greater than the SHARP_NON_SHARP_ANGLE, so the smooth-
ing algorithm should not smooth between these faces. Smoothing is done between faces 1
and 2 and between faces 2 and 3, because the corresponding angles are less than 30 de-
grees. For points approaching the shared intersection of faces 1, 2, and 3, however, the two
options ACME provides for determining the smoothed normal deliver different results.
The USE_NODE_NORMAL option defines the normal at the intersection point to be the
node normal and thus provides a continuously smooth normal in the region near the point.
The problem with this approach in this particular case is that the node normal also in-
cludes the effects of faces 4 and 5, and thus effectively provides smoothing over the
boundary between faces 1 and 5. Alternatively, the USE_ EDGE_BASED NORMAL op-
tion only considers smoothing between a pair of faces. This approach ensures that no
smoothing occurs between faces 1 and 5, but it unfortunately can provide a different nor-
mal if we approach the intersection point from face 1 than if we approach the point from
face 3. Therefore, the smoothed normal at the intersection point can be discontinuous,
which can cause numerical problemsin some applications. This feature will be addressed
further as host codes gain experience on what approaches provide the best behavior.
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—— Non-Sharp Edge
— Sharp Edge

Face 4 R Face 1
ae ° Contact Point

Figure 12 Illustration of Normal Smoothing Resolution

1.5 Gap Removal Enforcement

An optional gap removal enforcement is also included in ACME. Initial gaps often occur
in meshes where curved geometries are discretized using varying mesh densities. The dis-
cretization error causes nodes from one (or more) surfaces to penetrate other surfaces.
Thisinitial gap can cause problems in explicit transient dynamic simulations (as well as
other physics simulations) if the initial gap is large enough to cause interactions to be
missed or if theinitial gap is enforced on the first step, causing alarge force. An effective
method for avoiding these problems is to search for initial gaps and remove them in a
strain-free manner (i.e., theinitial topology is modified to remove theinitial gaps). The en-
forcement object will compute the displacement correction needed to remove these initial
gaps. Although it is not possible to have al nodes exactly on the faces of the other surface
for curved geometries (it is an overconstrained problem), the gap remova enforcement
seeksto satisfy the inequality that all gaps are non-negative with a minimum normal gap.

The gap removal enforcement should be used after performing a static 1-configuration
search. The typical sequence for an explicit transient dynamic simulation would be:

1) Set the Search_Data array appropriate for an initial gap search.

2) Perform a static 1-configuration search.

3) Call ContactGapRemoval::Compute Gap Removal.

4) Apply the displacement correction from step 3 to the topol ogy.

5) Initialization (compute volume, mass, etc. using the modified topol ogy).

1.6 Explicit Transient Dynamic Enfor cement

An optional explicit transient dynamic enforcement capability is included in ACME. The
algorithm was written assuming that the host code is integrating the equations of motion
using a central difference time integrator. The topology, interactions, and configurations
are taken directly from a ContactSearch object (i.e., the enforcement is dependent on a

28



Introduction

ContactSearch object). This capability takes as input the nodal masses from the host and
returns the nodal forces that need to be applied.

The explicit transient dynamic enforcement can only be used in conjunction with the dy-
namic 2-configuration or dynamic augmented 2-configuration search methods. Following
gap removal (if desired) and initialization, the continuation of the typical sequence for an
explicit transient dynamic simulation would be:

6) Set the Search_Data array appropriate for the analysis.

7) Time Step using
a) adynamic or dynamic augmented 2-configuration search.
b) a ContactTDEnforcement enforcement.

Two parameters, KINEMATIC_PARTITION and FRICTION_MODEL _ID, must be sup-
plied by the host code for each possible entity pair. The KINEMATIC_PARTITION per-
tains to the fraction of total momentum each contacting surface will absorb. For example,
if surface 1 contacts surface 2 and the kinematic partition for surface 1 is k, then the kine-
matic partition for surface 2 with respect to surface 1 is 1-k. Furthermore, if k is 1, then
surface 1 actsasa“dave’ to surface 2. The FRICTION_MODEL _ID refersto the particu-
lar friction model requested by the host code. There are currently three friction models
available: frictionless, constant Coulomb friction, and tied. For NodeFace_Interactions
and NodeSurface Interactions, tied, frictionless, and frictional conditions can be enforced
at a node. If these constraints are independent (e.g., three separate contact constraints at
the corner of a block), the enforcement delivers the expected result. For conflicting con-
straints, a least-squares methodology is employed to resolve the forces required to effect
the simultaneous interacting contact conditions.

1.7 Errors

ACME will trap internal errors whenever possible and return gracefully to the host code.
ACME will never try to recover from an error; it will simply return control to the host
code. The host code, therefore, has the final decision of how to proceed. At the moment an
internal error is detected, ACME will immediately return to the host code without attempt-
ing to finish processing or attempting to ensure its internal data are consistent. As aresullt,
it is essential that the host code check for errors. Interactions may not be reasonable if an
internal error was encountered.

Errors are reported in two ways. First, all public access functions that could encounter an
error return a ContactErrorCode (an enumeration in the ContactSearch header file). This
error return code will be globally synchronized (i.e., all processors will return the same
value).

The current enumeration for error codesiis:
enum Cont act Er r or Code{
NO_ERRCR = 0,

| D_NOT_FOUND,
UNKNOWN_TYPE,
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I NVALI D_I D,

I NVALI D_DATA,

UNI MPLEMENTED_FUNCTI CN,
ZOLTAN_ERRCR,
EXODUS_ERROR,

I NVALI D_I NTERACTI CN,

| NTERNAL_ERROR };

The return value is meant as an easy check for the host code to determine if an error oc-
curred on any processor. It does not specify which processor encountered the error, nor
doesit return areal description of the error or the ID (if appropriate) to determine on what
entity the error occurred (e.g., which unimplemented function was called or, possibly in
the future, which face has a negative area). ACME does not normally write any datato the
standard output or error files (stdout or stderr). Instead, ACME provides functions to ex-
tract detailed error information line by line, which the host code can then direct to its own
output files as desired. Each lineis limited to 80 characters.

1.8 Plotting

ACME can be built with a compile-time option to include an Exodusl| plotting capability.
The host code is responsible for creating the Exodusl file, including the name and loca-
tion of the plot file. It is also responsible for closing the file after ACME writes its data.
Because ACME writes double precision data, this file must be created with the Exodusl|
parameter ICOMPWS set to 8.

If the host code desires aplot file from ACME, it must create a new file for each time step.
This capability is primarily intended as a debugging tool and is not envisioned for use in
production calculations. Since the host code specifies the mesh topology and has access to
theinteractions, it has the ability to include the interaction datain its normal plotting func-
tionality asit seesfit.

The mesh coordinates for each plot file are always taken as those in the current configura-
tion. The displacements are the differences between the predicted and current coordinates
if the predicted coordinates have been specified; otherwise the displacements are set to ze-
ro. Each Face Block is treated as an element block (TRI3 for TRIFACEL3, TRI6 for
TRIFACEQG6, and SHELL for QUADFACEL4 and QUADFACEQS). Additional element
blocks, one for each edge type, are created to represent the edges (BAR for LineEdgel 2
and BAR3 for LineEdgeQ3). An additional TRI3 element block is created to represent the
FaceFace Interactions. An additional BAR element block is created to represent the
FaceCoverage Interactions. Because Exodusl| does not support node blocks, all the nodes
are output without their associated Node Block. The global output variables are listed in
Table 5.
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Table 5 Global Variablesfor Exodusll Output

Description
num_nf_interactions total number of NodeFace Interactions
num_ns_interactions total number of NodeSurface Interactions
num_ff_interactions total number of FaceFace Interactions
num_fc_interactions total number of FaceCoverage Interactions

mult_interaction_status | flag indicating if multiple interactions is on/off

norm_smoothing_status | flag indicating if normal smoothing is on/off

smoothing_angle

SHARP_NON_SHARP_ANGLE for normal smoothing

smoothing_length

SD for normal smoothing

smoothing_resolution RESOLUTION_METHOD for normal smoothing

The nodal output variables include both the noda data (displacement and node normal)
and the interactions (NodeFace _Interactions and NodeSurface Interactions). The interac-
tions are output for their associated node, rather than with the face. Currently, up to three
interactions at a node can be output, with no meaning attached to their order. If anode has
no interactions, all of the interaction data for that node will be zero. If a node has one in-
teraction, the second and third sets of interaction data will al be zero, etc. Table 6 gives a
description of all the nodal data written to the Exodusll file. (UNIX-style notation using
sguare brackets to form regular expressions is used in this and subsequent tables. For ex-
ample, displ[xyz] is shorthand for displx, disply, and displz.)

Table 6 Nodal Variables for Exodusll Output

Name Description
displ[xyz] X, Y & Z components of displacement
nnorm[xyz] X, Y & Z components of the unit node normal
numcon number of kinematic constraints at the node
convec[xyz] X, Y & Z components of kinematic constraint vector (provided by host)
face id[123] The ID of the face involved in interaction 1, 2, or 3 (0 if no interaction)
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Table 6 Nodal Variablesfor Exodusll Output

Name

Description

alg[123]

algorithm used to define interaction 1, 2, or 3
(1=closest point projection for 1-configuration search,
2=closest point projection for 2-configuration search,
3=moving_intersection)

node ek[123]

The node entity key for interaction 1, 2, or 3 (0 if no interaction)

gapcur[123]

The Gap arising from the current time step, not including any residual
Gap (0 if no interaction)

gapold[123]

Theresidual Gap from the previoustime step for interaction 1, 2, or 3 (0
if no interaction)

pbdir[123][xyZz]

X,Y, & Z components of the pushback direction for interaction 1, 2, or 3
(O if no interaction)

ivec[123][xyZ]

X, Y, & Z components of avector that, when drawn from the node, gives
the location of the interaction point for interaction 1, 2, or 3 (0 if no
interaction)

norm[123][xyz]

X, Y, & Z components of the normal to the surface at the interaction
point for interaction 1, 2, or 3

pfnorm[123][xyZ]

X, Y, & Z components of the physical face normal for the node for inter-
action 1, 2, or 3. (The physical face concept is used to obtain face to face
contact without the full expense. A node on aflat surface will only have
one physical face, while a node at the corner of a cube would have three
physical faces (one for each of the three intersecting planes)

iveca[xyz]

X, Y, & Z components of avector that, when drawn from the node, gives
the location of the interaction point with an Analytic_Surface (0 if no
interaction). Thisitemisincluded only for problems with
Analytic_Surfaces.

Globa 1D

The global 1D for the node supplied by the host code in the constructor

Primary_Owner

The processor that owns the node in the primary decomposition

Primary_Local_ID

Thelocal 1D for the node on the owning processor

Secondary _Owner

The processor that owns the node in the secondary decomposition

EnfVar[xyz]

X, Y, & Z components of a vector that isthe force for ContactTDEN-
forcement and the displacement correction for ContactGapRemoval.
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The“element” data actually consist of the face and edge data (since both are output as ele-
ment blocks). The FaceFace Interaction and FaceCoverage Interaction data are also
stored as element data. Table 7 gives the names and descriptions of the element data writ-

ten to the Exodusdl file.

Table 7 Element Variables for Exodusl Output

Name Entity Description

fnorm[xyz] Faces Unit face normal at centroid

curvature Edges | 0=Unknown
1 = Convex
2 = Concave
3 = Concave with smoothing
4 = Convex with smoothing

angle_bf Edges | The angle between the two faces connected to this
edge. Thevalueiszeroif the edgeisonly connected to
one face.

FFI[O-N]_FACE_ID Faces the ID of the master face involved in interaction O, 1,
..., N=num_ffi_interactions-1

FFI[O-N]_NVERTS Faces the number of vertexes/edges in the polygon for inter-
action 0, 1, ..., N=num_ffi_interactions-1

FFI[0-N]_SX[0-M] Faces | the 1stlocal coordinate on the slave face for interac-
tion0, 1, ..., N=num_ffi_interactions-1 and vertex O, 1,
ey M=nverts-1

FFI[O-N]_SY[0-M] Faces | the2nd local coordinate on the slave face for interac-
tion0, 1, ..., N=num_ffi_interactions-1 and vertex O, 1,
ey M=nverts-1

FFI[0-N]_MX[0-M] Faces | the 1stlocal coordinate on the master face for interac-
tion0, 1, ..., N=num_ffi_interactions-1 and vertex O, 1,
ey M=nverts-1

FFI[O-N]_MY[0-M] Faces | the2ndloca coordinate on the master face for interac-
tion0, 1, ..., N=num_ffi_interactions-1 and vertex O, 1,
ey M=nverts-1

FFI[O-N]_EDGE[0-M] | Faces | theflag indicating coincidence with an edge on the

davefacefor interaction 0, 1, ...,
N=num_ffi_interactions-1 and vertex O, 1, ...,
M=nverts-1
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Table 7 Element Variablesfor Exodusl Output

Name Entity Description

FFI[O-N]_FLAG[O-M] | Faces | theflagindicating coincidence with an edge on the
master face for interaction 0, 1, ...,
N=num_ffi_interactions-1 and vertex 0, 1, ...,
M=nverts-1

FCI[O-N]_NVERTS Faces | the number of vertexes/edgesin the polygon for inter-
action 0, 1, ..., N=num_fci_interactions-1

FCI[0-N]_X[0-M] Faces | thelstlocal coordinate onthefacefor interaction 0, 1,
..., N=num_fci_interactions-1 and vertex 0, 1, ...,
M=nverts-1

FCI[0-N]_Y[0-M] Faces | the 2ndlocal coordinate on the face for interaction O,
1, ..., N=num_fci_interactions-1 and vertex 0, 1, ...,
M=nverts-1

PrimaryOwner Both The processor that owns the entity in the primary
decomposition

PrimaryLocallD Both Thelocal ID for the entity on the owning processor

SecondaryOwner Both The processor that owns the entity in the secondary

decomposition

1.9 Restart Capabilities

ACME currently provides two options for restart. The first restart option is a binary data
stream, where all of the data are packed into one array to be written to a restart file. This
binary data stream can then be used with a special constructor to restore the objects to
their original state. The second restart option allows a host code to extract node, edge and
face restart variables one at atime to be output to a restart file. The variable-based restart
requires the host code to call the basic constructor for the objects and then “implant” the
restart variables into the object, which restores the objects to their states before the restart.
Both restart methods currently require that neither the mesh topology nor the decomposi-
tion change. Eventually, the ability to restart with a different number of processors will be
supported with the variable-based restart capability; it will not be supported with the bina-
ry stream restart function.




Utility Functions

2. Utility Functions

ACME provides various utility functions that are either independent of the search and en-
forcement objects or are identical for those objects. These include functions to obtain in-
formation about the current version of ACME, to extract information about errors
encountered within the ACME algorithms, to extract data needed to restart ACME pro-
cessing, and to create Exodusl| plot files.

In each section delineating the ACME API functions (Sections 2, 3, 4, and 5), the different
formsfor the C++, C, and Fortran syntax are presented together for each function call. The
C++ API uses the full object-oriented capabilities of the language. On the other hand, the
C and Fortran APIs, which in actuality have been combined into a single interface, are a
collection of functions that have a pure C interface and can be called from either C or For-
tran rountines. The FORTRAN macro that surrounds all callsin the C syntax converts the
function by appending an underscore to the end of the function name, if appropriate. Be-
cause of this, all datain the C APl must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Search_Interface.h header file, located in the ACME search directory, includes the
prototypes for the C and Fortran functions described in this chapter, and the Contact-
Search.h file includes the C++ prototypes. Enumerations for symbolic types used in the
C++ API are also found in ContactSearch.h; these indicate the acceptable integral values
that may be used in the C and Fortran APIs.

2.1 Version Information

Functions are provided to obtain the ACME version number and its release date and to
check the compile-time compatibility of the ACME library and the host code with respect
to the MPI library.

2.1.1 GettingtheVersionID

The following function returns the version of ACME, which is a character string of the
form x.yz, where x is an integer representing the major version, y is an integer represent-
ing the minor version, and z is a letter representing the bug fix level. Theinitial release of
this version of ACME will be 1.0a, the first bux fix release will be 1.0b, and so on. The
prototype for thisfunction is:

C++ const char* ACME Version();
C voi d FORTRAN(acne_version)( char* vers );
Fortran acne_version( vers )

where

versisan array of characters of length 80 (in C, 81 including the termina ‘\n’).
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212 Getting the Version Date

The following function returns the release date for ACME, which is a character string of
the form * September 28, 2001’ (the current release date). The prototype for this function
is:

C++ const char* ACME VersionbDate();
C voi d FORTRAN(acre_versi ondate)( char* vers_date );
Fortran acme_versiondate( vers_date )

where

vers dateisan array of characters of length 80 (in C, 81 including the terminal ‘\n’).

2.1.3 Checking Compatibility with M PI

Thefollowing function returns an error if the compilations of the host code and the ACME
library are incompatible with respect to the MPI library. The host code should call this
function with the host_compile argument set to MPI_COMPILE, which is defined in the
ContactSearch header fileto be 0 if CONTACT_NO_MPI is defined at compile time, and
defined as 1 otherwise. This function will check for compatibility with the value of
MPI_COMPILE defined during compilation of the ACME library. The prototype for this
functionis:

C++ int ACME_MPI _Conpatibility(int host_conpile);

C voi d FORTRAN( acre_npi _conpati bility)
( int* host_conpile, int* error );

Fortran acne_npi_conpatibility( host_compile, error )
where

host_compileisthe value of MPI_COMPILE used during compilation of the host code.
error isthe return error code for the C and Fortran APIs.

2.2 Errors

As discussed in Section 1.7, ACME attempts to trap internal errors whenever possible.
There are C-style character strings that can be extracted that give a detailed description of
what error(s) occurred during ACME processing for the search and enforcement objects.
These strings are specific to the current processor. Therefore, each processor may have a
different number of error messages. The error return code is synchronized in parallel so all
processors return the same error code even if a processor did not encounter an error.
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2.2.1 Gettingthe Number of Errors

The following functions, which are public member functions in the C++ API, determine
how many error messages the current processor has written. The prototypes for these func-
tions are:

C++ i nt Contact Search: : Nunber_of Errors();
i nt Cont act TDEnf or cenent : : Nunber _of Errors();
i nt Contact GapRenoval :: Nunber _of _Errors();

C FORTRAN( nunber _of _search_errors)( int* numerrors );
FORTRAN( nunber _of _td_errors)( int* numerrors );
FORTRAN( nunber _of _gap_errors)( int* numerrors );

Fortran nunber_of search_errors( numerrors )
nunber_of _td_errors( numerrors )
nunber _of _gap_errors( numerrors )

where
num_errorsis the number of error messages that should be extracted by the host code.
2.2.2 Extracting Error M essages

The following functions, which are public member functionsin the C++ API, can be used
to extract the character strings for each error message on a processor (the number of which
can be determined by the functions described in the previous section):

C++ const char* Contact Search::Error_Message( int i );
const char* Contact TDEnforcenent:: Error_Message( int i );
const char* Contact GapRenoval : : Error _Message( int i );

C FORTRAN( get _search_error_nessage) (
int* i,
char* message );
FORTRAN(get _td_error_nessage) (
int* i,
char* message );
FORTRAN( get _gap_error_message) (
int* i,
char* message );

Fortran get_search_error_nessage( i, nessage )
get _td_error_nessage( i, nessage )
get _gap_error_nessage( i, nessage )
where

i isthe Fortran index of the error message (i.e., 1 to Number_of Errors(), or num_errors for C and
Fortran).
message is an array of characters of length 80 (in C, 81 including the terminal ‘\n’).
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2.3 Binary Stream Restart Functions

ACME provides functionality to allow restart using asingle binary stream of datafor each
ACME search or enforcement object. The host code is responsible for alocating the array
to hold the data, calling the functions, and writing the data to a restart file. Upon restart,
the host code should supply the binary data stream to the special constructors described in
this section, which will restore the objectsto their state before restart.

2.3.1 GettingtheBinary Restart Size

The following functions allow the host code to determine how much memory to allocate to
store restart information for the search and enforcement objects. The return value is the
number of double locations that are needed.

C++ i nt Contact Search:: Restart_Size();
i nt Contact TDEnf orcenent:: Restart_Si ze();
i nt Contact GapRenpoval :: Restart_Si ze();

C FORTRAN(search_restart_size)( int* size );
FORTRAN(td_enf _restart_size)( int* size );
FORTRAN(gap_renoval _restart_size)( int* size );

Fortran search_restart_size( size );
td_enf _restart_size( size );
gap_renoval _restart_size( size );

where
size is the number of double locations that are needed for the restart data.
2.3.2 Extracting the Binary Restart Data

Thefollowing functions allow the host code to extract all the information needed to initial-
ize an ACME object to its current state.

C++ Cont act Er r or Code

Cont act Search: : Extract _Restart_Dat a(
doubl e* restart_data);

Cont act Er r or Code

Cont act TDEnf or cenent : : Extract _Restart Dat a(
doubl e* restart_data);

Cont act Er r or Code

Cont act GapRenoval : : Extract _Restart _Dat a(
doubl e* restart _data);

C FORTRAN( search_extract _restart)(
doubl e* restart _data,
int* error);

FORTRAN(td_enf extract _restart)(
doubl e* restart _data,
int* error);
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FORTRAN( gap_renpval _extract _restart) (
doubl e* restart _data,
int* error);

search_extract _restart( restart_data, error)
td_enf_extract _restart( restart_data, error)
gap_renoval _extract_restart( restart_data, error)

restart_data is an array of type double. The length of this array is obtained from the function

Restart_Size() (see the previous section).

error isthe return error code for the C and Fortran APIs.

2.3.3 Constructing Objects Upon Restart

As noted above, a second constructor is available to alow for restarts from the binary data
stream provided by the Extract_Restart_Data functions described in Section 2.3.2:

Ct+

Fortran

Cont act Sear ch: : Cont act Sear ch(
const doubl e* restart_data,
const MPI _Conm& npi _comuni cat or,
Cont act Error Code& error );
Cont act TDEnf or cenent : : Cont act TDEnf or cenent (
Cont act Sear ch* search,
doubl e* restart data,
int* error );
Cont act GapRenoval : : Cont act GapRenoval (
Cont act Sear ch* search,
doubl e* restart data,
int* error );

FORTRAN( bui | d_search_restart)(
doubl e* restart data,
i nt* npi _conmuni cat or,
int* error );

FORTRAN( bui I d_td_enf_restart)(
doubl e* restart data,
int* error );

FORTRAN( bui | d_gap_renoval _restart) (
doubl e* restart data,
int* error );

bui | d_search_restart(
restart data,
npi _conmuni cat or,
error )

build td enf _restart(
restart data,
error )
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buil d_gap_renoval _restart(
restart_data,
error )
where

restart_data is an array of type double. The length of this array is obtained from the function
Restart_Size() (see the previous section).

mpi_communicator isan MPI communicator if ACME was built for aparallel and is simply adum-
my int otherwise.

search is the associated ContactSearch object for this enforcement object. Thisis hidden in the C
and Fortran APIs because only one search object is allowed.

error isthe error return code that will reflect any errors that were detected.

2.4 Variable-Based Restart Functions

The variable-based restart functions allow a host code to extract all the restart variables
from the ACME objects variable by variable. This set of functions will eventually allow
restarts on different numbers of processors, athough that capability is not supported in
this release. There are no separate constructors for this type of restart. Instead, the tradi-
tional constructor is used and then the variable-based data are “implanted.”

2.4.1 Obtainingthe Number of Nodal Restart Variables

These functions supply the number of nodal variables from each search and enforcement
object that need to be written to (or read from) arestart file.

C++ i nt Contact Search: : Number _Nodal Restart_Vari abl es();
i nt
Cont act TDEnf or cenment : : Nunber _Nodal _Restart _Vari abl es();
i nt Contact GapRenoval : : Nunber _Nodal Restart_Vari abl es();

C FORTRAN( search_numnrsvars )( int* numnvars );
FORTRAN( td_enf_numnrsvars )( int* numnvars );
FORTRAN( gap_renoval _numnrsvars) ( int* numnvars );

Fortran search_numnrsvars( numnvars )

td_enf _num nrsvars( numnvars )
gap_renoval _num nrsvars( num.nvars )

where
num_nvars is the number of nodal restart variables
2.4.2 Obtaining the Number of Edge Restart Variables

These functions supply the number of edge variables from each search and enforcement
object that need to be written to (or read from) arestart file. Currently, there are no edge-
based restart variables, so the ambiguity of how to handle the issue that edges are internal -
ly generated, not supplied by the host code, is deferred until edge-based restart variables
are required. These functions are included here to complete the API.
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i nt Contact Search:: Nunber Edge_ Restart_Vari abl es();
i nt Cont act TDEnf or cenent : : Nunber _Edge_Restart_Vari abl es();
i nt Contact GapRenoval : : Nunber _Edge_Restart _Vari abl es();

FORTRAN( search_numersvars )( int* numevars );
FORTRAN( td_enf_numersvars )( int* numevars );
FORTRAN( gap_renoval _numersvars) ( int* numevars );

search_num ersvars( numevars )
td_enf _num ersvars( num.evars )
gap_renoval _num ersvars( numevars )

num_evarsisthe number of edge restart variables

2.4.3 Obtaining the Number of Face Restart Variables

These functions supply the number of face variables from each search and enforcement
object that need to be written to (or read from) arestart file.

Ct+

Fortran

where

i nt Contact Search: : Nunber _Face_ Restart_Vari abl es();
i nt Cont act TDEnf or cenent : : Nunber _Face_Restart _Vari abl es();
i nt Contact GapRenoval : : Nunber Face_Restart Vari abl es();

FORTRAN( search_numfrsvars )( int* numfvars );
FORTRAN( td_enf_numfrsvars )( int* numfvars );
FORTRAN( gap_num frsvars) ( int* numfvars );

search_num frsvars( numfvars )
td_enf _num frsvars( numfvars )
gap_num frsvars( numfvars )

num_fvarsisthe number of face restart variables
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244 Extracting the Nodal Restart Variables

These functions extract the nodal variables, one by one, that are required for restart.

C++ Cont act Er r or Code

Cont act Search: : Extract _Nodal Restart_Vari abl e(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act TDEnf or cenent : : Extract _Nodal Restart Vari abl g(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act GapRenoval : : Extract _Nodal Restart_Vari abl g(
i nt variabl e_nunber,
doubl e* variable data );

C FORTRAN( sear ch_extract _nrsvars) (

i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

FORTRAN(t d_extract _nrsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

FORTRAN( gap_extract _nrsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

Fortran search_extract _nrsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

td_extract _nrsvars(
vari abl e_nunber,
vari abl e_dat a,
error )
gap_extract _nrsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

where
variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_datais an array of type double. The length of the array is given by the number of nodesin

the surface topology for this processor (as supplied in the constructor).
error isthe return error code for the C and Fortran APIs.
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245 Implanting the Nodal Restart Variables

These functions implant the nodal variables, one by one, that are required for restart.

Ct+

Fortran

where

Cont act Er r or Code

Cont act Search: : I npl ant _Nodal Restart_Vari abl e(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act TDEnf or cenent : : | npl ant _Nodal _Restart_Vari abl g(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act GapRenoval : : | npl ant _Nodal Restart_Vari abl g(
i nt variabl e_nunber,
doubl e* variable data );

FORTRAN( sear ch_i npant _nrsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );
FORTRAN(t d_i nmpl ant _nrsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );
FORTRAN( gap_i npl ant _nrsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

search_i npl ant _nrsvar s(
vari abl e_nunber,
vari abl e_dat a,
error )

td_i nmpl ant _nrsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

gap_i npl ant _nrsvar s(
vari abl e_nunber,
vari abl e_dat a,
error )

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_datais an array of type double. The length of the array is given by the number of nodesin

the surface topology for this processor (as supplied in the constructor).
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24.6 Extractingthe Edge Restart Variables

These functions extract the edge variables, one by one, that are required for restart. As pre-
viously mentioned, there are currently no edge-based restart variables, so these functions
will not be used in this version of ACME.

C++ Cont act Err or Code

Cont act Sear ch: : Extract _Edge_Restart_Vari abl e(
i nt vari abl e_nunber,
doubl e* variable_data );

Cont act Err or Code

Cont act TDEnf or cenment : : Extract _Edge_Restart _Vari abl e(
i nt vari abl e_nunber,
doubl e* variable_data );

Cont act Err or Code

Cont act GapRenoval : : Extract _Edge_Restart _Vari abl e(
i nt vari abl e_nunber,
doubl e* variable_data );

C FORTRAN( sear ch_extract _ersvars) (

i nt vari abl e_nunber,
doubl e* vari abl e_dat a,
int* error );

FORTRAN(t d_extract _ersvars) (
i nt vari abl e_nunber,
doubl e* vari abl e_dat a,
int* error );

FORTRAN( gap_extract _ersvars) (
i nt vari abl e_nunber,
doubl e* vari abl e_dat a,
int* error );

Fortran search_extract_ersvars(
vari abl e_nunber,
vari abl e_dat a,
error )

td_extract _ersvars(
vari abl e_nunber,
vari abl e_dat a,
error )
gap_extract _ersvars(
vari abl e_nunber,
vari abl e_dat a,
error )

where
variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).

variable_datais an array of type double. The length of the array is given by the number of edgesin
the surface topology for this processor.
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24.7 Implanting the Edge Restart Variables

These functions implant the edge variables, one by one, that are required for restart. As
previously mentioned, there are currently no edge-based restart variables so these func-
tionswill not be used in this version of ACME.

Ct+

Fortran

where

Cont act Err or Code

Cont act Sear ch: : | npl ant _Edge_Restart_Vari abl e(
i nt vari abl e_nunber,
doubl e* variable_data );

Cont act Err or Code

Cont act TDEnf or cement : : | npl ant _Edge_Restart _Vari abl e(
i nt vari abl e_nunber,
doubl e* variable_data );

Cont act Err or Code

Cont act GapRenoval : : | npl ant _Edge_Restart _Vari abl e(
i nt vari abl e_nunber,
doubl e* variable_data );

FORTRAN( sear ch_i npant _ersvars) (
i nt vari abl e_nunber,
doubl e* vari abl e_dat a,
int* error );
FORTRAN(t d_i npl ant _ersvars) (
i nt vari abl e_nunber,
doubl e* vari abl e_dat a,
int* error );
FORTRAN( gap_i npl ant _er svars) (
i nt vari abl e_nunber,
doubl e* vari abl e_dat a,
int* error );

search_i npl ant _er svar s(
vari abl e_nunber,
vari abl e_dat a,
error )

td_i mpl ant _er svars(
vari abl e_nunber,
vari abl e_dat a,
error )

gap_i npl ant _er svar s(
vari abl e_nunber,
vari abl e_dat a,
error )

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_datais an array of type double. The length of the array is given by the number of edgesin

the surface topology for this processor.
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2.4.8 Extracting the Face Restart Variables

These functions extract the face variables, one by one, that are required for restart.

Ct+

Fortran

where

Cont act Er r or Code

Cont act Search: : Extract _Face Restart Vari abl g(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act TDEnf or cenent : : Extract _Face_Restart Vari abl e(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act GapRenoval : : Extract _Face_Restart Vari abl e(
i nt variabl e_nunber,
doubl e* variable data );

FORTRAN( search_extract _frsvars)(
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

FORTRAN(t d_extract _frsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

FORTRAN( gap_extract frsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

search_extract _frsvars(
vari abl e_nunber,
vari abl e_dat a,
error )
td_extract frsvars(
vari abl e_nunber,
vari abl e_dat a,
error )
gap_extract _nrsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_datais an array of type double. The length of the array is given by the number of facesin

46

the surface topology for this processor (as supplied in the constructor).



Utility Functions

249 Implanting the Face Restart Variables

These functions implant the face variables, one by one, that are required for restart.

Ct+

Fortran

where

Cont act Er r or Code

Cont act Search: : I npl ant _Face Restart_ Vari abl g(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act TDEnf or cenent : : | npl ant _Face_Restart Vari abl e(
i nt variabl e_nunber,
doubl e* variable data );

Cont act Er r or Code

Cont act GapRenoval : : | npl ant _Face_Restart _Vari abl e(
i nt variabl e_nunber,
doubl e* variable data );

FORTRAN( sear ch_i npant _frsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );
FORTRAN(t d_i nmpl ant _frsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );
FORTRAN( gap_i npl ant _frsvars) (
i nt variabl e_nunber,
doubl e* vari abl e_dat a,
int* error );

search_i npl ant _frsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

td_inmplant _frsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

gap_i npl ant _frsvars(
vari abl e_nunber,
vari abl e_dat a,
error )

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_datais an array of type double. The length of the array is given by the number of facesin

the surface topology for this processor (as supplied in the constructor).
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2.4.10 Completing a Binary Stream Restart

These functions must be called after constructing an ACME object and implanting the re-
start variables with the functions described previously. These functions restore each
ACME object to its state prior to restart. After these functions have been called, normal
calculations can resume.

C++ Cont act Error Code Cont act Search: : Conpl ete_Restart();
Cont act Error Code Cont act TDEnf or cenent :: Conpl ete_Restart();
Cont act Error Code Cont act GapRenoval :: Conpl ete_Restart();

C FORTRAN( search_conpl ete restart)( int* error );
FORTRAN(td_enf conplete restart)( int* error );
FORTRAN(gap_conpl ete restart)( int* error );

Fortran search_conplete restart( error )
td _enf _conplete restart( error )
gap_conplete _restart( error )

where
error isthe return error code for the C and Fortran APIs.
2.5 Creating an Exodus Plot File of the Search & Enforcement Data

ACME has the ability to write an Exodusl| file that contains the full search topology and
all of the interaction data, including enforcement results. This function can be used only if
ACME was built with Exodusl| support (a.compile time option). See Section 1.8 for a de-
tailed description of the data written to the Exodusl| file. The host code is required to actu-
ally open and close the Exodusl | file, so it must choose the name and location for the file.
This file must be opened with ICOMPWS=8. The Exodusl! ID is then passed to ACME,
which writes the topology and the results data. Only one plot step can be written to each
file. The number of variables in the database depends on the number of interaction types
currently active in the search object (which can change each time step).

The prototype for this capability is:

C++ Cont act Error Code Cont act Sear ch: : Exodus_Qut put (
i nt exodus_id,
double tine );

C FORTRAN( exodus_out put) (
i nt* exodus_id,
doubl e* ti ne,
int* error );

FORTRAN exodus_out put (
exodus_i d,
tine,
error )
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where
exodus id istheinteger database ID returned by the Exodusl| library from an ex_create call.

timeisthe time value for the “results’ to be written to the Exodusl| file.
error isthe return error code for the C and Fortran APIs.
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3. Search Functions

This section describes functions that construct and operate on ContactSearch “objects”
For the C++ AP, these are true objects permitted by the object-oriented capabilities of the
language. There are no static variables, so an arbitrary number of objects may be smulta-
neoudly active. In the C and Fortran APIs, these functions create and operate on a Contact-
Search “object,” only one of which is currently allowed. Functions are provided to alow
destruction of the ContactSearch object and creation of a new object at any point. Multiple
objects can be supported in the future if the need ever arises.

There are two constructors for the ContactSearch object. The first, described in this sec-
tion, isintended for general use, while the second, described in Section 2, is used to con-
struct a search object using data read in from a previously generated restart file. The
ContactSearch object is neither copy-able nor assignable.

In each section delineating the ACME API functions (Sections 2, 3, 4, and 5), the different
formsfor the C++, C, and Fortran syntax are presented together for each function call. The
C++ APl uses the full object-oriented capabilities of the language. On the other hand, the
C and Fortran APIs, which in actuality have been combined into a single interface, are a
collection of functions that have a pure C interface and can be called from either C or For-
tran rountines. The FORTRAN macro that surrounds all calls in the C syntax converts the
function by appending an underscore to the end of the function name, if appropriate. Be-
cause of this, all datain the C APl must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Search_Interface.h header file, located in the ACME search directory, includes the
prototypes for the C and Fortran functions described in this chapter, and the Contact-
Search.h file includes the C++ prototypes. Enumerations for symbolic types used in the
C++ API are also found in ContactSearch.h; these indicate the acceptable integral values
that may be used in the C and Fortran APIs.

3.1 Creating a ContactSearch Object

Thereisone general constructor for the ContactSearch object. A second constructor for re-
start is described in Section 2.3.2. The prototype for the general constructor is:

C++ Cont act Sear ch: : Cont act Sear ch(

i nt dinmensionality,

i nt nunber _of _st at es,

i nt nunber _of _entity_keys,

i nt nunber _of node_bl ocks,

const Cont act Sear ch: : Cont act Node_Type*
node_bl ock_t ypes,

const int* nunmber _of nodes_i n_bl ocks,

const int* node_gl obal _ids,

i nt nunber _of face_bl ocks,

const Cont act Sear ch: : Cont act Face_Type*
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face_bl ock_types,
const int* nunmber_of faces_in_bl ocks,
const int* connectivity,
i nt nunber _of _nodal _comm partners,
const int* nodal _comm proc_ids,
const int* nunber_of _nodes_to_partner
const int* communi cati on_nodes,
const MPI _Conm& npi _conmuni cat or
Cont act Err or Code& error );

C FORTRAN( bui | d_sear ch) (
int* dinensionality,
i nt* nunber_of states,
i nt* nunber_of entity_keys,
i nt* nunber_of node_bl ocks,
i nt* node_bl ock_types,
i nt* nunber_of nodes_i n_bl ocks,
i nt* node_gl obal _ids,
i nt* nunber_of face_bl ocks,
int* face_bl ock_types,
i nt* nunber_of faces_in_bl ocks,
int* connectivity,

i nt* nunber _of nodal _conm partners,

i nt* nodal _comm proc_i ds,

i nt* nunber _of nodes_t o_partner

i nt* conmuni cati on_nodes,

i nt* npi _communi cat or

int* error );

Fortran buil d_search(
di mensionality,
nunber _of st at es,
nunber _of entity_keys,
nunber _of node_bl ocks,
node_bl ock_t ypes,
nunber _of nodes_i n_bl ocks,
node_gl obal _ids,
nunber _of face_bl ocks,
face_bl ock_types,
nunber _of faces_i n_bl ocks,
connectivity,
nunber _of _nodal _conm partners,
nodal _comm proc_i ds,
nunber _of _nodes_t o_part ner
comuni cat i on_nodes,
npi _conmuni cat or,
error );

where;

dimensionality is the number of spatial coordinates in the topology. Note: We are only supporting
three dimensionsin this release. Two-dimensional support will be added in the future.
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number_of_states is the number of states the host code requests to be stored. A value of 1 implies
that the ContactSearch object can not back up to an older state. A value of 2 will imply the
ContactSearch object can back up to one old state, etc. For this release, this value must be
1

number_of _entity keysisthe number of entity keys that will be used. Thisis currently the sum of
the number of Face Blocks and the number of Analytic_Surfaces.

number_of _node_blocksisthe number of Node Blocksin the topology. The first Node Block con-
tains the nodes connected to the faces specified in the Face Blocks; additional
Node Blocks may contain other nodes that the host code needs to search against the faces.

node_block_typesis an array (of length number_of node_blocks) describing the type of nodes in
each Node_Block. The current enumeration for thistypein the C++ AP is:

enum Cont act Sear ch: : Cont act Node_Type{ NCDE=1 };

number_of nodes in_blocksisan array (of length number_of node_blocks) that gives the number
of nodesin each Node Block.

node global_ids is an array containing the host code ID for each node. The IDs for the first
Node Block are listed first in the array, followed by the IDs for each of the other
Node Blocksin order (if applicable).

number_of_face blocks isthe number of Face Blocks in the topology.

face block_types is an array (of length number_of face blocks) describing the type of faces in
each Face Block. The current enumeration for thistype in the C++ AP is:

enum Cont act Sear ch: : Cont act Face_Type{ QUADFACEL4=1,
QUADFACE@=2, TRI FACEL3=3, TRI FACEQ6=4};

number_of faces in_blocks is an array (of length number_of face blocks) that gives the number
of facesin each Face Block.

connectivity is a one-dimensional array that gives the connectivity (using Fortran indexing in the
first Node_Block) for each face. The connectivity of each face is contiguous in memory
and follows the Exodusl| conventions for node order. The arrangement of this array may
change when multiple Node_Blocks containing nodes related to faces are supported.

number_of _nodal_comm_partners is the number of processors that share nodes with the topology
supplied to ACME on the current processor.

nodal_comm_proc_idsis an array (of length number_of_nodal_comm_partners) that lists the pro-
cessor | Ds that share nodes with the topology supplied to ACME on the current processor.

number_of _nodes to partner is an array (of length number_of _nodal_comm_partners) that gives
the number of nodes shared with each processor in nodal_comm_proc _ids.

communication_nodes is an array that lists the nodes in the topology supplied to ACME that are
shared, grouped by processor in the order specified in nodal_comm_proc _ids.

mpi_communicator is an MPI_Communicator.

error is the error code. This reflects any errors detected during execution of this method. A non-
zero result indicates an error has occurred.

If the ACME library isbuilt in pure serial mode (i.e., CONTACT_NO_MPI is defined dur-
ing compilation), then number_of _nodal_comm_partners should be set to 0 and dummy
pointers can be supplied for noda _comm_proc ids, number_of nodes to partner, and
communication_nodes. Furthermore, any integer value can be used for
mpi_communicator, which isignored.

3.2 Search_DataArray

As described in Section 1.1.4, Search_Data is a three-dimensional Fortran-ordered array
for specifying entity pair data. The first index in the array refers to the data parameter, and
the next two indexes refer to the keys for the two entities for which that parameter is appli-
cable.
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3.21 Checkingthe Search_Data Array Size

The following interface alows for checking the size of Search_Data expected by ACME.
This is intended to be a check by the host code to ensure that ACME and the host code
have a consistent view of the Search_Data array.

C++ Cont act Error Code Cont act Search: : Check_Search_Data_Si ze(
int size_data_per_pair,
i nt number_of _entity_keys );

C FORTRAN( check_sear ch_dat a_si ze) (
int* size_data_per_pair,
i nt* nunber_of _entity_ keys,
int* error );

Fortran check_search_data_si ze(
size_data_per_pair,
nunber _of entity_ keys,
error )

where

size data per_pair isthe number of data parameters for each entity pair (currently 3).
number_of entity keysisthe number of entity keys.
error isthe return error code for the C and Fortran APIs.

3.2.2 Setting Valuesin the Search_Data Array

The following interface allows the host code to specify the Search_Data array (see Section
1.1.4), which must be set prior to calling any of the search algorithms. This function can
be called at any time to change values in the Search_Data array (e.g., to change toleranc-
€s).

Ct++ voi d Cont act Sear ch: : Set _Sear ch_Dat a(
const doubl e* search_data);

C FORTRAN( set _search_dat a) (
doubl e* search_data );

Fortran set_search_dat a(

search_data )
where

search_datais an array of double precision values for the Search_Data (see Section 1.1.4).
3.3 Analytic_Surfaces

ACME supports the determination of interactions of nodes with Analytic_Surfaces. Cur-
rently, the only supported Analytic_Surfaces are a plane, a sphere, and two types of cylin-
ders (one for a container and one for a post). The types of Analytic_Surfaces supported
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will be expanded in the future. The ACME ID for an Analytic_Surface is the number of
face blocks plus the order in which the surface was created.

The current enumeration for Analytic_Surface Typeinthe C++ APl is:

enum Cont act Sear ch: : Anal yti cSurface_Type{
PLANE=1, SPHERE=2, CYLI| NDER_I NSI DE=3, CYLI NER _OUTSI DE=4 };

3.3.1 Adding an Analytic_Surface

The interface to add an Analytic_Surfaceis:

C++ Cont act Error Code Cont act Search: : Add_Anal yti c_Surface(
Cont act Sear ch: : Anal yti cSurface_Type as_type,
const double* as data );

C FORTRAN( add_anal yti c_surface) (
int* as_type,
doubl e* as_dat a,
int* error );

Fortran add_anal ytic_surface(
as_type,
as_dat a,
error )

where

as_typeisthe type of the analytic surface from the ContactSearch::AnalyticSurface Type enum.

as dataisan array dependent on the type of surface being added. The Analytic_Surface PLANE is
described by a point and a normal vector. The Analytic_Surface SPHERE is described by
its center and a radius. Two types of cylindrical surfaces are supported:
CYLINDER_INSIDE & CYLINDER_OUTSIDE. CYLINDER_INSIDE is intended as a
cylindrical container which will define interactions to keep al nodes inside the cylinder.
CYLINDER _OUTSIDE is intended as a post which will define interactions to keep all
nodes outside the cylinder. Both types of cylindrical surfaces are described by a center
point, an axial direction, and alength (see Figure 13). Table 8 gives a complete description
of the array datafor each Analytic_Surface type.

error isthereturn error code for the C and Fortran APIs.
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aNDirection

Figure 13 Analytic Cylindrical Surfaces

Table 8 C++ Data Description for Analytic_Surfaces

Cylinder_ Cylinder_
Plane Sphere Inside Outside

as data[0] X-Coordinate X-Coordinate X-Coordinate X-Coordinate
of Point of Center of Center of Center

as data[1] Y-Coordinateof | Y-Coordinateof | Y-Coordinateof | Y-Coordinateof
Point Center Center Center

as data[2] Z-Coordinateof | Z-Coordinateof | Z-Coordinateof | Z-Coordinateof
Point Center Center Center

as data[3] X-Component | Radius X-Component | X-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as data[4] Y-Component Y-Component Y-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as_datg 5] Z-Component Z-Component Z-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as data[6] Radius Radius

as _datq 7] Length Length
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3.3.2 Setting the Analytic_Surface Configuration

The following interface updates the configuration(s) for an Analytic_Surface. This method
has not yet been implemented in ACME, and returns an error if called.

C++ Cont act Err or Code
Cont act Search:: Set _Anal yti c_Surface_Confi guration(
int as_id,

const double* as_data );

C FORTRAN( set _anal yti c_surface_configuration)(
int* as_id,
doubl e* as_dat a,
int* error );

Fortran set_anal ytic_surface_configuration(
as_id,
as_data
error )

where

as_idisthe ACME ID for the Analytic_Surface.
as dataisdescribed in Table 8.
error isthe return error code for the C and Fortran APIs.

3.4 Node Block Data

Currently, the only valid type of Node Block is NODE. Future releases of ACME will in-
clude NODE_WITH_SLOPE and NODE_WITH_RADIUS.

3.4.1 Settingthe Node Block Configuration

The following interface allows the host code to specify the configuration(s) for the nodes
by Node Block. Thisfunction can be called at any time but must be called prior to thefirst
search. For a one-configuration search, only the current configuration needs to be speci-
fied. For two-configuration searches, both current and predicted configurations must be
specified. This function should be called every time the nodal positions in the host code
are updated. The prototype for thisfunction is:

C++ Cont act Er r or Code
Cont act Sear ch: : Set _Node_Bl ock_Confi gurati on(
Cont act Sear ch: : Cont act Node_Confi gurati on
config_type,
i nt node_bl ock_id,
const doubl e* positions );

C FORTRAN( set _node_bl ock_confi guration) (
int* config type,
i nt* node_bl ock_id,
doubl e* positions,
int* error );
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Fortran set _node_bl ock_confi gurati on(
config_type,
node_bl ock_i d,
posi tions,
error )

where;

config_typeisan enumeration in the C++ API for the configuration:
enum Cont act Sear ch: : Cont act Node_Confi guration {
CURRENT_CONFI G=1, PREDI CTED _CONFI G=2 };
node block_idisthe ACME ID for the Node Block.
positions is an array that holds the nodal positions for every node in the Node_Block.The data in
this array is ordered by X, y and z locations of node 1, followed by x, y and z locations of
node 2, etc.
error isthe return error code for the C and Fortran APIs.

3.4.2 Setting the Node Block Kinematic Constraints

The following function informs the ContactSearch object about kinematic constraints for
the nodes. If these are specified, the interactions are made consistent with the constraints.
Also, the ContactTDEnforcement object computes contact forces that are consistent with
these constraints.

C++ Cont act Err or Code
Cont act Search:: Set _Node_ Bl ock_Ki nenmati c_Constrai nt s(
i nt node_bl ock_id,
const int* constraints_per_node,
const doubl e* constraint_vector );

C FORTRAN( set _node_bl ock_ki n_cons) (
i nt* node_bl ock_id,
i nt* constraints_per_node,
doubl e* constrai nt_vector,
int* error );

Fortran set_node_bl ock_Kki n_cons(
node_bl ock_i d,
constrai nts_per_node,
constrai nt_vector,
error )

where

node_block_id isthe ACME ID for this Node Block

constraints_per_node is how many degrees of freedom are constrained (i.e,, 0, 1, 2 or 3).

constraint_vector is a vector for each node that describes the constraint direction. If
congtraints per_nodeis O or 3, this vector should be set to 0. If constraints_per_nodeis 1,
this vector should be the constrained direction. If constraints per_node is 2, this vector
should be the unconstrained direction.

error isthe return error code for the C and Fortran APIs.
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3.4.3 Setting the Node Block Attributes

The following function will be used to add Node Block attributes, such as the projection
direction for all node types, the slope for NODE_WITH_SL OPE nodes, or the radius for
NODE_WITH_RADIUS nodes. Currently, the only attribute supported is the projection
direction.

C++ Cont act Er r or Code
Cont act Sear ch: : Set _Node_ Bl ock_Attri butes(
Cont act Sear ch: : Node_Bl ock_Attribute attribute,
i nt node_bl ock_id,
const doubl e* attributes );

C FORTRAN( set _node_bl ock_attri butes)(
int* attribute,
i nt* node_bl ock_id,
doubl e* attributes,
int* error );

Fortran set_node bl ock_attri butes(
attribute,
node_ bl ock i d,
attributes,
error )

where

attribute is an enumeration in the C++ API for the attribute type:
enum Cont act Sear ch: : Node_Bl ock_Attri bute {
PRQJECTI ON_DI RECTI ON=0 };
node block_id isthe ACME ID for thisNode_Block.
attributesis an array of the attribute values for this Node_Block.
error isthe return error code for the C and Fortran APIs.

3.5 Search Algorithms
3.5.1 Setting the Search Option

By default, both multiple interactions and normal smoothing options are inactive. The fol-
lowing function should be called to activate, deactivate, and control multiple interactions
and normal smoothing.

C++ Cont act Error Code Cont act Search: : Set _Search_Opti on(
Cont act Sear ch: : Search_Option option,
Cont act Sear ch: : Search_Option_Status status,
doubl e* data );

C FORTRAN( set _search_option) (
int* option,
int* status,
doubl e* dat a,
int* error );
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Fortran set_search_opti on(
option,
st at us,
dat a,
error )

where

option isan enumeration in the C++ AP!I:
enum Cont act Sear ch: : Search_Option {
MULTI PLE_I NTERACTI ONS=0,
NORMAL_ SMOOTHI NG=1} ;
status is another enumeration:
enum Cont act Sear ch: : Search_Option_Status {
| NACTI VE=0,
ACTI VE=1} ;
datais an array whose first member contains the angle above which the edge between facesis con-
sidered to be sharp instead of non-sharp (rounded), and whose second and third members
(valid only for the NORMAL_SMOOTHING option) contain the distance in isoparamet-
ric coordinates over which normal smoothing is calculated and the smoothing resolution
algorithm, respectively. The integer specifying the smoothing resolution algorithm can
take the values USE_NODE_NORMAL=0 or USE_EDGE_BASED NORMAL=1. See
the section on Normal Smoothing in the introduction for more information about the
smoothing resolution algorithm.
error isthe return error code for the C and Fortran APIs.

3.5.2 Performing a Static 1-Configuration Search

The following function performs a static 1-configuration search and can be called only af -
ter a current configuration has been specified.

Ct++ Cont act Er r or Code
Cont act Search: : Static_Search_1_Configuration();

C FORTRAN(static_search_1 configuration)(
int* error );

Fortran static_search_1_configuration(
error );

where
error is the return error code for the C and Fortran APIs.
3.5.3 Performing a Static 2-Configuration Search

The following function performs a static 2-configuration search and can be called only if
both current and predicted configurations have been specified.

C++ Cont act Er r or Code
Cont act Search:: Static_Search_2 Configuration();
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C FORTRAN(stati c_search_2 configuration)(
int* error );

Fortran static_search_2 configuration(
error )

where
error isthe return error code for the C and Fortran APIs.
3.5.4 Performing a Dynamic 2-Configuration Search

The following function performs a dynamic 2-configuration search and can be called only
if both the current and predicted configurations have been specified.

C++ Cont act Err or Code
Cont act Sear ch: : Dynami c_Search_2_ Confi guration();

C FORTRAN( dynami c_search_2 confi guration) (
int* error );

Fortran dynani c_search_2 configuration(
error )

where
error is the return error code for the C and Fortran APIs.
3.5.5 Performing a Dynamic Augmented 2-Configuration Search

The following function performs a dynamic augmented 2-configuration search and can be
called only if both the current and predicted configurations have been specified and a Con-
tactTDENnforcement object has been registered with the search.

C++ Cont act Err or Code
Cont act Sear ch: : Dynam c¢_Sear ch_Augnent ed_2_ Confi gurati on(
doubl e* mass,
doubl e dt_ol d,
double dt );

C FORTRAN( dynam c_search_aug_2 confi g) (
doubl e* mass,
doubl e* dt_ol d,
doubl e* dt,
int* error );

Fortran dynani c_search_aug 2 confi g(
nass,
dt _ol d,
dt,
error )
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where

massis an array that gives the mass of each node.
dt_old isthe time step for the previous step.

dt is the time step for the current time step.

error isthe return error code for the C and Fortran APIs.

3.6 Interactions

The functions in this section allow the host code to extract the interactions from the Con-
tactSearch object. Typically, the host code should first determine how much memory is
needed to hold the interactions before extracting the interactions.

3.6.1 Gettingthe Size of NodeFace | nteractions

The following function alows the host code to determine how many
NodeFace Interactions are currently defined in a ContactSearch object and the data size
for each interaction.

C++ voi d Cont act Search: : Si ze_NodeFace_I nteracti ons(
i nt & nunber_of interactions,
int& nfi_data_size );

C FORTRAN( si ze_nodef ace_i nteractions) (
i nt* nunber_of interactions,
int* nfi_data_size );

Fortran size_nodeface_interactions(
nunber of interactions,
nfi _data_size )

where

number_of_interactions is the number of active NodeFace Interactions that will be returned by the
function Get_NodeFace_|nteractions (see the next section).
nfi_data_sizeis the number of double precision values returned for each interaction.

3.6.2 Extracting NodeFace Interactions

The following function allows the host code to extract the active NodeFace_|nteractions
from the ContactSearch object. The prototype for this functioniis:

C++ voi d Cont act Search: : Get _NodeFace_| nteracti ons(
i nt* node_bl ock_i ds,
i nt* node_i ndexes_i n_bl ock,
int* node_entity_ keys,
int* face_bl ock_i ds,
int* face_i ndexes_i n_bl ock,
int* face_procs,
doubl e* nfi_data );

62



Search Functions

C FORTRAN( get _nodef ace_i nteracti ons) (

i nt* node_bl ock_ids,

nt* node_i ndexes_i n_bl ock,
nt* node_entity_keys,

nt* face_bl ock_ids,

nt* face_i ndexes_in_bl ock,
nt* face_procs,

doubl e* nfi _data );

Fortran get nodeface_interactions(
node_bl ock _i ds,
node_i ndexes_i n_bl ock
node_entity_ keys,
face_bl ock_ids,
face_i ndexes_i n_bl ock,
face_procs,
nfi _data )

where

node_block_idsisan array (of length number_of interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of_interactions) that contains the index in
the Node_Block (using Fortran indexing conventions) for the node in each interaction.

node_entity keysis an array (of length number_of_interactions) that contains the node entity key
for thisinteraction.

face block_idsisan array (of length number_of _interactions) that contains the Face Block ID for
the face in each interaction.

face indexes in_block isan array (of length number_of interactions) that contains the index in the
Face Block (using Fortran indexing conventions) for the face in each interaction.

face procsisan array (of length number_of interactions) that contains the processor that owns the
facein each interaction.

nfi_data is an array (of length number_of _interactions* nfi_data size) that contains the data for
each interaction (see Section 1.3.1). The data for each interaction is contiguous (i.e., the
first nfi_data_size locations contain the data for the first interaction).

3.6.3 Getting the Size of NodeSurface Interactions

The following function allows the host code to determine how many interactions are cur-
rently defined in a ContactSearch object and the data size for each interaction.

Ct++ voi d Cont act Sear ch: : Si ze_NodeSurface_l nteractions(
i nt & nunber _of interacti ons,
int& nsi_data_size );

C FORTRAN( si ze_nodesurface_i nteractions) (
i nt* nunber _of interactions,
int* nsi_data_size );

Fortran size_nodesurface_interactions(

nunber _of _interacti ons,
nsi _data_size )
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where

number_of _interactions are the number of active NodeSurface Interactions that will be returned by
the function Get_NodeSurface | nteractions (see the next section).
nsi_data sizeisthe number of double precision values returned for each interaction.

3.6.4 Extracting NodeSurface Interactions

The following function alows the host code to extract the active
NodeSurface Interactions from the ContactSearch object. The prototype for this function
is:

C++ voi d Constact Search: : Get _NodeSurface_Interactions(
i nt* node_bl ock_i ds,
i nt* node_i ndexes_i n_bl ock,
int* anal yticsurface_ids,
doubl e* nsi_data );

C FORTRAN( get _nodesurface_i nteractions) (
i nt* node_bl ock_i ds,
i nt* node_i ndexes_i n_bl ock,
int* anal yticsurface_ids,
doubl e* nsi_data );

Fortran get _nodesurface_interactions(
node_ bl ock_i ds,
node_i ndexes_i n_bl ock
anal yti csurface_ids,
nsi _data )

where

node block_idsisan array (of length number_of _interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of interactions) that contains the index in
the Node Block (using Fortran indexing conventions) for the node in each interaction.

analyticsurface ids is an array (of length number_of interactions) that contains the ID of the
Analytic_Surface for each interaction.

nsi_data is an array (of length number_of_interactions*nsi_data size) that contains the data for
each interaction (see Section 1.3.2). The data for each interaction is contiguous (i.e., the
first nsi_data_size locations contain the data for the first interaction).

3.6.5 Getting the Size of FaceFace |nteractions

The following function alows the host code to determine how many
FaceFace Interactions are currently defined in a ContactSearch object and the data size
for al interactions.
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C++ voi d Cont act Search: : Si ze_FaceFace_I nteracti ons(
i nt & nunber _of i nteractions,
int& ffi_data_size );

C FORTRAN( si ze_faceface_interactions)(
i nt* nunber_of interactions,
int* ffi_data_size );

Fortran size faceface_ interactions(
nunber _of i nteractions,
ffi_data_size )

where

number_of_interactions is the number of active FaceFace |nteractions that will be returned by the
function Get_FaceFace_|nteractions (see the next section).

ffi_data size is the number of double precision values returned for the entire set of
FaceFace |nteractions.

3.6.6 Extracting FaceFace Interactions

The following function allows the host code to extract the active FaceFace Interactions
from the ContactSearch object. The prototype for thisfunctioniis:

Ct++ voi d Cont act Sear ch: : Get _FaceFace_I nteracti ons(
int* slave face bl ock ids,

nt* slave face_i ndexes_in_bl ock,
nt* master face bl ock ids,

nt* master face_ indexes_ in_block,
nt* master_face_procs,

nt* ffi _index,

doubl e* ffi_data );

C FORTRAN( get _faceface_interactions)(

int* slave face bl ock ids,

nt* slave face_ indexes in_block,
nt* master face bl ock ids,

nt* master face_ indexes_ in_block,
nt* master_face_procs,

nt* ffi _index,

doubl e* ffi_data );

Fortran get_faceface_interactions(

sl ave face bl ock ids,
sl ave_face_i ndexes_i n_bl ock,
mast er _face_ bl ock_ids,
mast er _face_i ndexes_i n_bl ock,
mast er _face_procs,
ffi _index,
ffi_data)

where
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dave face block idsis an array (of length number_of interactions) that contains the Face Block
ID for the slave face in each interaction.

dave face indexes in_block isan array (of length number_of _interactions) that contains the index
in the Face Block (using Fortran indexing conventions) for the slave face in each interac-
tion.

master_face block_idsisan array (of length number_of _interactions) that contains the Face Block
ID for the master face in each interaction.

master_face indexes in_block is an array (of length number_of interactions) that contains the in-
dex in the Face_Block (using Fortran indexing conventions) for the master face in each in-
teraction.

master_face procsis an array (of length number_of_interactions) that contains the processor that
owns the master_face in each interaction.

ffi_index isan array (of length number_of interactions) that contains the offset into the ffi_data ar-
ray for the data for each interaction (i.e., the data for interaction j begins at
ffi_data[ffi_index[j]]).

ffi_dataisan array (of length ffi_data size) that contains the data for each interaction (see Section
1.3.3). The datafor each interaction is contiguous.

3.6.7 Getting the Size of FaceCoverage Interactions

The following function alows the host code to determine how many
FaceCoverage Interactions are currently defined in a ContactSearch object and the data
sizefor all the interactions.

Ct++ voi d Cont act Search: : Si ze_FaceCoverage_I nteracti ons(
i nt & nunber _of interacti ons,
int& fci_data_size );

C FORTRAN( si ze_f acecoverage_i nteractions) (
i nt* nunber _of interactions,
int* fci_data_size );

Fortran size_facecoverage_interactions(
nunber _of i nteracti ons,
fci _data_size )

where
number_of_interactions is the number of active FaceCoverage Interactions that will be returned by
the function Get_FaceCoverage Interactions (see the next section).

fci_data size is the number of double precision values returned for the entire set of
FaceCoverage Interactions.

3.6.8 Extracting FaceCoverage | nteractions

The following function alows the host code to extract the active
FaceCoverage_|nteractions from the ContactSearch object. The prototype for this function
is:
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C++ voi d Cont act Search: : Get _FaceCoverage_Il nteracti ons(
int* face_bl ock_ids,
int* face_i ndexes_in_bl ock,
int* fci _index,
doubl e* fci _data );

C FORTRAN( get _facecoverage_i nteractions)(
int* face_bl ock_ids,
int* face_i ndexes_in_bl ock,
int* fci _index,
doubl e* fci _data );

Fortran get facecoverage_interactions)(
face_bl ock_ids,
face_i ndexes_i n_bl ock,
fci _i ndex,
fci _data );

where

face block_idsisan array (of length number_of _interactions) that contains the Face Block ID for
the face in each interaction.

face indexes in_block isan array (of length number_of interactions) that contains the index in the
Face Block (using Fortran indexing conventions) for the face in each interaction.

fci_index isan array (of length number_of_interactions) that contains the offset into the fci_data ar-
ray for the data for each interaction (i.e, the data for interaction j begins at
fci_data[fci_index[j]]).

fci_dataisan array (of length fci_data_size) that contains the data for each interaction (see Section
1.3.4). The datafor each interaction is contiguous.

3.6.9 De€eting Interactions

The following function permits the host code to delete al previously found interactions
before conducting a new search. Thisfunction is of particular use when a single search ob-
ject conducts two different enforcements. For example, if an analysis uses both Contact-
GapRemoval and ContactTDEnforcement with a single ContactSearch object, then the
interactions used for ContactGapRemoval can negatively affect the ContactTDEnNforce-
ment. Inthis case, it is better to del ete the interactions determined for ContactGapRemoval
before doing a search for ContactT DEnforcement.

C++ Cont act Err or Code
Cont act Search::Delete_All Interactions();

C FORTRAN(del ete_al |l _interactions)();

Fortran delete_all _interactions()
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3.7 Registering an Enforcement Object with the Search

There are currently two reasons why the search object needs to know about an associated
enforcement object. Thefirst isto allow the enforcement data to be added to the plot data
base (see Section 2.5). The plot database can only be created if ACME was compiled with
Exodusl| support (i.e., noexo was not defined). The second reason is to allow the dynamic
augmented 2-configuration search (see Section 1.2.4) to get the data it needs from a Con-
tactTDENnforcement object to construct the augmented configuration.

The following function may be called for either a ContactTDENnforcement or a Contact-
GapRemoval object. The ContactTDEnforcement object will add the contact force to the
plotting database and the ContactGapRemoval object will add the displacement correction
to the plotting database; both objects will store the data in variables called EnfVarx, Enf-
Vary, and EnfVarz. Note that the C and Fortran API function prototypes are actually in
Enforcement_Interface.h instead of Search_Interface.h.

Ct++ voi d Cont act _Sear ch: : Regi st er _Enf or cenent (
Cont act Enf or cenent * enf orcenent );

C FORTRAN(reg_td_enforcenment _w search)();
FORTRAN(reg_gap_renoval _w search)();

Fortran reg_td_enforcenent_w search();
reg_gap_renoval _w search();

where

enforcement is either a ContactTDENforcement object or a ContactGapRemoval object.
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4. Gap Removal Enforcement Functions

The gap removal enforcement will compute a displacement increment needed to remove
overlaps, as discussed in Section 1.6. This section describes functions that construct and
operate on ContactGapRemoval “objects.” For the C++ AP, these are true objects permit-
ted by the object-oriented capabilities of the language. In the C and Fortran APIs, these
functions create and operate on a ContactGapRemoval “object,” only one of which is cur-
rently allowed.

In each section delineating the ACME API functions (Sections 2, 3, 4, and 5), the different
formsfor the C++, C, and Fortran syntax are presented together for each function call. The
C++ API uses the full object-oriented capabilities of the language. On the other hand, the
C and Fortran APIs, which in actuality have been combined into a single interface, are a
collection of functions that have a pure C interface and can be called from either C or For-
tran rountines. The FORTRAN macro that surrounds all callsin the C syntax converts the
function by appending an underscore to the end of the function name, if appropriate. Be-
cause of this, al datain the C APl must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will alow it to be passed appropriately.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactGapRemoval .h file includes the C++ prototypes. Enumerations for symbolic types
used in the C++ API are also found in ContactEnforcement.h and ContactGapRemoval.h;
these indicate the acceptable integral values that may be used in the C and Fortran APIs.

4.1 Constructing a ContactGapRemoval Object

There is one general purpose constructor for the ContactGapRemoval object. There are
two restart constructors for this object. They are of the same form as all the other objects,
as discussed in Sections 1.9, 2.3 and 2.4, so they will not be discussed further in this sec-
tion.

The prototype for the initial ContactGapRemoval constructor is:

Ct++ Cont act GapRenoval : : Cont act GapRenoval (
doubl e* Enforcenent Dat a,
Cont act Sear ch* search,
Cont act Sear ch: : Cont act Error Code& error );

C FORTRAN( bui | d_gap_r enoval ) (
doubl e* Enforcenent Dat a,
int* error );

Fortran buil d_gap_renoval (

doubl e* Enforcenent Dat a,
int* error );
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where

Enforcement_Data is a real array (of length 1* (number of entity keys)* (number of entity keys))
that stores the kinematic partition factor. It is structured
[n_key*number_entity keys+f _key] where n_key is the node key and f_key is the face
key. The kinematic partition factor controls the master/slave relationship between two en-
tities as described in Section 1.5.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.

error isthe error code (described in Section 1.7) that will reflect any errors that were detected.

4.2 Computing the Gap Removal Displacements

This member function computes the displacement increments necessary to remove any
initial gaps that are contained in the ContactSearch object topology. A static 1-configura-
tion search should be used to define the interactions prior to calling this member function
(regardless of the type of mechanics being solved).

C++ Cont act Err or Code Cont act GapRenoval : : Conput e_Gap_Renoval (
doubl e* displ _cor);

C FORTRAN( conput e_gap_r enoval ) (
doubl e* di spl _cor,
int* error );

Fortran conpute_gap_renoval (

di spl _cor,
error )

where
displ_cor is the displacement correction needed at each node to remove the initial gaps.
4.3 Destroying a ContactGapRemoval Object
C++ ~Cont act GapRenoval () ;
C FORTRAN( cl eanup_gap_renoval ) ();

Fortran cleanup_gap_renoval ()
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5. Explicit Transient Dynamic Enforcement Functions

This section describes functions that construct and operate on ContactTDEnforcement
“objects.” For the C++ API, these are true objects permitted by the object-oriented capa-
bilities of the language. In the C and Fortran APIs, these functions create and operate on a
ContactTDENforcement “object,” only one of which is currently allowed.

In each section delineating the ACME API functions (Sections 2, 3, 4, and 5), the different
formsfor the C++, C, and Fortran syntax are presented together for each function call. The
C++ API uses the full object-oriented capabilities of the language. On the other hand, the
C and Fortran APIs, which in actuality have been combined into a single interface, are a
collection of functions that have a pure C interface and can be called from either C or For-
tran rountines. The FORTRAN macro that surrounds al callsin the C syntax converts the
function by appending an underscore to the end of the function name, if appropriate. Be-
cause of this, all datain the C APl must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will alow it to be passed appropriately.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactTDENnforcement.h file includes the C++ prototypes. Enumerations for symbolic
types used in the C++ APl are also found in ContactEnforcement.h and ContactTDEN-
forcement.h; these indicate the acceptable integral values that may be used in the C and
Fortran APIs.

5.1 Creating a ContactT DEnforcement Object

There is one general purpose constructor for the ContactTDEnforcement object. There are
two restart constructors for this object. They are of the same form as al the other objects,
as discussed in Sections 1.9, 2.3 and 2.4, so they will not be discussed further in this sec-
tion.

The prototype for the initial ContactTDEnforcement constructor is:

C++ Cont act TDEnf or cenent : : Cont act TDENnf or cenent (
doubl e* Enforcenment Dat a,
Cont act Sear ch* sear ch,
Cont act Sear ch: : Cont act Error Code& error );

C FORTRAN( bui | d_td_enf orcenent) (
doubl e* Enforcenment Dat a,
int* error );

Fortran build_td_enforcenent(
Enf or cenent _Dat a,
error )
where
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Enforcement_Data is a rea array (of length 2* (number of entity keys)* (number of entity keys))
that stores the kinematic partition factor and the friction model id. It is structured
[(n_key*number_entity keys+f key)*size data per pair+variable index ] where n_key
isthe node key and f_key is the face key. The kinematic partition factor controls the mas-
ter/slave relationship between two entities. The friction model id pertains to the constitu-
tive behavior of the interactions and is described in the following section.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.

error isthe error code (described in Section 1.7) that will reflect any errors that were detected.

5.2 Defining Enforcement M odels

The contact behavior is controlled by enforcement models. Three types of enforcement
models are currently supported; FRICTIONLESS, CONSTANT_FRICTION, and TIED.
For the C++ API, please note that Add_Enforcement_Model is a function inherited by
ContactTDENforcement. To define the enforcement model to be used, the following func-
tion must be called:

C++ Cont act Sear ch: : Cont act Er r or Code
Cont act Enf or cenent : : Add_Enf or cenment _Model (
Enf or cenent _Model _Types type,
int* |ID,
int* integer_data,
doubl e* real data );

C FORTRAN(t d_add_enf nodel ) (
int* type,
int* id,
int* integer_data,
doubl e* real _dat a,
int* error );

Fortran td_add_enf nodel (
type,
id,
i nt eger _dat a,
real data,
error )

where

type is the enforcement model type (as shown in Table 9).

id is apositive integer identifier for the model.

integer_dataisan array of integer datathat is particular to the model (as shown in Table 9).
real_dataisan array of real datathat is particular to the model (as shown in Table 9).

error isthe return error code for the C and Fortran APIs.

72



Explicit Transient Dynamic Enforcement Functions

Table 9 Transient Dynamic Enforcement Models and Data

Type Integer Data Rea Data
TD_FRICTIONLESS=1 None None
TD_CONSTANT_FRICTION=2 | None Friction Coefficient
TD_TIED=3 None None

5.3 Computing the Contact Forces

The following member function computes the contact forces necessary to enforce the con-
tact constraints that are contained in the ContactSearch object.

C++ Cont act Sear ch: : Cont act Err or Code
Cont act TDEnf or cenment : : Conput e_Cont act _For ce(
doubl e dt ol d,
doubl e dt,
doubl e* mass,
doubl e* force );

C FORTRAN( conput e_td_contact _force)(
doubl e* dt ol d,
doubl e* dt,
doubl e* mass,
doubl e* force,
int* error );

Fortran conmpute_td_contact force(
dt_ol d,
dt,
nass,
force,
error )

where
dt_old isthe previous time step for a central difference integrator.
dt isthe current time step for a central difference integrator.
massis an array that contains the nodal mass for each node.
forceisthe return array containing the computed contact force vectors for each node.
error isthe return error code for the C and Fortran APIs.
5.4 Destroying a ContactT DEnfor cement Object
C++ ~Cont act TDEnf or cenent () ;

C FORTRAN( cl eanup_t d_enf orcenent) () ;

Fortran cleanup_td_enforcenent()
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6. Example

This section outlines a ssmple single-processor search example with multiple face types
and an Analytic_Surface using the C++ interface. The only differences in using the C or
Fortran interface would be calling the analogous C/Fortran functions (the data and calling
seguence would be the same).

6.1 Problem Description

Consider the problem shown in Figure 14, where two bodies impact each other as well as
an analytic plane. One body is discretized with 8-node hexahedral elements and the other
isdiscretized with 4-node tetrahedral elements (the discretizations are not shown in Figure
14, however). For this example, we consider a dynamic search for NodeFace | nteractions.
As previously noted, all interactions with Analytic_Surfaces are static checks, regardless
of the type of search, for thisversion of ACME. The host code isresponsible for creating a
topological representation of the surface to supply to ACME. The Face Block numbering
is shown in Figure 15, the surface topology is shown in Figure 16, and the connectivities
for the faces are given in Table 10.

Current Configuration Predicted Configuration

Figure 14 Example impact problem (two rectangular bodies and an Analytic_Surface)

Figure 15 Face Block Numbering for Example Problem
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Host Code Numbering ACME Numbering
(Face Block ID, Index in Block)

Figure 16 Surface Topology for Example Problem

Because all of the nodes are attached to faces, only one Node Block is used, as required
by the current implementation (this block will then have an ID of 1). For this example,
consider the case where the user wants to specify one set of search tolerance values be-
tween the two bodies and another set between each body and the analytic plane, aswell as
specifying the interaction type between each. To accommodate this, the number of
Face Blocks will be four (one for the “side” face of the left body, one for the “bottom”
face of the left body, one for the “side” face of the right body and one for the “bottom”
face of the right body). The total number of Entity Keys will then be 5 (one each for the
Face Blocks and an additional one for the PLANE Analytic_Surface).

Table 10 Face Blocksfor Example Problem

Host Code | Face Block Index in Connectivity
Face ID ID Block
5 1 1 1-5-2
7 1 2 2-5-3
8 1 3 3-54
10 1 4 5-1-4
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Table 10 Face Blocksfor Example Problem

Host Code | Face Block Index in Connectivity
Face ID ID Block
13 2 1 4-6-3
14 2 2 4-8-6
17 2 3 8-7-6
15 2 4 6-7-3
23 3 1 9-11-14-13
24 4 1 9-10-12-11

6.2 Constructing a ContactSearch Object

The code fragment below represents the call (and error checking) to construct the Contact-
Search object:

Cont act Sear ch: : Cont act Err or Code error

Cont act Sear ch search_obj (
di mensionality, nunber_of states, nunber_of entity_ keys,
nunber _of node_ bl ocks, node_ bl ock_types,
nunber _of nodes_i n_bl ocks, node_gl obal i ds,
nunber _of face bl ocks, face bl ock _types,
nunber of faces_in_block, connectivity,
nunber _of nodal conm partners, nodal conm proc_ids,
nunber _of nodes_to_partner, comruni cation_nodes,
npi _comuni cator, error );

if( error ){ // an error occurred on sone processor
int numerr = search_obj.Nunber_of Errors();
for( int i=0; i<numerr ; i++)

cout << search_obj.Error_Message(i) << endl

exit(error);

}
The data below represent the values of the arguments in the constructor:

di mensionality = 3

nunber of states =1

nunber _of entity_keys 5

nunber _of node_bl ocks 1

node_bl ock_types = { NODE }

nunber _of _nodes_in_blocks = { 14 }

node_gl obal _ids = { 11, 8,13,1,4,17,21, 41,17, 33,19, 27, 38,16 }
nunber _of face_blocks = 4

face_bl ock_types = { TRIFACEL3, TRI FACEL3, QUADFACEL4, QUADFACEL4 }
nunber _of _faces_in_block ={ 4, 4, 1, 1 }

comect ity =d b 2 79,51 1% Iyt T, ad fio)
nunber _of nodal _conm partners = 0
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nodal _comm proc_ids = NULL

nunber _of nodes_t o_partner = NULL
comuni cati on_nodes = NULL

npi _comuni cator = 0

6.3 Addingan Analytic_Surface

The next step is to add the analytic plane. Since we have already added four Face Blocks,
the ID of the PLANE Analytic_Surface will be 5. The code fragment (and error checking)
to add this Analytic_Surfaceis.

error = search_obj.Add_Anal ytic_Surface(
anal yti c_surfacetype,
data );
if( error ){
int numerr = search_obj.Nunber_of _Errors();
for( int i=0; i<numerr ; i++)
cout << search_obj.Error_Message( i ) << endl
exit(error);

}

The data needed to add the Analytic_Surface are (see Table 8 for a description of the data):

anal yti csurface_type = PLANE
data = { [0.0, 0.0, 0.0], [0O.0, 1.0, 0.0] }

6.4 Search Data

The next step is to set the Search_Data. For this example, assume the user only wants in-
teractions for nodes of Face Block 2 against faces of Face Block 3, nodes of Face Block
3 against faces of Face Block 2 and nodes of Face Blocks 1 and 4 against the PLANE
Analytic_Surface. We will use a Search_Normal_Tolerance of 0.01 for interactions be-
tween the two bodies and a Search_Normal_Tolerance of 0.1 for the bodies against the
PLANE Analytic_Surface. We will use Search_Tangential_Tolerance values of half there-
spective Search_Normal _Tolerance values. Currently, a node only has one entity key (this
isalimitation of the current implementation and will be addressed in afuturerelease). The
entity key assigned to the node is from the first face it is connected to. As aresult of this
limitation, we must also allow interactions to be defined between nodes from face block 1
to interact with faces from face block 3 and nodes from face block 4 to interact with faces
from face block 2. The call to add these dataiis:

search_obj. Set _Search_Data( Search_Data );

The search data array, with 2 x 5 x 5 values, is.

Search_Data = {
0, 0.01, 0.005 // FBl1 nodes against FBl faces
0, 0.01, 0.005 // FB2 nodes against FBl faces
0, 0.01, 0.005 // FB3 nodes agai nst FBl faces
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0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
1, 0.01, 0.005
1, 0.01, 0.005
0, 0.01, 0.005
1, 0.01, 0.005
1, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
1, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
1, 0.

0, 0.

0, 0.

1, 0.

0, 0.

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

FB4 nodes agai nst FB1 faces
Anal ytic Pl ane agai nst FBl faces
FB1 nodes agai nst FB2 faces
FB2 nodes agai nst FB2 faces
FB3 nodes agai nst FB2 faces
FB4 nodes agai nst FB2 faces
Anal ytic Pl ane agai nst FB2 faces
FB1 nodes agai nst FB3 faces
FB2 nodes agai nst FB3 faces
FB3 nodes agai nst FB3 faces
FB4 nodes agai nst FB3 faces
Anal ytic Pl ane agai nst FB4 faces
FB1 nodes agai nst FB4 faces
FB2 nodes agai nst FB4 faces
FB3 nodes agai nst FB4 faces
FB4 nodes agai nst FB4 faces
Anal ytic Pl ane agai nst FB4 faces

1, 0.05 // FBl nodes against Analytic Plane
1, 0.05 // FB2 nodes against Analytic Plane
1, 0.05 // FB3 nodes against Analytic Plane
1, 0.05 // FB4 nodes against Analytic Plane
1, 0.05 } // Analytic Plane against Analytic Plane

6.5 Setting the Search Options

(don’ t

(don’ t

(don’ t

(don’ t

Example

exi st)

exi st)

exi st)

exi st)

For this example, multiple interaction definition is necessary but normal smoothing is not
needed. A value of 30 degrees will be used for the SHARP_NON_SHARP_ANGLE. The
code fragment to activate multiple interactionsis

/1 Activate multiple interaction

error = Set_Search_Opti on(
Cont act Sear ch: : MULTI PLE_| NTERACTI ONS
Cont act Sear ch: : ACTI VE,
mul tiple_interaction_data );

if( error ){
int numerr

for( int i=0 ;

search_obj . Nunber _of Errors();
i <num.err ; i++)

cout << search_obj.Error_Message( i ) << endl

exit(error);

}

where multiple interaction_data is a pointer to the SHARP_NON_SHARP ANGLE
which has been set to 30 degrees. The code fragment to deactivate normal smoothing is

/] Deactivate nornm

snoot hi ng

error = Set_Search_Opti on(
Cont act Sear ch: : NORMAL _SMOOTHI NG,
I NACTI VE,

Cont act Sear ch: :

dummy );
if( error ){
int numerr

search_obj . Nunber _of Errors();
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for( int i=0; i<numerr ; i++)
cout << search_obj.Error_Message( i ) << endl
exit(error);

}
Since normal smoothing is being deactivated, dummy is a pointer to double but will never

be dereferenced so itsvalue isirrelevant.
6.6 Specifying Configurations

At this point the topology is completely specified. The search object can be used to com-
pute the interactions once the configurations are specified. Since we are going to perform a
dynamic search, we need to specify the current and predicted configurations for the
Node Blocks (in this case only one block). The code fragment to set the configurationsis:

/1 Supply the current position
for( int iblk=1; iblk<=nunmber_of node_bl ocks ; iblk++ ){
error = search_obj. Set _Node_ Bl ock_Confi gurati on(
Cont act Sear ch: : CURRENT _CONFI G

i bl k,
current _positions[iblk-1] );
if( error ){
int numerr = search_obj. Nunber_of Errors();
for( int i=0; i<numerr ; i++)

cout << search_obj.Error_Message( i ) << endl
exit(error);
}
/1 Supply the predicted position
error = search_obj. Set _Node_ Bl ock_Confi gurati on(
Cont act Sear ch: : PREDI CTED _CONFI G
i bl k,
predi cted_positions[iblk-1] );
if( error ){
int numerr = search_obj.Nunber_of _Errors();
for( int i=0; i<numerr ; i++)
cout << search_obj.Error_Message( i ) << endl
exit(error);
}
}

The current and predicted positions for the nodes are shown in Table 11.

Table 11 Current and Predicted Positions for Example Problem

Node Current Position Predicted Position
1 {-1.10.10.0} {-0.9-0.1 0.0}
2 {-11 01 1.0} {-09-0.1 1.0}
3 {-0.1 0.1 1.0} {0.1-01 1.0}
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Node Current Position Predicted Position
4 {-0.1 0.1 0.0} {0.1-0.1 0.0}
5 {-0.6 0.1 0.5} {-04-0.1 0.5
6 {-0.1 0.6 0.6} {0.1 04 0.6}
7 {-0.1 11 1.0} {01 09 1.0}
8 {-0.1 1.1 0.0} { 0.1 09 0.0}
9 {0.1 0.1 0.0} {-0.1-0.1 0.0}
10 {1.1 0.1 0.0} {0.9-0.1 0.0}
11 {0.1 0.1 1.0} {-0.1-01 1.0}
12 {11 0.1 1.0} {0.9-0.1 1.0}
13 {0.1 1.1 0.0} {-0.1 0.9 0.0}
14 {01 1.1 1.0} {-0.1 0.9 1.0}

6.7 Performingthe Search

The search can now be performed with the following code fragment:

error = search_obj.Dynam c_Search_2 Configuration();

if( error ){
cout << “Error in Dynam c_Search:

for( i=0 ;

exit(error);

}

<< error << endl
int numerr = search_obj.Nunber_of Errors();

i<numerr ; i++)

Error Code = “

cout << search_obj.Error_Message(i) << endl

6.8 Extracting Interactions

The following coding will

NodeSurface_|nteractions:

/1 Get the NodeFace | nteractions

i nt nunber _of NFls,
search_obj . Si ze_NodeFace_I nteracti ons(

nunber _of NFI s,
NFl _dat a_si ze);
i f( nunber_of NFls ){

NFl _dat a_si ze;

extract both the NodeFace Interactions and the
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int* NFI _node_bl ock_ids = new int[nunber_of NFIs];
i nt* NFI _node_i ndexes_in_block = new int[nunmber_of NFIs];
int* NFl _face_block_ids = new int[nunber_of NFIs];
int* NFl _face_indexes_in_block = new int[nunber_of NFIs;]
int* NFl _face_procs = new int[nunber_of NFIs];
doubl e* NFI _data = new doubl e[ nunber _of _NFI s*NFI _dat a_si ze];
sear ch. Get _NodeFace_I nteracti ons(NFl _node_bl ock_i ds,

NFI _node_i ndexes_i n_bl ock, NFI _face_ bl ock_i ds,

NFl _face_i ndexes_i n_bl ock, NFI _face_procs, NFl _dat a) ;

}

/1l Get the NodeSurface_Interactions

i nt nunmber _of NSIs, NSI_data_size;

search_obj . Si ze_NodeSurface_I nteractions(
number _of NSI s,
NSl _data_si ze );

i f( number_of _NSIs ){
int* NSI_node_bl ock_ids = new int[nunber_of NSIs];
int* NSI_node_i ndexes_in_block = new int[nunmber_of NSIs];
int* NSI_anal yticsurface_ids = new int[nunber_of NSIs];
doubl e* NSI _data = new doubl e[ nunber _of _NSI s*NSI _dat a_si ze];
sear ch. Get _NodeSurface_I nteracti ons(NSI_node_bl ock_i ds,

NSI _node_i ndexes, NSI anal yticsurface_ids, NSI _data );
}
Table 12 gives the data for the NodeFace Interactions and Table 13 gives the data for the

NodeSurface Interactions.

Table 12 NodeFace Interactions for Example Problem

Node In.dex Face In.dex Local Unit Unit
Block in Block in Coords Gap Pushback | Surface | Alg.
Block Block Vector Normal

1 3 3 1 1,-1 -0.2 -1,0,0 -1,0,0 |3
1 4 3 1 -1,-1 -0.2 -1,0,0 -1,0,0 3
1 6 3 1 0,0 -0.2 -1,0,0 -1,0,0 |3
1 7 3 1 1,1 -0.2 -1,0,0 -1,0,0 |3
1 8 3 1 -1,1 -0.2 -1,0,0 -1,0,0 3
1 9 2 1 0,0 -0.2 1,0,0 1,0,0 3
1 11 2 1 0,0 -0.2 1,0,0 1,0,0 3
1 13 2 2 0,1 -0.2 1,0,0 1,0,0 3
1 14 2 3 0,1 -0.2 1,0,0 1,0,0 3
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Example

e | et | sutanin | g | mon | Stc
1 1 5 -0.1 -0.9,0,0 0,10
1 2 5 -0.1 -09,0,1 0,10
1 5 5 -0.1 -04,0,05 |0,1,0
1 11 5 -0.1 -0.1,0,1 0,10
1 9 5 -0.1 -0.1,0,0 0,10
1 4 5 -0.1 0.1,0,0 0,10
1 3 5 -0.1 01,01 0,10
1 10 5 -0.1 090,0 0,10
1 12 5 -0.1 090,1 0,10

This completes the example for one time step. It is assumed the host code would take these
interactions, enforce the constraints implied by these interactions and then integrate the
governing equations to the next time step. At that point, the host code can supply the cur-
rent and predicted configurations for the new time step and call the search again to define
new interactions. This process can then be repeated until the analysis is compl ete.

6.9 Exodusl| Output

An Exodusl| output file can be created which contains the topology and interactions with
the following code fragment

int iows = 8§;
int compws = 8;
char QutputFil eNane[] = "contact_topol ogy. exo";
i nt exodus_i d=ex_creat e( Qut put Fi | eNane, EX CLOBBER, &onmpws, & ows ) ;
i f( search->Exodus_Qutput( exodus_id, time ) ){

cout << "Error with exodus output" << endl;

for( 1=0 ; i<search->Nunber_of Errors() ; i++)

cout << search->Error_Message(i) << endl;

}

ex_cl ose( exodus_id );

Figure 17 shows plots from the Exodusl | output for this example. The analytic planeis not
shown in these plots because there is no way to include this plane in the Exodusl| file.
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Figure 17 Exodusll Output for Example Problem

a) The topology with avector plot of displacement.

b) NodeFace_|nteraction vector plot. Note the interaction vectors push back exactly to the
opposing face.

¢) NodeSurface Interaction vector plot. The “top” of the vectors represent the location of
the Analytic_Surface.



Appendix A: Glossary of ACME Terms

ACME - Algorithms for Contact in a Multiphysics Environment.

Analytic_Surface - A rigid surface that can be described analytically by a geometric defi-
nition (e.g., planes and spheres).

ContactErrorCode - An error code returned by all public access functionsin ACME.

ContactFace Type - The type of faces in a Face Block, currently QUADFACELA4,
QUADFACEQS8, TRIFACELS3, or TRIFACEQS6.

ContactGapRemoval - The top level object constructed by a host application to determine
a displacement increment that will remove initial gaps using interactions found by the
ContactSearch object.

ContactNode Type - The type of nodes in a Node Block, currently only NODE.
(NODE_WITH_SLOPE and NODE_WITH_RADIUS not yet available in this release.)

ContactSearch - The top-level object constructed by a host application to search for topo-
logical interactions.

ContactTDENnforcement - The top level object constructed by a host application to deter-
mine forces from topological interactions found by the ContactSearch object for use in
transient dynamics equations.

Dynamic 2-Configuration Search - The search algorithm that uses a combination of a dy-
namic intersection and closest point projection to determine interactions.

Dynamic Augmented 2-Configuration Search - The search algorithm that uses contact
forces from the last time step (from a ContactT DEnforcement object) to construct an aug-
mented predicted configuration. The algorithm then determines interactions using this
configuration with a combination of a dynamic intersection and closest point projection.

Entity Key - An identifier for a topological entity (currently node, face, or
Analytic_Surface) used to extract user-specified parameters from the Search_Data array.

Face Block - A collection of faces of the same type that have the same Entity Key.

FaceCoverage Interaction - A set of datareturned by ACME to the host code that contains
the interacting face and the data describing the interaction (the contour of the uncovered
portion of the face is described by the number of edges and edge nodes of that contour).

FaceFace Interaction - A set of datareturned by ACME to the host code that contains the
interacting face (slave face), a face with which it interacts (master face), and the data de-
scribing the interaction (the contour of the face/face overlap is described by the number of
edges, the edge nodes, the overlap centroid, and a set of edge flags).
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Gap - The distance between a node and a face, in the direction normal to that face in most
cases, defined as positive if the node is not penetrating the face and zero or negative if the
node is on or inside (penetrating) the face.

NODE - A traditional node with position and no other attributes.

Node Block - A collection of nodes of the same type. Currently, all node blocks must be
of type NODE. All nodes that are connected to faces must be in the first Node Block.
Nodes that are not connected to faces (i.e., SPH particles, Gauss points, etc.) must be
placed in Node Blocks 2 through N.

NodeFace Interaction - A set of datareturned by ACME to the host code that contains the
interacting node, the face with which it interacts, and data describing the interaction (con-
tact point in local coordinates, Normal _Gap, unit pushback vector, unit surface normal,
and algorithm used).

NodeSurface Interaction - A set of data returned by ACME to the host code that contains
the interacting node, the Analytic_Surface with which it interacts, and additional data de-
scribing the interaction (contact point in global coordinates, Normal_Gap, and unit surface
normal).

QUADFACELA4 - A 4-node quadrilateral face with linear interpolation.
QUADFACEQS - An 8-node quadrilateral face with quadratic interpolation.

Search Data - An array containing user-specified parameters (currently three:
Interaction_Status, Search Normal_Tolerance and Search Tangential _Tolerance) that
must be set by the host code to control the search algorithms for all possible pairs of inter-
acting topological entities.

Search_Normal_Tolerance - An absolute distance defined by the user to determine, in con-
junction with any physical motion, whether two topological entities interact. This toler-
ance acts normal to the face.

Search_Tangential _Tolerance -An absolute distance defined by the user to determine, in
conjunction with any physical motion, whether two topological entities interact. This tol-
erance acts tangential to the face.

Static 1-Configuration Search - The search algorithm that uses only one configuration to
determine interactions using a closest point projection.

Static 2-Configuration Search - The search algorithm that uses two configurations, current
and predicted, to determine interactions using a closest point projection.

TRIFACEL3 - A 3-node triangular face with linear interpolation.

TRIFACEQEG - A 6-node triangular face with quadratic interpolation.
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