
S

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
US. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reDorts@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders @ ntis.fedwor1d. eov
Online order: http://www.ntis.gov/ordering.htm

mailto:reDorts@adonis.osti.gov
http://www.doe.gov/bridge
http://www.ntis.gov/ordering.htm

SAND2001-3213
Unlimited Release

Printed October 2001

Final Report for the
Intrusion Detection for Asynchronous Transfer Mode

(ATM) Networks
Laboratory Directed Research and Development Project

Thomas D. Tarman, Edward L. Witzke, and Brian R. Kellogg
Advanced Networking Integration Department

Keith C. Bauer
Advanced Decision Support Applications Department

William F. Young
Networked Systems Survivability and Assurance Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Sumit Ghosh
Stevens Institute of Technology

Department of Electrical & Computer Engineering
Hoboken, NJ 07030

Abstract
Asynchronous Transfer Mode (ATM) is widely used as a backbone for corporate and public
telephone and data networks, and its availability is paramount to the correct operation of the
Internet Protocol (IP) and higher-layer applications. Key to the correct operation of ATM is
its set of control plane protocols, which perform functions such as virtual circuit signaling
and routing. If these protocols are attacked, then denial of service can result. Therefore, a
system is required to monitor these control plane protocols, and respond if protocol events
indicate a possible attack. Before this project, no system existed that performed Layer 2 (e.g.,
ATM, switched Ethernet, etc.) intrusion or misuse detection.

ATM is a switched network technology, and other protocols (notably IP) are also being
implemented in a switched fashion. Therefore, the general problem of intrusion detection in
a switched network is receiving more attention. This paper describes in detail the Switched
Network Intrusion DEtection (SNIDE) system that was developed under a Sandia
Laboratory-Directed Research and Development project. This system was designed to
perform control plane intrusion detection on a general switched network, and implemented
to perform intrusion detection specifically on ATM networks. This system includes
components that implement intrusion sensing, assessment, and response, along with
management tools and graphical user interfaces to configure system components. Initial
results have shown that this system operates as expected, and vendors have expressed
interest in possible licensing of components from the SNIDE system.

Acknowledgments

The authors wish to thank Bob Hutchinson for his ideas and help with concept development
during the proposal stage and early in the project. We would also like to thank Tim Draelos
for his work early in the project, and for his ideas in adaptive intrusion detection. We are
grateful to Andy McFarland of the U.S. DoD for his support and for providing us with a
different application scenario. Finally, we would like to thank Marcus Epperson for his help
in the review of this report.

“SSH is a registered trademark of SSH Communications Security

All other trademarks belong to their respective owners.

2

E:

... sJUaA3 1030JOJd INNd zp

... zp paAKa3aH a%?SSam J3aUUO3

TP ... pa~Ia3aa a%ssam dnJac;

... sWaA3 103030Jd INn IP

Tp ... yxr~o~ aS-essaN Ioao?o.rd Juaurssassv - JosuaS :v x!puaddv

saaua~ajax

81 ... suo!snpuo3

9E

PF

...

.. STdm 0% 3aINS %UlLIddV

(STdm) %!Y3?!MS IaqR? 103oJoJd!l1nm 07 uo!J3nPoJWI ...

.. sa!2oiouy3a& ~JOM~N pay~p~~ 01 4q!qm!@v

OE ... suoqwap!suo3 =luq-e3s

... 8z sa~ua!~adx3 paqJsa&

... 9z SJOSU 9s PaSBH- aJBMPJBH

zz ... ura~sdg uoqaalaa uo!snJJuI m~v U!YJ!M asn

zz .. dJAJNS JO Ma!AJaAO

Tz ... sxosuag 33aqpu1 pasq-a~~~yos

gT uopquauraIdur1 IOOJ,J~~~J

9T uo!lquaura~durI iosua~ INn

...

..

.. s~osua~ paqa paSBH-aJBM?JOS

W!P3 VH

.. sasuodsax

.. IT

... TI aul2u3 Juaurssassg

oI .. sluauoduro3 PUB a.xnJ3aqq3JV ~I(TINS

.. y3€?l$v .IaAO-aTE& Japt?aT dnox3 Jaad - 33B$JV a1dWBX3

.. * uopnpoqu1

SurLUOJ3V ...

New PNNI Node .. 42

New PNNI Link ... 42

Deleted Horizontal PNNI Link .. 42

New PNNI Peer Group Leader ... 43

Change PNNI Peer Group Leader ... 43

SNMP Events .. 43

UNI Signaling Down ... 43

UNI Signaling Up .. 44

ATM Switch Link Up .. 44

Appendix B: LDRD Data .. 45

FYOO Annual Report Summary ... 45

FYOl Annual Report Summary ... 49

Appendix C: Timeline of Sandia’s ATM Forum Impact ... 53

Figures

Figure 1: Example ATM PNNI configuration . pre-attack ... 8

Figure 2: Peer group leader takeover .. 9

Figure 3: ATM intrusion detection architecture .. 10

Figure 4: Graphical rule editor .. 13

Figure 5: Active direct, PNNI sensor .. 15

Figure 6: Passive direct, UNI sensor ... 16

Figure 7: UNI sensor operation ... 17

Figure 8: Initial FilterTool window ... 19

Figure 9: Opening a local filter file ... 19

Figure 10: Filter specification dialog for UNI SETUP message .. 20

Figure 11: Example UNI sensor filter specification ... 21

Figure 12: SNMP sensor .. 23

4

Figure 13: Hardware-based sensors in network core ... 26

Figure 14: Simplified architecture of a hardware-based sensor .. 27

Figure 15: General architecture of a hardware-based sensor ... 27

Figure 16: ATM intrusion detection demonstration .. 28

Figure 17: Distributed intrusion detection architecture for ATM networks 31

Figure 18: A representative ATM network topology .. 33

Figure 19: Label switching example ... 35

Figure 20: Timeline of Sandia’s impact in the ATM Forum .. 53

5

Acronyms

AAL - ATM adaptation layer

AE - assessment engine

ASIC - application-specific integrated circuit

ATM - Asynchronous Transfer Mode

CR-LDP - constraint routed LDP

DNS - Domain Name Service

IETF - Internet Engineering Task Force

IP - Internet Protocol

IPC - interprocess communication

FEC - forwarding equivalence class

GUI - graphical user interface

LDP - Label Distribution Protocol

LGN - logical group node

LSP - label switched path

LSR - label switching router

MAC - media access control

MPLS - MultiProtocol Label Switching

NIC - network interface card

OSPF - Open Shortest Path First

PGL - peer group leader

PLD - programmable logic device

PNNI - Private Network-Network Interface

QoS - quality of service

RSVP - Resource Reservation Protocol

6

RSVP-TE - RSW with traffic engineering extensions

SNIDE - Switched Network Intrusion DEtection

SN - sensor notification

SNMP - Simple Network Management Protocol

TCL - Tool Command Language

UNI - User-Network Interface

VC - virtual circuit

VCI - virtual channel identifier

VPI -virtual path identifier

7

Introduction

Asynchronous Transfer Mode (A m networks currently form the foundation for many
corporate networks, private and public telephone networks, and for much of the Internet
backbone (current estimates by the IETF and ATM Forum network standards bodies state
that 75% of today’s Internet traffc traverses ATM networks). Due to ATM ubiquitous (albeit
invisible) deployment, many applications and services that use IP often rely on the correct
functioning of an ATM network at some point in the end-to-end path. If the core ATM
network were taken down due to a misconfiguration or attack, the effect would be manifested
as a network outage, and could be noticed by many users.

Many mechanisms exist today to monitor IP protocol flows to detect IP infrastructure attacks
(such as S Y N flooding) and precursors to IP attacks (such as ping sweeps). While these
mechanisms serve a useful purpose in detecting a class of attacks, they do not address the
entire picture of possible network infrastructure attacks. That is, attacks on the ATM control
plane protocols (e.g., the virtual circuit establishment and routing protocols) are invisible to
today’s IP intrusion detection systems. An example of an ATM protocol attack is presented
next.

Example A TM Attack - Peer Group Leader Take-over Attack

The ATM protocol that is responsible for routing virtual circuits is the Private Network to
Network Interface (PNNI) protocol. PNNI, which is based on the Open Shortest Path First
(OSPF) protocol, is a link state protocol. That is, it tracks the network’s topological and
quality of service (QoS) state to determine how to best route a connection based on its $OS
and connectivity requirements. However, the number of state parameters that must be
tracked grows very quickly with the size of the network. Therefore, PNNI includes the
concept of summarization, where ATM switches organize into peer groups, select a peer
group leader,.and the peer group leader speaks for the peer group when advertising topology
and QoS link state information to other peer groups, as shown in Figure 1.

/ \
/ \

\ // Rougua Switch \
\
\
\

Figure 1: Example ATM PNNI configuration - pre-attack

8

In this example, switches A.l, A.2, and A.3 organize themselves into a peer group (because
they have matching address prefixes), select switch A. l as the peer group leader (PGL), and
appear to the rest of the network a s a logical group node (LGN) with address A. Likewise,
switches B.1, B.2, and B.3 organize into a peer group, select B.2 as the PGL, and form LGN
B. Therefore, in the next level of the hierarchy, two nodes appear - A and B, which reduces
the complexity of the network topology and minimizes the required size of the switches’
routing tables.

Because the peer group leaders represent the link state within their peer groups, their
correct operation is important to the correct routing of virtual circuits in an ATM network.
This leads to a n example of an ATM protocol attack - the peer group leader takeover attack.
This is an attack where a rogue node takes over leadership of an ATM PNNI Peer Group.
This attack can be executed by an insider penetrating an existing PGL, or by a node outside
of the peer group joining the group and getting himself elected PGL, as shown in Figure 2.
At that point the corrupt PGL can falsify topology information or adjust $OS parameters and
disseminate the modified information to other LGNs, effectively cutting off communication to
portions of the network. This type of attack is described by Smith, Hill, and Robinson in [19].

I‘ \
\

I’ Rougue Switch
\
\
\
\
\

Peer Gmup A Peer Group B I
~~ ~

Figure 2: Peer group leader takeover

For demonstrating this attack against the ATM network intrusion detection system, we will
focus on the outsider forcing a PGL election. For this attack to be successful, we should
detect three events. First, we should see a member join the group. Next, we should detect a
PGL election. The third event is the announcement of a new PGL. (This might only be two
detectable events -“New member joins group” and “PGL election h e l d - if the
announcement of the PGL election includes the election results.) If these events occur
(possibly within a specified time) and the newly elected PGL is the same as the new node
who recently joined the peer group, then the PGL take-over attack is assumed to have
occurred.

9

SNIDE Architecture and Components

ATM intrusion detection, and intrusion detection on switched networks in general, presents
a unique problem in that a single intrusion detection box is not sufficient to get a complete
view of the traffic in a network or subnetwork. The Switched Network Intrusion DEtection
(SNIDE) system developed under this project uses a distributed intrusion detection
approach, where sensors are placed throughout the network (on the edges, in hosts, and in
the core) and report ATM control plane protocol events to a central assessment engine for
correlation and analysis. Sensors are configured to look for specific events that may be
related to ATM network protocol attacks. Sensors send events to an assessment engine
through an out of band communications channel (to prevent network attack from disabling
intrusion detection system). At the assessment engine, the incoming events are correlated
and matched against an attack template to determine if a response is required. If so, then it
activates a response agent.

The obvious risk with distributed intrusion detection systems is that as the number of
sensors per assessment engine increases, a t some point the incoming events from the
distributed sensors will overwhelm the assessment engine. Therefore, an assessment
hierarchy is recommended for large networks, with the lowest-level assessment engines
receiving events directly from the sensors (e.g., sensors belonging to the lowest-level ATM
peer group), and higher-level assessment engines receiving events from the lower-level AE
response agents, a s shown in Figure 3.

Assessment
Hierarchy

Anomalous evenk are
observed by edge andcore

sensors and reported lo and Sortware&nsors
I assessment hierarchy k r

f analysis and response
d
m

Figure 3: ATM intrusion detection architecture

The purpose of this project is to develop the SNIDE architecture and components shown in
Figure 3, including the assessment engine and sensors. The sensors fall into three categories
- active direct sensors, passiue direct sensors, and indirect sensors. The active direct sensors
directly operate on the ATM protocols, and actively participate in the protocol operations. An
example of this sensor is the PNNI sensor, where the sensor implements a portion of the

10

PNNI protocol, and joins a n ATM peer group as if it were a switch. The second sensor is the
passive direct sensor, which passively attaches to the network (e.g., using a fiber optic tap),
and monitors ATM protocol messages. An example of this sensor is the UNI sensor, which
monitors UNI messages, and if a message matches a filter template, it sends a n event to
assessment. The third sensor is the indirect sensor, which monitors the effects of ATM
protocol operations. An example of an indirect sensor is the SNMP sensor, which takes
switch SNMP traps (e.g., traps that indicate the creation of a new virtual circuit), filters
them. and re-formats them into events for the AE.

Sensors may be implemented in software to facilitate wide distribution and handling of
complex protocols. These sensors are typically deployed at the edges, where speed is not
critical, but large-scale deployment is required. Sensors may also be implemented in
hardware to facilitate high-speed filtering of simple protocol messages. These sensors are
typically deployed in the core, where speed is critical, but traffic and protocol flows are
aggregated, therefore not requiring a large number of sensors. These sensors must be simple;
therefore, they typically implement the passive direct sensors (e.g., UNI sensors).]

Assessment Engine

The Assessment engine is the piece of the system that is responsible for receiving incoming
messages from sensors, assimilating the information from the tripped sensors, and
determining if the messages received constitute an intrusion, based on the rules specified by
the system administrator. If it has been determined that a possible intrusion has occurred,
the Assessment engine will send a message to one or more response components to perform
the action specified in the rule.

The Assessment engine is rule driven, that is, its behavior is determined by specifying a set
of text based rules. To provide flexibility, the definition of what constitutes an intrusion is
left to the intrusion detection system administrator. A graphical rule editor, described below,
is provided to allow the administrator to define what types of intrusions are to be monitored.
The rules consist of combinations of sensors with boolean operators and filters. An example
of a rule written out could be something like this: Watch for a PNNI New Node Sensor
message from one switch AND a PNNI New Node Sensor message from another switch
within a 20-second interval. If those events happen, within the time limit, then notify the
administrator of the fact with an e-mail message.

Assessment Rules can be made arbitrarily complex by using Operator and Filters. Operators
allow creation of logic constructs that combine incoming Sensor Notification (SN) events.
When grouped together, they are referred to as solution sets. Each operator defines one logic
operation that is satisfied when a complete solution set has been assembled. In the
Assessment engine implementation, operators are organized in a tree-like hierarchy to allow
complex logic to be specified, and can be nested to an arbitrary depth. Each operator may
have one or more child operators and a single parent. The input to any operator is one or
more solution sets from its child operators, and the output is one or more solution sets to its
parent operator. When a n operator “receives” a new solution set from one of its children, it
tracks this as a partial solution set for its level. The new partial solution set is combined with
existing partial solution sets to determine if new completed solution sets result that can be
“sent” to its parent. As solution sets are combined, they are checked to make sure that they
don’t duplicate any existing sets by comparing the SNs that make up the sets. If a solution
set is a duplicate, it is discarded. When an operator that has no parent generates a solution
set, the intrusion signature has been satisfied and responses are generated.

11

The operators implemented in the Assessment engine are:

And - logical combination of two or more child operators; all child operators must be satisfied

Or - logical combination of two or more child operators; any child operator may be satisfied

Sequence - similar to the “ a n d operator, but sensor notifications from child operators must
be in time-order

Count - a single child operator must be satisfied some specified number of times

One or more filters may be associated with each operator to restrict solution sets. Filters
check the SNs in the solution set to make sure they have values that, by themselves or in
combination with other SNs, are in accordance with the filter parameters. If a solution set
does not pass a filter, it is discarded. In order to track the smallest number of solution sets,
all filters in the hierarchy are applied any time a partial solution set is generated. This
eliminates tracking solution sets at a particular operator level that would fail at some parent
operator level.

The filters implemented in the Assessment engine are:

time - all of the sensor notifications in a solution set must occur within the specified delta
time

maximum - all of the sensor notifications in a solution set must have a parameter of the
specified type whose value is at most the specified value

minimum - all of the sensor notifications in a solution set must have a parameter of the
specified type whose value is a t least the specified value

select - all of the sensor notifications in a solution set must have a parameter of the
specified type whose value is one contained in a specified list of values

same - all of the sensor notifications in a solution set must have a parameter of the specified
type whose value matches all other sensor notifications

different - all of the sensor notifications in a solution set must have a parameter of the
specified type and the values of the sensor notifications in each child operator must differ
from the values in all other child operators

Asessment Process Design

Since rule definitions may be arbitrarily complex, there exists the possibility that the
processing of a Sensor Notification through any single rule may take a lot of time. In order
to allow other rules to process simultaneously, the Assessment component is split into
separate processes. There is an Assessment Control process that is responsible for
coordinating the inputs and outputs of one or more Assessment processes. Each Assessment
process is responsible for the processing of one or more rules. They receive as input Sensor
Notifications from the Assessment Control process, and output Intrusion Notifications to the
Assessment Control process. The configuration of how many Assessment processes and
which rules each execute is contained in the rules set definition file. The Assessment Control
process has responsibility for starting and stopping Assessment processes.

12

Responses

The assessment engine design incorporates a modular architecture for implementing
responses. Each response is implemented as a single module, and is triggered when an
attack signature is detected. That is, when a rule is constructed, the operator can also specify
zero, one, or more responses that are associated with the rule. Therefore, when the rule is
satisfied, messages are sent to all of the specified response components. These messages,
which are formatted the same as those in the sensor-assessment protocol, contain name-
value pairs that provide parameters to the response modules, allowing them to tailor their
responses appropriately. For example, if an SNMP sensor detects the connection of a new
switch, it can send a message to the “disable port” response module that contains the IP
address and port identifier that must be disabled. Other example responses [24] include:
have a modem dial a telephone number to page the network administrator, generate an e-
mail to the security officed, or change the sensitivity of a sensor.

Rule Editor

The assessment engine uses a misuse template, or rule file, to determine whether a sequence
of events constitutes a n attack, and if SO, which response should be initiated. The rule file is
an ASCII text file which follows a specific structure and syntax. For the casual user, this
syntax can be cumbersome. Therefore, a graphical rule editor was developed, which
automatically generates syntactically correct rule files.

The rule editor, which is described in more detail in [22], allows a user to specify event
sequences in a graphical fashion, as shown in Figure 4. In this example, the rule “pnnidemo”
is satisfied if a ‘PNNI New Node” event is received, AND either
“PNNI PGL Change” event is received.

a “PNNI New PGL” OR a

Figure 4: Graphical rule editor

13

The rule editor allows the user to specify filter criteria for the events (e.g., minimum and
maximum values for various parameters that accompany event notifications). In addition, a
graphical interface is also provided for selecting one or more responses for the rule, and the
parameters that are provided in the message to the response module.

Once the rule and responses are specified, the user can check the rule for consistency and
save the rule specification in the text-based format that the assessment engine can
understand.

Software-Based Direct Sensors

This section describes two direct sensors - the PNNI sensor (active direct sensor) and the
UNI sensor (passive direct sensor). Other sensors are also possible, but were not developed in
this project. These sensors include sensors that monitor ATWIP adaptation protocols (e.g.,
local area network emulation, classical IP over ATM), ATM infrastructure services (e.g.,
ATM name services), and IP services (e.g., MPLS label distribution, IP routing protocols,
DNS).

The architecture of the PNNI sensor is shown in Figure 5. The PNNI protocol module
interfaces to the ATM network through a set of ATM interface drivers that are specific to the
operating system and network interface card (NIC) on the sensor host. The PNNI module
implements a subset of the PNNI routing protocol, and therefore, causes the sensor host to
appear to the rest of the ATM network as another ATM switch. (When monitoring the PNNI
signaling protocol, the UNI sensor, which is described below, should be used.) PNNI routing-
specific events (e.g., reception of PNNI topology state packets, protocol state transitions, etc.)
are processed by a TCL script, which filters the events, and re-formats them into the format
specified by the sensor - assessment protocol (these protocol messages are described in detail
in Appendix A). The re-formatted messages are sent to the assessment engine using the TCL
IPC shim, which makes calls to the IPC library, which implements the message passing
protocol.

14

Linux or Solaris
Host

ATM Interface Drivers

k
Assess

ATM Network w
Figure 5: Active direct, PNNI sensor

The UNI sensor represents the class of passive direct sensors in that it directly implements a
portion of the ATM UNI protocol and also the PNNI signaling protocol, both of which are
based on the International Telecommunications Union’s Q.293 1 signaling protocol. This
sensor observes protocol messages in a passive fashion. The general architecture of the UNI
sensor is shown in Figure 6 (where it is attached between two switches to observe Q.2931
flows). At this level of abstraction, the UNI sensor is mostly identical to the PNNI sensor
described above in that it implements a protocol processor, event filters, and sensor-
assessment protocol handling routines. In fact, all modules except for the UNI protocol
processor and event filters re-use the same code that is used for the PNNI sensor.

15

Linux Host

ATM Interface Driven

ATM Network w Assessment

Figure 6: Passive direct, UNI sensor

However, rather than connecting directly to the network like the PNNI sensor, the UNI
sensor attaches to the network using a fiber optic tap, and because the sensor architecture
only allows one connection to the network, each UNI sensor can only view half of the duplex
UNI protocol.

The implementation of the UNI sensor is described in more detail in the next section.

UNI Sensor Implementation

The operation of the UNI sensor (configured to examine signaling messages on a switch-
switch link) is depicted in Figure 7.

16

P FilterTool host

Hardware filler

UNI Filter

Satware filler

I I

to assessment
engine

rn

Switch Switch

Figure 7: UNI sensor operation

On the FilterTool host the FilterTool GUI (described below) creates the filter specification file
“default.ff’ and pushes it through a secure shell tunnel using the “scp” command to the UNI
filter host. The default.ff file is a human-readable (possible manually generated) ASCII text
file. FilterTool allows a user who does not know the filter specification language to generate a
default.ff file that is syntactically correct. The FilterTool host then executes the parser on the
remote UNI sensor using the “ssh command. The use of the secure shell utilities permits
strong public key authentication to restrict filter loading to authorized users only, and
encrypts the transfer and remote execution commands to prevent eavesdropping of sensor
management operations.

On the UNI sensor host (a RedHat version 7.1 Linux system, with kernel 2.4.2), the parser
(implemented in flex and bison) separates the default.ff filter specification into two sub-
specifications - a hardware specification (in hw.spec) and a software specification (in
sw.spec). The filter itself is split into two components - a hardware component and a
software component. For the purposes of this project, the hardware component is simulated
in software (a design for a n actual hardware filter is described later). When the simulated
hardware filter receives the UNI message, it reads the hw.spec file. If the message passes the
filter, then it is forwarded to the software filter. The software filter reads sw.spec, and if the
message passes this second filter, an event is constructed and sent to the assessment engine.
If new hw.spec or sw.spec files are generated, then their rules take effect on receipt of the
next message.

The UNI sensor is composed of a TCL script, which implements the main functionality, and a
series of C files that implement the “back e n d processing functions. The q2931.tcl script
performs the following functions:

1. calls the appropriate C routine to get a message that passes all of the filters
(hardware and software)

17

2. reformats the returned message into the appropriate format for the sensor -
assessment protocol

3. sends the message to the assessment engine

The functions in the C files (q2931.c, hw.c, and aal5.c) perform the following operations:

1.

2.

3.

4.

5.

6.

7.

connects the C routine GetMsg() to the TCL command “q293l-getmsg”

initializes the ATM interface to receive signaling messages from the fiber optic tap

reads AAL 5 message from the signaling VC

performs the “hardware filter” function (currently based on the UNI message type)
using the hwspec file for the filter rules

performs the “software filter” function using the sw.spec file for the filter rules

decodes the resulting message

passes decoded result to calling TCL script (q2931.tcl)

FilterTool Implementation

FilterTool is a program designed to help users createlmodify filter rules for UNI messages.
FilterTool also lets the user load these filter rules to a remote system (using ssh) that does
the actual filtering. The remote system will communicate the filter rules to the hardware
sensor (hardware filtering may be simulated or not implemented) that will do a limited
amount of filtering. Whatever passes the hardware sensor filters will be forwarded on to the
remote host that will do the rest of the filtering in software. FilterTool supports filtering for
four types of UNI messages: SETUP, CONNECT, RELEASE, and RELEASE COMPLETE.
These were chosen because they are common UNI messages and could adequately
demonstrate our UNI filters work properly.

FilterTool is written in C++ and uses Qt 3.0 beta 2 (www.trolltech.com) widgets for the user
interface. It was written and tested on the RedHat Linux 7.1 operating system and should
work on most Linux environments (not tested). Before FilterTool is started, the user needs
to be authenticated with ssh. This is done by opening a terminal window and typing “ssh-
agent -s xterm” at the prompt. Then in the new window, type “ssh-add and launch
FilterTool. Downloading and uploading filters uses scp to transfer files which requires the
process mentioned above. If the user just wants to create, alter, or view filters that are on
their own machine, ssh is not necessary. Using ssh and scp allows the data to be transferred
securely. When the program is first started, all fields are empty as shown in Figure 8.

18

Figure 8: Initial FilterTool window

The user can proceed by either downloading the filter rules from a UNI sensor, opening a
local filter file (with a .ff extension as shown in Figure 9), or start from scratch by adding
new filters.

Figure 9: Opening a local filter file

In each case, filter rules will appear in the large list box in the center of the window. Each
individual filter on the screen can be selected by clicking on the item. If the user wants to
edit the selected item, they can either double-click that item or click the “Edit Filter” button.
To remove a filter rule, the user can select the rule and press the “Remove Filter” button.
When the “Add Filter” button is pressed, a dialog box appears allowing the user to select one
of the four UNI message types supported: SETUP, CONNECT, RELEASE, and RELEASE

19

COMPLETE. The user will select one of these and a different dialog box will appear
depending on the message type selected. For example, if the user chooses SETUP, a large
dialog box appears that allows the user to specify the called party number, calling party
number, ATM traffic descriptors, and AAL parameters (SETUP dialog box is shown in Figure
10).

Figure 10: Filter specification dialog for UNI SETUP message

Alternatively, if they choose RELEASE, a small dialog box will appear that allows the user to
select which cause or causes they want to filter.

Filter rules are actually just strings written in a specific order so that they can be parsed by
the UNI sensor. By default, all messages will be filtered in (filtered in means that the
message is kept and forwarded on to the assessment engine, filtered out means that it is
thrown away). If the user wants all SETUP messages to be filtered in, they just need to
make sure there are no SETUP rules or that the only SETUP rule on the screen is simply
“SETUP. If a SETUP or CONNECT dialog is opened, and then accepted, without any fields
being entered, the rule “SETUP or “CONNECT’ will be added to the screen showing that it
will filter in all of that message type. For RELEASE and RELEASE COMPLETE, the “Filter
in all causes” option should be added to filter in all of those message types. This is not
necessary, though, because as long a s there are no filter rules of that message type, all of
those messages will be filtered in.

20

To filter out messages, the user needs to decide what messages they want to filter in. For
example, if the user only wants to see RELEASE messages that are caused by “user busy”,
they should press “Add Filter” and then choose RELEASE. In the Release Filter dialog box
they can choose “user busy” and add that cause to the list. When the user presses the “OK”
button, the string “release cause(val=5)” will be displayed in the main window. This means
that all RELEASE messages that do not have the cause “user busy” will be filtered out.

After this is done to each message type (as needed) the user can save the filter specification
(an example of which is shown in Figure 11) to a file. If this is what they want to configure
the filter with, they can choose to upload it to a remote host. The user must specify the IP
addresslhost name and the path to the directory of where the parser resides. The button
“Upload Filters” is pressed and the user can choose the .ff file they want to upload.
FilterTool will send this file to the remote UNI sensor and will run the parser on the file
(thus configuring the sensor’s softwarelhardware filters). If there are any errors, a message
will be displayed a t the bottom of the screen saying to check the console for details. To verify
that the correct file has been uploaded, the user can then push the “Download Filters” button
and FilterTool will display all of the filters that are loaded on the remote host.

Figure 11: Example UNI sensor filter specification

Installation

This program requires Qt to run. To get Qt (it’s free) go to www.trolltec ... com anL navigate
to “Downloads”. Then select ‘‘QtIXll Free Edition”. Download the file and follow the
instructions bundled with the download. After Qt is installed properly, FilterTool should be
able to run. If there are any problems, go in to FilterTool’s directory and enter “make clean”
in the console. Then re-make the program by typing “make”.

Software-Based hidirect Sensors

The SNMP Sensor is a series of Tcl scripts that interface SNMP operations and commands to
the assessment engine. The SNMP Sensor is considered a supplementary element of the
ATM Intrusion Detection effort and is not the primary focus of the project. However, SNMP

21

capabilities allow the inclusion of additional event information and collaborating data, and
the ability to initiate responses on a n ATM switch in the network. This section provides a
brief overview of SNMP, discusses its use in the ATM intrusion detection context, describes
the basic functionality of the implementation, and proposes how SNMP strengthens the
extensibility and flexibility of the ATM intrusion detection approach.

Overview of SNMP

Simple Network Management Protocol (SNMP) is essentially a specialized requestheply
protocol designed for the management of network devices. I t supports client-server
operations and allows a system administrator to monitor the status of various device
parameters a s well as perform configuration management from remote locations. A key
component of the SNMP approach is the management information base (MIB), which
specifies the pieces of information that can be retrieved from a network node. The syntax
utilized for data storage by the MIB is the Abstract Syntax Notation One (ASN.l). In the
request process, the SNMP client places the ASN.l identifier for the desired MIB variable
into the request message, and sends the message to the server. The server, upon receiving
the request, maps this identifier into local variable, retrieves the current value stored in the
variable, encodes that value using the ASN.l syntax, and sends the response to the client.
The two types of messages involved are an SNMP request and an SNMP reply. An
unsolicited message, i.e. a n SNMP trap, involves the SNMP server sending a message in the
same format as previously described to a designated client(s), but without any initial request
by the client(s). A more detailed explanation of SNMP operations and the key components
can be found in “SNMP, SNMPv2, and RMON: Practical Network Management” by William
Stallings [20]. It should be noted that SNMP was designed for the TCP/IP environment, and
relies on IP as the data transmission protocol.

Use within ATM intrusion Detection System

Within the ATM Intrusion Detection system, the SNMP agent on an ATM switch provides a
secondary or indirect sensor for data collection, and allows the assessment engine to issue a
response to the ATM switch. The type of trap events sent by the SNMP agent varies from
statistical traffic data to basic connectivity establishment. Although the SNMP agent has a
wide range of trap responses available, the only those directly relevant to an intrusion
attempt received consideration by the SNMP Sensor.

The SNMP response capabilities also vary, but were limited to administratively disabling a
port for this prototype. Use of responses must be carefully controlled so as not to allow the
intrusion detection process to inadvertently shut down the network. Careful management of
the response decision process reduces the potential for exploitation by an adversary to
compromise the operation of the network.

Basic Functionalitv of SNMP Sensor

A series of Tcl scripts that interface SNMP operations and commands to the Assessment
Engine make up the SNMP sensor. The scripts developed in the project only demonstrate
the basic functionally possible with SNMP operations, and are not intended to serve a s a
production level application. Figure 12 indicates the basic components of the SNMP Sensor,
and description of the various components and the necessary interactions follows.

22

Trap Message
from ATM

switch Linux Host

c
Assessment

Engine

Figure 12: SNMP sensor

General operation and components of the SNMP Sensor are as follows. The first component,
the SNMP agent or code residing on the ATM switch, generates the SNMP trap messages (I),
and sends those messages to the SNMP trap daemon on a Linux host, (2). Tcl scripts filter
the incoming traps, and reformat the trap messages (3), destined for the Assessment Engine
(4). The incoming messages are processed with data from the direct sensors at the
Assessment Engine. If a response is necessary, the Assessment Engine issues a response to
the SNMP sensor via the Linux host. The response message is formatted in the appropriate
ASN.l notation (5), and sent to the SNMP agent on the ATM switch (6). Initialization of the
SNMP Sensor occurs by 1) running the SNMP daemon, and 2) running the snmpitf.tc1 script.
Creation or initialization of all other files and scripts occurs automatically, assuming
accurate configuration parameter and path settings. More detailed descriptions of the
individual blocks and the Tcl scripts, trapitf.tc1, snmpitf.tc1, and snmpcmditf.tc1, follow
below.

The trap message (1) format from the ATM switch adheres to ASN. 1 notation, and includes a
specific identifier associated with a particular condition on the switch. A physical link
connection, the signaling status on a port, etc., may have changed state, which causes the
issuing of a trap message. Before forwarding to the Assessment Engine, the Linux host
filters the generated SNMP trap messages for relevancy and reformats the data.

To communicate with the Linux host, the SNMP daemon (2) must be running on the Linux
host, and the IP address of the Linux host must be set as the destination address for trap
messages generated on the ATM switch. The trap daemon must be configured to call the
trapitf.tc1 script, described in the next section. This prototype utilized the SNMP daemon
version 4.1.2 from University of California at Davis', with the Red Hat Linux operating
system, kernel version 2.2.102. To initiate the processing of trap messages on the Linux host

1 htt~:l/www.redhat.comlswrli386lucd-snmu-4.1.2-8.i386.html

2 http:IIwww.redhat.com

23

http:IIwww.redhat.com

(transition from block (2) to (3)), the SNMP trap daemon calls the trapitf.tc1. The SNMP trap
daemon must be configured to call the trapitf.tc1, accomplished through parametric settings
in the snmptrapd.conf file. The snmptrapd.conf directs the SNMP trap daemon to execute the
trapitf.tc1 upon receiving trap messages from an ATM switch and to pass all available
variables. MAN pages that describe how to set parameters in the snmptrapd.conf files are
included with the trap daemon code. The snmptrapd.conf file should reside in the
appropriate directory specified in the MAN pages (see inan sninptrapd.conf). The directory
path to the trapitf.tc1 script must be specified in the snmptrapd.conf in order to execute the
trapitf.tc1 script when an SNMP trap is received.

The trapitf.tc1 script inputs variables from the SNMP trap daemon and passes relevant
information to the snmpitf.tc1 script. Input variables include IP addresses, trap identifiers,
and other associated variables. Some initial processing occurs in the trapitf.tc1 script, with
the prototype processing being specific to a Marconi (FORE) ATM Switch. One aspect of the
processing consists of trimming leading identifiers in the Object Identifier (OID) information
from particular trap variables so that the minimum amount of unique information is stored
and forwarded. For example, the following portion of the OID string is removed from the
second variable in all trap messages captured in the prototype.

.iso.org.dod.internet.snmpV2.snmpModules.snmpMI~.snmpMI~Objects.snmpTrap.
snmpTrapOID.0 enterprises.326.2.2.

The indicated string is unique to Marconi ATM switches. Finally, the trapitf.tc1 selects and
orders the trap variables, and places them in a buffer file in order to pass them to the
snmpitf.tc1 script.

The snmpitf.tc1 script (block (3)) provides the decoding and reformatting of the trap messages
placed in a buffer file by the trapitf.tc1 script. The current version handles only Marconi
(FORE) specific traps. A table of these traps is located in Appendix A of the ATM Switch
Configuration Manual, and the FORE mibs are available at the Marconi website3. General
operation of the snmpitf.tc1 script consists of periodically searching for the buffer file
containing trap information generated by the trapitf.tc1 script. If the file exists, the data is
input and the trap identifier is converted to a text string. The text strings are searched for
the desired traps, and upon finding one, a reformatted trap message is sent to the
assessment engine.

Reformatting of trap messages allows interfacing to the Assessment Engine and further
refinement in the selection as to which variables present useful information for the intrusion
detection process. A typical reformatted message takes the form:

TYPE=SENSOR-NOTIFICATION:AGENT-TYPE=SNMP-TRAP-l.O:
SN-TYPE=< trap-id>:IP-ADDRESS=<X.X.X.X?
SW-PORT=<sw port nuin ber>:DIAG<diagnostic data>

Parameters selected from the original trap message include:

3 httr,:Ilwww.marconi.conilhtinl/lo~inltacticsonline.htm

24

trap-id
x.x.x.x
sw port itumber
diagnostic data

SNMP trap identifier
IP address of SNMP agent on the ATM switch
Software port number on the ATM switch
Other relevant diagnostic data contained in the
original trap

Once a trap message is selected and reformatted, it is sent to the Assessment Engine (4),
indicating the completion of the SNMP Sensor processing of a SNMP trap. The prototype
version of the snmpitf.tc1 script forwards three types of traps, UNI signaling down, UNI
signaling up, and ATM Switch Link up. Other traps may be included if they provide
meaningful data in determining an intrusion attempt. Additionally, the prototype utilized a
searching frequency of 5 seconds, and flushed the buffer file upon every read by the
snmpitf.tc1 script. This prevents rereading outdated trap messages.

If the Assessment Engine needs to issue a configuration response, the SNMF’ daemon is
notified on the Linux host, and utilizes the simpset command to send appropriate control
messages to an ATM switch. Responses from the Assessment Engine must also take the
ASN. 1 form to interface to the SNMP agent on the target switch. The Assessment Engine
passes the appropriate IP address, ATM switch software port number, and community string
to the Linux host, which generates the appropriate set command with the proper OID (6)
using the snmpcmditf.tc1 script (5). The appropriate community string must be included with
the set command in order to communicate with the SNMP agent on the designated ATM
switch. A typical response might be to administratively shutdown a port on a n ATM switch.

All of the SNMP Sensor Tcl script files can be located in the same directory. The buffer file
created by the trapitf.tc1 can be created in that directory as well, and the snmpitf.tc1 should
specify the same location for reading the buffer file. The Tcl script creation in the SNMP
Sensor development relied heavily on the text, “Tcl and the Tk Toolkit,” by John K.
Ousterhout [15]. Note that the method of retrieving and transmitting the community strings
necessary for a configuration response by the Assessment Engine is not an inherently secure
approach. Security considerations for managing this information would be necessary for any
production level installation that included response capabilities.

Extendibilitv and Flexibilitv

The SNMP Sensor utilized in the prototype only focused on the proof-of-concept. Extensions
to the sensor could include the processing of an increased number of trap messages, and the
support of additional Assessment Engine request messages. Also, while simpget commands
where not integrated in the prototype, that functionality could be included. This would allow
the Assessment Engine to query for additional information beyond what is initially
forwarded in the SNMP trap messages.

Since the SNMP Sensor relies on the IP/TCP suite of protocols, the application to switched IP
based networks occurs naturally. Substantial modification of the sensor for use in Gigabit
Ethernet and MPLS based networks would not be necessary.

Hardware-Based Sensors

Sensors implemented in software are quite suitable for use at the edges of an ATM network,
where high-speed performance is not required and due to the quantity of sensors deployed,
low cost implementations are desirable. Because of performance scaling issues, hardware-

25

based sensors are the appropriate choice for monitoring control plane protocol messages in
the core of the network. Hardware sensors are also appropriate for real-time monitoring of
ATM user plane (data) and operations and management cells (which may also be used for
certain classes of attacks). Because hardware-based sensors scale to much higher speeds, and
although they are more expensive than software implementations, only a few fast sensors are
needed on the core trunks. This is illustrated in Figure 13.

ATM
Switch

ATM
Switch

ATM ATM
Switch Switch

i"ilhf-l
Node Node Node

Figure 13: Hardware-based sensors in network core

As shown above, hardware sensors are intended for use between several switches, or between
switches and user nodes to examine signaling and routing messages for anomalies. These
anomalies are then reported for analysis and assessment.

Hardware sensors are essentially high-speed cell or packet filters that operate at the
signaling or line rates, typically OC-3 (155 Mbps) or OC-48 (2.488 Gbps). They function in
the passive direct [22] fashion, siphoning off a copy of the bit stream and examining it for
certain bit patterns, such as a specific message type on a certain virtual circuit. When a
hardware sensor finds a cell (or having performed reassembly, a packet) that matches the
specified criteria, it will generate a message for transmission to another system. This
message may go directly to an assessment engine or it may go to a system hosting multiple
hardware sensors, for further processing, formatting, and eventual transmission to an
assessment engine. A simplified architecture for this is shown in Figure 14. In the
simplified architecture, the WI and VCI would be hard-coded, while the message type would
be passed to the sensor as a parameter. The general architecture for a hardware sensor is
shown in Figure 15 and can receive a full filter specification.

26

VPINCI.
Message

Type

Message or
captured packet

Figure 14: Simplified architecture of a hardware-based sensor

Control

E7

Figure 15: General architecture of a hardw are-based sensor

control

Hardware-based sensors can be implemented with application-specific integrated circuits
(ASICs) or with programmable logic devices (PLDs). Each of these has certain advantages.
ASICs have a security advantage in that once the design is completed and fabricated, it
cannot be changed, infected or corrupted. On the other hand PLDs, being reconfigurable
logic, can be modified in real time. This allows not just for changing the sensor to look for a
different value in a parameter (by writing a different value into its memory), but to load new
logic into the sensor, completely changing its function, in response to an attack or event. In
all but extremely large quantities, PLDs cost less than ASICs containing logic of equivalent
complexity.

The use of PLDs on a common or standardized circuit board also facilitates the development
of new sensors and the upgrading of older ones as the network threat environment changes.
Furthermore, a PLD implementation would facilitate incorporation of hardware filtering
functions in existing vendors' switches, where similar filtering operations are already
performed in programmable logic.

27

Testbed Experiences

Halfway through the project, a demonstration of the prototype capability was given that
showed the use of a PNNI sensor, assessment engine, and responses. In the demonstration
scenario (shown in Figure 16), a n ATM switch was configured to represent a n ATM network,
and a PNNI sensor was attached to this switch to monitor PNNI activity for the lowest-level
peer group. The sensor was also configured to send event notifications to an assessment
engine over a n “out of b a n d IPlEthernet network.

Rogue switch
connects to FORE LE-155

(Rogue Switch) network, forces
(and wins) PGL

election

000000
FORE LE-155
(ATM Network)

Response 1:
Disable port

l,n! - Response 2:
Send email

SPARC Ultra 5
(Assessment Engine)

(PNNI Sensor)

..-.‘.‘.‘,‘.‘.‘,

Figure 16: ATM intrusion detection demonstration

To simulate a peer group leader takeover attack, a “rogue switch was configured with a high
peer group leader priority to ensure that when the switch is attached to the “ATM network”,
it would force a peer group leader election and win the election. The PNNI sensor was
configured to send “PNNI new node” and “PNNI peer group leader change” events to the
assessment engine when these PNNI events are detected. The assessment engine was
configured with a rule file (developed using the graphical rule editor tool) that looked for a
new node followed by a PGL change event, and if this rule was satisfied, it would send an
email response to the system administrator and also issue an SNMP command that would
disable the port on the switch to which the rogue switch attached.

When the demonstration was performed, the system worked as planned.

Of course, the “port disable” response was a drastic response, and during development of the
demonstration system, normal network events that happened to match the attack rules
configured in the assessment engine would result in network reconfiguration and disabled
switch ports. On several occasions, the group was surprised to find switch ports that were
turned off unexpectedly a s a result of normal system functioning. Therefore, in an
operational situation, the rule file would need to be specified in more detail to filter out
events that are part of the normal function of the ATM network. Alternatively, less drastic
responses (e.g., email alerts) may also be required.

28

In addition, the demonstration system was installed on ATDnet in Washington, DC. ATDnet
is a large network comprised of at least 5 organizations. When the system was installed, the
PNNI sensor was configured as before - to detect PNNI new node and PGL change events.
However, when the PNNI sensor was brought on-line on ATDnet, it would report PNNI new
node events for every switch in ATDnet (because, to the sensor, every switch was a new
switch). These events were generated very rapidly, and were reported to the assessment
engine. Nevertheless, despite the fact that up to 50 new node events were reported in a brief
time span, the assessment engine was able to queue the event notifications and process them
without any evidence of missed events or other ill effects. Therefore, the scalability of the
assessment engine for medium-sized networks was verified.

29

Scaling Considerations

This section describes ways to scale the SNIDE architecture described earlier to large
networks, while providing rapid response. The issue of intrusion detection and mitigation in
ATM networks poses an important and unique challenge to which Sandia National
Laboratories [22] has committed itself. Like any networking architecture, ATM networks
consist of a number of ATM nodes distributed over a wide geographical area. While the sheer
number of nodes and the non-trivial inter-node distances pose a challenge to centralized
decision-making, with respect to detecting and mitigating intrusion, the relative high speed
a t which cells are transported across an ATM network complicates the problem immensely.
Tarman, Witzke, Bauer, Kellogg, and Young [22] describe a n architecture where PNNI and
UNI sensors are deployed at the edges of a network to enable an assessment engine detect
attacks, by matching anomalous network behavior against standard templates gathered from
known attacks, and then deploying effective countermeasures via the response agents. While
the paper correctly observes that, for a small-scale ATM network, it is adequate to execute
the sensors, assessment engines, and response agents in software, it motivates the
development of a practical, scalable intrusion detection architecture for large-scale ATM
networks.

To address the problem comprehensively, the causes and origins of the key challenges are
enumerated as follows. First, intrusion attacks directed against the PNNI protocol including
the call admission control (CAC) and operation and management (OAM) functions, generally
manifest at speeds of milliseconds to seconds which, for small-scale ATM networks, may be
adequately addressed in software. The precise definition of what constitutes a small-scale
ATM network, i.e. the maximum number of nodes for which the above claim is true, requires
experimental analysis and is under study a t Stevens Institute of Technology in collaboration
with Sandia. Second, for modest- to large-scale ATM networks, organized in the form of a
collection of peer groups, the combined weight of the decision-making for the increased
number of ATM nodes, may render a straightforward software solution lacking. Third, given
that the processes in the ATM switch fabric operate a t microseconds or faster, intrusion
attacks directed a t ATM cell transport may defy a pure software solution. While a hardware
dominated approach may constitute a logical response to issues 2 and 3, this research is
driven by the following concern. As ATM switching speeds continue to increase in the future,
even a pure hardware solution may not be adequate. The aim here is to pursue a new
thinking, a novel architecture for ATM intrusion architecture.

In developing the new architecture, following constitute the key issues and guiding
principles. First, clearly, the architecture cannot be centralized. Second, while it is logical to
pursue a purely decentralized [12][13] approach, i.e. one where the overall task of intrusion
detection and mitigation is distributed uniformly among all constituent ATM nodes, such an
approach may not correspond exactly to the hierarchically distributed organization of the
ATM network. Third, recall that an ATM network consists of a very fast cell switching
process at the switch fabric level, and a relatively slower process, that includes CAC, OAM,
signaling, etc. Fourth, in general, detecting and mitigating an intrusion at the switch fabric
level would require an ultra fast response from the architecture while for attacks a t the CAC,
OAM, and signaling level, the architecture may be permitted to generate a relatively slower
response. Fifth, according to the principles of computational intelligence, to generate a n ultra
fast response, the associated decision-making must be simple, i.e. the number of decisions
must be small and the complexity of each decision, low. Using similar reasoning, when a
slower response is tolerable, the complexity of the decision-making process, may be high.
Sixth and final, although the degree of complexity, associated with conceiving and launching
an intrusion, either a t the switch fabric or CAC level, may range anywhere from low to high,

30

any manifestation of the intrusion a t the switch fabric level must be addressed by the
architecture very quickly while that a t the CAC level may be addressed relatively slowly. An
architecture that emerges from careful consideration of the six issues is presented in Figure
17 and explained as follows.

Strategic ATM Sentinel
Levell

/
/

/

/
/

/
/

r

$D AZ-T

, -.

/' GroupA

/

A1-TlhroqhA4-T Tactcal ATMSentimlr

B1-Tthroqh B 4 T Tadcal ATMSentinels
Stmlegc ATM Sentinel

Level 2
\
\
\
\

Group 6

Figure 17: Distributed intrusion detection architecture for ATM networks

Figure 17 presents an ATM network consisting of two peer groups - A and B, with ATM
nodes A1 through A4 and B1 through B4 respectively. The connectivity between the nodes of
A and B, is not shown here. Associated with each node, say A2, is a tactical decision-making
unit, A2-T, termed tactical ATM sentinel, that is realized primarily in hardware and whose
function is six-fold. First, its sensors continuously monitor the behavior of the switch fabric of
A2 and it responds quickly to any anomaly. Second, A2-T's response is limited to the ports
and architectural elements of A2 and user traffic connected to the UNI of A2. Third,
anomalous behavior of the call processor of A2 are reported to the strategic ATM sentinel for
the entire peer group A. Fourth, a copy of A2-T's response is propagated to the strategic ATM
sentinel. Fifth, the strategic ATM sentinel's response to anomaly in the call processor, is
propagated to A2-T where it is executed. Sixth, where necessary, the behavior of A2-T is
amenable to reprogramming by the strategic ATM sentinel. The strategic ATM sentinel is a

31

hardwarelsoftware entity, distinct from the nodes of the peer group, whose function is to
analyze every anomaly occurring within the peer group, its own past response to earlier
intrusions, and compute long-term decisions, a subset of which is then employed to
reprogram the tactical ATM sentinels. The level 1 strategic ATM sentinels of peer groups A
and B, in turn, report their activities to the level 2 strategic ATM sentinel which takes a n
even broader and longer-term view of the anomalies and computes responses that are
manifest through modifying the response behaviors of level 1 strategic ATM sentinels.

Analysis reveals that, in real-world distributed systems, a true picture of a system-wide
behavior does not reside in any one of the constituent entities. A higher-level entity, such as
a strategic ATM sentinel, must first acquire data from the entities, clearly a slow process,
and only then determine the big picture through intelligent computation.

Thus, the underlying philosophy of the intrusion detection architecture may be described a s
follows. While tactical sentinels are deployed to respond to low level intrusions on fast ATM
subprocesses in a timely manner, these sentinels' behaviors are governed by the strategic
ATM sentinels that examine anomalous network behavior over a wide time scale and
compute long-term decisions. In essence, the architecture is hierarchically distributed,
scalable, and practical.

For a comprehensive study, we plan to identify intrusionslattacks that are already known
and ones that are conceptually feasible. As a first step, in addition to the types of intrusions
enumerated in [22], the issues of detecting and mitigating the following attackslintrusions
will be addressed in this effort.

0 Excessive, intensive traffic from one or more users a t the UNI, exceeding the
negotiated contract. A user's traffic may either exceed the negotiated SCR (sustained
cell rate) or PCR (peak cell rate). If the UNI were to tolerate minor violations of SCR
and PCR, under specific scenarios, their impact a t the switch level could be far worse,
especially where the bandwidths are high.

0 Too many open connections a t a node, with either little or normal traffic, may
constitute a n attack.

Analysis shows that a few calls with excessive high bandwidth traffic may cause
serious QoS problems and may be exploited as a surreptitious attack.

0 A specific attack had been developed in which, if a call is already established between
any two nodes in the network via an intermediate node, already under a n attacker's
control, and if the source and destination nodes are on the attacker list of "nodes to
be attacked," then all of the traffic cells arriving on the correct channel are redirected
to a n arbitrarily and periodically selected channel, also already established.
Following extensive study of the attack through simulation, it appears that the
switch fabrics of one or more of the ATM nodes in the network may encounter
incoming cells with VPINCI pairs for which there is no corresponding entry in the
routing table. The problem can affect both traffic as well as control cells.

Our proposed modeling and simulation based investigation will employ a representative
ATM network topology, shown in Figure 18.

32

J

Applicability to Other Switched Network Technologies

At the inception of this project, ATM enjoyed widespread deployment and vendor support.
However, as the project progressed, ATM sales declined while vendor and user interest in IP
switching technologies increased. One standard for IP switching is MultiProtocol Label
Switching, or MPLS. As the market realities became apparent, the project team decided to
examine the ATM intrusion detection developments in light of IP switching, and the results
of this study are documented in [26].

As described earlier in this report, the general architecture that was adopted for ATM
intrusion detection can be readily viewed a s an intrusion detection architecture for switched
networks in general. That is, an architecture for switched network intrusion detection would
necessarily be distributed, with a single assessment engine for the entire network, or a
hierarchy of assessment engines performing strategic and tactical assessment, a s described
in the previous section. The main differences in the architecture are in the details related to
the MPLS protocols for routing and label distribution. That is, protocol processors in the
sensors would need to be modified, the assessment rules would need to be modified, and the
sensor-assessment protocol would need to be modified.

Introduction to Multiprotocol Label Switching (MPLS)

Multi-Protocol Label Switching (MPLS) is a method for controlling the flow of IP packets
(datagrams) and quickly switching them through a network. When standard routers forward
IP datagrams, they make routing decisions on a per-packet basis using most of the contents
provided by the IP header. However, datagram switching is much faster than routing
because it uses a path setup protocol to establish a path through the network. Once the path
is established, a small flow identifier is added to the packet, which allows datagram
forwarding by switching hardware rather than route lookups.

MPLS borrows many concepts from ATM, including the ideas of path switching, dynamic
flow setup, and support for traffic engineering. The following sections describe these
architectural concepts in more detail.

MPLS is a set of Internet specifications that describes interoperable mechanisms for
implementing IP switching. An example of using MPLS for IP switching is shown in Figure
19. MPLS Label Switching Routers (LSRs) switch IP datagrams over a Label Switched Path
(LSP) that traverses an MPLS Domain. The LSP is established manually via management
access or via signaling.

34

-__.

-. -\. ,_---

’\
/’ \

Label-swi!ched‘\

\\
i

i

1 -
LSR4 /’ IP Router

/ ‘... MPLSOornarn ,/
\
\

__- - -- ._ ._
End System

\

/ IP Router ‘\,\ -El
End Svstem

Figure 19: Label switching example

Switching on an LSP is supported by a label affixed to the IP packet by an MPLS ingress
LSR (LSR1 in Figure 19), and the label is removed by the egress LSR (LSR4 in Figure 19)
when the datagram leaves the MPLS domain. Whereas conventional IP routing looks at the
IP header to make forwarding decisions, MPLS forwarding decisions are based on a small
label affixed to the packet in a “shim header” between the IP and the link layer protocol (e.g.,
Ethernet MAC) headers. This label is assigned to the packet’s Forwarding Equivalence Class
(FEC), which in practice is a network prefix. Therefore, all packets belonging to the same
FEC (Le., having the same destination address prefix) are assigned the same label, and are
switched along the same LSP. Labels may be unique to the LSR interface (interface label
space), or unique to all interfaces on the LSR (platform label space).

LSPs may be configured manually or via signaling, and like ATM virtual circuits or virtual
paths, LSPs allow traffic engineering. This permits a network operator to override the
automatic path that a packet would take (i.e., one determined by normal IP routing), and
send the packet through one that is configured via management. Standard IP routed
networks also support traffic engineering, but it is based on source routing, which has
security and efficiency issues. Therefore, MPLS is considered a better solution for
engineering traffic flows in a backbone network.

When LSPs are configured via signaling, a label distribution protocol is required to allow
LSRs to inform other LSRs of bindings between FECs and labels. The binding between a n
FEC and a label is normally determined by the downstream LSR and communicated to the
upstream LSR via signaling. Once communicated, the signaling protocol is used to maintain
the binding and tear it down when it is no longer needed. As described later in this paper,
multiple protocols for label distribution are defined by the Internet Engineering Task Force,
including the Label Distribution Protocol with extensions for Constraint Routing (CR-LDP)
and the Resource Reservation Protocol with extensions for Traffic Engineering (RSVP-TE).

Applying SNIDE to MPLS

The Switched Network Intrusion DEtection system (SNIDE) was originally developed to
monitor protocol flows in ATM networks to detect ATM infrastructure attacks. The SNIDE
architecture, which is shown in Figure 3, uses various types of sensors that report to a

35

central assessment facility via IP. These sensors are the passive-direct, active-direct, and
indirect sensors, which have been described earlier.

As described earlier in this section, there are many architectural similarities between MPLS
and ATM. Both protocols can be described in terms of the three-plane protocol reference
model, which consists of the user plane, control plane, and management plane. With both
approaches, user plane data is switched along a virtual path using a small amount of
switching information contained in the packet header. In order to switch data along this
path, the tables in the switches must be configured a priori to understand how to handle
data containing specific flow identification values in the headers.

The role of the ATM and MPLS control planes is to dynamically configure switch tables to
configure a new virtual path when it is needed. While there are vast differences in the details
between the ATM and MPLS control plane protocols, on a more general level, these protocols
are similar. Whereas ATM uses the UNI and PNNI signaling protocols to signal a new
virtual circuit, MPLS uses CR-LDP or RSVP-TE to establish a n LSP. Likewise, ATM uses
the PNNI routing protocol to track current network state to make routing .decisions, where
IP routers and LSRs use one of a number of routing protocols (including Open Shortest Path
First, from which PNNI was derived) to perform the same function.

These similarities between MPLS and ATM allow the SNIDE system to be applied to MPLS
networks with little modification to the assessment engine and the sensor-to-assessment
communications libraries. Since the assessment engine was designed to be very flexible, it
can be easily enhanced with new MPLS-specific message types and new rules that describe
MPLS attacks (including those described earlier).

However, the sensors, which are concerned with the protocol details, need a number of
modifications to support MPLS. These modifications are:

Passive-direct sensors - these sensors will be placed on inter-LSR links, LSRs
themselves, or on boarder routers, and will implement event monitoring of the MPLS
label distribution protocols. The existing sensors will need to be modified to decode fields
in protocol messages and track protocol state. Also, unlike the UNI sensors, the MPLS
sensors will need to be configurable to support multiple protocols (CR-LDP, RSVP-TE,
and BGP messages carrying label information).

Active-direct sensors -these sensors will be placed within an MPLS domain, and will
implement the IP routing protocols and participate actively in protocol exchanges with
the LSRs or routers in the domain. As with the passive-direct sensors, the active-direct
sensors will need to decode messages and support procedures for multiple protocols (e.g.,
BGP and OSPF).

Indirect sensors -these sensors translate between SNMP and the SNIDE reporting
protocol. Since IP LSRs use SNMP for configuration and trap reporting, these sensors
will require little modification. The only modifications required would be to translate the
additional, MPLS-specific traps that may be reported.

Attack rules in the assessment engine will need to be developed to identify sensor event
sequences that may indicate an MPLS attack. Some possible attack rules are defined in [26].

As one can see, the fact that SNIDE was designed for intrusion detection in switched
networks allows it to be readily applied to detect misuse of the MPLS protocols. The bulk of

36

the development that is required to perform modification is largely limited to the sensors
themselves, which are concerned with the details of the protocols they are monitoring.

37

Conclusions

Asynchronous Transfer Mode (ATM) is widely used as a backbone for corporate and public
telephone and data networks, and its availability is paramount to the correct operation of the
Internet Protocol (IP) and higher-layer applications. Key to the correct operation of ATM is
its set of control plane protocols, which perform functions such as virtual circuit signaling
and routing. If these protocols are attacked, then denial of service can result. Therefore, a
system is required to monitor these control plane protocols, and respond if protocol events
indicate a possible attack.

ATM is a switched network technology, and other protocols (notably IP) are also being
implemented in a switched fashion. Therefore, the general problem of intrusion detection in
a switched network is receiving more attention. This paper describes in detail the Switched
Network Intrusion DEtection (SNIDE) system that was developed under a Sandia
Laboratory-Directed Research and Development project. This system was designed to
perform control plane intrusion detection on a general switched network, and implemented
to perform intrusion detection specifically on ATM networks. This system includes
components that implement intrusion sensing, assessment, and response, along with
management tools and graphical user interfaces to configure system components.

Initial results have shown that this system operates as expected, and vendors have
expressed interest in possible licensing of components from the SNIDE system. Specifically,
we have talked with vendors about the UNI sensor and assessment software, and the
possible implementation of sensor functions in ATM switches.

38

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Edward Amoroso, Intrusion Detectioii: AIL Introduction to Internet Surveillance,
Correlation, Trace Back, Traps, aud Response, 1ntrusion.Net Books, Sparta, NJ, 1999.

ATM Forum Technical Committee, ATM Security Specification Version 1.1, af-sec-
0100.002, March, 2001.

ATM Forum Technical Committee, Private Network-Network Interface Version 1.0, af-
pnni-0055.000, The ATM Forum, Mountain View, CA, 1996.

ATM Forum Technical Committee, User to Network Signaling Specification Version 4.0,
af-sig-0061.000, The ATM Forum, Mountain View, CA, 1996.

Rebecca Gurley Bace, Iritrusion Detection, Macmillan Technical Publishing, Indianapolis,
IN, 2000.

Tim Bass, “Intrusion Detection Systems and Multisensor Data Fusion,” in
CornrnuriicatioiLs of the ACM, vol. 43, no. 4, pp. 99-105, 2000.

R. Bettati, W. Zhao, and D. Teodor, “Real-time Intrusion Detection and Suppression in
ATM Networks,” in Proceedings of the Workshop O ~ L Iittrusion Detection and Network
MonitoriiLg, held in Santa Clara, CA, April 9-12, 1999, USENIX, 1999.

Daniel Bilar and Daniel Burroughs, “Introduction to State-of-the-Art Intrusion Detection
Systems,” in Proceedings of SPIE, Vol. 4232, Enabling Technologies for Law Eitforcernent
and Security, held in Boston, MA, November 5-8, 2000. Society of Photo-Optical
Instrumentation Engineers, Bellingham, WA, 2001.

Sumit Ghosh and Pete Robinson, “A Framework for Investigating Security Attacks in
ATM Networks,” in IEEE Military CommuiLicatioiLs Conference (MILCOM 1999)
Proceedings, held in Atlantic City, NJ, October 31-November 3, 1999, IEEE, Piscataway,
NJ, 1999.

10. A. Goldman, C. Wilcox, and R. McFarland, “ATDnet - A Gigabit ATM Network Testbed,”
in Proceedings, Gigabit NetworkiiLg Workshop GBN ’97, held in Kobe, Japan, April, 1997.

11. Stephen Hofmeyr, Stephanie Forrest, and Ani1 Somayaji, “Intrusion Detection using
Sequences of System Calls,” in Journal of Computer Security, vol. 6, pp. 151-180, 1998.

12. Tony Lee and Sumit Ghosh, “Simulating Asynchronous, Decentralized Military
Command and Control,” in IEEE Cornputatioiial Science arid EiigineeriiLg, vol. 3, no. 4,
pp. 69-79, 1996.

13. Tony Lee and Sumit Ghosh, “A Novel Approach to Asynchronous, Decentralized
Decision-Making in Military Command and Control,” in Military Review, No. 6, pp. 77-
81.

14. Teresa F. Lunt, “A Survey of Intrusion Detection Techniques,” in Computers & Security,
vol. 12, pp. 405-418, 1993.

39

http://1ntrusion.Net

15. John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

16. Martin de Prycker, Asynchroiious Traiwfer Mode: Solution for Broadbaiid ISDN, Ellis
Horwood Ltd., New York, 1993

17. Abhijit S. Pandya and Ercan Sen, A T M Technology for Broadbaiid TelecoininuiLicatioiLs
Networks, CRC Press, Boca Raton, FL, 1999.

18. Perry J. Robertson, Robert L. Hutchinson, Lyndon G. Pierson, Thomas D. Tarman, and
Edward L. Witzke, Filial Report and Docuineiitation for the PLDl l Multipurpose
Programinable Logic VME Board Design, SAND99-0914. Sandia National Laboratories,
Albuquerque, NM, April 1999.

19. Robert N. Smith, Douglas W. Hill, and N. P. Robinson, “ATM Peer Group Leader Attack
and Mitigation,” in IEEE Military Coininunicatiom Conference (MILCOM 1999)
Proceedings, held in Atlantic City, NJ, October 3 1-November 3, 1999, IEEE, Piscataway,
NJ, 1999.

20. William Stallings, SNMP, SNMpU2, and RMON: Practical Network Managemelit,
Addison-Wesley, Reading, MA, 1996.

2 1. Altera Corporation, System-on-a-Programmable-Chip Developineiit Board User Guide
ver. 1.1, Altera Corporation, San Jose, CA, July 2000.

22. Thomas D. Tarman, Edward L. Witzke, Keith C. Bauer, Brian R. Kellogg, and William F
Young, “Asynchronous Transfer Mode (ATM) Intrusion Detection,” Sandia National
Laboratories report SAND2001-0561C (to be published in MILCOM 2001 Proceedings).

23. Thomas D. Tarman and Edward L. Witzke, Hardware and Software Based
Implementations of Passive-Direct Seiwors for ATM Intrusion Detectioii, SD-6771,
October 2000.

24. Thomas D. Tarman and Edward L. Witzke, Iinplemeiitiiig Security for ATM Networks,
Artech House Publishers, Boston, MA, 2002.

25. Thomas D. Tarman and Edward L. Witzke, “Intrusion Detection Considerations for
Switched Networks,” in Proceedings of SPIE, Vol. 4232, Enabling Technologies for Law
Enforcement and Security, held in Boston, MA, November 5-8, 2000. Society of Photo-
Optical Instrumentation Engineers, Bellingham, WA, 2001.

26. Thomas D. Tarman, “Security and Intrusion Detection in Multiprotocol Label Switching
(MPLS) Networks,” internal report SANDBOOl-l589P, May 4, 2001.

40

Appendix A: Sensor - Assessment Protocol Message Format

ATM intrusion detection messages shall be null-terminated ASCII text strings composed of a
number of fields, which are separated by the delimiter character I:'. The formats of messages
are dependent on the message TYPE.

E Messa e-specific data

Each field is a namehalue pair in the form <field name>=<value>. Values for the message
TYPE field include:

TYPE=SENSOR NOTIFICATION

TYPE=LOAD RULES

TYPE=SENSOR STARTUP

Sensor notifications messages have the following format:

I DIAG=<diagnostic data> J

with the delimiter character I:' separating each field.

UNI Protocol Events

Setup Message Received

TYPE=SENSOR NOTIFICATION
AGENT-TYPE=SNIDEu- 1.0

I SN-TYPE=UNI-SETUP
CALLINGTNSAP=<callin g NSAP> (Note)
CALLED-NSAP=<called NSAP>

I DIAG=<diagnostic data>

Note: NSAP addresses are 20-byte hex values, and hence, encode to 40 character ASCII
strings.

41

Connect Message Received

TYPE=SENSOR NOTIFICATION
AGENT_TYPE=SNIDEu-l.O
SN-TYPE=UNI-CONNECT
CALLING-NSAP=<calling NSAP>
CALLED-NSAP=<called NSAP>
DIAG=<diagnostic data>

PNNI Protocol Events

New PNNl Node

(Note)
DIAG=<diagnostic data>

Note: Node IDS are 22-byte hex values, and hence, encode to 44 character ASCII strings.
They are of the form <prefix length><address length><NSAP address>.

New PNNl Link

TYPE=SENSOR NOTIFICATION
AGENT-TYPE=SNIDEp- 1 .O
SN-TYPE=PNNI-NEW-LINK
SRC-NODE-ID=<node ID>
DEST-NODE-ID=<node ID>
DIAG=<diagnostic data>

Deleted Horizontal PNNl Link

TYPE=SENSOR NOTIFICATION
AGENT-TYPE=SNIDEp-1.0
SN-TYPE=PNNI-DELETE-HORIZ-LINK

42

SRC-NODE-ID=<node ID>
DEST-NODE-ID=<node ID>

I DIAG=<diagnostic data>

New PNNl Peer Group Leader

TYPE=SENSOR NOTIFICATION
AGENT-TYPE=SNIDEp- 1.0
SN-TYPE=PNNI-NE W-PGL
PEER-GROUP=<peer group ID>

Note 1: Peer group ID is a 21-byte hex value of the form <prefix length><NSAP address>.

Note 2: Peer group leader ID is a 22-byte hex value of the form <prefix length><address
1engthxNSAP address>.

Change PNNl Peer Group Leader

TYPE=SENSOR NOTIFICATION
AGENT-TYPE=SNIDEp- 1.0
SN-TYPE=PNNI-PGL-CHANGE
PEER-GROUP=<peer group ID>
(Note 1)
PGL-ID=<peer group leader ID>
(Note 2)
DIAG=<diagnostic data>

Note 1: Peer group ID is a 21-byte hex value of the form <prefix length><NSAP address>.

Note 2: Peer group leader ID is a 22-byte hex value of the form <prefix length><address
length><NSAP address>.

SNMP Events

UNI Signaling Down

43

TYPE=SENSOR NOTIFICATION
AGENT-TYPE=SNMPTRAP- 1.0
SN_TYPE=asxQ293 lDown
IP-ADDRESS=X.X.X.X (Note 1)
SW-PORT=<sw port number > (Note 2)

Note 1: This is the IP address of the qaaX interface on the ATM switch.

Note 2. This is an integer value representing the software port associated with the Q2931
signaling.

UNI Signaling Up

Note 1: This is the IP address of the qaaX interface on the ATM switch.

Note 2. This is an integer value representing the software port associated with the Q2931
signaling.

ATM Switch Link Up

Note 1: This is the IP address of the qaaX interface on the ATM switch.

Note 2. This is an integer value representing the software port associated with the link that
comes “up”.

44

Appendix B: LDRD Data

FYOO Annual Report Summary

Status: Submitted September 2000

Project Number: 10767

Title: Intrusion Detection for Asynchronous Transfer Mode (ATM) Networks

Project Manager: VAHLE,MICHAEL 0.

Project Investigator: TARMAN,THOMAS D.

Team Members: HUTCHINSON,ROBERT L., BAUER,KEITH C. , YOUNG,WILLIAM F.,
WITZKE,EDWARD L.

Number of Patent Disclosures: 0

Number of Staff Hired: 0

Number of Applications: 0

Number of Post Docs: 0

Number of Patents: 0

Number of Students: 1

Number of Copyrights: 0

Number of Awards: 1

Names of Awards: "ATM Forum Spotlight Award," awarded July 2000 by the
Asynchronous Transfer Mode (ATM) Forum for editing and technical work on ATM security
specifications.

Quantitative Assessment: 100%

Qualitative Assessment: Goals met, Hypothesis remains unchanged

45

Abstract

Currently, network intrusion-detection (NID) systems are in place in networks at Sandia and
its customers. NID systems allow site security personnel to monitor network devices and
hosts for activities that indicate a possible attack, misuse, or operational anomaly in the
information system. Since NID systems protect against attacks from inside and outside
users, they provide a complementary service to devices that protect internal networks
against outside attacks (e.g., encryptors and firewalls). However, current NID systems only
work down to the Internet Protocol (IP) level. Data and control flows below IP are not
covered by the current technology. This represents a risk to Asynchronous Transfer Mode
(ATM) network backbones, which are found inside many enterprises (including Sandia),
public carriers, and the Internet. This makes ATM networks vulnerable to a variety of
denial-of-service attacks, routing infrastructure attacks, and other attacks.

This project is developing an ATM intrusion-detection system that monitors the signaling
flows associated with a variety of ATM protocols (including virtual circuit setup, call routing,
local area network [LAN] emulation, etc.) to determine if insider or outsider attacks are
being conducted against the ATM network. This project will research and document ssues
such a s analysis of ATM protocol attacks, sensor performance on high-bandwidth links and
switch fabrics, and scalability. We will develop prototype ATM intrusion-detection systems
that incorporate methods that address these specific concerns.

Sandia is uniquely qualified to make significant contributions to this area due to its
recognized leadership in ATM security and high-speed encryption, and in-depth experience
with ATM protocols and IP NID. Results from this work will lead to key technologies that
can be incorporated into the ATM intrusion-detection devices for Sandia and DOE
technologies. This work will also enhance Sandia's leadership in ATM security.

Accomplishments

We made much progress in the development of a proof-of-concept software-based ATM
intrusion-detection system.

We selected and documented an architecture for the intrusion detection system. This
architecture uses a number of ATM-specific sensors that monitor routing message flows,
virtual circuit signaling flows, and Simple Network Management Protocol (SNMP) trap
information. To accommodate this variety of sensors, we developed a common communication
protocol, sensor message formats, and communication library functions. This protocol will
allow the addition of new sensor types (e.g., hardware-based sensors) in the future.

We selected an assessment engine to correlate intrusion sensor events and to determine
whether a n attack is occurring in the network. This assessment engine provides a flexible
rule specification language, which allows the end user to specify custom attack templates
and responses to verified attacks. These rules are specified in a text file, which is generated
manually or via a JAVA graphical user interface (GUI).

We developed a template for a simple but interesting attack scenario. While researching
attack scenarios, we met with a researcher from Arizona State University to discuss his
findings. We used this attack scenario to show successful detection of an ATM network
attack. The prototype intrusion-detection system used software-based network event sensors,
along with the assessment engine and rule generator described above.

46

Publications

Type: Other Publication, Miscellaneous publications

Authors: Tarman, T. D.

Title: Asynchronous Transfer Mode Intrusion Detection and Prevention

Location Published:

Detail: Invited talk to the Banking Industry Technial Symposium, Santa Fe, NM, 9 August
2000

Report Number: SAND99-0518C

Type: Other Publication, Presented but NOT Published in Proceedings

Authors: Tarman, T. D.

Title: Sandia's Straw Ballot Comments on the Security Version 1.1 Specification

Conference: Presentation to the ATM Forum Technical Committee

Date: May 2000

Location: San Francisco, CA

Type: Refereed Publication, Accepted for Publication

Authors: Tarman, T. D., and Witzke, E. L.

Title: Intrusion-Detection Considerations for Switched Networks

Publication Name: Proc. SPIE Photonics East 2000, accepted

Type: Other Publication, Presented but NOT Published in Proceedings

Authors: Witzke, E. L., and Tarman, T. D.

Title: Proposed Foreword to the ATM Security Specification, Version 1.1

Conference: ATM Forum Technical Committee

47

Date: May 2000

Location: San Francisco, CA

Type: Other Publication, Presented but NOT Published in Proceedings

Authors: Tarman, T. D., and M. Laurent (ENST, Bretagne, France).

Title: Security Services Negotiation Through Operations and Management (OAM) Cells

Conference: ATM Forum Technical Committee

Date: May 2000

Location: San Francisco, CA

Type: Other Publication, Miscellaneous publications

Authors: Kellogg, B. R.

Title: Intrusion-Detection Systems for Asynchronous Transfer Mode (ATM) Networks

Location Published:

Detail Presentation to the Student Intern Program Symposium, 10 August 2000, Sandia
National Laboratories, Albuquerque, NM

Report Number: SAND2000- 1866

Non-LDRD Funding

Source: DoD

Amount: $300K

48

FYOI Annual Report Summary

Status: Submitted September 2001

Project Number: 10767

Title: Intrusion Detection for Asynchronous Transfer Mode (ATM) Networks

Project Manager: STANS,LEONARD

Project Investigator: TARMAN,THOMAS D.

Team Members: BAUER,KEITH C., WITZKE,EDWARD L., YOUNG,WILLIAM F.,
KELLOGG,BRIAN R.

Number of Patent Disclosures: I

Number of Staff Hired: 1

Number of Applications: 0

Number of Post Docs: 0

Number of Patents: 0

Number of Students: 0

Number of Copyrights: 0

Number of Awards: 0

Names of Awards:

Quantitative Assessment: 100%

Qualitative Assessment: Goals met, Hypothesis proved

Abstract

Currently, network intrusion detection (NID) systems are in place in networks a t Sandia and
its customers. NIDs allow site security personnel to monitor network devices and hosts for
activities that indicate a possible attack, misuse, or operational anomaly in the information
system. Since NIDs protect against attacks from inside and outside users, they provide a
complementary service to devices that protect internal networks against outside attacks
(e.g., encryptors and firewalls). However, current NID systems only work down to the
Internet Protocol (IP) level. Data and control flows below IP are not covered by the current

49

technology. This represents a risk to Asynchronous Transfer Mode (ATM) network
backbones, which are found inside many enterprises (including Sandia), public carriers, and
the Internet. This makes ATM networks vulnerable to a variety of denial of service attacks,
routing infrastructure attacks, and other attacks.

This project is developing an ATM intrusion detection system that monitors the signaling
flows associated with a variety of ATM protocols (including virtual circuit setup, call routing,
local area network emulation, etc.) to determine if insider or outsider attacks are being
conducted against the ATM network. Issues such as analysis of ATM protocol attacks, sensor
performance on high-bandwidth links and switch fabrics, and scalability issues will be
researched and documented during this project. Prototype ATM intrusion detection systems
will be developed that incorporate methods that address these specific concerns.

Sandia is uniquely qualified to make significant contributions to this area due to its
recognized leadership in ATM security and high-speed encryption, and in-depth experience
with ATM protocols and IP network intrusion detection. Results from this work will lead to
key technologies that can be incorporated into the ATM intrusion detection devices for
Sandia and DOE technologies. This work will also enhance Sandia's leadership in ATM
security.

Accomplishments

During this year of research, we completed development of a software-based ATM intrusion
detection system and demonstrated it in small laboratory environments a t Sandia and at the
Stevens Institute of Technology, and in a large unclassified test network for the DoD at one
of their locations. In all of these demonstrations, the system successfully detected a mock
"ATM peer group leader takeover attack' (described in a MILCOM 1999 paper by Smith and
Robinson). This successful detection involved all of the subcomponents in our ATM intrusion
detection architecture, including the active-direct sensors (for the Private Network to
Network Interface, or PNNI, protocol), the passive-direct sensors (for the User to Network
Interface, or UNI, protocol), the indirect sensors (for the Simple Network Management
Protocol, or SNMP), the assessment engine, rule editor, and response components (both
active and passive). In response to the attack, the assessment engine successfully responded
by sending a notification to the administrator, and isolating the offending intruder by
shutting down a n appropriate port on the switch to which it attached. In addition, the DoD
installation also showed the scalability of the basic, software-based architecture by
successfully "sifting through the noise" of a large number of new-switch events to
successfully detect the mock attack.

As part of our collaboration with Dr. Sumit Ghosh of the Stevens Institute of Technology
(formerly with Arizona State University), we initiated a contract with him to examine
scalability and response timeliness issues associated with our intrusion detection approach,
and with distributed intrusion detection systems in general. We delivered a working ATM
intrusion detection system to him in April, set it up in his lab, and demonstrated the system
to him. His progress reports indicate the need to partition a distributed intrusion detection
system into two components -- a strategic component which extracts parameters (sensor
notifications), and a tactical component which is configured by the strategic part with
network reconfiguration rules and responds according to these rules. A detailed description
of Dr. Ghosh's results is found in the project's final report.

50

Another aspect of this work that was performed in F Y O 1 was the continued development of
the UNI sensor, which is a passive-direct sensor (that is, a sensor that directly monitors
ATM protocol flows, but does so silently, without actively participating as a network device).
This sensor was designed to facilitate separation of the sensor configuration user interface
from the actual sensor device, which allows distributed management of multiple UNI
sensors. The UNI sensors themselves were designed to be implemented on a Linux platform,
with some functionality in hardware and the rest in software. A language for communicating
filter specifications between the user interface and the sensor was developed, and a protocol
for securely transferring filter specifications (based on secure shell, with public key
cryptography) was also developed. Although all sensor components were implemented in
software, progress was made in the design and implementation of the hardware components
on an Altera System on a Programmable Chip (SOPC) platform.

Given the current network market conditions, vendor interest has now shifted away from
ATM and toward IP-based flow switching techniques such as MultiProtocol Label Switching
(MPLS). Therefore, this project also spent some time analyzing the MPLS protocols to
determine how the ATM intrusion detection architecture can be applied to MPLS networks.
The results of this analysis are documented in an internal white paper, and a copy has been
sent to our collaborator a t the DoD.

Publications

Type: Refereed Publication, Accepted for Publication

Authors: Thomas D. Tarman, Edward L. Witzke, Keith C. Bauer, Brian R. Kellogg, William
F. Young

Title: Asynchronous transfer mode (ATM) intrusion detection

Publication Name: Proceedings MILCOM 2001

Type: Refereed Publication, Presented and Published in Proceedings

Authors: Thomas D. Tarman, Edward L. Witzke

Title: Intrusion detection considerations for switched networks

Publication Name: Proceedings of SPIE - Enabling Technologies for Law Enforcement and
Security

Date: November 5-8, 2000

Volume: 4232

Pages: 85-92

Conference: SPIE Photonics East 2000

51

Date: November 5-8,2000

Location: Boston, MA USA

Non-LDRD Funding

Source: DoD WFO

Amount: $300K

52

Appendix C: Timeline of Sandia’s ATM Forum Impact

Given the current market shift away from ATM, this project is probably the last Sandia
LDRD project relating to ATM. Over the past nine years, Sandia LDRDs have had a key role
Sandia’s work in the ATM Forum (an ATM standards body) developing specifications for
security, high-performance physical layer devices, and flow control protocols. As Figure 20
shows, the past nine years have been very productive.

1193
Sandla membership

10 ATM Forum

Wcil
Sandia OIF
membership

101%

Spotlight 1D2
11199 Award ATM Secuntv

’ 3101 Book UTOPIA 3
2199

4/96 RBD 100
Trafic Mgmt 4.0 OC-12 Pmtoml

Specificaton Engine

Formed Securdv \ RBD ”’% 100 / 1197 Securlv1.0 \ 31W \ SecuriW1 1 \

1/93 1194 1195 1196 1197 1198 1199 1/00 1/01

January 1992 January 2002
-

VFO

-

IOE
10197.

ASCI PSE J

Figure 20: Timeline of Sandia’s impact in the ATM Forum

(sources: Helen Chen, Steve Gossage, Lyndon Pierson, and Tom Tarman)

53

DISTRIBUTION:

1

5

1 M/S0139
1 MIS 0451
1 MIS0630
1 MIS0785
5 MIS0785
1 M/SO801
1 MIS0801
1 M/S 0801
1 MIS0806
1 M/S0806
1 MIS0806
1 MIS0806
1 M/S0806
1 MIS0806
1 M/S0806
1 WSO806
1 M/S0806
1 M/S0806
1 M/S0806
1 MIS0806
5 MIS0806
1 MIS0806
1 MIS0806
1 M/S0806
1 MIS0806
1 MIS0806
1 ME0806
10 MIS0806
1 M/S0806
5 M/S0806
1 WSO807
1 MIS 0813
1 M/S0813
1 M/S 1137
5 M/S 1137
1 MIS 1206

Andy McFarland
9800 Savage Rd.
Ft. Meade, MD 20755
Attn: R23

Sumit Ghosh
Director, Computer Engineering Program
Dept. of Computer and Elect. Engineering
Stevens Institute of Technology
Burchard Building, Room 212
Hoboken, NJ 07030

M.O. Vahle, 9900
S.G. Varnado, 6500
J.P. VanDevender, 9400
R.L. Hutchinson, 6516
W.F. Young, 6516
A.L. Hale
M.R. Sjulin, 9330
W.F. Mason, 9320
P.C. Jones, 9332
D.F. Beck, 9332
C.D. Brown, 9332
L. Stans, 9336
J.P. Brenkosh, 9336
J.M. Eldridge, 9336
M.J. Ernest, 9336
S.A. Gossage, 9336
J.R. Hamlet, 9336
R.L. Hartley, 9336
T.C. Hu, 9336
J.A. Hudson, 9336
B.R. Kellogg, 9336
L.G. Martinez, 9336
M.M. Miller, 9336
J.H. Naegle, 9336
L.G. Pierson, 9336
T.J. Pratt, 9336
J.A. Schutt, 9336
T.D. Tarman, 9336
L.F. Tolendino, 9336
E.L. Witzke, 9336
M.R. Epperson, 9338
R.M. Cahoon, 9327
R.A. Suppona, 9327
J.L. Mitchiner, 6534
K.C. Bauer, 6534
J.V. Vonderheide, 5933

54

1 M/S 0161 Patent and Licensing Office, 11500
1 M/S 0188 LDRD Office (D. L. Chavez)
1 M/S 9018 Central Technical Files, 8945-1
2 M/S 0899 Technical Library, 9616
1 M/S 0612 Review and Approval Desk, 9612 For

DOEIOSTI

55

	Final Report for the Intrusion Detection for Asynchronous Transfer Mode (ATM) Networks Laboratory Directed Research and Development Project
	Abstract
	Acknowledgments
	Contents
	Figures
	Acronyms
	Introduction
	SNIDE Architecture and Components
	Assessment Engine
	Responses
	Rule Editor
	Software-Based Direct Sensors
	Software-Based Indirect Sensors

	Hardware-Based Sensors

	Testbed Experiences
	Scaling Considerations
	Applicability to Other Switched Network Technologies
	Introduction to Multiprotocol Label Switching (MPLS)
	Applying SNIDE to MPLS

	Conclusions
	References
	Appendix A: Sensor - Assessment Protocol Message Format
	UNI Protocol Events
	PNNI Protocol Events
	SNMP Events

	Appendix B: LDRD Data
	FYOO Annual Report Summary
	FYOl Annual Report Summary

	Appendix C: Timeline of Sandia's ATM Forum Impact

	DISTRIBUTION

