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Abstract 
Asynchronous Transfer Mode (ATM) is widely used as a backbone for corporate and public 
telephone and data networks, and its availability is paramount to the correct operation of the 
Internet Protocol (IP) and higher-layer applications. Key to the correct operation of ATM is 
its set of control plane protocols, which perform functions such as  virtual circuit signaling 
and routing. If these protocols are attacked, then denial of service can result. Therefore, a 
system is required to monitor these control plane protocols, and respond if protocol events 
indicate a possible attack. Before this project, no system existed that performed Layer 2 (e.g., 
ATM, switched Ethernet, etc.) intrusion or misuse detection. 

ATM is a switched network technology, and other protocols (notably IP) are also being 
implemented in a switched fashion. Therefore, the general problem of intrusion detection in 
a switched network is receiving more attention. This paper describes in detail the Switched 
Network Intrusion DEtection (SNIDE) system that was developed under a Sandia 
Laboratory-Directed Research and Development project. This system was designed to 
perform control plane intrusion detection on a general switched network, and implemented 
to perform intrusion detection specifically on ATM networks. This system includes 
components that  implement intrusion sensing, assessment, and response, along with 
management tools and graphical user interfaces to configure system components. Initial 
results have shown that this system operates as expected, and vendors have expressed 
interest in possible licensing of components from the SNIDE system. 
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Introduction 

Asynchronous Transfer Mode ( A m  networks currently form the foundation for many 
corporate networks, private and public telephone networks, and for much of the Internet 
backbone (current estimates by the IETF and ATM Forum network standards bodies state 
that 75% of today’s Internet traffc traverses ATM networks). Due to ATM ubiquitous (albeit 
invisible) deployment, many applications and services that use IP often rely on the correct 
functioning of an ATM network at some point in the end-to-end path. If the core ATM 
network were taken down due to a misconfiguration or attack, the effect would be manifested 
as  a network outage, and could be noticed by many users. 

Many mechanisms exist today to monitor IP protocol flows to detect IP infrastructure attacks 
(such as S Y N  flooding) and precursors to IP attacks (such as ping sweeps). While these 
mechanisms serve a useful purpose in detecting a class of attacks, they do not address the 
entire picture of possible network infrastructure attacks. That is, attacks on the ATM control 
plane protocols (e.g., the virtual circuit establishment and routing protocols) are invisible to 
today’s IP intrusion detection systems. An example of an  ATM protocol attack is presented 
next. 

Example A TM Attack - Peer Group Leader Take-over Attack 

The ATM protocol that  is responsible for routing virtual circuits is the Private Network to 
Network Interface (PNNI) protocol. PNNI, which is based on the Open Shortest Path First 
(OSPF) protocol, is a link state protocol. That is, it tracks the network’s topological and 
quality of service (QoS) state to determine how to best route a connection based on its $OS 
and connectivity requirements. However, the number of state parameters that must be 
tracked grows very quickly with the size of the network. Therefore, PNNI includes the 
concept of summarization, where ATM switches organize into peer groups, select a peer 
group leader,.and the peer group leader speaks for the peer group when advertising topology 
and QoS link state information to other peer groups, as shown in Figure 1. 

/ \ 
/ \ 

\ // Rougua Switch \ 
\ 
\ 
\ 

Figure 1: Example ATM PNNI configuration - pre-attack 
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In this example, switches A.l, A.2, and A.3 organize themselves into a peer group (because 
they have matching address prefixes), select switch A. l  as  the peer group leader (PGL), and 
appear to the rest of the network a s  a logical group node (LGN) with address A. Likewise, 
switches B.1, B.2, and B.3 organize into a peer group, select B.2 as the PGL, and form LGN 
B. Therefore, in the next level of the hierarchy, two nodes appear - A and B, which reduces 
the complexity of the network topology and minimizes the required size of the switches’ 
routing tables. 

Because the peer group leaders represent the link state within their peer groups, their 
correct operation is important to the correct routing of virtual circuits in an  ATM network. 
This leads to a n  example of an  ATM protocol attack - the peer group leader takeover attack. 
This is an attack where a rogue node takes over leadership of an  ATM PNNI Peer Group. 
This attack can be executed by an insider penetrating an existing PGL, or by a node outside 
of the peer group joining the group and getting himself elected PGL, as shown in Figure 2. 
At that  point the corrupt PGL can falsify topology information or adjust $OS parameters and 
disseminate the modified information to other LGNs, effectively cutting off communication to 
portions of the network. This type of attack is described by Smith, Hill, and Robinson in [19]. 

I‘ \ 
\ 

I’ Rougue Switch 
\ 
\ 
\ 
\ 
\ 

Peer Gmup A Peer Group B I 
~~ ~ 

Figure 2: Peer group leader takeover 

For demonstrating this attack against the ATM network intrusion detection system, we will 
focus on the outsider forcing a PGL election. For this attack to be successful, we should 
detect three events. First, we should see a member join the group. Next, we should detect a 
PGL election. The third event is the announcement of a new PGL. (This might only be two 
detectable events -“New member joins group” and “PGL election h e l d  - if the 
announcement of the PGL election includes the election results.) If these events occur 
(possibly within a specified time) and the newly elected PGL is the same as the new node 
who recently joined the peer group, then the PGL take-over attack is assumed to have 
occurred. 
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SNIDE Architecture and Components 

ATM intrusion detection, and intrusion detection on switched networks in general, presents 
a unique problem in that a single intrusion detection box is not sufficient to get a complete 
view of the traffic in a network or subnetwork. The Switched Network Intrusion DEtection 
(SNIDE) system developed under this project uses a distributed intrusion detection 
approach, where sensors are placed throughout the network (on the edges, in hosts, and in 
the core) and report ATM control plane protocol events to a central assessment engine for 
correlation and analysis. Sensors are configured to look for specific events that  may be 
related to ATM network protocol attacks. Sensors send events to an assessment engine 
through an out of band communications channel (to prevent network attack from disabling 
intrusion detection system). At the assessment engine, the incoming events are correlated 
and matched against an attack template to determine if a response is required. If so, then it 
activates a response agent. 

The obvious risk with distributed intrusion detection systems is that as the number of 
sensors per assessment engine increases, a t  some point the incoming events from the 
distributed sensors will overwhelm the assessment engine. Therefore, an  assessment 
hierarchy is recommended for large networks, with the lowest-level assessment engines 
receiving events directly from the sensors (e.g., sensors belonging to the lowest-level ATM 
peer group), and higher-level assessment engines receiving events from the lower-level AE 
response agents, a s  shown in Figure 3. 

Assessment 
Hierarchy 

Anomalous evenk are 
observed by edge andcore 

sensors and reported lo and Sortware&nsors 
I assessment hierarchy k r  

f analysis and response 
d 
m 

Figure 3: ATM intrusion detection architecture 

The purpose of this project is to develop the SNIDE architecture and components shown in 
Figure 3, including the assessment engine and sensors. The sensors fall into three categories 
- active direct sensors, passiue direct sensors, and indirect sensors. The active direct sensors 
directly operate on the ATM protocols, and actively participate in the protocol operations. An 
example of this sensor is the PNNI sensor, where the sensor implements a portion of the 
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PNNI protocol, and joins a n  ATM peer group as  if it were a switch. The second sensor is the 
passive direct sensor, which passively attaches to the network (e.g., using a fiber optic tap), 
and monitors ATM protocol messages. An example of this sensor is the UNI sensor, which 
monitors UNI messages, and if a message matches a filter template, it sends a n  event to 
assessment. The third sensor is the indirect sensor, which monitors the effects of ATM 
protocol operations. An example of an  indirect sensor is the SNMP sensor, which takes 
switch SNMP traps (e.g., traps that  indicate the creation of a new virtual circuit), filters 
them. and re-formats them into events for the AE. 

Sensors may be implemented in software to facilitate wide distribution and handling of 
complex protocols. These sensors are typically deployed at the edges, where speed is not 
critical, but large-scale deployment is required. Sensors may also be implemented in 
hardware to facilitate high-speed filtering of simple protocol messages. These sensors are 
typically deployed in the core, where speed is critical, but traffic and protocol flows are 
aggregated, therefore not requiring a large number of sensors. These sensors must be simple; 
therefore, they typically implement the passive direct sensors (e.g., UNI sensors).] 

Assessment Engine 

The Assessment engine is the piece of the system that  is responsible for receiving incoming 
messages from sensors, assimilating the information from the tripped sensors, and 
determining if the messages received constitute an  intrusion, based on the rules specified by 
the system administrator. If it has been determined that a possible intrusion has occurred, 
the Assessment engine will send a message to one or more response components to perform 
the action specified in the rule. 

The Assessment engine is rule driven, that is, its behavior is determined by specifying a set 
of text based rules. To provide flexibility, the definition of what constitutes an  intrusion is 
left to the intrusion detection system administrator. A graphical rule editor, described below, 
is provided to allow the administrator to define what types of intrusions are to be monitored. 
The rules consist of combinations of sensors with boolean operators and filters. An example 
of a rule written out could be something like this: Watch for a PNNI New Node Sensor 
message from one switch AND a PNNI New Node Sensor message from another switch 
within a 20-second interval. If those events happen, within the time limit, then notify the 
administrator of the fact with an  e-mail message. 

Assessment Rules can be made arbitrarily complex by using Operator and Filters. Operators 
allow creation of logic constructs that combine incoming Sensor Notification (SN) events. 
When grouped together, they are referred to as solution sets. Each operator defines one logic 
operation that  is satisfied when a complete solution set has been assembled. In the 
Assessment engine implementation, operators are organized in a tree-like hierarchy to allow 
complex logic to be specified, and can be nested to an  arbitrary depth. Each operator may 
have one or more child operators and a single parent. The input to any operator is one or 
more solution sets from its child operators, and the output is one or more solution sets to its 
parent operator. When a n  operator “receives” a new solution set from one of its children, it 
tracks this as  a partial solution set for its level. The new partial solution set is combined with 
existing partial solution sets to determine if new completed solution sets result that can be 
“sent” to its parent. As solution sets are combined, they are checked to make sure that they 
don’t duplicate any existing sets by comparing the SNs that  make up the sets. If a solution 
set is a duplicate, it is discarded. When an  operator that has  no parent generates a solution 
set, the intrusion signature has been satisfied and responses are generated. 
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The operators implemented in the Assessment engine are: 

And - logical combination of two or more child operators; all child operators must be satisfied 

Or - logical combination of two or more child operators; any child operator may be satisfied 

Sequence - similar to the “ a n d  operator, but sensor notifications from child operators must 
be in time-order 

Count - a single child operator must be satisfied some specified number of times 

One or more filters may be associated with each operator to restrict solution sets. Filters 
check the SNs in the solution set to make sure they have values that, by themselves or in 
combination with other SNs, are in accordance with the filter parameters. If a solution set 
does not pass a filter, it is discarded. In  order to track the smallest number of solution sets, 
all filters in the hierarchy are applied any time a partial solution set is generated. This 
eliminates tracking solution sets at a particular operator level that would fail at some parent 
operator level. 

The filters implemented in the Assessment engine are: 

time - all of the sensor notifications in a solution set must occur within the specified delta 
time 

maximum - all of the sensor notifications in a solution set must have a parameter of the 
specified type whose value is at most the specified value 

minimum - all of the sensor notifications in a solution set must have a parameter of the 
specified type whose value is a t  least the specified value 

select - all of the sensor notifications in a solution set must have a parameter of the 
specified type whose value is one contained in a specified list of values 

same - all of the sensor notifications in a solution set must have a parameter of the specified 
type whose value matches all other sensor notifications 

different - all of the sensor notifications in a solution set must have a parameter of the 
specified type and the values of the sensor notifications in each child operator must differ 
from the values in all other child operators 

Asessment Process Design 

Since rule definitions may be arbitrarily complex, there exists the possibility that  the 
processing of a Sensor Notification through any single rule may take a lot of time. In  order 
to allow other rules to process simultaneously, the Assessment component is split into 
separate processes. There is an  Assessment Control process that is responsible for 
coordinating the inputs and outputs of one or more Assessment processes. Each Assessment 
process is responsible for the processing of one or more rules. They receive as  input Sensor 
Notifications from the Assessment Control process, and output Intrusion Notifications to the 
Assessment Control process. The configuration of how many Assessment processes and 
which rules each execute is contained in the rules set definition file. The Assessment Control 
process has responsibility for starting and stopping Assessment processes. 
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Responses 

The assessment engine design incorporates a modular architecture for implementing 
responses. Each response is implemented as  a single module, and is triggered when an 
attack signature is detected. That is, when a rule is constructed, the operator can also specify 
zero, one, or more responses that are associated with the rule. Therefore, when the rule is 
satisfied, messages are sent to all of the specified response components. These messages, 
which are formatted the same as  those in the sensor-assessment protocol, contain name- 
value pairs that provide parameters to the response modules, allowing them to tailor their 
responses appropriately. For example, if an SNMP sensor detects the connection of a new 
switch, it can send a message to the “disable port” response module that  contains the IP 
address and port identifier that must be disabled. Other example responses [24] include: 
have a modem dial a telephone number to page the network administrator, generate an  e- 
mail to the security officed, or change the sensitivity of a sensor. 

Rule Editor 

The assessment engine uses a misuse template, or rule file, to determine whether a sequence 
of events constitutes a n  attack, and if SO, which response should be initiated. The rule file is 
an  ASCII text file which follows a specific structure and syntax. For the casual user, this 
syntax can be cumbersome. Therefore, a graphical rule editor was developed, which 
automatically generates syntactically correct rule files. 

The rule editor, which is described in more detail in [22], allows a user to specify event 
sequences in a graphical fashion, as shown in Figure 4. In this example, the rule “pnnidemo” 
is satisfied if a ‘PNNI New Node” event is received, AND either 
“PNNI PGL Change” event is received. 

a “PNNI New PGL” OR a 

Figure 4: Graphical rule editor 
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The rule editor allows the user to specify filter criteria for the events (e.g., minimum and 
maximum values for various parameters that  accompany event notifications). In  addition, a 
graphical interface is also provided for selecting one or more responses for the rule, and the 
parameters that  are provided in the message to the response module. 

Once the rule and responses are specified, the user can check the rule for consistency and 
save the rule specification in the text-based format that  the assessment engine can 
understand. 

Software-Based Direct Sensors 

This section describes two direct sensors - the PNNI sensor (active direct sensor) and the 
UNI sensor (passive direct sensor). Other sensors are also possible, but were not developed in 
this project. These sensors include sensors that  monitor ATWIP adaptation protocols (e.g., 
local area network emulation, classical IP over ATM), ATM infrastructure services (e.g., 
ATM name services), and IP services (e.g., MPLS label distribution, IP routing protocols, 
DNS). 

The architecture of the PNNI sensor is shown in Figure 5. The PNNI protocol module 
interfaces to the ATM network through a set of ATM interface drivers that are specific to the 
operating system and network interface card (NIC) on the sensor host. The PNNI module 
implements a subset of the PNNI routing protocol, and therefore, causes the sensor host to 
appear to the rest of the ATM network as  another ATM switch. (When monitoring the PNNI 
signaling protocol, the UNI sensor, which is described below, should be used.) PNNI routing- 
specific events (e.g., reception of PNNI topology state packets, protocol state transitions, etc.) 
are processed by a TCL script, which filters the events, and re-formats them into the format 
specified by the sensor - assessment protocol (these protocol messages are described in detail 
in Appendix A). The re-formatted messages are sent to the assessment engine using the TCL 
IPC shim, which makes calls to the IPC library, which implements the message passing 
protocol. 
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Linux or Solaris 
Host 

ATM Interface Drivers 

k 
Assess 

ATM Network w 
Figure 5:  Active direct, PNNI sensor 

The UNI sensor represents the class of passive direct sensors in that  it directly implements a 
portion of the ATM UNI protocol and also the PNNI signaling protocol, both of which are 
based on the International Telecommunications Union’s Q.293 1 signaling protocol. This 
sensor observes protocol messages in a passive fashion. The general architecture of the UNI 
sensor is shown in Figure 6 (where it is attached between two switches to observe Q.2931 
flows). At this level of abstraction, the UNI sensor is mostly identical to the PNNI sensor 
described above in that it implements a protocol processor, event filters, and sensor- 
assessment protocol handling routines. In fact, all modules except for the UNI protocol 
processor and event filters re-use the same code that is used for the PNNI sensor. 
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Linux Host 

ATM Interface Driven 

ATM Network w Assessment 

Figure 6: Passive direct, UNI sensor 

However, rather than connecting directly to the network like the PNNI sensor, the UNI 
sensor attaches to the network using a fiber optic tap, and because the sensor architecture 
only allows one connection to the network, each UNI sensor can only view half of the duplex 
UNI protocol. 

The implementation of the UNI sensor is described in more detail in the next section. 

UNI Sensor Implementation 

The operation of the UNI sensor (configured to examine signaling messages on a switch- 
switch link) is depicted in Figure 7. 
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Figure 7: UNI sensor operation 

On the FilterTool host the FilterTool GUI (described below) creates the filter specification file 
“default.ff’ and pushes it through a secure shell tunnel using the “scp” command to the UNI 
filter host. The default.ff file is a human-readable (possible manually generated) ASCII text 
file. FilterTool allows a user who does not know the filter specification language to generate a 
default.ff file that is syntactically correct. The FilterTool host then executes the parser on the 
remote UNI sensor using the “ssh command. The use of the secure shell utilities permits 
strong public key authentication to restrict filter loading to authorized users only, and 
encrypts the transfer and remote execution commands to prevent eavesdropping of sensor 
management operations. 

On the UNI sensor host (a RedHat version 7.1 Linux system, with kernel 2.4.2), the parser 
(implemented in flex and bison) separates the default.ff filter specification into two sub- 
specifications - a hardware specification (in hw.spec) and a software specification (in 
sw.spec). The filter itself is split into two components - a hardware component and a 
software component. For the purposes of this project, the hardware component is simulated 
in software (a design for a n  actual hardware filter is described later). When the simulated 
hardware filter receives the UNI message, it reads the hw.spec file. If the message passes the 
filter, then it is forwarded to the software filter. The software filter reads sw.spec, and if the 
message passes this second filter, an  event is constructed and sent to the assessment engine. 
If new hw.spec or sw.spec files are generated, then their rules take effect on receipt of the 
next message. 

The UNI sensor is composed of a TCL script, which implements the main functionality, and a 
series of C files that implement the “back e n d  processing functions. The q2931.tcl script 
performs the following functions: 

1. calls the appropriate C routine to get a message that passes all of the filters 
(hardware and software) 
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2. reformats the returned message into the appropriate format for the sensor - 
assessment protocol 

3. sends the message to the assessment engine 

The functions in the C files (q2931.c, hw.c, and aal5.c) perform the following operations: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

connects the C routine GetMsg() to the TCL command “q293l-getmsg” 

initializes the ATM interface to receive signaling messages from the fiber optic tap 

reads AAL 5 message from the signaling VC 

performs the “hardware filter” function (currently based on the UNI message type) 
using the hwspec file for the filter rules 

performs the “software filter” function using the sw.spec file for the filter rules 

decodes the resulting message 

passes decoded result to calling TCL script (q2931.tcl) 

FilterTool Implementation 

FilterTool is a program designed to help users createlmodify filter rules for UNI messages. 
FilterTool also lets the user load these filter rules to a remote system (using ssh) that does 
the actual filtering. The remote system will communicate the filter rules to the hardware 
sensor (hardware filtering may be simulated or not implemented) that  will do a limited 
amount of filtering. Whatever passes the hardware sensor filters will be forwarded on to the 
remote host that  will do the rest of the filtering in software. FilterTool supports filtering for 
four types of UNI messages: SETUP, CONNECT, RELEASE, and RELEASE COMPLETE. 
These were chosen because they are common UNI messages and could adequately 
demonstrate our UNI filters work properly. 

FilterTool is written in C++ and uses Qt 3.0 beta 2 (www.trolltech.com) widgets for the user 
interface. It was written and tested on the RedHat Linux 7.1 operating system and should 
work on most Linux environments (not tested). Before FilterTool is started, the user needs 
to be authenticated with ssh. This is done by opening a terminal window and typing “ssh- 
agent -s xterm” at the prompt. Then in the new window, type “ssh-add and launch 
FilterTool. Downloading and uploading filters uses scp to transfer files which requires the 
process mentioned above. If the user just wants to create, alter, or view filters that are on 
their own machine, ssh is not necessary. Using ssh and scp allows the data to be transferred 
securely. When the program is first started, all fields are empty as shown in Figure 8. 
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Figure 8: Initial FilterTool window 

The user can proceed by either downloading the filter rules from a UNI sensor, opening a 
local filter file (with a .ff extension as  shown in Figure 9), or start from scratch by adding 
new filters. 

Figure 9: Opening a local filter file 

In  each case, filter rules will appear in the large list box in the center of the window. Each 
individual filter on the screen can be selected by clicking on the item. If the user wants to 
edit the selected item, they can either double-click that item or click the “Edit Filter” button. 
To remove a filter rule, the user can select the rule and press the “Remove Filter” button. 
When the “Add Filter” button is pressed, a dialog box appears allowing the user to select one 
of the four UNI message types supported: SETUP, CONNECT, RELEASE, and RELEASE 
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COMPLETE. The user will select one of these and a different dialog box will appear 
depending on the message type selected. For example, if the user chooses SETUP, a large 
dialog box appears that  allows the user to specify the called party number, calling party 
number, ATM traffic descriptors, and AAL parameters (SETUP dialog box is shown in Figure 
10). 

Figure 10: Filter specification dialog for UNI SETUP message 

Alternatively, if they choose RELEASE, a small dialog box will appear that  allows the user to 
select which cause or causes they want to filter. 

Filter rules are actually just strings written in a specific order so that they can be parsed by 
the UNI sensor. By default, all messages will be filtered in (filtered in means that  the 
message is kept and forwarded on to the assessment engine, filtered out means that it is 
thrown away). If the user wants all SETUP messages to be filtered in, they just need to 
make sure there are no SETUP rules or that the only SETUP rule on the screen is simply 
“SETUP. If a SETUP or CONNECT dialog is opened, and then accepted, without any fields 
being entered, the rule “SETUP or “CONNECT’ will be added to the screen showing that  it 
will filter in all of that message type. For RELEASE and RELEASE COMPLETE, the “Filter 
in all causes” option should be added to filter in all of those message types. This is not 
necessary, though, because as long a s  there are no filter rules of that  message type, all of 
those messages will be filtered in. 
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To filter out messages, the user needs to decide what messages they want to filter in. For 
example, if the user only wants to see RELEASE messages that  are caused by “user busy”, 
they should press “Add Filter” and then choose RELEASE. In the Release Filter dialog box 
they can choose “user busy” and add that cause to the list. When the user presses the “OK” 
button, the string “release cause(val=5)” will be displayed in the main window. This means 
that all RELEASE messages that do not have the cause “user busy” will be filtered out. 

After this is done to each message type (as needed) the user can save the filter specification 
(an example of which is shown in Figure 11) to a file. If this is what they want to configure 
the filter with, they can choose to upload it to a remote host. The user must specify the IP 
addresslhost name and the path to the directory of where the parser resides. The button 
“Upload Filters” is pressed and the user can choose the .ff file they want to upload. 
FilterTool will send this file to the remote UNI sensor and will run the parser on the file 
(thus configuring the sensor’s softwarelhardware filters). If there are any errors, a message 
will be displayed a t  the bottom of the screen saying to check the console for details. To verify 
that the correct file has  been uploaded, the user can then push the “Download Filters” button 
and FilterTool will display all of the filters that are loaded on the remote host. 

Figure 11: Example UNI sensor filter specification 

Installation 

This program requires Qt  to run. To get Qt (it’s free) go to www.trolltec ... com anL navigate 
to “Downloads”. Then select ‘‘QtIXll Free Edition”. Download the file and follow the 
instructions bundled with the download. After Qt is installed properly, FilterTool should be 
able to run. If there are any problems, go in to FilterTool’s directory and enter “make clean” 
in the console. Then re-make the program by typing “make”. 

Software-Based hidirect Sensors 

The SNMP Sensor is a series of Tcl scripts that  interface SNMP operations and commands to 
the assessment engine. The SNMP Sensor is considered a supplementary element of the 
ATM Intrusion Detection effort and is not the primary focus of the project. However, SNMP 
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capabilities allow the inclusion of additional event information and collaborating data, and 
the ability to initiate responses on a n  ATM switch in the network. This section provides a 
brief overview of SNMP, discusses its use in the ATM intrusion detection context, describes 
the basic functionality of the implementation, and proposes how SNMP strengthens the 
extensibility and flexibility of the ATM intrusion detection approach. 

Overview of SNMP 

Simple Network Management Protocol (SNMP) is essentially a specialized requestheply 
protocol designed for the management of network devices. I t  supports client-server 
operations and allows a system administrator to monitor the status of various device 
parameters a s  well as perform configuration management from remote locations. A key 
component of the SNMP approach is the management information base (MIB), which 
specifies the pieces of information that  can be retrieved from a network node. The syntax 
utilized for data storage by the MIB is the Abstract Syntax Notation One (ASN.l). In the 
request process, the SNMP client places the ASN.l identifier for the desired MIB variable 
into the request message, and sends the message to the server. The server, upon receiving 
the request, maps this identifier into local variable, retrieves the current value stored in the 
variable, encodes that value using the ASN.l syntax, and sends the response to the client. 
The two types of messages involved are an  SNMP request and an  SNMP reply. An 
unsolicited message, i.e. a n  SNMP trap, involves the SNMP server sending a message in the 
same format as  previously described to a designated client(s), but without any initial request 
by the client(s). A more detailed explanation of SNMP operations and the key components 
can be found in “SNMP, SNMPv2, and RMON: Practical Network Management” by William 
Stallings [20]. It should be noted that  SNMP was designed for the TCP/IP environment, and 
relies on IP  as  the data transmission protocol. 

Use within ATM intrusion Detection System 

Within the ATM Intrusion Detection system, the SNMP agent on an  ATM switch provides a 
secondary or indirect sensor for data collection, and allows the assessment engine to issue a 
response to the ATM switch. The type of trap events sent by the SNMP agent varies from 
statistical traffic data to basic connectivity establishment. Although the SNMP agent has  a 
wide range of trap responses available, the only those directly relevant to an intrusion 
attempt received consideration by the SNMP Sensor. 

The SNMP response capabilities also vary, but were limited to administratively disabling a 
port for this prototype. Use of responses must be carefully controlled so as not to allow the 
intrusion detection process to inadvertently shut down the network. Careful management of 
the response decision process reduces the potential for exploitation by an adversary to 
compromise the operation of the network. 

Basic Functionalitv of SNMP Sensor 

A series of Tcl scripts that interface SNMP operations and commands to the Assessment 
Engine make up the SNMP sensor. The scripts developed in the project only demonstrate 
the basic functionally possible with SNMP operations, and are not intended to serve a s  a 
production level application. Figure 12 indicates the basic components of the SNMP Sensor, 
and description of the various components and the necessary interactions follows. 
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Figure 12: SNMP sensor 

General operation and components of the SNMP Sensor are as  follows. The first component, 
the SNMP agent or code residing on the ATM switch, generates the SNMP trap messages (I), 
and sends those messages to the SNMP trap daemon on a Linux host, (2). Tcl scripts filter 
the incoming traps, and reformat the trap messages (3), destined for the Assessment Engine 
(4). The incoming messages are processed with data from the direct sensors at the 
Assessment Engine. If a response is necessary, the Assessment Engine issues a response to 
the SNMP sensor via the Linux host. The response message is formatted in the appropriate 
ASN.l notation (5), and sent to the SNMP agent on the ATM switch (6).  Initialization of the 
SNMP Sensor occurs by 1) running the SNMP daemon, and 2) running the snmpitf.tc1 script. 
Creation or initialization of all other files and scripts occurs automatically, assuming 
accurate configuration parameter and path settings. More detailed descriptions of the 
individual blocks and the Tcl scripts, trapitf.tc1, snmpitf.tc1, and snmpcmditf.tc1, follow 
below. 

The trap message (1) format from the ATM switch adheres to ASN. 1 notation, and includes a 
specific identifier associated with a particular condition on the switch. A physical link 
connection, the signaling status on a port, etc., may have changed state, which causes the 
issuing of a trap message. Before forwarding to the Assessment Engine, the Linux host 
filters the generated SNMP trap messages for relevancy and reformats the data. 

To communicate with the Linux host, the SNMP daemon (2) must be running on the Linux 
host, and the IP address of the Linux host must be set as the destination address for trap 
messages generated on the ATM switch. The trap daemon must be configured to call the 
trapitf.tc1 script, described in the next section. This prototype utilized the SNMP daemon 
version 4.1.2 from University of California at Davis', with the Red Hat  Linux operating 
system, kernel version 2.2.102. To initiate the processing of trap messages on the Linux host 

1 htt~:l/www.redhat.comlswrli386lucd-snmu-4.1.2-8.i386.html 

2 http:IIwww.redhat.com 
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(transition from block (2) to (3)), the SNMP trap daemon calls the trapitf.tc1. The SNMP trap 
daemon must be configured to call the trapitf.tc1, accomplished through parametric settings 
in the snmptrapd.conf file. The snmptrapd.conf directs the SNMP trap daemon to execute the 
trapitf.tc1 upon receiving trap messages from an ATM switch and to pass all available 
variables. MAN pages that describe how to set parameters in the snmptrapd.conf files are 
included with the trap daemon code. The snmptrapd.conf file should reside in the 
appropriate directory specified in the MAN pages (see inan sninptrapd.conf). The directory 
path to the trapitf.tc1 script must be specified in the snmptrapd.conf in order to execute the 
trapitf.tc1 script when an SNMP trap is received. 

The trapitf.tc1 script inputs variables from the SNMP trap daemon and passes relevant 
information to the snmpitf.tc1 script. Input variables include IP addresses, trap identifiers, 
and other associated variables. Some initial processing occurs in the trapitf.tc1 script, with 
the prototype processing being specific to a Marconi (FORE) ATM Switch. One aspect of the 
processing consists of trimming leading identifiers in the Object Identifier (OID) information 
from particular trap variables so that the minimum amount of unique information is stored 
and forwarded. For example, the following portion of the OID string is removed from the 
second variable in all trap messages captured in the prototype. 

.iso.org.dod.internet.snmpV2.snmpModules.snmpMI~.snmpMI~Objects.snmpTrap. 
snmpTrapOID.0 enterprises.326.2.2. 

The indicated string is unique to Marconi ATM switches. Finally, the trapitf.tc1 selects and 
orders the trap variables, and places them in a buffer file in order to pass them to the 
snmpitf.tc1 script. 

The snmpitf.tc1 script (block (3)) provides the decoding and reformatting of the trap messages 
placed in a buffer file by the trapitf.tc1 script. The current version handles only Marconi 
(FORE) specific traps. A table of these traps is located in Appendix A of the ATM Switch 
Configuration Manual, and the FORE mibs are available at the Marconi website3. General 
operation of the snmpitf.tc1 script consists of periodically searching for the buffer file 
containing trap information generated by the trapitf.tc1 script. If the file exists, the data is 
input and the trap identifier is converted to a text string. The text strings are searched for 
the desired traps, and upon finding one, a reformatted trap message is sent to the 
assessment engine. 

Reformatting of trap messages allows interfacing to the Assessment Engine and further 
refinement in the selection as  to which variables present useful information for the intrusion 
detection process. A typical reformatted message takes the form: 

TYPE=SENSOR-NOTIFICATION:AGENT-TYPE=SNMP-TRAP-l.O: 
SN-TYPE=< trap-id>:IP-ADDRESS=<X.X.X.X? 
SW-PORT=<sw port nuin ber>:DIAG<diagnostic data> 

Parameters selected from the original trap message include: 

3 httr,:Ilwww.marconi.conilhtinl/lo~inltacticsonline.htm 
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trap-id 
x.x.x.x 
sw port itumber 
diagnostic data 

SNMP trap identifier 
IP  address of SNMP agent on the ATM switch 
Software port number on the ATM switch 
Other relevant diagnostic data contained in the 
original trap 

Once a trap message is selected and reformatted, it is sent to the Assessment Engine (4), 
indicating the completion of the SNMP Sensor processing of a SNMP trap. The prototype 
version of the snmpitf.tc1 script forwards three types of traps, UNI signaling down, UNI 
signaling up, and ATM Switch Link up. Other traps may be included if they provide 
meaningful data in determining an  intrusion attempt. Additionally, the prototype utilized a 
searching frequency of 5 seconds, and flushed the buffer file upon every read by the 
snmpitf.tc1 script. This prevents rereading outdated trap messages. 

If the Assessment Engine needs to issue a configuration response, the SNMF’ daemon is 
notified on the Linux host, and utilizes the simpset command to send appropriate control 
messages to an  ATM switch. Responses from the Assessment Engine must also take the 
ASN. 1 form to interface to the SNMP agent on the target switch. The Assessment Engine 
passes the appropriate IP address, ATM switch software port number, and community string 
to the Linux host, which generates the appropriate set command with the proper OID (6) 
using the snmpcmditf.tc1 script (5). The appropriate community string must be included with 
the set command in order to communicate with the SNMP agent on the designated ATM 
switch. A typical response might be to administratively shutdown a port on a n  ATM switch. 

All of the SNMP Sensor Tcl script files can be located in the same directory. The buffer file 
created by the trapitf.tc1 can be created in that directory as  well, and the snmpitf.tc1 should 
specify the same location for reading the buffer file. The Tcl script creation in the SNMP 
Sensor development relied heavily on the text, “Tcl and the Tk Toolkit,” by John K. 
Ousterhout [15]. Note that  the method of retrieving and transmitting the community strings 
necessary for a configuration response by the Assessment Engine is not an  inherently secure 
approach. Security considerations for managing this information would be necessary for any 
production level installation that included response capabilities. 

Extendibilitv and Flexibilitv 

The SNMP Sensor utilized in the prototype only focused on the proof-of-concept. Extensions 
to the sensor could include the processing of an increased number of trap messages, and the 
support of additional Assessment Engine request messages. Also, while simpget commands 
where not integrated in the prototype, that functionality could be included. This would allow 
the Assessment Engine to query for additional information beyond what is initially 
forwarded in the SNMP trap messages. 

Since the SNMP Sensor relies on the IP/TCP suite of protocols, the application to switched IP 
based networks occurs naturally. Substantial modification of the sensor for use in Gigabit 
Ethernet and MPLS based networks would not be necessary. 

Hardware-Based Sensors 

Sensors implemented in software are quite suitable for use at the edges of an  ATM network, 
where high-speed performance is not required and due to the quantity of sensors deployed, 
low cost implementations are desirable. Because of performance scaling issues, hardware- 
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based sensors are the appropriate choice for monitoring control plane protocol messages in 
the core of the network. Hardware sensors are also appropriate for real-time monitoring of 
ATM user plane (data) and operations and management cells (which may also be used for 
certain classes of attacks). Because hardware-based sensors scale to much higher speeds, and 
although they are more expensive than software implementations, only a few fast sensors are 
needed on the core trunks. This is illustrated in Figure 13. 

ATM 
Switch 

ATM 
Switch 

ATM ATM 
Switch Switch 

i"ilhf-l 
Node Node Node 

Figure 13: Hardware-based sensors in network core 

As shown above, hardware sensors are intended for use between several switches, or between 
switches and user nodes to examine signaling and routing messages for anomalies. These 
anomalies are then reported for analysis and assessment. 

Hardware sensors are essentially high-speed cell or packet filters that operate at the 
signaling or line rates, typically OC-3 (155 Mbps) or OC-48 (2.488 Gbps). They function in 
the passive direct [22] fashion, siphoning off a copy of the bit stream and examining it for 
certain bit patterns, such as a specific message type on a certain virtual circuit. When a 
hardware sensor finds a cell (or having performed reassembly, a packet) that matches the 
specified criteria, it will generate a message for transmission to another system. This 
message may go directly to an  assessment engine or it may go to a system hosting multiple 
hardware sensors, for further processing, formatting, and eventual transmission to an 
assessment engine. A simplified architecture for this is shown in Figure 14. In  the 
simplified architecture, the WI and VCI would be hard-coded, while the message type would 
be passed to the sensor as a parameter. The general architecture for a hardware sensor is 
shown in Figure 15 and can receive a full filter specification. 
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Figure 14: Simplified architecture of a hardware-based sensor 
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Figure 15: General architecture of a hardw are-based sensor 
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Hardware-based sensors can be implemented with application-specific integrated circuits 
(ASICs) or with programmable logic devices (PLDs). Each of these has certain advantages. 
ASICs have a security advantage in that once the design is completed and fabricated, it 
cannot be changed, infected or corrupted. On the other hand PLDs, being reconfigurable 
logic, can be modified in real time. This allows not just for changing the sensor to look for a 
different value in a parameter (by writing a different value into its memory), but to load new 
logic into the sensor, completely changing its function, in response to an  attack or event. In 
all but extremely large quantities, PLDs cost less than ASICs containing logic of equivalent 
complexity. 

The use of PLDs on a common or standardized circuit board also facilitates the development 
of new sensors and the upgrading of older ones as the network threat environment changes. 
Furthermore, a PLD implementation would facilitate incorporation of hardware filtering 
functions in existing vendors' switches, where similar filtering operations are already 
performed in programmable logic. 
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Testbed Experiences 

Halfway through the project, a demonstration of the prototype capability was given that 
showed the use of a PNNI sensor, assessment engine, and responses. In the demonstration 
scenario (shown in Figure 16), a n  ATM switch was configured to represent a n  ATM network, 
and a PNNI sensor was attached to this switch to monitor PNNI activity for the lowest-level 
peer group. The sensor was also configured to send event notifications to an assessment 
engine over a n  “out of b a n d  IPlEthernet network. 

Rogue switch 
connects to FORE LE-155 

(Rogue Switch) network, forces 
(and wins) PGL 

election 

000000 
FORE LE-155 
(ATM Network) 

Response 1: 
Disable port 

l,n! - Response 2: 
Send email 
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(Assessment Engine) 

(PNNI Sensor) 

..-.‘.‘.‘,‘.‘.‘, 

Figure 16: ATM intrusion detection demonstration 

To simulate a peer group leader takeover attack, a “rogue switch was configured with a high 
peer group leader priority to ensure that when the switch is attached to the “ATM network”, 
it would force a peer group leader election and win the election. The PNNI sensor was 
configured to send “PNNI new node” and “PNNI peer group leader change” events to the 
assessment engine when these PNNI events are detected. The assessment engine was 
configured with a rule file (developed using the graphical rule editor tool) that  looked for a 
new node followed by a PGL change event, and if this rule was satisfied, it would send an  
email response to the system administrator and also issue an  SNMP command that  would 
disable the port on the switch to which the rogue switch attached. 

When the demonstration was performed, the system worked as  planned. 

Of course, the “port disable” response was a drastic response, and during development of the 
demonstration system, normal network events that happened to match the attack rules 
configured in the assessment engine would result in network reconfiguration and disabled 
switch ports. On several occasions, the group was surprised to find switch ports that were 
turned off unexpectedly a s  a result of normal system functioning. Therefore, in an  
operational situation, the rule file would need to be specified in more detail to filter out 
events that are part of the normal function of the ATM network. Alternatively, less drastic 
responses (e.g., email alerts) may also be required. 
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In  addition, the demonstration system was installed on ATDnet in Washington, DC. ATDnet 
is a large network comprised of at least 5 organizations. When the system was installed, the 
PNNI sensor was configured as before - to  detect PNNI new node and PGL change events. 
However, when the PNNI sensor was brought on-line on ATDnet, it would report PNNI new 
node events for every switch in ATDnet (because, to the sensor, every switch was a new 
switch). These events were generated very rapidly, and were reported to the assessment 
engine. Nevertheless, despite the fact that up to 50 new node events were reported in a brief 
time span, the assessment engine was able to queue the event notifications and process them 
without any evidence of missed events or other ill effects. Therefore, the scalability of the 
assessment engine for medium-sized networks was verified. 

29 



Scaling Considerations 

This section describes ways to scale the SNIDE architecture described earlier to large 
networks, while providing rapid response. The issue of intrusion detection and mitigation in 
ATM networks poses an  important and unique challenge to which Sandia National 
Laboratories [22] has committed itself. Like any networking architecture, ATM networks 
consist of a number of ATM nodes distributed over a wide geographical area. While the sheer 
number of nodes and the non-trivial inter-node distances pose a challenge to centralized 
decision-making, with respect to detecting and mitigating intrusion, the relative high speed 
a t  which cells are transported across an  ATM network complicates the problem immensely. 
Tarman, Witzke, Bauer, Kellogg, and Young [22] describe a n  architecture where PNNI and 
UNI sensors are deployed at the edges of a network to enable an  assessment engine detect 
attacks, by matching anomalous network behavior against standard templates gathered from 
known attacks, and then deploying effective countermeasures via the response agents. While 
the paper correctly observes that, for a small-scale ATM network, it is adequate to execute 
the sensors, assessment engines, and response agents in software, it motivates the 
development of a practical, scalable intrusion detection architecture for large-scale ATM 
networks. 

To address the problem comprehensively, the causes and origins of the key challenges are 
enumerated as follows. First, intrusion attacks directed against the PNNI protocol including 
the call admission control (CAC) and operation and management (OAM) functions, generally 
manifest at speeds of milliseconds to seconds which, for small-scale ATM networks, may be 
adequately addressed in software. The precise definition of what constitutes a small-scale 
ATM network, i.e. the maximum number of nodes for which the above claim is true, requires 
experimental analysis and is under study a t  Stevens Institute of Technology in collaboration 
with Sandia. Second, for modest- to large-scale ATM networks, organized in the form of a 
collection of peer groups, the combined weight of the decision-making for the increased 
number of ATM nodes, may render a straightforward software solution lacking. Third, given 
that the processes in the ATM switch fabric operate a t  microseconds or faster, intrusion 
attacks directed a t  ATM cell transport may defy a pure software solution. While a hardware 
dominated approach may constitute a logical response to issues 2 and 3, this research is 
driven by the following concern. As ATM switching speeds continue to increase in the future, 
even a pure hardware solution may not be adequate. The aim here is to pursue a new 
thinking, a novel architecture for ATM intrusion architecture. 

In developing the new architecture, following constitute the key issues and guiding 
principles. First, clearly, the architecture cannot be centralized. Second, while it is logical to 
pursue a purely decentralized [12][13] approach, i.e. one where the overall task of intrusion 
detection and mitigation is distributed uniformly among all constituent ATM nodes, such an 
approach may not correspond exactly to the hierarchically distributed organization of the 
ATM network. Third, recall that an ATM network consists of a very fast cell switching 
process at the switch fabric level, and a relatively slower process, that includes CAC, OAM, 
signaling, etc. Fourth, in general, detecting and mitigating an  intrusion at  the switch fabric 
level would require an  ultra fast response from the architecture while for attacks a t  the CAC, 
OAM, and signaling level, the architecture may be permitted to generate a relatively slower 
response. Fifth, according to the principles of computational intelligence, to generate a n  ultra 
fast response, the associated decision-making must be simple, i.e. the number of decisions 
must be small and the complexity of each decision, low. Using similar reasoning, when a 
slower response is tolerable, the complexity of the decision-making process, may be high. 
Sixth and final, although the degree of complexity, associated with conceiving and launching 
an intrusion, either a t  the switch fabric or CAC level, may range anywhere from low to high, 
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any manifestation of the intrusion a t  the switch fabric level must be addressed by the 
architecture very quickly while that a t  the CAC level may be addressed relatively slowly. An 
architecture that emerges from careful consideration of the six issues is presented in Figure 
17 and explained as follows. 
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Figure 17: Distributed intrusion detection architecture for ATM networks 

Figure 17 presents an ATM network consisting of two peer groups - A and B, with ATM 
nodes A1 through A4 and B1 through B4 respectively. The connectivity between the nodes of 
A and B, is not shown here. Associated with each node, say A2, is a tactical decision-making 
unit, A2-T, termed tactical ATM sentinel, that is realized primarily in hardware and whose 
function is six-fold. First, its sensors continuously monitor the behavior of the switch fabric of 
A2 and it responds quickly to any anomaly. Second, A2-T's response is limited to the ports 
and architectural elements of A2 and user traffic connected to the UNI of A2. Third, 
anomalous behavior of the call processor of A2 are reported to the strategic ATM sentinel for 
the entire peer group A. Fourth, a copy of A2-T's response is propagated to the strategic ATM 
sentinel. Fifth, the strategic ATM sentinel's response to anomaly in the call processor, is 
propagated to A2-T where it is executed. Sixth, where necessary, the behavior of A2-T is 
amenable to reprogramming by the strategic ATM sentinel. The strategic ATM sentinel is a 
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hardwarelsoftware entity, distinct from the nodes of the peer group, whose function is to 
analyze every anomaly occurring within the peer group, its own past response to earlier 
intrusions, and compute long-term decisions, a subset of which is then employed to 
reprogram the tactical ATM sentinels. The level 1 strategic ATM sentinels of peer groups A 
and B, in turn, report their activities to the level 2 strategic ATM sentinel which takes a n  
even broader and longer-term view of the anomalies and computes responses that  are 
manifest through modifying the response behaviors of level 1 strategic ATM sentinels. 

Analysis reveals that, in real-world distributed systems, a true picture of a system-wide 
behavior does not reside in any one of the constituent entities. A higher-level entity, such as  
a strategic ATM sentinel, must first acquire data from the entities, clearly a slow process, 
and only then determine the big picture through intelligent computation. 

Thus, the underlying philosophy of the intrusion detection architecture may be described a s  
follows. While tactical sentinels are deployed to respond to low level intrusions on fast ATM 
subprocesses in a timely manner, these sentinels' behaviors are governed by the strategic 
ATM sentinels that  examine anomalous network behavior over a wide time scale and 
compute long-term decisions. In essence, the architecture is hierarchically distributed, 
scalable, and practical. 

For a comprehensive study, we plan to identify intrusionslattacks that  are already known 
and ones that are  conceptually feasible. As a first step, in addition to the types of intrusions 
enumerated in [22], the issues of detecting and mitigating the following attackslintrusions 
will be addressed in this effort. 

0 Excessive, intensive traffic from one or more users a t  the UNI, exceeding the 
negotiated contract. A user's traffic may either exceed the negotiated SCR (sustained 
cell rate) or PCR (peak cell rate). If the UNI were to tolerate minor violations of SCR 
and PCR, under specific scenarios, their impact a t  the switch level could be far worse, 
especially where the bandwidths are high. 

0 Too many open connections a t  a node, with either little or normal traffic, may 
constitute a n  attack. 

Analysis shows that a few calls with excessive high bandwidth traffic may cause 
serious QoS problems and may be exploited as  a surreptitious attack. 

0 A specific attack had been developed in which, if a call is already established between 
any two nodes in the network via an  intermediate node, already under a n  attacker's 
control, and if the source and destination nodes are on the attacker list of "nodes to 
be attacked," then all of the traffic cells arriving on the correct channel are redirected 
to a n  arbitrarily and periodically selected channel, also already established. 
Following extensive study of the attack through simulation, it appears that  the 
switch fabrics of one or more of the ATM nodes in the network may encounter 
incoming cells with VPINCI pairs for which there is no corresponding entry in the 
routing table. The problem can affect both traffic as well as control cells. 

Our proposed modeling and simulation based investigation will employ a representative 
ATM network topology, shown in Figure 18. 
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Applicability to Other Switched Network Technologies 

At the inception of this project, ATM enjoyed widespread deployment and vendor support. 
However, as the project progressed, ATM sales declined while vendor and user interest in IP 
switching technologies increased. One standard for IP switching is MultiProtocol Label 
Switching, or MPLS. As the market realities became apparent, the project team decided to 
examine the ATM intrusion detection developments in light of IP switching, and the results 
of this study are documented in [26]. 

As described earlier in this report, the general architecture that was adopted for ATM 
intrusion detection can be readily viewed a s  an  intrusion detection architecture for switched 
networks in general. That is, an  architecture for switched network intrusion detection would 
necessarily be distributed, with a single assessment engine for the entire network, or a 
hierarchy of assessment engines performing strategic and tactical assessment, a s  described 
in the previous section. The main differences in the architecture are in the details related to 
the MPLS protocols for routing and label distribution. That is, protocol processors in the 
sensors would need to be modified, the assessment rules would need to be modified, and the 
sensor-assessment protocol would need to be modified. 

Introduction to Multiprotocol Label Switching (MPLS) 

Multi-Protocol Label Switching (MPLS) is a method for controlling the flow of IP packets 
(datagrams) and quickly switching them through a network. When standard routers forward 
IP datagrams, they make routing decisions on a per-packet basis using most of the contents 
provided by the IP header. However, datagram switching is much faster than routing 
because it uses a path setup protocol to establish a path through the network. Once the path 
is established, a small flow identifier is added to the packet, which allows datagram 
forwarding by switching hardware rather than route lookups. 

MPLS borrows many concepts from ATM, including the ideas of path switching, dynamic 
flow setup, and support for traffic engineering. The following sections describe these 
architectural concepts in more detail. 

MPLS is a set of Internet specifications that describes interoperable mechanisms for 
implementing IP  switching. An example of using MPLS for IP switching is shown in Figure 
19. MPLS Label Switching Routers (LSRs) switch IP datagrams over a Label Switched Path 
(LSP) that traverses an MPLS Domain. The LSP is established manually via management 
access or via signaling. 
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Figure 19: Label switching example 

Switching on an  LSP is supported by a label affixed to the IP packet by an  MPLS ingress 
LSR (LSR1 in Figure 19), and the label is removed by the egress LSR (LSR4 in Figure 19) 
when the datagram leaves the MPLS domain. Whereas conventional IP routing looks at  the 
IP header to make forwarding decisions, MPLS forwarding decisions are based on a small 
label affixed to the packet in a “shim header” between the IP and the link layer protocol (e.g., 
Ethernet MAC) headers. This label is assigned to the packet’s Forwarding Equivalence Class 
(FEC), which in practice is a network prefix. Therefore, all packets belonging to the same 
FEC (Le., having the same destination address prefix) are assigned the same label, and are 
switched along the same LSP. Labels may be unique to the LSR interface (interface label 
space), or unique to all interfaces on the LSR (platform label space). 

LSPs may be configured manually or via signaling, and like ATM virtual circuits or virtual 
paths, LSPs allow traffic engineering. This permits a network operator to override the 
automatic path that  a packet would take (i.e., one determined by normal IP  routing), and 
send the packet through one that is configured via management. Standard IP routed 
networks also support traffic engineering, but it is based on source routing, which has 
security and efficiency issues. Therefore, MPLS is considered a better solution for 
engineering traffic flows in a backbone network. 

When LSPs are configured via signaling, a label distribution protocol is required to allow 
LSRs to inform other LSRs of bindings between FECs and labels. The binding between a n  
FEC and a label is normally determined by the downstream LSR and communicated to the 
upstream LSR via signaling. Once communicated, the signaling protocol is used to maintain 
the binding and tear it down when it is no longer needed. As described later in this paper, 
multiple protocols for label distribution are defined by the Internet Engineering Task Force, 
including the Label Distribution Protocol with extensions for Constraint Routing (CR-LDP) 
and the Resource Reservation Protocol with extensions for Traffic Engineering (RSVP-TE). 

Applying SNIDE to MPLS 

The Switched Network Intrusion DEtection system (SNIDE) was originally developed to 
monitor protocol flows in ATM networks to detect ATM infrastructure attacks. The SNIDE 
architecture, which is shown in Figure 3, uses various types of sensors that  report to a 
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central assessment facility via IP. These sensors are the passive-direct, active-direct, and 
indirect sensors, which have been described earlier. 

As described earlier in this section, there are many architectural similarities between MPLS 
and ATM. Both protocols can be described in terms of the three-plane protocol reference 
model, which consists of the user plane, control plane, and management plane. With both 
approaches, user plane data is switched along a virtual path using a small amount of 
switching information contained in the packet header. In  order to switch data along this 
path, the tables in the switches must be configured a priori to understand how to handle 
data containing specific flow identification values in the headers. 

The role of the ATM and MPLS control planes is to dynamically configure switch tables to 
configure a new virtual path when it is needed. While there are vast differences in the details 
between the ATM and MPLS control plane protocols, on a more general level, these protocols 
are similar. Whereas ATM uses the UNI and PNNI signaling protocols to signal a new 
virtual circuit, MPLS uses CR-LDP or RSVP-TE to establish a n  LSP. Likewise, ATM uses 
the PNNI routing protocol to track current network state to make routing .decisions, where 
IP routers and LSRs use one of a number of routing protocols (including Open Shortest Path 
First, from which PNNI was derived) to perform the same function. 

These similarities between MPLS and ATM allow the SNIDE system to be applied to MPLS 
networks with little modification to the assessment engine and the sensor-to-assessment 
communications libraries. Since the assessment engine was designed to be very flexible, it 
can be easily enhanced with new MPLS-specific message types and new rules that  describe 
MPLS attacks (including those described earlier). 

However, the sensors, which are concerned with the protocol details, need a number of 
modifications to support MPLS. These modifications are: 

Passive-direct sensors - these sensors will be placed on inter-LSR links, LSRs 
themselves, or on boarder routers, and will implement event monitoring of the MPLS 
label distribution protocols. The existing sensors will need to be modified to decode fields 
in protocol messages and track protocol state. Also, unlike the UNI sensors, the MPLS 
sensors will need to be configurable to support multiple protocols (CR-LDP, RSVP-TE, 
and BGP messages carrying label information). 

Active-direct sensors -these sensors will be placed within an  MPLS domain, and will 
implement the IP routing protocols and participate actively in protocol exchanges with 
the LSRs or routers in the domain. As with the passive-direct sensors, the active-direct 
sensors will need to decode messages and support procedures for multiple protocols (e.g., 
BGP and OSPF). 

Indirect sensors -these sensors translate between SNMP and the SNIDE reporting 
protocol. Since IP LSRs use SNMP for configuration and trap reporting, these sensors 
will require little modification. The only modifications required would be to translate the 
additional, MPLS-specific traps that  may be reported. 

Attack rules in the assessment engine will need to be developed to identify sensor event 
sequences that may indicate an  MPLS attack. Some possible attack rules are defined in [26]. 

As one can see, the fact that  SNIDE was designed for intrusion detection in switched 
networks allows it to be readily applied to detect misuse of the MPLS protocols. The bulk of 
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the development that is required to perform modification is largely limited to the sensors 
themselves, which are concerned with the details of the protocols they are monitoring. 
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Conclusions 

Asynchronous Transfer Mode (ATM) is widely used as  a backbone for corporate and public 
telephone and data networks, and its availability is paramount to the correct operation of the 
Internet Protocol (IP) and higher-layer applications. Key to the correct operation of ATM is 
its set of control plane protocols, which perform functions such as  virtual circuit signaling 
and routing. If these protocols are attacked, then denial of service can result. Therefore, a 
system is required to monitor these control plane protocols, and respond if protocol events 
indicate a possible attack. 

ATM is a switched network technology, and other protocols (notably IP) are also being 
implemented in a switched fashion. Therefore, the general problem of intrusion detection in 
a switched network is receiving more attention. This paper describes in detail the Switched 
Network Intrusion DEtection (SNIDE) system that was developed under a Sandia 
Laboratory-Directed Research and Development project. This system was designed to 
perform control plane intrusion detection on a general switched network, and implemented 
to perform intrusion detection specifically on ATM networks. This system includes 
components that  implement intrusion sensing, assessment, and response, along with 
management tools and graphical user interfaces to configure system components. 

Initial results have shown that this system operates as  expected, and vendors have 
expressed interest in possible licensing of components from the SNIDE system. Specifically, 
we have talked with vendors about the UNI sensor and assessment software, and the 
possible implementation of sensor functions in ATM switches. 
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Appendix A: Sensor - Assessment Protocol Message Format 

ATM intrusion detection messages shall be null-terminated ASCII text strings composed of a 
number of fields, which are separated by the delimiter character I:'. The formats of messages 
are dependent on the message TYPE. 

E Messa e-specific data 

Each field is a namehalue pair in the form <field name>=<value>. Values for the message 
TYPE field include: 

TYPE=SENSOR NOTIFICATION 

TYPE=LOAD RULES 

TYPE=SENSOR STARTUP 

Sensor notifications messages have the following format: 

I DIAG=<diagnostic data> J 

with the delimiter character I:' separating each field. 

UNI Protocol Events 

Setup Message Received 

TYPE=SENSOR NOTIFICATION 
AGENT-TYPE=SNIDEu- 1.0 

I SN-TYPE=UNI-SETUP 
CALLINGTNSAP=<callin g NSAP> (Note) 
CALLED-NSAP=<called NSAP> 

I DIAG=<diagnostic data> 

Note: NSAP addresses are 20-byte hex values, and hence, encode to 40 character ASCII 
strings. 
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Connect Message Received 

TYPE=SENSOR NOTIFICATION 
AGENT_TYPE=SNIDEu-l.O 
SN-TYPE=UNI-CONNECT 
CALLING-NSAP=<calling NSAP> 
CALLED-NSAP=<called NSAP> 
DIAG=<diagnostic data> 

PNNI Protocol Events 

New PNNl Node 

(Note) 
DIAG=<diagnostic data> 

Note: Node IDS are 22-byte hex values, and hence, encode to 44 character ASCII strings. 
They are of the form <prefix length><address length><NSAP address>. 

New PNNl Link 

TYPE=SENSOR NOTIFICATION 
AGENT-TYPE=SNIDEp- 1 .O 
SN-TYPE=PNNI-NEW-LINK 
SRC-NODE-ID=<node ID> 
DEST-NODE-ID=<node ID> 
DIAG=<diagnostic data> 

Deleted Horizontal PNNl Link 

TYPE=SENSOR NOTIFICATION 
AGENT-TYPE=SNIDEp-1.0 
SN-TYPE=PNNI-DELETE-HORIZ-LINK 
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SRC-NODE-ID=<node ID> 
DEST-NODE-ID=<node ID> 

I DIAG=<diagnostic data> 

New PNNl Peer Group Leader 

TYPE=SENSOR NOTIFICATION 
AGENT-TYPE=SNIDEp- 1.0 
SN-TYPE=PNNI-NE W-PGL 
PEER-GROUP=<peer group ID> 

Note 1: Peer group ID is a 21-byte hex value of the form <prefix length><NSAP address>. 

Note 2: Peer group leader ID is a 22-byte hex value of the form <prefix length><address 
1engthxNSAP address>. 

Change PNNl Peer Group Leader 

TYPE=SENSOR NOTIFICATION 
AGENT-TYPE=SNIDEp- 1.0 
SN-TYPE=PNNI-PGL-CHANGE 
PEER-GROUP=<peer group ID> 
(Note 1) 
PGL-ID=<peer group leader ID> 
(Note 2) 
DIAG=<diagnostic data> 

Note 1: Peer group ID is a 21-byte hex value of the form <prefix length><NSAP address>. 

Note 2: Peer group leader ID is a 22-byte hex value of the form <prefix length><address 
length><NSAP address>. 

SNMP Events 

UNI Signaling Down 
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TYPE=SENSOR NOTIFICATION 
AGENT-TYPE=SNMPTRAP- 1.0 
SN_TYPE=asxQ293 lDown 
IP-ADDRESS=X.X.X.X (Note 1) 
SW-PORT=<sw port number > (Note 2) 

Note 1: This is the IP address of the qaaX interface on the ATM switch. 

Note 2. This is an integer value representing the software port associated with the Q2931 
signaling. 

UNI Signaling Up 

Note 1: This is the IP  address of the qaaX interface on the ATM switch. 

Note 2. This is an integer value representing the software port associated with the Q2931 
signaling. 

ATM Switch Link Up 

Note 1: This is the IP address of the qaaX interface on the ATM switch. 

Note 2. This is an  integer value representing the software port associated with the link that  
comes “up”. 
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Abstract 

Currently, network intrusion-detection (NID) systems are in place in networks at Sandia and 
its customers. NID systems allow site security personnel to monitor network devices and 
hosts for activities that indicate a possible attack, misuse, or operational anomaly in the 
information system. Since NID systems protect against attacks from inside and outside 
users, they provide a complementary service to devices that protect internal networks 
against outside attacks (e.g., encryptors and firewalls). However, current NID systems only 
work down to the Internet Protocol (IP) level. Data and control flows below IP are not 
covered by the current technology. This represents a risk to Asynchronous Transfer Mode 
(ATM) network backbones, which are found inside many enterprises (including Sandia), 
public carriers, and the Internet. This makes ATM networks vulnerable to a variety of 
denial-of-service attacks, routing infrastructure attacks, and other attacks. 

This project is developing an  ATM intrusion-detection system that monitors the signaling 
flows associated with a variety of ATM protocols (including virtual circuit setup, call routing, 
local area network [LAN] emulation, etc.) to determine if insider or outsider attacks are 
being conducted against the ATM network. This project will research and document ssues 
such a s  analysis of ATM protocol attacks, sensor performance on high-bandwidth links and 
switch fabrics, and scalability. We will develop prototype ATM intrusion-detection systems 
that  incorporate methods that  address these specific concerns. 

Sandia is uniquely qualified to make significant contributions to this area due to its 
recognized leadership in ATM security and high-speed encryption, and in-depth experience 
with ATM protocols and IP NID. Results from this work will lead to key technologies that 
can be incorporated into the ATM intrusion-detection devices for Sandia and DOE 
technologies. This work will also enhance Sandia's leadership in ATM security. 

Accomplishments 

We made much progress in the development of a proof-of-concept software-based ATM 
intrusion-detection system. 

We selected and documented an  architecture for the intrusion detection system. This 
architecture uses a number of ATM-specific sensors that  monitor routing message flows, 
virtual circuit signaling flows, and Simple Network Management Protocol (SNMP) trap 
information. To accommodate this variety of sensors, we developed a common communication 
protocol, sensor message formats, and communication library functions. This protocol will 
allow the addition of new sensor types (e.g., hardware-based sensors) in the future. 

We selected an  assessment engine to correlate intrusion sensor events and to determine 
whether a n  attack is occurring in the network. This assessment engine provides a flexible 
rule specification language, which allows the end user to specify custom attack templates 
and responses to verified attacks. These rules are specified in a text file, which is generated 
manually or via a JAVA graphical user interface (GUI). 

We developed a template for a simple but interesting attack scenario. While researching 
attack scenarios, we met with a researcher from Arizona State University to discuss his 
findings. We used this attack scenario to show successful detection of an  ATM network 
attack. The prototype intrusion-detection system used software-based network event sensors, 
along with the assessment engine and rule generator described above. 
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Title: Intrusion Detection for Asynchronous Transfer Mode (ATM) Networks 

Project Manager: STANS,LEONARD 
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Abstract 

Currently, network intrusion detection (NID) systems are in place in networks a t  Sandia and 
its customers. NIDs allow site security personnel to monitor network devices and hosts for 
activities that indicate a possible attack, misuse, or operational anomaly in the information 
system. Since NIDs protect against attacks from inside and outside users, they provide a 
complementary service to devices that protect internal networks against outside attacks 
(e.g., encryptors and firewalls). However, current NID systems only work down to the 
Internet Protocol (IP) level. Data and control flows below IP  are not covered by the current 

49 



technology. This represents a risk to Asynchronous Transfer Mode (ATM) network 
backbones, which are found inside many enterprises (including Sandia), public carriers, and 
the Internet. This makes ATM networks vulnerable to a variety of denial of service attacks, 
routing infrastructure attacks, and other attacks. 

This project is developing an  ATM intrusion detection system that monitors the signaling 
flows associated with a variety of ATM protocols (including virtual circuit setup, call routing, 
local area network emulation, etc.) to determine if insider or outsider attacks are being 
conducted against the ATM network. Issues such as analysis of ATM protocol attacks, sensor 
performance on high-bandwidth links and switch fabrics, and scalability issues will be 
researched and documented during this project. Prototype ATM intrusion detection systems 
will be developed that incorporate methods that  address these specific concerns. 

Sandia is uniquely qualified to make significant contributions to this area due to its 
recognized leadership in ATM security and high-speed encryption, and in-depth experience 
with ATM protocols and IP network intrusion detection. Results from this work will lead to 
key technologies that  can be incorporated into the ATM intrusion detection devices for 
Sandia and DOE technologies. This work will also enhance Sandia's leadership in ATM 
security. 

Accomplishments 

During this year of research, we completed development of a software-based ATM intrusion 
detection system and demonstrated it in small laboratory environments a t  Sandia and at the 
Stevens Institute of Technology, and in a large unclassified test network for the DoD at  one 
of their locations. In all of these demonstrations, the system successfully detected a mock 
"ATM peer group leader takeover attack' (described in a MILCOM 1999 paper by Smith and 
Robinson). This successful detection involved all of the subcomponents in our ATM intrusion 
detection architecture, including the active-direct sensors (for the Private Network to 
Network Interface, or PNNI, protocol), the passive-direct sensors (for the User to Network 
Interface, or UNI, protocol), the indirect sensors (for the Simple Network Management 
Protocol, or SNMP), the assessment engine, rule editor, and response components (both 
active and passive). In  response to the attack, the assessment engine successfully responded 
by sending a notification to the administrator, and isolating the offending intruder by 
shutting down a n  appropriate port on the switch to which it attached. In  addition, the DoD 
installation also showed the scalability of the basic, software-based architecture by 
successfully "sifting through the noise" of a large number of new-switch events to 
successfully detect the mock attack. 

As part of our collaboration with Dr. Sumit Ghosh of the Stevens Institute of Technology 
(formerly with Arizona State University), we initiated a contract with him to examine 
scalability and response timeliness issues associated with our intrusion detection approach, 
and with distributed intrusion detection systems in general. We delivered a working ATM 
intrusion detection system to him in April, set it up in his lab, and demonstrated the system 
to him. His progress reports indicate the need to partition a distributed intrusion detection 
system into two components -- a strategic component which extracts parameters (sensor 
notifications), and a tactical component which is configured by the strategic part with 
network reconfiguration rules and responds according to these rules. A detailed description 
of Dr. Ghosh's results is found in the project's final report. 
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Another aspect of this work that was performed in F Y O 1  was the continued development of 
the UNI sensor, which is a passive-direct sensor (that is, a sensor that  directly monitors 
ATM protocol flows, but does so silently, without actively participating as  a network device). 
This sensor was designed to facilitate separation of the sensor configuration user interface 
from the actual sensor device, which allows distributed management of multiple UNI 
sensors. The UNI sensors themselves were designed to be implemented on a Linux platform, 
with some functionality in hardware and the rest in software. A language for communicating 
filter specifications between the user interface and the sensor was developed, and a protocol 
for securely transferring filter specifications (based on secure shell, with public key 
cryptography) was also developed. Although all sensor components were implemented in 
software, progress was made in the design and implementation of the hardware components 
on an Altera System on a Programmable Chip (SOPC) platform. 

Given the current network market conditions, vendor interest has now shifted away from 
ATM and toward IP-based flow switching techniques such as MultiProtocol Label Switching 
(MPLS). Therefore, this project also spent some time analyzing the MPLS protocols to 
determine how the ATM intrusion detection architecture can be applied to MPLS networks. 
The results of this analysis are documented in an  internal white paper, and a copy has  been 
sent to our collaborator a t  the DoD. 
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Appendix C: Timeline of Sandia’s ATM Forum Impact 

Given the current market shift away from ATM, this project is probably the last Sandia 
LDRD project relating to ATM. Over the past nine years, Sandia LDRDs have had a key role 
Sandia’s work in the ATM Forum (an ATM standards body) developing specifications for 
security, high-performance physical layer devices, and flow control protocols. As Figure 20 
shows, the past nine years have been very productive. 
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Figure 20: Timeline of Sandia’s impact in the ATM Forum 

(sources: Helen Chen, Steve Gossage, Lyndon Pierson, and Tom Tarman) 
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