

SAND REPORT

SAND2001-3091
Unlimited Release
Printed November 2001

Source Code Assurance Tool:
LDRD Final Report

Juan Espinoza Jr., Philip L. Campbell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

 SAND 2001-3091
 Unlimited Release

Printed November 2001

Source Code Assurance Tool:
LDRD Final Report

Juan Espinoza Jr.
Cryptography and Information Systems Surety

Philip L. Campbell

Networked Systems Survivability and Assurance

Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-0785

Abstract

This report provides a summary of the work completed in the Source Code
Assurance Tool project. This work was done as part of the Laboratory Di-
rected Research and Development program.

 ii

 iii

Contents

1. INTRODUCTION ...1

2. SUMMARY OF WORK..1

2.1 Prototype Tool...2

2.2 SAND Reports ..2

2.2.1 Abstract for “Source Code Assurance Tool: Preliminary Functional
Description.” SAND2001-3092...3

2.2.2 Abstract for “Visual Structure Language.” SAND2001-3093...............3

2.2.3 Abstract for “Source Code Assurance Tool: An Implementation.”
SAND2001-3094 ...3

2.3 Other Reports ..4

2.4 Technical Advance Disclosures ..4

APPENDICES..5

A.1 Original Proposal ..6

A.1.1 Scientific and Technical Soundness...6

A.1.2 Creativity and Innovation...8

A.1.3 Project Plan ..9
A.1.3.1 Development Schedule ..9
A.1.3.2 Team Structure...10
A.1.3.3 Requested Funding...10

A.1.4 Impact...11

A.2 Technical Advance Disclosures ..12

A.2.1 Technical Advance Disclosure (SD-6688/S-95,506): “System Analysis
Tool (SAT): A Tool For Analyzing Systems Of Software”.............................12

A.2.2 Technical Advance Disclosure (SD-6886/S-97,508): “Visual
Programming Tool (VPT)” ..15

A.2.3 Technical Advance Disclosure (SD-6885/S-97,507): “Range-Value
Propagation (RVP): Approximate Computing”...18

A.3 Graph Drawing Tool Survey...22

A.4 UML Tool Survey...27

 1

Source Code Assurance Tool:
LDRD Final Report

1. INTRODUCTION
This Laboratory Directed Research and Development (LDRD) project was funded for three years
starting in October 1999 and finishing in September 2001 and was designed to advance the start of
the art in software surety science. The goal of the project was to develop a software application, the
Source Code Assurance Tool (SAT), that would assist an analyst, or team of analysts, in the assess-
ment of a system, both software and non-software.

In information system security, the emphasis is on the system. Processes external to the informa-
tion system, such as human machine interactions, the information system’s operating location, the
lifecycle of its components, and a range of other concerns must all be addressed in order to assure
that a system that incorporates information technology is safe, secure, and reliable.

Because any system of reasonable size contains a range of technologies, the assessment of such a
system typically requires a team of analysts who each bring to the table a unique body of expertise.
For efficiency’s sake, the responsibility for various assessment activities is often partitioned. For ex-
ample, one team member might be given responsibility for the mechanical aspects of the system, an-
other may address physical security issues, a third may inspect the software, a fourth analyze the
networking, another consider electrical engineering problems, and yet another handle system issues.
While this arrangement is efficient from a project management viewpoint, it introduces problems in
the assessment of the system. While each analyst may understand his own portion of the system very
well, he may not understand how behaviors associated with his portion of the system play together
with the rest of the system to deliver undesirable outcomes. For this reason, there is a need for a tool
that will help analysts answer the following questions of other analysts:

• What happens if my portion of the system delivers this kind of event to your portion of the
system?

• How could your part of the system deliver this kind of event to my part?

Currently, assessments do not have a tool to help answer these intra-partition questions. With this
new tool at hand, a larger context can be addressed, namely, studying the entire system. Moving to
this point is one goal of the Source Code Assurance Tool LDRD project.

2. SUMMARY OF WORK
The scope of the work changed over the three-year period as the application requirements became
clearer and we understood that the required resources exceeded the available project resources. The
irony is that we needed the very tool we were developing to help us in its development. We devel-
oped a prototype software application, wrote several papers and reports, and generated three Techni-
cal Advance Disclosures.

 2

2.1 Prototype Tool
We developed a prototype of the Source Code Assurance Tool (SAT) using available commercial-of-
the-shelf (COTS) software. We used a slicing engine, CodeSurfer from GrammaTech, and a custom
graph editor, created with Graph Editor Toolkit (GET) from Tom Sawyer Software (TSS). The user
constructs a graph of the system by using GET and then slices it using CodeSurfer. Bringing both
tools together into a new tool allows the user to construct and slice across what we call a “system”
since their communication is not through labeled sections of memory.

As an example of what we mean by “system”, let two programs, A and B, communicate via a
disk file; A writes to the file and, sometime later, B reads from the file; the collection of A and B
constitute the minimum for what we call a system. A more complex but relevant example to our in-
dustry would be a nuclear weapons system that consists of the weapon, a cable, a notebook computer,
and a human. Existing tools can analyze each of the system components. But current tools do not al-
low analysis of the system in its entirety. It is in their integration that systems have problems, be-
cause of a lack of tools that address this area.

The significance of our tool is that it enables analysis of a system that exists in the real world but
has not been, prior to our tool, analyzable in an automated way. The following describes how the
analyst uses our tool. First, he uses the graph editor to draw a graph (i.e., nodes and edges) to repre-
sent software components. He then draws arcs to represent dependencies, attaching the source of an
arc to an output statement in one component and attaching the target of an arc to an input statement
in another component. He then uses the graphical representation of the system to analyze it. He
specifies a starting position (for a forward slice), or a stopping position (for a backward slice), or
both (for a chop). The tool then uses the graphical representation to move the slice forward (or back-
wards) and uses CodeSurfer to analyze each software component.

We experimented with several other COTS products to determine their feasibility in developing
the graphical user interface (GUI) for the tool, namely Visio Professional, Microsoft Visual Studio,
and Platinum Paradigm Plus, an object-oriented (OO) computer-aided software engineering (CASE)
tool. Each had their various strengths and weaknesses, but we decided to build the prototype GUI
using the TSS Graph Editor Toolkit instead. We needed a flexible and speedy tool that would allow
the user to create, modify, and nest graph representations of their desired systems. GET also comes in
several languages (Java, ActiveX, C++) allowing for cross-platform independence.

We hired a technician at GrammaTech to help develop the socket-based control of Gram-
maTech's product, CodeSurfer. We also hired a Java programmer to help connect the graph editor
from Tom Sawyer Software with the socket-based controller so that a user can analyze a system. At
the level of abstraction we were working, it would not have been possible for us to develop the con-
stituent software ourselves. For example, the C parser that CodeSurfer uses would, by itself, have
consumed all our efforts if we were to have built it ourselves. (Compilers are among the most com-
plex pieces of software.)

2.2 SAND Reports
The detailed results of this project are documented in the following SAND reports.

• Richard L. Craft, Philip L. Campbell, Juan Espinoza, “Source Code Assurance Tool: Pre-
liminary Functional Description.” SAND2001-3092. Sandia National Laboratories, Albu-
querque, NM. Printed October 2001

 3

• Philip L. Campbell, Juan Espinoza, “Visual Structure Language.” SAND2001-3093. Sandia
National Laboratories, Albuquerque, NM. Printed October 2001

• Philip L. Campbell, Juan Espinoza, “Source Code Assurance Tool: An Implementation.”
SAND2001-3094. Sandia National Laboratories, Albuquerque, NM. Printed October 2001

The abstracts of the SAND reports are presented in the following sections.

2.2.1 Abstract for “Source Code Assurance Tool: Preliminary Functional De-
scription.” SAND2001-3092

This report provides a preliminary functional description of a novel software application, the Source
Code Assurance Tool, which would assist a system analyst in the software assessment process. An
overview is given of the tool’s functionality and design; and how the analyst would use it to assess a
body of source code. This work was done as part of a Laboratory Directed Research and Develop-
ment project.

2.2.2 Abstract for “Visual Structure Language.” SAND2001-3093

In this paper we describe a new language, Visual Structure Language (VSL), designed to describe the
structure of a program and explain its pieces. This new language is built on top of a general-purpose
language, such as C. The language consists of three extensions: explanations, nesting, and arcs. Ex-
planations are comments explicitly associated with code segments. These explanations can be nested.
And arcs can be inserted between explanations to show data- or control-flow.

The value of VSL is that it enables a developer to better control a code. The developer can repre-
sent the structure via nested explanations, using arcs to indicate the flow of data and control. The
explanations provide a “second opinion” about the code so that at any level, the developer can con-
firm that the code operates as it is intended to do.

We believe that VSL enables a programmer to use in a computer language the same model—a
hierarchy of components—that they use in their heads when they conceptualize systems.

2.2.3 Abstract for “Source Code Assurance Tool: An Implementation.”
SAND2001-3094

We present the tool we built as part of a Laboratory Directed Research and Development (LDRD)
project. This tool consists of a commercially available, graphical editor front-end, combined with a
back end “slicer.”

The significance of the tool is that it shows how to slice across system components. This is an
advance from slicing across program components.

 4

2.3 Other Reports
We submitted a related SAND report (SAND2000-1465, printed June 2000). We submitted an earlier
draft of the paper to the DOE Software Quality Forum and submitted the SAND report to the “Jour-
nal of Software Maintenance: Research and Practice.”

Our ideas also influenced the only vendor in this area, GrammaTech, to obtain funding from
DARPA for the next step in their commercial tool. That next step is a product they refer to as Sys-
temSurfer, a term that they first heard from us back in April 1999.

2.4 Technical Advance Disclosures
The following Technical Advance Disclosures were submitted:

• Technical Advance Disclosure (SD-6886/S-97,508): “Visual Programming Tool (VPT)”

• Technical Advance Disclosure (SD-6885/S-97,507): “Range-Value Propagation (RVP): Ap-
proximate Computing”

• Technical Advance Disclosure (SD-6688/S-95,506): “System Analysis Tool (SAT): A Tool
For Analyzing Systems Of Software”

See Appendix A.2 for details on the above Technical Advances.

 5

APPENDICES
The appendices contain valuable information pertaining to the objectives and deliverables of the SAT
LDRD project. The appendices are organized as follows:

• Appendix A.1 - original proposal submitted to the LDRD office.

• Appendix A.2 - Technical Advance Disclosures

Ø Technical Advance Disclosure (SD-6688/S-95,506): “System Analysis Tool (SAT): A
Tool For Analyzing Systems Of Software”

Ø Technical Advance Disclosure (SD-6886/S-97,508): “Visual Programming Tool (VPT)”

Ø Technical Advance Disclosure (SD-6885/S-97,507): “Range-Value Propagation (RVP):
Approximate Computing”

• Appendix A.3 – Graph Drawing Tool Survey

• Appendix A.4 – UML Tool Survey

 6

A.1 Original Proposal

A.1.1 Scientific and Technical Soundness

In the development of high consequence systems, one of the perennially difficult problems is the as-
surance of software used in these systems. Achieving this assurance invariably rests on human in-
spection and testing of the software1. This process is extremely labor-intensive and, therefore, can be
time-consuming and expensive. Given this, safety- and security-critical software projects are often
forced into one of two unacceptable outcomes – to slip delivery dates to finish manual inspections or
to deliver code that has not been full assessed2. The quality of the assessment is also highly depend-
ent on the analyst. Analyst biases and the sheer volume of things to be considered in an assessment
can lead to critical problems being overlooked by the analyst. For these reasons, a tool that increases
the human analyst’s level of performance in software assessment – both in terms of time invested and
accuracy – would be of significant benefit.

Effective software assessment in these systems requires that the analyst take a holistic view of
the software system and not just focus on an assessment of the software itself. In addition to answer-
ing the question:

• Are there weaknesses/vulnerabilities within the software that could lead to system failure or
compromise?

The analyst must also determine:

• Can the software fail due to vulnerabilities in the platform (computing device and operating
system) on which the software runs?

• Can interactions between the system’s hardware elements (other than the computing plat-
form) and software lead to failure of the system?

To answer these questions the analyst needs to understand the various causal relationships that
exist (a) within the software, (b) between the software and the computing platform, and (c) between
the software and the rest of the system. The analyst must also know the various failure mechanisms /
vulnerabilities that exist in the computing platform.

These two tasks each contribute in their own way to the time-intensiveness of assessment. First,
identifying the causal relationships within a system is currently a manual process. While tools are
available within “integrated development environments” that help the analyst browse the software,
they are usually limited in their capabilities. The analyst typically ends up tracing by hand through
the series of function calls and equations that contribute to the state of a variable in question or that
depend on this variable. Once these causal chains are identified, it is then up to the analyst to decide
whether or not given undesirable states can be reached via those chains. While this latter task re-

1 While much research has gone into the use of formal methods to “design in” assurance, the methods have yet to gain wide-
spread acceptance or to be proven on large-scale engineering projects. Even where they are used (e.g., in the design of secu-
rity kernels for high security computers, the assurance that the implementation matches the formally-proven design is based
on human inspection.
2 This past year, the Food and Drug Administration, realizing that defective software in medical devices could threaten hu-
man lives, considered establishing quality requirements on medical software. The FDA backed off this position when the
implications of human software inspection became clear. Similar time and money issues have lead the National Computer
Security Center (the organization within the National Security Agency responsible for assessing high security computing
products) to ease its accreditation criteria for lower assurance security systems.

 7

quires intelligence, the former is essentially mechanistic and, if automated, would significantly re-
duce the time involved in this portion of the assessment process.

The second source of time-intensiveness is the diffuse nature of the knowledge base regarding

the vulnerabilities of various computing platforms. Rather than being centralized so as to be readily
usable by the analyst, the vulnerabilities are typically scattered in a divergent set of repositories,
many of which may not be known to the analyst. For this reason, the analyst may invest significant
amounts of time simply tracking down the vulnerabilities on the Internet, on bulletin boards, in
magazines and newsletters, and in a range of other locations. Even when a report regarding a weak-
ness or vulnerability is found, the analyst may have no way of assessing the accuracy of the report;
therefore, the analyst may need to take time to verify the report. If a complete knowledge base of
validated attacks were available at the analyst’s fingertips, a significant amount of time spent in the
assessment process would be eliminated.

Finally, it should be noted that when the analyst studies a system to identify the causal relation-
ships with the system, the map of the system that develops remains within the analyst’s brain. It is
never documented explicitly and, therefore, cannot be examined readily by other analysts. Because of
this, it is not clear to an outside observer whether or not the analyst has considered all of the causal
relationships in the system. Similarly, when the vulnerability databases that an analyst uses in assess-
ing the weaknesses of a computing platform remain in the analyst’s head, one can never be sure
whether the analyst does not discuss specific vulnerabilities because they were considered unimpor-
tant or because the analyst did not know them.

For these reasons, we want to build a tool that makes the analyst more effective in software as-
sessments, both in terms of the time that it takes to deliver a product and in terms of the quality of the
product. To do this we propose to:

• Automate the mechanistic aspects of mapping the system’s causal relationships,

• Put at the analyst’s fingertips a knowledge base capable of documenting the vulnerabilities of
a wide range of platforms,

• Enable the analyst to model the software and non-software elements of the system in a com-
mon way that supports “integrated” or “whole system” analysis using standard mechanisms
such as fault trees and event trees, and

• Provide automated coverage analysis to ensure that the analyst addresses all parts of the sys-
tem in the assessment.

Using this tool the analyst could explore the system in various ways:

• The analyst could select a variable in the software and ask “If this variable is changed at this
point in the program, what is the effect on the rest of the software?” or “What is the effect on
the system?”

• The analyst could also ask, “What things in the software (or system) could cause this vari-
able to assume a specific value at a particular point in the program?”

• The analyst could investigate how known vulnerabilities in the computing platform affect the
rest of the system.

• The analyst could determine which specific aspects of a system’s (or software’s) behavior
are dependent on those parts of the computing platform known to be vulnerable.

 8

To deliver these capabilities, we will combine several technologies in a way that, as far as we can
tell, has not been done before. First, we will use the modeling framework developed in the current
LDRD (“An Extensible Object-oriented Framework for Risk and Reliability Analysis [EOOF]”) to
support the integrated modeling of systems that combine both software and non-software elements.
This framework is a subset of the constructs found in standard object-oriented analysis techniques
that has been shown to map to standard risk modeling constructs. Second, we will use dependency
graphing (a technique used in compilers) to permit the automated mapping of causal relationships in
the body of source code being assessed. Third, we will use EOOF constructs to demonstrate the codi-
fication of vulnerability information available within and external to SNL. Fourth, we will extend
program slicing (a computer science technique for the examination of source code) to permit its use
in the examination of the integrated system model. Finally, we will use concepts similar to coverage
analysis (used in software testing) to assure completeness in the analyst’s assessment.

To analyze a system using this tool, the analyst first passes the source code to be assessed
through a dependency-graphing tool. The result is a graph documenting the causal relationships
within the software. At the edges of the graphs are input and output stubs representing the interfaces
between the software and its environment. For those stubs that correspond to interfaces to the plat-
form, the tool automatically attaches (where applicable) known vulnerabilities as “basic events”. For
the balance of the stubs – those corresponding to human interfaces and external devices, the tool
permits the analyst to build up a system model using EOOF modeling constructs. These constructs
document the causal relationships both within and between the software-external devices of the sys-
tem.

The net effect of these steps is to create a causal “super-graph” that spans the both the software
and non-software elements of the system (including the platform on which the software runs). Based
on this graph, the analyst then begins the “intelligent” portion of the analysis. The analyst selects a
variable in the software or an attribute in the system model and then directs the tool to either show
those causal chains that flow into the selected variable or that flow out of the variable. Using pro-
gram slicing techniques, the tool strips away those portions of the system that do not relate to the
problem at hand. The analyst is left with a much-reduced model, whose causal relationships are de-
picted graphically. When the analyst selects one of the causal chains in the graph, the tool presents
the analyst with a highly filtered view of the system (sometimes referred to as a “chop” in the pro-
gram slicing literature). In this way, the analyst can quickly examine each of the chains to validate or
repudiate a given attack hypothesis related to the variable or attribute selected as the anchor for the
slices.

As the analyst selects variables for assessment, directs the tool to generate the slices, and then
examines each of the chains, the tool monitors the analyst’s activities. If chains or variables are left
unexamined, the tool questions the analyst as to whether or not these omissions were accidental or
intentional. In this way, a greater sense of completeness in assessment is obtained.

As the software portion of this project is programming language specific, we propose the to tar-
get the C++ language first, as it allows us to deal with both procedural and object-oriented program-
ming elements. In particular, we will focus on Microsoft’s Visual C++ and intend for the tool that we
develop to integrate seamlessly into Microsoft’s Visual Studio. At the same time, we will design the
tool in such as way as to minimize the difficulty of porting to other programming environments.

A.1.2 Creativity and Innovation

As far as we can tell, no capability of this sort exists anywhere today. While the underlying tech-
niques (dependency graphs and program slicing) have been understood for decades, they have not
been applied to “whole system” assessments. Similarly, the notion of automatically tying databases

 9

of known, platform-specific vulnerabilities to assessment models so as to show how specific attacks
affect a specific application running on the platform does not yet seem to have appeared in the litera-
ture.

In discussing this proposal with others at Sandia, a common response was “I think something like
that already exists.” More than once we were referred to a software package called “Refine”. Refine
is used to parse source code to create a dependency graph that could be used to translate the source
code into different languages (e.g., to turn a COBOL program into a C program). Other related pack-
ages include a slicer tool from McCabe and Associates, a dependency graph toolkit from Gram-
matech, and a public domains slicer for the C language, called “Unravel”, that was developed by
NIST. While all of these tools address part of the software problem in our proposal, none addresses
the needs of holistic assessments. We believe that the approach that we propose works because it
does not try to replace the analyst but strives to offload from the analyst those mechanistic aspects of
assessment that needlessly consume the analyst’s time.

A.1.3 Project Plan

The success of the project hinges on three factors:

• Being able to deliver the technical capabilities that we propose.

• Creating an interface that maximizes the tool’s ease of use and the user’s ability to compre-
hend the causal relationships in the software and system.

• Making the capability accessible to a wide user base.

The greatest challenge in the first is the development of the dependency graph generator for C++.
To mitigate risk, our approach is to first build a processor for a basic language subset and to then ex-
pand the subset in successive releases. As a starting point, we will choose a subset of the C language.
To help, we will also use NIST’s Unravel program as a guide. With respect to the user interface, one
of the major questions is how to present an integrated model to the user in such a way that relation-
ships between software and non-software portions of the system can be easily assessed. In program
slicing, the user is typically shown a collection of source code lines. Given this, it is easy to trace
how one line affects it successors. In an integrated model, where a successor may be a component
and not another source code line, what is the best way to convey causality information to the analyst?
To address the risks here, we will concentrate early on user interface ideas and, with each release of
the dependency graph generator, will release the next generation interface for testing by volunteers
from outside the project. In order to achieve maximum accessibility, we will take several steps. First,
we will architect the system to ensure that the greatest amount of code possible is platform independ-
ent. Second, we will architect the dependency graph generator so as to minimize the difficulty of add-
ing additional languages to the tool. Finally, we will design the vulnerability database structure to
accommodate both software and hardware processing platform vulnerabilities.

A.1.3.1 Development Schedule

In order to drive the development schedule for the LDRD, the system will be delivered in a number
of “releases” rather than as one final product at the end of the project. The releases and associated
features are as follows:

 10

Task
Release

Date
(month)

Description

Initial Design 6 System design concept, First user interface concepts

Initial Prototype 12 Parsing of subset of C language, Graphical display of
dependency diagram, Navigation of code using de-
pendency diagram

Full C Language Parsing 18 Parsing of full C language, Tool integrated into Visual
Studio

Whole System Model 24 Software model integrated with non-software model
elements

Slicing 27 Program slicing of full model

Full C++ Front End 30 Parsing of C++ language set

Initial Vulnerability DB 33 Vulnerability database framework created and partially
populated, Fault and event tree generation operational

Final Report 36 Final report complete

Table 1. Release Schedule

A.1.3.2 Team Structure

Team members and associated responsibilities for this project are:

• Rick Craft (6232) -- Principal Investigator. Responsible for system design concepts, integra-
tion with EOOF, collection of vulnerability data and design and population of vulnerability
database, project management. Rick brings a strong system assessment background to this
project based on first hand experience gained in assessing a number of systems developed by
SNL and external customers, work done on the EOOF LDRD, and on extensive research of
the system assessment literature conducted over the last four years.

• Phil Campbell (6237) – Responsible for parsing and slicing algorithms. Phil has just re-
cently finished his Ph.D. in computer science at UNM. His dissertation was in the area data
flow architectures, which have direct applicability to the dependency graphing and program
slicing techniques that form the heart of this project.

• John Espinoza (6231) – Responsible for development of the graphical front-end and other
tool controls and for integration of the tool into Microsoft Visual Studio development envi-
ronment. John has significant experience in object-oriented analysis and programming tech-
niques and recent experience in the assessment of network systems.

A.1.3.3 Requested Funding

The project will be funded as follows:

 11

Year

Person
1999 2000 2001 Person To-

tal

R. Craft 50K 60K 60K 170K

P. Campbell 100K 100K 110K 310K

J. Espinoza 80K 80K 80K 240K

Annual Total $230K $240K $250K $720K

Table 2. Project Funding

A.1.4 Impact

Assessment of the sort considered in this proposal is used in a number of places within Sandia. Soft-
ware in nuclear weapons and ancillary equipment is manually assessed for safety and security con-
cerns. Software-based-security-critical devices produced by Sandia often undergo independent
human assessment within Sandia before fielding. Red teaming of systems produced external to SNL
can also involve assessment of software. Our experience indicates that most (if not all) of this work is
done manually as described in the problem section of this proposal. A tool of this sort would benefit
SNL’s assessment activities.

If the approach proposed in this paper delivers the benefit that we anticipate, it will also be of in-
terest to other organizations that invest heavily in human assessment of software-based systems. Pos-
sible candidates, among others, would include the NSA, procurement-related organizations within the
DoD, NIST, the FDA, the FAA, and the NRC, as well as organizations interested in the role of soft-
ware in critical infrastructures.

Rick Craft

Principal Investigator

 Laura Gilliom

Program Manager

 Sam Varnado

Center Director

 12

A.2 Technical Advance Disclosures

A.2.1 Technical Advance Disclosure (SD-6688/S-95,506): “System Analysis
Tool (SAT): A Tool For Analyzing Systems Of Software”

Note: We have included here only the relevant sections of the TA document, namely sections 1, 2, 3,
12, 14, 16, and 17. The other sections call for information that has importance when pursuing a pat-
ent, such as the date of the first publication of the work and the laboratory notebooks that specify the
work.

DISCLOSURE OF TECHNICAL ADVANCE (TA)

1. Descriptive title: System Analysis Tool (SAT): A Tool for Analyzing Systems of Software

2. Preparer: Philip L. Campbell, Date May 11, 2000.

3. Originators' names: Philip Campbell, Juan Espinoza Jr.

12. Key subject words: Program dependence, program slicing, program understanding, program
chops, system analysis.

14. Copies, not just titles, of pertinent references (yours and others) such as publications, reports,
patents, etc.:

Attached: Since these are Internet URLs, we are unable to obtain copies: Internet Slicing Resource
page: (http://163.167.69.122/~mark//slicing.html); GrammaTech’s home page
(www.grammatech.com).

16. DESCRIPTION of the TA.

a. What problem does it solve?

SAT solves the problem of “slicing” on systems that consist of more than a single program. SAT
automates the analysis of such systems. At the simplest level, all of the programs constituting the
program are written in the same language and run on the same machine. However, the tool can be
extended such that the sliceable systems could include those systems that contain more than one in-
dependent program, written in one or more different languages, compiled or interpreted on one or
more different computers of one or more different manufacture.

b. How does it work in terms of structure or process? Use drawings, schematics, graphs, and tables, if
helpful.

SAT consists of a graphical front-end (a user interface) that enables the user to make the data and
control flow connections between different parts of the system. It is precisely these data and control
flow connections that make a system out of the independent pieces.

 13

SAT also provides the connection to the back-end slicer that performs analysis on each piece of the
system.

Finally, SAT provides the bridge between pieces so that a slice that starts in one piece can continue
on in another piece.

c. How is it technically different from existing technology?

Current slicing technology is confined to analysis within a single program. The user is unable to slice
automatically between programs. The best commercial tool is CodeSurfer from GrammaTech, Inc., in
Ithaca, New York (see www.grammatech.com).

GrammaTech has just recently (February 2000) been notified that it would receive funding from
DARPA to build what GrammaTech refers to as “SystemSurfer,” a term we believe should be attrib-
uted to John Espinoza of our Project and the concept for which GrammaTech gleaned from a visit
with our Project at Sandia on April 5, 1999. However, since we have only informal, verbal descrip-
tions of this tool and have not seen descriptions in writing we are acting on presumption only.

d. In what ways (e.g., performance, economy) is it an improvement over existing technology?

SAT is a qualitative improvement over current technology. It provides an automated capability that is
not available: it is not now possible to slice between programs. This is a significant improvement
because it enables a slicing to approach real-world systems.

17. COMMERCIAL POTENTIAL of the TA.

a. Where can it be applied (government, industry)?

SAT can be applied anywhere that software systems are developed, maintained, or need to be under-
stood.

b. What additional development and funding would be needed to commercialize it?

There is extensive integration work that would need to be done. This would involve building or at
least augmenting a graph editor, such as what Tom Sawyer Software sells, and developing the com-
munications software to a slicer, such as CodeSurfer from GrammaTech. The first problem, we imag-
ine, with such an arrangement would be performance.

Given the energy spent in getting any software to market we imagine that commercializing this tool
would take significant effort.

c. Which companies or government agencies have expressed interest?

GrammaTech has expressed interest, obliquely, by making a proposal to DARPA to augment Code-
Surfer to SystemSurfer. We have not communicated with any other organizations, such as those
listed on the slicing page (see item 14 above).

d. Who are potential vendors?

 14

GrammaTech is a potential vendor simply because they currently have the only program slicer, Code-
Surfer, and have received funding to develop SystemSurfer.

e. What would it cost compared with the best existing related product or process?

There is no “existing related product.” The current “process” is manual. Our automated tool would
provide orders of magnitude improvement in time over the manual process.

f. What is your estimate of the near-term annual value of sales?

We do not believe that sales from CodeSurfer from GrammaTech has supported even its own devel-
opment. Since GrammaTech has resorted to DARPA funding for SystemSurfer, instead of using in-
house Research & Development funds, we believe that SystemSurfer may find even less commercial
support. However, we believe that the capability provided by SAT is such that its value will increase
over time. When developers experience the boost from being able to slice automatically over a sys-
tem, we believe that they will understand the importance of the tool. Currently, there is no demand
because there is no understanding. (The first commercial slicing tool, CodeSurfer, became available
for sale only in March 1999, though the technique of slicing has been an actively researched topic for
at least two decades.)

g. In which foreign countries would the filing of a patent application be advised? Why?

We have no information that would help answer this question, unfortunately.

 15

A.2.2 Technical Advance Disclosure (SD-6886/S-97,508): “Visual Program-
ming Tool (VPT)”

Note: We have included here only the relevant sections of the TA document, namely sections 1, 2, 3,
12, 14, 16, and 17. The other sections call for information that has importance when pursuing a pat-
ent, such as the date of the first publication of the work and the laboratory notebooks that specify the
work.

DISCLOSURE OF TECHNICAL ADVANCE (TA)

1. Descriptive title: Visual Programming Tool (VPT)

2. Preparer: Philip L. Campbell, Date March 1, 2001.

3. Originators' names: Philip Campbell, Juan Espinoza Jr.

12. Key subject words: Program dependence, program slicing, program understanding, program
chops, system analysis.

14. Copies, not just titles, of pertinent references (yours and others) such as publications, reports,
patents, etc.:

Attached: Technical Advance (TA) SD-6688/S-95,506 “System Analysis Tool” (dated June 19,
2000), SAND2000-1465 “System Analysis Tool” (printed June 2000).

16. DESCRIPTION of the TA.

a. What problem does it solve?

It solves two problems. First, it increases the human-machine bandwidth. Second, it enables a pro-
grammer to show program structure.

(1) One problem with current programming languages is that they are text-based. The problem here is
that text is necessarily one-dimensional, confining text to be linear and sequential, thereby limiting
the bandwidth of the channel. Pictures, on the other hand, are two-dimensional. For the human, pic-
tures can provide more information and do it faster than text alone. Our tool, VPT, enables program-
mers to express functionality via graphs, which are inherently two-dimensional. This moves
programming from text to pictures, enabling a larger channel between the programmer and the ma-
chine.

(2) At the same time, VPT enables the programmer to show program structure at a larger scale than is
now convenient. The programmer can recursively nest collections of graph nodes to indicate this
higher-level structure. The meaning of these higher-level nodes is program-dependent, so there are no
type names for the nodes at these higher levels.

b. How does it work in terms of structure or process? Use drawings, schematics, graphs, and tables, if
helpful.

 16

VPT uses a graph-editor. Each node of the graph represents a unit of code-an operation, an expres-
sion, a statement, a function, an object, some collection of objects, a collection of a collection of ob-
jects, and so on, to whatever degree of nesting the user desires. VPT enables the user to zoom in and
out on the program or system (which we define to be a collection of programs that communicate)
based on the nodes. VPT provides the user with the following: (a) primitive operations, in the form
of graph nodes, (b) the ability to connect, via control flow, instances of those primitive operations to
form expressions, statements, functions, and objects, and (c) the ability to group these nodes to arbi-
trary depth.

Another way of putting all of this is that VPT enables the programmer to make visual the structure
that is in anyone's mind who understands the program. When we look over a programmer's shoulder,
we just see low-level structure. As a consequence, the nature of the program is hidden. This view-
point renders the program almost meaningless. What is needed is the higher-level structure, which,
because there are no tools to express it, exists in the programmer's mind, not on the screen. VPT en-
ables the programmer to make this part visual. This viewpoint is necessary for anyone developing,
understanding, or maintaining the program.

c. How is it technically different from existing technology?

We do not believe that current technology provides primitives at the granularity of operations. But
what is more important is that current technology does not provide for arbitrary nesting. This latter
feature enables the programmer to express structure without having to create new names for the types
of those structures. One could call them “anonymous” structure levels, similar in their anonymity to
anonymous functions in many functional languages.

d. In what ways (e.g., performance, economy) is it an improvement over existing technology?

VPT uses a single model for programming. The entire program is a graph. This makes it easier and
faster for the programmer to build and maintain a program. The improvement comes because the pro-
gram, as a graph, is expressed in the way that is best suited for the human to understand. We note that
the development of programming languages is based on graphs. The hard work of a compiler is in
translating a one-dimensional linear language into a two-dimensional graph. If the language is a
graph to begin with, then the compiler's work is simplified. (Perhaps FORTRAN would have started
out being a graphical language if the computer terminals at the time had been as capable of display-
ing graphics as they are now.)

At the same time, VPT does not attempt to replace text-based programming. At the lower levels, such
as at the statement level, we believe that text is as efficient as symbol (i.e., icons). After all, text is
symbol. Many visual languages attempt to be entirely visual, replacing all text with symbols. The
user may gain from the ability to use symbols at higher-levels, but we believe that the user does not
gain by having to learn new symbols at the lower-level.

17. COMMERCIAL POTENTIAL of the TA.

a. Where can it be applied (government, industry)?

VPT applies to any programming effort, since it is a method of programming. Any text-based lan-
guages that build using primitive operations can be programmed via VPT.

b. What additional development and funding would be needed to commercialize it?

 17

The concept would need to be prototyped. It would then need to be developed to the point that it is
robust and fully functional, which would be a significant task.

c. Which companies or government agencies have expressed interest?

We have not discussed this concept with anyone, so no one has expressed interest. However, the
quest for visual programming has been going on for many years. LabView is an example of a visual
programming language. Each statement type in the language is represented by a different symbol.
The user joins statements of different types together to form a program. There are many other lan-
guages that explore what it means to have a “visual” programming language.

d. Who are potential vendors?

Any company that produces a language editor would be a potential vendor. VPT is not language-
specific: a company could provide a way to adapt any language to the same graphical front-end. (As a
result, Tom Sawyer Software, the makers of a graph editing toolkit, might be very interested in this
idea.) Since VPT is a superset of most languages, it would be possible to construct programs that
would generate code in a given language, based on a program developed via VPT.

e. What would it cost compared with the best existing related product or process?

There is no “existing related product.” The current approach is still text-based. What few graphical
approaches there are, are experimental only.

f. What is your estimate of the near-term annual value of sales?

We have no data from which we can calculate this.

g. In which foreign countries would the filing of a patent application be advised? Why?

We have no information that would help answer this question, unfortunately.

 18

A.2.3 Technical Advance Disclosure (SD-6885/S-97,507): “Range-Value
Propagation (RVP): Approximate Computing”

Note: We have included here only the relevant sections of the TA document, namely sections 1, 2, 3,
12, 14, 16, and 17. The other sections call for information that has importance when pursuing a pat-
ent, such as the date of the first publication of the work and the laboratory notebooks that specify the
work.

DISCLOSURE OF TECHNICAL ADVANCE (TA)

1. Descriptive title: Range-Value Propagation (RVP): Approximate Computing

2. Preparer: Philip L. Campbell, Date March 7, 2001

3. Originators’ names: Philip Campbell, Juan Espinoza Jr.

12. Key subject words: Program dependence, program slicing, program understanding, program
chops, system analysis.

14. Copies, not just titles, of pertinent references (yours and others) such as publications, reports,
patents, etc.

Attached: GrammaTech’s home page (www.grammatech.com).

16. DESCRIPTION of the TA.

a. What problem does it solve?

RVP addresses the problem of range analysis on a system. Program slicing identifies the statements
and functions that define or use the value of a particular variable (or variables, but for simplicity we
will assume that a slice tracks a single variable). However program slicing tells the analyst nothing
about the values that the variable can assume. Without actually executing the system, the analyst
cannot determine the relationship between input values and output values. RVP addresses this prob-
lem. RVP requires a statement in a new language, defined as part of RVP, for each component (de-
fined almost immediately). This statement maps the inputs of that component to its outputs. For ease
of explanation, assume that a component is a function, in which case RVP will require a statement
for each output statement and return statement in the function. The new language provides a way of
computing on ranges of values. The analyst provides a range of values for each input statement in the
slice. The analyst can then ask that RVP compute the intermediate and final ranges. This provides
approximate computation. The analyst can use RVP to better understand the relationship between
input and output. In order to preserve tractability, we consider ranges consisting of only integer val-
ues. Future work may consider ranges of real values, vectors, matrices, and strings. This Advance is
based on the observation that program slices are components connected by arcs that carry tokens that,
in the case of data flow, have values. What is the benefit if those values are used in the slice? RVP is
an answer to that question. An important assumption of range analysis is that the output is a continu-
ous function of the input. Range analysis allows an analyst to determine the range of values for a
given component in a slice based on the range of values for a previous component in the slice. That
is, the analyst can say, “If x can take on this range of values, then y can take on that range of values.”
The approach allows for dynamic analysis, so that the analyst can answer the question, “What range

 19

of values can y take on if x takes on this new range of values? Note that RVP may not be as precise
as execution. Its value is that it provides understanding into input/output behavior.

b. How does it work in terms of structure or process? Use drawings, schematics, graphs, and tables, if
helpful.

RVP requires that the user describe the output in terms of input. For each variable of interest and for
each component of interest, the user must include a statement describing the output range (i.e., the
range of values for the variable when the component completes execution or generates output or
both) as a function of the input range. Ranges are proper subsets of sets, so the logical place to begin
is with basic operations on sets, such as intersection, union, and difference. Additional operators
would be needed to provide more control. We have not developed the operators for this new lan-
guage but we believe that we have a start. For example, for scalar numeric values we believe that the
following seven functions should be in the language:

Variables: A, B, and C are ranges (i.e., scalar, numeric, ordered sets).

(1) Name: range addition

Description: Range A is expanded by the addition of range B

Syntax: C = A + B

Semantics: C is assigned the range { ((min(A) + min(B)), ..., (max(A) + max(B))}

(2) Name: range subtraction (defined similarly to range addition)

(3) Name: range multiplication (defined similarly to range addition)

(4) Name: range division (defined similarly to range addition)

(5) Name: range union

Description: Range C is the combination of ranges A and B Syntax: C = A union B Semantics: C is
assigned the range { (min(min(A), min(B))), ..., (max(max(A), max(B))) }

(6) Name: range intersection (defined similarly to range union)

(7) Name: range overlap

Description: Range C is overlap of range A and range B.

Syntax: C = A difference B

Semantics: C is assigned the range as follows, by cases:

 0. if min(A) < min(B), and max(A) < max(B), then C = { min(B), ..., max(A) },

 1. if min(A) > min(B), and max(A) > max(B), then C = { min(A), ..., max(B) },

 20

 2. if min(A) = min(B), and max(A) < max(B), then C = { min(A), ..., max(B) },

 3. if min(A) > min(B), and max(A) = max(B), then C = { min(A), ..., max(B) },

 4. if min(A) > min(B), and max(A) < max(B), then C = A,

 5. if min(A) < min(B), and max(A) > max(B), then C = B.

It is not clear how the above range operations should be (if they could be) defined for non-scalar val-
ues, such as matrices and strings. Again, we leave this for future work. In the worst case, the set
ranges can be carried, unreduced, from the input to the output. This would be accurate but unwieldy.

c. How is it technically different from existing technology?

We do not know of a comparable system. Current slicers carry only a non-numeric token on the lines
between components so that control- and data-flow are indistinguishable. Another way of describing
RVP is the provision for tokens in a slice to carry values.

d. In what ways (e.g., performance, economy) is it an improvement over existing technology?

RVP allows better general understanding of systems. For example, suppose that we are given a sys-
tem of components. By using RVP, we can see how various input range values affect various output
range values. That is, we can more easily and more quickly understand the system as a black box,
without having to perform an execution for each input value.

17. COMMERCIAL POTENTIAL of the TA.

a. Where can it be applied (government, industry)?

Since RVP is intended for analysis of systems, it can be applied anywhere that software systems are
developed, maintained, or need to be understood.

b. What additional development and funding would be needed to commercialize it?

The first step is to develop a range-value language that would enable a user to describe a range. The
user would write statements in this language and associate them with variables in components. These
new statements would use input value ranges as variables, thereby enabling the user to describe an
output range as a function of one or more input ranges (see item 16b above). There is extensive inte-
gration work that would need to be done. This would involve building or at least augmenting a graph
editor, such as what Tom Sawyer Software sells, and developing the communication software to a
slicer, such as CodeSurfer from GrammaTech. The first problem, we imagine, with such an arrange-
ment would be performance. Given the energy spent in getting software to market we imagine that
commercializing this tool would take significant effort.

c. Which companies or government agencies have expressed interest?

GrammaTech has expressed interest, obliquely, by making a proposal to DARPA to augment Code-
Surfer to SystemSurfer. We have not communicated with any other organizations.

 21

d. Who are potential vendors? GrammaTech is a potential vendor simply because they currently have
the only program slicer, CodeSurfer, and have received funding to develop SystemSurfer.

e. What would it cost compared with the best existing related product or process?

We are not aware of any “existing related product.” The current “process” is manual. Our automated
tool would provide orders of magnitude improvement in time over the manual process.

f. What is your estimate of the near-term annual value of sales?

This tool breaks new ground so we are unable to estimate annual value of sales. We can see uses for
such a tool but have no means of translating that into annual sales.

g. In which foreign countries would the filing of a patent application be advised? Why?

We have no information that would help answer this question, unfortunately.

 22

A.3 Graph Drawing Tool Survey
One effort within the SAT LDRD project was to determine if a commercial-of-the-shelf (COTS)
graph-drawing product could be modified to fit our needs. The COTS application had to meet the
following requirements:

• Graph visualization (nodes, edges, color, labels)

• Graph management (new, open, save, delete)

• Graph layout (e.g., Hierarchical, Orthogonal, Symmetric, and Circular)

• Model navigation (zoom–in, zoom-out, zoom-all, pan, expand, collapse)

• Printing support

A tool survey was performed via a literature search using the Internet, the SNL Technical Li-
brary, and various public and university libraries. The keywords used were: graph, draw(ing), tool,
toolkit, and editor. The results of the search turned out to be overwhelming as the term “graph” is
used in many applications with several connotations. Those resources describing graph-plotting
methods were discarded along with the numerous sites that discussed graph theory but not its visuali-
zation or management.

 The following table is a comprehensive list of graph drawing tools and is sorted by company and
product as of September 15, 2001. The results of the original tool survey were much larger at the
start of the project three years ago but companies and products that have disappeared or with broken
websites links have been removed.

Company Product Version Date Platform

AbsInt Angewandte
Informatik GmbH aiSee 2.0 Jan 2000 Unix, Windows

aiSee automatically calculates a customizable layout of graphs specified in
GDL (graph description language). This layout is then displayed, and can be
printed or interactively explored.

 http://www.absint.com/aisee/

AT&T Labs Re-
search CIAO 1995 Unix

CIAO is a customizable and extensible navigator. It allows users to query, ana-
lyze, visualize, and track structures of various software and document reposito-
ries. CIAO has been instantiated for C, C++, HTML, Java, Ksh documents, and
several business repositories.

 http://www.research.att.com/~ciao/

Auburn University VGJ, Visualizing Graphs with
Java 1.03 Apr 1998 Java VM

 Graphs can be input into VGJ in two ways: with a textual description (GML), or
through a drawing the user creates using our graph editor.

 http://www.eng.auburn.edu/department/cse/research/graph_drawing/graph_dra
wing.html

 23

Company Product Version Date Platform

Dipartimento di In-
formatica e
Automazione,
Università di Roma
Tre, ITALY

GDToolkit 3.0 Jan 2000 Unix, Windows

GDToolkit (also known as GDT) is a Graph Drawing Toolkit designed to effi-
ciently manipulate several types of graph, and to automatically draw them ac-
cording to many different aesthetic criteria and constraints.

 http://www.dia.uniroma3.it/~gdt/index.html

German Science
Foundation (DFG)

A Library of Algorithms for
Graph Drawing (AGD) 1.1.2 Feb 2000 Unix, Windows

AGD offers a broad range of existing algorithms for two-dimensional graph
drawing and tools for implementing new algorithms. It is a product of a
cooperation of groups in Halle, Köln, and Saarbrücken supported by the DFG in
the program "Design, Analysis, Implementation, and Evaluation of Graph Draw-
ing Algorithms".

 http://www.mpi-sb.mpg.de/AGD/index.html

ILOG ILOG Views Component Suite Oct 2001 Windows

ILOG Views Component Suite is a set of portable C++ class libraries for devel-
oping basic-to-advanced applications. It provides all the necessary tools for any
type of graphical application.

 http://www.ilog.com/products/views/

ILOG ILOG JViews Component Suite Oct 2001 Java VM

 ILOG JViews Component Suite is a set of 100% Java components for building
visually rich, highly interactive Web-based user interfaces.

 http://www.ilog.com/products/jviews/

Microsoft Corp. Visio Standard 2002 Oct 2001 Windows

 See how Visio brings the power of visual communication to your everyday work.

 http://www.microsoft.com/office/visio/default.htm

Microsoft Corp. Visio Professional 2002 Oct 2001 Windows

 Visio Professional gives IT professionals, engineers, and developers tools to
create highly detailed technical diagrams.

 http://www.microsoft.com/office/visio/default.htm

Microsoft Corp. Visio Enterprise Network 2002 Oct 2001 Windows

IT Pros get advanced network diagramming and documentation capabilities
with this extension to Visio Professional 2002—plus a one-year subscription to
the Visio Network Center.

 http://www.microsoft.com/office/visio/default.htm

Tom Sawyer Soft-
ware Graph Editor Toolkit 4.0 Oct 2001 Unix, Windows,

Java VM

The Graph Editor Toolkit product family enables you to rapidly integrate custom
diagram editor technology into your applications. The Graph Editor Toolkit ac-
cesses the Graph Layout Toolkit so that your application can automatically cre-
ate diagrams to help you visualize the relationships within complex data. Our

 24

Company Product Version Date Platform

technology is completely customizable and provides advanced editor functions
such as event handling, drill-down and nested diagramming, zooming, overview
windows, and object property inspection with minimal development.

 http://www.tomsawyer.com/

Tom Sawyer Soft-
ware Graph Layout Toolkit 4.0 Oct 2001 Unix, Windows,

Java VM

The Graph Layout Toolkit product family delivers scalable relationship visualiza-
tion capabilities into your applications. Our graph layout technology reveals the
complex relationships in data by automatically computing diagrams. These dia-
grams expose the underlying graph structures as well-organized drawings that
users can immediately understand. And because our technology is portable and
flexible, you can easily integrate it with your own database, display, and graph-
ics software.

 http://www.tomsawyer.com/

University of Bre-
men, Germany daVinci 2.1 Jun 2001 Unix

 licensed free of charge for non-profit use and is immediately available for most
major UNIX operating systems

 http://www.informatik.uni-bremen.de/agbkb/forschung/daVinci/daVinci.html

University of Pas-
sau Graphlet 5.0.1 Aug 1999 Unix, Windows

Precompiled Graphlet binaries can be downloaded for noncommercial use.
Sign and return the copyright notice for access to the source code. All inquiries
on commercial licenses should be sent to Prof. Dr. F.J. Brandenburg.

 http://www.infosun.fmi.uni-passau.de/Graphlet/

Univer-
sität des Saarlande
s, Germany

Visualization of Compiler
Graphs, VCG 1.40 1995 Unix, Windows

The VCG tool reads a textual and readable specification of a graph and visual-
izes the graph. If not all positions of nodes are fixed, the tool layouts the graph
using several heuristics as reducing the number of crossings, minimizing the
size of edges, centering of nodes. The specification language of the VCG tool is
nearly compatible to GRL, the language of the edge tool, but contains many
extensions.

 http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html

Vectaport Ivtools graphdraw .9.6 Aug 2001 Unix

 Ivtools graphdraw is idraw with extensions for graph or network editing

 http://www.vectaport.com/ivtools/graphdraw.html

 The Graphics Editor Toolkit (GET) from Tom Sawyer Software was selected as our graph-
drawing tool as it met all of the stated requirements. We also purchased the Graphics Layout Editor
(GLT) as it allowed us to redraw the graph in a variety of structured formats. Figure A.3-1 is a
screenshot of a Visual Basic application developed using GET and GLT. Figure A.3-2 shows the four
different layout methods supported by GLT: hierarchical, orthogonal, symmetric, and circular. Ver-
sion 4.0 of GET, just recently released in October 2001, now supports tree layouts.

 25

A prototype application was developed using the GET and GLT products. It is documented in the
SAND report, “Source Code Assurance Tool: An Implementation.” SAND2001-3094.

Figure A.3-1. A screenshot of a sample VB application using GET and GLT.

 26

Figure A.3-2. A screenshot with examples of the four layout methods.

 27

A.4 UML Tool Survey
One task of the project was to determine if an object-oriented (OO) computer-aided software engi-
neering (CASE) tool could be programmed to fit our needs. The Unified Modeling Language (UML)
is a language for specifying, visualizing, constructing, and documenting the artifacts of software sys-
tems, as well as for business modeling and other non-software systems. Therefore, UML was se-
lected as a major requirement for the OO CASE tool as it is fast becoming an industry standard for
describing systems, software or otherwise.

The OO CASE tool had to meet the following requirements:

• Graph visualization (see Appendix A.3 for its requirements)

• UML support

• Scripting (for programmability)

• Versioning

• Model navigation

• Printing support

A tool survey was performed via a literature search using the Internet, the SNL Technical Li-
brary, and various public and university libraries. The keywords used were: UML, tool, object-
oriented, and CASE. The single best source of information came from one web site, Objects by De-
sign, http://www.objectsbydesign.com/index.html. Their home page declares, “Our site is dedicated
to bringing you valuable information about the world of object-oriented design and programming.”
They have compiled an impressive array of information on UML-based CASE tools all available at a
click from one website.

The following table is a comprehensive list of UML tools and is sorted by company and product.
The table was obtained by selecting the “Selection list of UML tools” hyperlink,
http://www.objectsbydesign.com/tools/umltools_byCompany.html. This list was last updated Sep-
tember 15, 2001 prior to the publication of this report.

Company Product Version Date Platform

Adaptive Arts Simply Objects Standard 3.2 Mar-01 Windows

 forward engineering for Delphi, Smalltalk, Eiffel, Java, C++, Corba, VB export dia-
grams as jpeg, png

Adaptive Arts Simply Objects Professional 3.2 Mar-01 Windows

 adds use case and interaction diagrams, report generator, multi-user

Aonix StP/UML 8.2 Jun-01 Windows, Unix

 multi-user repository, DOORS integration, report generation
Forte, Smalltalk, Java, C++

Aonix Select/Enterprise Windows

 component repository, data modeling integration, round-trip engineering for C++,
Java, Forte, VB

 28

Company Product Version Date Platform

Arion Software UML2COM 1 Feb-01 Windows

 integration tool for VC++/C++, add in for Rational Rose, COM+ code generator

Artisan Real-time Modeler 4 Feb-01 Windows

 real-time modeling, multi-user object repository

Artisan Real-time Studio Professional 4.1 Aug-01 Windows

 adds round-trip engineering for C, C++, Java, DOORS integration, state machine
animation

Atos Origin Delphia Object Modeler (D.OM) 3.2.6 Dec-00 Windows

 auto-generation of functional prototypes from UML models, XMI,
class and state diagrams, report generation

BoldSoft Bold for Delphi 3.1 Jul-01 Delphi

 OCL, forward engineering for Delphi, SQL generation, XMI import

Computer Asso-
ciates Paradigm Plus 4 Jan-00 Windows, Unix

 multiple code generations, object database repository, data modeling integration

Confluent Visual Thought 1.4 Windows, Unix

 multi-platform diagram and flowchart tool

Dia Dia 0.88 May-01 Linux

 Gnome Visio-like diagram tool with a UML template, export as SVG!

Documentator Documentator 3 Jun-01 Windows

 generate documentation from Rose 2000 to MS Word

Elixir Technolo-
gies Elixer CASE 1.2.4 Nov-99 Java VM

 auto-generation of sequence diagrams, metrics, OCL, XMI

Embarcadero
Technologies Describe Jul-01 Windows

 based on GDPro, integrates with leading Java IDE's, EJB Support

Excel Software Win A&D Standard 3.3 Jun-01 Windows

 CRC card support, component modeling

Excel Software Win A&D Desktop 3.3 Jun-01 Windows

 adds forward-engineering for Java, Delphi, C++, scripting, state models

Gentleware Poseidon for UML 1 Jun-01 Java VM

 based on ArgoUML, adds commercial support and services, integration with Forte
for Java

Honeywell DOME 5.3 Mar-00 Smalltalk

 extensible notations, GNU GPL license, written in Smalltalk!
FTP site for exchanging models

 29

Company Product Version Date Platform

Hoora HAT Professional 3.1 Mar-01 Windows

 supports HOORA process, C++ forward engineering, report generation require-
ments management, Rose import

I-Logix Rhapsody Modeler 4 Sep-01 Windows

 real-time, C, C++, single-user, free starter version

I-Logix Rhapsody Solo 4 Sep-01 Windows

 real-time, C, C++, Java, single-user, XMI

I-Logix Rhapsody Development 4 Sep-01 Windows

 real-time, C, C++, Java, multi-user, XMI

IBM Visual Age Smalltalk UML De-
signer 5 Mar-00 Smalltalk

 UML Designer is an add-on to Visual Age Smalltalk Enterprise

Ideogramic Ideogramic UML 1 Jun-01 Windows

 innovative input scheme using gestures on large whiteboards
class, use-case, sequence diagrams, Java reverse engineering, XMI

Kennedy-Carter iUML 2 Jan-01 Windows, Unix

 produce executable UML models using a formal action language,
includes code generator and simulator tools

Mega Interna-
tional Mega Suite 5 Oct-00 Windows

 supports Delphi, Forte, Java, VB, XML

MetaCase
Consulting MetaEdit+ 3 Windows, Unix

 multi-user object repository, customizable meta-tool, report generation; Java, C++,
Smalltalk, IDL, Delphi, SQL

Metamill Software Metamill 1.1 Jun-01 Windows

 low-cost tool, index file based shared repository, code generation to Java and
C++, component, state diagrams

MicroTOOL ObjectiF 4.5 Windows

 VB scripting, C++, Java, IDL, XMI, integration with JBuilder

Microgold Soft-
ware WithClass Professional 2000 Sep-00 Windows

 multiple code generation, Python scripting! now supports C#

Microgold Soft-
ware WithClass Enterprise 2000 Sep-00 Windows

 adds VBA support for scripting

Microsoft Visual Modeler 2 Windows

 subset of Rational Rose for Visual Studio 6.0

 30

Company Product Version Date Platform

Microsoft Visio Visio 2002 Professional 2002 Mar-01 Windows

 C++, VB reverse engineering, MS Visual Studio

Minuml Minuml 0.7 May-01 Windows

 Use Case, Sequence, Activity, Component, Deployment, and Class diagrams

ModelMaker
Tools ModelMaker 6 May-01 Delphi

 forward and reverse engineering for Delphi, GOF design patterns

Modelistic Modelistic 1 Aug-00 Java VM

 round-trip engineering for Java

Mountfield Com-
puters mUML 3.2.1 Jun-01 Java VM

 supports all 9 UML 1.3 diagrams, free for non-commercial use
forward and reverse engineering for Java, XMI export

No Magic MagicDraw UML Standard 4.5 May-01 Java VM

 supports all 9 UML 1.3 diagrams, Swing GUI, HTML generation,
read Rose models, XMI, SVG, XSLT

No Magic MagicDraw UML Professional 4.5 May-01 Java VM

 adds forward and reverse engineering for Java, C++, IDL

Novosoft Novosoft UML Library 0.4.19 Feb-01 Java VM

 open source library which supports the UML 1.3 metamodel
persistence using XMI, integrated with ArgoUML

Novosoft FL Oct-00 Java VM

 develop Java object persistence from class diagrams
Rational Rose add-in, supports OQL, supports major DBMS

OTW Software Object Technology Workbench
Private 2.4 Apr-00 Windows

 round-trip engineering for Java, C++, Delphi
supports CORBA-IDL, SQL-DDL, patterns, repository, HTML

OTW Software Object Technology Workbench
Team 2.4 Apr-00 Windows

 adds team-based repository

OWiS Software
(Germany)

OTW - Object Technology Work-
bench 2.4 Jan-00 Windows

 round-trip engineering for Java, C++, support for patterns, repository, data model-
ing

Object Domain
Systems Object Domain Standard 2.5 Jun-99 Java VM

 forward and reverse engineering for C++, Java, Python,
Python scripting, educational pricing available

 31

Company Product Version Date Platform

Object Domain
Systems Object Domain Professional 2.5 Jun-99 Java VM

 adds multi-user repository, round-trip engineering for Java, HTML generation

Object Insight JVISION 1.4.2 Nov-00 Java VM

 reverse-engineering of Java, integration with Visual Café, HTML generation

Object Plant Object Plant 2.1.7 Mar-00 MacOS

 shareware, class, state, use case diagrams, C++, Java

Plastic Software Plastic 3 Jan-01 Java VM

 forward and reverse engineering for Java, HTML generation, model validation

Popkin System Architect 2001 Mar-00 Windows

 round-trip engineering for Java, C++, VBA, data modeling, Microsoft repository
support, scripting

Pragsoft Corpora-
tion UML Studio 6 Sep-01 Windows

 forward and reverse engineering for C++, Java, IDL, scripting tools, auto-save!

Project Technol-
ogy BridgePoint 5 Apr-01 Windows, Unix

 UML models compiled to executable code, supports Shlaer-Mellor method, model
verification through animation

ProxySource ProxyDesigner 1 Dec-00 Windows

 publish UML models directly to online forums

Ptech Inc. FrameWork 5.4 Sep-99 Windows

 enterprise and process modeling, business analysis

Qualitec Scriptor 2.4 Apr-01 Java VM

 meta-generator providing the capability to build your own specific code generator,
reads XMI files

Rational Rose Modeler 2001 Nov-00 Windows

 base model

Rational Rose Professional 2001 Nov-00 Windows

 adds round-trip engineering, repository support, data modeling;
Java, C++, and VB versions sold separately

Rational Rose Enterprise 2001 Nov-00 Windows

 adds web publishing, CORBA-IDL, integration w/ ClearCase (version control) and
MS VisualStudio (VB, C++ only)

Rational Rose Real Time 2001 Nov-00 Windows

 real-time modeling based on ObjecTime technology

Softeam Objecteering Personal Edition 5.1.0 May-01 Windows, Unix

 free, base version; includes XMI support

 32

Company Product Version Date Platform

Softeam Objecteering Personal Edition /
Java 5.1.0 May-01 Windows, Unix

 adds round-trip engineering for Java

Softeam Objecteering Project Edition 5.1.0 May-01 Windows, Unix

 full-featured product without multi-user repository support

Softeam Objecteering Enterprise Edition 5.1.0 May-01 Windows, Unix

 adds parameterized code generation, multi-user repository,
data modeling, design patterns, metrics

Softera SoftModeler Standard 3 Apr-01 Java VM

 base model

Softera SoftModeler Professional 3 Apr-01 Java VM

 EJB, round-trip synchronization

Softera SoftModeler Enterprise 3 Apr-01 Java VM

 Adds multi-user, shared repository, model simulation
sequence-diagram animation

Sparx Systems Enterprise Architect Professional 2.5 Aug-01 Windows

 use cases, contracts (pre/post conditions), round-trip engineering for C++, Java,
VB; multi-user, project estimation, excellent, free UML tutorial, XMI import/export

Sybase PowerDesigner 8 Mar-01 Windows

 object/relational design using class diagrams, repository support
includes use case and sequence diagrams

TNI OpenTool 3.2 Jan-01 Windows, Unix

 forward engineering for C++, Java, Smalltalk, reverse engineering for Java, mul-
tiple documentation generations

Telelogic ObjectGeode 4.1 Jun-99 Windows, Unix

 real-time modeling, multiple RTOS targets, generates C, C++

Telelogic Tau UML Suite 4.2 Mar-01 Windows

 real-time modeling, UML to SDL translation, XMI, acquired COOL:Jex from Ster-
ling Software, DOORS from QSS

The Object Fac-
tory Optimize 4.1 Mar-01 Windows

 project estimation and scheduling tool based on OO criteria,
interfaces to Rational Rose, Select Enterprise, Artison Real-Time Studio

Tigris ArgoUML 0.81 Oct-00 Java VM

 open source project, written in Java, run-time model critique, OCL, XMI

TogetherSoft Together CommunityEdition 5.5 May-01 Java VM

 simultaneous round-trip engineering for Java, C++, class diagrams only

TogetherSoft Together Solo 5.5 May-01 Java VM

 33

Company Product Version Date Platform

 adds complete UML diagram support, HTML generation, code debugger

TogetherSoft Together Control Center 5.5 May-01 Java VM

 adds EJB development and deployment support, GOF design patterns, VB, .NET,
C#

Unimodeler Unimodeler 0.3 Jan-00 Linux

 supports all 9 UML diagrams, GTK (Gnome) based, postscript printing

Visual Object
Modelers Visual UML Standard Edition 2.8 Sep-01 Windows

 VBScript support, OLE automation server

Visual Object
Modelers

Visual UML Standard Edition for
VB 2.8 Sep-01 Windows

 VB support, VB round-trip engineering

Visual Object
Modelers Visual UML Plus Edition for VB 2.8 Sep-01 Windows

 VBA included, MS Repository 2.0

WebGain StructureBuilder Standard 4.5 Jun-01 Java VM

 class diagrams, code-model synchronization

WebGain StructureBuilder Expert 4.5 Jun-01 Java VM

 adds sequence and use-case diagrams, Open API, HTML generation
XMI, export to PNG,BMP

WebGain StructureBuilder Enterprise 4.5 Jun-01 Java VM

 adds EJB support, round-trip engineering of sequence diagrams (unique!)

With respect to graph visualization, these tools are not readily amenable to describing non-
software systems. It could be done but all of the node elements would have to become classes or ob-
jects. We decided that viewing the nodes as classes or objects was not a major concern and pro-
ceeded with the product evaluation. Several of the free tools were downloaded and tried out; but you
usually got what you paid for, not much. There were a few notable exceptions, like ArgoUML by
Tigris; but they just went commercial just before the publication of this report.

Several commercial OO CASE tools were selected and purchased for evaluation. The tools se-
lected were Paradigm Plus by Computer Associates (sold to CA by Platinum Technologies) and Em-
barcadero Describe (formerly GD Pro). Both products met all of the stated CASE tool requirements
and were subsequently evaluated against each other.

Both tools do not require the use of a proprietary language to customize them. Embarcadero De-
scribe provides a customizable environment that allows the user to extend functionality to meet their
needs. Scripts can be written in Visual Basic for Applications (VBA) or any Microsoft COM-enabled
language, allowing the creation of scripts and add-ins using languages familiar to the user. CA Para-
digm Plus allows the user to automate common tasks by adding OLE-based script and applications.
Visual Basic can be used to create the user programs and then be added to the taskbar.

 34

In the end, both products were very capable of being customized to meet our project needs. The
price and licensing requirements became the deciding factors; however, both products were compa-
rable in cost on a per-license basis (~$3-5K) but annual support and maintenance differed (10-25% of
the per-license cost).

Full screenshots of CA Paradigm Plus and Embarcadero Describe are shown in Figures A.4-1
and A.4-2, respectively.

Figure A.4-1. Screenshot of CA Paradigm Plus.

 35

Figure A.4-2. Screenshot of Embarcadero Describe.

 36

 37

DISTRIBUTION
1 MS 0188 LDRD Office, 1030
2 0785 J. Espinoza, 6514
1 0785 R. E. Trellue, 6514
2 0785 P. L. Campbell, 6516
1 0785 R. L. Hutchinson, 6516
2 0839 R. L. Craft, 16000

1 0899 Central Technical Files, 8945-1
2 0899 Technical Library, 9616
1 0612 Review & Approval Desk, 9612
 For DOE/OSTI

	Abstract
	Contents
	1. INTRODUCTION
	2. SUMMARY OF WORK
	2.1 Prototype Tool
	2.2 SAND Reports
	2.3 Other Reports
	2.4 Technical Advance Disclosures

	A.1 Original Proposal
	A.2 Technical Advance Disclosures
	A.3 Graph Drawing Tool Survey
	A.4 UML Tool Survey
	DISTRIBUTION

