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Abstract

Dynamic thermography is a promising technology for inspecting metallic and composite
structures used in high-consequence industries.  However, the reliability and inspection
sensitivity of this technology has historically been limited by the need for extensive operator
experience and the use of human judgment and visual acuity to detect flaws in the large
volume of infrared image data collected.  To overcome these limitations new automated data
analysis algorithms and software is needed. The primary objectives of this research effort
were to develop a data processing methodology that is tied to the underlying physics, which
reduces or removes the data interpretation requirements, and which eliminates the need to
look at significant numbers of data frames to determine if a flaw is present.  Considering the
strengths and weakness of previous research efforts, this research elected to couple both the
temporal and spatial attributes of the surface temperature.  Of the possible algorithms
investigated, the best performing was a radiance weighted root mean square Laplacian metric
that included a multiplicative surface effect correction factor and a novel spatio-temporal
parametric model for data smoothing.  This metric demonstrated the potential for detecting
flaws smaller than 0.075” in inspection areas on the order of one square foot.  Included in
this report is the development of a thermal imaging model, a weighted least squares thermal
data smoothing algorithm, simulation and experimental flaw detection results, and an
overview of the ATAC (Automated Thermal Analysis Code) software that was developed to
analyze thermal inspection data.
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EXECUTIVE SUMMARY

Dynamic thermography is a nondestructive technique that uses an infrared camera to measure
the thermal response of a structure to heating.  The presence of an internal defect such as
corrosion, cracks, or disbonds perturbs the normal heat flow in a manner that can be detected
in an infrared image of the specimen surface.  The defect signature varies with the loading
mechanism (e.g., pulsed heating, periodic heating, heating profile), the defect location, the
material properties and configuration of the inspected structure, and the thermal parameter
measured.  Dynamic thermography is a proven method for inspecting metallic and composite
structures used in high-consequence industries.  This technology has demonstrated the ability
to detect, identify, and quantify hidden flaws at levels that often dramatically exceeds the
capabilities of competing nondestructive testing technologies.  However, the reliability of
this technology is limited by the need for extensive operator experience and the use of human
judgment and visual acuity to detect flaws in the large volume of infrared image data
collected.  The inspection speed, reliability, sensitivity, and cost effectiveness of dynamic
thermography can be significantly improved with advanced signal-processing algorithms. 

Operationally, the inspection systems typically flash heat an inspection surface and monitor
the surface temperature over time with an infrared camera.  Internal anomalies perturb heat
conduction by increasing the local storage or transmission of energy as heat.  These
perturbations induce local spatial temperature gradients on the inspection surface that are
imaged by the infrared camera.  However, since surface features (e.g., emissivity variations)
can also create apparent spatial gradients, the temporal image characteristics must be used to
distinguish between true internal flaws and surface artifacts.  Further, infrared image data
contains both spatial and temporal noise that challenges classical signal processing methods.  

This report presents the results from a project to develop automated data analysis algorithms
and software for dynamic thermography inspection systems. The developed software
package, ATAC (Automated Thermal Analysis Code), processes thermography datacubes
(temporal sequence of infrared images) to produce a composite image highlighting suspected
internal anomalies.  The software relies on metrics that consider the spatial and temporal
physics of the thermal detection process and an automated noise mitigation algorithm.
Multiple flaw detection algorithms and digital signal processing (DSP) operators are
provided in the ATAC software.  Of the algorithms included in ATAC, the best performing is
a surface radiance weighted root mean square Laplacian operator.  

An important feature of the ATAC software is a process that mitigates spatial and temporal
image noise and variations in the surface properties (principally emissivity).  The measured
image data (surface radiance) is first multiplied by a spatially variable correction factor that
normalizes spatial emissivity differences.  This corrected data is then smoothed using a
statistical method that fits local data subsets to an 18-parameter spatio-temporal trivariate
quadratic polynomial.  The fitting is performed by the weighted least squares identification of
the polynomial model parameters with temporal weighting.  Each local polynomial model is
used to estimate the radiance and partial derivatives at the data window center as a function
of (x, y, t) along the inspection surface.  The model parameter outputs replace the image data
and directly feed the developed DSP flaw detection operators.  The result from this process is
a composite image that highlights locations that have a high probability of containing flaws. 
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1.0   INSPECTION PROCESS OVERVIEW AND PROBLEM STATEMENT

Dynamic thermography is a diagnostic method with demonstrated inspection capabilities on
metallic and composite structures.  General capabilities include detection of disbonds (air
gaps) in bonded and inhomogeneous metallic structures, hidden corrosion detection with a
demonstrated sensitivity below 3% material loss, detection of composite interply
delaminations, detection of composite impact damage, mechanical integrity measurements
(e.g., weld inspection), material alloy anomaly detection, and fluid ingress detection.
However, as will be discussed in section 1.3, the inspection sensitivity and reliability are
limited by a protracted and subjective analysis process and various noise sources.

1.1  Inspection System Configuration

Dynamic thermography systems can be configured in a variety of ways.  However, the basic
elements consist of a thermal source to heat the inspection area, an infrared camera to
monitor the surface thermal emissions, and a computer to control the data acquisition,
reduction, and display.  The system used to support the research presented in this report was
a Thermal Wave Imaging system manufactured by TWI, Inc.   The inspection system
hardware includes the following:

1. Two linear Xenon flashtubes with variable power output up to 6 KJ each.  The
pulse width produced by these flashtubes is approximately 5 msec.

2. Balcar power supplies.
3. Amber Galileo infrared focal plane array camera.  The detector material is Indium

Antimonide and operates at 3 – 5 �m.  A Stirling closed cycle system is used to
cool the detector array.  The detector pitch is 30 �m.  This camera has adjustable
integration time and frame rate with a maximum frame rate of 1000 Hz.  The
detector array size is 256 x 256 pixels, though windowing is required to operate the
camera at speeds faster than 130 Hz. The windowing options are 256 x 256, 127 x
124, and 64 x 64.  Pixel Nonuniformity Correction tables are generated during
calibration. The acquired images have 12 bit radiometric resolution.

4. Pentium 2 computer with 512 MB RAM.  All images are captured in RAM.  This
limits the maximum number of frames that can be captured.

5. Aluminum shroud that houses the flashtubes and encloses the inspection area to
contain the flash.

Inspection system calibration was performed with an Omega model BB701 blackbody.  This
blackbody has a �0���C stability, a cavity emissivity of 0.98 to 0.99, and a temperature
operating range from –4 to 300 �F.

1.2  Inspection System Operation

The inspection process is initiated by irradiating the specimen surface with a high intensity,
short duration flash lamp pulse.  The absorbed energy conducts laterally and longitudinally
away from the heated region at a rate governed by the local temperature gradient and the
specimen thermal diffusivity.  Localized internal or back surface anomalies produce regions
of differing thermal diffusivity that affect the global heat conduction process.  These
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anomalous regions can act as insulators that slow the heat transport, heat sinks that store and
reradiate energy, or conductors that increase the rate of heat diffusion.  In each of these
instances the perturbations to the heat conduction create transient changes in the temperature
distribution that are visualized with infrared images of the specimen surface.

1.3  Inspection Challenges

Though dynamic thermography has shown great promise, commercial systems have
demonstrated questionable reliability because of their reliance on human judgement for flaw
detection.  The acquired temporal datacube is visually interpreted frame by frame to detect
flaws.  Given that more than 1000 images are often taken during a single data acquisition
cycle, this is a labor-intensive and often unreliable process.  Also, since the acquired images
are 12 to 16 bit and the monitor display is 8 bit, the system operator must select which eight
bits to display or rely on automated histogram based methods for selecting the displayed data
bits.  Further, there is a typically a large dynamic range in each image, and "hot spots" often
dominate the contrast enhanced image and hide flaws. Additionally, this time consuming
subjective analysis process must deal with a variety of other issues, including the following:

The acquired thermal images are temporally and spatially noisy (digital and
specimen induced noise such as emissivity variations).  Sequential frame
averaging, image filtering, and other conventional image processing methods can
reduce this noise and enhance flaw visualization.  However, image processing can
also hide flaws which are small or that have a low signal to noise ratio.  Data
noise must be statistically characterized and mitigation algorithms developed.

The initial surface heating is rarely uniform and can create thermal images that
are dominated more by the initial absorbed heat distribution than by flaw induced
effects.  Subtraction of the initial image from subsequent images can help flaw
visualization, though high contrast surface artifacts can still dominate the thermal
images.  Further, the natural diffusion effects of the transient heat conduction
limit the utility of baseline image subtraction to early time images.  Subtraction of
the initial image from late time images can induce artifacts associated with
surface features rather than internal flaws.  More sophisticated processing
techniques must be used to accommodate heating nonuniformities.

Thermal images are inherently low contrast and human judgement of the
displayed grayscale images is used for flaw detection.  The analyst must both
visualize the anomaly and determine if it is a flaw, an artifact produced by the
specimen surface features (e.g., paint variations, surface roughness, foreign bodies
such as grease, dirt or insulation), or structural conditions (e.g., presence of local
heat sinks or material property differences).  Human judgment can be unreliable
since the character of the displayed images is directly controlled by user specified
image display parameters.  Algorithms are needed to objectively analyze the full
16 bit temporal datacube.

Thermal reflections (principally from the flash tubes) can generate hot spots that
locally saturate the camera or that produce signal strengths that obscure the
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presence of flaws when automated contrast adjustment methods are applied.
Fortunately, thermal reflections typically only occur if the surface is highly
specular or has a shape that tends to image the lamps onto the detector.  Coating
the inspection surfaces with a removable wax or water based paint that makes the
surfaces more diffuse can reduce these reflections.   When the surface coating or
rearrangement of the imaging configuration does not reduce the thermal reflection
enough, other methods such as signal processing may be needed.  Though little
work has been done in this area, it may be possible to apply a homomorphic filter
may reduce these effects.

Optical system effects (i.e., optical aberrations – principally distortion) are very
common in thermal infrared imaging systems and can reduce the accuracy of
spatial measurements.  In principle these effects can be avoided with a well
corrected optical system.  However, the high cost of infrared optics makes this a
cost prohibitive options.   Instead, it may be better to do post-processing to correct
for the image distortion.

To date there have been no successful attempts to develop generalized algorithms to analyze
acquired thermal datacubes for the presence of flaws.  Flaw detection currently requires that
the user observe a grayscale variation in the temporally and radiometrically subsampled 16
bit images.  The only software currently fielded with commercial inspection systems to
address this challenge is conventional post-processing noise smoothing filters, frame
subtraction software for comparing images, and first derivative approximation software
which relies on a linear approximation to the temporal temperature change at a given image
position.  These simplistic algorithms operate quickly and can be used to improve the
visibility of an image region with a visually apparent flaw.  However, they do not provide
reliable flaw detection capabilities.

The governing physics of transient heat conduction can be used to establish metrics that
highlight the presence of a flaw.  Both the transient lateral and longitudinal diffusive effects
produce thermal signatures that highlight the temporal initiation of the flaw perturbation
effects.  In addition to flaw detection, a useful byproduct of the detection of the temporal heat
perturbation is flaw quantification.  The data acquired at this time slice should have the
minimum amount of diffusive artifacts and thereby provide an accurate indication of the flaw
depth and lateral size.

2.0  INSPECTION SYSTEM MODELING

When there is visual or a priori evidence of the presence of a flaw, image processing can be
successfully used to enhance the contrast or desired features in an infrared image.  However,
when such information is lacking, blind application of signal processing techniques rarely
result in success when applied to dynamic thermography performed on complex structures.
As such, when it is possible, data analysis algorithms should be tailored to the physics of the
inspection process and should be robust in the presence of noise.  Therefore, a natural place
to begin the development of data analysis algorithms is an investigation of the noise
environment and creation of an inspection system model.
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2.1  Image Noise Sources

Flaw visualization, whether performed interactively or with automated analysis software, is
impacted by multiple noise sources.  These sources include emissivity variations across the
inspection surface, non-uniform surface heating, thermal reflections (mostly from the flash
tubes), optical system effects (e.g., detector noise, optical aberrations – mainly distortion),
spatial variations in paint thickness, and complex system structures that create the presence
of strong thermal insulators or heat sinks.  Each of these factors can produce spatially varying
image intensities that contribute to the obscuration of hidden flaws.  Proper calibration of the
inspection system and judicious selection of the inspection geometry can reduce the impact
of some of these noise sources, but complete noise elimination is not possible.

2.1.1  Camera Noise Characterization

Under ideal conditions the inspection system performance is limited by the camera detector
noise.  For purposes of this project an Amber Galileo camera was used to perform the
thermal inspections.  The manufacturer advertises the following camera specifications:

Detector Material:  InSb
Focal Plane Array Size: 256 x 256 pixels
Pixel Size:  30 x 30 microns
Sensitive Flux Range:  1013 to 1015 photons/cm2-sec (nominal 2x1014 photons/cm2-sec)
Charge Handling Capacity:  106 electrons
Noise Equivalent Flux Density (NEQ): 2x1011 photons/cm2-sec in 3-5 micron
waveband
Frame Rate:  Variable to 1400 Hz with detector array windowing
Dynamic range: 12 bit (4096 grayscales)
Integration Time:  Variable from 10 microseconds to 8.6 msec (1.38 msec was used for
the noise tests)
Noise Equivalent Temperature Difference (NETD): Rated at less than 0.025 K at 23��C
with a standard deviation to mean ratio less than 0.1%.

From a noise standpoint, the NETD establishes the temperature difference needed to generate
a signal to noise ratio of one.  The performance of the camera used in this project was
measured at 15��C, 25��C, 30��C, and 40��C.  Using a two-point calibration process to
perform pixel nonuniformity corrections (NUC), the camera demonstrated a measured mean
NETD of 0.0155 K with a standard deviation of 0.002 K.  The measured temporal fluctuation
magnitude was 0.051%.  Typically the spatial variations after applying the NUC are ��0.010-
0.015 K.  These values establish the calibrated capabilities of the system in a controlled
laboratory using a blackbody source.  In practice the system is usually not optimally
calibrated and the imaged structures are not blackbodies.  As such, the achievable flaw
induced temperature rise detection capabilities are typically well above the laboratory NETD.
The “in-field” measurement sensitivity and noise levels depend on the character of the
inspected structure (both surface and subsurface), the ambient environment, and the detector
calibration.  Though the inspected surface and environmental noise levels cannot be bounded
a priori, it has been shown that without calibration and pixel nonuniformity corrections the
detector root mean square spatial noise (standard deviation/mean) is typically 1.5 to 2%. 
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To investigate the noise that may be more typical of levels experienced in field use, tests
were run using a quasi-isothermal aluminum plate at room temperature.  Two data sets
consisting of 669 image frames (256 x 256 pixels) were acquired at camera frame rates of 15
Hz, 30 Hz, 60 Hz, and 120 Hz.  The camera was not calibrated prior to this data acquisition,
though it had been calibrated months earlier.  The average signal standard deviation/mean for
the full data sets varied from 8.7% to 9.1%.  However, a temporal evaluation of 64 image
points (see sample plots in figure 1) demonstrated that the major fluctuations were not
temporal in nature, though some minor plate cooling appeared to be occurring (possibly
conduction into the concrete floor the plate was placed on).  The temporal fluctuations at the
64 evaluated points varied from a low of 0.043% to a high of 0.077%.  Considering the
quantization level for the 12 bit camera system and the 16 bit image file (data quantized into
4 grayscale increments), this fluctuation level corresponded to the minimum grayscale
change and was consistent with the blackbody calibrated fluctuation level that was later
measured at 0.051%.  As a result, the large data set variations tended to be more from surface
variations (possibly small spatial thermal or emissivity variations) and it was concluded that
temporal detector noise fluctuations would not be a significant noise source for data analysis.
Further, there was no evidence of frame rate dependent effects.  However, in these tests the
same camera integration time was used for each frame rate.  It is possible that with
significantly increased frame rates that noise levels could increase and sensitivity decrease
because of the need to reduce the detector integration time.  Figure 2 contains an image of the
test article with the grayscales adjusted to display the spatial variations.  The total signal
range for the images represents a ��1% variation in signal strength relative to the mean.

Figure 1.  Temporal noise for an image of an unheated aluminum plate.
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Figure 2.  Thermal images of an unheated aluminum plate.

2.1.2  Surface Artifact Noise

Section 2.1.1 considered the ideal condition where the image noise is camera limited.  In
reality, the surface and near surface induced noise is typically the dominant noise source for
infrared inspection systems.  This noise can be caused by surface contamination (e.g., grease,
dirt), emissivity variations (e.g., contamination, differing materials), unplanned material
thickness variations (e.g., paint thickness deviations), or surface reflections.  Since surface
reflections can typically be handled with the proper selection of the inspection configuration
or through post–processing, it will not be considered further. 

Consider the sequence of post-flash heating images presented in figure 3.  These pictures
display the infrared images of a 10”x10”x”0.060” aluminum plate with a 0.475” diameter flat
bottom hole that were acquired at frames 21, 23, 25, 27, and 73 after the flash for a camera
operating at 476 frames per second.  In each frame the gray scale histogram was used to
automatically enhanced the image and improve the flaw visibility.  This type of contrast
enhancement works well when the flaw is the primary source of  “hot spots” in the image,
but performs poorly when there are other causes for the apparent high temperature regions.
Designed or unplanned material property variations can have differing thermal properties,
causing selected image regions to conduct energy much slower than surrounding regions.  In
these cases the hotter region may not be indicative of a flaw, but it can obscure lower signal
strength flaws that are located in the cooler image regions.  Also, differing materials may
have dissimilar emissivity values that create the false appearance of temperature variations.

In figure 3 the mottled appearance in frames 21-27 is caused by surface paint thickness
variations in the thin layer of water based black Crayola paint that was applied to the
inspection surface with a roller.  This removable paint is often applied to an inspection
surface to increase the coupling of the thermal energy from the flash tubes and to reduce
specular reflections.  Though the paint thickness variations were not quantified, they were
probably on the order of 1 mil.  As shown in the images, paint variations are highly visible
despite the relatively small amount of paint applied to the inspection surface.  This occurs
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Figure 3.  Flaw evolution in the presence of surface induced noise.

because small variations in paint thickness are magnified in comparison to aluminum because
of the large difference in thermal properties.  Fortunately these surface artifacts diminish with
time as shown in frame 73 (far right image).  However, as shown in these images, the circular
flaw becomes visible before the surface effects disappear.  In these images the flaw has large
signal strength and good latency.  Unfortunately this is not always the case.  As such,
algorithms developed for automated flaw detection should be robust in the presence of the
noise levels displayed in figure 3.  

As a second example of surface noise latency, consider the post-flash contrast enhanced
image sequence and the corresponding signal strength plots provided in figure 4.  These
infrared images are of a 10”x10”x0.060” aluminum plate with a 0.5” diameter flat bottom
hole that were acquired at 476 frames per second.  The three images displayed are for frames
19, 24, and 70.  As with the test case displayed in figure 1, the flaw had excellent visibility
and latency.  Here the surface paint variation effects were significantly reduced by frame 24
and were virtually nonexistent at frame 70.

Figure 4.  Surface noise latency.

Flaw

Frame 21 Frame 23 Frame 25 Frame 27 Frame 73

Flaw

Frame 19 Frame 24 Frame 70
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In the test cases illustrated in figures 3 and 4, the noise overwhelmed the flaw signal during
the early frames but decayed long before the flaw signature started to fade.  In these instances
advanced signal processing for flaw detection is rarely needed.  The challenge is to detect
small flaws with short latency or near surface flaws when significant thermal noise is present.

2.2  Thermal Imaging Model

Finite element model results provide temporal surface temperature profiles that can be used
to predict surface temperatures in support of flaw detection algorithm development.
However, though the thermal imaging system is sensitive to surface temperature, what is
actually captured is energy radiated from the inspection surface.  As a result, the simulated
surface temperatures must be transformed into the image grayscales induced by the thermal
radiation (flux exitance).  This is accomplished by converting the temperature dependent
surface radiated energy into irradiance on the detector.

The total flux exitance from the modeled inspection surface is computed by integrating the
expression for spectral photon flux exitance for a graybody over the camera spectral
operating range.  This exitance, together with the optical system transmission and F/#,
defines the image plane irradiance (flux density) that would be produced by the simulated
inspection surface.  The computed image plane irradiance can be converted to image
grayscales using the known detector noise equivalent photon flux and sensitive flux range.  

Image plane irradiance is defined by the expression
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where,
Ed = incident photon flux density on detector plane,
Ls = photon flux radiance emitted from inspection surface,
Ms = photon flux exitance,
Tr = lens transmission,
Feff

# = optical system effective F/number.

Further, the spectral photon flux exitance M� for a blackbody is defined by the equation
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where,
��= wavelength (microns),
h = Planck's constant = 6.626176 x 10-34 W/sec2,
c = speed of light = 2.99792438 x1014 microns/sec,
k = Boltzmann's constant = 1.380662 x 10-23 W/(sec-K),
T = surface temperature (K).
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Though the inspection surface does not approximate a blackbody, we can assume it is a
graybody (constant emissivity���) for the temperatures and spectral band of interest.  As a
result, the total photon exitance Ms from the surface at temperature T can be computed by
integrating the blackbody spectral photon flux exitance M� over the desired waveband.
Hence, the image irradiance is computed using the following general expression: 
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The integration in equation (3) is best performed using Gauss-Laguerre quadrature because
of the form of the M� relation.  Eight quadrature points are adequate for thermal inspection
modeling because of the character of Planck's distribution over the wavelengths and surface
temperatures of interest.  The system parameters used in equation (3) depend on the infrared
camera selected to perform the inspection.  The inspection system used in this research has a
responsive waveband of 3-5 microns, an effective F/number of 3.075, and a lens transmission
of 0.90.  Though there are some minor variations in lens transmission over the 3 - 5 micron
region, they are negligible for our modeling purposes.  Finally, the emissivity is assumed to
be 0.25 (unpainted worn aluminum) over the entire waveband for the modeled surface.
Though painted surfaces typically provide much higher emissivity values (0.9 is typical),
using a value of 0.25 provides a more conservative value for estimating detection limits. 

Equation (3) converts the computed surface temperatures into equivalent detector irradiance
(flux density) values.  To produce a simulated infrared image we must convert the computed
irradiance values into grayscales.  The image grayscales can be computed from the calculated
image plane flux density using the known detector NEQ and sensitive flux range.  Using a
maximum allowable flux of 1x1015 photons/cm2-sec, an NEQ of 2x1011 photons/cm2-sec, and
a dynamic range of 4096 grayscales (12 bit camera) gives an operating flux range of about
1.8x1014 to 1x1015 photons/cm2-sec.  However, the advertised detector sensitivity range is
approximately 1x1013 to 1x1015 photons/cm2-sec.  As such, it can be seen that the photon flux
density per grayscale is slightly above the NEQ level with a value of approximately
2.42x1011 photons/cm2-sec.  Hence, assuming the detector is linear as a function of incident
flux density allows the photon flux density is converted to grayscales using the relationship

 (4) grayscale = (Ed - 1x1013) /2.42x1011

This approximation sets values below 1x1013 to "0", and values above 1x1015 to "4095". 

2.2.1  Thermal Image Noise Model

The experimental investigation of the infrared camera in section 2.1.1 suggested that
temporal camera noise should not be a significant noise source impeding data analysis.  To
investigate this assumption temporal thermal image noise was included in the thermal image
model as normally distributed additive noise.  Two options were considered for adding the
noise to the finite element model results.  Noise can be added in post-processing to the
images generated with equation (4) or it can be added directly to the apparent surface
temperatures used in equation (2).  Though arguments could be made that the primary
temporal noise sources are governed by the camera (detector, electronics, etc.), preliminary
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numerical tests demonstrated that for our purposes it did not make a significant statistical
difference at which point in the process the noise effects were added.  As a result, the noise
was arbitrarily added directly to the temperatures used in equation (2).

Adding normally distributed noise to the modeled surface temperature requires some form of
Gaussian sampling.  Gaussian sampling cannot be done directly because the cumulative
probability distribution is an error function that cannot be analytically inverted.  Instead, the
sampling is accomplished via a transformation approach involving the selection of two
variables uniformly random over the interval (0,1).1   Given two random numbers y1 and y2,
noise is added to the finite element temperature predictions using the relation:

 (5) 21 2cosln2 yyMTeTemperatur noisefe �� ���
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The random number generation followed the Park and Miller implementation of Schrage’s
method with Bays-Durham shuffling.2

2.3  Finite Element Modeling

As a starting point in the development of data analysis software, thermal finite element
modeling was conducted to generate controlled simulation data.3 Though dynamic
thermography can be used to perform many inspection tasks, it is most commonly applied to
the detection of missing material (e.g., hidden corrosion) or air gaps (disbonds) in bonded
structures.  As such, the finite element modeling focussed on these inspection classes.  The
varied model parameters included flaw aspect ratio (diameter/depth from surface), flaw
shape, and paint thickness.  A common rule of thumb is that the physical flaw detection limit
is near a flaw aspect ratio of one.  However, this presumes the flaw generates a temperature
rise above the NETD and that the generated temperature anomaly has a cross-section that is
resolvable by the detector optical system.  To investigate the importance of a flaw’s energy
“trapping” capacity, the modeling included cases with equivalent flaw aspect ratios but
differing depths from the viewed surface.  These cases include situations where the aspect
ratio is below one and the flaw cross-section is below the optical resolution limit.

The important parameters to consider when reviewing the results are the peak temperature
contrast between the flaw center and the uniform temperature region not influenced by the
flaw, the earliest time when the flaw perturbs the surface temperature by at least 0.01�C, and
the flaw visibility latency (i.e., cooling rate).  The best opportunity for visualizing the flaw in
a single frame is when the flaw contrast peaks.  However, it is important to recognize that the
maximum surface temperature generated by the heating does not correspond to the point
where the flaw visibility is at its maximum.  As such, it is often not important to visualize the
surface during the flash heating event. This is fortunate since the inspection surface flash
heating typically saturates the detector, making imaging during this transient event
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impractical.  Nevertheless, if data analysis methods consider the temporal flaw effects, it may
be necessary to capture the initial perturbation of the surface heat profile created by the flaw. 

When the flaw depth is shallow and the inspection surface is unpainted, the initial flaw
induced temperature deviation can occur shortly after the flash heating, requiring high frame
rates to capture its initiation.  Indeed, from an analytical standpoint we can expect that the
penetration depth of the flash heating thermal pulse into the bare aluminum plate will be
about midway into the plate during the pulse duration for the thin structures considered.  As
such, the flaw will begin to impede the thermal diffusion before the flash heating event is
completed.  Further, during the flash event the camera detector is typically saturated,
preventing any reliable imaging. Therefore, it is reasonable to assume that it may be
impractical to observe the flaw initiation in structures with bare aluminum surfaces.
However, for painted test specimens, which have a significantly larger thermal time constant
than bare aluminum, the penetration depth during the heating pulse will only be a few mils
into the paint.  Here the initial pulse duration will not affect the ability to visualize flaw
initiation, though other thermal characteristics of the paint may impair the flaw detection.
For example, the paint’s specific heat allows it to store more energy than aluminum for the
same induced temperature rise.  Also, considering the paint conductivity relative to the
aluminum, the paint will significantly reduce the rate at which heat is applied to the
aluminum, though it will provide the energy for a longer duration.

Fundamentally the camera cannot detect the beginning of the flaw induced perturbations until
the temperature deviation exceeds the NETD.  In the case of the camera system used to
support this project, the temperature deviation would need to surpass 0.0155��C for the signal
to be larger than the noise.  To be conservative in determining an appropriate frame rate to
observe the initiation of the flaw, we used the criteria that the system must collect four image
frames prior to the frame where the flaw first creates a 0.01 �C temperature rise.

Though peak contrast provides the greatest signal to noise ratio for flaw visualization, flaw
temperature latency is a more important feature in automated flaw detection.  For example,
the peak contrast may be theoretically detectable, but have small signal to noise ratio that has
a poor likelihood of detection.  Though the temperature rise is small, it typically lasts for
many frames.  As a result, an accumulation of frames may generate a more detectable flaw
signature.  Further, such an accumulation would reduce the temporal noise effects.

2.4  Thermal Finite Element Model Results

Finite element modeling was conducted for seven test cases involving flaws sized to produce
aspect ratios (flaw lateral diameter/flaw depth from surface) from 0.5 to 5.  The modeled
flaws included varying amounts of missing material on the backside of painted and unpainted
uninsulated aluminum plates and disbonds between bonded plates.  The missing material was
modeled as either a circular flat bottom hole or a hemispherical hole.  All of the disbonds
were circular.  The following are the general parameters used with each finite element model:

Specimen Size:  10” x 10”
Heating Pulse Duration:  5 msec
Absorbed Energy:  2 kJ (spread uniformly across the specimen surface)
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Initial Specimen Temperature:  21.11 �C
Temporal Resolution:  0.00125 seconds
Total Time Duration for Data Acquisition:  240 seconds

Each test case presents the maximum flaw temperature rise relative to the non-flawed area
(i.e., temperature rise at peak flaw contrast), the temperature at the flaw center one second
after the flash heating (measure of flaw latency), the camera frame rate needed to capture the
flaw initiation in the infrared image (0.01�C temperature rise above non-flawed area), and the
recommended camera frame rate to capture the flaw’s peak contrast.

2.4.1  Case 1:  Unpainted Aluminum Plate With Flat Bottom Holes

This case investigated an unpainted aluminum plate with circular flat bottom holes as
simulated flaws.  The material properties used are as follows:

Material Thickness
(inches)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Aluminum 0.060 2770 875 163

The model results presented below demonstrate that even the smallest flaw considered
(0.0125”, aspect ratio of 0.5) is theoretically detectable if the flaw is optically resolvable.

Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect No defect N/A
0.025 0.0125 0.07
0.025 0.025 0.29
0.025 0.050 1.12
0.025 0.075 2.16
0.025 0.100 3.14
0.025 0.125 3.99
0.05 0.025 0.030
0.05 0.050 0.11
0.05 0.100 0.35
0.05 0.150 0.58
0.05 0.200 0.75
0.05 0.250 0.866

The peak surface temperature generated by the simulated flash heating was 29.6 �C, but the
surface cooled quickly as shown below.  Though the results confirm that larger flaws trap
more energy, one second after the heating the differences between the unflawed and flawed
cases is virtually undetectable.  As such, for bare aluminum the system should be operated at
higher frame rates (120 fps recommended) to capture flaw latency effects and peak contrast.
Further, to capture the flaw initiation, the camera would need to be operated in the kHz
range.  For the flaws located at a depth of 0.25 inches a frame rate of approximately 4000 fps
should be used.  For the flaws at a 0.5” depth  a rate of 2000 fps should be used.
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Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Flaw Center Temperature
1 Second After Flash

No defect No defect 26.39
0.025 0.0125 26.39
0.025 0.025 26.39
0.025 0.050 26.40
0.025 0.075 26.40
0.025 0.100 26.41
0.025 0.125 26.42
0.05 0.025 26.39
0.05 0.050 26.39
0.05 0.100 26.40
0.05 0.150 26.40
0.05 0.200 26.41
0.05 0.250 26.42

2.4.2  Case 2:  Painted (5 mil) Aluminum Plate With Flat Bottom Holes

This case investigated a painted aluminum plate with circular flat bottom holes as simulated
flaws.  The material properties used are as follows:

Material Thickness
(inches)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Paint 0.005 1100 3349 0.2
Aluminum 0.060 2770 875 163

The model results below show that the smallest flaw considered (0.0125”, aspect ratio of 0.5)
is theoretically detectable if the flaw is optically resolvable.  When compared to the bare
aluminum case, the model results indicate the maximum temperature difference between the
flaw center and the region not perturbed by the flaw is greater with the 0.005”paint layer.

Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect No defect N/A
0.025 0.0125 0.336
0.025 0.025 0.978
0.025 0.050 2.345
0.025 0.075 3.374
0.025 0.100 4.045
0.025 0.125 4.450
0.05 0.025 0.170
0.05 0.050 0.387
0.05 0.100 0.650
0.05 0.150 0.756
0.05 0.200 0.799
0.05 0.250 0.810
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The peak surface temperature generated by the simulated flash heating was 146.8 �C, but the
surface cooled quickly as shown below.  The paint has a much lower conductivity than the
aluminum, which significantly delays the initiation of the flaw induced temperature
deviation.  As a result, a frame rate of 140 frames per second would be adequate for
visualizing flaw initiation for both of the flaw depths considered in this case.  Also, it is
interesting to note that though the surface cooled quickly, unlike the unpainted case (case 1)
the presence of the flaw created significant differences in the cooling rate (flaw temperature
latency).  This would seem to indicate that a 0.005” layer of paint may actually help with the
flaw detection by reducing the required frame rate and increasing the latency.

Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Flaw Center Temperature
1 Second After Flash

No defect No defect 25.82
0.025 0.0125 25.86
0.025 0.025 25.99
0.025 0.050 26.57
0.025 0.075 27.60
0.025 0.100 28.72
0.025 0.125 29.60
0.05 0.025 25.87
0.05 0.050 25.99
0.05 0.100 26.31
0.05 0.150 26.52
0.05 0.200 26.61
0.05 0.250 26.63

2.4.3  Case 3:  Painted (10 mil) Aluminum Plate With Flat Bottom Holes

This case investigated a painted aluminum plate with circular flat bottom holes as simulated
flaws.  The only difference between this case and case 2 is the paint thickness.  The material
properties used are as follows:

Material Thickness
(inches)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Paint 0.010 1100 3349 0.2
Aluminum 0.060 2770 875 163

As with the previous cases, the model results presented below demonstrate that even the
smallest flaw considered (0.0125”, aspect ratio of 0.5) is theoretically detectable if the flaw is
optically resolvable.  When compared to the case 2 with a 0.005” paint layer, it can be seen
that the maximum temperature difference between the flaw center and the region not
perturbed by the flaw decreases with the 0.010” paint layer.  Though further investigation is
required, this may suggest that there is an optimum paint thickness for flaw detection.
Further modeling should focus on the peak contrast temperature as a function of flaw
thickness and heating pulse duration.
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Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect No defect N/A
0.025 0.0125 0.109
0.025 0.025 0.327
0.025 0.050 0.900
0.025 0.075 1.500
0.025 0.100 2.020
0.025 0.125 2.440
0.05 0.025 0.070
0.05 0.050 0.167
0.05 0.100 0.350
0.05 0.150 0.477
0.05 0.200 0.550
0.05 0.250 0.590

As with case 2, the peak surface temperature generated by the simulated flash heating was
146.8 �C, but the surface cooled slower with the thicker paint layer.  This added paint further
delayed the initiation of the flaw induced temperature deviation.  As a result, a frame rate of
30 frames per second would be adequate to visualize the flaw initiation for both of the flaw
depths considered in this case. 

Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Flaw Center Temperature
1 Second After Flash

No defect No defect 28.89
0.025 0.0125 28.99
0.025 0.025 29.02
0.025 0.050 29.78
0.025 0.075 30.34
0.025 0.100 30.70
0.025 0.125 30.91
0.05 0.025 28.95
0.05 0.050 29.05
0.05 0.100 29.19
0.05 0.150 29.24
0.05 0.200 29.25
0.05 0.250 29.25

2.4.4  Case 4:  Unpainted Aluminum Plate With Hemispherical Holes

This case studied an unpainted aluminum plate with hemispherical backside holes as
simulated flaws. Each flaw center is located 0.05” below the metal surface.  To maintain the
flaw center depth at 0.05” and achieve the desired flaw diameter, the hemispherical flaw
radius is varied as shown in the table.  The material properties used are as follows:
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Material Thickness
(inches)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Aluminum 0.060 2770 875 163

The model results presented below demonstrate that even the smallest flaw considered
(0.0125”, aspect ratio of 0.5) is theoretically detectable if the flaw is optically resolvable.
However, though the actual NETD of the camera used in this test program was 0.0155 �C,
the advertised NETD is 0.025 �C.  As such, the smallest flaw is near the fundamental limit of
the camera even when it is optimally calibrated.  

When compared to the corresponding case 1 that modeled flat bottom holes, case 4
demonstrates that hemispherical backside holes are less efficient at trapping energy (i.e.,
reducing cooling rate) than flat bottom holes.  Given that the heating applied in the model is
uniform across the surface, isotherms are created parallel to the surface of the flat bottom
holes.  When the diffusing heat reaches the top of the flat bottom hole the energy begins to be
released by convective cooling at the flaw air-metal interface.  Since the convection heat
transfer at the flaw is a relatively slow process in comparison to the conduction transfer away
from the flaw, the unflawed regions cool much quicker leaving a “hotter” region above the
flaw.  This higher temperature area above the flat bottom flaw will remain until the lateral
temperature gradients needed to conduct the energy away from the flaw propagate in from
the flaw edges as the heat diffuses around the flaw. This process is responsible for the
trapped energy that results in the flaw signature latency.  

Similar to the flat bottom holes, the hemispherical flaws in case 4 begin to perturb the surface
temperature profile when the induced heat front conducting through the aluminum first
reaches the top of each flaw.  However, unlike the flat bottom hole case, as you move
laterally away from the flaw center there is a volume of aluminum below the isotherm to
conduct the heat.  As such, there is a small temperature gradient along the hemispherical flaw
that supports further heat conduction.  Though the gradient is much smaller than in the
regions away from the flaw, it is still significant enough to support cooling rates that are
noticeably higher than with the flat bottom holes.  The flaw air-metal interface providing
convective cooling still acts as an insulator relative to the surrounding conduction.  This
relative insulation, together with the reduced local temperature gradients is still sufficient to
trap sufficient energy for flaw detection.  However, the magnitude and latency of the
hemispherical flaw signature is significantly smaller than the signature for the equivalent flat
bottom hole cross-section.

Hemisphere Radius
(inches)

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect No defect N/A
0.012813 0.025 0.020
0.03625 0.050 0.040

0.13 0.100 0.070
0.28625 0.150 0.110
0.505 0.200 0.140

0.78625 0.250 0.170
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The peak surface temperature generated by the simulated flash heating was 29.58 �C, but the
surface over the center of each flaw cooled quickly to about 26.39�C after 1 second.  This is
the same temperature occurring in the unflawed case.  As such, after 1 second there is no
evidence of a flaw.  As mentioned previous, the hemispherical flaw signature has a relatively
short latency time. Further a frame rate of 16000 fps would be needed to capture the flaw
initiation because of the small amount of energy trapped by the hemispherical flaw,

2.4.5  Case 5:  Painted (5 mil) Aluminum Plate With Hemispherical Holes

This case investigated a painted aluminum plate with hemispherical backside holes as
simulated flaws. The center of the each flaw is located 0.05” below the metal surface.  To
maintain the flaw depth at 0.05” (at flaw center) and achieve the desired flaw diameter, the
radius of the hemispherical flaw shape is varied as shown in the table.  The material
properties used are as follows:

Material Thickness
(inches)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Paint 0.005 1100 3349 0.2
Aluminum 0.060 2770 875 163

The model results presented below demonstrate that the smallest flaw considered (0.0125”,
aspect ratio of 0.5) is theoretically detectable if the flaw is optically resolvable.  As with case
2, it can be seen that the maximum temperature difference between the flaw center and the
region not perturbed by the flaw is greater when the 0.005”paint layer is present.

Hemisphere Radius
(inches)

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect No defect N/A
0.012813 0.025 0.050
0.03625 0.050 0.069

0.13 0.100 0.180
0.28625 0.150 0.290
0.505 0.200 0.379

0.78625 0.250 0.450

The peak surface temperature generated by the simulated flash heating was 146.8 �C, but the
surface cooled quickly as shown below.  Similar to case 2, the 0.005” paint appeared to
improve the flaw signature visibility and latency.  As with case 2, a frame rate of 140 frames
per second would be adequate for visualizing flaw initiation. 
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Hemisphere Radius
(inches)

Defect Diameter
(inches)

Flaw Center Temperature
1 Second After Flash

No defect No defect N/A
0.012813 0.025 25.82
0.03625 0.050 25.84

0.13 0.100 25.88
0.28625 0.150 25.94
0.505 0.200 26.01

0.78625 0.250 26.09

2.4.6  Case 6:  Painted (10 mil) Aluminum Plate With Hemispherical Holes

This case investigated a painted aluminum plate with hemispherical backside holes as
simulated flaws.  The only difference between this case and case 5 is the paint thickness.
The material properties used are as follows:

Material Thickness
(mil)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Paint 0.010 1100 3349 0.2
Aluminum 0.060 2770 875 163

The model results presented below demonstrate that the smallest flaw considered (0.0125”,
aspect ratio of 0.5) is theoretically undetectable even if the flaw is optically resolvable.
Further, the next smallest flaw considered (0.025”, aspect ratio of 1.0) is very close to the
theoretical detection limit. As with case 3, increasing the paint thickness from 0.005” to
0.010” significantly reduced the flaw detectability.

Hemisphere Radius
(inches)

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect No defect N/A
0.012813 0.0125 0.010
0.03625 0.025 0.030

0.13 0.050 0.070
0.28625 0.075 0.120
0.505 0.100 0.177

0.78625 0.125 0.220

As with case 5, the peak surface temperature generated by the simulated flash heating was
146.8 �C, but the surface cooled slower in case 6 because of the thicker paint layer.  This
added paint further delayed the initiation of the flaw induced temperature deviation.  As a
result, a frame rate of 24 frames per second would be adequate to visualize the flaw initiation
for both of the flaw depths considered in this case.  When compared with case 3 (0.010”
paint, flat bottom hole), it can be observed that it takes longer for the flaw to trap sufficient
energy to produce a detectable signature.
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Hemisphere Radius
(inches)

Defect Diameter
(inches)

Flaw Center Temperature
1 Second After Flash

No defect No defect 28.89
0.012813 0.0125 28.90
0.03625 0.025 28.91

0.13 0.050 28.96
0.28625 0.075 29.00
0.505 0.100 29.06

0.78625 0.125 29.10

2.4.7  Case 7:  Bonded Aluminum Plate With Circular Disbonds

This case investigated bonded aluminum plates with circular disbonds in the adhesive layer
between the plates.  The material properties used are as follows:

Material Thickness
(inches)

Density
(kg/m3)

Specific Heat
(J/kg �C)

Conductivity
(J/sec-m-�C)

Aluminum 0.060 2770 875 163
Cytec FM73

Adhesive 0.005 1150 1255.2 0.22

Aluminum 0.060 2770 875 163

The model results presented below demonstrate that the two smallest flaws considered
(0.03”- aspect ratio of 0.5, 0.06” – aspect ratio of 1) are theoretically undetectable even if the
flaw is optically resolvable.  This is predominantly due to the lower thermal conductivity and
heat capacity of the adhesive.  In many ways the adhesive is thermally comparable to the
paint used in previous cases.  The conductivity and density are virtually the same.  However,
since the paint has a specific heat that is three times larger, it is better at absorbing and
storing the heat energy with less increase in temperature than the adhesive.  As a result, the
adhesive acts as a better thermal insulator, reducing the local temperature gradients and flaw
signature gradient.  Nevertheless, though the disbond flaw visibility is reduced the signature
latency is still very good.

Defect Diameter
(inches)

Maximum Flaw
Temperature Rise (�C)

No defect N/A
0.03 0.010
0.06 0.020
0.12 0.070
0.18 0.130
0.24 0.206
0.30 0.280
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The peak surface temperature generated by the simulated flash heating was 29.58 �C, but the
surface cooled quickly as shown below.  Though the flaw has good thermal latency time the
camera would need to be operated at a frame rate of 640 fps to capture the initiation of the
flaw signature.

Defect Depth From
Surface (inches)

Defect Diameter
(inches)

Flaw Center Temperature
1 Second After Flash

No defect N/A 24.556
0.25 0.03 24.562
0.25 0.06 24.566
0.25 0.12 24.596
0.25 0.18 24.646
0.25 0.24 24.696
0.25 0.30 24.766

3.0  IMAGE ANALYSIS

3.1  Thermal Theory and Analytical Solutions

For thermal inspection applications, assuming no internal generation and isotropic,
homogenous materials, the governing equation for transient heat conduction is:
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where, 
k = thermal conductivity,
	�
�density (kg/m3),
cp = specific heat (J/kg �C),
� = thermal diffusivity (cm2/s),
(x,y) = along surface,
z = into surface.

Analytical solutions to equation (6) can be derived in many forms with differing convergence
properties, but each relies on series expansions to describe the surface temperature as a
function of position and time. For example, when a plane impulse heat source of intensity Q
is applied to the surface of an isothermal homogeneous slab of thickness L with no heat flow
across the top or bottom surface, the transient temperature response at the surface (z=0) is
given by:4 
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Similarly for the 2-D case we get:
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Likewise, for the given separable boundary conditions the solution can be extended to 3-D as
a product solution.  These solutions assume no heat flow across the top and bottom surface
after the heat pulse is applied.  Changes in the boundary conditions will create corresponding
changes in the spatial terms that affect the temperature distribution within the slab.  

From a physical standpoint, it is logical to assume that the presence of a flaw may alter the
internal energy storage and produce a perturbation in the time rate of change of the surface
temperature.  If we consider the 1-D case, the change in temperature at the surface over time
can be described by:
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In the series solutions provided in equations (7) through (9) we need to be concerned with the
number of terms needed to reach convergence.  This is governed by the Fourier number
(��t/L2) that essentially compares the rate of heat conduction through volume to the rate of
heat storage in the volume.  The larger the Fourier number, the deeper the heat penetration
over a given period of time and the faster the series convergence.  For thin aluminum
structures the series converges very quickly.

The expressions in equation (7) – (9) potentially provide a means of highlighting the
presence of a flaw because internal defects generate local surface temperatures that are not
consistent with the analytical solutions.  However, this assumes the inspection surface and
boundary conditions are “perfect” or that differences from the modeled conditions are
insignificant.  In practice, real and assumed boundary conditions rarely if ever agree and the
structural complexity of objects of interest usually does not support closed form solutions.
Nevertheless, analytical solutions can still provide useful information regarding trends and
help identify flaw induced variations.  This is particularly true for relatively thin structures
and for shallow flaws.  

For other more general structures it is often more computationally efficient to consider an
approximate analytic method such as the energy integral equation (heat-balance integral that
provides a solution that is correct on the average over the region).  This approach begins with
an integration of the partial differential equation over a phenomenological distance (thermal
layer – defined as the distance beyond which there is no practical heat flow) to remove the
derivative with respect to the space variable.  Then a profile (usually a polynomial of 4th
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degree or less) is selected for the temperature distribution over the thermal layer.  This profile
results in an ordinary differential equation with time as the independent variable.  The
solution to the ordinary differential equation is a temperature distribution defined as a
function of time and position.

An alternate solution to equation (6) for a 1-D semi-infinite solid with an instantaneous
surface heat flux Q provides a temperature profile through the solid described by:4 
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Under these conditions the surface temperature (x=0) is proportional to the inverse square
root of time.  This 1-D solution is often useful when considering relatively homogeneous
structures that are very thin in comparison to their lateral dimensions.  In these instances, the
surface temperature can be plotted relative to the square root of time.  At early times after the
flash heating the plot of temperature versus the square root of time is relatively linear.
Deviations from linearity frequently indicate the presence of an internal flaw.

Additional methods for performing thermal image analysis by comparison with 1-D and 2-D
analytical solutions for simple single layer and multilayer structures has have been studied by
many research teams with varying degrees of success.5-14  Though the details of these efforts
varied, of these analytical approaches principally relied on the time-domain characteristics of
the measured surface temperatures. The resulting solutions provide varying degrees of
accuracy, robustness (to both noise and normal structural inhomogeneities) and
computational complexity.  However, none of these efforts produced a flaw detection
methodology that works for general inspection applications.  

Alternative analytical based methods for detecting flaws have investigated different surface
heating protocols to optimize the flaw excitation15,16, use of dual infrared bands to minimize
the influence surface artifacts17, analytical metrics related to bulk thermal properties (e.g.,
thermal diffusivity18,19 and thermal inertia20), characteristics of the temporal contrast curve21,
and tomographic analysis methods22-25.  Each of these research efforts has improved flaw
detection reliability for some inspection applications by enhancing the flaw visibility,
reducing noise, or providing a quantitative basis for evaluating the results.  Disadvantages of
these methods include increased costs (e.g., more inspection hardware or high end computer
processing required), computationally intensive analysis requirements that preclude near-real
time inspection results, lack of robustness (inspection application specific), or results that still
require interpretation.

The primary objectives of this research effort were to develop a data processing methodology
that is tied to the underlying physics, which reduces or removes the data interpretation
requirements, and which eliminates the need to look at significant numbers of data frames to
determine if a flaw is present.  Considering the strengths and weakness of previous research
efforts, this research elected to consider both the temporal and spatial attributes of the surface
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temperature.  As will be shown later, each characteristic exhibits the presence of a flaw.
However, optimal inspection performance requires a coupling of the appropriate spatial and
temporal parameters.  By properly coupling spatial and temporal metrics, we can generate a
single synthesized image that highlights any hidden subsurface flaws.  

3.2  Conventional Signal-Processing

As presented in section 3.1, signal-processing algorithm development began with an
investigation of analytical solutions to the transient heat diffusion equation with impulsive
heating.  Though analytical solutions rarely exist for inspection problems of interest, they do
provide useful trend and thermal characteristics information.  Causal predictive filters relying
on analytical solutions were investigated as a class of potential flaw detection filters.
However, preliminary results demonstrated that in addition to being numerically intensive,
causal filters are not sufficiently robust in the presence of the level of spatial and temporal
noise and inhomogeneities typically encountered with dynamic thermography.  Hence, causal
filters were discounted and the algorithm development focused on variants of nonpredictive
digital signal-processing (DSP) operators such as the Laplacian, Roberts' cross gradient,
Sobel, Kirsch, Prewitt, differential hysteresis, Marr-Hildreth, Frei and Chen, homomorphic,
relief, and sequential operators implemented with differing applications of equalization.26-29  

Figures 6 - 14 display results from the application of some of the investigated DSP operators.
These operators were implemented using convolution filters with the kernels specified with
each image.  The raw image used in each DSP test case is shown in figure 5.  The 8 bits used
in this 12 bit infrared image were selected based on the image histogram to optimize the flaw
visibility for display purposes.  As shown in the figure, the image contains one highly visible
circular flaw, chalk registration lines to bracket the test area containing the flaw, flaw
numbers drawn in chalk (this image contains flaw #8), and a small amount of visible noise.
In most instances the noise in this image is high frequency, though there are a handful of
relatively large “hot spots” created by surface noise (probably chalk).  Some of these large
noise spots are pointed out in the image.  These large noise spots had significant latency that
could have produced a “false” flaw detection.  However, in this specific example it was
visually apparent that these hot spots were created by chalk on the test specimen surface.

Figure 5.  Sample thermal image with contrast enhancement.

Sample Chalk Registration
Lines and Flaw Numbers

Circular Flaw

Noise Examples
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Figure 6.  Sample results using edge detection filters.            
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Figure 7.  Sample results for diagonal edge detection filters.
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Figure 8.  Sample results for a Sobel filter.
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Figure 9.  Sample results using Laplace filters.         
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Relief Kernel: 
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Figure 10.  Sample results using a relief filter.
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Figure 11.  Sample results using a sequential filter.
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Figure 12.  Sample results using a sequential derivative filter. 
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Figure 13.  Sample results for a difference of Gaussians filter with Rayleigh equalization.

Figure 14.  Sample results using a Frei and Chen filter.

The Frei and Chen filter can be implemented using either the maximum from the following 8
kernels or the sum of the results produced by each kernel.  In this example the normalized
sums were used to produce the image.
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As demonstrated in these images, conventional DSP operators have the ability to accentuate
the visible flaw, but also have a tendency to highlight the image noise.  For example, the
spatial Laplacian is an indiscriminate edge detector that can highlight the flaw, chalk edges,
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and high frequency noise sources.  Though other filters may have edge detection advantages,
the detected edges may not be true flaws.  Instead they may represent surface features
(emissivity variations), heating nonuniformities (though these should be relatively smooth),
material variations (e.g., steel vs. aluminum), or other artifacts.  This reinforces the need to
consider both the spatial and temporal effects.  However, coupling spatial and temporal data
still requires an effective method for reducing the image noise without significantly reducing
the flaw induced effects.

3.3  Parametric Model for Spatio-Temporal Smoothing of Image Data

This section describes a statistical method for the estimation of parameters in a simple model
to filter infrared image data prior to analysis.  As discussed in section 2.1, infrared images
collected during the inspection of a structure are noisy.  For our purposes, the image noise
includes both an image dependent multiplicative component (e.g., emissivity variations) and
a random additive component (optical system and thermal noise).  The multiplicative
component will be addressed in section 4.3.  In this section we will focus on the random
spatial and temporal noise.

Conventional blind smoothing noise filters such as low pass filters, spatial averaging,
directional averaging, and median filters are not well suited to our problem.  These
approaches are typically designed for image enhancement (accentuate or extract specific
image features) rather than image restoration (removal of the noise without signal
degradation).  Since the flaw detection algorithms (section 4) compute image derivatives to
detect anomalies, it is important to use a digital filter that preserves the proper higher order
moments.  Therefore, it is useful to fit the spatial and temporal image data to a smooth
parametric model of the appropriate order to remove noise artifacts. 

The first moment preserving filter considered was the Savitzky-Golay smoothing filter.2,30

This filter applies an unbiased moving window procedure with filter coefficients that
preserve the desired moments.  Specifically, the underlying image data is least-squares fit
with a polynomial of the desired order.  Since the process is linear, we can pre-compute the
filter coefficients that perform the polynomial least-squares fitting and then quickly apply the
filter to each image using a convolution.  This approach is straightforward to implement and
is computationally tractable.  However, the challenge is to select the appropriate filter order
and width.  Typically a second order filter is adequate for infrared inspection images, but the
filter width is more subjective and data dependent.  Increasing the filter width improves the
noise reduction, but at the expense of high frequency features.  Care must be exercised to
ensure that the filter width is smaller than the narrowest real image feature (i.e., flaw size) of
interest or low contrast high frequency flaw data may be smoothed beyond detection.
Sample results from the application of Savitzky-Golay filters are provided in section 4.1.

Though Savitzky-Golay filters are computationally efficient, an alternative parametric model
was considered that provided more flexibility in the investigation of weighting alternatives
and mixed component image derivatives.  The method selected to populate the parametric
model is the least square identification of the parameters in a spatio-temporal polynomial
model with temporal weighting.  Image data from spatially and temporally local regions are
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used to identify the parameters of the local model.  Then spatial and temporal image values
and image derivatives are estimated using the model parameters and the general model form
instead of the raw image data.  These model values are used in turn to evaluate estimates of
quantities that depend on these values and derivatives, such as the image Laplacian at a point.
Consistent with the digitized infrared images, it is assumed that image data are available at
discrete locations on a rectangular grid, with equal spacing in each coordinate axis, and at
many equally spaced times.  The data are denoted:

 (11)  � � 101010 ������ tyxkji n,...,k,n,...,j,n,...,i,t,y,xT ,
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and xn  is the number of points measured in the x-direction, yn  is the number of points

measured in the y-direction, and tn  is the number of time steps measured. 

The parametric model chosen to fit the data is spatially quadratic in the x and y coordinates
and temporally quadratic.  Though the surface cooling is exponential in character, over small
temporal windows it is well fit by a quadratic relation.  Also, the temporal quadratic relation
is more computational efficient than an exponential relation .  The model has the form:
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The model contains 18 parameters that can be identified using a least squares approach.  In
particular, the parameters are computed using a least squares approach with temporal
weighting.  To start, parameter identification is performed by rewriting equation (13) in
vector form:

 (14) � � g�pA
where � �A  is the row vector of times and spatial locations defined:
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p is the parameter vector defined:
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and g denotes the scalar on the left-hand side of equation (13).
There are eighteen parameters in the model of equation (13).  Hence, at least eighteen
realizations of equation (14) must be written to solve for the parameters.  Since there are six
coefficients corresponding to each power of the temporal term, at least six measurements at
six physically independent locations must be made at each time step.  Further, since the
model involves temporal terms up to the quadratic level, measurements are required at three
or more times step.  Therefore, to perform least squares identification of the model
parameters (and thereby smooth over the effects of measurement noise) more than eighteen
total data points are required using six or more image pixels at each time step (image frame),
and with three or more times steps measured.

We seek to perform an identification of model parameters in a spatial/temporal region that is
a contiguous segment of the entire collection of data specified by equation (11).  To perform
a simple least squares identification of the model parameters, we first create a coefficient
matrix A, each row of which is a realization of equation (15) for a particular time and x-y
location.  Because the model is intended to characterize image data, there exists a column
vector T with elements corresponding to the rows of A, that is the image grayscale measured
at the appropriate locations and times.  Both A and T contain N rows, with tnN � .  The
duration tN�  is the time segment over which the data are to be modeled with equation (13).
For practical purposes, we might choose N in the interval [5,25]; this will be discussed
further, later.  During a given parameter identification, the system might be modeled at the
times � �11 ��� Nsss t,...,t,t .  The model specifies that:

 (17) TAp �

If the images were entirely noise free, and if the phenomenon being measured was suitably
modeled as the spatio-temporal trivariate quadratic of equation (13), then the parameters p
could be identified precisely, and the model used to predict the grayscales which are related
to surface temperature.  However, the images are not noise-free, and it is anticipated that the
trivariate quadratic model is only an appropriate model for system behavior in a local sense.
In view of this, equation (17) is solved in a least squares sense.  To accomplish this, the
pseudo-inverse of the coefficient matrix A is evaluated via singular value decomposition
(SVD), and used to express p:

 (18) TAp �
�

where �A  denotes the pseudo-inverse of the coefficient matrix A.  The parameters so-
obtained, and used in equation (13), can be taken as representative of the system behavior in
the space/time prism represented by the data, but are usually only taken to represent system
behavior at the central value of the independent variables, i.e.:



42

 (19) � � � � � �125.015.015.0 ����
���

tyx nsnn ttyyxx

[Recall that the model parameters have been identified using data measured at times
� �11 ��� Nsss t,...,t,t .]
Weighted least squares estimation is accomplished by applying a weighting to the factors in
equation (17).  Specifically, to emphasize the measurements near the temporal mid-point in
the identification of the model parameters requires a weighting that diminishes the influence
of measured values away from the central time.  For example, the nonnegative weighting
function defined by:
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from ct  (as determined by the weighting width scale factor, 
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squares analysis, the factors on both sides of equation (17) are weighted.  To accomplish this,
the following diagonal weighting matrix is created:
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where � � � �yxyx nnnn �
I  is the identity matrix with dimension � � � �yxyx nnnn � .  This is a

diagonal matrix with dimension � � � �NnnNnn yxyx � , and with the weights of equation (20)

repeated along the diagonal N times in groups of size yxnn .  Each side of equation (17) is
weighted with the square root of W:

 (22) TWApW 2121 //
�

The parameters are estimated by computing the pseudo-inverse of the coefficient matrix,
AW 21 / , then premultiplying both sides of the expression by this coefficient matrix.  The

parameters are:

 (23) � � TWAWp 2121 // �

�

The 18 parameters in p characterize the model for the data in the form of equation (13), in a
weighted least squares sense.  As stated previously, if the phenomenon actually resembles the
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trivariate quadratic of equation (13), then there is a strong potential for the error of
representation to be low.  However, the error is not guaranteed low.  If the noise contained in
the measurements is great, then the error will, on average, be large.  Further, this approach to
parameter identification works best when the noise samples are uncorrelated, spatially and
temporally.  When the spatial and/or temporal noise variation is not uncorrelated, then a
statistical bias may appear in the parameter estimates.  That is, the correlated noise may be
misinterpreted as a feature of the system and reflected in the estimates of the parameters, p. 

On the other hand, if the noise samples are uncorrelated then the procedure yields
asymptotically unbiased and statistically consistent estimates of the parameters.  This means,
in essence, that as xn , yn , and N increase, the parameter estimates converge, in a statistical
sense, to the correct (but unknown) values.  Further, if the noise samples are uncorrelated and
come from a random source governed by a Gaussian distribution, then the parameter
estimators are random variables with a multivariate, Student t sampling distribution.  This
indicates that, in principle, confidence intervals on the model parameters could be
approximated.  This may, however, be quite difficult in practice.

A practical issue in application of the present procedure is the choice of the value of N, the
number of time slices of data used to estimate the model parameters.  When N is small the
coefficient matrix on the left side in equation (22), AW 21 / , is small, and computation of its
SVD proceeds rapidly. (Recall that on the order of tyx nnn  separate models must be
identified.)  When the matrix A has dimensions mN � , the SVD computation takes on the
order of 2Nm  computations.  The value of N is linearly related to the number of rows in A.
Therefore, it is clear why the above statement is true.  The minimum value for N is three.

As N increases computation time increases, but the potential for smoothing out temporal
noise improves.  The standard error of the parameter estimates (i.e., the standard deviations
of the random variables that are the sources of the parameter estimates) decreases as 21 /N � .
This would seem to indicate that N should be very large.  However, the spatio-temporal
polynomial of equation (13) is only an approximation to the behavior of the actual system.
When N  becomes too great there is the possibility that the temporal quadratic of the model
will fail to suitably fit the measured data and short duration flaw induced anomalies will be
smoothed to the point where they are undetectable.  This indicates that N should be kept
below some (unknown) limit.  These factors must be weighed in selection of N, and the
experience of the data analyst must be tapped.  We suggest that N be chosen from the interval
[5,25] depending on the camera frame rate and the amount of temporal noise.  In summary,
for the model of equation (13) to accurately capture real system behavior over a time period
of N�t, the real system behavior over that time period must actually appear quadratic.  In
practice, the real system follows an approximately exponential decay.  However, for short
durations the quadratic expression provides a good estimate of this exponential behavior.

The same general comments apply to the choice of the measurement parameters xn  and yn .
Making these values large increases computation time and introduces the potential for noise
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smoothing. The quantities xnx�  and yny�  should not be chosen so large that the spatial
temperature variation in the actual system cannot appear quadratic.  Typically this is not a
problem because the inspection surface is heated in a quasi-uniform manner.  Deviations
from quadratic behavior are expected near areas with significant emissivity variations (e.g., a
different material or surface finish) or significant temperature differences (e.g., above a
hidden flaw).  The overall intent is to detect these anomalous regions that deviate from
quadratic behavior.  Care should be taken to ensure that the quantities xnx�  and yny� are
not so large that they smooth flaw data beyond the point of detection.  A 3x3 spatial window
will minimize flaw smoothing, but also minimize the noise reduction.  As such, it is
recommended that the spatial window be at least 5x5.  Larger windows should be considered
is the spatial noise is very strong and the 5x5 window does not adequately reduce the noise.

The weighted least squares approach used here to identify the parameters of the model, p, has
very good potential to arrive at parameter estimates that accurately simulate real system
behavior if the parameters used in the identification process are chosen appropriately.
Indeed, the performance of the model can be evaluated for any given data prism by
estimating the root mean square (RMS) error of the representation.  Using the notation of
equation (17) this error is:
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This error is, of course, a function of the identification parameters, xn , yn , N and 
�

t .  The
estimation algorithm defined here could be made adaptive by minimizing � during the
identification of parameters of each prism of data, with respect to xn , yn , N and 

�
t .  Of

course, this would require the performance of an optimization in four dimensional grid
(discrete) space for each of about tyx nnn  data prisms.  However, this would involve a very
substantial development effort that is beyond the scope of this effort.

As will be shown in section 4.2, the weighted least-squares parametric model successfully
provides image metrics that highlight the presence of hidden flaws.  However, the principal
disadvantage of the parametric model as implemented is the time it takes to perform the
calculations.  Future work should convert the developed model into a convolution based
digital filter that computes the 3-D (x, y, t) weighted filter coefficients consistent with the
selected parametric model.

4.0  DATA ANALYSIS RESULTS

The thermal inspection system infrared camera measures the signal emitted from the surface
as a function of time.  This signal is directly related to the surface temperature T(x,y,t).  From
an evaluation of the heat diffusion equation and experimental results we were able to identify
two measurable metrics for highlighting the presence of internal structural defects.  Both the
time rate of change of the internal energy and the net lateral conduction heat flux along the
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surface highlight the presence of internal flaws.  Methods for coupling these metrics were
investigated to improve flaw detection sensitivity.

The temperature rises very quickly (almost instantaneously) after the flash and then decays in
a relatively exponential manner.  To first order the decay should follow an exponential decay
at a rate governed by the local material properties.  Though adjacent regions with different
properties will decay at different rates, the decays should be relatively smooth unless lateral
diffusion becomes significant.  This lateral diffusion can be due to significantly different
thermal diffusivities, differing material thicknesses, or internal flaws.  When this occurs there
is often a detectable spatial and temporal change in the image temperature field.  Further, in
some instances an internal flaw may induce two significant slope changes in the exponential
decay.

4.1  Energy Balance Metric

From energy conservation, in the absence of internal energy generation the rate of energy
transfer into a control volume minus the energy transfer out of a control volume equals the
energy stored.  As such, if the transient energy storage can be measured with an infrared
camera it may be a potential indicator of the presence of an obstruction to energy transport as
heat or the presence of a heat sink.  

The governing differential equation for transient diffusion shows that the time rate of change
of internal energy is balanced by the net lateral conduction heat flux along the surface.  Since
the infrared camera rapidly (up to 1000 images per second) measures the surface radiance
over time, it may be possible to estimate both the lateral conduction (image spatial
Laplacian) and change in internal energy (first derivative with respect to time) near the
surface. 

In principal, an internal flaw should perturb the flow of heat into the specimen.  If the
transient diffusion equation is rearranged, it would appear that the difference in the time rate
of change of internal energy and the net lateral conduction heat flux along the surface could
be monitored as a possible metric for detecting flaws.
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The challenge in applying this approach is determining the thermal diffusivity �. 

Thermal diffusivity is typically measured using the laser flash method.31  Here the front
surface of the material is impulsively heated with a laser pulse while an infrared camera
temporally measures the heat rise on the back surface.  The diffusivity is determined using

the formula , 1388.0
2/1

2

t

d
��  where d is the sample thickness and t is the time from the pulse

initiation for the back surface to reach one half its maximum temperature.  Since its
development, many corrections have been introduced to this relation to account for radiative
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heat losses, the laser pulse finite width, non-uniform heating of the sample, and other related
experimental factors.32-40  However, the remaining practical limitations to this approach are
that the measurements are one-dimensional and require simultaneous access to both the front
and back surface.

A recently developed method for overcoming the 1-D measurement limitation was
demonstrated by Wayne State University.41  Their technique applies a one-dimensional plane
wave thermal pulse to the front surface and temporally images the lateral blurring of a
straight-edge or corner shadow on the back side of the structure in an area which is far from
the shadow region.  This technique has demonstrated the ability to accurately measure
thermal diffusivity in isotropic materials and to measure the three orthogonal diffusivities for
a uniaxial graphite-fiber-reinforced laminated polymer composite slab.  However, as with the
laser flash method, measuring diffusivity using infrared imaging of the thermally blurred
shadows still requires simultaneous access to the front and back surfaces of the specimen
being measured.

Diffusivity measurement methods that require access to both the front and back surface of a
structure are impractical for most general inspection processes.  Further, many structures
contain multiple types of materials and layered elements that compound the diffusivity
measurements.  This complexity, together with the added measurement and analysis time
makes accurate diffusivity measurements impractical for the general flaw detection
applications.  However, since the intent is to detect anomalous thermal behavior induced by
internal flaws, it may be adequate to select an approximate value to use in equation (25) that
would normalize the result in a manner that would highlight flaw induced deviations.  For
example, ��could be arbitrarily selected to minimize equation (25) for the first 5 image
frames.  Though this would not be a good estimate for ��since the flow of heat into the
structure is large immediately following the flash heating, it might be sufficient as a
parameter normalization method.

Strictly speaking, the infrared camera does not measure temperature.  Though radiometric
cameras that estimate temperature given a user specified surface e issivity are commercially

available, the camera used in this research was nonradiometric. 
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Considering the camera waveband and the temperature of interest
expression (equation 2).  Hence, if we consider the spectral 
equation for incident photon flux density we can express the surf
the flux density Ed.   This allows the temperature to be appr
relations for the single wavelengths of 3, 4, and 5 microns (high s

5 microns:  T = 2877.5724/ln(1.7929e18/
4 microns:  T = 3596.9655/ln(4.3772e18/
3 microns:  T = 4795.9541/ln(1.3834e19/
m

 As such, computing 
�

�

2

2
T

z

res.   

,   in the exitance
exitance and rearrange the
ace temperature in terms of
oximated by the following
ensitivity region):

Ed)
Ed)
Ed)

e

hc

kt� �� 1



47

It is apparent that T � C1/ln(C2/Ed) if the temperature estimate is based on a single wavelength
rather than the integration of the exitance over the full waveband.  To apply this
approximation, the image grayscales must be converted into Ed (photons/cm2-sec) using
equation (4).  

4.2  Flaw Detection Results Using Finite Element Data

Consideration of the energy balance provided in section 4.1 suggests that the presence of a
flaw may be highlighted by comparing the difference between the time rate of change of
internal energy and the net lateral conduction heat flux along the surface.  However, as
discussed previously, this requires an estimate of the thermal diffusivity and conversion of
the image grayscales to surface temperatures.  An alternative approach considered in this
section evaluates the temporal and spatial energy transport components separately.

The presence of a flaw changes both the local cooling rate and lateral diffusion rate if the
flaw impedes (traps, delays, or stores energy) or facilitates energy conduction.  As such, it is
logical to expect that both the time derivative and the spatial Laplacian of the surface
temperature distribution might highlight the presence of an internal flaw.  However, as
discussed in earlier sections, image noise can inhibit flaw detection.  This is particularly true
using metrics that involve image differentiation because numerical derivatives tend to
accentuate noise.  

To minimize the impact of temporal and spatial noise, two steps were used to produce the
results presented in this section.  First, all derivatives were computed using a Savitzky-Golay
smoothing and differentiation filter that preserves the second moment.  Second, the processed
results from individual image frames were summed to enhance the flaw effects.  Temporal
image noise is a zero mean random process that tends to average out when images are
summed.  However, flaws induce temperature deviations that have a degree of latency
governed by their size and thermal properties.  As such, if the processed individual frame
results are summed and normalized, a single image can be generated that principally contains
features that have a higher probability of representing flaw characteristics than noise.

Further, summing the results from individual frames significantly improves the signal to
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noise ratio, making small flaw detection more probable.  For example, a single processed
image frame may contain a flaw indication that has a small signal to noise ratio or a barely
detectable grayscale.  However, this low signal strength can be dramatically amplified if the
processed flaw has reasonable latency.
Figure 15.  Simulated thermal image of an aluminum plate with a flat bottom hole.
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Figure 15 displays a single image frame created using finite element data from section 2.4.1
(largest flaw) and the thermal imaging model presented in section 2.2.  This data simulates
data acquired at 500 frames per second for a 256 x 256 focal plane array camera sensitive in
the 3-5 micron waveband.  The images represent simulated inspection data for a 60 mil
aluminum plate with a 10 mil deep flat bottom hole on the backside of the plate.  Since the
flaw location for this simulated data is known a priori, the grayscales have been adjusted in
this image to maximize the flaw visibility for display purposes.  However, all analysis in this
section was performed on the raw data. 

Figure 16.  Composite temporal derivative images.

Figure 16 presents image results that were generated on the same finite element data set that
produced figure 15.  These images were created using the following relation with 256 image
frames:

 (26) �
�

�

framesofi

i t

tyxGray#

1

),,(
�

� .

The left image in figure 16 sums the temporal derivative of the image grayscales Gray(x,y,t).
The center image and image on the right sum the derivatives of [-1/ln Gray(x,y,t)] as a
function of time.  The right image was produced by level equalization of the center image to
increase the flaw visibility.  The logarithmic relationship is an approximate conversion of the
image grayscales to temperature as discussed in section 4.1.   The constants in the relations
provided in section 4.1 did not appear to significantly affect the flaw visibility, so they were
ignored.  As shown in figure 16, the flaw alters the cooling rate enough to highlight the flaw,
though the visibility is marginal except where histogram equalization was performed.  Also,
converting the grayscales into an approximate temperature did not improve the flaw
detection.  In fact, it actually reduced the visibility.

The goal of the impulsive surface heating is to impart a planar heat wave onto the surface.  If
the energy is uniformly coupled into the surface, in the absence of noise the surface
temperature will remain spatially uniform until lateral diffusion becomes significant.  As
such, the second derivative of the images should equal zero until lateral conduction variations
are created.  Under these conditions, the image Laplacian should produce high visibility
evidence of an internal flaw.  Figure 17 presents image results for a Laplacian operation
using the following relation on 256 image frames:
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These images were generated from the same finite element data set that produced figure 15.
The left image displays the results for the “noise free” case.  The center image displays the
result of using equation (27) when temporal noise was added to the simulated data set.  The
right image displays the result of applying level equalization to the center image.  The image
noise for each image frame was generated using equation (5) with fenoise TM 001.0�� .  

The black region inside the white rings in figure 17 overlaps the hidden flaw edge.  As shown
in these images, the spatial Laplacian is effective in highlighting the flaw edge in the
synthetic data.  In general, the Laplacian operator has the advantage of being rotation
invariant and suppresses uniform and slowly varying image features.  As such, linear
variations due to heating nonuniformities do not adversely affect the flaw detection.
However, the principal disadvantage of the Laplacian is that as a high pass filter it tends to
accentuate the high frequency noise more significantly than the flaw’s thermal edges.  The
summation process tended to reduce the impact of the zero mean temporal noise, but it may
not be as effective on quasi-static spatial noise.  Also, the Laplacian operation creates double
edges adjacent to the actual feature edge, though this typically is not a significant concern
because the actual edge location can be determined using the zero-crossing property of the
Laplacian operator.  

Figure 17.  Composite Laplacian images using grayscale data.

Figure 18 displays the image generated using the following relation on 256 image frames:
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where T is approximately equal to -1/[ln Gray(x,y,t)].  As with the previous results, this
image was generated using the same finite element data set that produced figure 15.
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 Figure 18.  Composite Laplacian image using approximate temperature data.

As shown in figure 18, the application of equation (28) produces a composite image that
displays evidence of the hidden flaw.  However, as demonstrated in figure 17, the results are
not as clear as those produced by equation (27).  As such, there appears to be no advantage to
trying to convert the grayscale images into a temporal surface temperature map.

Figure 19.  Composite Laplacian image for a painted specimen.

Figure 19 displays the composite image produced by the application of equation (27) to
simulated noise free data for a 60 mil aluminum with flat bottom hole on the back side and a
10 mil paint layer on the front surface.  The left image presents the direct result from
equation (27) and the right image provides the results after the left image was level
equalized.  As shown in the images, there is very little if any clear evidence that the flaw is
present.  This simulated results suggests that the paint’s thermal thickness and heat capacity
prevents the trapped energy from creating a detectable temperature variation on the specimen
surface.  However, as presented in section 2.4.3, even in the presence of the 10 mil paint
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layer, the underlying flaw should generate a temperature variation over the flaw that is within
the camera’s sensitivity limit.  As such, the problem may be that the Laplacian operator is not
appropriate for use with painted test specimens.

Figure 20 compares the application of equation (27) to the data set used to produce figure 15
and to an equivalent case where the simulated flaw was a hemispherically shaped backside
hole instead of a flat bottom hole.  The image on the left displays the hemispherical flaw
results and the image on the right displays the flat bottom hole results.  Though there are
subtle differences in the results, the images suggest that a smooth transition from the
structure to the flaw may still be detectable.  This is consistent with the flaw induced
temperature rise results presented in section 2.4.4.  Though the hemispherical flaw is not as
efficient at trapping energy as a flat bottom hole, it still induces a detectable temperature rise.

Figure 20.  Composite Laplacian images for hemispherical and flat bottom holes.

Figure 21 displays a sample result for an adhesive disbond.  This results was created using
equation (27) and 256 image frames.  Though the flaw is detectable, lateral diffusion affects
are less than the test cases with flat bottom hole specimens because the adjacent region
containing Cytec adhesive has a conductivity that is two orders of magnitude smaller than
aluminum.  As a result, the adhesive is not as effective at conducting the energy away.
However, the adhesive disbonds did tend to have greater latency than the corresponding flat
bottom holes.  As a result, though the diffusive effects were lower, the disbond visibility was
very high. 
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Figure 21.  Composite Laplacian image for a simulated adhesive disbond.

The results presented in this section demonstrate that signal processing can significantly
enhance and highlight the presence of hidden flaws.  Though the results from only a few test
cases were displayed, all of the modeled cases presented in section 2.4 were evaluated.  This
evaluation of simulated inspection data suggests that flaw diameters as small as 0.125” may
be detectable, even when temporal noise is significant.  However, the flaw detectability drops
significantly with increasing paint thickness.  For the simulated inspection results the flaws
became virtually undetectable when the paint thickness reached 10 mils.  Experimental
results corresponding to the simulated test cases are presented in the next section.

4.3  Flaw Detection Results Using Experimental Data

Section 4.2 presented sample results for simulated data.  In this section experimental results
are provided for aluminum plates with machined flat bottom holes and for boron-epoxy
composite test specimens.  The machined flaws had aspect ratios (ratio of lateral size to depth
from surface) from 0.5 to 20, and data acquisition speeds from 60 Hz to 476 Hz.  In each test
chalk lines were drawn on the specimen surface to provide a significant spatial noise source
and to act as registration points.  As will be shown in the results provided, spatial noise
proved to be a much more significant impediment to flaw detection than temporal noise.

Consistent with the analysis of the simulated test data in section 4.2, the initial evaluation of
the experimental data focused on the use of equations (26) and (27).  The summation of the
temporal derivatives did highlight the flaws, though the signal to noise ratio was typically
low.  Generally the surface chalk artifacts overwhelmed the flaws in signal strength.  Though
the Laplacian image (equation 27) highlighted the flaws, it also highlighted a significant
amount of spatial noise or structural details not related to the flaw.  For example, a test case
was run on an F-15 rudder specimen.  The rudder specimen consists of 8 plies of boron
epoxy composite skin over aluminum honeycomb (0.25” cell size).  Interply delaminations
and disbonds were placed in the specimen at the locations shown in  figure 22.  The
delaminations were created with grafoil inserts and the disbonds were created with pull-tabs.
Each flaw (represented by different color) was placed at a different depth and some flaws
overlapped to determine if the presence of a near surface flaw would hide a deeper flaw.



54

Figure 22.  F-15 composite rudder specimen flaw design.

Figure 23 displays the Laplacian image of the left side of the rudder specimen (note:
specimen was rotated relative to figure 22) created using equation (27).  Prior to the use of
equation (27) the images grayscales were smoothed using the parametric model presented in
section 3.3.  The two red squares were insulators placed on the specimen surface as
registration marks.  As can be seen in the image, the flaws are visible, as are the honeycomb
cells.  Since the flaws are large in comparison to the cells they are easily detected.  However,
if the flaws were on the order of the cell size they might not be noticed.  This example
demonstrates the tendency of Laplacian operators to highlight edges.  Since this effect is
undesirable, other metrics were considered.

Figure 23.  Composite Laplacian image for an F-15 rudder.

4.3.1  Flaw Detection Metric Comparison

To avoid the noise accentuation created by the Laplacian operation, the following metrics
were investigated.  Each of these variations to the equations (26) and (27) still highlight
spatial and temporal differences in the datacube, but with different noise accentuation
properties.  Also included in these alternative metrics are formulations that couple both
spatial and temporal effects.  To facilitate the application of these and other metrics, an
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analysis software package was developed.  This software, called ATAC (Automated Thermal
Analysis Code), is presented in appendix A.  Prior to the application of equations (29)
through (37), the ATAC software applies the parametric model presented in section 3.3 to
perform spatio-temporal smoothing of the image data.  Also, the composite image created by
equations (29) – (37) are normalized for display.
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Equations (29) – (37) were applied to the datacubes acquired from two aluminum test
specimen that each contained 21 flaws.  Though the results from each equation were 
evaluated, only sample results will be provided in this report to illustrate the effectiveness of
each equation in detecting and highlight the hidden flaws.  However, to illustrate the general 
characteristics of each metric, figures 25-33 present the results for each metric applied a
datacube for an aluminum test specimen that contains three flaws ranging in size from 0.45”
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to 0.5” in diameter.  The specimen surface has chalk registration lines to highlight the regions
containing flaws and chalk numbers for each individual flaw.  The datacubes for figures 25-
33 were acquired at 59 frames per second with a pixel resolution of 256 x 256.  Twenty five
frames were summed to produce the results provided in each figure.  The image data window
(“x” pixels by “y” pixels by “t” image frames) used to identify the parameters for the local
spatio-temporal smoothing polynomial was 7 x 7 x 11 for each datacube.

Figure 24.  Composite radiance image.

Figure 24 presents the results from the application of equation (29).  This image represents a
composite radiance image that is analogous to a temperature image if the surface emissivity
is uniform.  In this image the three circular flaws have good visibility because the regions
above the flaws cool slower than the adjacent regions.  The spatial noise is relatively low,
though the chalk registration lines are highly visible.  Though summing more frames
typically improves the flaw visibility, it offered no significant advantage here because the
chalk had greater thermal latency than the flaws.  In general, the composite radiance image
proved effective in highlighting hidden flaws, but was not able to remove the influence of the
chalk and other surface spatial noise.
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Figure 25.  Composite temporal first derivative image.

Figure 25 presents the results from the application of equation (30).  This composite image
represents the summation of the temporal derivatives of the surface radiance image.   Though
the three circular flaws have acceptable visibility, this metric accentuated much more spatial
noise than the composite radiance image (equation 29).  Further, the chalk registration lines
and numbers are also very visible.  Summing additional provided no improvement because
the chalk had greater thermal latency than the flaws.  In general, the composite temporal
derivative image proved effective in highlighting large hidden flaws, but was not as effective
on the smaller flaws that had spatial dimensions on the order or the sizes of the spatial noise. 

Figure 26.  Composite temporal second derivative image. 

Figure 26 presents the results from the application of equation (31).  This composite image
represents the summation of the temporal second derivatives of the surface radiance image.
Similar to the results from the temporal first derivative (equation 30), the three circular flaws
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have acceptable visibility but there is a significant amount of spatial noise.  Though the false
colors in figure 26 may not display as much apparent noise as figure 25, the relative strength
of the noise relative to the flaw signal strength is about the same.  In general the temporal
second derivative has similar characteristics to the temporal first derivative.  Considering the
analytical solutions presented in section 3.1 demonstrate that the thermal energy transfer
process is somewhat exponential in nature, it is not surprising that the first and second
temporal derivative metric produce composite images with similar characteristics.  In
general, the composite temporal second derivative image proved effective in highlighting
hidden flaws, but was not effective in mitigating spatial noise or the effects of the surface
chalk.

Figure 27.  Composite spatial Laplacian image – variant 1.

Figure 27 presents the results from the application of equation (32).  This composite image
represents a root mean square image of the Laplacian components of the surface radiance
image.  One advantage of this metric is that by evaluating the root mean square of the spatial
second derivatives all perturbations add to the flaw’s signal strength.  In principal the
Laplacian operator can result in the summation of a positive and negative component which
partially cancel the flaw induced spatial perturbations.  The metric in equation (32) avoids
this potential problem.  However, similar to the standard Laplacian operator noise and image
edges are highlighted with double edges.  Though the chalk is accentuated by equation (32),
the other spatial noise is heightened less than with the temporal image derivative operators
(equations 30 and 31).  In general, equation (32) proved effective in highlighting hidden
flaws and reducing localized spatial noise, but was not effective in mitigating the effects of
the surface chalk.
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Figure 28.  Composite spatial Laplacian image – variant 2.

Figure 28 presents the results from the application of equation (33).  Equation (33) sums the
magnitude of the Laplacian components.  Similar to the root mean square (rms) metric
provided by equation (32), equation (33) sums all flaw perturbations without the possibility
of cancellation between the x and y spatial terms.  However, the summation of the
magnitudes of the components provides a stronger signal than the rms approach.
Nevertheless, the resulting composite image in figure 28 is very similar in nature to figure
27.  The only apparent qualitative difference is that the circular flaws appear to be almost
square with a cross passing through the flaw.  As with equation (32), equation (33) proved
effective in highlighting hidden flaws and reducing localized spatial noise, but was not
effective in mitigating the effects of the surface chalk. 

Figure 29.  Composite radiance weighted Laplacian image – variant 1.
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Figure 29 presents the results from the application of equation (34).  This composite image
can be considered a radiance weighted Laplacian filter.  As was shown in figures 24 and 27,
both the composite radiance image and rms Laplacian image produce highly visible flaws
with a relatively good signal to noise ratio.  The combination of these metrics provided by
equation (34) reduced the flaw signal to noise ratio and increased the amount of localized
spatial noise.  In general, equation (34) proved capable of flaw detection, but was not
efficient at reducing spatial noise or chalk artifacts.

Figure 30.  Composite temperature weighted Laplacian image – variant 2. 

Figure 30 presents the results from the application of equation (35).  This composite image is
a variation of the radiance weighted rms Laplacian filter provided by equation (34).  Since
the radiance (more specifically the image grayscale) is always a positive value, it would
appear that the equations (34) and (35) should be mathematically equivalent and provide the
same composite image.  However, as described in section 3.3, the experimental data is
smoothed by fitting the image data to a weighted 18 parameter model that is spatially and
temporally quadratic.  As such, the product of the radiance and quadratic spatial terms is not
necessarily the same as the fitted coupled parameters.  Indeed, as shown in figure 30, the
metric based on the fitted coupled parameters was much more effective at lessening the
influence of spatial and chalk noise sources. The only chalk effects not significantly
mitigated are along the top edge of the image (principally the upper right hand corner in red).
Though image 30 displays virtually no noise, the data shows that some noise is still present
but with a strength that is much lower than the signal strength.  As such, the normalized
image does not display noise.  Of all of the metrics investigated, equation (35) typically
proved to be the best metric for detecting flaws and mitigating noise.
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Figure 31.  Composite temporal derivative weighted Laplacian image. 

Figure 31 presents the results from the application of equation (36).  This composite image is
an rms Laplacian filter weighted by the magnitude of the temporal derivative of the radiance.
The spatial noise is relatively low, though the chalk registration lines are highly visible.  In
general, equation (36) proved effective in highlighting hidden flaws, but was not able to
remove the influence of the  chalk and other surface spatial noise.

Figure 32.  Composite temporal second derivative weighted Laplacian image.

Figure 32 presents the results from the application of equation (37).  This composite image is
an rms Laplacian filter weighted by the magnitude of the temporal second derivative of the
radiance. From a qualitative standpoint, figure 32 looks virtually identical to figure 31.  In
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Fla

Bad

Fla

both cases the spatial noise is relatively low, though the chalk registration lines are highly
visible.  However, the flaw signals in figure 11 are actually stronger than the corresponding
flaw signals in figure 32.  In general, equation (37) proved effective in highlighting hidden
flaws, but was not able to remove the influence of the  chalk and other surface spatial noise.
The following table compares of the average signal to noise ratio for each metric provided by
equations 29 – 37.  Each average ratio was computed after subtraction of the lowest value in
the composite image.  Three specific ratios are provided: ratio of flaw signal to background
noise signal, flaw signal to chalk signal in upper right hand corner, and flaw signal to
crossing chalk line signal.  As reference, the initial thermal image datacube was evaluated to
determine the frame which provided the highest flaw signal to noise ratio after subtraction of
the preflash image.  For this data set the best flaw to noise ratio was 2.05.  At this optimal
frame the flaw to chalk line ratio was 2.08 and the flaw to corner chalk ratio was 0.75.

Fig. 25
Eq. 29

Fig. 26
Eq. 30

Fig. 27
Eq. 31

Fig. 28
Eq. 32

Fig. 29
Eq. 33

Fig. 30
Eq. 34

Fig. 31
Eq. 35

Fig. 32
Eq. 36

Fig. 33
Eq. 37

Flaw/ Noise 2.25 2.06 3.45 10.04 23.63 7.31 31.80 20.36 16.49
Flaw/Corner 0.96 0.18 1.09 0.216 0.29 0.13 0.21 0.16 0.25
Flaw/Line 1.93 2.05 2.38 3.29 3.88 0.81 3.5 1.82 1.62

The radiance weighted rms Laplacian filter (equation 35) generated the highest flaw signal to
noise ratio.  Also, the sum of the magnitude of the Laplacian components (equation 33) and
the rms Laplacian filter weighted by the magnitude of the temporal derivative of the radiance
(equation 36) provided excellent signal to noise ratios.   Though equation (35) produced a
signal strength greater than the crossing chalk lines, like most of the metrics it was not as
effective at mitigating the heavy chalk layer in the upper right hand corner of the image.

4.3.2  Experimental Results:  Radiance Weighted RMS Laplacian Metric

The previous section presented sample results that demonstrated the
radiance weighted rms Laplacian metric.  In this section additional dat
with this metric to assess the ability of equation (35) to detect small hidd

Figure 33.  0.1” diameter flaw detection results.
 effectiveness of the
acubes are evaluated
en flaws.
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Figure 33 presents composite images generated by equation (35). The image highlights a
circular 0.100” diameter flaw located in the image center. The left image was created from a
data set collected at 248 frames per second with a 127 x 124 pixel window.  The right image
was created from a data set collected at 476 frames per second with a 64 x 64 pixel window
(data scaled to 127 x 122 for comparison).  Since the same amount of computer RAM was
allocated for each data acquisition, more frames were collected at the higher frame rate (right
image).  As a result, since more frames were available for the summation, the composite
result for the 476 frame per second case had reduced spatial noise, though the chalk lines and
numbers are still very apparent.  Further, it is interesting to note that the small flaw in the
image center is partially obscured by a bad pixel in the image on the right.  However, despite
the bad pixel the flaw was still detected by the metric.

Figure 34.  Multiply flawed test specimen detection results.

Figure 34 displays the composite image produced by equation (35) for an aluminum plate
with circular backside flat bottom hole diameters ranging from 0.0125”to 0.2”.   The images
were acquired at 119 frames per second with a 256 x 256 pixel window.  This specimen is
subdivided into numbered square regions with the flaws located approximately in the center
of each region.  The chalk lines separating each region and the chalk numbers are highly
visible for most regions.  Increasing the number of image frames summed in equation (35)
would reduce the chalk visibility, but it might also reduce the visibility of the smaller flaws
that had a lower latency time than the larger flaws which are more effective at trapping
energy.  However, this small flaw visibility reduction might be overcome by with a contrast
enhancing technique such as differential histeresis processing.  In this experimental test case
the flaws on the bottom row are very visible.  In the middle row the flaw visibility is
noticeably reduced.  The 0.075” flaw in the center right region is partially visible with a
signal strength that is sufficiently above the image noise for flaw detection.  However, none
of the flaws in the top row are detectable.  Hence, the 0.075” flaw is probably the smallest
flaw that can be reliably detected in this specimen. 
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Figure 35.  0.475” flaw detection example. 

Figure 35 displays the composite images generated by equation (35) for an aluminum
specimen with a single 0.475” diameter circular backside flat bottom hole.  This datacube
was acquired at 248 frames per second with a 127 x 124 pixel window.  In this test case the
chalk lines and numbers are not visible, though there are a few square noise sites.  These
square artifacts are caused by bad camera pixels.  Often these effects can be removed by
recalibrating the camera.  The reasons the chalk is not visible is probably the combination of
a thinner chalk layer, the use of more image frames (a few hundred) than are typically
available at lower camera speeds, and the large flaw size.  Higher camera speeds provide
more images with a measurable flaw signal.  Though data can be acquired for a longer period
at the slower frame rates, it often adds little to the results because of the limited flaw latency.  

Figure 36.  0.225” flaw detection example. 
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FLAW
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Figure 36 displays the composite images generated by equation (35) for an aluminum
specimen with a single 0.225” diameter circular backside flat bottom hole.  This datacube
was acquired at 248 frames per second with a 127 x 124 pixel window.  In this test case the
chalk lines and numbers are highly visible.  Also, there are localized noise points (square
regions in red) that indicate bad pixel locations.  Since the flaw is about one half the size of
the flaw in the previous test case (figure 35), its energy trapping capability is lower.  As a
result, the 0.225” flaw does not generate enough signal strength in the metric to overcome the
surface chalk visibility.  However, the flaw does have very good visibility relative to the now
chalk background regions.

Figure 37.  Composite doubler example.

Figure 37 displays the composite images generated by equation (35) for an eight layer boron
epoxy composite doubler test specimen.  The infrared images were acquired at 30 frames per
second.  The drawing on the right illustrates the general construction details and flaw
locations.  The 3.0’x3.0’ specimen consisted of 0.187” thick 7075-T6 aluminum plate with a
2.0’x2.0’ octagonal 7 ply composite boron-epoxy doubler (with a 181 fiberglass outer
protective layer).  Two 1.0” wide x 0.125” thick 7075-T6 straps with fasteners (one strap
with steel and the another with aluminum fasteners) were assembled on the back of the
specimen to simulate a wing skin assembly.  The doubler contained 16 programmed flaws (8
grafoil inserts, 4 pull tabs, 2 surface grinds, and two pinhole induced “natural flaws”) and
multiple unprogrammed disbonds and delaminations.  The flaws ranged in size from a
minimum of 0.125” in diameter to the largest flaw with a maximum dimension of 4.0”.  The
red flaws in the drawing are air gaps created by pull tabs inserted between the composite
plies during the specimen construction.  The green flaws are grafoil (flexible graphite) inserts
that have thermal properties that are very similar to the composite layers.  Each flaw was
placed at a different depth within the composite structure.  In addition to the implanted flaws,
registration markers (insulated tape and lead tape) were placed on the specimen surface.
Typically composites are thermally very noisy because there tends to be a significant amount
of small disbonds and porosity variations created during the composite layup process. 

REGISTRATION
MARKER

FLAW

SURFACE
ARTIFACT

Not to scale
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Equation (35) was sensitive to these localized air gaps.  However, since these air gaps are
undesirable flaws created during the application of the repair, it is desirable that equation
(35) highlight their presence.  Though the metric provided by equation (35) was able to
detect some of the flaws, it did not appear to be as effective on composites as it was on
metallic structures.  This may be partially due to the presence of the 4.0” long flaw located
on the right side of the image.  This flaw generated a very large signal that had the greatest
amount of latency of any flaw in the specimen.  As a result, it tended to overwhelm the small
flaws.  However, when very large flaws are detected, it may be important to mask out these
regions and reapply equation (35) to the remainder of the image to detect the smaller flaws.

4.4  Surface Effects

Variations in the surface conditions and material property differences such as emissivity and
near surface conduction inhomogeneities can act as significant spatial noise sources that may
obscure the presence of true flaws.  This has been apparent in many of the examples
considered in section 4.3 where chalk on the specimen surface often generated a higher
signal strength than the flaws.  In some instances surface emissivity variations accentuate
small or nonexistent surface temperature variations.  These variations can be very transient or
have a latency that can create a false flaw indication.  In other instances, surface condition
variations can include areas that either store energy or dissipate it very slowly in comparison
to the surrounding structure.  When this occurs the corresponding surface hot spot can have
significant latency, creating a false flaw indication with the metric provided by equation (35).
Consider, for example, the data set that contains the thermal image in figure 38.

Figure 38.  Sample image: Minimal surface energy storage example.

This image displays a very visible circular flaw in the upper left hand corner, as well as chalk
marks and numbers.  In principal, the thin chalk on the specimen surface should not
significantly affect the local cooling rates.  The plots in figure 39 illustrate how a point over
the center of the flaw, a normal non-flawed image position (center of blue box near middle of
image), and chalk (blue box over the chalk number 2 in upper right hand corner) cool over
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time.  As can be seen in the expanded early time plot (bottom plot), the chalk initially
appears “hotter” than the good area, but quickly cools to the point where it matches the
behavior of the unflawed image location point.  However, the area over the flaw remains
hotter for a significantly longer period of time.

Figure 39.  Temporal cooling plots: minimal surface energy storage example.  
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Under the conditions illustrated in figure 39, the surface effects have minimal impact on the
flaw detection capabilities provided by equation (35).  However, in other cases the surface
features can produce anomalous behaviors that are not transient in nature.  Consider, for
example, the data set that contains the thermal image in figure 40.  Qualitatively the image
has similar characteristics to the image in figure 38.  The circular flaw if highly visible and
the chalk lines and numbers are clearly discernible.  There does not appear to be visual or
infrared evidence of significant differences between figures 38 and 40.  However, the
temporal cooling rates demonstrate anomalous cooling for this data set relative to the
previous case.

Figure 40.  Sample image: Significant surface energy storage example.

For comparison purposes, figure 41 plots the temporal cooling over the flaw center, the
“good” (unflawed) position located under the red box, and over three separate points with
chalk on the surface of the specimen.  Though the chalk appears visually similar in the
image, significant apparent cooling rate differences occur.  A shown in the middle plot,
initially each of the chalk locations appear hotter than the unflawed position, but quickly
begin to cool, similar to the case plotted in figure 39.  However, the bottom plot in figure 41
shows that the temperature at chalk position number 2 actually stabilizes at a hotter
temperature than the other chalk points and begins to exceed the apparent temperature over
the flaw after about 0.23 seconds.  This is physically possible and may be caused by the
emissivity, local energy storage, chalk conductivity, or some other near surface effect.
Locations that act like chalk position number 2 create local hot spots that are not indicative of
internal flaws.  However, this behavior is not consistent at all chalk locations.  Consider, for
example, the temporal cooling at chalk points 1 and 3.  As was the case in the previous
example, chalk points 1 and 3 behave similarly, quickly cool to the temperature of the
unflawed point.  However, chalk point 2 retains a constant offset for a significant period of
time.
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Figure 41. Temporal cooling plots: anomalous surface effects example..
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Historically, the approach used to reduce the influence of surface effects has been to subtract
the average of the preflash images from all post-flash images.  When this is performed on the
data set displayed in figure 41 there is a noticeable shift in the plot for chalk position 2 which
keeps its apparent temperature below that of the flawed area.  However, as shown in figure
42, chalk position 2 still remains offset from the plots for the other chalk points.  An
alternative that has also been investigated relies on relative measurements.  In principle, the
positions with the fastest cooling rate should correspond to an unflawed region.  If this
position is used as a reference the signal to noise ratio can be increased by subtracting the
value at this point from every other image point at each point in time.  However, this
approach does not perform well when there is nonuniform surface heating since it is linearly
proportional to the amount of energy absorbed.

Figure 42.  Temporal surface cooling plots with preflash image subtraction.

4.4.1  Surface Effects Correction Factor

When considering the thermal radiation process, effects such as emissivity are multiplicative
factors.  As such, it would appear that a multiplicative correction factor would perform better
than a baseline image subtraction process.  To investigate this possibility the each image data
point was multiplied by a correction factor equal to the ratio of the average preflash grayscale
at an arbitrary reference point and the average preflash grayscale for the current image point.
This can be considered a rough estimation for a surface emissivity correction factor.  When
this correction was applied to the same data set that was used to produce figures 41 and 42, it
provided the results displayed in figure 43.
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Figure 43.  Temporal surface cooling plots with a multiplicative surface correction factor.

As can be observed in the plot in figure 43, as a result of the application of the multiplicative
correction factor each chalk position now behaves similarly and in a manner consistent with
the test case displayed in figure 39.  Chalk position number 2 no longer has an offset in its
temporal cooling plot.  There are still variations in chalk temperature immediately after the
application of the flash heating, but these effects dampen out quickly.  It is likely that the
slight temperature increase at early times may represent differences in the amount of energy
absorbed by the chalk.  Small variations in the chalk thickness should create some local
differences, but should not adversely affect flaw detection using equation (35).  However, if
the surface chalk is thick enough to trap significant energy, its low thermal conductivity
could still create significant thermal latency in the infrared image even after the correction
factor is applied.  This is because the correction factor is intended to account for local
emissivity variations, but not conductivity variations.

Though the cooling plots in figure 43 provide promising results, the true test of the utility of
the multiplicative surface correction factor is in its application in conjunction with equation
(35).  Figure 44 presents a comparison of the composite images provided by equation (35)
with (bottom image) and without (top image) the use of the surface correction factor.  The
data set used in this test was acquired at 120 frames per second using a 256 x 256 pixel
window.  The test specimen is a 0.060” thick aluminum plate that contains nine backside
circular flat bottom holes with diameters ranging from 0.225” to 0.425”.  Eighty image
frames were used to create both images.
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Figure 44.  Surface emissivity variation correction analysis example.

Figure 44 demonstrates a significant reduction in surface effects.  Virtually all of the surface
chalk effects were removed when the surface correction factor was applied to the image data
prior to the use of equation (35).  Though most of the surface effects were removed,
anomalous pixels were still highlighted.  Application of equation (35) to the regions
containing pixels usually results in a square outline around the suspect pixel.  However, these

Bad Pixels

Bad Pixel
Below Flaw



pixels typically have signal values that are four to five standard deviations outside the
preflash mean values.  Therefore, these abnormal pixels can be filtered out with standard post
processing methods.

The test case presented in figure 44 provided outstanding results.  Unfortunately, not all test
cases were as successful.  Figure 45 presents a comparison of the composite images provided
by equation (35) without (left image) and with (right image) the use of the surface correction
factor.  The data set used in this test was acquired at 248 frames per second using a 127 x 124
pixel window.  The test specimen is a 0.060” thick aluminum plate that contains a 0.3”
diameter backside circular flat bottom hole.  Though there was a large reduction in the
surface chalk visibility, it was not completely removed.  It is likely that the chalk thickness
was greater in this test case than in the example presented in figure 44.  As a result, the
energy absorbed in the thicker chalk regions created latent heat signatures indicative of
stored energy rather than emissivity variations.

Figure 45.  Surface emissivity variation correction analysis example number 2.
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gradient first becomes nonzero can better approximate its actual size.  This sizing capability
could be easily automated and added to the analysis software if needed.

Figure 46.  0.075” flaw detection with the application of a surface correction factor. 

4.4.2  Paint Thickness Effects On Flaw Detection

A longstanding challenge for dynamic thermography has been the detection and
quantification of flaws in specimens that contain significant surface paint thickness
variations.  Paints typically have a thermal conductivity on the order of two to three orders of
magnitude smaller than metals.  As a result, small variations in paint thickness create thermal
depths that correspond to significant equivalent variations in the metal thickness.  Further,
dynamic thermography relies on the ability of the flaw to trap energy or increase its
conduction/dissipation relative to the surrounding areas.  When this situation occurs it
typically creates a detectable temperature variation on the specimen surface if there are no
intervening effects.  As discussed and investigated in section 2.4, the specific heat and
conductivity of paint adversely impact the detection of underlying flaws.  First, paint has a
higher specific heat than metal, requiring a greater energy contribution to create the same
temperature rise.  This means that the flaw must be larger (i.e., trap more energy) to create
the same detection signal. Second, paint is a good thermal insulator in comparison to metal.
As such, it temporally spreads out the impulsive heating to create a longer heating duration
and lower initial energy input for the underlying metal structure.  Since the aluminum is very
efficient at conducting the energy away, the local temperature gradients surrounding the flaw
will favor lateral energy conduction as opposed to energy trapping if the paint thickness is
too large.  In other words, if the heating rate from the paint is too slow the transmitted energy
may be conducted away in the aluminum too quickly to create the local storage needed to
produce a detectable flaw signature even if equation (35) is applied to the data set.

As a preliminary investigation of the impact of paint thickness on flaw detection, a datacube
was collected for a painted aluminum plate.  The plate was 6.0” x 6.0” x 0.070” thick
aluminum and contained a 2.0” diameter flat bottom hole circle milled out of the center of
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the backside of the specimen.  Paint was applied to the four quadrants on the top surface of
the specimen as shown in figure 47.  

Figure 47.  Painted test specimen design.

Figure 48 presents the composite image generated by equation (35) after the application of
the multiplicative surface correction factor to the image data set collected at 60 frames per
second.  The black circular ring in the image center was drawn to outline the milled flaw
edges.  Evidence of the flaw was present in the region under the 5 mil paint layer, but not
under any of the other areas.  Further, the sharp edge at the transition between the paint
layers created a very strong signal that may have overwhelmed most of the flaw signature.
Based on this preliminary result, it does not appear encouraging that equation (35) would be
helpful in detecting flaws under thickly painted surfaces.  When the contrast was adjusted it
was possible to bring out aspects of the flaw in each of the quadrants except for the 40 mil
paint region.  However, when this image enhancement was performed each quadrant had to
be addressed separately.  This post processing is not practical in most situations because the
paint thickness and flaw locations are typically unknown.  Nevertheless, it does suggest that
there is an underlying signal that might be detectable using an alternative metric.  The plots
in figure 49 further support this.  Figure 49 plots the temporal cooling for a flawed and
unflawed region in each quadrant.  In each case the apparent temperature over the milled
flaw remains hotter than the regions over the non-milled area.  This demonstrates that the
flaw does produce a detectable temperature change even under a 40 mil thick paint layer.
However, the relative difference between the flawed and unflawed regions is small.  Further,
the cooling rate changes were influenced more by the paint thickness differences than the
flaw.  As such, it is likely that paint thickness variations will continue to hinder flaw
detection and quantification.  Further analysis and experimentation is needed to determine
the reliable detection limits for painted test specimens.

5 mil 10 mil
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Figure 48.  Paint thickness test specimen composite results.

Figure 49.  Paint thickness specimen temporal cooling plot.

While the preliminary results on thickly painted structures were not encouraging, further
investigation of the influence of paint on flaw detection is warranted.  This future study
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should include both an analytical and controlled experimental examination of painted test
specimens.  Though this effort will probably require a finite element analysis, preliminary
investigations may be performed using an analytical solution.  Following the orthogonal-
expansion approach used by Rajic, it may be possible to estimate the surface temperature on
a painted metallic plate using the following relations:42
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Assuming perfect thermal contact between the paint and metal plate provides the following
transcendental equation for the eigenvalues:
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5.0  CONCLUSIONS AND RECOMMENDATIONS

The two year research effort presented in this report focused on the evaluation and derivation
of signal-processing operators for automated analysis of dynamic thermography infrared data
sets, the development of an inspection simulation model, experimental validation of the
derived flaw detection metrics, and creation of an analysis software package with enhanced
flaw visualization tools.  The principal achievements and recommendations from this effort
included the following:

1. The developed thermal inspection model demonstrated that it was suitable for
generating high fidelity simulation data.  When this simulation data was provided to
the developers of the Thermal Wave Imaging technology they were unable to
distinguish the simulated image data from real inspection data.

2. The developed parametric model for spatio-temporal smoothing of the image data
proved effective in mitigating the spatial and temporal noise. However, additional
work is needed to determine the optimal weighting width scale factor 

�
t  to use in the

nonnegative weighting function.  Optimizing the scale factor may improve the signal
to noise ratio and further improve the flaw detection limit.  Additionally, future
efforts should convert the developed parametric model into a convolution based
digital filter that computes the 3-D (x, y, t) weighted filter coefficients consistent with
the selected parametric model.  Implementing the filter as a convolution kernel would
significantly reduce the image analysis time.

3. The radiance weighted root mean square Laplacian operator proved to be the most
effective metric for automated flaw detection.  However, an rms Laplacian filter
weighted by the magnitude of the temporal derivative of the radiance also generated
promising results.  The key factors influencing the performance of these two metrics
were the number of image frames with flaw signals used to produce the composite
image and the energy storage capacity of noise sources such as chalk applied to the
specimen surface.  In general, the flaw detection metrics performed better with
increased camera speed because additional useful image frames were available for
data processing.  Recommended improvements to the analysis process include
filtering of bad image pixels prior to the application of the analysis metric and the
addition of a general polygon analysis window to the ATAC software to allow the user
to define a non-rectangular data analysis region.  Recalibrating the camera can
minimize the number of bad image pixels.  Alternately, since these pixels have signal
values that are four to five standard deviations outside the preflash mean values they
can be easily identified and removed from the analysis process.

4. The developed analysis operators proved effective on detecting flaws in both
composite and metallic structures.  In general, the radiance weighted root mean
square Laplacian operator performed better on metallic structures than composite
structures.  On metallic structures with a 10” x 10” inspection area (corresponds to a
0.04” x 0.04” pixel spatial resolution) this metric demonstrated the ability to detect a
0.075” diameter flaw.  The finite element results and preliminary experimental results
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suggest that smaller flaws should be detectable with higher optical magnification
levels.  Insufficient tests were run on composite structures to estimate the practical
detection limits on these structures.

5. Surface effects such as emissivity variations can present challenges to both manual
and automated data analysis approaches.  In this study we investigated the utility of a
multiplicative correction factor equal to the ratio of the average preflash grayscale at
an arbitrary reference point and the average preflash grayscale for each image point.
This spatially variable correction factor proved very effective in mitigating surface
effects.  However, it could not overcome situations where significant energy was
absorbed near the surface.  In these instances emissivity effects did not principally
cause the generated latent hot spots.  However, it may be valuable to investigate the
use of a similar approach that relies on the average of the first few post-flash images.
This might rebaseline the images to reduce the influence of surface energy absorbers
(e.g., thick chalk marks or other contaminants such as grease).  If the camera speed is
sufficiently high this post-flash corrective factor might still be capable of detecting
small near surface flaws that have low latency.

6. A comprehensive analysis software package, ATAC (Automated Thermal Analysis
Code), was developed to automate flaw detection using thermal imaging data.  ATAC
is an object-oriented PC software package with an interactive graphical user interface.
Many of the software modules are multithreaded to allow two or more of the software
features to run in parallel.  This lets the user look at results from one set of parameters
while processing a separate data analysis with a different set of parameters.  ATAC
performs all of the data processing, analysis, and display functions needed to provide
reliable automated flaw detection.  The raw data can be displayed and adjusted
interactively as a 2-D or 3-D data set.  The processed data can be displayed frame by
frame or as a composite image that highlights image areas that have a high probability
of containing an anomaly.

7. Paint proved to be an impediment to flaw detection.  The finite element results
provided data that suggests that a small amount of paint may actually improve the
flaw latency and detection capabilities.  However, increasing paint thickness and
spatial paint thickness variations create significant challenges for thermal inspection
systems and analysis algorithms. Considering the thermal properties of paint, minor
thickness variations in paint could be mistaken for larger variations in the underlying
metallic structure.  Also, if the paint is too thick if provides a heating rate to the
underlying structure that is too slow to generate a detectable temperature signature on
the specimen surface.  In these situations the energy transmitted through the paint
may be conducted away in the aluminum too quickly to create the local storage
needed to produce a detectable flaw signature.



82

6.0  REFERENCES

1. B. R. Frieden, “Computational Methods of Probability and Statistics,” The Computer in
Optical Research, ed. B. R. Frieden, Springer-Verlag, New York, p. 136 (1980).

2. William H. Press, et al, Numerical Recipes in Fortran, Second Edition, Cambridge
University Press (1992).

3. Finite element modeling was performed by Wayne State University (PI: Dr. Xiaoyan
Han) under purchase order BD-6281. 

4. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Ed., Clarendon Press,
London (1959).

5. Balageas, D., A. Deom, and D. Boscher, “Characterization and NDT of Carbon Epoxy
Composites by a Pulsed Photothermal Method,” Materials Evaluation, vol. 45, no. 4, pp.
461-465 (April 1987).

6. Maillet, D., A. S. Houlbert, S. Didierjean, A. S. Lamine, and A. Degiovanni, “Non-
destructive Thermal Evaluation of Delaminations in a Laminate:  Part II – The
Experimental Laplace Transforms Method,” Composites Science and Technology, vol.
47, pp. 155-172 (1993).

7. Batsale, J. A. Bendada, D. Maillet, and A. Degiovanni, “Distribution of a Thermal
Contact Resistance:  Inversion Using Exponential Laplace and Fourier Transformations
and a Asymptotic Expansion,” Proceedings of the 1st International Conference on
Inverse Problems in Engineering, Palm Coast, FL, pp. 139-146 (June 13-18, 1993).

8. Grinzato, E. and S. Marinetti, “Materials NDE by Non-Linear Filtering Applying Heat
Transfer Models,” Advances in Signal Processing for Non-Destructive Evaluation of
Materials, ed. X. Maldague, NATO ASI Series, Series E:  Applied Sciences, vol. 262,
Kluwer Academic Publishers, pp. 117-132 (1994).

9. D. J. Crowther, L. D. Favro, P. K. Kuo, and R. L. Thomas, “Thermal Wave Detection and
Analysis of Defects in Structural Composite Materials,” Review of Progress in
Quantitative Nondestructive Evaluation, ed. D. O. Thompson and D. E. Chimenti, vol.
12, Plenum Press, New York, pp. 481-485 (1993).

10. L. D. Favro, X. Han, P. K. Kuo, and R. L. Thomas, “Improving the Resolution of Pulsed
Thermal Wave Images with a Simple Inverse Scattering Technique,” Journal De
Physique IV, Colloque C7, vol. 4, pp. 545 – 550 (June 1994).

11. Crowther, D. J., Favro, L. D., Kuo, P. K., and Thomas, R. L., “Inverse Scattering
Algorithm Applied to Infrared Thermal Wave Images,” J. Appl. Phys., vol. 74, pp. 5828-
5834 (1993).

12. Favro, L. D., Han, X., Kuo, P. K., and Thomas, R. L., “Improving the Resolution of
Pulsed Thermal Wave Images with a Simple Inverse Scattering Technique,” Journal de
Physique, IV-C7,  pp. 545-551 (1994).

13. Pade, O., and Mandelis, A., “Computational Thermal-wave Slice Tomography with
Backpropagation and Transmission Reconstructions,” Rev. Sci. Instrum., vol. 64, pp.
3548-3562 (1993).

14. P. R. Emeric and W. P. Winfree, “Thermal Characterization of Multilayer Structures
from Transient Thermal Response,” Review of Progress in Quantitative Nondestructive
Evaluation, ed. D. O. Thompson and D. E. Chimenti, vol. 14A, Plenum Press, New York,
pp. 475-482 (1996). 



83

15. Winfree, W. P., B. s. Crews, and P. A. Howell, “Comparison of Heating Protocols for
Detection of Disbonds in Lap Joints,” Review of Progress in Quantitative Nondestructive
Evaluation, ed. by D. O. Thompson and D. E. Chimenti, vol. 11A, Plenum Press, New
York, pp. 471-478 (1992).

16. Spicer, J. W., W. D. Kerns, L. C. Aamodt, R. Osiander, and J. C. Murphy, “ Time-
Resolved Infrared Radiometry (TRIR) Using a Focal Plane Array for Characterization of
Hidden Corrosion,” Proceedings of SPIE Conference 1933, Thermosense XV, ed. Lee R.
Allen, Orlando FL, p. 148 (1993).

17. L. A. LeSchack and N. K. Del Grande, “A Dual-Wavelength Thermal Infrared Scanner
As A Potential Airborne Geophysical Exploration Tool,” Geophysics, vol. 41, p. 1318
(1976).

18. K. E. Cramer, W. P. Winfree, E. R. Generazio, R. H. Bhatt and D. S. Fox, “The
Application of Thermal Diffusivity Imaging to SIC-Fiber-Reinforced Silicon Nitride,”
Review of Progress in Quantitative Nondestructive Evaluation, ed. D. O. Thompson and
D. E. Chimenti, vol. 12B, pp. 1305-1311 (1993).

19. M. Oksanen, A. Volcan, P. Fenici, and L. Fabbri, “Simulation on the Accuracy of Laser-
Flash Data Analysis Methods,” Review of Progress in Quantitative Nondestructive
Evaluation, ed. D. O. Thompson and D. E. Chimenti, vol. 15A, Plenum Press, New York,
pp. 549-552 (1996). 

20. N. K. Del Grande, K. W. Dolan, P. F. Durbin and D. E. Perkins, “Emissivity-Corrected
Infrared Method for Imaging Anomalous Structural Heat Flows,” US Patent No.
5,444,241 (Aug. 22, 1995). 

21. Xiaoyan Han, L. D. Favro, P. K. Kuo and R. L. Thomas, “Early-Time Pulse-Echo
Thermal Wave Imaging”, Review of Progress in Quantitative Nondestructive Evaluation,
ed. D. O. Thompson and D. E. Chimenti, vol. 15A, Plenum Press, New York, pp. 519-
524 (1996). 

22. L. D. Favro, H. J. Jin, P. K. Kuo, R. L. Thomas, and Y. X. Wang, “Real Time Thermal
Wave Tomography,” Photoacoustic and Photothermal Phenomena III, Springer Series in
Optical Sciences, vol. 69, ed. D. Bicanic, Springer-Verlag, Berlin, pp. 519- 521 (1992).

23. Vavilov, V. P. and X. Maidague, “Dynamic Thermal Tomography: A New Promise in the
IR Thermography of Solids,” Proceedings of SPIE Conference 1682, Thermosense XIV,
ed. Jan K. Eklund, Orlando, FL, p. 194 (1992).

24. N. K. Del Grande, K.W. Dolan, P.F. Durbin, M.R. Gorvad, B.T. Kornblum, D. E.
Perkins, D. J. Schneberk and A. B. Shapiro, “Three-Dimensional Dynamic Thermal
Imaging of Structural Flaws by Dual-Band Infrared Computed Tomography,”
Proceedings of SPIE International Symposium on Aerospace and Remote Sensing, vol.
1942, Orlando, FL, (1993).

25. Vladimir P. Vavilov, Ermanno Grinzato, Paolo G. Bison, Sergio Marinetti, and Chiara
Bressan, “Thermal Characterization and Tomography of Carbon Fiber Reinforced
Plastics Using Individual Identification Technique,” Materials Evaluation, vol. 54 no. 5,
pp. 604-610 (May 1996).

26. John C. Russ, The Image Processing Handbook, CRC Press, Boca Raton (1992).
27. Rafael Gonzalez and Richard Woods, Digital Image Processing, Addison-Wesley

Publishing Company, Reading MA (1993).
28. Anil Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs,

NJ (1989).



84

29. Peters et al, United States Patent No. 5,563,962, “Two Dimensional Digital Hysteresis
Filter for Smoothing Digital Images,” (October 8, 1996).

30. Savitzky A., and Golay, M. J. E., Analytical Chemistry, vol. 36, pp. 1627-1639 (1964).
31. Parker, W.  J., R. J.  Jenkins, C. P.  Butter, and G.  L.  Abbott,  “Flash Method of

Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity”, J. Appl.
Phys., vol. 32, p. 1679 (1961). 

32. Clark, L. M. III and R. E. Taylor, “Radiation Loss in the Flash Method for Thermal
Diffusivity”, J. Appl. Phys., vol. 46, p. 714 (1975).

33. Taylor, R. E. and L. M. Clark, III, “Finite Pulse Time Effects in Flash Diffusivity
Method”, High Temperatures – High Pressures, vol. 6, p. 65 (1974).

34. Taylor, R. E. and J. A. Cape, “Finite Pulse-Time Effects in the Flash Diffusivity
Technique”, Appl. Phys. Lett., vol. 5, no. 10, p. 210 (1964).

35. Cowan, R.  D., “Pulse Method of Measuring Thermal Diffusivity at High Temperatures”,
J. Appl. Phys., vol. 34, p. 926 (1963).

36. Cape, J. A. and G. W. Lehman, “Temperature and Finite Pulse-Time Effects in the Flash
Method for Measuring Thermal Diffusivity”, J. Appl. Phys., vol. 34, p. 1909 (1963).

37. Azumi, T. and Y. Takahashi, “Novel Finite Pulse-Width Correction in Flash Thermal
Diffusivity Measurement”, Rev. Sci. Instrum., vol. 52, no. 9, p. 1411 (1981).

38. Heckman, R. C., “Error Analysis of the Flash Thermal Diffusivity Technique”, in
Proceedings 14th International Thermal Conductivity Conference, Plenum Press, New
York (1976).

39. Koski, J.  A., “Improved Data Reduction Method for Laser Pulse Diffusivity
Determination with the Use of Minicomputers”, in Proceedings of the 8th Symposium on
Thermophysical Properties, 2, The American Society of Mechanical Engineers, p.   94,
New York (1981).

40. Degiovanni, A., “Correction de longueur d’impulsion pour la mesure de la diffusivity
thermique par la methode flash”, Int. J. Heat Mass Transfer, vol. 31, no. 3, p. 2199
(1988).

41. Zhong Ouyang, Li Wang, Feng Zhang, L.D. Favro, and R.L. Thomas, Proc. Eighth
International Symposium on Nondestructive Characterization of Materials, June 15-20,
1997 Boulder, Colorado.

42. Nik Rajic, “Quantitative Examination of Corrosion Damage by Means of Thermal
Response Measurements”, NASA/TP-1998-208429 (June 1998).



85

APPENDIX A:  ATAC THERMAL  IMAGING ANALYSIS SOFTWARE

This appendix presents an overview of the capabilities contained in the comprehensive
analysis software, ATAC (Automated Thermal Analysis Code), developed to automate the
flaw detection using thermal wave imaging data.  The main body of the software was written
using Microsoft’s Visual C++.  As such, it is an object-oriented software, which allows for
easy maintenance of the program modules.  In addition, the software contains modules
written in Matlab® and incorporated into the C++ main code.  These modules were
incorporated via code translation in either of the following ways: 

1) An executable program, resulting from compiling the original code written in
Matlab® using the Matlab® compiler and associated libraries and using a C++

function to call an external program, or

2) Translating the original Matlab® functions using Mideva (a commercially
available translator) and compiling the resulting C++ functions with the rest of the
ATAC software.     

 
The software is GUI (graphical user interface) driven to allow easy modification of the input
parameters.  Additionally, some of the modules are multithreaded to allow two or more of the
software features to run in parallel.  This lets the user look at results from one set of
parameters while processing a separate data analysis with a different set of parameters. 

A.1  The Main Menu Screen

This section describes the main menu screen of the ATAC software, shown in Figure A-1.
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Figure A-1.  ATAC Main Menu Window.

The main menu displays the basic Windows menus (File, Edit, View, Minimize, Maximize,
and Close buttons) and the software specific menus (Load Data, Visualize, Analyze, View
Results and Help).  The File menu has only two functions; Exit and Edit.  The Exit function
is available but none of the Edit menu functions are available at this time.  The View menu
displays or hides the status bar.  The other software functions package will not run until a
datacube is loaded  (using the Load Data menu).  If another function is selected before
datacube is loaded, the message shown in Figure A-2 is displayed.  Therefore, the first step in
the analysis process is to use the Load Data menu to select the data to be analyzed.

Figure A-2.  Error message displayed if a function is selected before a datacube is loaded.

A.2  The Load Data Menu

This menu loads an uncompressed datacube from a file and makes it available to the rest of
the software.  The Load Data menu is shown in Figure A-3.
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Figure A-3.  Load Data menu.

This dialog box is an open-file menu.  The software checks if the file is an uncompressed
datacube and if it has the correct format.  If the datacube is compressed, the message shown
in A- 4 is displayed.  If this occurs the datacube must be uncompressed using a utility found
in the Thermal Wave Imaging, Inc. EchoTherm® 32 software. 

Figure A-4.  Datacube compression warning message.

Once a datacube has been successfully opened, the other software menus (with the exception
of the View Results menu) become functional.  

A.3  The Visualize Menu

The Visualize menu launches a GUI-driven 3D-visualization tool to aid in the analysis
process.  This module was written in Matlab®, compiled into an executable, and called from
the main software as an external program on a separate thread from the main code.  This lets
the Visualizer run independently from the main code.  Figure A-5 displays the Visualizer
module window.  
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Figure A-5.  Visualizer tool window.

The Get File button in the Visualizer window loads the datacube and read the inspection
system parameters used in the data acquisition process.  The user can then select the data
spatial region and temporal layers to display.  The data display is activated with the Read
Data button.  An example is displayed in Figure A-6.
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Figure A-6.  Data visualization example.

The GUI tools let the user modify the Colormap and the Lower and Upper thresholds of
the image intensity to enhance the image.  Also, the user can reorient the 3-D display
interactively.  An additional feature provided by the visualization window is the slicing tool.
This feature lets the user select specific X, Y, and Z planes to display as data slices.  Figure
A-6 is an example of a data slice display.  As mentioned previously, this module runs on its
own thread and therefore can be left active while other analysis operations are performed.
A.4  The Analyze Menu

This Analyze menu launches the primary software analysis.  Figure A-7 displays the input
parameter tab of the Analyze menu.
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Figure A-7.  Analyze Menu: Input Parameters Tab.

The first Analyze menu tab displays the analysis Input Parameters.  These parameters
define the analysis data region.   All data within this region is smoothed using a nonlinear 18
parameter spatio-temporal polynomial model with temporal weighting.  The following
paragraphs describe each of the input parameters.

Filename containing the datacube to be analyzed:  Shows the path and filename
for the datacube that is will be analyzed (opened using the Load Data menu).

Save header and input data to a file:  If the box is checked, the header information
contained in the datacube will be stored in a file defined in the “Enter or select the
filename to store the header information” box and the actual data will be stored in a
text file defined in “Enter or select the filename to store the input information” box.
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X-Direction Subwindow:  

X-Direction:  Defines the X-direction spatial analysis boundaries.

Enter the lower limit:  Specifies the lower limit x coordinate that bounds the data
analysis prism.

Enter the upper limit:  Specifies the upper limit x coordinate that bounds the data
analysis prism.

Enter the desired resolution:  Specifies the size (in pixels) of the local analysis
neighborhood window that surrounds each data point.  For example, a value of 5
means that the data window used to fit the spatio-temporal smoothing polynomial for
each data point has a width of 5 pixels (centered on the pixel of interest).

Enter the space interval:  This parameter determines the spacing between analysis
prisms.  A value of one would analyze every data point within the defined image
boundaries.  A value of two would analyze every other data point.  A value of three
would evaluate every third data point.

Y-Direction Subwindow:  

Y-Direction:  Defines the Y-direction spatial analysis boundaries.

Enter the lower limit:  Specifies the lower limit y coordinate that bounds the data
analysis prism.

Enter the upper limit:  Specifies the upper limit y coordinate that bounds the data
analysis prism.

Enter the desired resolution:  Specifies the size (in pixels) of the local analysis
neighborhood window that surrounds each data point.  For example, a value of 5
means that the data window used to fit the spatio-temporal smoothing polynomial for
each data point has a length of 5 pixels (centered on the pixel of interest).

Enter the space interval:  This parameter determines the spacing between analysis
prisms.  A value of one would analyze every data point within the defined image
boundaries.  A value of two would analyze every other data point.  A value of three
would evaluate every third data point.

T-Direction Subwindow:  

T-Direction:  Defines the temporal analysis boundaries.  In other words, this
specifies which image frames will be analyzed.
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Enter the lower limit:  Specifies the first image frame to be included in the data
analysis prism.

Enter the upper limit:  Specifies the last image frame to be included in the data
analysis prism.

Enter the desired resolution:  Specifies the size (in number of image frames) of the
local analysis neighborhood window that surrounds each data point.  For example, a
value of 5 means that the data window used to fit the spatio-temporal smoothing
polynomial for each data point has a length of 5 frames (centered on the frame of
interest).

Enter the space interval: This parameter determines the spacing between analysis
prisms.  A value of one would analyze every image frame within the defined image
boundaries.  A value of two would analyze every other image frame.  A value of three
would evaluate every third image frame.

Model Parameters Subwindow:  

Delta x:  Defines the spatial increment between points along x-axis.

Delta y:  Defines the spatial increment between points along y-axis.

Standard deviation:  Defines the width parameter for the radial basis function (in
time units).

Error messages will indicate when the parameters are not appropriate for the selected
datacube.

The second analysis window tab, Analysis Type, displays the standard analysis options that
can be applied to the datacube.  Figure A-8 displays this window.
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Figure A-8.  Analyze Menu: Analysis Method Tab.

The basic analysis methods provided in the software are briefly described below:

Basic Laplacian:  Calculates the image Laplacian.

Absolute Value of the Laplacian:  Calculates the Absolute Value of the image
Laplacian.

Time Derivative of the Laplacian:  Calculates the temporal derivative of the image
Laplacian.

Time derivative of image minus time derivative of Laplacian:  Calculates the
difference between the temporal derivative of the original image and the temporal
derivative of the image Laplacian.
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Image minus Laplacian:  Calculates the difference between the original image and
the image Laplacian.

Image minus absolute value of the Laplacian:  Calculates the difference between
the original image and the absolute value of the image Laplacian.

Sobel Measure:  Calculates the Sobel measure for the image data.

First derivative of the Sobel measure:  Calculates the first time derivative of the
Sobel measure for the image data.

Second derivative of the Sobel measure:  Calculates the second time derivative of
the Sobel measure for the image data.

In addition to these basic image analysis metrics, the ATAC software has added the metrics
presented in section 4.3.1.

The two check boxes in the lower portion of the Analysis Method window let the user save
the computed model parameters and the analysis results to a specified file.  The analysis
results must be saved to use the View Results menu display features.  The files saved by
these checkboxes are .MAT files (Matlab® type files).

The progress of the analysis operation is displayed in an Analysis status window  as shown in
Figure A-9.  When the analysis is complete, pressing the OK button returns the user to the
analysis window.  The user may then press OK or Cancel in the Analysis Menu to return to
the main window.

Figure A-9.  Analysis status window.

A.5  The View Results Menu

After the image data analysis is complete the View Results menu can be used to visually
display the processed results.  If this menu is accessed before an analysis has been
performed, the error message shown in Figure A-10 is displayed.
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Figure A-10.  Warning message when no data is available for display.

If an analysis was successfully performed and the analysis results are saved to a file, the view
results tool shown in Figure A-11 is displayed.  This is another Matlab® GUI program
compiled into an executable and called as a separate thread from the main software.  Since
this program operates as a separate thread it can run independent from the main software.
The display the processed results, the user must first use the Open file button to load the
saved analysis results file.  After the analysis data is loaded the user can select an analysis
type from the scroll window.  If the selected data analysis metric processed the image frames
independently the results for individual frames can be selected using the frame slider tool.
Once a frame and the analysis type are selected, the information is displayed by pushing the
Plot button.  As shown in figure A-11, the display provides a contour plot of the values of the
desired measure with a colorbar that provides the metric values for each of the displayed
colors.  Alternately, if one of the metrics from section 4.3.1 is selected, a composite image
result is displayed. 
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Figure A-11.  View Results menu window with sample results.
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