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Abstract 
 
Two major issues associated with model validation are addressed here. First, we present a 
maximum likelihood approach to define and evaluate a model validation metric. The 
advantage of this approach is it is more easily applied to nonlinear problems than the 
methods presented earlier by Hills and Trucano (1999, 2001); the method is based on 
optimization for which software packages are readily available; and the method can more 
easily be extended to handle measurement uncertainty and prediction uncertainty with 
different probability structures. Several examples are presented utilizing this metric. We 
show conditions under which this approach reduces to the approach developed previously 
by Hills and Trucano (2001). 
 
Secondly, we expand our earlier discussions (Hills and Trucano, 1999, 2001) on the 
impact of multivariate correlation and the effect of this on model validation metrics. We 
show that ignoring correlation in multivariate data can lead to misleading results, such as 
rejecting a good model when sufficient evidence to do so is not available. 
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1.0 Introduction 
 

1.1 Introduction 
 

This report is a third in a series of reports describing issues related to model validation. 
The focus of the past two years work has been on the development of statistical based 
model validation metrics that use differences between model predictions and 
experimental measurements. The measurements can be multiple measurements from a 
single experiment or single measurements from multiple experiments, or a combination 
of these. The primary contrast to the work by other authors is we explicitly account for 
correlation between the differences induced by model structure. Correlation in these 
differences will be significant for models that provide predictions of multiple quantities, 
such as pressure or stress as a function of time or space. If a field-equation based model 
over predicts a temperature or pressure at some location or time, it also tends to over 
predict the temperature or pressure at an adjacent location or time. This is the nature of 
the models that we are most concerned with and this structure must be properly accounted 
for if one is to appropriately apply statistical methods.  
 
The application of statistical methods requires some prior knowledge of the underlying 
form for the uncertainty of the random variables. Our assumption here is such knowledge 
is available for the measurements and for the uncertain parameters that make up the 
model. Other approaches exist (such as possibility theory; see Dubois and Prade, 1988) 
that allow one to relax the required knowledge of uncertainty. But relaxing these 
assumptions comes with a cost. The less one knows about a system, the less precise one 
can be about the behavior of a particular realization of the system. The methods presented 
here represent a near-upper bound of the knowledge required to define uncertainty. On 
the other hand, these methods also represent a near upper bound on the precision to which 
one can resolve model validity. Generally, other methods may be less sensitive to the lack 
of knowledge of the underlying uncertainties, but they will also be less sensitive to bad 
predictive models. If the planned application of the model is critical, and if the 
corresponding engineering design is not sufficiently conservative, then the acceptance of 
a bad model can lead to undesirable results. On the other hand, if a less sensitive 
approach (such as possibility theory) is used with the model to design the application with 
sufficient conservatism, then the constraints required by the statistical approaches to 
characterize the uncertainty for model validation may not be required.  

1.2 What are we actually testing? 
 
Given a set of measurements and a set of model predictions, we develop a statistical 
based metric to measure the inconsistency between the two. Specifically, we look for 
statistically significant evidence that the model predictions are not consistent with the 
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experimental observations. These metrics can be used in one of two ways. The first is to 
evaluate the probability that a valid model would give the observed differences between 
the model predictions and experimental observations. Such probabilities can be used with 
similar probabilities from other independent validation tests to evaluate the joint 
probability for a suite of validation tests. We can also use these metrics to define pass-fail 
criteria – say at the 95% confidence level – that there is sufficient evidence to reject the 
model.  
 
The statistical test performed here is based on controlling the probability of a Type I error 
(Brownlee, 1965). In the context of our model validation methodology, a Type I error is 
committed when we reject a good model. To reduce the chances of doing this to an 
acceptable level, we give the benefit of doubt to the model. For example, if we test at the 
95% confidence level, we define the acceptance/rejection boundary of our metric such 
that if the model were valid (and our models for the corresponding uncertainties), then we 
would reject a good model only 5% of the time. We have 95% confidence that we did not 
reject a good model. We do not have 95% confidence that we have accepted a good 
model. 
 
In contrast, a Type II error (Brownlee, 1965) is committed, in the present context, when 
we fail to reject a bad model. Ideally, we would like a test that has a small probability of 
rejecting a good model with a large probability of rejecting a bad model. Unfortunately, 
these goals are somewhat contradictory. We can measure this effect by looking at the 
power of the test, given an alternative hypothesis or model. The power of a test is the 
probability of correctly rejecting the null hypothesis or bad model (Brownlee, 1965). 
Ideally, we would like a test that is as powerful as possible, say 95%, while maintaining 
95% confidence that we did not reject a good model. Unfortunately, the time and money 
required to execute a test that has 95% confidence and a power of 95% may likely exceed 
available resources. This requires much high quality data. Because of this, we typically 
define the test at a certain confidence level so that we aren’t likely to reject a good model 
and accept that we may fail to reject a bad model.  
 
Engineering and scientific judgment and consensus building are required to develop a 
suite of validation tests such that if a model is not rejected, the consensus is that the 
model is valid for the intended application. Limiting our focus to questions of validity for 
a particular application is a much more feasible undertaking since we can restrict the 
range of conditions for which such a model is to be applied. However, even with this 
restriction, scientific/engineering judgment is required to develop the suite of appropriate 
validation experiments. This is because our validation experiments will generally not 
exactly reflect the anticipated application of our model.  

1.3 What do these metrics provide? 
 
What do statistical validation metrics provide that simple graphical or tabular 



    

 

15 
  
 

 
 
 

comparisons of experimental results to model predictions do not? Statistical validation 
metrics provide probabilistic measures of consistency between model predictions and 
experimental observations, given that the model is correct. This requires that the 
uncertainty in the validation exercise be quantified. The application of statistical methods 
to model validation is very useful to the decision maker in that they also provide 
quantification of the ability of the experiment to resolve differences between model 
predictions and experimental observations. If the uncertainty in the validation exercise is 
large (due to few or inaccurate data, or highly uncertain model parameters or boundary 
conditions) compared to the acceptable uncertainty for an application, then the model 
validation experiments may not be able to adequately resolve the validity of the model for 
that application. This reemphasizes the point made earlier. The testing performed here 
evaluates the consistency of the model predictions with the experimental measurements, 
relative to the uncertainty (actually the modeled uncertainty) in the validation exercise. 
This provides important quantitative information to scientists/engineers that will help to 
develop a consensus on whether there is a sufficient body of data showing adequate 
consistency between model predictions and experimental observations for a particular 
application. 

1.4 Our Focus  
 
Here we develop statistically rigorous metrics to test for consistency between prediction 
and experiment. This is not as easy of a task as it first appears due to the form of our 
models. Our models are typically based on field equations (conservation equations) and 
are multivariate in nature. Our models predict behavior of the state variables over time, 
space, or both. These models contain parameters that are used to characterize material 
properties, geometry, and boundary and initial conditions.  The values of these parameters 
are measured or controlled through the design of the experiment and will contain 
uncertainty. Since the model predictions are dependent on the values of these parameters, 
the model predictions will also be uncertain. In addition, the uncertainty in the model 
predictions will also be correlated due to uncertainty in the model parameters. If the value 
for a certain model parameter is larger than the true value, then it will generally effect not 
only the model prediction at some location and time, but will affect the model prediction 
at adjacent locations and times. For example, if a predicted temperature in a heat-
conducting solid is high, there is an increased likelihood that the predicted temperature at 
an adjacent location in space or time will be high. The errors in these two predicted 
temperatures are systematic and will be correlated over multiple realizations of the 
experiments due to the model’s dependence of the model parameters.  
 
If our model testing metrics are based on point wise differences between the predictions 
and the experimental observations, then these differences will likewise be correlated 
simply because the model predictions are correlated. This is true even if the 
measurements are not. The difficulty introduced by this correlation is that its effect must 
be accounted for if the metric is to be statistically correct. The structure of the correlation 
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in the predictions will be directly related to the structure of the model. The complex 
structure of this correlation is one of the primary reasons why one has not historically 
seen statistical techniques applied to model validation for the complex predictive models 
that we are concerned with. The assumption that the differences between the predictions 
and the experimental observations are independent for different times and locations is 
generally not valid. Techniques that are based on this assumption will therefore give 
misleading results.  
 
Fortunately, the increased power of today’s computers allows us to use the model itself to 
account for this correlation. The focus of the present work is to emphasize that such 
techniques are now entering the main stream, and to use these techniques as tools to 
develop statistically based metrics to test for model validity. We emphasis that we are not 
developing anything new from a statistical perspective, we are simply using existing tools 
to extend the applications of statistical techniques to increasingly complex computational 
problems. We will illustrate these extensions through the use of several example 
problems in later chapters.  
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2.0 Overview of Previous Years’ Work 
 

2.1 Introduction 
 
This report represents the third in a series on statistical model validation metrics. Here we 
provide an overview of the work presented in the previous two reports and an overview of 
the work to be presented here.  

2.2 Year 1 
 
The primary focus of the first year report (Hills and Trucano, 1999) was to provide 
background on model validation using statistical methods and to provide a survey of the 
associated literature. The report was written at the level of the reader who has at least a 
rudimentary understanding of statistical concepts. The overview addressed the 
propagation of model parameter uncertainty through a model to estimate the uncertainty 
in the model predictions due to parameter uncertainty. The literature is very rich on this 
subject and only a brief review was provided. The year 1 discussion illustrated three 
approaches to the propagation of uncertainty; 1) direct evaluation for linear models; 2) 
sensitivity analysis and 3) Monte Carlo analysis. The tutorial illustrated the effects of 
correlation between model parameters and correlation between model predictions.  
 
Four physical applications were considered: a simple linear model, a model for a damped 
spring-mass system, a transient thermal conduction model, and a nonlinear transient 
convective-diffusive model based on Burger’s equation. The last three examples were 
nonlinear in the model parameters. The results showed that for several of the cases 
considered, including several of the nonlinear cases, the sensitivity analysis can provide 
comparable results to the Monte Carlo approach for estimates of the expected value and 
standard deviation of the model predictions. However, this was not the case for the highly 
nonlinear spring-mass system near resonance.   
 
Several forms of model validation methodology using statistical methods were discussed. 
One methodology, which we term scientific validation, asked the following question: Is 
the difference between model predictions and experimental observations significant 
relative to the uncertainty in the validation exercise? The second form, which we term 
engineering validation, asked the following question: Is the difference between model 
predictions and experimental observations significant relative to the uncertainty in the 
validation exercise, plus an acceptable error?  
 
Both forms of model validation require statistical models for the uncertainty in the 
differences between the model predictions and the experimental measurements. One 
approach to develop a statistical model is to use these differences directly. The literature 
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is rich on this approach to statistical characterization. Unfortunately, an adequate quantity 
of such data is generally not available for the validation of complex engineering models. 
Compounding this problem is that for models we are typically interested in, there will 
almost always be correlation in the differences between model predictions and 
experiments at adjacent measurement locations and times. The result is that the simplest 
assumption of uncorrelated differences, at different times and locations, is not valid. The 
form of this correlation is usually as complex as the model, and the assumptions used by 
standard techniques (such as time series techniques) to estimate this correlation from the 
set of differences are generally not appropriate.  
 
A different approach to estimate the correlation structure in the differences between 
model prediction and experimental observations is to use the predictive model itself. This 
approach shifts the work from characterizing the uncertainty in the differences to 
characterizing the uncertainty in the model parameters and in the experimental 
measurements. This second approach is appropriate when it is easier to generate sufficient 
data to characterize model parameters (such as thermal conductivity) than it is to repeat 
the validation experiments many independent times. This approach utilizes techniques 
developed for uncertainty quantification (such as sensitivity analysis and Monte Carlo 
analysis) to propagate the model parameter uncertainty through the model to develop a 
model for prediction uncertainty. This prediction uncertainty is then used, together with a 
model for measurement uncertainty, to develop an uncertainty model for the differences 
between the predictions and the experimental observations. The advantage of this 
approach is if there is an adequate model for the measurement uncertainty (obtained from 
previous experience with similar measurement devices or experiments) and an 
understanding of the uncertainty in the model parameters going into the model, then 
adequate information is present to characterize the uncertainty in the differences – 
without repeated realizations of the validation experiment. A down side (or perhaps an 
upside) is one must fully understand the sources of model and experimental uncertainty to 
include them in the analysis. If significant sources of uncertainty are neglected, then the 
model is more likely to fail the validation test.  
 
The damped spring-mass system application was used to show how such a propagation of 
uncertainty could be used to develop a statistical metric to test for model validity. This 
metric was demonstrated for a spring mass system using two measurements taken from 
simulated validation experiments. Both Monte Carlo and sensitivity analysis methods 
were applied to this system near resonance.  

2.3 Year 2 
 
The second year work of this project (Hills and Trucano, 2001) extended the concepts 
presented during first year to a shock physics application of interest to Sandia National 
Laboratories. Both of the approaches discussed above to characterize the uncertainty in 
the differences between predictions and observations were illustrated in the report of the 
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second year work. In the first approach, the model for the uncertainty was estimated from 
the differences directly. This approach could be used because 1) a sufficient quantity of 
data was available from shock physics experiments, and 2) a linear trend in the data could 
be easily removed to allow for the characterization of the uncertainty in these differences. 
In the second approach, we characterized the uncertainty in the model parameters and 
propagated this uncertainty through the model to develop a model for prediction 
uncertainty. The model was combined with a model for measurement uncertainty to 
obtain a model for the uncertainty in the differences between the predictions and the 
experimental observations. Finally, we presented a variation of the second approach 
where the validation metric was modified to reflect the desired application of the model. 
This approach recognizes that the model validation experiments are not necessarily exact 
or even near replicates of the desired application of the model. As such, a model of the 
application was used to modify the validation metric so that the validation data was 
weighted in a fashion appropriate for the application.  
 
The above three approaches were demonstrated using data and a numerical model from 
shock wave physics. We applied the Eulerian shock wave physics computer code CTH 
(McGlaun, et al., 1990; Bell et. al., 1998; Hertel and Kerley, 1998) to model the impact 
of an aluminum plate with an equal sized, but initially stationary, aluminum plate at 
velocities in the kilometer per second regime. Model predictions for shock wave speed 
were tested against experimental measurements using the three statistical based 
approaches discussed above. The probability of consistency was evaluated and also used 
to test consistency at 95% confidence level for each example. 

2.4 Year 3 
 
In the present work, we focus on the development of a metric based on maximum 
likelihood. This approach, as implemented here, does not require that we fully 
characterize the uncertainty in the model predictions, but rather that we search through 
the model prediction space (using commonly available optimization algorithms) to find 
likely values for the model parameters, given their uncertainty and the uncertainty in the 
experimental measurements. We then look at the probability of obtaining such parameters 
if the model were correct. While this approach at first seems different from those 
developed previously, it results in the same metric for models that are locally linear in the 
model parameters with model parameters and experimental measurements that are 
normally (or multi normally) distributed. We show this equivalence in Chapter 6.  
 
In addition to the development of the maximum likelihood based metric, we provide 
some additional background on the effect of correlation in model-experiment differences. 
Specifically, we address the importance of accounting for correlation in model testing 
metrics, and show how ignoring such correlation can increase our chances of accepting a 
bad model, or increase our chances of rejecting a good model, depending on the form of 
the correlation. 
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3.0 The Test Cases 
 

3.1 Introduction 
 
Two test cases are presented to demonstrate the model validation methodology developed 
here. The first is an experiment that was designed specifically for model validation (Voth 
and Gill, 1999). This case is for a carefully controlled, transient, heat conduction 
experiment designed to test models for thermal contact resistance. Here we use 
temperature measurements taken from thermal couple time traces to illustrate how data 
from a few measurement locations can be used to test a model. The intent of this test case 
is to show how such metrics can be applied when we have very little experimental data. 
The prediction differences from this data are highly correlated, necessitating the use of 
multivariate metrics that account such correlation. 
 
The second test case is the one-dimensional impact of an aluminum plate on an aluminum 
plate considered previously (Hills and Trucano, 2001).  Rather than using a sensitivity 
analysis, as we reported previously, we apply a response surface approach here. This 
approach can be more easily generalized to highly nonlinear problems. We choose to use 
this test problem so that the results of previous work (Hills and Trucano, 2001) can be 
compared to the results of the methodology developed here. 

3.2 The Heat Conduction Experiment  
 
In an effort to study and test models for thermal contact resistance, an experimental 
program was supported through the ASCI Sub-Grid Physics Area and MAVEN. Here we 
provide a brief overview of the experiment and the model. A more detailed description is 
provided in Voth and Gill (1999. 

3.2.1 The Experiment 
 
The experimental apparatus is illustrated in Figure 3.1.  Two coaxial hollow right circular 
cylinders are pressed together with a known load to study models for contact resistance. 
Hollow cylinders were used to minimize variations in shear stress across the contact 
interface. The entire assembly was enclosed in an evacuated bell jar to minimize heat 
transfer to the environment and to remove trapped air from the contact interface. Each of 
the 304 stainless steel cylinders were instrumented with several vertical columns of 7 T-
type thermocouples located on the surface of the cylinders. The axial locations of these 
thermocouples are listed in Table 3.1. The top cylinder was heated from above and the 
bottom cylinder cooled from below. Temperature responses were recorded at one-second 
intervals during the transient phase and at 60-second intervals during the near steady-state 
phase of the experiment.  
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Figure 3.1: Heat Conduction Apparatus and Computational Domain 

 

3.2.2 The Measurements 
 
We use only a very small subset of the available temperature measurements to illustrate 
the use of validation metrics when experimental data are limited. This data was sampled 
from the time trace of data taken from the two thermal couples at station TC7 as listed in 
Table 3.1. The data was sampled at only 10 times. These times are shown in Table 3.2. 
The readings from the two thermal couples were averaged, resulting in the average 
measurements (denoted as measurements) tabulated in Table 3.2. Also shown are 
estimates of the standard deviation for the average measurements as provided by 
Dowding (2000). These were obtained by using temperatures at similar stations, for each 
time. The other items in Table 3.2 will be discussed below. 
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Table 3.1: Thermocouple Axial Locations 
 
 Thermocouple Axial Location 
  (mm) 
 
 TC1 61.7 
 TC2 52.2 
 TC3 42.7 
 TC4 33.1 
 TC5 23.6 
 TC6 14.1 
 TC7 4.5 
 TC8 -4.6 
 TC9 -14.1 
 TC10 -23.6 
 TC11 -33.1 
 TC12 -42.7 
 TC13 -52.2 
 TC14 -61.7 
 

 
Table 3.2: Temperatures and Sensitivity Coefficients 

 
 Time Measurement σ Prediction 1α∂∂T  2α∂∂T  3α∂∂T  
 s °C °C °C °C °C °C 
 
 1.73 29.96 0.1536 29.80 6.494x10-8 -2.483x10-13 -4.973x10-12 
 570.7 44.94 0.3565 45.09 6.176x10-1 -2.048x10-6 -9.633x10-4 
 1140.6 53.97 0.3363 54.44 4.352x10-1 -1.281x10-6 -1.155x10-3 
 1710.5 58.23 0.3216 58.87 2.837x10-1 -6.762x10-7 -1.217x10-3 
 2341.4 60.55 0.3092 61.28 1.911x10-1 -3.081x10-7 -1.251x10-3 
 2941.3 61.31 0.3124 62.07 1.420x10-1 -1.186x10-7 -1.252x10-3 
 3541.2 61.56 0.3121 62.35 1.225x10-1 -4.366x10-8 -1.252x10-3 
 4141.1 61.67 0.3172 62.45 1.153x10-1 -1.577x10-8 -1.253x10-3 
 4741.0 61.72 0.3189 62.50 1.131x10-1 -7.647x10-9 -1.252x10-3 
 5340.9 61.73 0.3131 62.53 1.112x10-1 -3.278X10-9 -1.252x10-3 
 

3.2.3 The Numerical Model  
 
The thermal response of the cylinders was modeled as one-dimensional transient heat 
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conduction with contact resistance at the interface. A description of the thermal contact 
resistance model for the interface is provided by Voth and Gill (1999). The transient, non-
linear, turbulent, reacting flow, control volume code FVC (Blackwell et. al. 1998, Moen, 
1999) was used to generate the model predictions. FCV allowed implementation of the 
contact conductance models described in Voth and Gill and because it also 
accommodates temperature dependent material properties.   
 
The computation domain shown in Figure 3.1 was used for the numerical model. Note 
that the entire experimental apparatus was not modeled. The domain extends from TC2 to 
TC13 (see Table 3.1). The recorded temperature responses at these stations were used as 
time dependent boundary conditions for the model. Using the temperature measurements 
at these stations as boundary conditions reduces the uncertainties associated with contact 
resistance between the cylinders and the heating and cooling blocks. This allows one to 
focus on the contact resistance at the interface between the cylinders and the heat 
conduction within cylinders. Three uncertain model parameters were considered: the 
thermal conductivity, the volumetric heat capacity, and the contact conductance. Values 
for these model parameters are listed in Table 3.3 along with estimates of their standard 
deviations. The standard deviations were based on discussions with the experimentalist 
and were provided by Dowding (2000). The standard deviations represent 5% of the 
thermal conductivity, 2% of the volumetric heat capacity, and 10% of the contact 
conductance. 
 
 

Table 3.3: Model Parameters Statistics 
 

 
 Parameter Expected Value <α> σ 
 
 α1 (thermal conductivity, k) 15.06 W/m-C 0.753 W/m-C 
 α2 (volumetric heat capacity, C) 3.912x106 J/m3-C 0.782x105 J/m3-C 
 α3 (contact conductance, h) 1337.0 W/m2-C 133.70 W/m2-C 
 
 
Model predictions using the model parameters listed in Table 3.3 were performed at 
Sandia National Laboratories and were provided to us by Dowding (2000). These are 
listed in Table 3.2. Also provided were estimates of the sensitivity coefficients of the 
predicted measurements to the parameters.  In this report we use these sensitivity 
coefficients to construct an approximate model.  The approximate model used here is 
based on the first few terms in a Taylor series expansion 
 
 )()()()( ><−+><≈= αααααααααααααααααααα XmmT  (3.1) 
 
where T is the vector of approximate model predictions, m(α)α)α)α) is the functional 



    

 

25 
  
 

 
 
 

dependence of the model on the vector of model parameters αααα, m(<αααα >) is the vector of 
the numerical model predictions using the expected value for the model parameters, and 
X is the sensitivity matrix. As will be shown, the use of this approximate model with the 
validation methodology developed here gives comparable results to those obtained with 
the methodology developed previously (Hills and Trucano, 2001).  
 
Figure 3.2 shows the predictions and the average measurements for the 10 data points as a 
function of time. Note that there are small discrepancies between the average 
measurements and the predictions. In Chapter 5, we will establish if these discrepancies 
are significant relative to the uncertainty defined by the parameter and the measurement 
uncertainty. 
 

3.2.4 Probability Models for Measurements and Model Parameters 
 
Asking the question – “Are the model predictions consistent with the experimental 
observations within the uncertainty of the experiment?” – requires the definition of 
models for this uncertainty. For the purpose of demonstration, we will assume that the 
underlying probability models for the model parameters and for the experimental 
observations are normally distributed. Other probability models will be considered for the 
shock physics example presented in the following section. 
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Figure 3.2: Temperature as a Function of Time 
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3.3 Impact of Aluminum on Aluminum 
 
The second test case we consider is the symmetric impact of an aluminum plate upon an 
aluminum plate under conditions that guarantee that the resulting material response is in 
uniaxial strain (Hills and Trucano, 2001). Such impacts have been heavily modeled and 
well studied experimentally by the shock wave physics community. The experimental 
measurements for shock speed vs. particle speed are very repeatable and are consistent 
from experiment to experiment and from experimental technique to experimental 
technique. Figure 3.3 illustrates schematically the specific example of this type of impact 
that we care about here.  
 
The resultant state of uniaxial strain is the most important part of the experiment, not the 
assumption that the materials are identical (which creates a significant simplification of 
the overall event as we will see). Uniaxial strain states, induced by such an impact, mean 
that the shock wave generated in the impact is a square-wave (at least in the ideal) and 
also guarantees that the resulting shock wave propagation can be analyzed as a one-
dimensional Cartesian geometry wave propagation problem.  
 
 
 
 
 

  
Figure 3.3: The Symmetric Impact of Two Aluminum
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3.3.1 Experimental Data 
 
The aluminum of specific interest in this report is 2024 aluminum. Our purpose is to 
compare a computational construction of the Hugoniot for this material with that reported 
experimentally in Marsh (1980). The Hugoniot of a material is the locus of 
thermodynamic states that is generated by the passage of a family of steady state shock 
waves of varying strength (Zel’Dovich and Raizer, 1967; Davison and Graham, 1979; 
Graham, 1993). Given the initial state and the shock velocity, the final state is uniquely 
determined. It is in this sense that the speed of the shock wave “parameterizes” the locus 
of Hugoniot states. Simple but important algebraic relationships between the shock wave 
speed and the initial and final states demonstrate the truth of this statement. These 
equations are called the Rankine-Hugoniot conditions (R-H). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.4: Explosive-Metal Geometry Feasible for Performing Shock Hugoniot 

Measurements. 
 
 
One approach for gathering shock wave data is depicted in Figure 3.4. The time of arrival 
of the shock wave at various points within or on the back of the sample, generated by the 
explosive configuration shown in Figure 3.4, was monitored through pin-contactors or 
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optical techniques (Rice, et al., 1958; McQueen, et al., 1970). This provided a 
measurement of shock speed US. These data also confirmed the planarity of the shock 
wave, a necessary condition for assumption of the uniaxial strain condition. In addition, 
the location of the rear surface of the sample was monitored (also through pin-contactors 
or optical techniques) to measure its free surface velocity upon breakout of the generated 
shock wave. The free surface velocity is the sum of the particle velocity due to the shock 
wave, UP, and the particle velocity due to the resulting reflected rarefaction wave created 
by the intersection of the shock wave with the free boundary of the sample.  Since each of 
these waves has approximately the same particle velocity (see Rice, et. al., 1958; 
McQueen, 1970), the free surface velocity is approximately twice the particle velocity UP. 
Thus an estimate of the particle velocity is obtained from the free surface velocity 
measurement. Marsh (1980) described the approach that was used to correct for small 
inaccuracies in this method of particle velocity determination. By repeating the 
experiments using explosive systems designed to deliver different impact velocities, and 
hence different amplitude shock waves, the (US, UP) points (hence density, pressure and 
internal energy of the material via the R-H conditions) on the Hugoniot curve are 
measured. While these data are not valid off the Hugoniot curve, they can be and are used 
to calibrate equation of state models for states near this curve (Rice, et. al., 1958).  

3.3.2 The Measurement Data 
 
Normally, model calibration data and model validation data are independent. In our case, 
we will use the (US, UP) data from Marsh (1980) to calibrate the model and to test it. To 
provide some independence, we divide the data into two sets, one for calibration and one 
for model testing. The method used to divide the data depends on what one is trying to 
accomplish. For example, if we wish to test the ability of the model to extrapolate to 
higher values of Up, we could use the (US, UP) data in the low range to calibrate the 
model and use (US, UP) data in the high range to test the model. The random process used 
to divide this set of data is discussed in Hills and Trucano (2001). Here we use the 
subsets of calibration and measurement data previously sampled in that report. The data 
selected for measurements are listed in Table 3.4 in the column labeled “US meas.”  
 
We can either use prior knowledge of the uncertainty in the experimental technique to 
develop a probability model for the uncertainty in the measurements, or we can attempt to 
develop a probability model from the data directly. The second approach was used by 
Hills and Trucano (2001). They first used linear regression to remove the trend from the 
data. They then estimated the standard deviation of the residuals about the regression as 
an estimate for the uncertainty in the measurements. These residuals were tested using the 
Kolmogorov-Smirnov test to evaluate whether there was sufficient evidence to reject the 
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Table 3.4: Predicted and Observed Shock Speeds (m/s) 
 

Up Us 
meas 

Us
pred

Us
resp

Up Us
meas

Us
pred

Us
resp

Up Us
meas

Us
pred

Us
resp

 
278 5811 5731.7 5731.3 1121 6840 6845.0 6842.9 2738 8916 8961.6 8960.7
440 6021 5946.5 5945.0 1128 6756 6852.1 6852.2 2817 9144 9060.7 9063.9
472 6054 5988.3 5987.1 1130 6823 6854.8 6854.8 2911 9070 9186.1 9186.7
503 5996 6030.1 6028.0 1134 6826 6860.2 6860.1 2935 9231 9211.4 9218.1
507 6055 6035.4 6033.3 1136 6831 6863.0 6862.7 2974 9236 9269.3 9269.1
609 6103 6170.0 6167.8 1141 6795 6869.7 6869.3 2987 9401 9285.4 9286.0
626 6262 6192.8 6190.2 1159 6915 6892.7 6893.1 3030 9177 9347.5 9342.2
627 6228 6194.1 6191.5 1220 6981 6974.4 6973.4 3031 9180 9348.2 9343.5
671 6164 6252.0 6249.6 1220 7014 6974.4 6973.4 3086 9317 9413.6 9415.4
722 6367 6319.4 6316.8 1277 6943 7047.5 7048.1 3181 9596 9540.0 9539.7
727 6323 6326.5 6323.4 1352 7092 7145.3 7146.4 3187 9549 9547.2 9547.5
728 6310 6327.9 6324.7 1383 7225 7187.8 7187.1 3217 9365 9592.5 9586.8
778 6388 6394.0 6390.7 1437 7156 7257.4 7257.9 3225 9666 9603.2 9597.3
786 6312 6403.1 6401.2 1446 7211 7270.1 7269.7 3238 9762 9614.2 9614.4
792 6314 6412.3 6409.1 1467 7305 7296.2 7297.2 3260 9477 9644.4 9643.2
792 6365 6412.3 6409.1 1498 7342 7339.6 7337.8 3274 9617 9655.6 9661.5
799 6353 6420.7 6418.3 1557 7462 7409.8 7415.1 3347 9775 9752.4 9757.2
800 6393 6422.1 6419.7 1574 7426 7438.4 7437.4 3361 9751 9781.7 9775.6
800 6459 6422.1 6419.7 1578 7326 7443.2 7442.7 3376 9803 9801.6 9795.2
802 6397 6424.8 6422.3 1605 7407 7479.1 7478.1 3381 9670 9807.6 9801.8
802 6355 6424.8 6422.3 1742 7690 7654.0 7657.6 3387 9609 9814.7 9809.6
809 6422 6433.2 6431.5 1744 7616 7659.3 7660.3 3400 9916 9828.9 9826.7
818 6366 6445.9 6443.4 1779 7758 7708.4 7706.1 3419 9866 9854.9 9851.6
831 6436 6461.8 6460.5 1858 7850 7809.0 7809.7 3463 9654 9901.4 9909.2
859 6470 6500.1 6497.5 1939 7773 7915.6 7915.8 3472 9697 9913.4 9921.0
863 6486 6505.3 6502.7 1948 7973 7927.8 7927.6 3481 9727 9931.5 9932.8
871 6561 6515.8 6513.3 1959 8015 7943.1 7942.1 3508 9861 9961.1 9968.2
888 6541 6537.8 6535.7 2154 8150 8199.8 8197.7 3508 9880 9961.1 9968.2
891 6589 6541.8 6539.7 2156 8332 8202.4 8200.3 3563 10117 10044.4 10040.3
896 6589 6547.0 6546.3 2335 8421 8432.7 8434.2 3629 10238 10127.7 10126.8
897 6579 6548.3 6547.6 2371 8436 8476.9 8481.2 3658 9876 10163.3 10164.8
901 6402 6553.7 6552.8 2467 8699 8602.9 8606.7 3736 10138 10273.5 10267.0
953 6616 6624.0 6621.4 2477 8618 8616.4 8619.7 3745 10162 10285.5 10278.8
953 6617 6624.0 6621.4 2595 8829 8771.9 8773.9 3772 10458 10315.1 10314.2
966 6659 6639.6 6638.6 2605 8744 8785.7 8787.0 3786 10341 10334.3 10332.5
975 6607 6652.1 6650.4 2608 8664 8789.9 8790.9 3930 10552 10524.0 10521.2
988 6507 6667.9 6667.6 2641 8848 8830.3 8834.0 3967 10384 10574.8 10569.7

1110 6844 6830.4 6828.4 2645 8797 8835.6 8839.2 3988 10572 10603.2 10597.2
1116 6843 6838.4 6836.4 2709 8792 8926.9 8922.8 4001 10572 10612.4 10614.3
1119 6846 6842.4 6840.3 2735 8909 8957.6 8956.8 4041 10572 10660.0 10666.7
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residual as normally distributed. The test indicated that there was not sufficient evidence. 
As a result of this analysis, Hills and Trucano assumed that the measurement uncertainty 
was normally distributed, uncorrelated, with the following standard deviation: 
 
 m/s7.83=measσ  (3.2) 
 
The probability density function for a univariate normal distribution is given by 
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and d and <d> represent the measurement and the expected value of the measurement. 
We will estimate <d> as part of the model validation process in the following chapters. 
 
We will also consider a second, more complex model for the measurement uncertainty to 
demonstrate the application of the present methodology to non-normal distributions. For 
illustrative purposes, we arbitrarily assume that the measurement uncertainty is 
distributed as a Beta distribution (Miller and Freund, 1985) with a width dub-dlb = 6 σmeas 
(see (3.2)), and the Beta distribution parameters b1=3 and b2=2. The Beta distribution is a 
finite width distribution with upper and lower bounds denoted by dub and dlb. The Beta 
distribution was chosen because it can model a wide variety of statistical data. For 
example, if b1=b2, the distribution is symmetric. Further, if b1=b2=1, the distribution 
reduces to a uniform distribution. The probability density function for this distribution is 
given by 
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3.3.3 The Model Parameters 
 
We recall the general quadratic functional form of the (US, UP) Hugoniot relationship 
(Hertel and Kerley, 1998): 
 
 2

21 )/( pSpSS UCSUSCU ++=  (3.5) 
 
where CS, S1, and S2 are calibration constants based  on (US, UP) data. As discussed in 
Hills and Trucano (2001), the aluminum data of concern here are well modeled by a 
linear relationship. Because of this, we set the constant on the quadratic term in Eq. (3.5) 
to zero 
 
 02 =S  (3.6) 
 
and use least squares to estimate the intercept, CS, and the slope, S1 as well as the 
covariance matrix for these parameters. The resulting regression coefficients and their 
statistics are listed in Table. 3.5. Details of this regression analysis is presented in Hills 
and Trucano (2001). Note that we show the two coefficients as components in the model 
parameter vector αααα .... 
 

Table 3.5: Calibration Constants 
 

  Coefficient Covariance Matrix 
   α1 α2 
 
 α1 (CS) 5344 166.4 -0.0663 
 α2 (S1) 1.305 -0.0663 3.50 E-5 
 
 
Hills and Trucano (2001) investigated the normality of the residuals associated with the 
calibrated model. They found no significant evidence to reject the hypothesis that these 
are normally distributed. Here we will assume two models for the uncertainty in these 
parameters. The first is based on a multinormal distribution, with the expected values and 
the covariance as listed in Table 3.5. The corresponding multivariate probability density 
function for this model is defined by 
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where αααα and <αααα> are the vectors of model parameters and their expected values, and Vα 
is the covariance matrix. 
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The second probability model we consider is based on a normal distribution for α1 and a 
triangular distribution for α2. We arbitrarily chose these distributions to illustrate the 
application of the methodology developed here for more general multivariate 
distributions. The normal distribution for α1 is given by 
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The triangular distribution assumed for α2 is given by 
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The mean and standard deviation for the normal distribution are based on those for α1=Cs 
listed in Table 3.5. Standard deviation is the square root of the (1,1) element in the 
covariance matrix. The lower and upper bounds for the triangular representation of the 
uncertainty in α2=S1 are based on plus or minus three standard deviations of the 
corresponding values from Table 3.5. Note that for this example, we assumed that there is 
no correlation between the model parameters or between the measurements. A summary 
of the distributional parameters for the alternate probability models is listed in Table 3.6. 
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Table 3.6: Distribution Parameters for Alternate Probability Models 

 
 
 Variable Distribution Parameter Value 
 
 α1 (Cs) Normal <α1> 5344 m/s 
   σ 12.90 m/s 
 
 α2 (S1) Triangular α2-lb 1.287 
   α2-ub 1.323 
 
 d Beta dub-dlb 502.2, m/s 
   b1 3.0 
   b2 2.0 

3.3.4 The Physical Model 
 
Our approach to the model calculation is fully defined in Figure 3.3 and is thus a 
simplification of the actual experiment as we suggested above. Our computations will 
treat each experimental (US, UP) point as having been generated by an appropriate 
symmetric impact of 2024 aluminum on 2024 aluminum. This simplified “experiment” is 
defined by an impact velocity UI  that is twice the reported particle velocity for the 
specific data point given in Marsh’s compendium.  
 
For example, a particle velocity of 278 m/s is the smallest reported in Table 3.4. The 
corresponding impact velocity of 556 m/s is required for the symmetric impact that 
should reproduce this data point. Similarly, 4.041 km/s is the highest reported value of 
particle velocity, and an impact velocity of 8.082 km/s is required to reproduce this point. 
The R-H relations can be used to determine that the lowest impact velocity in the data we 
analyze produces a shock wave having a pressure of approximately 44 kbars, which is a 
factor of more than fourteen times the yield stress of 2024 aluminum. In this case, 
therefore, we accept without further discussion that the aluminum can be accurately 
modeled as a fluid rather than as an elastic solid. The equation of state of the aluminum 
thus becomes the only important constitutive description in the problem. At all other data 
points in Table 3.4 the pressure is higher, so this modeling assumption is made for the 
entire range of data that we discuss.  
 
We use the Sandia Eulerian shock wave physics code CTH (McGlaun, et al, 1990; Bell 
et. al., 1998) to simulate the one-dimensional impact of 2024 aluminum on 2024 
aluminum illustrated in Figure 3.3. This model, including details of its implementation, is 
discussed further in Hills and Trucano (2001). 
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Table 3.7: Interpolation Table of Shock Speed as a Function of Particle Speed 

and Model Parameters 
 
Up, m/s Cs, m/s S1 Us, m/s  Up, m/s Cs, m/s S1 Us, m/s 
 
 250.0 5237.120 1.2528 5574.299 2175.0  5379.626  1.2528  8146.057 
 250.0 5237.120 1.2876 5584.302 2175.0  5379.626  1.2876  8226.924 
 250.0  5237.120  1.3224  5591.328 2175.0  5379.626  1.3224  8296.186 
 250.0  5237.120  1.3572  5600.016 2175.0  5379.626  1.3572  8374.474 
 250.0  5308.373  1.2528  5645.378 2175.0  5450.879  1.2528  8222.766 
 250.0  5308.373  1.2876  5654.100 2175.0  5450.879  1.2876  8291.586 
 250.0  5308.373  1.3224  5662.542 2175.0  5450.879  1.3224  8367.459 
 250.0  5308.373  1.3572  5672.953 2175.0  5450.879  1.3572  8442.861 
 250.0  5379.626  1.2528  5717.530 3137.5  5237.120  1.2528  9215.381 
 250.0  5379.626  1.2876  5726.257 3137.5  5237.120  1.2876  9329.407 
 250.0  5379.626  1.3224  5734.736 3137.5  5237.120  1.3224  9426.386 
 250.0  5379.626  1.3572  5743.242 3137.5  5237.120  1.3572  9530.964 
 250.0  5450.879  1.2528  5788.653 3137.5  5308.373  1.2528  9288.138 
 250.0  5450.879  1.2876  5797.378 3137.5  5308.373  1.2876  9398.135 
 250.0  5450.879  1.3224  5805.858 3137.5  5308.373  1.3224  9490.674 
 250.0  5450.879  1.3572  5814.594 3137.5  5308.373  1.3572  9605.582 
 1212.5  5237.120  1.2528  6795.464 3137.5  5379.626  1.2528  9362.063 
 1212.5  5237.120  1.2876  6836.658 3137.5  5379.626  1.2876  9466.073 
 1212.5  5237.120  1.3224  6876.047 3137.5  5379.626  1.3224  9575.774 
 1212.5  5237.120  1.3572  6917.521 3137.5  5379.626  1.3572  9675.540 
 1212.5  5308.373  1.2528  6866.484 3137.5  5450.879  1.2528  9430.747 
 1212.5  5308.373  1.2876  6905.983 3137.5  5450.879  1.2876  9541.455 
 1212.5  5308.373  1.3224  6948.932 3137.5  5450.879  1.3224  9642.970 
 1212.5  5308.373  1.3572  6988.025 3137.5  5450.879  1.3572  9742.838 
 1212.5  5379.626  1.2528  6939.142 4100.0  5237.120  1.2528  10423.750 
 1212.5  5379.626  1.2876  6979.220 4100.0  5237.120  1.2876  10573.920 
 1212.5  5379.626  1.3224  7020.266 4100.0  5237.120  1.3224  10697.530 
 1212.5  5379.626  1.3572  7061.384 4100.0  5237.120  1.3572  10849.030 
 1212.5  5450.879  1.2528  7008.270 4100.0  5308.373  1.2528  10502.210 
 1212.5  5450.879  1.2876  7052.366 4100.0  5308.373  1.2876  10639.890 
 1212.5  5450.879  1.3224  7093.119 4100.0  5308.373  1.3224  10774.770 
 1212.5  5450.879  1.3572  7131.756 4100.0  5308.373  1.3572  10916.260 
 2175.0  5237.120  1.2528  8009.234 4100.0  5379.626  1.2528  10580.560 
 2175.0  5237.120  1.2876  8079.695 4100.0  5379.626  1.2876  10706.400 
 2175.0  5237.120  1.3224  8148.098 4100.0  5379.626  1.3224  10854.930 
 2175.0  5237.120  1.3572  8229.619 4100.0  5379.626  1.3572  10972.300 
 2175.0  5308.373  1.2528  8079.459 4100.0  5450.879  1.2528  10646.880 
 2175.0  5308.373  1.2876  8152.193 4100.0  5450.879  1.2876  10781.010 
 2175.0  5308.373  1.3224  8225.404 4100.0  5450.879  1.3224  10913.500 
 2175.0  5308.373  1.3572  8294.047 4100.0  5450.879  1.3572  11052.840 
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A response surface approach was used to represent the behavior of the model over the 
range of parameters.  Specifically, CTH was used to evaluate Us on a 4x4x5 grid of Cs, 
S1, Up values, respectively. Trilinear interpolation was then used to evaluate Us 
throughout the grid. The grid values are listed in Table 3.7. The response of Us is well 
modeled by linear interpolation on Cs, S1, Up over the range of values shown in the table 
(see Hills and Trucano, 2001). A more nonlinear response would require a denser grid for 
trilinear interpolation, or a higher order interpolating function, or both.  
 
 
 

 

U p, m/ s

U
 s 

m
 / s

 

0 1 0 00 2 00 0 3 00 0 40 0 0 50 0 0 5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

Us m ea s
Us r e sp

 
 
 
 
Figure 3.5: Predicted and Observed Shock Speeds as a Function of Particle 

Speed: The predicted speeds are based on tri-linear interpolation 
using the values of Table 3.7 

 
 
Table 3.4 gives 120 particle velocities of the measurements, the measured shock speed, 
the predicted shock speed using CTH directly, and the predicted shock speed using the 
response surface representation at the mean model parameters listed in Table 3.5. Note 
that the agreement between the direct CTH predictions and the response surface 
predictions is very good and the response surface does indeed model the numerical 
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response well. This is not surprising considering that the model is linear in the 
parameters, for this particular application, over this particular range of particle velocities. 
A plot of the predicted shock speed using the response surface evaluated at the mean 
values of the parameters and the experimental data is presented in Figure 3.5. The results 
show that the predicted and measured shock speeds agree well. We will next evaluate 
whether there is statistical evidence that the agreement is good relative to the modeled 
uncertainty in the model validation exercise. 
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4.0 Maximum Likelihood Method 
 

4.1 Introduction 
  
In the previous work by Hills and Trucano (1999, 2001), the uncertainty in the model 
predictions was added to the uncertainty in the experimental observations to obtain a total 
uncertainty for the differences between the model predictions and the experimental 
observations. While this approach is conceptually simple, it can be computationally 
expensive since we must numerically generate n-dimensional surfaces describing the 
constant probability density function (PDF) surfaces to define cumulative probability. 
While the generation of such surfaces is straight forward for predictions and observations 
that are both normally distributed, the approach is more difficult when the predictions and 
observations are modeled by different distributions. For nonlinear problems, the 
probability distribution for the predictions can be non-normal, even though the 
distributions for the model parameters are normal.  
 
In the present work, we take a different approach. Rather than defining the entire PDF 
cloud for the n-dimensional space and then evaluating the probability of a model 
prediction/experimental observation, we use optimization to search through this space to 
find the point of maximum likelihood of the joint PDF. As in the previous work (Hills 
and Trucano, 1999, 2001), we focus on two sources of uncertainty; 1) the uncertainty in 
the measurements, and 2) the uncertainty in the model parameters. We assume that the 
uncertainty in the measurements and the uncertainty in the model predictions are 
independent.  
 
The joint probability density function of a particular measurement vector d occurring, and 
a particular model parameter vector αααα  occurring, is given by the products of the 
individual probability densities: 
 
 PDF(d, αααα ) = PDF(d) PDF( αααα ) (4.1) 
 
It is important to note that this joint probability density function is not necessarily the 
same as the joint PDF of the observations and the model predictions: 
 
 PDF(d, p) = PDF(d) PDF(p) (4.2) 
 
This difference is significant and we will return to this point at the end of this chapter. 
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Given a set of experimental measurements and a model for their uncertainty, and a set of 
mean model parameters and a model for their uncertainty, we wish to evaluate the 
probability that the model is consistent with the observations and the parameter 
uncertainty.  There are two problems that we face: 
 

1. While we have a statistical model for the model parameters that includes some 
measure of central tendency (i.e., mean, expected value, or mode) and spread 
(i.e., variance or min-max), we don’t know the actual values of the model 
parameters αααα  for this particular realization of the validation experiment.  

 
2. In general, we wish to include the case of only one realization of the 

experiment in our development. Thus, we have only one realization of the 
measurement vector and we need to somehow estimate something about the 
true values of the measurements.  

 
Here our approach is to use maximum likelihood to estimate the most likely value for the 
model parameter vector; for this particular realization of the validation experiment, and 
given that the model is valid. We then evaluate the probability that such parameters are 
obtained for a valid model. The assumptions made in applying this approach are as 
follows: 

 
1. We assume that the measurements are independent of the model parameters. 

We also assume that the measurement distribution has one peak and is thus 
unimodal.  

 
2. The model for the uncertainty in the model parameters is correct. 

 
3. The functional form of the uncertainty in the measurements is correct. Our 

measure of spread has the correct value (i.e., standard deviation, max-min). 
 

4. We expect the model to provide predictions that agree with the mode (i.e., the 
location of maximum probable density) of the measurements, if the model is 
valid and if the true values of the model parameters are used. The approach 
can be easily changed to use the expected value or median rather than the 
mode.  

 
We will show later that this method is equivalent to the methods applied in previous 
work (Hills and Trucano, 1999, 2001) for models locally linear in the model 
parameters and for model parameters and measurements that are normally distributed. 
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4.2 Geometry 
 
We now consider the geometric interpretation of this approach. A similar interpretation is 
presented in Hills and Trucano (2001) for the previous developed metrics. Here we 
extend this interpretation to explicitly account for the subspace spanned by the model. 
 
For the purpose of this discussion, assume that we have 3 measurements, θ1, θ 2, and θ 3. 
We also assume that we have a model that predicts these 3 measurements and is based on 
the 2 parameters α1 and α2 that contain significant uncertainty. The corresponding 
validation space is shown in Figure 4.1. Note that we are defining the space using the 3 
measurements. These could be measurements taken from different locations or 
measurements taken at the same location at different times, or a combination of both. 
This space can easily be generalized to n measurements and m parameters by considering 
an n-dimensional space. Note that for the case illustrated in Figure 4.1, we have more 
measurements than we have model parameters. Thus, our model is restricted to a 
subspace of the measurement space. In this case, our model’s dependence on the 
uncertain parameters is represented as a 2 dimensional surface in the 3 dimensional space. 
Also shown in the figure are probability density function clouds for the measurements, 
the model parameters, and the uncertainty in the model predictions due to the uncertainty 
in the model parameters. For the case for which we have a 1-1 mapping between the 
model predictions on the 2 dimensional surface and the values of the parameters, we can 
assign a α1 - α2 pair to each location on the model surface as shown in the figure. 
However, the 1-1 mapping is not a requirement of the present approach. 
 
We now consider the geometric interpretation from a model validation perspective. 
Figure 4.1 shows a vector of measurements that does not lie on the model surface. For the 
case of more measurements than model parameters, we would expect the measurement to 
lie off the model surface due to measurement error. If we have more model parameters 
than measurements, then this may not be the case – i.e., there may be enough degrees of 
freedom in the model parameters to fit the model exactly to the measurements. However, 
the fit may require that the parameters be chosen from regions of low probability – i.e., 
chosen on the fringes of the PDF clouds for the model predictions and the model 
parameters. This would cast doubt on the validity of the model. 
 
In general, the measurements will lie off the model surface when we have more 
measurements than uncertain parameters, even if the model is valid. We now ask the 
question – what relationship must hold between the measurement cloud and the 
prediction cloud if the model is correct? We make the following observations: 
 

1. We really don’t know what the true values of the model parameters are for this 
realization of the validation experiment. We do have a model for the expected 
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values of the parameters and for the probability distribution. We can, in principle, 
propagate this through the model to obtain the corresponding model for the 
uncertainty (PDF cloud) on the model prediction surface as shown in Figure 4.1. 
If we know the true values of the parameters for this realization of the experiment, 
then our model prediction would be a point somewhere on the prediction surface 
within the PDF prediction cloud. 

 
2. We really do not know the true value of the measurement vector. We only know 

what we observed and that our observations contain errors of the assumed form. 
The true value is probably at some other location in the validation space – perhaps 
on the model surface.  

 
So what do we expect out of a valid model and the corresponding measurements? We 
would like the true value of the measurement vector to equal the model predictions using 
the true value of the parameters. Unfortunately, we know neither the true values of the 
measurements nor the true values of the parameters.  We do know (or assume we know) 
the expected value of the model parameters, and we have one observation of the 
measurement vector with the associate uncertainty. However, we don’t know the 
expected value of the measurement vector. In terms of Figure 4.1, we don’t know the 
location of the cloud in the validation space. We just know that it contains the 
measurement. 
 
Here we assume that if we were somehow able to repeat the experiment many times, 
without varying the true values of the model parameters (for example – use the same test 
specimen over and over), then the model predictions of the measurements for a valid 
model using the true parameter values would be equated to some measure of central 
tendency of the resulting measurement distribution. The choice of the measure of central 
tendency is somewhat arbitrary. Here we choose to use the mode, which is the location in 
the measurement distribution that is most likely – i.e., where the probability density 
function has a maximum. We could also use the median or the expected value. In fact, 
these three measures of central tendency are equivalent if the distribution is symmetric. 
Based on this choice, we expect the mode of the measurement vector to lie on the model 
surface of Figure 4.1 for a valid model. For the symmetric measurement distribution 
shown in Figure 4.1, the mode is at the center of the measurement PDF and should lie on 
the model surface. Clearly, the mode (or any other measure of central tendency for the 
distribution) does not lie on the model surface for the case shown in Figure 4.1. We 
would thus have to question the validity of the model illustrated in the figure based on 
this measure. 
 
Our approach is to estimate the maximum likely values for the mode of the measurement 
vector and the true model parameters, assuming that the model is valid. We then evaluate 
the probability of these values for a valid model. If the probability is small, we question 
the validity of our model.  
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Figure 4.1: Geometry of the proposed validation metric.
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Figure 4.2 shows another graphical interpretation of the maximum likelihood process. 
Here we add dimensions to the space of Figure 4.1 to represent the model parameters 
shown. For the 3 measurements and 2 model parameter case, we would actually have a 5 
dimensional space. For this case, the model appears as a 2 dimensional surface that runs 
through 5 dimensional space. We now show a joint PDF cloud in terms of the model 
parameters and the measurements. Again we assume that the expected value for the 
parameter distribution is known. The center (for a symmetric cloud) of the cloud should 
thus lie on the vertical line. We don’t know where on this line it lies, since we don’t know 
the mode (or expected value or median) of the measurements. However, we will estimate 
this location and the location of the true values of the model parameters, such that the 
resulting estimates are most likely, given the experimental data. Since we are assuming 
that the modes of the measurements are equal to the model predictions, when we use the 
true values for the model parameters, we must have that both of these lie at the same 
values for θ as shown in Figure 4.2.  To estimate the values of the true parameters, we 
move the PDF cloud up and down along the vertical line such that the joint probability of 
the true values for the model parameters and the experimental observations is maximized. 
Note that as the PDF cloud is moved down, the point at the same θ on the model surface 
moves closer to the center of the PDF cloud, increasing the PDF value for the 
corresponding model prediction. However, as the cloud moves down, the experimental 
measurements are now in a location of lower PDF. Since we are interested in the joint 
PDF, the optimum location for the cloud will lie somewhere in between. Once we 
establish the location of the cloud, we can then evaluate the probability of obtaining this 
set of parameters and this set of measurements for a valid model. 
 

4.3 Maximum Likelihood Procedure 
 
Any suitable optimization routine can be used to find the maximum likelihood values for 
the location of the cloud. A function evaluation routine must be provided to the 
optimization routine, which evaluates the objective function given a guess for the 
parameter vector αααα. Here the function evaluation routine should do the following: 
 

1. Given the vector of parameters αααα , evaluate the corresponding predictions, 
which we are assuming are equal to the mode of the measurements. This 
locates the PDF vertically in Figure 4.2. 

 
2. Given the vector of parameters αααα  and the vertical location of the PDF, 

evaluate the joint probability density of the measurements and the parameters 
using Eq. 4.1. Since most optimization routines minimize rather than 
maximize, return the negative of the joint probability density to the calling 
optimization routine. 
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Figure 4.2: Maximum Likelihood Estimate 

 
 
This procedure is fairly straightforward and we will provide more details on the process 
in the following chapter. 
 

4.4 Significance of the Estimated Parameters 
 
Once we have evaluated the parameter values using the procedure described above, we 
must evaluate the probability of obtaining these values for a valid model. The above 
procedure provides the most likely values for the model parameters and for the modes of 
the measurements; given the observed measurements, and given that the model is correct. 
In evaluating the parameters, we applied the constraint that the model predictions, using 
the estimated true values of the parameters, are consistent with the mode of the 
measurement distributions. We searched through the space of parameters to find those 
parameter values that result in the maximum joint probability density, given the constraint 
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that the model predictions (using the true value of the model parameters) agree with the 
mode of the measurements. We now ask the question – what is the probability of 
obtaining a lower value for PDF given a valid model? 
 
For PDFs that are normally distributed, this question can be answered quite easily since 
we can use the χ2 distribution (Beck and Arnold, 1977; Hills and Trucano, 2001). We 
will show this special case for several of the examples that are presented in the following 
chapter. 
 
If we are dealing with more complex distributions or joint distributions of several kinds (a 
normal, triangular, and Beta, for example), we will evaluate the probabilities numerically. 
This process is surprisingly straight forward if we use a Monte Carlo approach. The 
process is as follows: 
 

1. Generate a random number for each of the distributions (i.e., for each parameter 
and each measurement) and evaluate the corresponding joint probability density 
(i.e., the products of the individual probability densities if the random variables 
are independent). The spread of the distributions should be the same as those used 
for the maximum likelihood process described above. The locations of the 
distributions don’t matter (i.e., its mean, mode, or median) since we are really 
only interested in the probability density of the random number, not its value. 

 
2. Repeat this process many times and count the number of times the joint 

probability density is less than that obtained from the maximum likelihood 
process. 

 
The percentage of the time that the value for the probability density obtained from this 
Monte Carlo process is smaller than that obtained from the optimization procedure, 
represents an approximation to the cumulative probability that a valid model would have 
a PDF less than that estimated. Here we refer to this cumulative probability as the 
significance. If this significance is small, then the probability that a valid model would 
produce the observed differences between measurement and prediction is small and we 
would have little confidence in the model. Note that the Monte Carlo procedure does not 
require any evaluations of the predictive model. It simply requires the generation of 
random numbers, the evaluation of the joint probability density of these numbers, and the 
count of the number of times the joint probability density is less than that already 
obtained from the optimization process. Because of this, the Monte Carlo process requires 
little CPU resources. 
 
We will illustrate the Monte Carlo approach for the shock physics application using the 
mixture of distributions described in Sections 3.3.2 and 3.3.3. 
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4.5 Discussion 
 
At first glance, the maximum likelihood procedure described above is suspiciously 
similar to model calibration. In fact, the procedure used here is a form of model 
calibration - one that uses some prior knowledge of the model parameter distributions and 
the measurement distributions to estimate the parameters. This methodology then takes an 
important additional step. It asks the question – what is the significance of the estimated 
model parameters and the observed measurements, given a valid model? If this 
significance is small, then we have sufficient evidence to question the validity of the 
model. What we are really doing is using a maximum likelihood procedure to estimate 
the model parameters, and then asking the question – are these parameters reasonable 
given what we know about their distributions and those of the measurements?  
 
Note that this approach contrasts with model calibration when we have no prior 
knowledge of the parameters. For example, if we were to use ordinary least squares to fit 
the model to the measurements, then the parameter values that would be chosen would 
have a residual vector (difference between the model predictions using these parameter 
values and the experimental observations) that is orthogonal to the model surface shown 
in Figure 4.1.  In other words, if we were to project the measurement shown in Figure 4.1 
down onto the model surface, then this would be our nonlinear, ordinary least squares 
estimate of the model parameters. We are forcing the model to best fit the experimental 
data, regardless of the probability density of the parameters. However, as Figure 4.1 
suggests, the resulting model parameters may be near the edge of the prediction PDF 
suggesting that such parameters are unlikely. If we then ask the question – are these 
parameters and measurements likely? – then we could use the significance of these 
parameters and measurements as a metric of model validity. 
 
Our present approach is really asking a different question than that asked in the previous 
work by Hills and Trucano (2001). Here we ask what the significance is of a set of 
observed measurement and calibrated model parameters, given a valid model and the 
probability distributions for the measurements and the parameters. If the significance is 
small, then we have good reason to suspect the validity of the model. The approach used 
previously by Hills and Trucano evaluated the significance of obtaining the observed 
differences in the model predictions and the experimental observations. Both of these 
metrics are appropriate measures to evaluate the validity of a model. In fact, the metrics 
obtained by the two approaches will be the same for the normal distributions considered 
by Hills and Trucano when coupled with a sensitivity analysis used to propagate 
parameter uncertainty through the model. We will show this equivalence in Chapter 6. 
 
This above represents an approach to defining model validation metrics that are based on 
the physical model and the models for the uncertainty in the measurements and in the 
model parameters. We are in-fact making several underlying assumptions in this 
approach. These are: 
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1. The use of a statistical metric based on joint probability is an appropriate 

metric. We are assuming that the use of a statistical metric based on joint 
probability is appropriate rather than some other metric, such as the 
maximum difference between a model prediction and the measurements. 
The advantage of this approach is it forces us to quantify the overall 
uncertainty in the validation exercise, which in-turn allows us to evaluate 
whether the uncertainty in the validation exercise is sufficiently small 
relative to the acceptable level of uncertainty in the anticipated application. 
Once we decide to measure model validity in terms statistical consistency 
with the data, then the form of the validation metric is by the validation 
exercise uncertainty.   

 
2. The underlying distributions for the uncertainty in the measurements and 

the model parameters are correct. Since the definition of our metric 
follows directly from the form of the models for uncertainty in the model 
parameters and in the measurements, our validation metric assumes that 
these models are correct. If we find that the model predictions are not 
consistent with the experimental observations, then all we can really say is 
that the physical model, coupled with the statistical models for uncertainty, 
are not consistent with the data. So, we are really testing the models for 
uncertainty as well as the physical model. 

 
3. A valid model’s predictions, using the true value for the model parameters 

for a validation exercise, is equal to the value obtained for some measure 
of central tendency of the uncertainty in the measurements. For example, if 
our measurement at some location and time is normally distributed due to 
uncertainty, then we are assuming that if we repeat this experiment many 
times, using the same experimental apparatus (such that the model 
parameters don’t change), the distribution of the measurements at this 
location and time is centered on a valid model’s prediction. The choice of 
what measure of central tendency to use on the measurements becomes 
more arbitrary for non-symmetric distributions. We could choose the 
mean, mode, or median. Judgment on which measure of central tendency 
to use depends on the type and quality of data used to define the 
measurement uncertainty.  

 
4. The true values of the model parameters are the maximum likely values, 

given the joint PDF for the measurements and the model parameters, and 
the assumptions defined in items 1-3 above. The use of maximum 
likelihood approach is well accepted (see Beck and Arnold, 1977) when 
dealing with nonlinear systems and non-normal distributions. As will be 
shown in a latter chapter, this approach, and the non-optimization 
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approach developed in Hills and Trucano (1999, 2001) give the same 
metric for locally linear models with normally distributed model 
parameters.  

 
5. Finally, if we define a threshold of significance below which the model is 

considered invalid, say at the 5% level, then we have basically assumed 
that we have a reason to use this value for the threshold. Traditionally, 
statisticians use threshold values for the level of significance as 10%, 5%, 
2%, or 1% in statistical inference. The choice of which threshold to use is 
based on the trade-off between the probability of committing a Type I 
error – rejecting a good model, and the probability of committing a Type II 
error – failing to reject a bad model. As one provides more benefit of 
doubt to the model, i.e. uses a smaller threshold, one also increases the 
chances of failing to reject a bad model. Ideally, the choice of the level of 
significance should be tied to the anticipated application of the model, the 
cost of accepting a bad model, and the cost of rejecting a good model. For 
example, if the model validation experiments are performed over the same 
range of conditions as the anticipated application, and a bad model 
performs well over this range, then the cost of not rejecting this model 
may be small since this model was found to represent the application over 
the anticipated range of conditions. We need to develop methodology to 
relate the results of our validation experiments to the predictions of our 
anticipated application. This will help to clarify the relation of threshold 
significance in the validation experiments to acceptable uncertainty in the 
anticipated application. Such work is anticipated in the near future. 
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5.0 Applications 
 

5.1 Introduction 
 
We are now ready to demonstrate this maximum likelihood approach outlined in the 
previous chapter to the applications introduced in Chapter 3. We begin with the heat 
conduction problem. 

5.2 Application to the Heat Conduction Data 
As discussed in Chapter 3, we assume that the PDF for the uncertainties in the 
measurements and in the model parameters are normally distributed with the statistics 
listed in Tables 3.2 and 3.3.  
 
We are now ready to estimate the most probable values for the mode of the measurements 
d and the model parameters αααα .  The mode for the PDF in the measurements is equal to 
the expected value of d for a symmetric distribution, such as the normal distribution 
considered here. So in this case, we can equivalently estimate <d> and the αααα  that has 
maximum joint likelihood, subject to the constraint imposed by the model. The joint PDF 
of the model parameters and the experimental data for our normal distributions is given 
by (see Beck and Arnold, 1977) 
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where n is the number of measurements and m is the number of model parameters. 
Combining the exponentials gives 
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  (5.2) 
 
We now introduce the constraint associated with the model. If the model is correct, then 
we expect that the model, when evaluated at the true value for αααα ,,,, will give predictions 
that agree with the expected value (or equivalently the mode) for the measurements d. In 
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other words, the model m gives 
 
 <d> = m( αααα ) (5.3) 
 
Substituting Eq. (5.3) into (5.2) gives 
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  (5.4) 
We wish to choose the αααα      that maximizes the above PDF(d, αααα ). This is equivalent 
choosing the αααα      that minimizes the following: 
 
 )()())(())(( 1T1T2 ><−><−+−−= −− αααααα αVmdVmd dr  (5.5) 
  
The known variables in Eq. (5.5) are the measurement vector d, the expected vector of 
parameters < αααα >, and the covariance matrices Vd and ααααV . The only unknown in Eq. (5.5) 
is the vector of model parameters    αααα to be estimated. As discussed in Chapter 3, we use 
the sensitivity based approximation to the model given by (3.1) for m( αααα ). Standard 
optimization programs (such as those provided by IMSL, 1997, or Mathematica, 1996) 
can be used to find the αααα     that minimizes Eq. (5.5). Here we used the Mathematica 
routine FindMinimum to find the parameters αααα  that minimizes Eq. (5.5), which is 
equivalent to maximizing Eq. (5.4). The resulting parameter values are listed in Table 5.1. 
The r2 at our minimum was found to be 
 
 r2 = 14.60 (5.6) 
 
 

Table 5.1: The Most Likely Model Parameters for the Heat Conduction Data 
 
  
  α1    (i.e., thermal conductivity, k) 14.70 W/m-°C 
 
 α2 (i.e., volumetric head capacity, C) 3.885x106 J/m3-°C 
 
 
 α3    (i.e.,    contact conductance, h) 1692. W/m2-°C 
 
 
We would now like to know the probability of obtaining this r2 or a larger value (i.e., a 
smaller PDF value) for a valid model. For the case of the multinormal distributions 
considered here (i.e., Eq. (5.4)), the cumulative PDF for r2 is given by the 
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( )k2χ distribution, where k is the number of degrees of freedom (Beck and Arnold, 1977). 
In our case, we have 10 measurements that correspond to 10 degrees of freedom. The 
probability that we could have an r2 > 14.60 is given by (see any statistical text book that 
lists probabilities for the ( )k2χ  distribution) 
 
 
 P( 2χ  (10) > 14.60) = 0.147 (5.7) 
 
Note that the probability of obtaining these results or worse (i.e., the significance) given 
that the model is valid, is 14.7%. Thus a correct model would give this large of a r2 for 
14.7% of the realizations of the model validation exercise. Normally, we would not reject 
the model unless we obtain a smaller level of significance, say 5%, to give the benefit of 
the doubt to the model. Therefore, this data does not provide sufficient evidence to reject 
the model at the 95% confidence level (i.e., 95% confidence that we do not reject a valid 
model). Nor does it provide sufficient evidence to reject the model at the 90% confidence 
level (or level of significance = 10%). 
 

5.3 Application to Shock Physics Application 
 
We now demonstrate this approach using the shock wave physics application. As 
discussed in Chapter 3, Hills and Trucano (2001) used the Kolmogorov-Smirnov test to 
evaluate the normality of the measurement and model parameters uncertainty and did not 
find sufficient evidence to reject the normality of these distributions. We therefore use 
multi-normal distributions to model the uncertainty in the measurements and in the model 
parameters. A summary of the statistics is provided in Table 5.2 (see Eq. (3.2) and Table 
3.5). 
 

Table 5.2: Statistics for the Shock Physics Application 
 

 Parameters Expected Values Covariance Matrix 
   α1 α2 
The model 
 α1    (i.e.    CS) 5344 166.4 -0.0663 
 α2    (i.e.    S1) 1.305 -0.0663 3.50 E-5 
 
The measurements 
 di, i=1,120 <di>, unknown 83.72 I  
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Given the measurement vector of the 120 measurements provided in Table 3.4, and a 
response surface model for the CTH defined by Table 3.7, we find the    αααα  that minimizes 
r2 using the IMSL routine bconf (IMSL, 1997).  The degrees of freedom for this example 
is the number of measurements and is k=120.  The results of the optimization process are 
shown in Table 5.3. We also show the r2 value obtained and the cumulative probability of 
obtaining a larger r2 for a valid model. Note that the probability of obtaining a larger r2 is 
25.9%, which is the significance of this result. Thus, if we were to repeat this exercise 
many times, we would expect that a valid model would give worse results (larger r2) 
approximately 25.9% of the time. Generally, one does not reject a model as valid unless 
there is a much smaller probability (say 5%) that a valid model could produce such 
results. So based on this test, we do not reject the model as valid. The measurements are 
statically consistent with the model. 
 
 
Table 5.3: The Most Likely Model Parameters for the Shock Physics Application  
 
  α1    (i.e.    CS) 5345.9 m/s 
 α2     (i.e.    S1) 1.2978  
 minimum r2 129.58 
 P( 2χ (120) > 129.58) 25.9% 
 
 

5.4 Non-Normally Distributed Parameters and Measurements 
 
The methods used in the previous sections took advantage of our knowledge that the 
measurement and parameter uncertainty was normally distributed. Specifically, we used 
the 2χ (k) statistic to evaluate the probability that the valid model would have differences 
between prediction and observations as large or larger than those observed. This 
distribution is based on our underlying multinormal distributions for the measurement 
and model parameters uncertainty. How would we apply this procedure if our underlying 
distributions were not normal?  
 
One of the advantages of the maximum likelihood approach is it can easily be applied to 
nonlinear models with non-normally distributed measurements and parameters. To 
demonstrate this, we apply the method to the shock physics problem considered above. 
Specifically, we use the response surface approximation for the dependence of the shock 
speed on the particle velocity and the two EOS model parameters. To illustrate the 
application of various types of probability distributions, we assume that the uncertainty in 
the Cs model parameter is normally distributed, the uncertainty in the S1 model parameter 
is triangularly distributed, and the uncertainty in the measurements are well represented 
by a Beta distribution, as introduced in Chapter 3.  The normal distribution requires two 
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parameters to define it – the mean and standard deviation. The triangular distribution is 
also based on two parameters, a lower and an upper bound of the distribution. In contrast, 
the Beta distribution requires 4 parameters – the lower and upper bounds, and two 
additional parameters defining the shape of the distributions. Because of the extra 
parameters of the Beta distribution, it can be used to approximate the distributions for a 
wide variety of applications for which a lower and upper bound exist. A special case of 
the Beta distribution is the uniform distribution.  
 
Equations (3.4), (3.8), and (3.9) define the functional relationship for the three 
distributions. Table 3.6 lists the distributional parameter used here. This table is 
reproduced below as Table 5.4.  
 
 
 

Table 5.4: Distribution Parameters for Alternate Probability Models 
 

 
 Variable Distribution Parameter Value 
 
 α1 (Cs) Normal <α1> 5344 m/s 
   σ 12.90 m/s 
 
 α2 (S1) Triangular α2-lb 1.287 
   α2-ub 1.323 
 
 d Beta dub-dlb 502.2, m/s 
   b1 3.0 
   b2 2.0 
 
The joint probability density for the two model parameters and the 120 measurements is 
given by 
 

PDF(αααα, d, p) =  PDFnormal(<α1>, σ, α1) PDFtriangular(α2-lb, α2-ub, α2)  
× PDFbeta(d1-lb, d1-ub, b1, b2, d1) … PDFbeta(d120-lb, d120-ub, b1, b2, d120) (5.8) 
 

Where αααα  and d are the vectors of 2 model parameters and 120 experimental 
measurements and p is the vector of the parameters defining the probability distributions 
(Column 3 in Table 5.4). Rather than evaluate (5.8) at the values for the parameters and 
measurements, we evaluate the joint PDF using normalized PDFs. This improves the 
efficiency of the algorithm somewhat during the last step of evaluating cumulative 
probabilities. Using (3.4b), (3.8b), and (3.9b) to normalize the parameters, (5.8) can be 
written as 
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PDF( αααα , d, p) =  PDFnormal(xn) PDFtriangular(xt)  
                            ×  PDFbeta(b1, b2, xb-1) … PDFbeta(b1, b2, xb-120) (5.9) 

 
 
We assume that our model, when evaluated at the true model parameters, will give us the 
mode for the measurements. 
 
 dmode = m( αααα ) (5.10) 
 
We could also assume that the model, when evaluated at the true values for the 
parameters, gives us the expected value for the measurements. For the previous examples, 
both of these approaches were equivalent since the normal distribution is symmetric. 
However, for the case of a non-symmetric Beta distribution (i.e., b1 = b2), these 
approaches give somewhat different results since the expected value and the mode occur 
at different locations in the distribution. The expected value (mean) and the mode for the 
Beta distribution occurs at  
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>=<  (5.11) 
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−
=

bb
bx  (5.12) 

 
We need to define the upper and lower bounds of the Beta distribution for each 
measurement. These bounds will be a function of the estimated value for the vector dmode.  
For purposes of illustration, we choose the width of the Beta distribution to be six times 
the standard deviation estimated for the measurement uncertainty (see Table 5.4). Given 
an estimated value for dmode, our upper and lower bounds are given by 
 
 
 modemodelb 83.73 x⋅−= dd  (5.13) 
 
 )1(83.73 modemodeub x−⋅+= dd  (5.14) 
  
While we know the width of the Beta distribution, we are using the maximum likelihood 
procedure to estimate the location of the distribution.  
 
We are now ready to apply the maximum likelihood technique. To find the modes of the 
measurements and model parameters that are most likely, we use the gradient based 
minimization routine IMSL routine bconf (IMSL, 1997) to search over the model 
parameter space as follows: 
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A function evaluation routine must be provided that evaluates the objective function 
given a guess for the parameter vector αααα . Our routine performed the following 
 

1. Evaluate the corresponding most likely measurements using the response surface 
approximation to Eq. (5.10) 

 
2. Evaluate the corresponding lower and upper bounds for the measurement 

distributions using the parameters in Table 5.4 and Eqs. (5.12) through (5.14). 
 

3. Using the results of items 1 and 2 and the parameters listed in Table 5.4, evaluate 
the resulting joint probability density from Eq. (5.9). Return the negative of the 
joint probability density to the calling routine bconf. The negative was returned 
since we wish to maximize rather than minimize the probability density. 

 
4. The previous 3 steps are repeated for different iterations on the parameter values 

αααα     until the minimum of (-PDF( αααα , d, p)) is found. 
 
Table 5.5 lists the resulting parameter vector that maximizes the joint probability density. 
The corresponding probability density is also listed. Note that these parameters are 
somewhat different than those shown in Table 5.3. We expect this to be true since 
different probability distributions have been assumed for the model parameters and the 
experimental measurements. Given these estimates for the model parameters, we can use 
(5.9) to obtain the corresponding estimate of the modes for the measurements. We now 
need to evaluate the probability of obtaining these model parameters and modes, given 
that the model is valid. 
 
 

Table 5.5: Maximum Likelihood Parameters 
 
 
 Parameter Estimated Value 
 
 α1 (Cs) 5342 m/s 
 α2 (S1) 1.304 
 max(PDF( αααα , d, p)) 3.270 x 1017 
 
 
The approach used here, and introduced in Chapter 4, is to evaluate the cumulative 
probability outside the equal probability density surface that passes through our estimated 
parameters/measurements using a Monte Carlo technique.  
 
If our model is valid, our uncertainty will be due only to uncertainty in the model 
parameters and the experimental measurements. The PDF for our uncertainty is defined 
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by (5.9). We use the estimates for the parameters (Table 5.5) in Eq. (5.9) to obtain the 
corresponding joint probability density. We would like to evaluate the cumulative 
probability of obtaining this probability density, or smaller, to evaluate the significance of 
the estimated model parameters and the observed measurements given that the model is 
valid. The Monte Carlo procedure discussed in Chapter 4 is used and does not require any 
additional model evaluations. Specifically, we do the following: 
 

1. Generate random values for the normalized model parameters and the 
normalized measurements and evaluate the joint PDF using (5.9). 

 
2. Count the percentage of points that the resulting PDF < max(PDF( αααα , d, p)) 

(see Table 5.5). This represents the cumulative probability or significance that 
a model validation experiment with a valid model would have values for the 
measurements and parameters with less probability density than that observed 
here.   

 
Here we used 50,000 sets of random numbers (each set is comprised of a unit normal 
random number, a triangular distribution random, and 120 Beta distribution random 
numbers) to generate the cumulative probability. The results were 49863 of these sets of 
random numbers had a joint PDF that was less than that given in Table 5.5. Thus we can 
say that the probability of a good model having a PDF less than that observed is 99.7%. 
This is quite large, indicating that there is no evidence to reject the model at 99.7% 
significance. Generally, we don’t reject the model until we are at significantly small level 
of significance, such as 5%, because we want the probability of rejecting a good model to 
be very small. Note that the 99.7% level obtained here, is significantly larger than that 
obtained using normal distributions. This is because the alternative distributions used 
here have more cumulative probability outside the constant PDF that corresponded to the 
maximum likelihood model prediction than was the case for the normal distributions.  
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6.0 Equivalence to Previous Metric  
 
 
In previous work (Hills and Trucano, 2001), the metric used to measure model validity in 
the presence of normally distributed predictions and experimental measurements was 
 
   ))(()())(( 1T2 ><−+><−= − αα mdVVmd mdr  (6.1)  
 
This expression was derived by looking at the uncertainty in the differences between 
model predictions and experimental observations. Vm is the covariance matrix for the 
model predictions. Hills and Trucano found that r2=129.6 by this metric for the data set 
used here. In contrast, here we minimized (see Eq. (5.5)) 
 
 )()())(())(( 1T1T2 ><−><−+−−= −− αααααα αVmdVmd dr  (6.2)  
 
Note that the minimum r2 obtained for the maximum likelihood estimate (Table 5.3) 
obtained here was 129.58. This agrees with the r2=129.6 value obtained by Hills and 
Trucano using Eq. (6.1). This suggests that in some sense these metrics are related for this 
case. 
 
Hills and Trucano (2001) used a sensitivity analysis to approximately relate changes in 
the model predictions to changes in model parameters: 
 
   )()()( ><−<+><≈ αααααααααααααααα Xmm  (6.3)  
 
where the sensitivity matrix is given by 
 
 )( ><∇= αααααααα mX  (6.4)  
 
This sensitivity matrix was used to estimate the covariance matrix for the model 
predictions  
 
 TXXVVm αααα=  (6.5)  
 
Using Eq. (6.5) in (6.1) gives 
 
   ))(()())(( 1TT2 ><−+><−= − αα α mdXXVVmd dr  (6.6)  
 
We see that this metric is not of the same form as Eq. (6.2). However, if we evaluate Eq. 
(6.2) at those values for <d> and αααα  that minimize Eq. (6.2), and we use the sensitivity 
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analysis approximation, Eq. (6.3), for the model, then we anticipate that the two metrics 
may be equivalent. We now show that this is true. 
 
We begin by using the sensitivity analysis approximation for the model that was used in 
previous work. Using (6.3) in (6.2) gives 
 

 
)()(

))()(())()((
1

α
T

1T2

><−><−+

><−−><−><−−><−=
−

−

αααα

αααααα

αV

XmdVXmd dr
 (6.7)  

or 
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−−

−−
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mdVXXVX

mdVmdV

dd

dr
 (6.8)  

 
We now determine values of αααα  that minimize Eq. (6.8) by taking the gradient with 
respect to α  and set the result to zero. 
 
 0))((2-))((2 1T1T12 =><−><−+=∇ −−− ααααα mdVXXVXV ddr  (6.9)  
 
or 
 
 ))(())(( 1T1T1 ><−=><−+ −−− αααα mdVXXVXV dd  (6.10)  
 
Using (6.10) in (6.8) gives the minimum value for r2: 
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  (6.11)  
or 
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  (6.12)  
or 
 

( ) )) TTT ><−+><−−><−><−= −−− αααααααααααααααααααααααα αααα (())(())(( 1112
min XVXVmdVmd ddr   

  (6.13)  
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Eq. (6.10) gives 
 
 ))(()()( 1T11T1 ><−+=><− −−−− ααα α mdVXXVXV dd  (6.14)  
 
Using Eq. (6.14) in (6.13) leads to 
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or 
 
 ( )( ) ))(())(( 1T11T111T2

min ><−+−><−= −−−−−− αα α mdVXXVXVXVVmd ddddr   
  (6.16) 
 
Note the following: 
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Also note that (6.16) can be written 
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Using Eq. (6.17) in (6.18) gives 
 
 ( ) ))(())(( 12

min ><−+><−= − αααααααα αααα mdXVXVmd d
TTr  (6.19) 

 
Note that Eq. (6.19) is the same form as Eq. (6.6). The metrics used for the example 
problems in the previous work (Hills and Trucano, 1999, 2001) are thus equivalent to the 
metric based on maximum likelihood for the conditions considered.  
 
To be more specific, we have shown that these two approaches are equivalent if 
 

1. The uncertainty in the model parameters and the measurements can be well 
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modeled by multinormal distributions, and 
 
2. The change in the model predictions due to changes in the model parameters can 

be modeled by the first two terms (i.e., a first order uncertainty analysis) in the 
Taylor series expansion. 

 
Both of these assumptions were the assumptions used for the demonstration problems in 
the previous work. It should be noted however, that while both methods give the same 
results for the above assumptions, the intent of each method is different.  
 
The intent of the metric given by Eq. (6.1) is to evaluate the probability that the observed 
differences between the expected value of the model predictions and the measurements 
are significant relative to the uncertainty in these differences. The intent of the maximum 
likelihood method, as used here, is to first calibrate the model using prior knowledge of 
the measurement and the parameter distributions, then look at the significance of 
obtaining the corresponding calibrated parameter values and observed measurements. If 
this probability is small, we question the validity of the model. This difference is 
significant, especially if the expected value of the model predictions is different than the 
value of the model predictions using the expected value of the model parameters. We 
expect this to be the case for models that are highly nonlinear over the range of model 
parameters corresponding to their uncertainty for the validation experiments.  
 
If we are interested in characterizing the uncertainty in the model predictions, then we 
should propagate the model parameter uncertainty through the model. This is easy to do 
for the present case, but generally more difficult for highly nonlinear cases, or for cases 
where the probability distributions of the model parameters are more complex.  However, 
if we are interested in model validation, then it can be argued that we are really interested 
in the probability of the specific model validation exercise outcome. This would suggest 
that we look at the probability of the calibrated model parameters and the probability of 
the measurements, given a valid model. 
 
The advantage of the maximum likelihood approach is that we can use optimization 
methods to search for the maximum likely measurement-mode/model parameter set, 
given that the model is valid. We can then evaluate the probability that a valid model 
would give this set of values. This requires that we search through the uncertainty spaces 
for the model parameters, rather than the space of differences. This is generally much 
easier since we do not need to propagate the model parameter uncertainty through the 
model, we must only use the model predictions themselves. In addition, we only have to 
characterize the probability of obtaining the scalar quantity r2 rather than define the full n-
dimensional validation space associated with the differences.  The computation savings 
are significant.  
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7.0 Univariate Confidence Intervals 
  

7.1 Introduction 
 
We now look on the dangers of using univariate confidence intervals to judge model 
validity with multivariate data. Figure 7.1 shows the time trace of nine of the ten average 
temperatures and the corresponding model predictions for the thermal contact resistance 
data listed in Table 3.2. Also shown are the 95% univariate confidence intervals on the 
measurements and the model predictions. The confidence intervals on the measurements 
are based on the standard deviations given in Table 3.2. The confidence intervals on the 
model predictions were obtained using the diagonal terms of the predicted covariance 
matrix (see Eq. 6.5), which in turn, was obtained using the sensitivity analysis discussed 
in an earlier section.  Procedures to obtain these limits are also discussed in Hills and 
Trucano (1999, 2001).  
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Figure 7.1: Experimental and Predicted Data. Time zero data are not shown. 
Confidence intervals are based on normal distributions at 95% confidence 
and univariate statistics. 
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Note that the confidence intervals of the measurements and model predictions overlap at 
all times. What does this mean in terms of model validity? To better address this issue, 
first combine the intervals of the measurements and model predictions into single 
confidence intervals. Since we are assuming that the measurement and the predictions are 
independent, the variance for the difference between the predictions and the 
measurements is equal to the sum of variances (i.e., square of the standard deviations) of 
the prediction and the measurements (Beck and Arnold, 1977). 
 
 2

pred
2

meas
2

total σσσ +=  (7.1) 
 
The confidence intervals corresponding to this total is shown in Figure 7.2. We could also 
show these as intervals about the measurements. Since the intervals are symmetric, both 
approaches will give the same results. Note that the early time measurements lie within 
the confidence intervals, but the late time measurements are slightly outside the intervals. 
Does this mean the model is valid for this application of the validation experiment? At 
first glance, one might say no. But the issue of validity is complicated by correlation in 
the data. To investigate this further, we look at validation metrics in more detail for this 
set of data. 
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Figure 7.2: Experimental and Predicted Data. Time zero data are not shown. 
Combined confidence intervals are based on normal distributions at 95% 
confidence and univariate statistics. 
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For this discussion, we use the metric defined by Hills and Trucano (2001) rather than the 
maximum likelihood based metric developed in this report. We use this metric here (i.e., 
Eq. (6.1)) because it is more intuitive from a graphical point of view. As was shown in 
the previous chapter, this metric and the maximum likelihood metric give the same 
results for this particular analysis. 

7.2 Two Measurement Times 
 
To investigate the meaning of the results illustrated in Figure 7.2, we begin by looking at 
the joint probability of two measurements lying inside or outside the confidence intervals. 
Surfaces of constant joint probability density function (PDF) for a vector of normally 
distributed random variables are given by constant values of r2 where (Hills and Trucano, 
2001) 
 
 xVx 1T2 −=r  (7.2) 
 
x is a vector of normally distributed random variables and V is the corresponding 
covariance matrix for the vector. Here (see Eq. (6.1)) we take x to be the vector of 
differences between model predictions and experimental observations. V is the 
covariance matrix for these differences. Surfaces of constant r2 correspond to n-
dimensional ellipses where n is the number of measurements. The cumulative probability 
within some constant r2 ellipse is given by the r2=χ2(k) distribution for k degrees of 
freedom (Beck and Arnold, 1977).   
 
For the purposes of example, we take the third and last measurement times of Figure 7.2 
as our two measurements (the fourth and last measurements of Table 3.2). This provides a 
measurement in the transient phase as well as in the near steady-state phase of the 
experiment. Later we will extend this analysis to all 10 of the measurements listed in 
Table 3.2. The vector of differences between the predictions and the measurements for 
these two times is 
 

 






=
80.0
63.0

d  (7.3) 

 
The diagonal of the covariance matrix for these two average measurements is given by 
the squares of the standard deviations listed in Table 3.2.  Since we assumed the 
measurements are independent, the off diagonal elements are zero. 
 

 






=
09803.00

01034.0
measV  (7.4) 
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Eq. (6.5) and the sensitivity coefficient listed in Table 3.2 are used to estimate the 
covariance matrix of the model predictions for the two measurement times of interest. 
This results in  
 

 






=
03512.004526.0
04526.007489.0

predV  (7.5) 

 
Note that the prediction matrix is not diagonal indicating that these two predictions are 
correlated. The sum of these matrices gives the correlation matrix for the differences 
between the predictions and observations (see Hills and Trucano, 2001).  
 

 






=+=
13316.004526.0
04526.017826.0

predmeas VVV  (7.6) 

 
We are now ready to define the constant PDF curves.  The degrees of freedom is equal to 
the number of measurements (i.e., k=2).. The r2 for a cumulative probability of 95% is  
 
 991.5)2()( 222

95.0 === χχ kr  (7.7) 
 
These values are tabulated in most introductory statistics books or can be evaluated using 
common mathematical software packages (here we use Mathematica; see Wolfram,  
1999). The equation describing this elliptical curve is thus (see Eq. (7.2)) 
 
 991.51T =− xVx  (7.8) 
 
The r2 for the differences between the predictions and measurements is  
 
 dVd 1T2 580.5 −==r  (7.9) 
 
Since 5.580 is less than 5.991, our difference lies within the 95% elliptical surface. We 
can thus say that we do not have sufficient evidence, at the 95% confidence level, that the 
model is not valid. So even though one of these two measurements lies outside the 
confidence intervals shown in Figure 7.2, we do not have sufficient evidence to reject the 
model as valid. 
 
To illustrate the common assumption of independent differences, we ignore the off-
diagonal terms in V by setting them to zero (i.e., we are ignoring the correlation between 
the differences). 
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=+=
13316.00

017826.0
predmeas VVV  (7.10) 
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The r2 of our differences for this case is 
 
 dVd 1

ind
T2 03.7 −==r  (7.11) 

 
Note that 7.03 is smaller than 5.991, indicating that the differences lies outside the 95% 
region. In this case, we do reject the model with 95% confidence. This is in contrast to the 
previous case when the correlation in the differences was properly accounted for.  
 
Why do we obtain different results for the r2 when we assume that the measurements are 
independent? We can illustrate this by plotting the ellipses corresponding to dependent 
and independent cases. These are shown as the inclined and horizontal ellipses of Figure 
7.3, respectively, along with the point corresponding to the differences d at the two 
measurement times. As the figure illustrates, the differences between prediction and 
observation fell within 95% confidence region for the dependent case and outside it for 
the independent case. Since the 95% curves are oriented differently, we obtain different 
measures for r2 in either case. Clearly, we see that accounting for correlation is important, 
if such correlation in the differences is present. 
 
A method that has been proposed (see Luis and McLaughlin, 1992) to test for model 
validity is to plot confidence intervals for the uncertainty of the differences for each 
difference, and evaluate the number of measurements that are outside these intervals. If 
5% of these measurements lie outside the interval, Luis and McLaughlin suggests that we 
reject the model as valid. The 95% confidence intervals evaluated using Eq. (7.1) for the 
two measurements are shown as the rectangle in Figure 7.3. Note that the measurements 
lie within the intervals for the first measurement, but not for the second. This was also 
reflected by the third and last points of Figure 7.2. Thus, 50% of the two measurements 
are outside the interval, even through there is not sufficient evidence at the 95% 
confidence level to reject the model for the correlated case.  
 
If the differences were independent, then the joint probability of lying inside the rectangle 
would be the products of the probabilities for the individual bounds. For this case, the 
cumulative probability is 90.2% (=0.95 x 0.95). This explains why the area of the 
rectangle is somewhat less than that of the horizontal ellipse. Even if one were to expand 
the individual bounds so that the cumulative probability within the rectangle is 95%, this 
would still not provide an appropriate test for model validity. For example, the 
measurement may still lie outside the interval for one measurement, but lie inside the 
interval for the other, and have a joint probability that lies within the 95% joint 
probability ellipse. What is important is the joint probability of the differences, not the 
number of differences that lie outside individual confidence intervals. This is why one 



    

 

66 
  
 

 
 
 

-1 -0.5 0 0.5 1
d1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

d 2

 
 

Figure 7.3: 95% Confidence Intervals on the Differences – 2 Measurements: Solid 
ellipse includes correlation, dashed ellipse ignores correlation, rectangle 
represents univariate confidence intervals, point is the difference. 

 
 
must be cautious about using univariate confidence intervals to evaluate multivariate 
models.  

7.3 More than 2 Measurement Times 
 
How do we extend the above discussion to more than 2 measurements?  The metrics 
defined above for r2 extend directly to the higher dimensional case. For the case of our 10 
data pairs 
 
 dVd 1T2 60.14 −==r  (7.12) 
 
Note that we obtained the same result for r2 in Section 5.2 using the maximum likelihood 
approach. As the results of Chapter 6 show, we expect this equivalence for the analysis 
presented here. The degrees of freedom for 10 measurements is k=10.  The critical value 
for r2 at 95% confidence is 
 
 31.18)10()( 222

95.0 === χχ kr  (7.13) 
 
The vector of differences thus lies within this 95% confidence interval. How do we show 
this graphically for a 10 dimensional ellipse?  Unfortunately, we can only plot two or 
three-dimensional representations of the 10-dimensional ellipses.  Here we take the 
intersection of a 2-dimensional plane with the ellipse to reduce our graphical 
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representation to one we can picture. The plane we select contains the center of the ellipse 
and the measurement point to insure that our measurement point lies in the same plane as 
the intersection of the higher dimensional ellipse. A third point (or second vector) is 
needed to complete the definition of the plane. We choose that direction to represent a 
worst case in the sense that the measurement point is furthest from the center of the 
ellipse in this plane, as measured by our metric r2. To represent our plane, we evaluate an 
orthogonal basis for it (i.e., two orthogonal vectors that lie in the plane). We take the first 
direction as the vector of differences to insure that the measurements lie in the selected 
plane: 
 
 dv1 =  (7.14) 
 
The second direction is the direction that maximizes the change in r2 at d. This direction 
corresponds to the gradient of r2 at d (i.e, the outward normal to the corresponding ellipse 
though d).  
 
 Vdv 22

2 =∇= r  (7.15) 
 
Using Gram-Schmidt orthogonalization to transform the above two vectors into an 
orthogonal basis and normalizing gives 
 
 )/()(' 1111222 vvvvvvv ⋅⋅−=  (7.16) 
 
 1111 / vvvu ⋅=  (7.17) 
 
 2222 ''/' vvvu •=  (7.18) 
 
We can restrict x (see Eq. (7.1)) to this plane by writing x as a linear combination of this 
basis.   
 

 [ ] Uyuux =







=

2

1
21 y

y
 (7.19) 

 
where U is a n x 2 orthonormal matrix. Substituting (7.19) into (7.1) gives 
 
 UyVUy 1TT2 −=r  (7.20) 
 
The equation for our 95% confidence ellipse in the plane is thus 
 
 31.181TT =− UyVUy  (7.21) 
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We also transform the vector of differences to represent it on the same basis or coordinate 
system. 
 
 Udd ='  (7.22) 
 
This ellipse (Eq. (7.21), along with the ellipse corresponding to the assumption of 
uncorrelated differences (i.e., the off-diagonal terms in V are zero), the transformed 
difference of measurements, and the univariate confidence bounds are shown in Figure 
7.4.  Remember that we defined the plane in such a way so that the resulting difference 
appears to be as far from the center as possible, based on our measure of r2. If we have 
picked any other plane, then the point may appear in the ellipse in Figure 7.4, when in-
fact it is outside the ellipse, suggesting that the model is better than it is actually is. 
 
The result shown in Figure 7.4 illustrates that if we neglect correlation, the difference 
between prediction and measurements would appear outside the acceptance region. 
However, the acceptance region that accounts for correlation does include the 
measurement, and it also appears to include a larger area. This is due to the very 
significant correlation that occurs in the model predictions, which increases the level of 
uncertainty in the differences “along the direction of correlation”. The result is the 
elongated ellipse shown in Figure 7.4. As in the previous case, the use of univariate error  
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Figure 7.4: 95% Confidence Intervals on the Differences – 10 measurements: 
Solid ellipse includes correlation, dashed ellipse ignores correlation, 
rectangle represents univariate confidence intervals, point is the difference. 
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bounds (i.e., the rectangle in Figure 7.4) underestimates the region of acceptance for 
multivariate data. The use of univariate confidence intervals to evaluate multivariate data 
can clearly lead to very misleading results. In addition, we see that for this case, ignoring 
correlation will lead to the rejection of our thermal contact resistance model, when in-
fact, we do not have sufficient statistical evidence to do so.  

7.4 Correlation and the Maximum Likelihood Method 
 
The presentations given in the previous sections were based on the cumulative probability 
on the differences between the predictions and observations. The maximum likelihood 
method, which was presented earlier, evaluated the cumulative PDF on the parameters 
and measurements directly. In contrast to the approach used in this section, the maximum 
likelihood method does not require that we propagate uncertainty through the model. 
Hence, the model-induced correlations shown in the figures of this chapter do not directly 
enter into the maximum likelihood analysis. This model structure is accounted for during 
the optimization process used to estimate the true values of the model parameters and the 
mode of the measurements. The only correlation that one has to account for in the 
maximum likelihood method is the correlation between the model parameters themselves 
and between the measurements. However, as was shown in the previous chapter, the 
resulting metric values obtained are the same for the two methods for the analysis of the 
two applications considered here. 
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8.0 Discussion and Recommendations 
 

8.1 The Approach 
 
The focus of the past 3 years work (Hills and Trucano, 1999, 2001, and the present 
report) represents a concentrated effort to understand issues involved with using 
statistical techniques to define metrics to test for model validity. While we provided an 
example to the contrary in the year 2 work, the primary focus of this work was on the 
development of methodology that can be applied to complex engineering systems for 
which we do not have sufficient experimental data to characterize the uncertainty directly 
from the observed differences between model predictions and the experimental 
observations. We do assume that we have more complete knowledge of the uncertainties 
in the model parameters and the experimental observations. These approaches require that 
we either propagate this model parameter uncertainty through the model (which requires 
multiple model evaluations) or that we use an optimization procedure (also requires 
multiple model evaluations) to find the most likely parameters, given prior knowledge of 
the measurement and parameter uncertainty. Thus the methodology introduced here 
replaces the need to run multiple, independent, validation experiments, with the need to 
run the model multiple times. It does not remove the need to perform validation 
experiments. 
 
This approach is consistent with trends in computation and experimentation that are 
occurring at Sandia National Laboratories (SNL) and elsewhere. Experimental work is 
becoming more expensive, while computer modeling is becoming less time consuming 
and less expensive. Non-invasive software tools that drive computer models for 
engineered and physical systems to propagate uncertainty, or to perform optimization, are 
becoming more available to the computational community. Thus we feel that the present 
approach is justified as a complementary alternative to the more experimental intensive 
approach, which characterizes uncertainty between experimental observations and model 
predictions from the experimental data directly.  

8.2 Accomplishments Over the Past Three Years 
 
The five major accomplishments of the past 3 years work are the following: 
 

1. This work emphasized issues associated with using rigorous statistical techniques 
to compare model predictions to experiment observations with an emphasis on 
multivariate data (years 1, 2, and 3). 

 
2. We developed methodology to use the results of uncertainty propagation through 

predictive models, in association with the uncertainty in experimental 
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measurements, to statistically measure consistency between measurements and 
predictions (year 2). 

 
3. We introduced the principle of modifying these measures to reflect differences 

between the intended application of the model and the validation experiments 
(year 2). 

 
4. We introduced the idea of using maximum likelihood techniques to define an 

alternative (but related) measure of model validity (year 3). 
 

5. The metrics introduced in this work account for correlation in the differences 
between measurements and model predictions, due to model structure. We 
showed that neglecting such correlation or model structure, can lead to the 
rejection of a good model when the statistical evidence to do so is not sufficient, 
or can lead to the failure to reject a bad model when there is sufficient evidence to 
do so (year 3). 

 
As we moved from item 1 to item 4, we also increased our ability to handle more 
complex models with less common probability distributions.  While the metrics 
developed in year 2 are somewhat more intuitive, we feel that the less intuitive maximum 
likelihood metric developed in this report offers significant promise for complex 
probability distributions and highly nonlinear models.  
 

8.3 Recommendations 
 
We feel that we have made significant progress in understanding the development of 
statistical metrics for validation of complex engineering models over the past years. Our 
primary focus during the next years should be on applying these metrics to applications of 
interest to SNL. As we do so, we expect a significant part of the work will be the 
identification of the appropriate probability models for the uncertainties. When we do not 
have sufficient information to do so, we may need to fall back on other approaches, such 
as the exploration of a subspace of probability models to see under what conditions (i.e., 
what probability models) our confidence in the models is questionable.  
 
A secondary focus of future work should be on tying the anticipated application to the 
definition of the validation metrics. We introduced the idea of doing this during year 2. 
We used a sensitivity analysis to define the mappings between the anticipated application 
and the validation experiments. We suggest that the use of maximum likelihood 
techniques, rather than the propagation of uncertainty techniques used during year 2, may 
allow us to relax the need to depend on the locally linear assumption of the sensitivity 
analysis. This would allow us to consider more complex nonlinear models.   
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Another area for future work is to relate a suite of validation experiments and the 
anticipated application to our validation metrics. Just as the application can be used to 
help define a metric for the validation experiments, we should be able to extend this idea 
to multiple sets of validation experiments, each designed to test a distinct subset of the 
physics. This relationship should tell us how to weigh the results from the different sets of 
data, and whether the different sets of data adequately test the model over the anticipated 
range of model parameters. This context is an important link of this work to the planning 
approach to validation favored by the ASCI program at Sandia (Pilch, et al., 2000). 
 
Finally, we should consider using these metrics for model validation experiment design. 
The ideal experiment is one that minimizes our probability of rejecting a good model 
while maximizing our ability to reject a bad model. To do this, we will need alternative 
models (i.e., one good one, one bad one – but possibly not clear which is which), so that 
we can design the experiments to resolve the differences. The statistical metrics used to 
test these models should also be used to design the experiments, so that we can maximize 
our ability to resolve the validity of the models.  
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