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Abstract 

The blast parameters for the 6-foot diameter by 60-foot long, concentrated explosive 
driven shock tube are presented in this report. The purpose, main characteristics, and 
blast simulation capabilities of this concentrated explosive driven facility are included. 
Experimental data are presented for air as the test gas with initial pressures between 1 .O 
to 12.1 psia (ambient). Experimental data are presented and include shock wave time of 
arrival at various test stations, flow duration, static or side-on overpressure, and 
stagnation or head-on overpressure. The blast parameters calculated from the above 
measured parameters are presented in this report and include shock wave velocity, shock 
strength, shock Mach number, flow Mach Number, reflected pressure, dynamic pressure, 
particle velocity, density, and temperature. Graphical data for the above parameters are 
included. Algorithms and least squares fit equations are also included. 
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Nomenclature 

A,, or C, 
a0 
CTU 

:: 
LTU 
Mf 
MS 
P = Ps 
Pm 
PO 
Pt 
Ptm 
P, 
Plnl 
Q 
R 
T, 
Td 
Tl 
To 
U 
VS 
w 
Pl 
PO 
Y 
(P/PO) 

Test gas sound velocity (fps) 
Sound velocity behind the shock wave (Qx) 
Calibration Test Unit 
Gravity constant (ft/s2) 
Static impulse (psig-ms) 
Laboratory Test Unit 
Flow Mach number 
Shock Mach number 
Static or Side-on pressure (psia) 
Measure static overpressure (psig) 
Initial test gas pressure (psia) 
Stagnation or head-on pressure (psia) 
Measured stagnation overpressure (psig) 
Reflected pressure (psia) 
Measured reflected overpressure (psig) 
Dynamic pressure (psia) 
Universal gas constant [(fi-lb)/(lb-OR)] 
Shock arrival time relative to the initiation of explosive(ms) 
Flow duration time (ms) 
Temperature behind the shock wave (F) 
Initial test gas temperature (F) 
Flow velocity behind the shock wave (fps) 
Shock wave velocity (fps) 
Explosive weight (lb) 
Density behind the shock wave (lbKt”3) 
Initial test gas density (lb/W3) 
Test gas specific heat ratio 
Shock strength 
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SIX-FOOT DIAMETER by SIXTY FOOT LONG 
CONCENTRATED EXPLOSIVE-DRIVEN SHOCK TUBE 

1 .O Introduction 

Sandia National Laboratories (SNL) has been extensively engaged in the design of 
aerodynamic structures to withstand blast loading. As part of this program, SNL has 
devoted a considerable effort to the development of facilities for blast simulation, 
instrumentation to measure structural response and blast environment, and analytical 
techniques to analyze structure-environment interactions as documented in References I 
through 19. 

Current interest in the blast testing of the W76-l/MK-4 system has required that available 
explosively driven shock tube facilities be evaluated to conduct this program. Sandia 
National Laboratories (SNL) explosively driven shock tube facilities were last used on 
the W88/MK-5 blast program in about 1986. Therefore, SNL must make a decision 
whether to re-start or refurbish the shock tube facilities here or to conduct the W76- 
l/MK-4 blast program at an outside facility if a qualified site is found. As part of the 
evaluation of shock tube facilities and to help in the decision making, this report is one of 
several documenting SNL shock tube facilities and their performance parameters. 

This report is similar to and compliments the report documented in reference 1 for a six- 
foot diameter by 200-foot, distributed, PETN, Primacord explosively-driven shock tube. 
The concentrated explosive shorter shock tube described in this report differs from the 
shock tube described in reference 1 as follows: 

1. Concentrated, much higher density (1.65 versus 1 .O g/cc), 
2. Expendable, non-reusable driver section, 
3. Shorter flow duration times (5 ms versus 25 ms), 
4. Shorter static impulses, and 
5. Larger static and stagnation pressures. 

Designing any structure to survive a dynamically applied load such as blast is a complex 
task. In terms of re-entry vehicles, the blast loads on the structure are caused by the 
vehicle velocity, as well as by the density, pressure, and particle velocity of the blast 
wave. The complexity of the blast environment experienced by the structure demands 
that designs be experimentally verified and proof tested. 

There are two general methods for blast testing structures: move the structure through 
the blast environment, or hold the structure stationary in a blast environment. SNL 
chose the approach of combining a stationary vehicle (and hard-wire instrumentation) 
with an explosive-driven flow environment in a shock tube. 
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Loading Characteristics of Stationarv Structures 
The loads imposed on a stationary structure in a shock tube are caused only by conditions 
behind the shock wave. These conditions, and the load pulse shape, depend upon the 
initial conditions in the tube, tube configuration, and load level. The important 
considerations in this type of blast-loading can be summarized as follows: 
1. The maximum load level prescribes a limit to the shock strength and velocity, 
2. The shock velocity controls the load rise time, 
3. The length of the shock tube and the shock strength determine the duration of the load 

pulse, and 
4. The flow Mach number behind the shock wave, which influences the pressure 

distribution on the structure, depends upon the driven gas and the shock strength. 

These interdependent parameters determine the nature and configuration of a shock tube 
for a given application. However, considerable control over the shock tube performance 
at a given load level can be exercised by appropriate selection of the test gas and initial 
pressure in the tube. 

For example, one major limitation of shock tube testing, or for that matter, any other blast 
simulation technique, is in obtaining a pressure distribution around the structure that is 
representative of actual high-velocity flight intercepts. This pressure distribution depends 
upon the Mach number of the flow. Thus, relatively high Mach numbers are desirable 
behind the shock for blast testing of aerodynamic structures. 

Purpose 
The six-foot diameter by sixty foot long concentrated explosive driven shock tube at 
Sandia National Laboratories has been used to simulate the blast environment on a Re- 
entry Vehicle (RV) resultant from the detonation of an enemy RV in the vicinity. ‘The 
ability of the components within the RV to survive this hostile blast environment is 
verified by subjecting the RV to similar blast environments in the shock tube. This shock 
tube has been in service since July 1966. 

Shock Tube Blast Parameters 
The blast parameters for the 6-foot diameter by 60-foot long, concentrated explosive 
driven shock tube are presented in this report. The purpose, main characteristics, and 
blast simulation capabilities of this concentrated explosive driven facility are included. 
Experimental data are presented for air as the test gas with initial pressures between 1 .O 
to 12.1 psia (ambient). Experimental measured data are presented for the following blast 
parameters: 

1. Flow duration, 
2. Static or side-on over-pressure, and 
3. Stagnation or head-on overpressure. 

The blast parameters calculated from the above measured parameters and presented in 
this report include: 

9 



1. Static impulse, 
2. Shock Mach number, 
3. Flow Mach Number, 
4. Reflected pressure, 
5. Dynamic pressure, 
6. Particle velocity, 
7. Density behind the shock, and 
8. Temperature behind the shock. 

Graphical data for the above parameters are included. Algorithms and least squares fit 
equations are also included. 

2.0. Shock Tube Configuration 
General 
The 6-foot diameter by 60 foot long shock tube configuration is shown in Figures 1 - 3. 
Figure 1 shows the shock tube pre-test configuration with the water filled annular tank at 
the explosive driver end. Figure 2 shows the shock tube along side of the 6 foot 
diameter by 200 foot long shock tube ‘. Figure 3 shows the shock tube geometry with a 
different explosive driver end tamping. The total shock tube length can vary between 50 
to 80 feet depending on the desired impulse required. The shock tube sections have been 
suspended by adjustable screw jacks as shown in Figure 4. 
Expendable Driver 
The expendable driver consists of a 6 foot inside diameter by a 10 foot outside diameter 
by 6 foot long section as shown in Figure 1. The volume between the ID and OD is 
filled with water. A 1 inch thick steel plate closes the driver end and supports the blocks 
of concentrated explosive. 
Driver End/Tamping Mass 
A minimum amount of driver end tamping mass is used with concentrated explosive 
shock tubes. First, it is very difficult to contain concentrated, high density, secondary 
explosive charges. Second, the total required shock tube length is relatively short and 
therefore, it is not necessarily important to delay the venting of high pressure gases at the 
driver end. 

More recent tests using 6 foot or 12 foot diameter shock tubes with lengths less than 80 
feet have simply used concentrated explosive charges (cylindrical in geometry) 
suspended just outside the driver end. 

Explosive Loading 
TNT, Composition C4 (COMP C4), or nitroguanadine explosive charges have been used 
to drive this shock tube. The explosive density was about 1.6 grams per cubic centimeter 
for all types of explosive. 

An SE-l, RP-1, or similar detonator is taped in the center of the explosive charge. If 
several blocks or ‘charges are used, then a similar detonator is attached to each block. A 
Tetryl pellet of explosive may be used as a booster charge between the detonator and the 



Figure 1. six foot diam
eter by 60 foot long concentrated explosive driven shock 

tube 
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Figure 2. Six foot diam
eter by 60 foot long concentrated explosive driven shock tube 

along side 6 foot diam
eter by 200 foot long, distributed explosive driven shock tube 
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main explosive charge in some cases if necessary to initiate the particular explosive 
charge. 

Test Section 
The total shock tube length can vary between 50 and 80 feet. The last section and 
typically the test section can include a 45 or 90 degree muzzle end. The 45 degree end 
section is used to allow larger test units at large angles of attack to fly free after blast 
arrival and to clear the test section. The 45 degree test section end also tends to reduce 
the relatively high base pressure which is a result of reflections from the diaphragm (for 
reduced initial test gas pressure tests only) on the muzzle end. 

Test Unit Suspension 
Lighter test units are typically suspended from the top of the test section by light 
fiberglass straps which are broken or sheared by the blast wave. Heavier test units are 
typically suspended from the top of the test section by a wire rope or cable. The cable is 
concentrated explosive cut when the blast wave arrives at the nose of the test unit. The 
test unit is then free to respond to the blast wave. Figure 5 shows a conical test unit 
suspended the test section. The radiator hose used to protect the instrumentation wires is 
shown in Figure 5. The conical test unit is shown in the ninety degree muzzle end or test 
section in Figure 6. The conical test unit is shown in the forty five degree muzzle end or 
test section in Figure 7. 

Test Unit Soft Recovery 
When it is desired to have the test unit free to respond to the blast wave, ejected from the 
test section and to be soft recovered, a sawdust recovery pit is used. The length, width, 
and depth depend on the trajectory and geometry of the test unit. Nylon parachutes 
vertically suspended along the trajectory of the test unit have been used to decelerate the 
test unit and reduce the length of the test unit flight. Sand bags or other masses have 
been attached along the edges and bottoms of the parachute to aid in the deceleration 
process. This technique has been used on a 19-foot diameter shock tube and is shown in 
Figure 8. 

Reduced Pressure Tests 
The shock tube can be sealed for reduced initial test gas pressure tests. Initial test gas 
pressures from 1.0 to 12.1 (ambient) psia have been used. For this shock tube, the test 
gas has been air. A thin (0.04 inches thick) aluminum diaphragm along with a steel ring 
holder and an “0” ring have been used to seal the driver end. Strands of thick rubber 
have been used to seal at the interfaces between sections of the shock tube. Two large 
radiator type clamps are used to hold the rubber strands on the shock tube surface. A thin 
(0.04 inches thick) aluminum diaphragm along with a steel ring holder and an “0” ring 
have been used to seal the muzzle end of the shock tube. Puddy has been used to seal 
any small air leaks throughout the shock tube. Figure 9 shows the muzzle end sealed 
with an aluminum diaphragm. 
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Figure 6. T
est unit in 90 degree test section 
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Figure 9. Thin, aluminum diaphragm used to seal shock tube muzzle end 
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3. Measurements and Instrumentation 
Typically, measurements for a test include static (side-on) and stagnation (head-on) 
pressures along the total length of the shock tube, shock arrival times, test gas sound 
velocity, shadowgraphs of the shock wave to measure planarity, photography including 
the trajectory of the test unit from the test section to the soft recovery pit, and flow 
duration measurements. Measurements on the test unit include surface pressures, 
accelerations, velocities, and strains. Previously, a maximum of 200 channels of data per 
test have been recorded. These have included about 150 channels of piezoresistive and 
about 50 channels of piezoelectric measurements. 

The instrumentation cables are routed out of the center of the test unit base plate. A 3 or 
4 inch diameter radiator hose is used to protect the instrumentation bundle from the blast 
wave. The cable bundle is explosively cut after the blast wave has propagated beyond 
the test unit. For tests where the impulse induced on the test unit is relatively short and 
the test unit trajectory is short and directed downward, the instrumentation bundle is not 
cut. For this case, the test unit can be re-suspended in the test section and tested again 
without having to re-splice the instrumentation cables. 

4. Calibration Test Unit (CTU) 
The CTU is typically a thick, walled boiler plate model of the actual Laboratory Test Unit 
(LTU) or Re-entry Body (RB). The CTU geometry, total weight, and center of gravity 
are identical to the LTU. The CTU is usually made of aluminum. Typically about 150 
pressure measurements have been made on the surface of the CTU. For a typical CTU 
test, about 50 channel are used to record shock tube pressures, CTU internal component 
accelerations, velocities, and strains. 

5. Laboratory Test Unit (LTU) 
The LTU is a prototype vehicle of the actual Re-entry Body (RB). Total instrumentation 
includes about 150 channels of data. A few surface pressure measurements are recorded 
(about 25). A few shock tube static and stagnation pressure measurements are recorded 
primarily in the test section area. The remainder of the recorded channels include 
accelerometer, velocity, and strain gage measurements. 

6. Measured Static and Stagnation Pressure Profiles 
Typical, measured static pressures versus time profile is shown in Figure 10 for a test gas 
initial pressure of 1 .O psia. Typical, measured stagnation pressures versus time profile is 
shown in Figure 10 for a test gas initial pressure of 1 .O psia. The measurements were 
obtained at a test station of 55.68 feet from the driver end. 

7. Maximum Performance Blast Parameters 
The blast wave generated in a concentrated explosive driven shock tubes is a shock wave 
followed by a rarefaction wave. The flow duration is dependent on the explosive weight, 
distribution in the driver section, driver tamping mass, test gas, and initial test gas 
pressure. The duration also strongly depends on the shock tube length. 

For a 6 foot diameter by 60 foot long blast tube and a concentrated explosive charge 
weight of 295 pounds of TNT , and initial test gas pressure of 1 .O psia, the maximum 
blast parameters at a test station about 55 feet from the driver end are as follows: 
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EVENT 6’732 
w= 216 Pounds (98.2 Kg) TNT 
Test Gas - Air 

Shock Arrival - 4.40 ms 
Stagnation - 55.68 ft 

I 

+ 138 psig 

Shock Arrival - 4.420 ms 

Shock Arrival - 4.427 ms 
Static - 55.68 ft 

Figure 10. Measured static and stagnation pressure - time profiles(Test station: 
55.68 feet from explosive charge) 
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1. Shock velocity: 12,000 feet/second 
2. Shock Mach number: 10.6 
3. Static 1000 psia pressure: 
4. Flow duration: 4 milliseconds to 10 % of peak pressure 

Blast parameters for a similar, temporary, 6.5 foot diameter by 40 foot long, blast tube 
are include in Appendix A. The test gas was air at an initial test gas pressure of 12.1 psia 
(ambient). Blast parameters for a temporary, plywood blast tube are included in 
Appendix B . 

8. Shock Tube Blast Parameters 
The equations used to calculate some of the blast parameters are listed in Table 1. The 
equations listed in Table 1 and documented in references 1 - 18 have been used to 
generate the shock tube flow parameters shown in Appendix C. The graphs in Appendix 
C can be used to determine desired flow parameter from any given or known parameters. 
The shock tube parameters for air as the test gas are shown in Figures 11 7 20. The least 
squares fit equations for the measured data are included are included in each plot. For an 
initial test gas pressure of 12.1 psia (ambient), Figures 11 through 17 show measured 
static overpressure (Pm), stagnation overpressure (Ptm), reflected over-pressure (Prm), 
calculated dynamic pressure (Q), impulse (I), measured shock wave arrival time (Tam), 
and measured positive phase flow duration time (Tdm) versus driver concentrated 
explosive weight. The test or measurement distance from the explosive face was 58 
feet. 

For an initial test gas pressure of 1 .O psia , Figures 18 through 20 show measured static 
overpressure (Ps), impulse (I), and measured positive phase flow duration time (Tdm) 
near the muzzle end versus driver concentrated explosive weight. The test or 
measurement distance from the explosive face was 58 feet. 

The measured data for the above shock blast parameters are listed in Table 2. 

9. Test Gas Sound Speed 
The sound speed in the test gas must be measured or calculated in order to calculate the 
shock Mach number that in turn used to calculate most of the rest of the blast parameters 
in the shock tube. For this facility, only air has been used as the test gas. For air as the 
test gas, the sound speed (Co) is calculated as follows: 

co = (ygRTo)‘.‘= 49(T0)‘.~ 

Where, for air, 
y = Specific heat ratio = 1.4 
g = Gravity constant = 32.17 feet/set 2 
R = Universal gas constant = [(ft-lb)/(lb-OR)] 
TO = Gas temperature = “R 

The sound speed in air (Co) versus initial test gas temperature (To) is shown in Figure 21. 
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10. Structural Dynamic Model Correlation 
Two major objectives of the blast programs conducted at SNL have been: 
1. Evaluation of the structural dynamic model from known forcing functions, and 
2. Partial “proof” testing of vehicle structures in a blast environment. 

Computer programs have been developed to transform the measured pressure data in 
digitized forrn from a CTU test into calculated forcing functions. To minimize the 
perturbation to the structural response from transducer systems, a two step process has 
typically been used to obtain forcing functions for structural analysis. 

First, a CTU, which is extensively instrumented with pressure transducers, along with 
some accelerometers, is used to fully define the low environment and prove the test 
condition acceptable for the LTU of the prototype vehicle. Acceleration and strain 
transducers are the primary instrumentation for an LTU, with only a few pressure 
transducers to confirm the equivalency of the LTU test conditions to that of the CTU test. 
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Table 1. Rankine-Hugoniot Relations for Calculating Blast Flow Parameters 

- _ . _- - ---.-.-.-. _ . . . --- _-... _.-.-_.. --.-- -..--_-.__- -----.--.-------.- ----._-.- 

Parameter Equation 

Shock Mach No. 

Shock Strength 

Flow Mach No. 

Dynamic Pressure. 

Flow Velocity Ratio 

Density Ratio . ' 
0 

A= 
(Y+l@ 

PO (y-l)M;+* 
- 

Temperature Ratio 

Reflected Pressure Ratio 

Reflected to Stat+ tierpres&e 
Ratio 
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Table 2. Measure and calculated blast parameters 

TEST STATION: 58 feet 
INITIAL TEST GAS PRESSURE: 12.1 psia (ambient) 
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Figure 21. C
alculated test gas sound speed versus initial test gas tem

perature 
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Typically, with the use of a mean value theorem computer program, digitized 
“continuous” pressure data is transformed into discrete points for a given time span. 
Each vehicle pressure for a given test is sampled similarly, so that only one set of time 
values is needed to describe the pressure points wfth respect to the pressure rise or shock 
front arrival. 

After a uniform time scale has been obtained from the measured shock velocity and 
vehicle geometry, these faired pressures from multiple locations on the CTU are 
interpolated linearly in time and space by a second program. The resulting time-space 
pressure distribution is integrated by this program over aerodynamic areas corresponding 
to masses in the structural dynamic model to obtain force and moment time functions. 
These forcing functions are then used as the inputs into the spring-mass structural model 
of the prototype vehicle, the objective being the prediction of vehicle response equivalent 
to that of the LTU when subjected to the same environment. Typically, one CTU test has 
been required to define the environment and obtain the forcing functions for an LTU test. 

Besides the forcing functions, a “rigid body” load history can also be calculated from the 
CTU pressure measurements and compared with the on-board accelerometers to further 
verify the defined environment. Measured strain data from the LTU test can be 
compared to the calculated strain from a structural dynamic model to confirm the match 
of pulse shape and peak values. 

11. Summary and Conclusions 
Sandia National Laboratories (SNL) has developed a B-foot diameter by 60-foot long, 
explosive driven shock tube for blast simulation on aerodynamic structures. Tailoring of 
the shock tube design and the test gas initial pressure will produce a wide range of load 
pulses. The 6-foot diameter by 60-foot long shock tube historical background, 
characteristics, and flow parameters have been presented in this report. 

SNL has developed methods for blast testing structures and verifying analytically and 
experimentally their capabilities in blast environments. 
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Appendix A 

Temporary Shock Tube/6.5 foot diameter by 40 foot long steel tube 

Appendix A 
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Appendix A 

Purpose 
When desired pressures are too high for the use of permanent or re-usable blast tubes, 
temporary tubes can be used. These type blast tubes may be expended in one test or re- 
usable for a few tests. Common tube materials are plywood, cardboard, corrugated steel 
culvert pipe, and salvaged pipe from other government facilities. Temporary blast tubes 
have been used at Sandia National Laboratories since 1964. 

Shock tube driver sections 
All temporary shock tubes have used concentrated explosive charges of TNT, COMP-C4, 
IRAGEL, and Nitroguanidine. The shock tube lengths have varied between 40 and 90 
feet. 

Performance Data 
As an example, the blast flow parameter for a 6.5 foot diameter by 40 foot long 
explosively driven shock tube are as follows: 

Shock tube wall thickness: 0.32 inches 
Test gas pressure: air 
Initial test gas pressure: 12.1 psia (ambient) 
Initial test gas temperature: 60 degrees Fahrenheit 
Test or measurement station: 35 feet from explosive charge face 
Explosive: TNT, Density = 1.5 g/cc 
Explosive weight: 160 pounds 

Shock velocity: 7346 feet/second 
Shock math no.: 6.6 
Static overpressure: 550 psig (Figure Al) 
Static impulse: 1.6 psig-seconds 
Stagnation overpressure: 2750 psig (Figure A2) 
Stagnation impulse: 4.8 psig-seconds 
Reflected overpressure: 3450 psig (Figure A3) 
Stagnation pressure, positive phase flow duration time: 4 milliseconds (to 10% of peak 
pressure) 

The first 10 feet of the blast tube was damaged beyond reuse, but the remainder of the 
tube was reused. 

Table 1A lists the shock parameters calculated from the measure time-distance data along 
the length of the shock tube. Table 2A lists the shock parameters calculated from the 
measure time-distance data along the length of the shock tube for a similar test in the 
same shock tube and for the following parameters: 

Shock tube wall thickness: 0.32 inches 
Test gas pressure: air 
Initial test gas pressure: 12.1 psia (ambient) 
Initial test gas temperature: 42 degrees Fahrenheit 
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Test or measurement station: 35 feet from explosive charge face 
Explosive: TNT, Density = 1.5 g/cc 
Explosive weight: 100 pounds 

Shock velocity: 570 1 feet/second 
Shock math no.: 5.2 
Static overpressure: 3 11 psig 
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Figure Al. Measured static overpressure versus time/test station = 35.24 feet 
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Figure A2. Measured stagnation overpressure versus time/test station 35.24 feet 
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Figure A3. Measured stagnation pressure derived impulse versus time/test station 
35.24 feet 
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Table 1A. Shock parameters calculated from measure time-distance data/l60 lb 
TNT explosive 

TEST NO.: E70-262, DATE: (10-19-70) 
TEST GAS: AIR, 12.1 psia (ambient), T = 520 R, Co = 1120 FPS 
DRIVER TAMPING: 1” STEEL PLATE + 25,000 lb CONCRETE BLOCK 

T . 1 Vs 1 MS 
(ms> (J-3 I 

X 
et> 

Mf Ps Q PsiPo 
(psia) Psi 

5 0.318 9864 8.8 2.3 929 20 77 
9 0.732 9484 8.5 2.2 861 18 71 
13 1.162 9118 8.1 2.2 795 16 66 
17 1.609 8767 7.8 2.2 I732 .-- I 14 - . 161 -* I 

I 
21 2.074 8429 7.5 2. I ( 1 1671 112 ) 55 
25 2.558 8104 7.2 2.1 1612 111 ) 51 
29 3.062 7792 7.0 2. I , 0 1 567 1 10 ( 47 
33 3.585 7492 6.8 2.0 526 9 43 
35 3.855 7346 6.6 2.0 505 9 42 
37 4.130 7203 6.4 2.0 486 8 40 
39 4.41 7063 6.3 2.0 467 8 39 

Table 2A. Shock parameters calculated from measure time-distance data/100 lb 
TNT explosive 

TEST NO.: E70-279, DATE: ( 1 o-27-70) 
TEST GAS: AIR, 12.1 psia (ambient), T = 502 R, Co = 1098 FPS 
DRIVER TAMPING: 1” STEEL PLATE + 17,700 lb CONCRETE BLOCK 

lx 
et> 

MS Mf Ps Q PSIPO 
I (ms> I&) (psia) Psi 

6 0.500 9070 8.3 2.2 814 17 67.8 
10 0.954 8533 7.8 2.1 714 14 59.5 
14 1.438 8019 7.3 2.1 620 12 51.7 
18 1.953 7537 6.9 2.0 548 10 45.7 

1 22 1 2.500 1 7084 1 6.5 1 2.0 1484 18 1 40.4 
I 3.083 I 6658 I 6.1 I 1.9 1428 17 I 35.7 I --.. 

30 3.703 6257 517 1.9 374 6 31.2 
32 4.027 6066 5.5 1.8 351 5 29.2 
36 4.708 r-In, c-3 1 L-3 311 5 25.9 J/VI 1 3.L 1 1.0 
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Appendix B 

Temporary Plywood Shock Tube/Square area by (40-136) foot long 
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Appendix B 

Concentrated explosive charge, plywood shock tubes were used for tests requiring very 
high overpressure, short flow duration or impulse blast parameters. Table B 1 lists some 
plywood shock tube parameters. For the algorithms documented in reference 6: 

X = [x(Po/Por)] / Wr 
T = {t[(ao)/(aor)] [Po/Por]} / Wr 

The shock Mach number (MS) is shown in Figure B2 versus scaled distance (X). The 
Rankine-Hugoniot relations for conditions across the shock front were used to calculate 
the shock strength or static to initial test gas pressure ratio. Figure B3 shows the shock 
strength versus scaled distance (X). Figure B4 shows the calculated stagnation to static 
pressure ratio versus scaled distance (X). 

The data of Figures B 1 through B4 can be used to scale the concentrated shock tube flow 
parameters to any desired shock tube cross-section, explosive weight, initial test gas 
pressure, etc. 

1 

+ 

- 
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Where: Wr = [(W/A)/(W/A),] 
PO = Initial test gas pressure 
Por = Reference initial test gas pressure = 1.0 psia 
(W/A), = Reference explosive to shock tube area ratio = 7.08 lb/ft2 
aor = Reference test gas sound speed = 1123.2 FPS 

For PO = 12.1 psia (ambient) = Initial test gas pressure 
X = [(85.67) (A) (x)1/W = Scaled distance for any shock tube cross-section (A) 
And, T = [(0.0763) (a0) (A) (t)]/W = Scaled time for any shock tube cross-section (A) 

Where: A = Shock tube area, 
W = Explosive weight, 
x = Actual distance, 
t = Actual time 

The above scaled X and T values are listed in Table 1. The measured time (t) and 
distance (x) values used to calculate the above scaled X and T values are shown 
graphically in Figure B 1 for all tests listed in Table 1. 

The X and T values were used to calculate the flow Mach number (MS) as follows: 
The X-T data shown in Figure B 1 were least squares fitted to the power-law equation 
below: I 

T = 0.0000237 ( X ) 1.2437 
The shock velocity (Vs) is given by: 
Vs = (dX/dT) = (4199.741) / [ T (“.1g6)] 

The shock Mach number is given by: 
MS = Vsfaor = Vs/l123.3 

Therefore, 
MS = 3.739 / [ T (‘.lg6) ] 



Appendix B 

Table B 1. Plywood shock tube parameters 

X = [(85.67) (A) (x)1/W = SCALEDDISTANCE 
T = [(0.0763) (a0) (A) (t)]/W = SCALED TIME 
Where: 

A - SHOCK TUBE AREA, W = EXPLOSrVE WEIGHT, 
x = ACTUAL DISTANCE, t = ACTUAL TIME 

H.E. = HIGH EXPLOSIVE (SECONDARY EXPLOSIVE) 
DIM. = SHOCK TUBE CROSS-SECTION DIMENSION 
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Figure B3. Static pressure to initial test gas pressure versus scaled distance 
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Figure B4. Stagnation pressure to static pressure ratio versus scaled distance 
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Figure B5. Plywood Shock Tube Configuration (6.5 X 6.5 X 60 ft. Long) 
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Figure B6. Conical Unit in Test Section of Plywood Shock Tube 
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Rankine-Hugoniot shock parameters 
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Figure C25. Shock strength versus stagnation to static pressure ratio 
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