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ABSTRACT

We have developed novel metal-assisted texturing processes that have led us to optically favorable surfaces for
solar cells. Large area (~ 200 cm®) uniform texturing has been achieved. The physical dimensions of the chamber
limited texturing of even larger wafers. Surface contamination and residual RIE-induced damage were removed
by incorporation of a complete RCA clean process followed by wet-chemical etching treatments. RIE-textured
solar cells with optimized profiles providing performance comparable to the random, wet-chemically etched cells
have been demonstrated. A majority of the texture profiles exhibit an enhanced IQE response in the near IR
region. Using scanning electron microscope measurements, we carried out a detailed analysis of the
microstructure of random RIE-textured surfaces. The random microstructure represents a superposition of sub-pm
grating structures with a wide distribution of periods, depths, and profiles as determined by the SEM
measurements. These structures were modeled using GSOLVER™ software for periodic patterns. The enhanced
IR response from random, RIE-textured surfaces is attributed to enhanced coupling of light into the transmitted
diffraction orders. These obliquely propagating diffraction orders generate electron-hole pairs closer to the
surface, thus, reducing bulk recombination losses relative to a non-scattering, planar surface with identical
hemispherical reflection. The optimized texture and damage removal processes have been applied to large area
(100-132 cm®) multi-crystalline wafers. Initial results have demonstrated improved performance relative to planar,
control wafers. However, the texture and solar cell fabrication processes require further optimization in the RCA
clean, DRE treatments, and emitter formation in order to fully realize the benefits of the low-reflection (~ 1-2 %)
textured surface.
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1. INTRODUCTION

Reducing reflection losses by a mechanism that can simultaneously enhance its near IR absorption
significantly increases the performance of a Si solar cell [1]. In a weakly absorptive isotropic medium of
refractive index n, statistical analysis shows that the absorption in a textured surface can be enhanced by as much
as 4n” in comparison with a planar surface [2]. Deckmann, et al. [3] have shown that this statistical limit is
reached for average feature dimensions comparable to the wavelength of light inside the medium. If texture
dimensions are too large compared to the optical wavelengths, the light is specularly reflected without achieving
optimum random scattering. If texture dimensions are too small compared to wavelength, light scattering is
ineffective due to an inability to resolve the microstructure. Therefore, the ability to control the microstructure
dimensions is critical for improving solar cell performance.

The random, reactive ion etching (RIE) texturing techniques described here provide a controllable
approach aimed at scaling randomly etched features. This tunability enables us to achieve enhanced absorption
without incurring reflection losses. These texturing techniques are also attractive due to their applicability to low-
cost, large area multi-crystalline Si wafers. Texturing of mc-Si is a field of active research due to the inability to
find a reliable texturing process that combines low-reflection with enhanced near IR absorption. Several
techniques including anodic etching [4], mechanical texturing [5], and multi-layer anti-reflection films are being
investigated. The random, RIE-texturing with controllability over feature dimensions is potentially attractive due
to low-cost, high-throughput, and adaptability to large areas.

1a. METAL-ASSISTED RANDOM RIE-TEXTURING OF SILICON

In a typical random RIE-texturing process, nanoscale metal particles either from the chamber walls, or
from a suitable source are introduced into the plasma during the etching process. These particles are randomly
deposited on the Si surface, and act as " micromasks" [6]. These randomly distributed micromasks protect Si
underneath from etching, while rest of the unprotected regions is etched. As a result, the random texturing of Si is
achieved.

Using 790-Plasma-Therm RIE system, we have investigated a wide process range consisting of SF, 0.,
CF., CHF; gases, their flow rates, chamber pressures, RF power, dc Bias, and substrate temperature. We were
able to achieve consistent, reproducible texturing under certain conditions using SF¢/O, plasma chemistry [7]. We
determined that the texture process was strongly influenced by various metal sources introduced into the reaction
chamber. The catalytic behavior of metals in texturing different profiles is critically important in determining an
optically favorable textured surface for solar cells as discussed earlier. Figure 1 shows hemispherical reflectance
measurements from various metal-assisted texturing processes. For comparison, we have also shown the
reflectance from conventional, random wet-chemically textured and planar Si surfaces. Spectral reflectance
measurements were carried out at Sandia National Laboratories using a Cary Model 5E (UV-VIS-NIR)
spectrophotometer and a labsphere (RSA-CA-50) integrating sphere. These measurements show that Ti and Cr-
assisted processes achieve the lowest reflection, whereas the Pd-assisted process leads to the highest reflection.
Figure 2 shows the SEM profiles of Cr, Ti, and Pd-assisted textured surfaces. There is a wide distribution of
feature sizes, profiles, and depths. The Cr-assisted textured features are typically ~ 50-100 nm in diameter and
separation with ~ 100-500-nm depths. The low-reflection from such profiles is most likely due to graded-index
behavior of the textured region [8]. The Ti-assisted profiles combine ~ 50-100-nm ridges at the top of ~ 1-um
deep trenches with typical hole-diameters ranging from ~ 500-1000 nm. Diffractive scattering effects probably
cause the low reflection from such surfaces [9]. Finally, the Pd-assisted texture has dimensions > 1-2 pm, and
light interaction is dominated by specular scattering.

We have also observed that the texture uniformity over the wafer and its microstructure are both critically
influenced by the manner of introduction of the metal sources. Figure 3 shows the reflectance measurements from
two surfaces that were textured identically except for using different methods of Al-source introduction. It is
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Figure 1. Hemispherical reflectance measurements from various metal-assisted random RIE-textured surfaces.
Also plotted for comparison are reflectances of wet-chemical texture-etched and planar surfaces.

seen that reflection is significantly lower for method 2. Figure 4 shows the SEM pictures of the microstructure
for the two cases. It is seen that microstructure changes from columnar (50-100 nm diameter, ~ I-um deep) to
several um wide features with extremely thin ridges. Finally, Figure 5 shows reflectance measurements from three
other texture processes. The cathode-1 process refers to etching of Si wafers on one type of cathode, instead of
another type-2 cathode. The hybrid texture process refers to etching sequentially on both types of cathodes, and
finally the conditioned texture process refers to an un-assisted texturing process in which the chamber is first
conditioned prior to texture-etching wafers. The SEM profiles of hybrid and conditioned textures are shown in
Figure 6. The hybrid texture is somewhat similar to the Ti-assisted texture process, whereas the conditioned
texture is similar to Cr-assisted textures, except that the feature dimensions are approximately an order of
magnitude larger. The cathode-1 textures, not shown in Figure 6, are similar to Cr-assisted profiles.

In summary, we have developed novel, metal-assisted texturing processes that lead to a wide range of
etched profiles and reflectance responses. A detailed understanding of the plasma processes is required to
understand the underlying physical mechanisms. It appears that the variation in texture profiles is due to different
sputtering rates of various metal sources.
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Figure 2. SEM pictures of Cr, Pd, and Ti-assisted RIE-textured surfaces. The white lines represent length scales
of 100-nm for Cr & Ti-assisted textured surfaces, and 1-um for Pd-assisted.

2. SOLAR CELL FABRICATION

Details of the solar cell fabrication are given in reference [9]. All solar cells were fabricated on 4"
diameter p-type (~ 1-2 £ cm) Si wafers. Si wafers were RIE-textured, cleaned using complete RCA treatment
followed by the damage removal wet-chemical etching treatments. The junctions were formed using a POCI; gas
diffusion process. For comparison, a region of ~ 4cm” was protected from RIE etching to provide a planar
reference. All cells had a 70-nm anti-reflection, PECVD-nitride film.
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Figure 4. SEM pictures of Al-assisted RIE-textured surfaces, method # 1 (left), method # 2 (right).
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Figure 5. Hemispherical reflectance measurements from un-assisted random RIE-textured surfaces.

Figure 6. SEM pictures of hybrid (left) and conditioned (right) RIE-textured surfaces.
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3. INTERNAL QUANTUM EFFICIENCY MEASUREMENTS

Internal quantum efficiency (IQE) measurements provide an accurate tool for characterization of solar
cell performance [9]. We can use IQE measurements to evaluate the influence of the surface texture over solar
cell performance. In order to isolate variations in bulk material properties, IQEs are measured from the adjacent
planar and textured regions of each individual solar cell. Texture IQEs from different wafers are meaningful only
if their respective planar region IQEs are nominally identical. The IQE, efficiency, and reflectance responses of
solar cells textured with six different processes are discussed in the following three sub-sections.

3a. TEXTURING ON CATHODE-1

The cathode-1 texturing process has been described earlier in section 1. Here we present solar cell
performance from these textures. Figure 7 shows IQE and hemispherical reflectance measurements as a function
of RIE etch time, for comparison IQE from a planar surface is also plotted. We notice that spectral reflectance is
relatively insensitive to etch time variation. Similarly, we notice that for both 6 and 10-min etch times, IQEs are
almost identical, significantly higher IQE is observed for the 14-min etch time. Notice that the IQEs for all three
cases are significantly reduced in comparison with the planar surface over the entire spectral range presumably
due to residual surface damage. Figure 8 shows SEM pictures of the random RIE textured profiles for each of the
three etch times. A comparison of the etched structures shows that increase in etch time reduces texture density
leaving relatively larger features at longer etch times. The randomly etched features support etch depth varying
from ~ 0.5-1.5-ium in all three cases.

In order to improve IQE response, we have investigated various damage removal etch (DRE) treatments
[9]. Figure 9 shows planar and textured hemispherical reflectance and IQE responses of the 14-min RIE texturing
process that was followed by a 270-sec KOH DRE aimed at recovering a damage-free Si surface. Also

?:d - Hemispherical 20
£ 1 Reflectance
= F 10
&; %’—f -
100 0
80 F -
! =
60 o
F 6-min —
1 10-min =
o 14-mi =
-min
'S
20 planar surface ]
0 1IN DM (AU CAPRE TG (LB e (T S S (ST SR S (RN TP LU [ S Y |
400 600 800 1000 1200
Wavelength (nm)

Figure 7. IQE and hemispherical reflectance measurements as a function of RIE etch time.
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Figure 8. SEM pictures of random RIE textured profiles as a function of etch time, the length scale on all three
SEM pictures is 0.8 um.
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Figure 9. IQE, hemispherical reflectance and IQE ratio measurements for planar and KOH-treated 14-
min RIE-textured surfaces.

plotted in Figure 9 is the IQE ratio of textured to the planar regions of the same wafer. A comparison of planar
and textured surface responses in Figure 9 shows that the KOH treatment has significantly improved textured IQE
response over the entire spectral range. However, the texture IQE is lower than the planar in the 350-650-nm
spectral region. In the long wavelength spectral region (A > 650 nm), the texture IQE is higher with a maximum
ratio of ~ 1.5 at A=1.0 um. The solar-weighted surface reflectance of the textured surface at 4.5 % is
significantly lower than the planar surface reflection of ~ 11.8 %, and is comparable to the 14-min RIE surface
reflectance of ~ 4.2 %. Figure 10 shows the SEM pictures of the KOH-treated random RIE-textured surface. It is
seen that KOH etch has almost etched off the fine features, i.e., etched features in ~ 50-100-nm range. Also,
overall separation between random features has increased without causing significant variations in etched depths.
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Figure 10. SEM pictures of 14-min random RIE textured profiles followed by 270-sec KOH etch, the length scale
on both SEM pictures is (.8 m.

For the 14-min etch process, we have also evaluated DRE with nitric acid solution [9]. Figure 11 shows
the IQE and reflectance measurements of the planar and textured surfaces. Planar and textured IQE comparison in
Figure 11 shows the texture IQE is lower than the planar in 350-600-nm spectral region. At long wavelengths, the
texture IQE is higher with a maximum of ~ 1.3 at A ~ 1150 nm. The solar-weighted reflectance from nitric-etched
surface at ~ 5.5 % is slightly higher than the KOH-treated surface. Figure 12 shows the SEM pictures of the nitric
DRE random RIE-textured surface. It is seen that nitric DRE has etched all the nanoscale features, also the typical
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Figure 11. IQE, hemispherical reflectance and IQE ratio measurements for planar and nitric-treated 14-min RIE-
textured surfaces.
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Top View Cross-sectional View

Figure 12. SEM pictures of 14-min random RIE textured profiles followed by 15-sec nitric etch, the len gth scale
on both SEM pictures is 0.8 Wm.

separation between individual features has increased to ~ 0.5-1.0 um. Finally, in Figure 13, we have plotted I-V
measurements under one-sun illumination for the five cells shown in Figures 7,9, & 11. Table | summarizes
some of the critical cell parameters. Comparison of cell parameters in table 1 shows that the cell efficiencies and
short-circuit currents increase as etch times are increased, while the open-circuit voltages and fill factors remain
constant. The KOH and nitric DREs produce significant improvements in short-circuit currents. For the KOH
DRE, open-circuit voltage has improved significantly, whereas nitric DRE does not show the same improvement.
For both DREs, fill factors are much lower, which is perhaps responsible for lower cell efficiencies.
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Figure 13. I-V measurements under one-sun illumination for the random RIE textured, KOH and nitric-
etched solar cells.
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Table 1. SOLAR CELL PARAMETERS OF SILICON CATHODE TEXTURE WITH AND WITHOUT DREs

Cell description Efficiency | Open-circuit voltage | Short-circuit current | Fill factor
(%) V) (A)

6-min RIE 12.7 0.582 1.162 0.785

10-min RIE 14.73 (0.581 1.174 0.781

14-min RIE 1531 0.583 1235 0.783

14-min RIE+270- 18.27 0.609 1.273 0.764
sec KOH

14-min RIE+15-sec 14.74 0.588 1.378 0.765
NITRIC

3b. ALUMINUM-ASSISTED TEXTURING ON CATHODE-2

The Al-assisted texturing process has been described earlier in section 1. Here we present solar cell
performance from this texture process. Figure 14 shows IQE and hemispherical reflectance measurements as a
function of RIE etch time. We notice that for this texture process, spectral reflectance is relatively insensitive to
etch times of 6 and 10 minutes. For the |4-minute etch time, the hemispherical reflection is significantly increased
in the short wavelength region. For this texture, the 6-min IQE is superior to 10-min in the short wavelength
region, the higher long wavelength response of the 10-min. etch is due to improved bulk properties of this wafer.
The IQE response of the 14-min etch is superior to shorter etch times, however, the overall IQE is still lower than
the planar surface. Figure 15 shows SEM pictures of random RIE textured profiles for the three etch times. A
comparison of the three etch processes shows that increase in etch time reduces texture density leaving relatively
larger features at longer etch times. The depth of the etched structures varies from ~ 0.5-1.5-um in all three cases.
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Figure 14. IQE and hemispherical reflectance measurements as function of RIE etch times.
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Figure 15. SEM pictures of Al-assisted random RIE textured profiles as a function of etch time, the length scale
on both SEM pictures is 0.8 pm.

In order to improve IQE response, we investigated both KOH and nitric damage removal treatments.
Figure 16 shows planar and textured hemispherical reflectance and IQE responses of the 10-min RIE texturing
process followed by 360-sec KOH etching to remove the surface damage. A comparison of planar and textured
surface responses shows that the KOH DRE has improved IQE response relative to RIE-textured surfaces without
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Figure 16. IQE, hemispherical reflectance and IQE ratio measurements for planar and KOH-treated 10-
min RIE-textured surfaces.
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DRE. However, the overall IQE is lower than the planar region over the entire spectral range. The solar-weighted
surface reflectance of the textured surface at 5.1 % is still significantly lower than the planar surface (~ 11.8 %),
and is comparable to the 10-min RIE surface (~ 4.4 %) shown in Figure 14. Figure 17 shows the SEM pictures of
the KOH-treated random RIE-textured surfaces. It is seen that KOH etch has removed all the fine texture, i.e.,
surface features in 50-100-nm range. Also, average separation between random features has increased without
significant variations in etched depths.

Top View Cross-sectional View

Figure 17. SEM pictures of 10-min Al-assisted random RIE textured profiles followed by 300-sec KOH etch, the
length scale on both SEM pictures is 0.8 pwm.

For the 14-min etch process, we also evaluated the nitric DRE process. Figure 18 shows the IQE and
reflectance measurements of the planar and textured surfaces. Planar and textured IQE comparison in Figure 18
shows that nitric treatment has improved IQE response in 640-1200-nm spectral region. The IQE ratio shows a
maximum enhancement of ~ 1.8 at A ~ 1180 nm. The solar-weighted reflectance from nitric-etched surface at ~
6.3 % is slightly higher than the KOH-treated surface. Figure 19 shows the SEM pictures of the nitric-treated
random RIE-textured surfaces. It is seen that nitric etch has removed almost all the fine texture, also the average
separation between individual features appears to be larger than nitric DRE /Si-cathode texture process. Finally, in
Figure 20, we have plotted the [-V measurements under one-sun illumination for the five cells shown in Figures 8,
10, and 12. Comparison of cell parameters shown in Table 2 demonstrates that all cell parameters improve as etch
times increase. A comparison of the two DRE processes shows that the nitric DRE is superior to the KOH.

3c. CONDITIONED TEXTURING ON CATHODE-2

The conditioned texturing process has been described in section 1; here we present its solar cell
performance. For this texture process, the RIE etch time was kept constant at 15 minutes, while varying nitric
DRE time from 10 to 30 seconds. Figure 21 shows the IQE and hemispherical reflectance measurements as a
function of DRE time. We notice that for this texture process, the spectral reflectance is relatively insensitive to
DRE etch times of 10-30 seconds. The solar-weighted reflectance varies from 5.2 %, 5.6 %, and 5.5 % at etch
times of 10, 20 and 30 seconds respectively. For this texture/DRE process, the 20-sec DRE results in IQE
comparable, or larger than the planar surface in the short wavelength region. In the long wavelength, similar IQE
improvement is observed for each of the three etch times. Figure 22 shows SEM pictures of random RIE textured
profiles for the three etch times. A comparison of the three structures shows that increase in etch time from 10 to
30 seconds reduces texture density leaving relatively larger features. The depth of the etched structures varies

from ~ 0.5-1.5-um in all three cases.
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Figure 18. IQE, hemispherical reflectance and IQE ratio measurements for planar and nitric-treated 14-min RIE-
textured surfaces.

Top View Cross-sectional View

Figure 19. SEM pictures of 14-min random RIE textured profiles followed by 10-sec nitric etch, the length scales
are 1.0 and 0.8 pum respectively for the top and cross-sectional SEM pictures.
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Figure 20. I-V measurements under one-sun illumination for the random RIE textured, KOH and nitric-
etched solar cells.

TABLE 2. SOLAR CELL PARAMETERS OF Al-ASSISTED TEXTURE WITH AND WITHOUT DREs

Cell description  Efficiency | Open-circuit voltage | Short-circuit current | Fill factor
(%) (V) (A)

6-min RIE 13.12 0.596 1.281 0.723

10-min RIE 14.25 0.605 1.337 0.766

[4-min RIE 15.14 0.606 1.349 0.775

10-min RIE+360- 15.49 0.610 1.356 (.788
sec KOH

[4-min RIE+10-sec 15.82 0.615 1.362 0.793
NITRIC

The role of the nitric DRE duration is better clarified by plotting the texture-to-planar IQE ratio for the
three etch times as shown in Figure 23. We notice that for the 20-sec etch time, the IQE ratio is > 1 in both the
UV and near IR regions. A maximum enhancement of ~ 1.4 is observed at A ~ 1050 nm. For both 10 and 30-
second etch times, the IQE ratios are only slightly lower relative to the 20-sec etch process. Since the 20-sec etch
time shows UV IQE response superior to the planar surface, we have also compared it to the IQE response of
random, wet-chemically-textured surfaces. Figure 24 shows the IQE and reflectance measurements from the RIE
and wet-chemically textured surfaces, their IQE ratio is also plotted. It is seen that the wet-chemically etched
surface with solar-weighted reflectance of 4.6 % has higher UV reflectance and slightly lower reflectance in the
520-1050-nm spectral region. The IQE ratio shows that the RIE the textured surface exhibits superior
performance in the 350-450-nm and 880-1080-nm spectral regions. In most of the visible region, IQE ratio is
unity, with wet-etch IQE superior to the RIE-texture in 1080-1180-nm spectral region. Figure 25 shows the SEM
profiles of the wet-chemically etched textured surfaces. The chemically etched profiles are predominantly
pyramidal-shaped with average separation of ~ 0.4-1.3 um at depths varying from ~ 0.5-1.0 pm.
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Figure 21. IQE and hemispherical reflectance measurements as function of nitric DRE etch times.
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Figure 22. SEM pictures of un-assisted random RIE textured profiles as a function of etch time, the length scale
on both SEM pictures is 0.8 wm.
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lower magnification higher magnification

Figure 25. SEM pictures of random, wet-chemically textured surfaces, the length scale on the lower and higher
magnification SEM pictures are 0.8 pm and 0.6 um respectively

Finally, in Figure 26, we have plotted the I-V measurements under one-sun illumination for the five cells
shown in Figures 21 and 24. Table 3 summarizes some of the critical cell parameters. Comparison of cell
parameters shows an overall improvement as etch times increase. For all textured surfaces, the overall
performance is superior to the planar surface. For the RIE texture process, significant improvement is seen as etch
time is increased from 10 seconds. Cell performances are similar for DRE times of 20 and 30 seconds. The wet-
chemically etched surface exhibits superior response in comparison with the RIE-textured surfaces.
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Figure 26. I-V measurements under one-sun illumination for the planar, random RIE and wet-chemically
textured solar cells.
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TABLE 3. SOLAR CELL PARAMETERS FOR PLANAR, UN-ASSISTED AND WET-TEXTURE

PROCESSES
Cell description Efficiency | Open-circuit voltage | Short-circuit current | Fill factor |
(%) (V) (A) |
Planar 14.5 0.611 1.269 0.786
10-sec Nitric DRE 16.07 0.615 1.390 (.787
20-sec Nitric DRE 16.48 0.617 1.434 0.781
30-sec Nitric DRE 16.43 0.618 1.439 0.774
Random, Wet- 16.96 (0.619 1.452 0.792
chemical

4. ANALYSIS OF INTERNAL QUANTUM EFFICIENCY MEASUREMENTS

In the previous section, IQE measurements from six texture processes were presented. In order to
understand their relative merits, we have plotted all six IQE ratios and hemispherical reflectances in Figures 27
and 28. The salient features of the IQE ratio measurements in Figure 27 can be summarized as follows:

1 Chemically-etched and nitric DRE on cathode-1 have almost identical IQE response over the
entire spectral region with maximum enhancement of ~ 1.5 at A ~ 1200 nm,

ii. Conditioned nitric DRE and KOH DRE on cathode-1 have similar IQE response with maximum
enhancement of ~ 1.5 at A ~ 1000 nm,

1ii. The Al-assisted RIE with nitric DRE has a behavior similar to that described in (i) above, except
that it has higher enhancement of ~ 1.8 at the same wavelength, and

iv. The Al-assisted RIE with KOH DRE shows no IQE enhancement.
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Figure 27. IQE ratios from five random RIE-textured surfaces with KOH and DRE treatments (for reference the
IQE ratio from wet-chemically etched surface is also plotted).
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The salient features of the hemispherical reflectance measurements shown in Figure 28 can be
summarized as follows:

1. Nitric DREs on conditioned and cathode-1 RIE processes have similar reflectance response,
however, their near IR IQE response is significantly different,

ii. The chemically-etched surface has UV reflectance similar to RIE-textures in (i), however, its long
wavelength reflectance is lower,

. The Al-assisted RIE with nitric and KOH DREs both have almost identical reflectance response,
however, their IQE responses are different, and

iv. The lowest reflection is observed for KOH DRE on cathode-1 RIE process, its IQE response is

similar to the conditioned texture process.

These results show that there appears to be no correlation between the measured reflectance response of a
texture process, and its IQE response. The key solar cell parameters from the five textured surfaces are
summarized in Table 4. Comparison of the five RIE-texturing processes demonstrates the superiority of
conditioned texturing process combined with nitric DRE treatment.
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Figure 28. Hemispherical reflectance measurements from five random RIE-textured surfaces with KOH and DRE
treatments (for reference the reflectance from wet-chemically textured surface is also plotted).



TABLE 4. SOLAR CELL PARAMETERS FOR SIX TEXTURE PROCESSES

Cell description Efficiency | Open-circuit voltage | Short-circuit current | Fill factor
(%) (V) )
Cathode-1, KOH 15.27 0.609 1.27% 0.764
DRE
Cathode-1 Nitric 14.74 0.588 1.378 0.765
DRE
Al-assisted, KOH 15.49 0.610 1.356 0.788
DRE
Al-assisted, Nitric 15.82 0.615 1.362 0.793
DRE
Conditioned, Nitric 16.48 0.617 1.434 0.781
DRE

4a. DIFFRACTIVE COUPLING OF LIGHT INTO SEMICONDUCTOR

In order to understand the IQE enhancement in near IR region, it is useful to briefly review diffractive
optics. A random surface represents a superposition of a number of grating structures supporting a wide
distribution of periods, depths, and profiles. Light incident on such a surface is randomly scattered into various
diffraction orders both in air and inside the semiconductor substrate. The distribution of energy in these obliquely
propagating diffraction orders is a complex function of many parameters including wavelength, incident angle,
period, profile, and depth. A simple case is illustrated in Figure 29, which shows a single grating etched into the
top surface of a Si wafer. A beam of light at wavelength A is normally incident the grating surface defined by
period d, linewidth 1, and depth h. The period is chosen such that there are no diffraction orders in air, i.e., A/d > 1.
Inside the semiconductor, first and second diffraction orders are propagating due to its higher refractive index n,

Normal-incidence
incident and reflected
beams

Figure 29. Diffractive optical coupling of light into the semiconductor for a single grating surface.
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i.e., 2* M(n*d) < 1. We can calculate the propagation angles inside Si using the grating equation. Figure 30
shows the propagation angles inside Si of normally incident beams for four grating periods. We notice that for
periods between 0.27-0.33-um, first diffraction order approaches angles ~ 90° at A ~ 960, 1070, and 1160 nm. For
larger grating periods of ~ 0.4 and 0.5-pm, first diffraction orders approach ~ 40° and 30° at A ~ 1000 nm.
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Figure 30. Angular variation of transmitted diffraction orders as a function of wavelength.

The distribution of energy into transmitted diffraction orders is a complex function of many variables
including polarization, angle, profile, period, and depth. Using GSOLVER™ software, we have calculated
diffraction efficiencies of the first and second diffraction orders for two profiles as shown in Figure 31. It is seen
that for TM-polarization, energy distribution for both profiles is a periodic function of grating depth. For these
calculations, light at A ~ 1.0 um was normally incident and a 75 % duty cycle for rectangular profile grating was
assumed. The triangular profile was assumed to be symmetric. These 1D calculations demonstrate ~ 80-100 %
coupling of incident light into obliquely propagating diffraction orders for grating depths varying from ~ 0.25-1.5
um. Since the random RIE-textured profiles are more complex 2D structures, a better picture of diffractive
coupling requires 2D modeling of grating structures.

Since the material properties of the wafer are isolated by taking IQE ratios from adjacent planar and
textured regions on the same wafer, the enhanced near IR IQE can be explained by increased light coupling into
the obliquely propagating orders. Due to long near IR absorption lengths in Si, the normally propagating zero-
order beam in the absence of a diffractive scattering surface is absorbed deep into the bulk region. A significant
fraction of these photo-generated electron-hole pairs are lost to bulk recombination. However, the random RIE-
textured surface couples light more effectively into obliquely propagating orders, thus, creating electron-hole
pairs closer to the surface and reducing their recombination probability.
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Figure 31. Calculated-coupling efficiencies of first and second diffraction orders for 0.65-um period grating with
rectangular and triangular profiles.

We have investigated the IQE response of various grating structures as part of an effort aimed at an
understanding of the IQE enhancement in near IR region. Figure 32 shows the IQE ratio of grating/planar regions
of the same wafer for rectangular and triangular profiles at a period of ~ 0.5 um. We notice that both these
profiles show peak enhancement at A ~ 1050 nm, the rectangular profile IQE enhancement is ~ 2.6, the triangular
profile ~ 1.5. The IQE enhancement response from these 1D grating structure is similar to that observed by the
un-assisted and cathode-1 RIE texturing processes, although rectangular profile has significantly higher
enhancement in near IR IQE. Since the random RIE-textured profiles support structures in 0.3-1.0 lm range, it is
probable a fraction of incident energy is coupled into the obliquely propagating diffraction orders. This explains
the enhancement in near IR IQE response.
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Figure 32. IQE ratio from grating and planar regions of for the same period, but different profiles.
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5. SUMMARY AND FUTURE WORK

We have developed a unique texture control process based on metal-catalytic influence of the plasma
texturing process. This random texture tunability has led to an optimum profile for the optimum solar cell -
performance. Most of the randomly textured features not only reduce surface reflection, but also enhanced near IR
internal quantum efficiency response. The IQE enhancement is believed to originate from enhanced diffractive
coupling into obliquely propagating first and second transmitted diffraction orders inside Si. Further optimization
is required in:

a) DRE treatments consistent with lowest reflection losses,
b) Improvement in RIE texturing process without DRE treatments, and
c) Extension of the texturing process to large area multi-crystalline Si substrates.
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