SANDIA REPORT

SAND2001-0828
Unlimited Release
Printed March 2001

OBEST: The Object-Based Event
Scenario Tree Methodology

Gregory D. Wyss and Felicia A. Duran

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/ordering.htm

SAND 2001-0828
Unlimited Release
Printed March 2001

OBEST: The Object-Based Event
Scenario Tree Methodology

Gregory D. Wyss and Felicia A. Duran
Risk, Reliability & Modeling Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0747

Abstract

Event tree analysis and Monte Carlo-based discrete event simulation have been used in risk
assessment studies for many years. This report details how features of these two methods can be
combined with concepts from object-oriented analysis to develop a new risk assessment
methodology with some of the best features of each. The resultant Object-Based Event Scenario
Tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios
for which an a priori discovery of event ordering is either cumbersome or impossible (especially
those that exhibit inconsistent or variable event ordering, which are difficult to represent in an
event tree analysis). Each scenario produced by OBEST is automatically associated with a
likelihood estimate because probabilistic branching is integral to the object model definition.
The OBEST method uses a recursive algorithm to solve the object model and identify all
possible scenarios and their associated probabilities. Since scenario likelihoods are developed
directly by the solution algorithm, they need not be computed by statistical inference based on
Monte Carlo observations (as required by some discrete event simulation methods). Thus,
OBEST is not only much more computationally efficient than these simulation methods, but it
also discovers scenarios that have extremely low probabilities as a natural analytical result —
scenarios that would likely be missed by a Monte Carlo-based method. This report documents
the OBEST methodology, the demonstration software that implements it, and provides example
OBEST models for several different application domains, including interactions among failing
interdependent infrastructure systems, circuit analysis for fire risk evaluation in nuclear power
plants, and aviation safety studies.

Equilibrium is when all of the fast things have happened
and all of the slow things have not.

— Richard Feynman

Acknowledgments

No significant research work can be completed without contributions from a number of people,
and this project has been no exception. The authors wish to thank a number of people who have
provided help for this work. First, we would like to thank the Sandia National Laboratories
Laboratory-Directed Research and Development program, Infrastructure Interdependencies
research area, for providing the financial sponsorship that made this work possible.

Many other people at Sandia contributed their time, leadership, comments and criticisms to this
work, and this project would be much the poorer without their help. We would like to thank
Allen Camp for his leadership and encouragement throughout this project. Persons who
provided important input very early in the OBEST methodology development process (input that
helped refine the methodology in almost every way) are too numerous to mention, but included
Roger Breeding, Roger Cox, Sharon Daniel, William Hart, Cindy Phillips, Mark Snell, and the
staff of the Surety Assessment Center. John Forester and Dwight Miller deserve special thanks
because they not only provided assistance with human reliability analysis topics associated with
the OBEST methodology, but also served as reviewers of this final report. Frank Wyant also
deserves special thanks for his help and patience with regard to developing the OBEST circuit
analysis example described in Section 5.4.

Another unsung member of the project team was Mr. Robert Browitt of Architrave Software in
Albuquerque, New Mexico. Robert wrote the OBEST demonstration analysis software
described in Chapter 4. Robert did an admirable job of implementing a complex methodology
into working software in the face of frequent changes on a limited budget. We are very thankful
for his efforts and the software that they produced.

We would also like to thank the NASA Ames Research Lab and the NASA Aviation Safety
Program for sponsoring aviation safety work that helped shape and test the OBEST methodology
(part of which is reported in Section 5.6 of this report). We would especially like to thank Dr.
Mary Connors and Dr. Irving Statler of NASA Ames, as well as Dr. Kevin Corker of San Jose
State University for their help, comments and support. We would also like to thank ATAC
Corporation of Sunnyvale, California, and especially Mr. Michael Abkin, for their insights into
runway incursion phenomenology.

We would also like to thank Ms. Paula Sperling, certified AmPRO racquetball instructor, for her
help in developing the racquetball game example found in Section 5.3. We very much
appreciate her help in developing the probabilities used in that example as well as her review of
its final write-up.

Finally, we would like to thank Mr. David Craner, a pilot with SB Air in Albuquerque, New
Mexico. Dave generously gave us assistance in characterizing pilot actions under a variety of
conditions. His contributions helped us dramatically in construction of the OBEST aviation
safety model that is presented in this report. We would also like to thank the management of SB
Air for encouraging and supporting Dave’s participation in this project.

This Page Intentionally Blank

Contents

INOMENCIALUTE ...ttt ettt et sbe bt sb e bt et esbeete e 18
Lo TNEEOAUCTION ..ottt ettt et s bt et s st et e st e e st e bt entesseenseenseeneenes 19
Lole MOTIVATION .ttt sttt sttt s bttt et sbe e b et e saeeees 20
1.2, OVerview 0f the REPOTT.......ccoiuiiiiiiiiieiiecii ettt 22

2. Survey of Other MEthOdScocuiiiiiiiieiieiecee ettt et se e 25
2.1. Infrastructure Indications and Warnings SYStemccceevveevreerieenieereeerreenreeereeeeneenns 25
B) o 1<) o OO PPPPORORPPRTPR 26
2.3. Traditional Network Analysis Methodsccceecuiiiiiiiiiiiiieiiecie et 27
2.4. Enumerative Risk Assessment Methodsc.cccoeeviiiiiniiiiniiniiiececeeceee 28
2.5. Probabilistic Risk Assessment Methodsccceeriirienieiiinienieeseeee e 30
2.6 MarkoV MOMEISooueiiiiiiiiiiieiietee ettt st 32
2.7. Simulation MEthOdSccouiiiiiiiiieiieeie et ene 33
2.8. Dynamic Risk Assessment Methodscccueeiieiiiiiiieniieiieie e 35
2.9. Discrete Event Simulation Methods...........ccciiiiieiiiiiiiiiiciceieee e 36
2.10. Object-Oriented Risk Assessment Methods...........coovuieniiiiiieniiniiieieceee e 38
2.1 1. SUINMATY ..eviiiiiiieeiieeeiee ettt et e et e et ee e taeeeaaeeeaaeeesseeessseaessseeessseeeasseesnsseesnsseesnssens 39

3. The OBEST MethOdOIOZY.....cccutiiiiiiiiiiiieieeiee ettt ettt ettt e sene e 43
3.1, BacK@roundooueooiiiiiieiieieee et e be e e 43
3.2, Methodology DEeSCIiPHiON.ccueiiiieiieeiieiie ettt ettt ettt et seaeebe e aee e 45
3.2.1. Common Elements with Previous Methods...........ccccoevirieiiniiinieieeeeeeeeee 45
3.2.2. The OBEST Action Languageccccecueeuienieeiiienieeieeeie ettt 50
3.2.3. OBEST Methodology SUMMATYcc.eeeiieeiieiieeiierieeieeeeee e eeieeereeseeeeveesneeseeeenas 55

3.3. Solving an OBEST MOdEl........ccciiiiiiiiiiieieeeee ettt 57
3.3.1. IRM Branching Methodologycceoviieiiiiiieiieciieieeeee et 60
3.3.2. DRM Evaluation and Branching Methodologycccoeeuveiiiiiieiiiniiiieeieeeeee, 62
3.3.3. Truncation and BinNing...........cccoeeiiiiiiiiiieiiieiie ettt re e e aeeve e 67

3.4. Compatibility With Parallel Processingccccoecieriiiiiiiniieiienieeiieieeeee e 69
3.5. Comparisons With Other MethodologIes..........c.ccevieriiiiiieiiieiieeie et 69

3.6. Potential OBEST APPICAtIONS......cc.eiiiiiiiiieiieiieeiieie ettt ettt e 72

3.7. OBEST Limitations and Possible EXteNnSionscccereeriirieneeiienieneeeseeieeee e 74
3.8. SUIMIMATY .eetiiiiiieeiee ettt ettt ettt e et e e st e e s bt e e s bt e e abeeesabeesabeesneeesneeas 76
. OBEST Software Implementationcccecvueeiuieriieeiiieiieeieeete e esteereeseeesreesveeseessneeseens 79
4.1, SOTEWATE OVEIVIEW....eiuiiiiiiieiieiiteitete ettt sttt ettt ettt sttt et at ettt sae e bt et esbeenees 79
4.2. Entering a Basic Object Modelcooviiiiiiiieiiiiecieceeee e 79
4.3. Entering Immediate and Delayed Response Models...........ccoooeiviiiniieniiienieniiciiee, 89
4.4. Evaluating an OBEST MoOdel.........cccoooiiiiiiiiiiiiiciececee et e 97
4.5, SUITIMATY covtiiiiiieeiiie et ee ettt ettt e ettt e et e e st e e st e e e abeeesteeenbteesasbeesaseeenaseeenabeesnnseesnnne 105
. EXAmPLe PrODICINS ..ccviiiiiiiiiiiicieece ettt ettt ebe e eebeenneas 107
5.1. Electric Power Supply for a Police Station...........cccceeviiiiienieniiiiieeiececeeeee 108
5.1.1. Problem DeSCIIPION.ccutiieriieieeiesiteie ettt ettt e s eeesaeenaeeneeees 109
5.1.2. ODbJECt DESCIIPLION.eetieuiiriiiieeieeiieste ettt sttt ettt st sbe e s eees 109
5.1.3. Graphical Model SOIUtIONcccciiiiiieiieiiecieeeeee e 113
5.2. Fuel Tank Supply for a Gas BUINETcccoeeiiiiiiiiiiiiieeieeeceeeeee e 114
5.2.1. System Structure and INtEractionS...........ccveevuierieeiiieriieeieeriee e eee e ae e eeeas 114
5.2.2. The Valve ODJECTcecuiiiiieiieiieeieese ettt ettt ettt et saee b e enees 116
5.2.3. The Fuel SyStem ODJECtccouiiiiiiiieiieiieeie ettt e 118
5.3. A Singles Racquetball Game............cccoeeiiiiiiiieiieiieiiieeee e 120
5.3.1. System Structure and INteractionS...........cccveeurerieeiiierieeie et ve e eenes 121
5.3.2. Player A ODJECT ..ccuiiiiieiieeiteie ettt ettt ettt ettt 122
5.3.3. Player B ODJECE ...cuviiiiiiiieieeiie ettt ettt et eneas 126
5.3.4. The Game ODJECTcccueeruiieiieiieeieete ettt et ettt ettt e s e eseesaaeeseesnees 129
5.3.5. Modeling Application and AIEINAtiVESc.cccveevieriieeiieriieeieeree e 132
5.4. Circuit Analysis for Nuclear Power Plant Cable Fires..........ccccceviieriiieniinciiiiieee, 132
5.4.1. System Structure and INtEractionS...........ccveevueerieeiiierieeie et et eee e ve e eenas 135
542, L.0ad ODJECT...ceeiiiiieeiieeiie ettt ettt ettt e et e et e e beesnbeebeesaaeenbeeeneas 137
5.4.3. CoNAUCLOT ODJECT ...oieuviiiiieiieiieeie ettt ettt ettt eaeesteesbeesaeessaeesaesaseesseensnas 138
544, SWICH ODJECT ...uviiiiiiiieiie ettt ettt ettt et et esaaeebeeenaes 139
5.4.5. POWEr SUPPLY ODJECT...ccuiiiiiiiiieiieciieeie ettt ettt eaa e aeeaeeeneas 140
5.4.6. Partial Circuit ODJECT....cc.uiiiiiiiiiieiieiieeieeee ettt ettt seees 141
5.4.7. Circuit Completer ODJECTcouiiiiieiiiieiieiieeie ettt neeaeeeeeas 142
5.4.8. Circuit ANAlYZEr ODJECLcuiiiiiiiiieiiieiiee ettt 144
5.4.9. Other ODJECLS.....uiiiuiiiiieeiieeieeeie ettt et e ettt eeteesteesaseessaessseeseessseesaessseesseessnas 147
5.5. Basic Infrastructure Problem............ccooieiiiiiiiiiiiiiiiieee e 148
5.5.1. Problem Description and System Model...........cccoeevieviiiiiinieeiieieceeeeeie e 148
5.5.2. Individual Object MOdelS.........coocuiiiiiiiieiieeieeieee et 154
5.5.3. Summary and INSIGNtS........c.eooiiiiiiiiiiiiieeeee s 163
5.6. Aircraft Spacing During Runway Crossing Operations...........c.ceeeeeeeveenieeneeenieennnennn. 164

5.6.1. System Structure and INteTaCtioNS........c.eevueeriiierieriieiie ettt 165

5.6.2. Airport/AirSpace ODJECTcecuiiiiiieiiieiieiteeie ettt ettt sae e aeebee e 167

5.6.3. Landing Aircraft ODJECtc.cevuiiiiiiiiiieiieie ettt 169

5.6.4. Taxi AIrcraft ODJECtccuiiiiiieciiieiiecieeie et eeeas 172

5.6.5. Tower Controller ODJECTcoiiiiiiiiieiieieeieee ettt 175

5.6.6. ENvIronment ODJECTc.eiecuieriiiiieiiieie ettt ettt esteesveesaeesseeeaeesaaeesveesnnas 175

5.6.7. Model APPIICAtIONSeeuiieiieiieeiieiee ettt ettt et e e 175

BTN N 314V | ARSI 176

6. Conclusions and Future DIr€Ctionscoeevuerierieriinienieienieeeeet et 177

0.1, CONCIUSIONS ...eoutieiiieiiete ettt ettt ettt ettt et et e s e et e ente s st eteensesseenbeentesneenseeneenne 177

6.2. Recommendations for Future Worki..........ccccooviiiiiiiiiiiccee 179

0.3, SUINIMATY ...vvieiiiieeiieeeieeeeieeesiee et e et e e esaeeesbeeeaseesssaeeesseeesssaeessseeessseesasseesnsseesnsseennnns 181

T RETETEICES ...ttt ettt sttt et sbe b s 183
Appendix

A. Example Details for Electric Power Supply for a Police Station...........ccccceeveeeviecieenieenen. 189

A.1 System Structure and INtETaCtIONS........c.eeruieeiuierieeiienie ettt e 189

A.2 Electric POWer BUS ODJECTc.eiiiiiiiieiieiieeieeeee ettt sae e 190

A.3 Telephone Switch Building Objectccuieiiiiiiiiiiiieeiieeeeee e 191

A.4 Police Station POWEr ODJECT.......ccuiivuiiiiiiiiieiiceie ettt e 193

B. Example Details for Fuel Tank Supply for a Gas Burnerccceevieiiiniieiiiniiiiiee 197

B.1 System Structure and INtEractionS........c..cccveeeuierieeriierieeieeeieeie e et e eee e eseveereeeenas 197

B2 ValVe ODJECT..ccuiiiiiieiieie ettt ettt ettt et e et eneas 198

B.3 Fuel SyStem ODJECtoocuiiiiiiiiieiieiieee ettt et eaeesaaeeabeesenas 199

C. Example Details for A Singles Racquetball Gamecccccoevieviiiiieniiieiiiiceeeeeeeee, 203

C.1 System Structure and INtEractionS..........cc.eeevieriieriieriieriieieeete et e see e ereereeseaeereens 203

C.2 Player A ODJECTuiiiiieiieiiieiieeie ettt ettt ettt et e st e e bt e saaeenteesaseenbeesanesnseans 204

C.3 Player B ODJECLviiiiiieiieciieeteeee ettt ettt ettt e e stae e e aseesbeessaeensaens 208

C.4 The GameE ODJECL ..cccuvieiieiiieiieiie ettt ettt e et e st e e bt e ssaeeteesaaeenbeessnesnseens 212

D. Example Details for Circuit Analysis for Nuclear Power Plant Cable Firesc......... 215

D.1 System Structure and INtEraCtioNS........c..coveeeuierieeriieiieeieerieesieeeee et e eeeereeseeeereesenas 215
D2 108 ODBJECT...eiiiiiiiieeiiieiie ettt ettt ettt et e et e e st e et e s st e ebeesaeeenbeennnas 215
D.3 CoNAUCLOT ODJECT ..ueiuiiiiiieiiieiieeiieiee ettt ettt e ettt be e teeebeesaaeebeessneessaessseesseensnas 218
D4 SWILCH ODBJECT ...ttt ettt et e st e et esaaeebeeeneas 219
D.5 POWer SUPPLY ODJECL....cuiieiiiiiiieiiieiieeie ettt e e e e saaeeareenenas 221
D.6 Partial Circuit ODJECT....cc.eeiiieiiieeiieiieeie ettt ettt ettt e e e saaeenbeesenas 222
D.7 Circuit Completer ODJECEccuiieiieiiieiiecieeie ettt ettt eeeeveesaaeebeesenas 223
D.8 Circuit ANALYZEr ODJECL ...ccuviiiiiiiiieiieeieee ettt et 225
E. Example Details for Basic Infrastructure Problemc.cccooeviiiiiiiiiiniiiiieiece e, 237
E.1 System Structure and INteractionsS..........cccueeeuierierriienieeieerie ettt e 237
E.2 The Vital Household Functions ObJectscccueevuieriieriieriieiiesieeieecee e 241
E.3 The Consumable Supplies ObJECtS.......c.eeriieiierieeiieiieeieerie ettt 245
E.4 The Commercial Power and Commercial Gas Objects........cccccvevireviienieeniienieereennen. 254
F. Example Details for Aircraft Spacing for Runway Operations...........ccceccvevveerieenieesieennenne. 259
F.1 System Structure and INtEractionS...........cccueevuierieeiiieiiieieerieecteeeeeereeeeeeveeseneeseesenas 259
F.2 Airport/AirSPace ODJECLeeiuiiiiieiieeiieeiie ettt ettt e et esaeeebeeseeas 261
F.3 Landing Aircraft ObJECtc.ooviiiiiiiiiieiiecieeieeeee ettt re e e saneeseeeenas 264
F4 Taxi AIrcraft ODJECtccouiiiiiiiiieiieie ettt et 267

10

List of Figures

Figure 3-1. A System Structure DIiagrami...........ccceeviiriiiiiiieiiiieniieeie ettt eeesae e 46
Figure 3-2. An Interaction DIiagrami..........c.ccecuieiiiiiiiiiiieniieesiee et et eree et e e sreeeseaeeenaeeens 47
Figure 3-3. A State Transition Diagram...........cccceeriiiiiiiiiieiiiieieeieete et 47
Figure 3-4. An Action Data FIow Diagram............ccccccueeriiiiniiieiiieeiiee e 48
Figure 4-1. OBEST Software Main SCIEEMN........cceeruiiiiiiiiieeiieiie ittt ettt veesae e 80
Figure 4-2. Object Definition SCIEEN.ccuiiiiieiieiiieieciieeie ettt et sv e reesaeeneens 81
Figure 4-3. Entering ObJECt STALES.eevuiriiierieeiieiie et eriie ettt sttt e steeseeesaeebeesaseebeesaneeseens 82
Figure 4-4. Entering a State Transition Table.cccccoeviiieiiiiiiiieeeceee e 84
Figure 4-5. Defining a Model EVENtcccooiiiiiiiiiiiceeecee et 86
Figure 4-6. Summary of OBEST Model AtribULES.cceeeiieiiieiieiieeie et 87
Figure 4-7. Entering Attribute Definitions.cceeviiiiiiiiieiiieiece ettt 87
Figure 4-8. Entering Values fOr AtrDULES.cccvieriiiiiiiiiicie ettt 88
Figure 4-9. Entering an Immediate Response Model............ccooiiiiiiiiiiniiiiniiniicceeeeee e 91
Figure 4-10. Entering a Delayed Response Model.cccccovieoiiiiiieiieniieieecieeeeeee e 92
Figure 4-11. Entering Logic Cases for Immediate and Delayed Response Models. 93
Figure 4-12. Entering Script Definitions for Immediate and Delayed Response Models............ 95
Figure 4-13. Setting Alternate Initial Conditions for the Model............ccoooiiniiiiiiiiiiiiieee, 98
Figure 4-14. Setting Events to Initialize the OBEST Model.........ccccccviieiiiviiiiieiiicieeeeeieee 98
Figure 4-15. Setting Path Termination Conditions.cecueerieriieenienieeie et 99
Figure 4-16. Binning Model Results Based on Attribute Values...........ccccceeveeiieciienieenieennnnne, 101
Figure 4-17. OBEST Software Display During Model Analysis.........cccocveevienieeniienieeniieneee 103
Figure 4-18. OBEST Software Debugging SCreen.ccccevveeviieriieriienieeieeeeeeieeeee e 104
Figure 4-19. Displaying the Results of an OBEST Analysis.ccccceevieniiiiieniieiieciecieee 105
Figure 5-1. System structure diagram for police station power model.cccoeevvevvieriennnnne. 110
Figure 5-2. Interaction diagram for police station power model...........ccccceevieviieiieniiininnnnne 110
Figure 5-3. State transition diagram for the electric power bus.ccccccveevieriieciieniieieee, 111
Figure 5-4. State transition diagram for telephone switch building.cccoeceeiiiniiiiinnnnne 112

11

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.
Figure 5-23.
Figure 5-24.
Figure 5-25.
Figure 5-26.
Figure 5-27.
Figure 5-28.
Figure 5-29.
Figure 5-30.
Figure 5-31.
Figure 5-32.
Figure 5-33.
Figure 5-34.
Figure 5-35.
Figure 5-36.
Figure 5-37.

State transition diagram for police Station...........cccceeevveerieriiieniieiierie e 113
Graphical Solution of the police station — electric power problem. 114
Fuel tank supply for a gas burner.ccocceevieriiiiiieniieee e 115
System structure diagram for gas burner fuel supply model.cccccvveevrennennnen. 115
Interaction diagram for gas burner fuel supply model.ccceeiiiiiiniiiiiinnnn 115
State transition diagram for the valve..........cccoooieiiiiiiiiieciceeeece e 116
State transition diagram for fuel system.cccoeeieriieiiiniiiiieeee 118
System structure diagram for model of a singles racquetball game...................... 121
Interaction diagram for model of singles racquetball game.cccoevviennenen. 121
State transition diagram for Player A object.ccovevvieviiieiieiiecieeeece e 123
State transition diagram for Player B object.........cccovoiieiiiniiiiiiiiiieiecce 127
State transition diagram for Game ODbJect.cccecveriievieriieiiiecieeieecie e 130
Example solenoid-operated valve control Circuit.oeceeveeeieenienieeniienieeieens 134
System structure diagram for circuit analysis.cccceeveeeviieieenieenienie e 135
Interaction diagram for circuit analysis model.ccoocveriiniiiiniiniiiieiieeee 137
State transition diagram for the Load Object.c..cccveviieviieiciieiiieiecieeeeeeen 138
State transition diagram for the Conductor Object.........ccceevvievieniieriieniiiiiee, 138
State transition diagram for the Switch Object.........ccccoevieviiieiieiiieiieciecee, 139
State transition diagram for the Power Supply Object.cccooveviieiiiiniiiiienne 140
State transition diagram for the Partial Circuit Object.ccccvvevvieviieniririennnnne 141
State transition diagram for the Circuit Completer Object........cccueevuierieeirennnenne. 143
State transition diagram for the Circuit Analyzer Object.ccccceveevvierireriennnenne. 145
System structure diagram for the “Unprepared” situation.cceceeeverereennnenne. 149
System structure diagram for the “With Generator™ situation.cc.cceenenne. 150
System structure diagram for the “No Electricity” situation.............cceeeeeevuvennnnnne. 150
System structure diagram for the combined model.cccccveviievieniiiciiennnnnn, 151
Interactions diagram for the combined model.............ccoeeiiiiiiiiiiniiiiiieeeee 151
State transition diagram for the Light Object.c.ccccveviieviiiiiieiiieie e 155
State transition diagram for the Heat Object.ccoevvveiiiiniiiiiiiniieieiceee 155
State transition diagram for the Cooking Object........cccccceevireviieniieniienieeiieeeeee, 155
State transition diagram for the Water Object.ccceeviieviiiiiieniiieieieeee 156
State transition diagram for the Electricity Object.ccoevvieviieriieciieciiciieeeene, 156
State transition diagram for the Camp Fuel Object.ccocvviieriieiiiiiiiiiee, 157

12

Figure 5-38. State transition diagram for the Bottles Object.ccceevuieriiiiieniieiiiieciee, 158
Figure 5-39. State transition diagram for the Batteries Object.ccceeevieviieniieciieniieieeeeene, 158
Figure 5-40. State transition diagram for the Candles Object..........ceccveviiriieniieiiieniiiiiee, 159
Figure 5-41. State transition diagram for the Kerosene Object...........cceevvievrieriieiieniieniieennen, 159
Figure 5-42. State transition diagram for the Firewood Object.cccevvieiiiiiiieiiinniieiieee 160
Figure 5-43. State transition diagram for the Matches Object.cccveviieiieniieciieiiieieeee, 160
Figure 5-44. State transition diagram for the Generator Object.........ccceevvreriieniieriienieeiieiee, 161
Figure 5-45. State transition diagram for the Commercial Power Object...........cccoeeviereennnnne. 162
Figure 5-46. State transition diagram for the Commercial Gas Object..........ccccceeviieriieiiiennnnnne. 162
Figure 5-47. System structure diagram for model of runway operations.............ccceeeveeeveennnnnne. 165
Figure 5-48. Interaction diagram for model of runway operations.cccceevveeriienieenieennnenne 166
Figure 5-49. Physical layout for the Airport/Airspace Object.ceevveevvievrieriieiieeieeieeeeeen, 168
Figure 5-50. State transition diagram for the Airport/Airspace Object........cccevveeriierveenieennnnne. 168
Figure 5-51. State transition diagram for the Landing Aircraft Object..........cccevevveriienireennennne. 170
Figure 5-52. State transition diagram for the Taxi Aircraft Object.......ccccevvieviieiiiniiiniienee 172
Appendix

Figure A-1. System structure diagram for police station power model.ccceevvirnirennnnnne. 189
Figure A-2. Interaction diagram for police station power model...........ccceeevieviieciieniienieennnnne. 190
Figure A-3. State transition diagram for the electric power bus.cccceeiieniieiiiniiiie 191
Figure A-4. State transition diagram for telephone switch building.cccccceeviieniiiiiiennnnne. 192
Figure A-5. State transition diagram for police Station.ccceeeieeriierieeiiienieeeeeie e 194
Figure B-1. Fuel tank supply for a gas DUIMET..........c..cocuieiiiiiiiiicieeieece e 197
Figure B-2. System structure diagram for gas burner fuel supply model.ccccoeverinnennnn 197
Figure B-3. Interaction diagram for gas burner fuel supply model..........c..ccccevvieerieniiiciiennnnnne. 198
Figure B-4. State transition diagram for the valve.cccooceiiiiiiiniiiiniiccce 199
Figure B-5. State transition diagram for fuel SyStem.ccceevieriieiiieniieieceeeeece e 200
Figure C-1. System structure diagram for model of a singles racquetball match. 203
Figure C-2. Interaction diagram for model of a singles racquetball match................c..ccuec....... 204
Figure C-3. State transition diagram for Player A object.........ccceeviieiiiiniiiiienieeiiee e 205
Figure C-4. State transition diagram for Player B object.ccccoevvieviiiiiiiiiiiiieiece e, 209
Figure C-5. State transition diagram for Game ODbJect.cceevuieriieiiieniiieiienieeieeee e 213

13

Figure D-1. Example solenoid-operated valve control CirCuit.ccceevveeiiienieeniieniieiieeeee 215
Figure D-2. System structure diagram for the circuit analysis model..........c..cccceeeveerviieriennnnnne. 216
Figure D-3. Interaction diagram for the circuit analysis model.cccceevieniieiinniiiiiinee 217
Figure D-4. State transition diagram for the Load Object..........cccevvieviiiriieiiiiniieiiecie e, 218
Figure D-5. State transition diagram for the Conductor Object.ccevveeiieniieriienieeiieiee, 219
Figure D-6. State transition diagram for the Switch Object..........ccceevvieviiiiiiiiiieiiecieeee, 220
Figure D-7. State transition diagram for the Power Supply Object.ccovieviieviiiniiiiiieee 221
Figure D-8. State transition diagram for the Partial Circuit Object.cceevvievvieciieniieieennnen, 222
Figure D-9. State transition diagram for the Circuit Completer Object.........ccccvveiierieeiieennnnnne. 223
Figure D-10. State transition diagram for the Circuit Analyzer Object.ccceeeveevviecreennnnnn. 225
Figure E-1. Components and interactions in the “Unprepared” situation.............cccceeerveneeenene 237
Figure E-2. Components and interactions in the “With Generator” situation................c........... 238
Figure E-3. Components and interactions for the “No Electricity” situation...........cc.ccecevueenne. 238
Figure E-4. Components and interactions for the combined model.............c.ccccvveviiniieniennnnne. 239
Figure E-5. Functional interaction diagram for the combined model.cccccoceviiviniinennen. 239
Figure E-6. States, attributes, and response models for the Light Object.c.ccceevvreviennnnne. 241
Figure E-7. States, attributes, and response models for the Heat Object.ccceevviriinnnnnne 242
Figure E-8. States, attributes, and response models for the Cooking Object............ccoeevenenne. 243
Figure E-9. States, attributes, and response models for the Water Object..........ccceevveriiennnnne. 244
Figure E-10. States, attributes, and response models for the Camp Fuel Object. 246
Figure E-11. States, attributes, and response models for the Bottles Object.cccceevueennennne. 247
Figure E-12. States, attributes, and response models for the Batteries Object.ccueen..... 248
Figure E-13. States, attributes, and response models for the Candles Object............ccccueennee.e. 249
Figure E-14. States, attributes, and response models for the Kerosene Object.......................... 250
Figure E-15. States, attributes, and response models for the Firewood Object. 251
Figure E-16. States, attributes, and response models for the Matches Object.ccuee...e... 252
Figure E-17. States, attributes, and response models for the Generator Object......................... 253
Figure E-18. States, attributes, and response models for the Electricity Object........................ 254
Figure E-19. States transition diagram for the Commercial Power Object...........ccccccverueennnne. 255
Figure E-20. State transition diagram for the Commercial Gas object.ccceevuierveecriennnnnne. 256
Figure F-1. System structure diagram model of runway operations.ccceecveeeveereeenieennnenne 259
Figure F-2. Interaction diagram for the model of runway operations.ccceeeveerveenreennnnne. 260
Figure F-3. Physical layout for the Airport/Airspace ObJect.cocuvevuieriieiiienieeiieeieeieeeeene 263

14

Figure F-4. State transition diagram for the Airport/Airspace Object.cccvevveeviieniernieennnnne. 263
Figure F-5. State transition diagram for the Landing Aircraft Object.c.ccccovevvievrieeieennnenne. 264
Figure F-6. State transition diagram for the Taxi Aircraft Object.ccccevvieviieiiiiniiiiieee 268

15

List of Tables

Table 3-1. A Deterministic Truth Table..........cccooiiviiiiiiiiiiiee e 49
Table 3-2. A Probabilistic Truth Tablecccoceiiiiiiiiieee e 50
Table 3-3. Notional Representation of an Immediate Response Modelcccceeiieiieniennnnnn. 51
Table 3-4. Notional Representation of a Delayed Response Modelccccoevveeiiiiiieiienieennnn. 52
Table 3-5. Equivalence of Models Using the “If — Then — Else” Decision Process. 54
Table 3-6 Improper Model Simplification Using the “If — Then — Else” Decision Process. 55
Table 5-1. Functional interactions for police station power model.............ccoeeeeriieiieniieieennen. 110
Table 5-2. Functional interactions for gas burner fuel supply model.c..ccceevievierirenennen. 116
Table 5-3. Probabilistic schedule for turning on the valve.ccccooveviieiiiiiiiiniieieeeeeeee, 117
Table 5-4. Probabilistic schedule for turning off the valve..........cccccoevieiieniiiiiiiiiieieeeeee, 117
Table 5-5. Delay times for changing tanks.cccoecieriiiiieniiieriieeeeeee e 119
Table 5-6. Functional interactions for model of singles racquetball game.ccoceuvrnneneee. 122
Table 5-7. Player A’s SErve Profile.cccieiiiiiieiieiiieiieee et 124
Table 5-8. Player A’s serve return profile conditional on Player B’s serve.........ccccccveeveeenneeee. 124
Table 5-9. Player B’S SErve Profile.........ccccueeiiiiiiiiiiiiiiecieeie ettt 127
Table 5-10. Player B’s serve return profile conditional on Player A’s serve..........cccceeveeeveennnen. 128
Table 5-11. Functional interactions for circuit analysis model..........c.ccccevviieiieniiinieniieeeee. 136
Table 5-12. Probabilities for adverse conditions of completion.cceecveeveeriienienieeneennen. 144
Table 5-13. Objects in the combined structure diagram.ccceeveeeerieniieenienieeieeee e 152
Table 5-14. Functional interactions within the combined model............cccccoeviriiniiiinieninee 153
Table 5-15. Functional interactions for model of runway operations.cccceecveeviereeeeeennen. 166
Table 5-16. Collision potential for combinations of runway and taxiway locations. 169
Table 5-17. Probabilistic timing for aircraft movement in State:(Moving).cccceevveeneennen. 171
Table 5-18. Probabilistic timing for aircraft movement in State:(Taxi).cccccceeeevievierieeneenen. 174
Appendix

Table A-1. Functional blocks for police Station POWET.cccueevveeriieriierieeiieeeee e 189

16

Table A-2.
Table B-1.
Table B-2.
Table C-1.
Table C-2.
Table D-1.
Table D-2.
Table E-1.
Table F-1.
Table F-2.

Functional interactions for police station power model.............ccceeceieriiiniieniennnnne. 190

Functional blocks for gas burner fuel Supply........cccevieeiieiiiieiiieciececeeee e, 198
Functional interactions for gas burner fuel supply model............ccccoeevieriiniiennnen. 198
Functional blocks for singles racquetball game.ccccoevveeiieiiinciiciceieeeeee, 203
Functional interactions for model of singles racquetball match.ccceee... 204
Functional blocks for the circuit analysis model.c.cccceeeviieviinciieniieieeie, 216
Functional interactions for the circuit analysis model.c.cccceviiiiriiniiiiiennnne. 218
Functional interactions for the combined model.cccovieiiniiniiiiniieeee 240
Functional blocks for runway operations.ccceeeeeviierieniiieiienieeeeere e 260
Functional interactions for runway Operations.cceeveeeereerieeeveesreesveesreeseneenne 261

17

Nomenclature

DETAM Dynamic event tree analysis method

DRM Delayed response model

DYLAM Dynamic logical analytical methodology

ETA Event tree analysis

FMEA Failure modes and effects analysis

FMECA Failure modes, effects and criticality analysis

FTA Fault tree analysis

HAZOP Hazards and operability analysis

IRM Immediate response model

LDRD The Laboratory-Directed Research and Development program at Sandia
National Laboratories

LHS Latin hypercube sampling

OBEST Object-based event scenario tree

00 Object-oriented

OPRRA Object-oriented process for risk and reliability analysis

PRA Probabilistic risk assessment

18

OBEST: The Object-Based Event
Scenario Tree Methodology

1. Introduction

For more than 30 years, the science of risk assessment has been used to identify potential
shortcomings and safety concerns for a wide variety of engineered systems. The objective of a
risk assessment is generally to:

e Identify the scenarios and mechanisms that can push an engineered system away from its
designed or desired behavior into a region of undesired or unintended consequences,

e To categorize those scenarios or mechanisms based on their likelihood of occurrence, and

e To provide mitigation strategies that will reduce either the likelihood or consequence of
scenarios and mechanisms that are found to be most important.

Thus, at its core, risk assessment can be thought of as seeking the answers to three fundamental
S
questions:

e What can happen to my system?
e How likely is it to happen?
e How does it affect my system, its operators, its surroundings, and the larger environment?

Typically, a risk assessment focuses on the “bad” things, i.e., “What are all of the ‘bad’ things
that can happen to my system?” and “What are all of possible negative effects of those
scenarios?” To answer these questions effectively, one must thoroughly and systematically
explore what may be a very large scenario space in order to identify those (hopefully few)
scenarios that may lead to undesired consequences.

Over the years, deductive and inductive risk assessment methods have been applied to a wide
variety of systems, including missiles, nuclear power plants, underground waste repositories,
aircraft, manufacturing processes, information systems, and even consumer goods. Many have
also sought to apply these same methods to the assurance of telecommunications, electric power,
and other infrastructures. The results of these studies have generally been less insightful than
might otherwise have been expected because of the complex interconnections, interactions, and
interdependencies both within and among the various infrastructure systems. The U.S.
Department of Energy, among others, has organized major research programs aimed at
overcoming some of these obstacles.

19

Realizing that infrastructure protection is an issue with major national security implications,
Sandia National Laboratories has allocated significant internal research and development funding
toward developing risk assessment methods and risk mitigation technologies for infrastructure
applications. In October of 1988, Sandia began a new two-year laboratory-directed research and
development (LDRD) project with the goal of developing improved methods for risk and
reliability analysis for infrastructure-related problems — particularly for network-based
infrastructures. This project was also asked to consider methods that might aid in the
understanding of infrastructure interdependencies. The final result of this project was the major
methodological advance that is documented in this report.

1.1. Motivation

Risk assessment is fundamentally concerned with identifying and preventing “bad” things from
happening to or through engineered systems. It provides a framework to help the analyst identify
scenarios that will lead to undesired consequences, the likelihood of each scenario, and
magnitude of undesired consequences that would be expected were the scenario to actually
occur. Over the years, a wide variety of methods have been developed to support this process,
and one can generally divide these methods into two broad categories: deductive methods and
inductive methods.

A deductive method starts by identifying a particular undesired consequence and then asking,
“What are the immediate, necessary and sufficient conditions that will cause this consequence to
occur?” This causal relationship is expressed in terms of a graphical logic diagram that
illustrates the combinations of conditions required to cause the consequence. One can then ask
the same question about each of these contributory conditions, and expand the logic diagram
accordingly. This recursive process continues until all contributory conditions are resolved into
their most basic causes. The most common deductive risk assessment technique is fault tree
analysis. Once the fault tree’ (graphical logic diagram) is completed, it is solved to find the
minimal combinations of the events that are both necessary and sufficient to cause the undesired
consequence. The graphical diagram illustrates the individual steps in the deductive reasoning
process, and allows others to understand not only the results (how and why things fail), but also
the method by which those results were obtained (why these elements contribute to system
failure). Deductive risk assessment methods have proven difficult to apply to network-based
infrastructure analysis problems because complex network topologies can make it difficult to
exhaustively identify all of the immediate, necessary and conditions that contribute to a
particular fault condition (i.e., a fault can traverse many different pathways before manifesting
itself as a consequence). In addition, it is difficult to deductively and exhaustively predict the
types of cascading failures (the “domino effect”) to which many networks have been
demonstrated susceptible.

An inductive risk assessment methodology begins not by identifying a consequence, but by
identifying an initial configuration for the engineered system." The risk analyst then
systematically examines the space of scenarios that are credibly reachable based on the stated
initial configuration. A variety of methods are used to probe this scenario space, including:

e Enumerative methods — methods such as failure modes and effects analysis (FMEA) and
hazards and operability analysis (HAZOP) systematically consider the scenarios that result

20

when individual components or process parameters individually assume abnormal or failed
conditions.

e Event sequence methods — methods such as event trees and influence diagrams can be used
to develop exhaustive sets of event sequences, but require extensive assumptions to be made
with respect to the list of credible events and the order in which they can occur.

e Simulation-based methods — given the existence of the tool for simulating the performance of
the engineered system (often a computer software tool), one can drive that tool to model a
variety of scenarios and boundary conditions, and in this way, explore the scenario space.

All of these methods have been used over time as risk assessment tools for network-based
infrastructures. However, the results of these assessments have generally been less than
satisfying. Enumerative methods, because they consider failures or process abnormalities in a
one-at-a-time fashion, are unable to consider the effects of potentially rare but important
combinations of failures." Event sequence methods have proven useful in some applications, but
an inability to determine a priori the order in which events would occur has reduced their
usefulness.* Simulation methods are regularly employed using both deterministic and
probabilistic scenario selection. However, the computationally intensive nature of the simulation
tools has often meant that the number of scenarios to be explored must be severely limited, thus
reducing the completeness and, hence, the usefulness of the risk assessment.

The project team began its work by considering a wide variety of existing simulation and risk
assessment methodologies as they might be applied to infrastructure analysis problems. We
considered several different classes of methodologies, including detailed simulation models,
traditional risk and reliability analysis models, contingency analysis-based models, simple quasi-
quantitative models of infrastructure interdependencies, and “pure” network analysis
methodologies. All of these methodologies were found to be wanting in one way or another
(these reasons will be discussed in detail in chapter 2). In examining these methods, we came to
understand that network-based infrastructures — particularly those associated with electric power
distribution and telecommunications — have a number of characteristics that are very different
from the engineered systems for which risk assessment techniques have been most successfully
used in the past. These include:

The scenarios and boundary conditions can be specified a priori based on observed incidents, an analyst’s
intuition, regulatory or licensing requirements, or the results of another risk assessment method. One can also use
statistical distributions to define an entire space of potential scenarios and boundary conditions, and use techniques
such as Monte Carlo or importance sampling to generate the details of the particular scenarios to be simulated.

" In fact, it was by appealing to the rareness of these combinations of failures that several current “best practice”
telecommunications architectures (e.g., the common channel signaling network, SONET rings) were developed.

* Event tree models that support variable event ordering are very complex to build and maintain, while simply
building multiple models to represent a variety of possible event orderings is very labor-intensive.

21

e The presence of long periods of quasi-equilibrium behavior interspersed with relatively short
periods of rapid system change.

e The importance of combinations of low probability events whose importance and
consequences are difficult to predict a priori.

e The capacity for network-based infrastructures to exhibit congestion-based and cascading
failures that are not amenable to discovery using deductive methods.

e The strong dependence of system behavior on event ordering, with the a priori identification
of event order — as required for event tree analysis — either impossible or infeasible.

Because of these characteristics (which are not necessarily unique to infrastructure analysis
problems), the project team sought a new and different risk assessment methodology that would
be more compatible with these types of system constraints. The object-based event scenario tree
(OBEST) methodology was the result of that search. OBEST utilizes concepts from traditional
event tree analysis, object-oriented analysis (as used in computer science), and discrete
simulation to obtain a method that produces probabilistically-weighted scenarios (like the event
tree method) yet supports on-the-fly determination of event ordering (like the simulation
method), all the while encapsulating model details and behaviors within an object-oriented
analysis framework. While the OBEST methodology does not fulfill all of the requirements of
infrastructure analysis, it does provide important advances for our risk assessment capabilities
and complements the existing methods.

As the project team has exercised the OBEST methodology, it has become clear that OBEST can
be applied to a class of problems that is much broader than just infrastructure assessment. The
method has already been applied to aviation safety analysis and the assessment of circuit and
equipment performance in the presence of electric circuit fires. In each case, the OBEST method
has enabled analysts to develop new insights that would not have been possible" using previously
extant methods.

1.2. Overview of the Report

This report is organized in seven chapters. Chapter 2 contains a broad survey of some of the risk
assessment and simulation methods that the project considered when searching for an appropriate
infrastructure risk assessment methodology. It describes the advantages and drawbacks of each
methodology, its applicability to infrastructure risk assessment problems, and notes selected
characteristics of the method that should either be included in or excluded from a new

* Indeed, the order in which many events occur is determined based on “race conditions,” such as whether off-site
electric power is restored before onsite batteries are depleted. These conditions have historically been difficult for
logic-based risk assessment methods to properly characterize.

" Or could have been gained only using labor-intensive methods that would, in practice, be cost-prohibitive.

22

infrastructure risk assessment methodology. Chapter 3 describes the OBEST methodology, its
history, its potential applications and limitations, and compares OBEST with the methods
described in Chapter 2. Chapter 4 describes how the OBEST methodology was implemented in
a demonstration software package.”

Chapter 5 provides several examples to show how the OBEST methodology can be applied in a
variety of technology domains. The example problems range from modeling a racquetball game
to consideration of aircraft behavior under icing conditions. Finally, Chapter 6 contains
suggestions for future research as well as a summary and conclusions of this study.

" Note that, while the demonstration software package has been successfully used to test the methodology and
selected applications, it is not yet production quality and, for this reason, is not available for distribution.

23

This Page Intentionally Blank

24

2.Survey of Other Methods

The purpose of this chapter is to provide the reader with background regarding the inductive risk
assessment methods that are currently in use. As each method is described, its respective
advantages and disadvantages will be noted, as will characteristics of the method that should
either be included in or excluded from a new methodology. This will provide motivation for
why the OBEST methodology was developed. This “list of recommendations” will be
reexamined in Chapter 3 as we describe the OBEST methodology in detail.

2.1. Infrastructure Indications and Warnings System

Sandia National Laboratories has developed an Infrastructure Indications and Warnings System®
for the rapid analysis of threats to critical infrastructures. This Indications and Warnings System
is a PC-based quick-look tool to help analysts generate a quick and reasonable assessment of
their susceptibility to infrastructure-related disruptions. The methodology embodied in this
system is a relatively simple and quasi-quantitative representation of the interdependencies
between various infrastructure elements as obtained by an interview-like expert judgement-based
process. It constructs a map of interdependencies among the various infrastructure elements, and
allows an analyst either to enter “real” circumstances that might affect these interdependencies,
or to play “what if” games on those interdependencies. As circumstances are entered into this
system, quantitative weighting factors, which are developed from expert judgement interviews,
determine how those circumstances might affect other parts of the infrastructure. Depending on
the fidelity of the weighting factors and underlying mathematical formulae, the Indications and
Warnings System can help the analyst determine whether this set of circumstances is more or
less severe than some other set of circumstances. In this way, the analyst may be able to infer
whether this situation should be of concern. Since the Indications and Warnings System does not
perform a traditional time-based simulation of any scenario, it cannot reasonably be expected to
infer a time line of events toward the scenario’s future outcome (nor is it intended to).

A key feature of Sandia’s Indications and Warnings System is that it is fast. As a rapid analysis
tool, it allows an analyst to quickly understand the gravity of a current situation and explore a
series of contingency plans — likely in real-time. Thus, the Indications and Warnings System can
play a role in the area of situation awareness and response planning. In fact, it may be possible
to tie a tool such as this to an optimization engine and generate optimized response plans to a
complex situation.”* This speed, however, comes at a price. Since the Indications and
Warnings System does not perform time-based simulations, it is unable to predict scenarios that
might befall a system as combinations of normal events, random failures, and external events
interact with the system. Experience with rapid tools such as the Indications and Warnings

* Genetic optimization engines have been linked to risk assessment models in other disciplines with some success,
as noted in Reference 4. Specifically, the risk assessment results have been incorporated into the utility function to
allow computation of system configurations and spare parts inventories that are optimized with respect to cost,
system availability, minimal mean-time-to-repair, etc.

25

System shows that one must carefully balance the need for rapid execution and analysis with the
desire to develop insights from a problem-specific scenario database. A new modeling
methodology should be flexible to allow the analyst to select any level of analysis detail (few
high-level results to many detailed scenarios) as appropriate for the problem and situation at
hand.

2.2. Aspen

Sandia’s second well-known infrastructure analysis methodology is the Aspen™® economic
simulation tool. In one sense, the Sandia Indications and Warnings System and Aspen methods
can be viewed as two extremes on a continuum. Whereas the Indications and Warnings System
model is quasi-quantitative and does not employ time-based scenario simulation, the Aspen
model is a highly complex direct simulation of an economic system that is dependent on a
variety of infrastructures. Aspen is designed to run on a parallel-processing machine, and the
simulation of a single scenario can take many hours of computational time even on the fastest
machines. Aspen embodies the behavior of the various actors within an economic system as
intelligent agents, which are capable of learning appropriate behaviors based on achieving their
economic interests. Once these agents are trained, they are allowed to interact with each other
over a series of time steps. As each agent simulates its own behavior (making probabilistic
decisions as necessary), the collective action of all agents causes the behavior of the economic
system to emerge. This emergent behavior, then, embodies the response not only of the
infrastructure systems themselves, but also of the rest of the economy to disruptions in those
infrastructure systems.

Aspen provides investigators with a powerful approach for understanding the behavior of
systems that are so complex that they have heretofore defied simulation using conventional
approaches. The ability of Aspen to model the consequences of infrastructure failures not just
within the infrastructure itself, but within the larger picture of a national economy makes Aspen
a valuable tool for those tasked to plan policies, future system capacities, and possibly even
regulatory issues. However, while Aspen provides great insights into the behavior of economic
systems in the presence of infrastructure uncertainties, the fact that Aspen takes hours to analyze
a single scenario — even on today’s fastest computers — makes it infeasible to simulate a large
number of scenarios using Aspen. This conflicts with the traditional risk assessment goal of
developing a systematic and complete picture of the possible system scenario space. Thus, it is
very difficult to use Aspen results as the sole basis for an infrastructure risk analysis.”’ A new
methodology should be able to simulate many scenarios within the time required for a single
Aspen simulation. This method should also, however, support the use of results from detailed
simulations such as Aspen to inform and correct its model. It should also be able to flag specific

* Aspen can be used in infrastructure risk assessment studies in much the same way that MELCOR is used in
reactor risk assessment studies. The results from a limited number of detailed simulation studies provide the analyst
with insights into the behavior of the system, which can then be translated into simpler models that must be executed
to explore the larger scenario space.

26

scenarios that cannot be adequately resolved using the faster-running model for analysis using
the more detailed simulation tools.

2.3. Traditional Network Analysis Methods

Existing network analysis methods were also investigated as a point of departure for this research
project. The project team examined both traditional and nontraditional network analysis models,
including those with and without capacity constraints, k-terminal®°® and all-terminal'®'"'?
connectivity models, as well as models from the field of operations research. The methods range
from simpler capacity analysis tools (e.g., “Is there enough generation and transmission capacity
in the network under these conditions to meet that postulated load?””) to more complex time-
dependent simulation tools that assess specific network characteristics (e.g., voltage and phase
stability, call completion probability, dial tone delay) using time steps that can be as small as
milliseconds.

Several network analysis methods are in use at Sandia in both production analyses and research
activities, and many more are being routinely used by industry. These network connectivity and
capacity models form the basis for planning and analysis models within individual infrastructures
(e.g., electric power or telecommunications*),w’ ! often in the context of “contingency analysis”
studies. In a contingency analysis,’” particular combinations of known, observed, and/or
hypothetical fault conditions called “contingencies™ are inserted into a network, and a network
analysis tool is used to determine whether this compromised network is capable of meeting its
objectives. These contingencies can be selected deterministically (e.g., single contingency
analysis might systematically examine the effects of all single faults on the system as they are
applied one-at-a-time), probabilistically (e.g., through Monte Carlo sampling), or heuristically
based on the desires or concerns of the analyst. Contingency analysis techniques represent the
state-of-the-art in many infrastructure areas — particularly for electric power grid stability
analysis. Optimization techniques can be applied to these types of problems, with the results
from network analysis algorithms forming a portion of the utility function being evaluated.

While network analysis methods are widely applied within individual infrastructures, they have
not seen significant application between infrastructures. This is because common examples of
these methods assume that the network being analyzed is capable of carrying all of the modeled
commodities over the same network infrastructure. Indeed, the more typical examples of these
methods assume that these different commodities are in fact competing for available capacity
within a single network, as would different types of goods for space in a limited supply of rail
cars. This situation does not apply well to the interdependencies between infrastructures because
the different infrastructure networks are generally incapable of carrying goods or traffic related
to another infrastructure. Our project decided to focus on methodologies that would allow
analysts to gain insights across infrastructures. Since different types of network models are

" Queuing theory models are also prominent in the telecommunications industry for analysts seeking to understand
the performance of a switch or router under heavy loading conditions.

27

being developed and adapted regularly to solve the problems specific to individual
infrastructures, we felt it most appropriate to concentrate on other types of models, while paying
particular attention to opportunities to interface with these specialized and well-documented
methods where benefits could be realized.

The advantage of a network analysis modeling paradigm over more traditional logic-based risk
assessment models (to be discussed in the next few sections) is that a network analysis tool
inherently deals with the fact that a highly interconnected network behaves in a manner that is
much different from the behavior of the sum of the individual elements of which it is composed.
This aggregate behavior can be very difficult to understand — let alone predict — using the
reductionist techniques that are most commonly used in traditional risk assessment. Many naive
risk assessment researchers have boldly stated that they could, for example, use a fault tree to
model an electric power network, only to find out that the complex interplay between network
elements is not easily captured by the independent events necessary for a fault tree structure.

The principal disadvantage of many network analysis methodologies, as applied to risk
assessment, is that they merely simulate the conditions within the network — they describe what
happens within the network without providing insights as to why it happens. The analyst
specifies the system initial and/or boundary conditions, and the analysis tool tells us what
happens. It is only through a large number of scenario simulations that the analyst starts to
identify which elements are most important to the network’s health and which conditions might
be precursors to major system failure events.” A new infrastructure risk assessment methodology
should provide a mechanism to interface with these specialized network assessment models so
that the reductionist or scenario development risk assessment engine can take advantage of the
insights from these detailed network models without having to recreate their capabilities (either

as part of the automated model solution package or, through the analyst, as part of the model
itself).

2.4. Enumerative Risk Assessment Methods

The failure modes and effects analysis'® (FMEA) technique, along with its close cousins,

failure modes, effects and criticality analysis (FMECA) and HAZOP," ! are generally the first
systematic risk and reliability analysis techniques applied to any system — infrastructure or not.
The purpose of a FMEA is to examine individual components and assess the effect of their
failure on the system in which they are used and on other systems and subsystems. FMEA is a
qualitative method that is typically documented in a tabular format. To accomplish a FMEA, the
analyst goes through the components of a system one by one, and for each component considers

This discussion applies primarily to network analysis models that are tuned to simulate a particular type of
network (electric power, for instance). It should be noted that other classes of network analysis methods are more
generalized and provide insights into optimal network configuration, capacity constraints, etc. However, since these
more generalized methods are often more distant abstractions of the actual physical system being modeled, their
results need to be validated using more detailed and specialized network performance models in order to gain
credibility.

28

every known failure mode individually. The analyst writes a description of the failure mode
itself, the method which would detect that failure in the operating system, the effect of the failure
on the system or subsystem, and the expected response of operators or automatic controls to the
situation. Elucidating comments are also included in order to allow others to understand the full
scope and gravity of the situation caused by the component’s failure.

The FMEA documentation is often extended by including extra information in the analysis table.
Typical extensions include a quantitative or qualitative estimate of the likelihood of each
assessed component’s failure, a qualitative categorization of the criticality of the effects caused
by the component failure, and the possible actions to reduce the failure rate or effects. This is
often called a FMECA. In such an analysis, one can rank the results in terms of either the
likelihood or the criticality of the component failure scenarios. A more recent ranking method
combines the likelihood and criticality descriptors to obtain a “risk descriptor” that is low for
improbable, low-criticality events, and increases as either or both of the descriptors become
large. These risk descriptors can then be used as a basis for determining whether remedial action
should be taken to reduce the likelihood or criticality of the scenario.

A HAZOP study is related to a FMEA or FMECA in that it assesses predefined scenarios to
determine their probable causes, consequences, and possible remediation actions. It also
typically includes qualitative assessments of criticality, likelihood, and risk similar to those
described above. However, while FMEA and FMECA studies focus on the effects of individual
component failures, the HAZOP method focuses on qualitative deviations of key system
operating parameters from their nominal, normal, or design values. The fundamental philosophy
here is that normal operations are inherently safe, and deviations are the source of unrecognized
problems. The scenarios that can lead to these deviations are arrived at through a combination of
systematic consideration, deductive logic (to obtain probable causes for the parameter
deviations), and imaginative thinking. The objective is to find the “weak link” in the system, and
to provide a basis for developing procedural or engineering controls to reduce any risks so
identified.

The principal advantage of these techniques resides in their simplicity. Virtually anyone can
apply these techniques — and often with little training. The results from these analysis techniques
are intuitive and easy to explain to non-technical or management personnel. However, because
they consider failures and/or parameter deviations in a one-at-a-time manner, these techniques
are unlikely to discover those obscure scenarios that involve multiple failures or compounding
human errors. History tells us that, while design engineers often focus on preventing
consequences from catastrophic failures that involve one (or even a few) very rare but credible
events, major consequences are more frequently caused by an unanticipated combination of more
likely (but seemingly more benign) failures — often complicated by one or more human errors.
Thus, while these enumerative risk assessment methods can provide valuable insights into
system operations, they are generally believed to be insufficient for ensuring the safety of high-
consequence systems.

Another important disadvantage of these techniques is related to their reliance on a “bottom-up”
problem-solving method. By this we mean that the sources of risk are identified at the beginning
of the analysis, instead of being inferred by a systematic deductive “top-down’ analysis such as
would occur in a fault tree analysis. If the risk analyst does not think of a particular scenario,

29

and the mechanics of the analysis or the “best practice” checklist does not drive them to identify
it, then that scenario is likely to remain unanalyzed because the scenarios are the starting point of
the analysis, noft its result. A new infrastructure risk assessment methodology should ideally
infer the sources of risk as a result of the analysis. This, however, is usually infeasible for
inductive assessment methods. A more attainable goal is for the new assessment method to
automatically and systematically generate a thorough list of potential scenarios (and their
likelihoods), and, to the degree possible, to include the effects of all potential failure modes in
those scenarios as is done in the enumerative risk assessment methods.

2.5. Probabilistic Risk Assessment Methods

Other types of models considered for infrastructure risk assessment included traditional
probabilistic risk assessment (PRA) models. If the objective is to examine the universe of
possible scenarios that can result from a particular set of initial conditions within the
interconnected infrastructure, then it is important to examine the set of inductive probabilistic
risk assessment modeling techniques.” While there are many such techniques in existence, the
two that azrle 2rznost closely applicable to this situation are event tree analysis'® ' ?° and influence
diagrams.”

Event tree analysis (ETA) seeks to represent an undesired occurrence as a sequence of events.
Event trees are similar in form to decision trees, and are used to represent the spectrum of
possible outcomes given a particular initial condition. The method is inductive in that it begins
with a set of initial conditions and uses inductive logic to infer its results. Each path through the
event tree is constructed by selecting a unique outcome for each event within the event tree
model. Thus, the path physically represents a unique sequence of events so that outcome Ojp
occurs for event 1, and outcome O,p occurs for event 2, and outcome Osp occurs for event 3, and
so forth.” If the event tree model is properly constructed, the set of all paths through the model
represents the complete set of possible outcomes that can occur as a result of the given initial
condition (but typically only the outcomes relevant to the analyst’s needs).

The events within an event tree may include the status of physical systems, operator actions, the
activities of automated control systems, and random (stochastic) events both internal and
external to the system. The events may represent simple yes-or-no questions (“binary events”
such as, “Does the operator turn the system on?”), or they may involve multiple possible
outcomes (“multi-branch events” such as, “Which of the five displays does the operator check
first?””). The events may or may not be independent of one another. If the events are not
independent, then the dependencies between them are explicitly included within the logical
structure of the tree.

* The discussion in this section focuses exclusively on inductive probabilistic risk assessment methods. Deductive
methods such as fault tree analysis were also examined but found unsuitable as described in Section 1.1 on page 20.

* The subscript “P” indicates that these outcomes are characteristic of this specific event tree path, and will vary
from path to path in the event tree solution.

30

The results of an event tree analysis are initially qualitative in that each path defines a scenario in
terms of the outcomes for individual events. If, however, one assigns conditional probabilities to
the various outcomes such that P(O,p) is actually the conditional probability that O,p occurs
given that O;p has already occurred, then one can also obtain quantitative results consisting of the
scenario (path) definition and its probability of occurrence.

An influence diagram is a probabilistic network that consists of nodes and arcs. The nodes can
represent system states, decisions, or chance or deterministic occurrences, while the arcs
represent the conditional dependencies among these occurrences. The nodes ultimately influence
a “value node” that quantifies the consequences for each possible combination of occurrences
and system states. Conditional probabilities can be applied within the nodes to represent the
probability that a particular event happens given particular conditions in the other nodes to which
it is connected (i.e., states, decisions, or events that influence this node). Thus an influence
diagram consists of four distinct parts: the nodes, the influences upon the nodes (the
dependencies among the nodes, as represented by the arcs), the conditional dependencies within
each node upon other nodes in the model, and the conditional probabilities themselves.

The influence diagram method is conceptually similar to the event tree, decision tree, and fault
tree methods described earlier. It can be applied as both an inductive and a deductive modeling
tool in that one can begin either with the value node (the objective, as is done with fault tree
analysis) or with a suitable initial condition (as is done with event tree and decision tree
analysis). One could even begin with some of each and work both inductively and deductively
as necessary until the model is complete. In addition, the method is not limited to simple binary
events as is fault tree analysis (FTA). This flexibility makes the influence diagram an important
risk analysis tool.

Historically, the most important disadvantage to the use of influence diagrams has been that the
traditional solution method does not show or even generate the detailed set of scenarios or paths
possible in the model. The ability to examine these paths in detail is a primary advantage of the
FTA and ETA methods. However, it has been noted that there always exists a (non-unique)
transformation from an influence diagram model into an event tree model. When applied, this
allows an analyst to use the advantages of influence diagram construction to produce the more
desirable results associated with ETA.

The ETA solution methodology and results have several highly desirable characteristics. First,
the results of an ETA are a complete set of scenarios that can occur as a result of a particular set
of initial conditions.” Second, the solution methodology is recursion — something that is both
well understood and readily adaptable to parallel processing. Third, the solution methodology

* For very large event trees (those with thousands or even millions of possible pathways), the complete set of
scenarios is not generated. Scenarios can be “truncated” from the analysis if they are found to be too unlikely, do
not result in consequences, or have some other characteristic that renders them beyond the scope of the risk
assessment study. Similar scenarios are also summarized or “binned” with one another to reduce the number of
paths to a number that can be examined by a mere mortal.

31

needs to discover each scenario only once — and develops the scenario’s likelihood at the same
time (this is much different from a Monte Carlo-based discrete event simulation, which will be
discussed in Section 2.8 on page 35). Finally, the methodologies explicitly embody time and
order conditions (something FTA cannot easily do). These characteristics should ideally be
present in a new method to assess risk for infrastructure systems.

Upon examination, it was determined that both of these methods suffer from the same
fundamental problem when applied to infrastructure analysis problems, albeit in different ways.
Event trees and influence diagrams are both, by definition, acyclic graphs. Since cycles are
prohibited, it can be difficult to represent the behavior of systems that embody feedback loops in
these types of models. However, feedback loops are common within the interconnected
infrastructure system, and the behavior of these feedback loops is critical to the understanding of
the possible scenarios that can result. The presence of feedback loops manifests itself in event
trees as non-determinism in the ordering of the event tree events. Thus, to model such a
feedback system using event trees, one must construct several event trees — one for each possible
ordering of the events. These feedback loops manifest themselves in influence diagrams as a
violation of the acyclic connectivity requirement. The ability to handle at least some types of
feedback loops should be an important part of any new infrastructure risk assessment
methodology.

2.6. Markov Models

Markov models'® are directed graphs that capture the concepts of system states and probabilistic
transitions between states. To build a Markov model, an analyst examines every relevant
configuration of a system — both functional and nonfunctional configurations — and defines them
to be states of the system. The analyst then defines the probability of transition from each state
to every other state (as a function of time and other factors) to complete the model. State
transitions that are precluded for physical reasons are assigned a transition probability of zero. In
their simplest and most common forms, Markov models use constant state transition
probabilitig:_?, although Markov models with time-varying state transition probabilities have also
been used.

Markov models provide a natural, direct representation, through the use of cycles, of systems
whose components are repairable and systems where component failures have interactions. They
also readily embody the feedback characteristics found in many infrastructure problems. Recall
that fault trees and event trees are acyclic graphs and hence do not readily accommodate these
system characteristics. The two basic forms of Markov models are chains and processes. A
Markov chain uses matrix multiplication in discrete time to obtain state transition probabilities.
A Markov process uses a set of differential equations over continuous time. Relative to the other
techniques discussed, Markov processes require a more sophisticated understanding of
mathematics for their solution. In fact, most Markov models of real systems suffer from “state
explosion” and hence are difficult to solve, requiring simulation. Complete path or scenario
information is not a natural output of a Markov model.

An interesting application of Markov modeling is found in the continuous event tree

methodology.”** In this method, the branching operations within an event tree model are
viewed as state transitions within the framework of a Markov model. This allows the analyst to

32

determine the population of each state (and, hence, of each branch within the event tree model)
as a function of time. The method has been extended to a semi-Markov process to allow for the
state and branch transition probabilities to vary as a function of the length of time the system has
spent in that state.”

The main advantages of Markov models lie in their ability to identify the probability that a
system will exist in a particular state as a function of time — even in the presence of repairable
failures and inherent system feedback. Their main disadvantages from an infrastructure risk
assessment perspective lie in the difficulty with which path or scenario information is extracted
from their results, the state explosion that occurs when large systems are analyzed, and the
difficulty of the mathematical methods required to solve them. A new infrastructure risk
assessment method should avoid state explosion (path explosion is difficult enough to deal with),
and should be solvable with straightforward mathematical methods.

2.7. Simulation Methods

The logical risk assessment methodologies described in the previous few sections require a
human analyst to inductively or deductively interpret the physical characteristics of a system and
embody those characteristics in a logical description (graphical or tabular). Logical models are
often capable of rapidly examining a broad cross-section of potentially important system
behaviors. A complementary approach to logic models involves the direct use of more
traditional simulation models (often software-based).” The simplest application of simulation
technology to risk assessment involves an a priori definition of “important” scenarios, which are
then evaluated using an appropriate simulation tool to assess the system’s performance and/or
consequences. The scenarios may be selected based on incidents previously observed for similar
systems, questions raised by a FMEA or other logic model, or the judgment of domain experts,
or a regulatory authority may simply prescribe them. Regardless of their source, the objective of
such analyses is to characterize the behavior of the system under a variety of (presumably)
important normal and abnormal operational conditions.

Simulation is also frequently used in conjunction with logic models to determine the
consequences associated with particular failure scenarios. In this application, evaluation of a
logic model (e.g., fault trees or event trees) produces a large number of scenarios that may
potentially lead to undesired consequences. Some or all of these scenarios may be simulated to
determine the degree of consequences produced (lives lost, environmental damage, etc.).
Because the logic models may produce far more scenarios than one can afford to simulate,
analysts commonly group scenarios such that a number of “similar” scenarios are represented by
a single surrogate scenario, the consequences of which are assumed to apply reasonably well to
the entire group of similar scenarios. This methodology has been used to assess the radiological
consequences of nuclear reactor accidents for more than two decades.?’

" The use of simulation models for risk assessment can be thought of as a generalization of some of the network
analysis methodologies described in Section 2.3 on page 27.

33

More complex applications of simulation technology for risk assessment involve the automated
selection of the scenarios to be simulated. If, for example, a system is intended to operate safely
for all conditions within a particular range of temperature and humidity conditions, one might
use a mathematical design of experiments technique to ensure that the entire range of
temperature and humidity combinations was appropriately represented in the scenarios to be
simulated. Or, one might accomplish the same goal through probabilistic sampling of
temperature and humidity conditions using Monte Carlo, Latin hypercube, or importance
sampling techniques.”®* Other methods such as dynamic event trees or continuous event trees”
work toward a similar objective using analogies to the ETA methodology that is popular as a
PRA tool (see Section 2.8). When using these techniques, the importance of particular
parameters to the overall set of simulation results can be inferred through straightforward
statistical regression analysis techniques. Probabilistic techniques are often less efficient when
the number of parameters to be considered is small, but can have significant advantages when a
simulation is based on a large number of independent variables.

To this point, we have discussed only techniques that define the list of scenarios to be simulated
prior to the first simulation being conducted. These techniques do not use feedback from
previous simulations to select additional scenarios for consideration. However, a number of
feedback techniques are available to answer specific risk-related questions. For example,
adaptive importance sampling can be used to generate additional scenarios in regions of the
parameter space that produce “interesting” results (e.g., high-consequence regions of the
parameter space).’”*! Quasi-analytic reliability methods such as the mean-value method and
first-order and second-order reliability methods can be used to answer questions such as, “For
what range of input parameters can I be 95 percent certain that I will not produce an
unacceptable consequence?”™** Genetic algorithms can be used to zero in on particular parameter
combinations that will most closely produce a particular set of results (e.g., the most economical
operating conditions, the highest consequences, or the lowest disturbance to the general public).*
The use of feedback methods has, until recently, been relatively limited because of the
computationally intensive nature of many simulation packages (one could not afford to run the
number of simulations that might be required by such a method). Recent improvements in both
computer performance and numerical algorithms, however, have made these methods far more
broadly accessible.

The advantages of using simulation models in risk assessment are that, if properly validated, they
can (theoretically) provide the most accurate depiction of how a scenario will progress of any of
the risk assessment models described in this chapter. The disadvantage of simulation approaches
lies in the need to use other methods to determine the scenarios that are to be analyzed using the
simulation model. Depending on the scenario selection method, these can be highly inefficient
and can fail to cover the entire credible scenario space. In addition, if the scenario selection
method does not support likelihood determination (the ad hoc methods, for example), then this
key element of risk must be determined using other methods (often it is estimated by the
judgement of an expert). Finally, the computational effort required to evaluate large numbers of
scenarios using detailed simulation tools may be well beyond the computational capabilities of
many organizations especially if the simulation tools are computationally intensive). A new
infrastructure risk assessment methodology should automatically interface with simulation tools
so that the risk assessment engine can take advantage of the simulation results without having to
recreate their capabilities (either within the automated model solution package or, through the

34

analyst, as part of the logic model itself). Ideally, it should also seek to minimize the number of
simulations that must be performed and draw the maximum amount of information from each of
the required simulation runs.

2.8. Dynamic Risk Assessment Methods

In the 1980s and early 1990s, analysts sought to overcome the limitations inherent in both the
inductive PRA methods (ETA, Markov modeling) and the simulation methods described in the
previous few sections. Briefly stated, ETA and Markov models provided a mechanism for
dealing with the time-dependent aspects of scenarios, but the time dependence they provided was
often imposed through the filter of a human analyst, and might be at odds with the “real” time
history of the scenario as predicted by a simulation model. However, methods for varying the
inputs to simulation models ranged from ad hoc to Monte Carlo, but lacked the scenario
branching, random failures, and orderly scenario evolution found in ETA. Analysts also wanted
to examine time-dependent human responses to scenario development using computational
models. The Dynamic Logical Analysis Method (DYLAM) and Dynamic Event Tree Analysis
Methodology (DETAM) were developed to help meet these needs.

A concise description of the DYLAM method was presented by Siu in Reference 33.

The general procedure used to employ DYLAM is conceptually direct. First, a physical
model of the system is constructed. If needed, a model for the operating crew is also
constructed. The physical model predicts the response of system process variables to
changes in component status (e.g., hardware failures). It is constructed by linking
physical models for system components, where the component models predict the
changes in process variables due to changes in component states. A model for a pump,
for example, may consist of a set of equations for the pump head, each equation applying
to a different pump state. ...

The next step is to define the undesired system states. These are defined in terms of
process variable levels, rather than hardware states, and are used to determine when a
particular accident scenario should be terminated.

Finally, the system model is used to simulate all possible accident sequences as follows.
Starting at 1 =0 and some user-defined initial state, the system model is used to
determine the change in process variables (if any) in the next Az. ... At the end of the
first time interval (0, Af), all possible combinations of component states, i.e., all possible
system hardware states, are identified and their likelihood calculated. These states are
then used to provide boundary conditions for the next round of process variable updating;

the generation of an event sequence continues in this manner until an absorbing state is
33
reached.

DETAM is very similar to DYLAM in most respects. Acosta and Siu note that “the primary

difference is that DYLAM does not emphasize the stochastic nature of operator behavior as
strongly [as DETAM].”**

35

Applications of both DYLAM and DETAM have found the need to limit the expansion of the
event tree model in order to maintain the computational feasibility of the problem.” This was
done by limiting the method to consideration of a single failure at each time step (as opposed to
“all possible combinations of component states” as described above) and by truncating low
probability scenarios from further development. Additional computational feasibility issues
were found to arise when the characteristic time scale of the problem is short compared to the
overall scenario duration.”® Since infrastructure problems are often characterized by short
periods of intense activity (short characteristic time scale) followed by long periods of quasi-
equilibrium activity (long scenario duration), this methodology is of questionable value for
modeling infrastructure failure scenarios.

Another important limitation of these methodologies is found in the prescriptive nature of their
branch point timing requirements. DYLAM considers component state changes only at fixed
times (exact multiples of the analyst-specified Af). DETAM allows the analyst to specify
particular times at which component state changes might occur (in addition to the fixed multiples
of At used in DYLAM). However, both DETAM and DYLAM allow branching events to occur
only at times that are prescribed prior to the start of the analysis and not at times that might be
inferred from the characteristics of the simulation model. Neither method allows the simulation
to request a scenario branching operation. This restriction has a number of consequences. For
example, it is impossible to accurately implement the random failure of a component to start on
demand using these methods unless that demand, by coincidence, occurs at an exact multiple of
At or at a time selected by the analyst prior to the start of the simulation.

The principal advantages and disadvantages of these methods derive from the fact that they are
inextricably tied to dynamic simulation models. Since these methods make use of true
simulation models to predict system parameter values, the accuracy of their results is limited
only by the fidelity of the simulation models upon which they are built. At the same time, many
of these simulation models are computationally intensive, so using DYLAM or DETAM to
specify many executions of such a model can rapidly become impractical. The time scale issues
described previously are also particularly problematic for the infrastructure failure events that are
the subject of this study. An ideal computational methodology should support the modeling of
systems that operate simultaneously on a variety of time scales. It should allow for multiple
simultaneous failure events at times that are either prescribed by the analyst or inferred by the
simulation. Finally, an ideal computational methodology should allow the system to evolve at
whatever size time step is appropriate without imposing unnatural restrictions on the value of Ar.

2.9. Discrete Event Simulation Methods

Another class of methods that can be used for infrastructure analysis is sometimes called
probabilistic discrete event simulation. One non-infrastructure instantiation of this method is in

" Siu notes that these methodologies are limited to treating accidents where the number of possible scenarios is
relatively small.”

36

the LASEP-T software® that was used to simulate launch phase accidents for the Cassini space
probe. A similar simulation methodology is used in the SimMod-Pro aviation safety analysis
software.*®*" ¥ We will use LASEP-T as an example to describe the discrete event simulation
method. A LASEP-T model can be thought of as a series of probabilistic decisions, each of
which is described by one or more statistical distributions. As a scenario reaches one of the
probabilistic decision points, LASEP-T draws a random number to represent a Monte Carlo
“decision process.” It uses this random number to decide which of the discrete events
represented in the decision point will actually occur. A decision point may represent, for
example, discrete events such as whether a particular cladding element is breached, or the type of
material upon which a particular element lands. Continuous variables are also selected using
Monte Carlo methods. Examples of such variables include the time at which the booster rocket
self-destructs, the size of a cladding breach, the number of milligrams of radioactive material
released, and the particle size distribution for that release. A scenario is constructed by using the
results from many of these probabilistic decisions to determine an exact time-dependent
sequence of events that are presumed to occur. The Monte Carlo-based scenario development
process is then repeated over many trials to obtain a probabilistic representation of the
characteristics of the overall scenario space being investigated.

The LASEP-T model relies on a Monte Carlo process to make all of its decisions. The Monte
Carlo nature of these decisions means that each of the many scenarios discovered is, under the
assumptions of Monte Carlo simulation, equally likely. Aggregating the results of a large
number of such equally likely scenarios provides a probabilistic view of the set of possible
scenarios given a particular initiating event. This result is very close to what is sought for
infrastructure analyses.

The disadvantages of a Monte Carlo-based simulation method, however, include the requirement
that one simulate an extremely large number of scenarios if one is to identify potentially rare,
high-consequence scenarios. For example, to identify all scenarios whose frequencies are
approximately one in 1000 per launch, one may have to run hundreds of thousands or millions of
scenarios with the software. In addition, if one scenario is dramatically more likely than all
others, the Monte Carlo nature of this simulation requires it to be identified over and over again
in order to preserve the statistical significance of the results. Also, the Monte Carlo nature of
this software makes it difficult to apply traditional uncertainty analysis techniques to this
process.”’ While one could apply biasing schemes to the Monte Carlo simulation, the
fundamental fact remains that this methodology is a computationally inefficient way to identify
rare scenarios. A new infrastructure risk assessment method should avoid the pitfalls of a pure
Monte Carlo scenario definition approach in order to more efficiently identify those rare
scenarios that may result in high consequences to the infrastructure system. Ideally, a new
method should compute scenario probabilities explicitly and identify each scenario only once in
order to maintain reasonable computational efficiency.

37

2.10. Object-Oriented Risk Assessment Methods

An LDRD project that was completed in October of 1998 provided a new paradigm that
synthesized aspects of probabilistic risk analysis and object-oriented (OO) analysis
methodologies.”** The basic idea behind OO modeling*” *!"* is to encapsulate the behavior of a
component or subsystem entirely within the confines of a self-contained “object.” Objects
contain attributes that describe its changeable characteristics, as well as states and behavioral
models that describe how the object reacts to internal and external stimuli. Objects communicate
with one another by exchanging messages, which can represent the transfer of information,
materials, or energy. A model of the entire system is composed by combining and connecting
the object models for the individual components or subsystems of which it is comprised (i.e.,
enabling the individual objects models to communicate with one another in a way that faithfully
replicates their interactions in the real world system).

In an object-based risk assessment model,”*° one builds an object model to represent the
behavior of the system to be analyzed (including normal and abnormal modes of operation,
deterministic, and probabilistic behavior). This system object model can be either decomposed
into object models for individual subsystems or components, or it can be composed from generic
object modules that have been developed as standardized representations for common
components. This ability to compose an object model from a library of generic components
represents a significant labor saving advance in risk assessment methodology.

Once the object model has been constructed, the analyst can apply particular boundary
conditions to the model and then query it to extract a wide variety of risk models that have
similar characteristics to those generated using traditional inductive and deductive risk
assessment methodologies. Since the object model embodies the behavior, or causality, of the
system (rather than abstractions of parts of that behavior, as in traditional logic-based risk
assessment models), one can extract risk models to answer many different questions under a
broad array of conditions from a single object model. System boundary conditions can be
changed quickly without invalidating the object model — the analyst simply re-extracts the
appropriate risk or surety models based on the revised boundary conditions. This object-oriented
method forms an inviting framework for many types of surety models because it enables the
analyst to build a single model of the system, instead of building a separate risk or surety model
for each question that is to be answered.

While these methodological characteristics are inviting, there are several problems to be
overcome before these methods can be applied to the types of infrastructure problems envisioned

* The development and application of object models is described more fully in Section 3.1, beginning on page 43.
Object-oriented analysis methods were originally developed in the computer science arena to aid in the specification
and development of complex software.

" The object-oriented analysis method developed in Reference 39 is a derivative of the Shlaer-Mellor methodology,
although the UML methodology was also investigated.

38

under the current project. The chief obstacle is that the methodology development activities
under the former project did not advance to the point where the element of time was adequately
embodied. In other words, the methods were derived initially for static and quasi-static systems,
and significant extensions would be required to adapt the methodology to systems and scenarios
that exhibit strong time dependence, such as the infrastructure systems envisioned under this
project. In addition, the methodology has yet to be fully embodied in software because it is still
the subject of ongoing research.

A number of insights from this methodology should be considered in a new infrastructure risk
assessment methodology. First, the ability of an analyst to model the behavior of a system and
then query it in a variety of ways enables truly meaningful model reuse to occur. The savings in
analyst and quality assurance time can be dramatic. Second, the ability to compose a useful
model quickly from a library of generic components provides a second opportunity for major
labor savings. And finally, while the ability to extract many different fypes of risk models from a
single object model was an important goal of the previous work, its resulting attempt to be “all
things to all people” made it less than ideal for many types of problems. A new methodology
should focus on doing a particular class of problems well — better than any other method can —
and consider extensions that broaden its appeal, instead of doing a mediocre job of solving all
classes of problems.

2.11. Summary

In this chapter we have briefly described a variety of types of network analysis and risk
assessment techniques that have been suggested for application to infrastructure risk assessment
problems. The techniques have included the Sandia National Laboratories Indications and
Warnings System, Aspen, traditional network analysis methods, enumerative risk assessment
methods (FMEA, HAZOP, etc.), inductuve probabilistic risk assessment methods (event tree,
influence diagrams, etc.), Markov models, traditional simulation-based methods, discrete event
simulation methods, and object-oriented risk assessment methods. We have noted the
advantages and disadvantages of each class of methods, and attempted to identify the role that
each might play in the science of infrastructure risk assessment.

We have also noted insights from each of these methods that provide guidance for the
development of a new infrastructure risk assessment method. Based on those insights, the
characteristics of such a new method should ideally be as follows:

e A new methodology should be flexible to allow the analyst to select different levels of
analysis detail (few high-level results to many detailed scenarios) as appropriate for the
problem and situation at hand.

" Or, more precisely, for systems that can be embodied in terms of state machines that are time-invariant.

39

A new methodology should be able to simulate many scenarios within the time it might take
for a highly detailed simulation model to perform a single simulation.

A new methodology should support the use of results from detailed simulation models to
inform and correct its model.

A new methodology should be able to flag specific scenarios that cannot be adequately
resolved using its faster-running model for analysis using the more detailed simulation tools.

A new methodology should provide for a direct interface with specialized network
assessment models in order to take advantage of their insights without having to recreate
their capabilities (either as part of the automated model solution package or, through the
analyst, as part of the model itself). It should provide interfaces to other types of simulation
models as well.

A new methodology should seek to minimize the number of simulation and/or network
analysis calls that must be performed. It should also draw the maximum amount of
information from each of the required simulation runs.

A new methodology should ideally infer the sources of risk as a result of the analysis, rather
than requiring the analyst to list them at the beginning of the analysis process. This,
however, is usually infeasible for inductive assessment methods. A more attainable goal for
the new assessment method is to automatically and systematically generate a thorough list of
potential scenarios (and their likelihoods) and, to the degree possible, include the effects of
all potential failure modes in those scenarios as is done in the enumerative risk assessment
methods.

A new methodology should, to the extent possible, mimic some of the desirable
characteristics of event tree analysis. First, its results should be a complete set of scenarios
that can occur as a result of a particular set of initial conditions. Second, it should use a
simple solution methodology — one that is both well understood and readily adaptable to
parallel processing. Third, it should discover each scenario only once — and develop the
scenario’s likelihood at the same time. Finally, it should explicitly model time and order
conditions.

An important part of any new methodology is the ability to properly model at least some
types of feedback loops.

A new methodology should avoid state explosion (path explosion is difficult enough to deal
with) and should be solvable with straightforward mathematical methods.

A new methodology should support the modeling of systems that operate simultaneously on
a variety of time scales. It should allow for multiple simultaneous failure events at times that
are either prescribed by the analyst or inferred by the simulation. It should also allow the
system to evolve at whatever size time step is appropriate without imposing unnatural
restrictions on the value of Ar.

40

e A new methodology should avoid the pitfalls of a pure Monte Carlo scenario definition
approach in order to identify rare scenarios efficiently. Ideally, a new method should
compute scenario probabilities explicitly and identify each scenario only once in order to
maintain reasonable computational efficiency.

e A new methodology should, to the extent possible, seek to embody the desirable
characteristics noted for the object-oriented risk assessment methodology. It should embody
the behavior of the system directly rather than requiring an analyst to abstract out only the
“risk-important” behaviors. It should enable the risk modeling of many different scenarios
by varying the boundary conditions for a single object model rather than requiring the
construction of separate models for the different scenarios. It should also enable the
construction of a library of “generic” objects that can be used as basic model building blocks
for future analyses (i.e., model fragment reuse). Finally, it should be able to incorporate both
deterministic and probabilistic behavior.

e A new methodology should enable the analyst to model the behavior of a system and then
query it in a variety of ways to enable truly meaningful reuse of models. It should also
enable the analyst to compose a useful model quickly from a library of generic components.
Finally, the new methodology should focus on doing a particular class of problems well —
better than any other method can — and consider extensions that broaden its appeal, instead of
trying to be all things to all people by doing a mediocre job modeling an extremely broad
class of applications from the start.

OBEST was developed with many of these requirements in mind. This methodology is
described in the following chapter. Where appropriate, that chapter compares the characteristics
of OBEST to the above list of desired model characteristics, and identifies the tradeoffs that were
made in developing that methodology.

41

This Page Intentionally Blank

42

3. The OBEST Methodology

The preceding chapter described how we identified what we believe to be a gap in the analysis
technologies available to solve infrastructure risk assessment problems. We sought a tool or
methodology that would enable one to systematically examine a wide variety of infrastructure
scenarios from probabilistic basis without resorting to computationally inefficient Monte Carlo-
based discrete event simulations. As we were unable to find such a method, we began
development of a new analysis methodology. Our goals for that method were to enable an
analyst to probabilistically explore the “universe” of possible scenarios that might arise as a
result of a set of initial conditions in much the same way as a traditional event tree analysis.
However, unlike a traditional event tree analysis, we believed that an infrastructure risk
assessment method must support the development of event scenarios with variable event
ordering. We also sought a method that would be based directly on a behavioral model of the
system (such as an object-based model) so that the analyst could perform a wide variety of
analyses without having to manually construct and validate many different models. We also
sought a method that would determine the likelihood of each possible scenario based on a single
computation. We wanted to avoid Monte Carlo-based event simulation methods because their
use inherently means that 1) it is extremely difficult to detect low frequency failure combinations
(very large numbers of scenarios must be generated and assessed), and 2) if a single scenario
dominates the scenario space, it will be selected and analyzed many times during the Monte
Carlo analysis, thus wasting significant computational effort.

The result of our methodology development effort is the object-based event scenario tree
methodology, or OBEST. OBEST utilizes concepts from traditional event tree analysis, object-
oriented analysis (as used in computer science), and discrete simulation to obtain a method that
produces probabilistically-weighted scenarios (like the event tree method) yet supports on-the-fly
determination of event ordering (like the simulation method), all the while encapsulating model
details and behaviors within an object-oriented analysis framework. While the OBEST
methodology does not fulfill all of the requirements of infrastructure analysis, it does incorporate
many of the desirable features described above and provides important capability advances for
our risk assessment capabilities.

3.1. Background

As its name implies, the fundamental basis of the OBEST methodology is an object-oriented
(OO) approach to model representation. In an object-oriented modeling paradigm, objects are
model constructs used to represent real world entities that can “communicate” with one another.
This communication is considered to consist of messages exchanged between objects. Messages
can represent the transfer of information, materials, or energy. When an object receives a
message, it responds by altering its internal state (i.e. its underlying behavior changes in a
fundamental way) and/or by generating outbound messages to communicate its conditions to the
other objects in the model. The way in which the object responds to messages depends on its
internal processes and on its internal state. The basic idea, then, is to encapsulate the behavior of
a component or subsystem entirely within the confines of a self-contained object. A model of
the entire system is composed by combining and connecting the object models for the individual

43

components or subsystems of which it is comprised (i.e., enabling the individual objects models
to communicate with one another in a way that faithfully replicates their interactions in the real
world system).

The object-oriented analysis methodology from which OBEST is most closely derived is a
modified version of the Shlaer-Mellor methodology,*’ as revised and extended for the object-
oriented process for risk and reliability analysis (OPRRA) described in Reference 39. Under the
Shlaer-Mellor methodology, the analyst begins to model a system by identifying the objects that
populate the system and documenting the relationships among these objects using a system
structure diagram and an entity relationship diagram (sometimes also called a system interaction
diagram). These diagrams establish the structure of the overall system. In an infrastructure
problem, for example, an object may be a telephone central office, a water pumping or storage
station, or an electric power bus or transmission line. For each object identified, the analyst
determines whether the behavior of the object changes or is invariant over time. If its behavior
changes, the analyst documents these changes using a state transition diagram. This diagram
identifies the events that trigger changes in behavior and labels the behavior that the object
exhibits as it enters its new state (the analyst defines a new state for each fundamentally different
behavior that can be displayed by the object). Within each state, the analyst describes the
object’s behavior using an action data flow diagram. The non-behavioral characteristics of the
object that can change over time are represented in attributes, which, for Shlaer and Mellor, can
be continuous, discrete, or Boolean variables. The Shlaer-Mellor method also supports concepts
of object communication models, synchronous access models, domains, bridges, and other types
of messages, but these concepts are beyond what is required to describe the OBEST modeling
methodology. Thus, in this sense, OBEST can be regarded as a simplification of this well-
established computer science analysis methodology.

When developing the OPRRA method,” the authors sought to use object-oriented methods to
create a generalized risk assessment framework. In that study, the authors came to realize that
Shlaer and Mellor’s concept of action data flow diagrams was not powerful enough to support a
robust inductive and deductive risk assessment methodology. The greatest problems were found
in the inability to trace deductively backwards through the action data flow diagram and
conclusively state that, “since this result has occurred, that particular set of causes must have
been present.” In addition, since the Shlaer-Mellor methodology was created to support the
development of software packages, it was not designed to support the nondeterministic and
probabilistic behaviors that are so important to risk assessment. Therefore, when developing the
OPRRA methodology, the authors replaced Shlaer and Mellor’s action data flow diagram
concept with probabilistic truth tables. This enabled the analyst to enter nondeterministic and
probabilistic behaviors into the object model in support of inductive risk assessment modeling
while at the same time enabling backwards tracing through the model in support of deductive
risk assessment modeling. This did have the effect of limiting the new OPRRA methodology to
discrete values for attributes (something not required in the Shlaer-Mellor methodology), but
since many risk assessment methods are already inherently discrete, this was not viewed as a
serious limitation.

In the current study, we have focused on further modifications to the behavioral modeling aspect
of the object-oriented analysis methodology. These modifications were motivated by an
observation about the characteristics associated with failures in infrastructure related systems.

44

We noted that infrastructure failure scenarios do not involve continuous degradation of
infrastructure system performance. Rather, a system will exist in a quasi-equilibrium condition
for some extended period of time (possibly minutes, hours, or days), and then exhibit some very
rapid and dramatic change in behavior. Furthermore, these rapid changes frequently cause rapid
changes in other parts of the system — both within this infrastructure and, potentially, in other
infrastructures. Within a very short period of time (possibly seconds or milliseconds), the
various interconnected components and subsystems respond to these changing conditions and
come to a new quasi-equilibrium condition. This new equilibrium lasts for an extended period of
time until another dramatic change occurs,! and the process repeats itself. This observed pattern
of behavior became the basis for a replacement to the behavioral modeling paradigms of Shlaer
and Mellor (action data flow diagrams) and OPRRA (probabilistic truth tables). This new
behavioral model is foundational to the OBEST modeling methodology.

3.2. Methodology Description

3.2.1. Common Elements with Previous Methods

To document the system’s functionality,* the methodology described in this document uses four
types of views: a system structure diagram, an interaction diagram, a state transition diagram,
and a data flow diagram. The system structure diagram, presents the “chunks” of functionality
found in the system and specifies how these chunks (components, subsystems, etc.) relate to one
another (Figure 3-1). In Figure 3-1, a system structure diagram, each of the blocks (M through
P) represents some portion of the functionality delivered by System A (which could itself be a
component in some higher level system). For the purposes of this discussion, it is assumed that
these functions are embodied in individual components within System A (this is often true for
“real-world” systems). When taken together, these blocks embody the entire functionality of
System A. Lines between any two blocks indicate that those blocks interact with one another.
As needed, each block in a diagram can be further subdivided. This process of hierarchical
decomposition of the system is carried as far as is needed for the analyst to adequately document
the functional structure of a system.

* Note, for example, that the failure of an electric power bus can cause power failure in a telephone central office
and force a dramatic change of behavior to the telephone infrastructure as the central office attempts to switch over
first to emergency generators, then to batteries, and finally, may experience a power failure that causes loss of call
processing capabilities.

" For example, the emergency generator runs out of fuel or the batteries become fully discharged.

* Major portions of the OBEST methodology are essentially identical to the OPRRA methodology described in
Reference 39. This section quotes heavily from that document.

45

System A

Component M Component N Component O

Component P

Figure 3-1. A System Structure Diagram

A second view used to describe a system’s functionality is the inferaction diagram, as shown in
Figure 3-2. This diagram’s function is to capture the dynamics of the system at “black box”
levels. Using the blocks produced in the system structure diagrams, interaction diagrams show
the relevant “flows” that occur among various functional blocks in the model. These flows can
represent materials (i.e., tangible things), energy, or information. Depending on the nature of the
analysis to be done, the labels on the flows (e.g., A, B on the upper left flow) will identify either
attributes of the flows (“messages”) that occur between two blocks, or will represent objects that
flow from block to block.” For example, if component N outputs a chemical and component O
consumes it, then flow A might specify attributes of the chemical that is flowing (e.g., the
quantity of chemical, the chemical’s temperature and composition). The result of this flow (as
will be discussed below) could be to change the internal attributes of components N and O (e.g.,
the amount of the chemical that each block stored). The concept here that is important from a
modeling point of view is that a flow occurred that resulted in changes in the attributes
associated with the components involved in the flow.

An analyst may model a flow as an object if the behavior of what is flowing is important. For example,
component N might represent the process that produces a sterile container. Flow B represents the containers that
flow between components N to O (O might document the process by which the containers are filled). Here, the
analyst might model the containers as objects with (e.g., capacity, contents) and behaviors (e.g., “accept contents” or
“dispense contents”). A flow then becomes a framework for describing how an object moves from one relationship
(i.e., with the process that creates it) to another (i.e., with the process in which it is filled).

46

A,B C
—» —»
Component N Component O Component X
4 — +—
E D

Figure 3-2. An Interaction Diagram

In an OO modeling methodology, an analyst often develops a self-contained model entity called
an object to represent the behavior embodied in each functional block or component. An object
can exhibit a variety of different behaviors, where a behavior is defined as a unique set of
responses to stimuli. Each different type of gross behavior is represented in a state, and the ways
in which these gross behaviors change are called state transitions. State transitions are caused by
events, and are documented in a state transition diagram. In this type of diagram, the “states”
might be represented by rounded rectangles and the “events” represented by italicized words, as
shown in Figure 3-3. Events may be externally generated (e.g., the arrival of a flow at a block)
or internally generated (e.g., the block reaching a given state, set of attribute conditions, or even
a given point in time being reached). The “transitions” specify the state to which an object
moves if it receives the required event while in that state. Note that any state can be associated
with multiple transitions.

Rotations
Stopped

Starting Up

Rotating at
Steady State

Figure 3-3. A State Transition Diagram

At this point, one should differentiate between the characteristics of the object that describe the
object’s behavior from those that describe changeable characteristics of the object itself. Those
that describe changeable characteristics of the object are embodied in attributes. For Shlaer and

47

Mellor, attributes can be thought of as variables within the object model that exist regardless of
the object’s state.” These variables can be continuous, discrete, or Boolean representations of a
measurable or calculable characteristic (e.g., temperature = 98.6° F, the traffic light is green, or
“the light switch is off” is false). In the OPRRA method, attributes were restricted to discrete
and Boolean values. This restriction is continued in the initial implementation of the OBEST
methodology.

To this point, we have noted that a state represents a situation where the object embodies a
particular set of behavior, and an attribute represents the object’s measurable and calculable
characteristics. Next, the analyst must describe the details of the object’s behavior while it is in
each state — how the object responds to stimuli and the ways its attributes change. For Shlaer
and Mellor, this is accomplished using an action data flow diagram. As shown in Figure 3-4, the
diagram consists of four elements. The circles represent processes that transform flows. The
lines represent the interconnections between processes and carry the various flows, which are
identified by labels. The flows themselves are described as collections of attributes. The
horizontal lines represent a “store” which contains the attributes that document the current state
of the functional block (e.g., a functional block representing a chemical process might contain a
store with attributes that specify the current composition, temperature, quantity, etc., of the
chemicals in the process).

Product

Request (Quantity)

Dispense

Request Rejection
Product

Product

>
Stock Levels Stock Depleted

Monitor
Stock Levels

Stock

Figure 3-4. An Action Data Flow Diagram

In order to enable the use of probabilistic branching and deductive logic, the OPRRA method
required that the analyst implement the transformations within Shlaer and Mellor’s data flow

" Attributes may also be used to record an object’s state since an object’s attributes can be examined by other
objects while its state cannot. However, even here, the attribute itself exists regardless of the object’s state — it just
assumes a new value to reflect the change in the object’s state.

48

diagram as truth tables, as shown in Table 3-1. The function of a truth table is to specify the
value a given attribute assumes when the input attributes on which the attribute depends assume
particular combinations of values. It is a straightforward task to develop this specification for
attributes that are limited to discrete values. When the attributes assume a continuous range of
values, the task is a little trickier. To address this issue, the research team borrowed the notion of
“landmark values” from the qualitative physics community.” In this approach to modeling
attribute values, the goal is to identify key points in the attribute’s range of values at which
behavior somehow changes. For example, if the attribute under consideration is the amount of
fluid in a storage tank, then it is reasonable to assume that the tank might exhibit three different
behaviors corresponding to the tank’s being empty, to the tank having some amount of liquid in
it, and to the tank’s being full. Given this, two landmark values would be assigned to the tank
(i.e., “tank empty” and “tank full”).

Table 3-1. A Deterministic Truth Table

Number of items in stock — Number of items “Request
Number of items requested produced Rejection”
__ ________________________ [____________________]|
+ No. of items requested F
0 No. of items requested F
_ 0 T

In most cases, a truth table will have a single output column that corresponds to a single attribute
on one of the output flows from a process and some number of input columns (corresponding to
some or all of the attributes on the input flows to a process). In some cases (e.g., when the
process involves a “test”), attribute flows are combined into a single column, as shown in Table
3-1. Also, as shown in this figure, multiple tables may be combined for the sake of compactness
if the logic of the tables being combined is sufficiently simple. Note also that, while not shown
in this example, a truth table can embody probabilistic behavior. To extend this example, one
might envision a situation where an item is in particularly high demand, but a “first come, first
served” distribution method is considered unfair (say, for a new life-saving cancer drug). If the
distribution method were changed, say, to randomly reject two-thirds of all requests and fill only
the other one-third using a lottery-like distribution system, one might obtain a truth table like the
one shown in Table 3-2.

49

Table 3-2. A Probabilistic Truth Table

Number of items in stock — Probability Number of items “Request
Number of items requested produced Rejection”
. __| N
0.667 0 T
+
0.333 No. of items requested F
0.667 0 T
0
0.333 No. of items requested F
- 1.000 0 T

3.2.2. The OBEST Action Language

The preceding brief description of the Shlaer-Mellor and OPRRA methods provides a point of
departure for an exposition of the OBEST methodology. The principal areas of difference
between OBEST and these other methods are related to the details of the action language for
describing object behavior within a particular state. The OBEST action language, which is
described in the following paragraphs, replaces Shlaer and Mellor’s action data flow diagrams
and OPRRA’s probabilistic truth tables (although it has obvious parallels to the latter, as the
reader will note shortly). Recall that, in the OBEST methodology, each object is capable of both
immediate and delayed reactions to both internal and external stimuli, and each type of reaction
can either be deterministic or probabilistic. In OBEST, these descriptions of object behavior are
called the immediate response model (IRM) and the delayed response model (DRM).
Mathematically, these models are identical except that the DRM incorporates a time delay before
its ultimate actions are realized. Both the IRM and the DRM can be thought of as probabilistic
truth tables similar to those used in the OPRRA method and shown in Table 3-2. And, just as
that probabilistic truth table can be thought of, in a “generic” computer programming jargon, as a
big “if — then — else if — else” or “select case™ construct, the IRM and DRM represent similar
ideas and functions. Thus, the structure for an IRM might look like the generic example found in
Table 3-3. In this example, each “set of logical conditions™ is a logical combination of attribute
values from this and/or other objects within the system model. Each “script” is a series of
actions that will be taken by the object, and may include the generation of object model events
(to cause this or another object to change states), changing the values of its own attributes,

" Note that, to simplify modeling considerations, each object is only allowed to modify the values of its own
attributes, and cannot directly modify the values of attributes in other objects. The IRM and DRM models for those
objects must be “aware” of the objects around them and change their attribute values accordingly.

50

and/or generation of special “system events.” Since scripts can cause an object to change its
attribute values, they are specific to the object under investigation. A set of logical conditions,
on the other hand, can be used by any number of objects within the model as appropriate because
it looks only at object attributes, which are publicly available to all objects within the analysis.
Scripts and logical conditions can be reused (simply re-referenced) throughout the object model
as appropriate.

Table 3-3. Notional Representation of an Immediate Response Model

If (set of logical conditions #1 is satisfied) Then
Probability = xxx' : Execute Script A
Probability = yyy : Execute Script B
Probability = zzz : Execute Script C

Else If (set of logical conditions #2 is satisfied) Then
Probability = aaa : Execute Script B
Probability = bbb : Execute Script D

Else If (set of logical conditions #3 is satisfied) Then
(Probability = 1.000) : Execute Script A

Else (Default)
Probability = ccc : Execute Script C
Probability = ddd : Execute Script D
Probability = eee : Execute Script E

A generic example of DRM can be seen in Table 3-4. Note that the principal difference between
the IRM structure and the DRM structure is that every script in the DRM is associated with a
particular delay. Thus, a line in the DRM model can be thought of as saying, “I, the object, can
remain in equilibrium for X hours under this set of conditions with this probability. After that
time has elapsed, I will take the actions described in script.” Thus, according to the DRM in
Table 3-4, if the object model is configured such that “Set of logical conditions #5” is satisfied,

* System events relate to the management of the object model, and may include such events as starting, stopping or
resetting delay clocks, or terminating or truncating the evaluation of a scenario.

* While the probabilities in this example are scalar, they can also be observations sampled from a distribution using

Monte Carlo or Latin hypercube sampling. The OBEST software, however, does not currently support such
sampling.

51

the model says that the object is always able to remain in this configuration for X hours, and
when that time has elapsed, will always take the actions described in script A.” Similarly, if the
system configuration satisfies set of logical conditions #1, then the object is always able to
remain in this configuration for Q hours, and when that time has elapsed, it may take the actions
described in script G (with a probability of aaa), or it may use script D (with a probability of
bbb). The “Else” situation states that, under these conditions, the object will always take the
actions described in script H, but we are unsure whether that will occur after X hours, ¥ hours, or
Z hours. Those delay times will occur with probabilities ccc, ddd, and eee, respectively. Finally,
the fully general situation, where probabilities, delays and scripts are all different, would occur if
set of logical conditions #4 is satisfied. This allows the analyst full flexibility to express
whatever combination of delays and actions might be required to describe the behavior of the
system being modeled.

Table 3-4. Notional Representation of a Delayed Response Model

If (set of logical conditions #4 is satisfied) Then
Probability = xxx : Delay X hr., then Execute Script A
Probability = yyy : Delay Y hr., then Execute Script B
Probability = zzz : Delay Z hr., then Execute Script C

Else If (set of logical conditions #5 is satisfied) Then
(Probability = 1.000) : Delay X hr., then Execute Script A

Else If (set of logical conditions #1 is satisfied) Then
Probability = aaa : Delay Q hr., then Execute Script G
Probability = bbb : Delay Q hr., then Execute Script D

Else (Default)
Probability = ccc : Delay X hr., then Execute Script H
Probability = ddd : Delay Y hr., then Execute Script H
Probability = eee : Delay Z hr., then Execute Script H

Note that the notional DRM depicted in Table 3-4 shares some of the scripts, probabilities, and
logical conditions used in the notional IRM described in Table 3-3. This sharing is permitted
(but not required) between models within the same object — even, if appropriate, between IRMs
and DRMs in different states. The sets of logical conditions can also be shared between objects.

The situation where the system configuration changes before X hours have elapsed such that the required
conditions required by logical set of conditions #5 are no longer satisfied will be discussed later in this chapter.

52

Thus, the behavioral models incorporated in the OBEST model can be represented as a series of
logical conditions, each of which is associated with one or more sets of actions (scripts). If a
logical condition is associated with more than one potential set of actions, the alternatives must
each be given a probability of occurrence. The only difference between an IRM and a DRM is
that each potential set of actions in a DRM is delayed by an analyst-specified “equilibrium time”
before it occurs.

The “if — then — else if”” decision style described in the notional example IRM and DRM has been
implemented in the demonstration software that has been developed to implement the OBEST
methodology. This decision style mimics that used in the EVNTRE* and SETAC® logical
event tree analysis codes that have been developed by Sandia previously. While this decision
style may seem straightforward, those who have attempted to use it have often become confused
about some of its implications. Note that this decision style is implemented here in the same way
it is used in most major computer programming languages. One feature of this implementation is
that the computer looks at the sets of logical conditions in the order specified by within the
program and it only executes the instructions associated with the first set of conditions that
evaluate as “True.” This means that, even if the current set of conditions satisfies more than one
set of logical conditions, the computer will only execute the instructions for the first satisfied set
that it encounters. It ignores all other sets of instructions — even though their logical conditions
may evaluate to True. The implications of this fact are demonstrated by the example shown in
Table 3-5. The equivalence of these two models demonstrates a powerful fact about the “if-then-
else” decision style: the analyst can use this equivalence to simplify the sets of logical conditions
used in later parts of the model. While the example demonstrates this in a trivial problem, it
should be easy to imagine how, for extremely complex sets of logical conditions, this can
provide a dramatic opportunity for model simplification. At the same time, this type of model
simplification does present a danger: applying the simplified conditions in the wrong order
causes the model to obtain the wrong answer, as demonstrated by the example found in Table
3-6. Therefore, the analyst must be very careful to ensure that the intended logical instructions
are actually the ones embedded in the model when using the “if-then-else” decision style to
simplify logical models.

One of the many goals stated for a new infrastructure analysis methodology was the ability to
incorporate failure modes into a probabilistic risk model. While it may not be obvious, the IRM
and DRM provide the mechanisms for this to occur. Consider an example where a telephone
central office loses its commercial power supply. It might immediately attempt to start its onsite
backup power generator, and, should that fail, it will rely on batteries that will last for a time that
is specified by a statistical distribution (i.e., the batteries may fail before they reach their
expected discharge time). The demand-related failure of the backup generator can be modeled as
a probabilistic transition within the IRM. Here, the analyst provides logical conditions that
detect when the situation demands the backup generator start. Associated with those logical
conditions are two probabilistic branches — one that executes a script for the situation where the
generator starts and a second that executes a script for the situation where the generator fails to
start. Similarly, the distribution of failure times for the batteries can represent a discretization of
the battery failure time statistical distribution, with different delay times representing points
within that distribution. Each of these delay times will be associated with the same script — one
that indicates that the batteries have failed.

53

Table 3-5. Equivalence of Models Using the “If — Then — Else” Decision Process.

Problem description: A model is supposed to execute different instructions depending on the value of a
measured temperature T. The model should execute instruction set A if T is less than 50°, instruction set
B if T is between 50° and 70°, C if T is between 70° and 90°, D if T is between 90° and 100°, and E if T
is greater than 100°.

Explicit instructions — the analyst constructs | Equivalent implicit instructions — the model
mutually exclusive logical statement sets to | executes instructions only the first set of satisfied
represent the various logical conditions logical conditions that it encounters.
If T <50° Then If T <50° Then
Do instruction set A Do instruction set A
Else If T > 50° and T < 70° Else If T <70°
Do instruction set B Do instruction set B
Else If T >70° and T < 90° Else If T <90°
Do instruction set C Do instruction set C
Else If T > 90° and T < 100° Else If T < 100°
Do instruction set D Do instruction set D
Else If T > 100° Else ,
Do instruction set E Do instruction set E

Explanation of the models’ equivalence: The example on the right is equivalent to the one on the left
because each of the “>” operators is implied by the order of the logical cases. Any situation where
T <50°, for example, causes instruction set A to be executed and all further parts of the model to be
ignored. Thus, since the logic statement “T < 70°” is ignored when T < 50°, the “T > 50°” part of that
logic set in the left hand example is redundant and can be eliminated, as has been done in the right hand
example.

In the jargon of fault tree analysis, the fault conditions described in the previous paragraph both
represent “primary” failures (failures that are not caused by outside sources).” A “secondary
failure” represents a situation where the component is somehow driven beyond its design
margins. An example of a secondary failure is when the system tries to push 200 pounds
pressure into a tank that is only designed to withstand 100 pounds. Secondary failures can be
handled within the IRM by installing logical conditions that detect violations of the object’s
design margins, and executing a script that indicates the component has failed. Similarly, a
“command failure” represents a situation where a component has been commanded to operate
under conditions where its correct operation will lead to an undesired consequence. An example
of a command failure is when the operator of a drawbridge causes the bridge to be raised without
first waiting for the cars to get off the bridge. Here the drawbridge functions properly, but at the
wrong time. Command faults are naturally handled within the OBEST modeling paradigm
because the OBEST model naturally contains each object’s expected behavior. As long as the
system model is properly constructed, the object will exhibit that behavior at any time it is
stimulated to do so, thus inherently incorporating command faults into the model.

54

Table 3-6 Improper Model Simplification Using the “If — Then — Else” Decision Process.

Problem description: Same as used in Table 3-5.

Explicit instructions — the analyst constructs | Nonequivalent instructions — the analyst has
mutually exclusive logical statement sets to | wrongly applied simplification to the logic in this
represent the various logical conditions. model.
If T <50° Then If T <50° Then
Do instruction set A Do instruction set A
Else If T > 70° and T < 90° Else If T < 90°
Do instruction set C Do instruction set C
Else If T >90° and T < 100° Else If T <100°
Do instruction set D Do instruction set D
Else If T > 50° and T < 70° * Else If T <70°
Do instruction set B * Do instruction set B
Else If T > 100° Else ,
Do instruction set E Do instruction set E

Explanation of the models’ nonequivalence: The example on the right is not equivalent to the one on the
left because the “*” statements have been moved. The model on the left is still correct because it uses
mutually exclusive logical statements. However, the model on the right is incorrect because it now allows
temperatures between 50° and 70° to execute instruction set C. Instruction set B is never executed in this
incorrect model.

3.2.3. OBEST Methodology Summary

This section has provided a lot of detail regarding how an OBEST model is constructed, but very
little information about how an OBEST model actually works. Thus, it may still be a little
difficult for the reader to see the “big picture” of how the OBEST methodology can be beneficial
for infrastructure risk assessment. The next section, which focuses on the OBEST model
solution algorithm, should help ease any confusion because the workings of the model are
intimately tied to the solution algorithm. However, since this may be many readers’ first
exposure to the concepts of object-oriented analysis, we wish to return to the “big picture” and
review the basic concepts of the OBEST methodology so that the reader is properly prepared for
the next section.

By way of review, the OBEST object model is typical of many common object models in that the
information, events, and actions that are related to an object are completely encapsulated within
that object and are available to other objects or analysis drivers only through specified

55

interfaces.” An individual object in an OBEST model begins as a state-based model based on a
state transition diagram. This enables the object to respond differently to stimuli when it is in
different states. Transitions between states can occur either as a result of conditions external to
the object, or because of conditions specified within either the IRM or the DRM. The processes
that occur within the object are embodied within the IRMs and DRMs. The IRMs and DRMs
vary from state to state within an object. The IRMs and DRMs can embody a wide variety of
behaviors, ranging from simple failure models (e.g., an object that simply represents the results
of a fault tree) to complex reactive behaviors.” The overall object model for an interdependent
system is formed by connecting objects that represent individual components according to the
influences they exert upon each other in the physical system.

The principal differences between OBEST and the prior Shlaer-Mellor and OPRRA
methodologies lies in the treatment of an object’s processes or behaviors within a state. OBEST
introduces the concept of immediate and delayed response models (IRMs and DRMs), which can
be viewed as simple probabilistic transformation functions.* Since these transfer functions are
probabilistic, they enable the scenario to branch at appropriate times in the same way as an event
tree branches when events occur. The principal difference between the IRM and DRM is that
IRM output conditions occur immediatelyf while DRM output conditions are held in abeyance
for an analyst-specified period of time.” In the DRM, the object model is, in essence, saying, “I
will remain in my current condition for this length of time, and then my configuration will
change to this new set of output conditions.” It can also say, “At a specified time, I might change
to this new set of output conditions, and the probability of that change is this. If that change does
not occur, then my output conditions will look like this.” The solution algorithm makes use of
this information to determine time steps and branching conditions for the overall system scenario
simulation.

" In OBEST, the objects communicate with one another by generating events (which can be used to change the state
of any object) and by setting attributes (which can be read and reacted to by other objects). An object can only
change its own attributes. If an object wants to change another object’s attributes, it must request that it do so either
by generating an event or by modifying its own attributes in a way that communicates with the other object.

" It may even be possible to incorporate objects that exhibit intelligence. Such objects would resemble agents from
agent based simulation. However, the study of such objects’ feasibility was beyond the scope of this project.

* It is also possible to incorporate “deterministic™ components alongside of their probabilistic counterparts because
a probabilistic object degenerates to a deterministic object when all of the probabilities therein are either zero or one.

¥ For infrastructure problems, “immediately” is assumed to be on the order of milliseconds to a few minutes.

" The delay may be minutes, hours, or even days. In the current methodology, this delay is specified explicitly by
the analyst. In later versions of the modeling methodology, the delay may be calculable by the object model itself.

56

3.3. Solving an OBEST Model

As we begin the task solving an OBEST model, it helps to begin at a familiar reference point.
Begin by thinking of the completed OBEST model as just another tool for simulating the
performance and behavior of complex system. A traditional simulation software tool begins with
a set of preprogrammed facts it knows about the system and the universe. It augments those
facts with user input to set up the specific configuration, situation, and set of conditions to be
modeled in this particular analysis. It may consider only the initial conditions of the system, or it
may also include definitions for a series of events that are to occur at later times in the scenario.
These are often referred to as the initial and boundary conditions of the simulation. A traditional
simulation software tool uses the total scenario definition to determine the response of the system
to this one unique set of circumstances. If one wishes to explore system behavior over a broad
set of conditions, one must define the initial and boundary conditions separately for each
scenario to be analyzed, and execute the simulation software many times. By examining system
behavior over many discrete sets of conditions, the analyst hopes to come to an adequate
understanding of the system’s responses to those scenarios that he was not able to simulate.

The parallels between traditional simulation software and an OBEST model are as follows. The
OBEST model contains a definition of all of the relevant facts that describe the system and the
universe in which it resides. It also contains information needed to set up the specific
configuration, situation, and set of conditions to be modeled, and any events that are to be
imposed upon the system at later times in the scenario. Thus, the OBEST model contains what
would normally be considered the system description, the “laws of nature”, and the initial and
boundary conditions of the simulation. However, since the OBEST model also contains
probabilistic branching information, where a traditional simulation produces one system
response to this scenario, the OBEST model will produce descriptions for many probabilistically
weighted scenarios. With this background in mind, we now proceed to describe the OBEST
model solution methodology.

A high-level view of the OBEST model solution methodology is as follows: the method first
applies an analyst-specified set of initial conditions to the system object model, and follows the
sequence of events experienced by the system through a series of non-uniform time steps as
dictated by the characteristics of the object model. Probabilistic branching of the scenario is
possible at each time step, so the method makes use of ideas from the “depth-first” and “best-
first” search algorithms®® to decide which scenario to analyze first (the other options at each
branch point are saved as incomplete paths to be completed later). Since each branch point is
probabilistic, the relevant probabilities can be combined to determine the likelihood of the
complete scenario. The scenario can be truncated prior to completion either because of a low
likelihood of occurrence or because the characteristics of the scenario itself do not satisfy the
characteristics of a “useful scenario” as identified by the analyst. When a scenario is completed,
the algorithm then retrieves and completes one of the incomplete paths in the same manner. A
recursive algorithm is used to exhaustively explore the space of possible scenarios subject to the
truncation constraints described above.

The solution process begins with the analyst specifying the initial conditions to the object model.
Often, the initial conditions set the system in an equilibrium condition that the analyst then
perturbs through the application of initiating events that drive the system out of the initial

57

equilibrium. At this point, the OBEST analysis supervision algorithm propagates these
conditions through the object model by invoking the IRMs for all objects and allowing them to
come to a new equilibrium condition. These IRMs can generate events, modify attributes,
change states, and otherwise exhibit behaviors that cannot be fully realized within a single
application of the IRMs. In addition, feedback effects between objects may require that these
models be invoked iteratively under supervision in order to help the system achieve a new
equilibrium condition. Thus, the IRMs may need to go through several generations of analysis
before this new equilibrium condition is established. Equilibrium is considered to occur when
there is no change in the conditions stated by the system model from one generation of IRM
execution to the next.

Once equilibrium is achieved, the analysis supervision algorithm queries each object’s DRM to
determine how long the object can remain in this condition of equilibrium before its internal
behavior forces a change of state or attributes (e.g., a generator runs out of fuel or a battery runs
dead). The supervision algorithm selects the first such event, steps the analysis forward in time
to that event’s time of occurrence, and imposes it on the system. At this time, the cycle repeats
itself with application of the IRMs over successive generations until another new equilibrium is
achieved, then reapplication of the DRMs, and so forth. The process is repeated until pre-
defined terminating conditions are satisfied.” This yields a definition for a single possible
sequence of events, and the combination of probabilities achieved along the scenario pathway
yields the likelihood of that sequence of events.

To this point, the discussion has focused on deterministic models (i.e., IRMs and DRMs that do
not make use of probabilistic branching). When only deterministic IRMs and DRMs are
triggered, the OBEST methodology behaves exactly like a traditional simulation tool in that it
produces only a single system response for each set of input conditions. When probabilistic
models are triggered, the solution methodology must eventually follow all of the scenario
pathways implied by the probabilistic behavior. If we were to follow the concepts used in Monte
Carlo-based discrete event simulation, we would simply draw a random number to select which
probabilistic branch was to be taken, and continue the simulation. A better solution, however,
comes from the recursive algorithm used to solve large event trees. In this algorithm, the solver
maintains a stack of incomplete scenarios that are to be completed at a later time. It also
computes the probability of each scenario — complete or incomplete — and stores that with the
scenario description. To perform a probabilistic branching operation, the solver selects one
branch to carry forward (usually the highest probability branch), and places a complete
description of the system (and its history, if required) on the incomplete scenario stack. It then
carries the selected scenario on to completion and returns to the stack to resume processing the
most recent incomplete scenario. The process continues recursively until the incomplete
scenario stack is empty, at which time the solution is complete. By using the most recent
incomplete scenario (a “last in — first out” stack), the algorithm minimizes the size required to

" Terminating conditions may be based on elapsed time (“We’re only going to simulate the first 3 days.”), on
equilibria (e.g., a situation where there are no other events to simulate), or on logical criteria supplied by the analyst
(“We only want to know when this telephone switch dies — everything after that is irrelevant.”).

58

store the incomplete scenario stack. By selecting the highest probability branch to be solved
first, the solution algorithm is similar to the well-known “best-first” variant of the “depth-first”
search algorithm from network and optimality analysis.

The OBEST methodology carries with it an inherent assumption that is common among object-
oriented modeling techniques: it assumes that all of the objects within the overall system model
are operating concurrently. In other words, no object has operational precedence over any other
object. If the real-world system involves operational precedence for one object, the analyst must
build that behavior into the object model. Given this assumption, it is of particular concern that
the solution algorithm must produce results that do not depend on the order in which the
individual object models are invoked. While the problem of order-dependence may not be
immediately obvious, consider an example in which three objects interact. Object A produces an
event that causes object B to change state. In its original state, object B produces an event that
affects object C, while in its new state, this event is not produced. If these objects are assessed in
the order A-B-C, then object C is unaffected, whereas if the objects are assessed in the order B-
A-C, object C is changed. Since we are trying to simulate a situation in which these changes are
happening simultaneously, this is a very undesirable feature for the model solution algorithm to
have.

In order to avoid this order dependence, the OBEST solution methodology enforces a rule that
states that the “condition of the universe” (i.e., the conditions of all objects within the model)
must be held constant throughout each generation as the object models execute their respective
IRMs. To accomplish this, the algorithm proceeds in five steps for each generation.

1. Each object processes the events that were generated during the previous generation and, if
necessary, changes its state in response to those events.

2. The system processes any “special” events (e.g., commands to start, stop, or reset an object’s
clock, or terminate or truncate the scenario).

3. Each object processes the commands to modify its attribute values that were generated
during the previous generation. This sets the conditions for all of the objects that will be
used as they evaluate their IRMs.

4. Each object executes its IRM. It determines which set of logical conditions is satisfied by the
current system state, and selects the appropriate script to execute. If probabilistic branching
occurs, the appropriate incomplete scenarios are placed on the stack for later processing.
Any events and “modify attribute value” commands that are generated are placed in lists to
be used in the next generation of IRM execution.

5. Once all objects have had the opportunity to execute their IRMs, the system supervisory
algorithm examines the lists of events and modify attribute value commands. If the contents
of these lists would cause no change to the system’s conditions, then the supervisory
algorithm declares that equilibrium has been reached and prepares for DRM execution.
Otherwise, the supervisory algorithm prepares for another generation of IRM execution.

This methodology ensures that the problem solution was not influenced by the arbitrary order in
which the object models were considered within the solution algorithm. Of course, it is still

59

possible for objects to respond inappropriately because of changes that occurred in previous
generations. That issue must be addressed within the object model itself. The objective of this
part of the solution algorithm is to ensure that the analysis results are repeatable even if the
supervisory algorithm examines the object models in a different order.

3.3.1. IRM Branching Methodology

The probabilistic branching methodology employed by the OBEST solution method is somewhat
more complex than that used in a traditional event tree analysis because of the OBEST
assumption that all of the various object models are executing simultaneously. Suppose now that
two different object models both reach points within their IRMs where probabilistic branching is
required within the same generation. In an event tree analysis, the branching points always occur
in a predefined order that is specified by the analyst. This makes implementation of a recursive
solution algorithm simple. In the OBEST methodology, one of the key features is the ability for
the model to determine the ordering of events “on-the-fly”” and even for simultaneous events to
occur. This complicates matters for the probabilistic branching methodology.

The simplest branching methodology involves simple combinatorial expansion. Here the
algorithm generates every possible combination of branches that occurs within a given
generation of the IRM. It then selects one branching combination to continue analyzing, and
places remaining combinations on the incomplete scenario stack. Thus, if two objects are each
executing binary branches simultaneously, the branching algorithm constructs all four (2 x 2)
possible branching combinations, selects one for further analysis, and places remaining three
combinations on the stack. If three objects are each executing three-way branches, though, this
combinatorial methodology requires the branching algorithm to construct 27 (3 x 3 x 3) possible
branching combinations, select one for further analysis, and place the remaining 26 combinations
on the stack. Obviously, if many objects are branching simultaneously, this combinatorial
approach causes the incomplete scenario stack to grow rather large.

While the ultimate result of the branching methodology must be that all possible branches are
selected and executed regardless of the order in which objects are considered by the solver, the
branching process itself need not be so restrictive. If an algorithm that makes use of object
ordering can produce the same results as the combinatorial algorithm — and maintain a much
smaller incomplete scenario stack, it would be advantageous to implement this algorithm.
Consider a branching methodology that places one item on the incomplete scenario stack for
each object that enters a branching situation, rather than each scenario generated within the
branching situation. If such an algorithm encountered a situation with three objects each
executing three-way branches in the same generation (as described above), this algorithm would
place three items on the incomplete scenario stack instead of the 26 required by the
combinatorial algorithm. Such an algorithm has been devised, and is implemented in the
OBEST solution methodology.

As we begin to describe this new branching methodology, let us consider a simple example
where a single object is required to perform five-way branching in a single generation.
Assuming that this is the only branching that occurs within this generation, the solution
algorithm could choose one of those five branches to be carried forward in the analysis (our
method selects the branch with the highest probability, as one would when performing a best-

60

first search). Let us assume that, for this example, branch one has the highest probability, and
branches two through five are to be deferred for later consideration. The solution algorithm
could then place the configuration of the overall system object model, as it existed at the time of
the probabilistic branching, on the incomplete scenario stack, and simply note that branch one
has already been solved. Thus, when this situation is removed from the incomplete scenario
stack for further analysis, the solution algorithm notes that this branching operation has not yet
been completed. It examines branches two through five, selects the branch with the highest
probability (say, branch two), and propagates this branch through the remainder of the analysis
while placing the remainder of the branching operation back on the incomplete scenario stack.
This time, the item is placed back on the stack after noting that both branches one and two have
already been solved. On completion of the scenario for branch two, solution algorithm once
again removes this same item from the incomplete scenario stack, notes a branching operation
that has not yet been completed and examines branches three through five in the same manner.
The last time this item is removed from the incomplete scenario stack, there is only one branch
remaining to be taken. This branch is simply propagated through the remainder of the analysis.
There is no need to place it back on the incomplete scenario stack since, with the branching
process now complete, there are no remaining incomplete scenarios associated with this
branching point. In this way, an arbitrarily large branching operation never takes up more than
one position on the incomplete scenario stack.

Let us now see how this algorithm might be applied in situations where multiple objects are
branching within the same generation. Consider two objects (A and B), each of which is
experiencing three-way branching within the same generation. Let us assume that the solution
algorithm examines the objects sequentially, object A first. Let us also assume that both objects’
branches have been entered in order of decreasing probability, so branch one has the highest
probability in both objects. The branching methodology begins by selecting one branch to carry
forward from object A. It then places an entry in the incomplete scenario stack describing the
object models’ current configuration. This stack entry contains a notation that says branch one
from object A has already been examined, but branches two and three from object A, as well as
all three branches from object B, remain to be examined.

The solution algorithm now begins examining the scenario that includes branch one for object A.
The algorithm notes that a second branch point exists within the same generation — that of object
B. It selects the most likely branch for object B to be carried forward for further analysis. It then
places another entry on the incomplete scenario stack describing the models’ current
configuration. This second stack entry contains a notation that says all branches from object A
have already been examined, and that this scenario makes use of branch one from object A.
Furthermore, the notation indicates that branch one from object B has already been examined,
but branches two and three from object B remain to be examined. The scenario that incorporates
branch one from object A and branch one from object B is then processed to completion.

The solution algorithm now returns to the incomplete scenario stack and processes the remaining
to branches from object B (making use of branch one from object A) using the algorithm
described previously. The algorithm behaves as though object B were the only object branching
during this generation. Thus, three scenarios are generated for branch one of object A. These
scenarios represent three possible branches at this branch point from object B.

61

The algorithm now turns its attention to the second branch from object A. As before, the
branching methodology selects one branch to carry forward from object A — in this case, branch
two. The algorithm then places an entry on the incomplete scenario stack describing the object
models’ current configuration, with a notation that says branches one and two from object A
have already been examined, but branch three from object A, as well as all three branches from
object B, remain to be examined. The solution algorithm now generates a scenario utilizing
branch two from object A and branch one from object B while, as before, placing a second entry
on the incomplete scenario stack. This entry has a notation that says all branches from object A
have already been examined, that this scenario makes use of branch two from object A, and that
branch one from object B has already been examined. The algorithm then constructs all three
possible scenarios for this branch point for object B while using branch two from object A, as
described above. Finally, the same process is repeated to generate all three possible scenarios for
object B using branch three from object A. In this way, nine total scenarios are generated for the
two three-way branch points using only two entries on the incomplete scenario stack.

The extension of this algorithm to model an arbitrary number of object branch points within the
same generation is obvious. It requires only one entry on the incomplete scenario stack for each
object that is branching within that generation. This helps minimize the size of the incomplete
scenario stack. While it may not be immediately obvious why this is important, the reader
should note that each entry on that stack represents a complete copy of the object model for the
entire system (as it exists at the branch point in question) plus additional “bookkeeping”
information needed for algorithm and scenario management. Thus, an algorithm that minimizes
the size of the incomplete scenario stack is important to the computational efficiency of the
method. But perhaps the greatest benefit of this branch management scheme comes from the fact
that it can be used with only minimal changes to implement DRM branching, whereas the
combinatorial branching method could not.

3.3.2. DRM Evaluation and Branching Methodology

Let us now move on to consider DRM branching. DRM branching is more complex than IRM
branching because the DRM does not require all aspects of the branching operation to be
completed a single time. For example, an object that models the depletion of batteries within a
telephone switching facility may use a DRM that incorporates several different delay times to
model the distribution of times at which battery depletion may occur. It is also possible that the
DRMs in different object models will contain delay times that cause the need for simultaneous
branching in the DRMs for two different objects. To make matters worse, it is possible that
some branches within a DRM may never actually get executed. Consider the situation where
commercial electric power is restored to the telephone switching facility after the first potential
battery depletion time but before the last. The DRM branching model must be able to
accommodate all of these possibilities.

Let us now examine the behavior of a four branch DRM as the OBEST branching methodology
is applied. Let us assume that this DRM has four probabilistic branches, and that the delay times
for those for branches are 50, 30, 30, and 60 minutes for branches one through four, respectively.
In the DRM branching methodology, the branch’s probability does not matter except as a
tiebreaker when two branches have the same delay time. In this example, we assume that branch

62

three has a higher probability than branch two. We also assume, initially, that this object is the
only one whose DRM will cause branching between 30 and 60 minutes.

The evaluation of the DRM begins when the OBEST methodology detects that equilibrium has
been achieved among the various model objects as they exercise their IRMs. After equilibrium
has been achieved, the methodology queries every object in the system object model to
determine how long each object can remain in the equilibrium condition that was achieved
through the IRMs. These equilibrium durations are embodied in the delay times in the DRM.
The object that has the shortest delay time remaining sets the time step for the overall object
simulation. The OBEST methodology will step forward in time to the point where that shortest
remaining delay time expires, and execute any scripts that are associated with that delay. If, as in
this case, the shortest delay is part of a probabilistic branching DRM, the methodology must
determine which conditions to propagate through for solution and which to place on the
incomplete scenario stack. In this example, this DRM contains two branches with an equal delay
of 30 minutes each. The methodology selects the DRM with the shortest delay, and, if more than
one branch has the same delay, the one with the highest probability. In this case, we select
branch three to be propagated for solution. The algorithm places an entry on the incomplete
scenario stack that contains the configuration of the overall system object model as it existed at
the beginning of the DRM execution. This stack entry also contains a notation to indicate that
branch three has already been solved, thus removing it from consideration when the stack entry
is picked up for further processing.

When the scenario associated with branch three is completed, the algorithm examines the entry
that was placed on the incomplete scenario stack. It examines the situation and the DRM using
exactly the same criteria described above, except that branch three is no longer eligible to be
selected. Again, the shortest remaining delay time is 30 minutes, and is associated with branch
two. The solution algorithm selects this branch to be propagated through for solution. It also
replaces the entry on the incomplete scenario stack with one that contains a notation to indicate
that both branches two and three have already been solved. When it determines that branch two
is to be propagated for solution, the algorithm takes a time step of 30 minutes, executes the script
associated with branch two, and continues processing until the scenario is eventually completed.

The algorithm is now able to re-examine the entry from the incomplete scenario stack. The only
remaining branches have delay times of 50 and 60 minutes, representing branches one and four,
respectively. Since the shortest remaining delay time is 50 minutes, branch one is selected for
solution, while the entry on the incomplete scenario stack is replaced with a notation to indicate
that only branch four remains to be solved. To solve branch one, the algorithm takes a time step
of 50 minutes, executes the appropriate script, and continues processing until the scenario is
completed. Finally the algorithm does a final examination of the entry from the incomplete
scenario stack and propagates branch four, with its delay time of 60 minutes, through for final
solution. Notice how this branching algorithm is very similar to the IRM branching algorithm,
except that time replaces probability as the figure of merit for selecting which branch is to be
executed first.

Let us now expand this example to consider how multiple objects can interact through their
DRMs. Assume that the object described above represents battery depletion for a telephone
switching facility. We will define a second object that represents the recovery of commercial

63

electric power. Initially, this object has only one entry in its DRM: commercial power is
recovered after 40 minutes. Obviously, if commercial power is recovered after 40 minutes, the
50 and 60-minute battery depletion options are no longer relevant. If we assume that the
objective of this analysis is to determine whether the telephone switching facility fails because of
battery depletion, then each scenario is terminated when either battery depletion or commercial
power recovery occurs. Let us examine how the OBEST branching methodology deals with this
situation.

The first two scenarios generated by the OBEST solution algorithm for this example problem are
identical to those described in previous example: the telephone switching facility experiences
battery depletion after 30 minutes, and the scenario is terminated. This leaves us with an entry
on the incomplete scenario stack, the details of which are as follows: the entry stores the
configuration of the overall system model as it exists before either of this example’s two DRMs
are executed. It also contains a notation that the two 30-minute branches in the battery depletion
model have already been completed, but all other DRM options are available. When the solution
algorithm pulls this entry from the incomplete scenario stack, it looks at the entire system model
to determine which object has the shortest remaining delay. In this case, the commercial electric
power object has the shortest delay (40 minutes). Furthermore, the solution algorithm notes that
this is a deterministic DRM because it does not employ probabilistic branching. Because of this,
the algorithm does not generate a new entry for the incomplete scenario stack. Rather, it steps
forward to the 40-minute time mark and applies the script from the commercial power object,
which notes that power has been recovered and terminates the scenario. Note that two of the
potential branches representing battery depletion (the 50 and 60-minute branches) were never
exercised because they were, in a sense, “overcome by events” and became irrelevant to the
overall model. This model behavior realistically represents the behavior of the physical system,
whereas a method that required these potential battery depletion branches to be exercised would
obtain an unrealistic solution. Furthermore, had we used a combinatorial branching model to
represent DRM behavior for battery depletion, it might have been difficult to determine which of
these branches should be executed and which should be ignored. Therefore, we see that the
OBEST DRM solution algorithm provides an efficient and accurate representation of the race
conditions that are so common in infrastructure risk assessment problems.

Consider now a slight variation on the above problem in which there is a reason to continue
examining the scenarios even after it is determined whether a power outage actually occurs in the
telephone switching facility. The two 30-minute scenarios described above would remain
initially unchanged. Then, when commercial power was restored, the telephone switching
facility would respond by restoring call processing (after an appropriate delay to represent
equipment restoration within the facility). This behavior would have to be included in the object
model for the telephone switch. The remaining scenario, where battery depletion never occurred,
requires some additional investigation. Recall that, when commercial power restoration
occurred, two probabilistic branches in the battery depletion model still remained to be
considered. However, the fact that power has now been restored means that these branches are
no longer appropriate and should be ignored. This is accomplished by building appropriate
logical conditions into the battery depletion DRM. These conditions might state, for example,
that if commercial electric power is unavailable, then execute the probabilistic branching
described above. Otherwise, do nothing. As soon as electric power is restored, the battery
depletion DRM will no longer satisfy the conditions required for this probabilistic branching.

64

The OBEST solution methodology will “wipe the slate clean™ and continue on without further
consideration of these two abandoned branches. Since the algorithm keeps track of the total
probability associated with each entry on the incomplete scenarios stack, and since that
probability has not changed (only the conditions within the model itself have changed), no
complicated probabilistic adjustments are required. Such adjustments would have been needed
had a combinatorial branching method been used. Rather, the algorithm simply changes the
notations associated with the system object model to indicate that the battery depletion model
now satisfies a different set of DRM logical conditions.

This brings up an interesting question. What should we do if an object is part way through the
delay in its DRM, when the situation changes such that its DRM determines that a different delay
would be appropriate? Consider the situation where a camper has gone into the wilderness with
a small trailer. This trailer has a bottle that contains a fixed amount of propane fuel. If the
weather is warm and he does not have to use the heater in his trailer, the propane will last for 20
days of cooking and miscellaneous uses. However, if the weather is cold and he uses his heater,
the propane will last for only eight days. We might represent the camper using his fuel as one
object, and the potential weather conditions as a second object in an OBEST model. Assume
now that the weather conditions are warm for the first five days, then cold for the next ten days.
Since no probabilistic branching is used in either object model, this OBEST model will produce
a single scenario that terminates when the camper runs out of fuel. The solution algorithm
examines the initial conditions and determines that the propane will last for 20 days. It examines
the DRMs for the two objects, and determines that the shortest delay (five days) is associated
with the weather model. The solution algorithm takes a step of five days, and executes the
“script” that changes the weather conditions to “cold.” We now have a dilemma for the camper
using his fuel. We cannot continue using the original 20-day delay time because the logical
conditions associated with that delay no longer apply. However, beginning a new eight-day
delay (as might be expected based on the newly applicable DRM) is also inappropriate because,
after five days of warm weather, the camper has already used 25 percent of his available fuel.
The most appropriate solution would be to reduce this new eight-day delay by 25 percent (i.e., to
6 days) to account for the fuel that the camper has already used. In other words, since 25 percent
of the initial delay has been “used,” the time available in the new delay should be reduced by that
same 25 percent.

The OBEST solution methodology has incorporated this concept of “nonlinear time” in order to
allow these types of situations (which are relatively common in infrastructure applications) to be
effectively modeled. When the situation within the global object model changes such that the
previously applicable set of logical conditions (and its associated delay time) is no longer valid,
the algorithm computes the fraction of the previously applicable delay time that has already
elapsed, and reduces the newly applicable delay time by that same fraction. The analyst has the
option to override this behavior by including the event “reset my clock™ in an appropriate IRM
script. The “reset my clock™ event sets an object’s elapsed delay clock back to zero, or,
equivalently, sets the applicable delay time back to its maximum value as dictated by the logical
conditions established within the DRM.

Two details remain to be considered with respect to OBEST processing of DRMs. First, what is

to be done when several object’s DRM delays expire at the same time? And second, by
extension, what happens when the delay times for two probabilistic DRMs expire at the same

65

time? To answer the first question, we hearken back to the way commands from multiple objects
are processed in the IRM algorithm. Recall that, in order to preserve the order independence of
IRM model execution, all of the model events, system events, and attribute change commands
are placed in “lists” to be executed on completion of the current IRM generation in preparation
for the next generation’s processing. A similar technique is used here to accommodate the
delays for multiple DRMs expiring at the same time. The algorithm simply executes the script
associated with each expiring DRM. In so doing, it places the model events, system events, and
attribute change commands in the same lists used by the IRM algorithm. In the same way that
each successive object’s IRM commands were added to these lists to provide the impetus for the
next generation’s behavior, each successive object’s DRM commands are added to the lists to
become “initial conditions” for the next IRM evaluation step.

One might ask what happens if DRMs for two different objects attempt to cause contradictory
behaviors to occur. Using the battery depletion example described previously, suppose that
commercial electric power had been restored after a delay of 30 minutes instead of 40 minutes as
previously assumed. In this case, at the 30 minute mark, one object would be claiming that the
telephone switching facility failed due to battery depletion while the other would claim that
commercial power had been successfully restored at that same instant. This apparent
contradiction would have to be sorted out in the details of the telephone switching facility object
model. The analyst can define the appropriate behavior in two different ways. First, the OBEST
solution methodology requires the analyst to establish “priorities” within the state transition
model. Thus, when an object in one state receives simultaneous events that would cause it to
transition to different states, the analyst establishes a priority list to resolve the order in which
these events should be considered. If the event and state transition representing power recovery
are assigned a higher priority than those representing battery depletion, the simultaneous events
will be resolved in favor of power recovery rather than battery depletion.

The second means of resolving simultaneous and contradictory conditions resides in the IRM
definition. Recall that the “if — then — else” decision methodology considers the logical cases in
IRMs and DRMs in an order specified by the analyst. If an analyst places the logical case to
describe power recovery ahead of the logical case to describe switch failure, they are stating that
the appropriate behavior during these simultaneous transitions is to continue operation (i.e.,
power recovery takes precedence over battery depletion). By reversing the order of these logical
cases, the analyst holds that the appropriate behavior would be at least a momentary failure in
telephone switching operations.

The extension of this DRM evaluation and branching methodology to situations that require
simultaneous probabilistic branching among multiple objects is analogous to the branching
methodology used when multiple IRM objects branch in the same generation. The algorithm
first determines the size of the appropriate time step by obtaining the minimum remaining delay
time from each object in the system model. Since two objects require simultaneous probabilistic
branching, the algorithm selects the scenario to be propagated forward from the DRM of the first
object it encounters. It places an entry on the incomplete scenario stack to indicate that all
branches are available except the selected scenario for the first branching object, and that all
branches are available for the second branching object. As it propagates the selected scenario
forward (still in the DRM), the algorithm comes to the second DRM that requires branching at
this time. Again, it selects a scenario to be propagated forward that contains the selected branch

66

from the first object and, now, the selected branch from the second object. It places a second
entry on the incomplete scenario stack to indicate that only the selected branch can be used for
the first object, and all but the selected branch are available from the second object. Note that
these two entries on the incomplete scenario stack are exactly analogous to the entries described
in multiple IRM branching example from the previous section. The remainder of the branching
and solution algorithm proceeds according to the pattern established in the multiple IRM
branching example, subject to the use of delay as the primary branch selection discriminator as
described in the early part of this section. Thus, while the nuances may differ between the IRM
and DRM solution algorithms, the basic concepts and applications are the same.

3.3.3. Truncation and Binning

The probabilistic branching rules that are characteristic of the OBEST modeling methodology
can cause the solution algorithm to produce a very large number of probabilistic scenarios for
each set of initial conditions analyzed. The OBEST methodology provides two methods to help
the analyst cope with this explosion: scenario truncation and binning. Truncations allows the
analyst to instruct the solution algorithm to stop evaluating a scenario before it reaches
completion and throw its results away if it is “unimportant” to the desired overall results.
Binning allows the analyst to combine the scenarios that are of interest into groups of scenarios,
or “bins,” where all scenarios in the bin are “similar” to each other based on binning conditions
supplied by the analyst. The binning process reduces what may be hundreds of thousands or
even millions of possible scenarios generated by the OBEST solution algorithm into a few
dozens or hundreds of bins that can be reasonably examined by a human analyst.

The truncation algorithm used in the OBEST solution algorithm allows the user to truncate a
scenario based on several different criteria:

1. The algorithm can be instructed to throw away scenarios whose probability falls below some
user-specified cutoff value,

2. The analyst can include explicit instructions in IRM or DRM scripts to indicate that any
scenario executing that script is, by definition, not of interest the analyst and, thus, should be
thrown away, and

3. The analyst could include explicit instructions in the IRM or DRM scripts to indicate that any
scenario executing that script is, by definition, of special interest to the analyst and, thus,
should be kept. Any scenario that has not been so terminated when an analyst specified “stop
time” is reached is assumed not to be of interest and is thrown away (this truncation
condition is not yet implemented in the OBEST demonstration software).

While other truncation and termination conditions could be imagined, these form an extremely
powerful facility to enable the analyst to filter out inappropriate results. This is especially true
when one combines the “truncate” instruction with the power inherent in the IRM and DRM
modeling methodology.

The binning process provides a mechanism for the analyst to use in aggregating similar scenarios
into larger groups to ease the manual analysis task that follows solution of the OBEST model.

67

The method to be implemented in the OBEST methodology uses a method similar to that
employed in Sandia’s existing SETAC event tree analysis code system. Briefly stated, the
SETAC binning methodology asks the analyst to define a series of topics or “dimensions” that
are to be used in the scenario aggregation process. For each dimension, the analyst defines a set
of legal categories or “values™ that are to be used to characterize the scenario. The binning
process then selects exactly one value for each dimension in order to summarize the
characteristics of that scenario. This unique combination of values is called a bin. The solution
methodology combines all scenarios that have the exact same combination of values for all
dimensions into a single aggregate bin.

The concept of binning can be clarified by the use of a non-OBEST example. Consider the task
of categorizing a series of objects. One might start by defining three topics (dimensions) that can
be used in this categorization: size, shape, and color. The legal categories (values) for size might
be small, medium, large, and huge. The values for shape may be pyramid, rod, sphere, or box,
while the values for color may be red, violet, blue, green, yellow, orange, white, black, and gray.
Recall that a bin represents one unique combination of values — one value for each dimension.
Thus, one bin might describe small red boxes, while another one would describe huge green
pyramids, or large orange rods, or medium gray spheres. The binning method keeps separate
those bins that may share values from one or two dimensions but are not the same for all
dimensions. Thus, it tracks large orange rods separately from large orange boxes or huge orange
rods or large blue rods. If one wishes to obtain the number of rods, the number of violet objects,
or the number of objects that are not small, one must aggregate the bins over the appropriate
dimensions to produce these summaries.

While this example uses only three dimensions, one can imagine a binning scheme that uses
many different dimensions to describe and summarize the paths generated by solving an OBEST
model. SETAC analyses have routinely used binning definitions that contain 10 or more
dimensions. We anticipate that similar binning models will be used to summarize OBEST
analyses.

The SETAC binning methodology is designed around an event tree analysis paradigm. Thus, its
processing characteristics are tailored to look back only at the events that have either occurred or
failed to occur in a given scenario. Event tree analysis does not explicitly consider time (except
to the extent that it is incorporated in the discrete events that define the event tree model). Thus,
the SETAC binning methodology does not allow the analyst to summarize over dimensions such
as, “Within which time regime did this event occur?” or “In which order did these three events
occur?” These concepts are incorporated in the OBEST binning methodology. OBEST also
allows the analyst to specify combinations of attribute values to be used as bin or value definition
criteria using an “if — then — else” decision methodology that closely mimics that used in IRM
and DRM definition. Finally, since the IRM and DRM definitions do not allow the analyst to

" Note that in the SETAC software, the entities known as values here are called attributes. The terminology was
changed for the OBEST methodology in order to avoid confusion between this concept and the attributes described
in the OBEST object methodology.

68

consider an object’s state, and since an analyst may be very interested to know whether an object
ever entered a particular state over the course of the scenario, this concept is also included in the
OBEST binning methodology.

3.4. Compatibility With Parallel Processing

The OBEST solution methodology is, at its heart, fundamentally a recursion method. Through
recursion, the method engages in the systematic exploration of all possible branches within a
tree-based logical structure. Such problems and solution methods can easily be adapted to make
efficient use of parallel processing technology. Note that each entry on the incomplete scenario
stack represents a self-contained independent starting point for a new portion of the scenario tree.
Thus, a very simple method to parallelize the solution algorithm is to have one processor manage
the incomplete scenario stack and pass out stack entries to separate processors for evaluation. As
each processor completes a path, it can perform the binning assessment internally and pass back
to this supervisory processor only the characteristics and probability for the bin satisfied by the
scenario. While this may not make optimum use of the processors on a massively parallel
machine, it would dramatically increase the solution speed for an OBEST model.

Another aspect of modern PRA that is easily parallelized is, in many cases, the uncertainty
analysis. The use of Monte Carlo and Latin Hypercube sampling (LHS) methods® to perform
such analyses is common. Here, the analyst samples various PRA model parameters prior to the
model being executed. The individual samples (observations) are used to create a number of
independent problem definitions that must be solved such that one complete set of results is
generated for each observation. It is extremely simple to parallelize a process such as this by
placing one independent problem definition and solution algorithm (even a non-parallel solution
algorithm) on each processor, and collecting the results for output once all of the analyses have
been completed. Given that the OBEST solution algorithm can be parallelized itself in addition
to parallelization of the uncertainty analysis methodology, the potential is very good for seeing
dramatic increases in OBEST solution speed under parallel processing. It may even be possible
to see speed improvements that are nearly linear in the number of processors for relatively large
OBEST problems and their associated uncertainty analyses.

3.5. Comparisons With Other Methodologies

The various methodological descriptions in this paper should give the reader some insights into
the ways that the OBEST methodology both compares to and complements other infrastructure
analysis methodologies described in Chapter 1. OBEST inherently characterizes a very large
scenario space in a probabilistic manner. This differs from the Aspen model, as well as from
traditional network analysis models, which provide a detailed examination or simulation of a
single scenario for each model execution. A probabilistic wrapper would have to be placed
around these methods in order to achieve the effects embodied in OBEST. In addition, the
Aspen model requires vast computational resources to obtain even a single simulation result,
although the economic consequences that it simulates are well beyond the scope of the OBEST
models that are now being contemplated.

69

The OBEST methodology also differs from the discrete event simulation modeling methodology
that was characterized for the LASEP-T and SimMod-Pro models. While both methods perform
a probabilistic characterization of a large event scenario space, LASEP-T and SimMod-Pro are
fundamentally a Monte Carlo methodology. One of discrete event simulation’s fundamental
characteristics is that all event scenarios that it discovers are, by definition, equally likely. This
means that one must simulate enormous numbers of scenarios in order to facilitate the discovery
of rare but high-consequence scenarios. This can involve great computational expense. The
OBEST methodology, by comparison, computes an estimate of the likelihood of each scenario as
it is discovered. Thus, the OBEST methodology will facilitate greater computational efficiency
for those problems to which it is suited. Note that some problems may still require the
complexity of a full Monte Carlo discrete event simulation model. The problems for which
LASEP-T was designed may be a good case in point. After all, the scenarios involved in launch-
phase accident assessment may not fit the paradigm of immediate response/delayed response
modeling that is inherent in the OBEST methodology.

The OBEST methodology can be viewed as a direct extension to traditional PRA models such as
event trees, hybrid PRA-simulation models such as DYLAM and DETAM, as well as to
traditional object-oriented analysis models (specifically, the Shlaer-Mellor and OPRRA methods
described in Section 3.1). The OBEST methodology provides a mechanism for analysis of event
scenarios for systems with inherent feedback loops (an area where event tree analysis, influence
diagrams, and many other traditional PRA methods fail). It does so without the time step,
simultaneity, time scale, and branching limitations inherent to DYLAM and DETAM. It also
provides a mechanism for the use of object-oriented models in the area of time-dependent surety
analysis (an area that was not fully explored in the OPRRA methodology). The OBEST
methodology will not be the most appropriate paradigm for all such analyses, however. In some
cases, the time required to develop the object models may be more than would be required to
perform a traditional event tree analysis. In addition, the paradigm of immediate
response/delayed response modeling may not be appropriate for certain object-oriented surety
analysis problems. Thus, the OBEST methodology can best be viewed as a member of a risk or
surety analyst’s toolbox — being applied only to the analysis of appropriate problems.

The comparison between OBEST and the enumerative risk assessment models is not as
straightforward. Methods such as FMEA and HAZOP are applied to systems as a “first stage” of
risk assessment. They examine only one or two steps in a hazard scenario but do not simulate
longer series of events to their ultimate completion. This represents a significant difference from
the OBEST methodology because OBEST is designed to simulate the system’s behavior through
an entire series of events until consequences are determined. An OBEST model could be
constructed that would systematically apply each failure mode to a system model and determine
which failure modes lead to consequences in a manner similar to FMEA or HAZOP, but it is
unclear whether there is any real advantage to this approach because of the simplicity of these
more common methods.

When the OBEST methodology is compared to a Markov model, one comes to the same
conclusions stated in Section 2.6 (where Markov models were compared to other probabilistic
risk assessment methods). A Markov model can identify the probability that a system will exist
in a particular state as a function of time (OBEST cannot). However, a Markov model cannot
easily produce the path or scenario information that is so useful to the risk analyst. In addition,

70

while Markov modeling often suffers from a state explosion when large systems are analyzed,
OBEST does not. OBEST may suffer from a path or scenario explosion, but whereas the
OBEST solution methodology can cope with such a path explosion, the analyst must cope with
the state explosion because the explosion is in the model rather than the solution.

Comparing OBEST with traditional network analysis methods is a little like comparing apples
and oranges. OBEST models discrete series of events, while a network analysis method is
designed to assess the flows, capacities, and/or stability of a network under a pre-defined set of
conditions. The network analysis tool is inherently aware of the conditions that exist throughout
the network, while an object model attempts to encapsulate the behavior of each individual
component into a separate package. The two methodologies complement one another in this
way. An ideal solution might be to couple a network analysis tool to an OBEST analysis. In so
doing, one would use the OBEST model to model the series of events that are impressed on the
network, and use a traditional network analysis tool to model the characteristics of the network
as the OBEST model determines that network boundary conditions change. If the network
analysis tool determined that the network could not function under the conditions imposed by the
OBEST model, the network analysis tool could, say, identify overloaded and/or failed
components for the OBEST model, which would then propagate their effects through the
remainder of the model. In this way, each modeling methodology performs the portions of the
analysis for which it is most capable.”

The OBEST methodology also complements the existing suite of Sandia infrastructure and
analysis tools: Aspen’ and the Indications and Warnings System. While Aspen provides a
detailed look at the economic response of a region to postulated infrastructure disruptions, it does
not provide a workable engine for the simulation of large numbers of such scenarios, and is
incapable of a probabilistic exploration of a large scenario space without an external driver.
Even then, Aspen’s computational requirements would be enormous. At the opposite end of the
spectrum, the Indications and Warnings System, being a quasi-quantitative assessment tool, is
capable of providing insight into large numbers of scenarios (provided a suitable probabilistic
driver is employed). However, the Indications and Warnings System is not designed to provide a
simulation-like timeline of the potential scenarios that might occur. The OBEST methodology
fits squarely between these two existing methods. Its simulation capabilities are not as detailed
as those of Aspen, but are more rigorous and extensive than those of the Indications and
Warnings System. OBEST is computationally more intensive than the Indications and Warnings
System, so it may not be as useful for “real-time” decision-making. However, OBEST will run
much more quickly than Aspen, making it suitable for exploration of large scenario spaces and

* Similar statements could also be made about DYLAM and DETAM.
" While this paragraph singles out Aspen, its conclusions are applicable to all traditional simulation methods that
might be used for infrastructure analysis to the extent that their computational demands do not allow them to be
exercised to evaluate large numbers of scenarios. Those that do not have these stringent computational requirements
are similar to the discrete event simulation models described previously in that they must be driven by a Monte
Carlo “front end” to probabilistically explore a scenario space if they are to be fairly compared to OBEST.

71

for risk studies, where a broad perspective of the entire set of possible scenarios is important.
The fact that OBEST explores the scenario space probabilistically makes it especially well suited
to risk studies.

The potential synergies between Aspen and the OBEST methodology should not be understated.
One needs look no further than the area of nuclear reactor risk analysis to understand that a
variety of models operating at different levels of detail provide complementary information, all
of which is important to the risk analyst.*’- *%-4%-3-31:52.53.54 The detailed models provide insight
and guidance for the development of simplified, risk-appropriate models. The risk analyst’s
exercising of the simplified models over a very broad scenario space raises questions that can
often only be credibly resolved using more detailed models. In this way, the detailed models
influence the formation of the simplified models, while the simplified models help direct the
scenarios to be explored using the limited number of available evaluations of the detailed
models.

3.6. Potential OBEST Applications

The OBEST methodology was originally developed to enable risk assessment models to be
constructed for interdependent infrastructure systems. One might imagine an infrastructure
problem that involves electric power, telecommunications, water and emergency services. If
electric power fails, there will likely be a significant delay before telecommunications, water,
and/or emergency services are effected because each has some backup capacity. However, if a
major power failure lasts for an extended period of time, the backup batteries at the
telecommunications center and emergency services providers may become exhausted and the
reserve water supply may run out. The lack of water and/or telecommunications could, in turn,
make it more difficult for the electric power provider to restore service by impairing the
coordination of restoration work. Thus, the delay in power restoration is exacerbated by failures
in telecommunications and/or water. It should be obvious by now that this situation can be
modeled very well using the OBEST methodology. The chief hindrance to the extensive
modeling of infrastructure problems using OBEST occurs when the risk model must look for
cascading failures in the infrastructure networks. Section 3.7 describes a potential extension to
the OBEST methodology that helps alleviate this problem.

While the OBEST methodology was originally developed for the assessment of infrastructure
interdependencies, its potential areas of application are much broader. As the methodology has
been discussed with other analysts, applications have been considered in areas including aviation
safety, physical security, nuclear reactor safety, information surety, and weapon safety. OBEST
may, in fact, be as generally applicable as the event tree analysis methodology that is currently
popular among risk analysts. Chapter 5 provides a number of OBEST example problems — some
of which are derived from these domains. However, the remaining paragraphs in this section
provide some ideas of basic problems that may be amenable to OBEST solution.

Probably the greatest use of very large event trees in PRA occurs in the field of nuclear reactor
safety. Most modern reactor PRA studies model the phenomenology associated with an
accident’s progression from core damage through possible radiological release using an event
tree that contains between 50 and 150 multi-branch events resulting in literally millions of
possible event sequences (paths). These event tree models are notoriously difficult to construct,

72

examine, assure, and explain. Furthermore, since it is the analyst that must distill the system
behavior to obtain the event tree model, a change in plant design or an improved understanding
of some aspect of accident progression methodology must be manually incorporated in and
propagated through the model. This is an error-prone and labor-intensive process. The OBEST
methodology could replace event trees in this application since OBEST is in many ways similar
to the event tree methodology that is commonly in use. However, OBEST could improve the
situation because OBEST modularizes the model into objects, so whereas the analyst must
manually propagate changes through the entire event tree model, the changes to an OBEST
model would be very localized and, hence, easier to develop and assure. In fact, this
compartmentalization should even make the original model easier to develop. Thus, OBEST
could provide significant enhancements to current nuclear safety PRA studies.

The area of physical security provides opportunities for OBEST in two major areas. First, some
physical security studies have made extensive use of large event trees. For the reasons described
above, OBEST could have an immediate impact on these studies. Second, an important part of
some physical security studies is “force-on-force” experiments. In some cases, these involve
actual people acting out security exercises, while in others, human players engage in similar
exercises in a computerized environment. It is likely that the concepts of immediate and delayed
response models from OBEST could provide a mechanism to automate some of these simulated
security exercises and provide a probabilistic basis to some classes of force-on-force
experiments. Generating OBEST models to represent the training and doctrine of both teams (as
well as the facility being defended) would not be an easy task, but providing a probabilistic basis
and a more thorough and systematic investigation of potential scenarios may be worth the effort.
Information surety may be able to benefit from OBEST for similar reasons.

Another area that has made extensive use of large event tree models is the assurance of nuclear
weapon safety in transportation accident scenarios. Here, the event tree model is used to define
the characteristics of the transportation (including the impact severity, fire characteristics, etc.).
The OBEST methodology may provide an opportunity to generate models that are easier to
assure, modify, and explain to reviewers than are the current large event tree models.

Aviation safety is an area that has already seen active research related to the OBEST
methodology. Early models have included the reformulation of a large event tree aircraft icing
analysis, a simple model to assess the closeness of approach between two planes during a runway
incursion scenario, and a model to determine the likelihood of a taxiing aircraft to end up on an
active runway without permission. The latter model considers command errors from the traffic
controller, misunderstandings and memory lapses on the part of the flight crew, responses to
visual cues, environmental factors, and the ability of the traffic controller to recognize and
command a stop to a dangerous situation. In this model, DRM delays are used to represent the
time it takes an aircraft to traverse a particular portion of airport taxiway, as well as the time it
takes for a controller to identify and respond to a developing situation where an aircraft is not
where the controller believes it should be. Research in this area will likely continue and provide
valuable aviation safety insights.

A final (and seemingly disconnected) area of applicability of the OBEST methodology is in the
area of electric circuit analysis. Specifically, analysts look at situations where a fire erupts in the
area of electric cables. In the presence of fires, these cables can exhibit various types of open

73

and short circuits. The behavior of the system is dependent not only on which open and short
circuits occur, but also on the order in which those circuit faults occur. OBEST can inject those
faults into a circuit model probabilistically and compare the response of the actual circuit with
that of an “ideal” circuit (one that behaves as would be expected in the absence of the fire
conditions). This comparison can then be categorized to identify the potential for these faults to
cause the circuit to behave in abnormal or dangerous ways.

The OBEST methodology also shows promise for compatibility with several optimization and
uncertainty analysis techniques. Sandia’s current uncertainty analysis techniques for large event
trees should prove immediately transferable to the OBEST process. As for optimization, Sandia
is already making use of optimization techniques using system cut set expressions to measure
reliability as one portion of a utility metric. In a sense, the system cut set expression represents
the detailed investigation of a large potential scenario space, and its quantification summarizes
that scenario space for the utility metric. In the same way, the scenario space explored by the
OBEST methodology can be summarized in many different ways to yield important information
for inclusion in an optimality utility metric. While the re-quantification of an OBEST model is
not nearly so simple as the re-quantification of a cut set expression, the basic applicability does
exist, and it may ultimately be possible to provide shortcut requantification methods for an
OBEST model once an initial solution is found. This may provide greater applicability of the
OBEST method to optimality analyses should re-solution of the model at each stage of the
optimality calculation prove infeasible.

3.7. OBEST Limitations and Possible Extensions

In its original form, the OBEST methodology contains a number of inherent limitations that, if
removed, would make the method more widely applicable. Chief among these limitations is that
the only mechanisms available to determine proper branching are time, probability, and logical
statements based on object attributes. The ability to operate on different types of quantities and
perform “side calculations,” as is currently done in Sandia’s SETAC" event tree analysis
software, would make OBEST dramatically more powerful and flexible. For those who are
unfamiliar with SETAC, the side calculations that it facilitates are based on real variables.” The
model can set the value of a variable based on the a result of any event branching operation in
much the same way that attribute values are set in an OBEST IRM or DRM script. These
variables can then be subjected to add, subtract and multiply operations with other variables.
They can also be used to influence event tree branching decisions when they are compared with
threshold values and probability distributions. The utility of this type of variable is illustrated as
follows: the current methodology requires the analyst to represent quantities like the remaining
capacity of a battery string or fuel tank through the surrogate variable of time. The capacities are
converted into depletion times based upon the draw-down rate imposed by the system being
modeled. Thus, if one changes the draw-down rate for that quantity, the OBEST model gets
messy. If one could represent the capacity, the draw-down rate, and the landmark value at which

*
Real, or continuous variables, as opposed to discrete variables such as integers or Boolean values.

74

the next action occurs as continuous variables, then the OBEST model could directly compute
the delay time until the landmark value is reached and implement the DRM conditions as
described previously. The advantage comes when the quantity is partially depleted and the flow
rate changes. A variable-based computation method can simply update the remaining capacity
and compute a new delay time based on the new depletion rate. One could also change the
landmark values if that were necessary. These factors could immediately be used to compute an
accurate representation of the time-dependent behavior of the model, whereas obtaining accurate
behavior once these quantities have been converted into the surrogate time variable is difficult.
The ability to use continuous variables into OBEST models would enable a wide variety of
systems to be modeled that can otherwise only be crudely approximated. The OBEST method
should incorporate variable capabilities that are at least as powerful as those in SETAC and, if
feasible, dramatically expanded.” While it would be desirable to restrict the performance of
variables such that OBEST is still able to compute the endpoint of a DRM time step from the
beginning of that DRM evaluation, one could envision a capability where even simple
differential equations could be incorporated into the OBEST response models through the use of
variables.

A second fundamental limitation of the OBEST methodology is that it is inherently based on
discrete mathematics. Object behaviors are discretized into states that call discrete IRM and
DRM models. Attributes that describe the characteristics of an object can only be represented as
discrete values. This requires the analyst to manually choose the landmark values to form the
breakpoints within the discretization of what is truly a continuous variable. With the exception
of the variables described above, it is difficult to maintain the tree-like behavior of the OBEST
methodology while removing this limitation. Other modeling methods such as DYLAM and
DETAM?® may be more suited to problems that cannot be effectively modeled within the
constraints imposed by variables once they are implemented in OBEST.

Another limitation of the OBEST methodology is that, as currently implemented, it can be
difficult to represent the global behavior of a network using the limited facilities and
compartmentalization” required by OBEST. There are two possible methods by which an
OBEST model can incorporate network effects such as transients within electric power grids or
telecommunications networks. The first method involves incorporating into each network
element’s OBEST object the intelligence to enable it to negotiate with its peers, follow network
transients and reach network equilibrium. This method requires extremely complicated objects,

* These types of variables could also be used in IRM branching, where the analyst might indicate that if a particular
variable were greater than a certain threshold, then the object would provide an immediate response (such as a tank
rupturing or the issuance of a system shutdown command).

¥ Compartmentalization requires that an object’s behavior be completely described within the object itself. Where
the behaviors of two or more objects are highly interdependent, as in the case of the components within an electric
power network, this strongly interdependent behavior can be very difficult to model using a compartmentalized
model. These behaviors are often dependent on small changes in parameter or attribute values, and the
discretization of attribute values required by OBEST compounds the difficulty in representing these strongly
interdependent systems.

75

and it will be difficult to ensure that their collective behavior appropriately matches observed
real-world network transient and equilibrium conditions. The second method involves creating
an extremely simple OBEST object for each network element, and using it as a mechanism to
transfer information about the global system state into a traditional network analysis model.
Here the OBEST network element model acts principally as an intermediary between the more
global OBEST model and the traditional network model of the particular infrastructure to which
it belongs. The network model itself follows the transient, imposes consistency, and develops
network equilibrium conditions. It then passes this information back to the OBEST objects for
the elements of its network, which in turn reset their internal states and attributes to match those
found by the network model. Other objects within the OBEST model can then use this
information to assess the interactions between this infrastructure and others that are part of the
overall system model. This methodology enables the OBEST method and traditional network
analysis tools to work in tandem — each performing the portions of the analysis to which they
are most suited. A similar method could be used to link an OBEST model to other types of
simulation models were that to be found beneficial. Such a linkage could become even more
powerful and flexible if it were implemented through the use of continuous variables (as
described previously) to enable exact values to be transmitted to the simulation model rather than
just nominal values associated with discrete attributes.

Yet another limitation of the OBEST method over traditional ETA methods involves the
relationship between fault trees and the event progression model. Most major ETA codes
provide a mechanism by which the analyst can specify that a branch probability within the model
is really the result of a system failure that has been modeled elsewhere using a fault tree. Since
there may be many such branches within the model, and since these fault trees may be
interdependent, the event tree software must maintain the relationships between these fault trees
and provide for their solution such that the commonalties among fault tree events are properly
accounted for in the branch probabilities used in the OBEST event sequence computation.”

Finally, the OBEST methodology can be viewed as being a limitation on the previously
developed OPRRA methodology. OPRRA was developed to encompass as many traditional
PRA methods as possible into a single object-based method. The OBEST methodology
significantly limits the action language in OPRRA by moving totally away from Shlaer and
Mellor’s data flow diagram concept and instituting the concept of immediate and delayed
response models. While this limitation excludes traditional deductive risk assessment models
from the OBEST paradigm, it is essential to the realization of the extensions OBEST presents to
the inductive analysis methods such as ETA. Since the IRM/DRM concept is fundamental to the
gains claimed by the OBEST methodology, it is doubtful that extensions to the overcome these
limitations will be developed any time soon.

3.8. Summary

This chapter has sought to provide the reader with all of the fundamental underpinnings required
to construct and solve OBEST models. It has described the object-oriented methods (Shlaer and
Mellor, OPRRA) that form the heritage from which OBEST was drawn, as well as those aspects
that make OBEST unique from these prior methods. OBEST shares with these methods the
concepts of a state space-based approach, where each state represents a different body of system
behavior, and where transitions between those states occur as a result of events that can be

76

generated either internal to or external to the object. However, while the prior methods
embodied their specific behavioral models in terms of action data flow diagrams, OBEST
embodies its behavioral models in immediate and delayed response models (IRMs and DRMs).
This enables OBEST to specifically model systems that are characterized by long periods of
quasi-equilibrium, peppered with short periods of potentially intense activity and behavioral
changes. This modeling method was motivated by the study of infrastructure systems, but has
proven much more generally applicable as described in Section 3.6.

This chapter has also described the algorithm that has initially been proposed and implemented
in software for solving these OBEST models. The similarities and differences between IRM and
DRM branching were described, as was the treatment of the system and object clocks under
different scenarios. The applicability of parallel processing to this solution method was also
discussed. Finally, the characteristics of both the modeling method and the solution algorithm
were compared with the list of desirable characteristics from Section 2.11. Limitations of the
methodology were noted, and potential extensions were proposed to deal with some of those
limitations.

The remainder of this report is dedicated to the implementation and applications of the OBEST
method. A brief overview of the developmental software that implements OBEST is presented
in Chapter 4, while a number of OBEST example problems are detailed in Chapter 5. Together,
these sections should provide the reader with additional perspective through the use of concrete
examples that illustrate the method, its uses, and its limitations.

77

This Page Intentionally Blank

78

4. OBEST Software Implementation

4.1. Software Overview

The models created using the OBEST modeling methodology increase in complexity rapidly as
objects, states, and attributes are included. Thus, it is impractical to solve anything but the
simplest models by hand. Rather, the methodology demands the use of specialized software to
track the varied and potentially competing behaviors and time delays associated with a realistic
OBEST model. For this reason, this project also created a software package to solve those
models.

The OBEST model solution software (hereafter referred to as the OBEST software, or simply
“the software”) was developed over a period of more than one year. During that time, the
OBEST methodology itself was evolving through several significant changes as sample
problems were worked by hand to gain insights into the nuances and potential problems posed by
the conventions and rules proposed for this methodology. For these reasons and many others,
this software should be viewed as demonstration software rather than production-grade software.
We hope that later projects that make use of the OBEST methodology will be able to fund
upgrades to the computational kernel (as discussed in Chapter 3) and completion of those aspects
of the user interface that had to be neglected in order to ensure the proper functioning of the
computational kernel.

The OBEST software was written using Microsoft Visual Basic for use on an IBM-compatible
personal computer running a 32-bit Microsoft Windows operating system (95, 98, Me, NT 4, or
2000). Installation requirements are modest by current computing standards — less than 10 MB
of free hard disk space are required. The software generally runs well on computers having at
least 64 MB of RAM and a Pentium-class processor. The software has no special graphics,
sound, or other hardware requirements. The software stores its model input and results as a
database file using the Microsoft Access format. Thus, in the unlikely event that the model itself
should become corrupted by the OBEST software, the adventurous user can edit the model file
directly using Microsoft Access.

The OBEST software will be described in four main phases. First we describe those aspects of
the software that are used for describing the basic characteristics of the object model: naming
objects, states, state transitions, attributes, and discrete attribute values. After that, we describe
those parts of the software through which the user will describe and enter the IRMs and DRMs,
with their associated logical cases and scripts. Third, we describe the parts of the software that
are used to specify the logical conditions that will be used for binning the results of the OBEST
analysis. Finally, we describe the parts of the software that enable the user to set a model’s
initial conditions, execute its solution, and view the results.

4.2. Entering a Basic Object Model

When a user first starts the OBEST software, the screen shown in Figure 4-1 is displayed. This
screen enables the user to:

79

e add and delete objects from the OBEST model (using the “Add New Object” and “Delete
Object” buttons),

e add details to the object models (using the “Object Definition” button),
e specify the model’s initial conditions (using the “Initial Conditions” button),

e develop the logical conditions by which the OBEST model results will be binned (using the
“Binning Conditions” button), and

e invoke the computational kernel to begin solution of the OBEST model itself (using the “Run
Scenario” button).

The two other buttons on this screen (“Object Relationships™ and “Termination Conditions™) are
currently nonfunctional. In this section, we will focus on the functionality provided by the Add
New Object, Delete Object, and Object Definition buttons (parts of the functionality provided by
the Object Definition button will also be described in the next section).

J__; OBEST - D:AScratchADBEST Programsilncursion Problem 08 Backup.mdb
File Edit “iew Help

— Object Models — Scenarno Parameterz
Aircraft
Controller .. -
Environment Initial Conditions

Object Definition

Termination Conditions

Object Relationships

Bin Categones

Add Mew Object Delete Object

Run Scenario

Figure 4-1. OBEST Software Main Screen.

When the analyst begins using the OBEST software, the OBEST model initially contains no
objects. The list box in the Object Models frame in Figure 4-1 is empty. The analyst begins
populating the OBEST model by entering a name and description for each object to be used in

80

the OBEST model. This is done using the Add New Object button. The object description that
is requested for each new object can be thought of as a note or memo field to remind the analyst
of the intended characteristics of this object. New objects can be entered into the software all at
once (and populated simultaneously), or the analyst may wish to create a single object, and
specify all of its model characteristics, before entering information for a subsequent object. In
practice, we have found it beneficial to enter the names, states, state transitions, attribute names,
and attribute values all at once for as many objects as possible very early in the model
development process. This is because the IRMs and DRMs for any object may well depend
upon the particular attribute values associated with some other object. In order to ensure
consistency within the final OBEST model, the software will not allow the analyst to use object
or attribute names that have not already been defined within the model. Thus, it is helpful to
define these high-level characteristics of each object before proceeding on with IRM and DRM
input for any of the objects.

Another function that is performed directly using the screen shown in Figure 4-1 is that of
deleting an object from the OBEST model. To delete an object, the analyst selects the name of
the object to be deleted from the list of model objects found in the Object Models frame, and
then presses the Delete Object button. This removes the object and all of its states, state
transitions, attribute names, attribute values, IRMs and DRMSs, and scripts from the OBEST
model. The only things that may remain after an object is deleted are those elements of the
object model that are not associated with one particular object: events names, and logical case
definitions (these will be discussed in a later section).

+& Object Definition

Objects Object D escription

State Definition

Eontmler
Ereironment
Initial State »
State Transition T able
IWaiting j
¥ Clack On Attribute Definition
Clock
||:| Immediate Responze Model

Delayed Responze Model
K I Cancel |

Figure 4-2. Object Definition Screen.

81

Once the analyst has entered names and descriptions for the objects in their model, the next step
is to define the states, state transitions, attribute names and attribute values for each object. To
begin this process, the analyst presses the Object Definition button. This action causes the
software to bring up the Object Definition screen, as shown in Figure 4-2. This screen allows the
analyst to directly specify the default initial conditions for each object, and also serves as a
navigation center to enable the analyst to examine and define the various aspects of the object
model. In this section, we will focus on the functions provided by the State Definition, State
Transition Table, and Attribute Definition buttons. The functions provided by the Immediate
Response Model and Delayed Response Model buttons will be described in the next section.

.gﬁ State Definition [x]

Object M amme
Contraller
Erevironimnent
State Mame: IWaiting

State Description: I.f-‘«waiting ATC Instructions

Add State | Delete State

1] I Cancel |

Figure 4-3. Entering Object States.

To define the states associated with one or more objects, the analyst presses the State Definition
button. This causes the software to bring up the State Definition dialog box shown in Figure 4-3.
This dialog enables the analyst to specify the name and description for each state associated with
an object. As before, the description field provides the analyst with an opportunity to making
note or memo reminding them of the specific behaviors that this state is intended to represent.
The list box of the top of this dialog contains a list of all objects that currently exist in this
OBEST model. When the analyst selects one of these objects, software responds by populating
the text box of the bottom of this dialog with all of the states that have previously been defined

82

for this object. For a new object, this list will be empty. The analyst can add a new state for this
object by entering a name and description in the text boxes provided, and pressing the Add State
button. This action enters the new state into the model and adds it to the list of states at the
bottom of the form. The analyst can repeat this process for this same object to add multiple
states, or add states to a different object by selecting that object’s name from the list of the top of
the form. When all of the desired states have been added, the analyst presses the OK button to
return to the Object Definition screen.

When the analyst selects an object from the Object Name list at the top of the dialog, the
software responds by listing all known states for that object at the bottom of the form. If the
analyst selects one of those states, its name and description are placed in the text boxes on the
form. The analyst can review this information by scrolling through the text boxes, and make
modifications as necessary. If the analyst wishes to delete this state from the object, this is done
using the Delete State button.

When the analyst returns to the Object Definitions (Figure 4-2) screen after defining the states
for each object, they can now enter the basic initial condition information for each object. This
consists of specifying the initial state and the initial clock conditions for each object. To specify
this information, the analyst first selects the name of the object from the list in the upper left
corner of the Object Definitions screen. The software responds by displaying the state
description and any previously entered initial condition information for this object. To specify
the initial state for this object, the analyst will simply select one of the previously defined states
from the Initial State drop-down menu. This process is repeated for each object in the OBEST
model. While this menu also includes a Cancel button, that button does not yet function
properly. Thus, any changes to the model initial conditions are permanently entered into the
OBEST model database. Mistakes are corrected by re-entering the data in the original manner.

The other initial conditions that are set from the Object Definitions screen have to do with the
initial conditions for the object’s clock. In general, the initial value for each object’s clock will
be zero, although there may be special situations where an analyst wishes to set a clock’s initial
value to some nonzero value. To do so, the analyst enters the appropriate value in the Clock text
box. In addition to setting an initial value for the clock, the analyst will wish to select whether
each object’s clock is on (accumulating time against some DRM) or off (waiting for the
occurrence of some future stimulus before beginning to accumulate time towards a DRM). The
Clock On check box should be checked if the object’s clock is to initially be set “on” and
unchecked if the object’s clock is to be initially set “off.” This process is repeated for each
object in the OBEST model following the same rules and conditions used in the Initial State
drop-down menu.

The next task for the analyst is to define each object’s state transition diagram. The analyst
enters a special form for defining the state transition diagram from the Object Definition screen
by pressing the State Transition Table button. The software responds to this command by
bringing up the screen shown in Figure 4-4. Initially, this screen will be blank except for the list
of defined model objects found in the upper left corner. To enter a state transition model for an
object, the analyst first selects that object’s name from the Object Name list. The software will
respond by displaying a list of all defined states for this object in the States list, as well as a list
of all defined events in the entire OBEST model. The analyst will choose from these lists to

83

define the state transition table. Initially, the Events list will be empty. The method for
populating this list will be described shortly. Assuming, for a moment, that the Events list has
already been populated with all of the events necessary to complete this object’s state transition
model, the analyst constructs the state transition model as follows. Note how, initially, the
Current State box is enabled, and all other boxes related to this state transition are disabled. To
enter a state transition, the analyst first selects the name of the “from” state (the state that this
transition will remove this object from) from the States list, and presses the Add Current State
button. The state’s name will appear in the Current State box, and the focus will shift to the Next
State box. The analyst now selects the name of the “to” state (the state that this transition will
place the object into) from the States list, and presses the Add Next State button. Again, the
state’s name will appear in the Next State box, and the focus will shift to the Event box. The
analyst now selects the name of the event that will cause this state transition to occur from the
Events list, and presses the Add Event button. This event name will appear in the Event box, and
the focus will shift to the Priority box. Here, the analyst will enter a number to indicate the
priority of this state transition, as described in Chapter 3. The process is completed by pressing
the Add Transition button, and can be repeated to enter additional state transitions for this object,
or the analyst can select a new object from the Object Name list and repeat the process to enter
state transitions for other objects.

#& State Transition T able
Object Mame States Events
GoD .
Contraller GoE _I
E rivironment GoF
GoG J
GoH
Gol =l
Curient State MHext State Ewent Fricrity
Add Current State | Add Mext State | Add Ewent |
State Transition T able
Add Tranzition | Current State | MHext State | Ewvent | Pricrity [& State Definition |
W aiting Tawi b God 1
Tami b TauiB GoB 1 £ Difirit |
Dete Tranit Tani & TasiD GoD 2 vent Lefinition
Blete Transition | TasiB TaiC GoC 1
TaxiB MHalhcurzion Safe 2 State Tranzition Diaagranm |
Tawil Taui F GnF 1 LI

Figure 4-4. Entering a State Transition Table.

84

The process of entering state transitions can be simplified through the use of shortcuts. The
analyst can double-click on the state and events names, and they will be entered into the active
boxes on the screen. Thus, the analyst first double clicks on the name of the “from” state, and
that state’s name is automatically entered into the Current State box. Next, the analyst double
clicks on the name of the “to” state, and that state’s name is automatically entered into the Next
State box. The analyst double clicks on the transition event to enter that events name into the
Event box. The analyst must still manually enter the numerical value for the state transition
priority and press the Add Transition button to complete the definition process. Note that no two
state transitions with the same “from” state should have the same numerical priority value.
Recall that the purpose of this priority value is to break ties. That is, should the object be in this
state and two different events happen simultaneously — each of which would cause a different
state transition to occur in this object, the OBEST software will select the transition with the
lower numerical priority. Thus, the first priority state transition should receive a numerical
priority value of one, the second priority transition a numerical priority value of two, and so
forth. As you can see, assigning more than one state transition the same priority value defeats
the purpose of this important OBEST model feature.

Significant additional functionality exists on this screen. To delete an existing state transition,
the analyst selects that transition from the State Transition Table at the bottom of the screen, and
presses the Delete Transition button. Note that there is no “undo” operation for this state
transition deletion command, so the analyst should use great care when pressing this button. The
State Definition button returns the analyst to the form found in Figure 4-3. In this way, the
analyst can enter names and definitions for any states that may not have been previously defined.
The State Transition Diagram button is currently not operational, but eventually it is hoped that
this button will lead the analyst to a graphical description of the state transition model as it
currently exists on this form. The OK button returns the analyst to the Object Definition screen.
Finally, the Event Definition button leads the analyst to the screen found in Figure 4-5. This
screen provides a way for the analyst to populate the Events list in the upper right corner of the
State Transition Table form.

The Event Definition screen is very similar to the State Definition screen shown in Figure 4-3,
and functions and a very similar manner. The principal difference is that since states are specific
to a particular object within the model, the State Definition screen required the analyst to select
the object to which a new state would apply. Events, however, are not specific to a particular
object, but are global to the entire OBEST model. For this reason, the Event Definition screen
does not require the analyst to specify a state before entering event definitions. The list at the
bottom of the form contains all of the events that currently exist in the OBEST model. The
analyst adds new events to this list by typing an event name and event description in the
appropriate boxes near the top of the form, and then pressing the Add Event button. Events can
be deleted from the OBEST model if the analyst will highlight the name of the event to be
deleted in that event list and press the Delete Event button. Note that there is no “undo”
functionality for this delete command, so the analyst should exercise great care when pressing
the Delete Event button (the Cancel button does not return the Events list to its original
configuration). When all of the necessary events have been added to and deleted from the
OBEST model, the analyst presses the OK button to return to the Event Definition screen.

85

.l_v_ﬂ Event Definition

Ewent Marme: IGD C

Event Description: IEnter Taxiveay Segment C

Add Ewent | Delete Event

Acknowledged
Goso
GoB

ak. | Cancel |

Figure 4-5. Defining a Model Event

The next major phase of OBEST model development is to define the model’s attributes and their
values. From the Object Definition screen (Figure 4-2), the analyst presses the Attribute
Definition button to bring up the Attribute Definition screen found in Figure 4-6. This screen
provides a way for the analyst to view all of the attributes that have been defined for each object,
and to set the initial conditions that will be applied to each attribute (i.e., define which of an
attribute’s values are to be used in that object’s initial conditions). When one is initially
developing an object model, this screen will be blank except for the list of objects found in the
upper left corner. The analyst can define attributes that will be used in an object by pressing the
Edit Attributes button (to bring up the screen shown in Figure 4-7), and can define discrete
values that represent each attribute by pressing the Edit Attribute Values button (which brings up
the screen shown in Figure 4-8). Once attributes and values have been entered into the model,
the analyst selects an initial value for each attribute by selecting the object name and attribute
name from the Objects and Attributes list, then selecting one of the defined attribute values from
the Initial Value drop-down list to be used as the initial attribute value. There is no “undo”
operation for the selection of an initial attribute value (the Cancel button does not return the list
of attribute initial values to its original configuration). The OK button causes the software to
return to the Object Definition screen, and should be used when the analyst is satisfied with the
list of attributes and attribute values currently defined in the OBEST model.

The Edit Attributes screen is very similar to the State Definition screen (Figure 4-3), and
functions in a very similar manner. The analyst selects the object to which the new attributes are
to be applied from the Object Name list of the top of the form. The software responds by
populating the attribute list at the bottom of the form with all of that object’s existing attributes.
The analyst enters a name and description for a new attribute, then presses the Add Attribute
button to add this attribute to the list. This process can be repeated to add multiple attributes for
this object, or a different object can be selected from the Object Name list to add attributes for

86

o Attribute Definition E

Objects Altributes

Destination
Controller Route
Ereviranment HoldShort

E dit Attributes

Sitek.nowledge
tentalState
HFCC

Location
Edit Attribute Yalues

Attribute Description

IEHperience af flight crew

Initial " alue

I‘s-"eteran ﬂ
(1] | Cahcel |

Figure 4-6. Summary of OBEST Model Attributes.

+& Edit Attribute]

Object Mame

Aircraft

E bivironment

Attribute M ame: ID estination

Eitribute Description: IWhere cantroller tells plan

Add Attribute | Delete Attribute

&
HaldShart
Stop

ak. | Cancel |

Figure 4-7. Entering Attribute Definitions.

87

#% Edit Attribute Values Ed

Object Hame: [Ajrcraft Attibute Mame: [Destination
Environment HoldShart
Stop

Walue Mame: |'|' awileft

Walue Description: ICorrect - Turmn left onta taxivay

Value Logical: [T Falze

Add Value | [relete alue |

(0] Cancel

Figure 4-8. Entering Values for Attributes.

other objects. If the analyst selects an attribute from the attribute list and presses the Delete
Attribute button, that attribute is permanently deleted from the object model. There is no “undo”
operation for the Delete Attribute operation (the Cancel button does not return the event list to its
original configuration). The OK button causes the software to return to the Attribute Definition
screen, and should be used when the analyst is satisfied with the attributes and initial values
currently defined in the OBEST model.

The Edit Attribute Values screen (Figure 4-8) is shown when the Edit Attribute Values button is
pressed on the Attribute Definition screen. This screen is conceptually similar to the Edit
Attributes screen, except that attribute values are attributable to a particular attribute for a
particular object, while attributes themselves are attributable only to a particular object.
Therefore, to add or delete attribute values for a particular attribute, the analyst must first select
the appropriate object from the Object Name list. This causes the software to populate the
Attribute Name list with all attributes that have been defined for this object. When the analyst
selects the attribute to be edited from this list, the software responds by populating the list of the
bottom of the screen with all currently defined values for that attribute. The analyst can then add
and delete attribute values using exactly the same steps used on the Edit Attributes screen
(Figure 4-7) as described in the previous paragraph. The Value Logical check box is intended to
restrict an attribute’s values such that it represents a Boolean quantity.

88

To this point we have focused on the capabilities within the OBEST software for
e definition of the objects included in the OBEST model,

e the definition of the states that will be used within each object to represent the different
bodies of behavior that object is capable of assuming,

o the definition of the events that will be used within the OBEST model to transition objects
between states,

o the state transition model (as implemented in a state transition table),

e the names and descriptions of the attributes that are used to describe each objects condition,
and

e the various discrete values that each attribute is capable of assuming.

This describes all aspects of the object model except the IRMs and DRMs. As there is
significant complexity involved in the definition of those response models, the entire section of
this report has been dedicated to their development and editing.

4.3. Entering Immediate and Delayed Response Models

The construction of IRMs and DRMs in the OBEST software is exactly the same except for one
minor detail: when entering a DRM, one must enter a value to represent the time delay that will
elapse before that model’s commands are executed. In the IRM, that delay time is, by definition,
zero. In this section, we describe how an analyst can enter IRMs and DRMs into the OBEST
software. But before we describe the mechanics of the software, we must establish some
terminology. In this section, we discuss “cases” and “scripts.” A case represents a logical
statement that will be evaluated by the OBEST software as it seeks to establish which particular
body of behavior is appropriate to apply under the existing set of model conditions. A script
represents a series of commands that will be executed if the conditions are satisfied in the case to
which it is attached. Recall that in Chapter 3 we discuss an “if — then — else if — then”
methodology to embody IRM and DRM behavior. In our terminology, a case is what comes
between the “if”” and the “then,” while a script is what comes after the “then.”

As one might expect based on the previous section, every case and every script has a name and a
description. Both cases and scripts can be used multiple times within the OBEST model. Why
would one want do this? One might want to use a script several times if the same body of
behavior (the same sequence of commands) might be used by an object under a variety of
conditions or in different states. A script might also be reused for different probabilistic
branches within the same DRM model when there is some probabilistic distribution to represent
the delay that might occur before that script’s events come to pass. Note that, since an object can
only change its own attributes, and since the commands in a script can change an object’s
attributes, each script can only be executed by the object for which it was created. Any object,
on the other hand, can use cases, because they simply read the attributes of all objects in order to
make a logical decision as to whether a script should be applied under a particular set of

89

circumstances. Cases can be reused within the same object if one wishes to respond to the same
set of circumstances while the object is in different states. They can be reused within different
objects if more than one object needs to respond to the same set of circumstances.

By breaking the OBEST IRM and DRM models into cases and scripts, an interesting
phenomenon occurs: one can mix and match scripts and cases in a variety of ways to achieve
whatever behavior is desired. Thus, if the same body of behavior can be induced by different
circumstances when an object is in different states, one can combine different cases with the
same script to achieve that behavior. If the same circumstances produce different behaviors
when object is in different states, the analyst can combine the same case with different scripts to
produce that effect. When probabilistic branching is used, one takes a single case and
probabilistically associates it with more than one script, more than one delay, or some
combination thereof. The use of named cases and named scripts makes it very easy to reuse
these model elements, and in so doing, efficiently create an OBEST model while at the same
time making the model quality assurance task somewhat easier.

Let us now describe the construction of an OBEST IRM. From the Object Definition screen
(Figure 4-2), one presses the Immediate Response Model button to bring up the IRM screen
shown in Figure 4-9. When one begins construction of a new OBEST model, this screen is blank
except for the two lists on the upper half of the form: the Object Name list and State Name list.
The IRM is specific to each state for each object, so these lists enable the analyst to select a
combination of object and state for IRM development in the same way that a combination of
object and attribute were selected in the Edit Attribute Values screen (shown in Figure 4-8).
Once one selects the object and state, the details of the IRM (as it currently exists) are shown at
the bottom of the screen. The cases that have been assembled to make up that model are shown
in the IRM Cases list. Each case can be associated with more than one script if probabilistic
branching is used. Thus, when the analyst selects a case from the IRM Cases list, the software
responds by showing the scripts associated with that case (and their associated probabilities) in
the Scripts list. In Figure 4-9, the Aircraft object’s Waiting state has a complex IRM consisting
of many cases. Here, the C-Dest-OK-LowHP case is associated with three scripts: SetDest-25R
will be executed with a probability of 0.995, SetDest-25L will be executed with a probability of
0.003, and SetDest-24R will be executed with a probability of 0.002. Selecting other objects,
states, or cases will show different tables of scripts and probabilities.”

When one begins construction of a new OBEST model, the bottom half of this screen is blank. If
one were to press the Case Editor or Script Editor buttons, one would find those screens to be
similarly blank. In order to facilitate the discussion of IRM model development, we will (for the
moment) assume that one has already entered appropriate cases and scripts, and that one is
attempting to combine those existing model fragments to form a complete IRM. The screens
used to develop cases and scripts will be discussed shortly. To construct an IRM from scratch,
one first presses the Add Case button to reveal a simple dialog that lists all available case names.

" The only difference between this screen and the corresponding DRM screen is that the Scripts table on the DRM
screen has three columns: Script, Probability and Delay.

90

When the analyst selects a case and presses the OK button, that case name is added to the IRM
Cases list. One can add many cases at once, or add the cases individually and populate the
associated scripts at the same time.

#% IRM [x]
Obiject M ame State MName
Contraller T awi f Caze Editor |
Erwviranment Tawi B
TawiD : £
TawiC cript E ditar |
TaxiE hd
Add Cazse Delete Caze Add Script | Edit S cript | Delete Script |
Bk Cazes Scripts
/ T A | Scipt | Probaility
(C-Dest-UOk-LowHP X
| [CDestOKMedHP setDest 25R 0,995
C-Dest-0K-HHP SetDest-260 0003
— C-Rt-Right J SetDest-24R 0.oo2
C-At-0K-LowHP
| |C-RtOK-MedHP
C-Rt-OK-HHP

Figure 4-9. Entering an Immediate Response Model.

To associate scripts with a case, one first selects the appropriate case name to reveal any existing
associated scripts. When the analyst presses the Add Script button, the software responds by
generating a very simple dialog that lists all available script names. The analyst selects the
appropriate script name and enters the associated probability on this form, then presses the OK
button to add this script/probability combination to the Scripts list. The process is repeated until
all scripts associated with this case are selected.” To add scripts for a different object, state, or
case, simply select the appropriate names and repeat this process. Once all appropriate IRM
cases and scripts have been added and/or deleted, the analyst presses the OK button to return to
the Object Definition screen.

The Delete Script and Delete Case buttons on this form operate in the same manner as the delete
buttons on other forms in this software package. To delete a script from an IRM model, select it

" The sum of the probabilities in the Scripts list should equal one once the last script is added. However, the
software does not currently check to ensure that this criterion is satisfied.

91

in the Scripts list and press the Delete Script button. Similarly, to delete a case, select the
appropriate case in the IRM Cases list and press the Delete Case button. Note that when a case is
deleted, all of its associated scripts are also “deleted” in the sense that they are no longer
associated with that IRM. To recreate this IRM, one would have to first add the case and then
add any necessary scripts using the methods described above. There is no “undo” capability for
either of these delete commands, so the user is encouraged to use great care when pressing these
delete buttons.

The astute reader may remember that the functioning of the “if — then — else if”” IRM and DRM
methodology was such that the software executes the script(s) for the first case that evaluates as
“True” and ignores all subsequent cases — regardless of whether they would evaluate as “True”
or “False.” Thus, the order of the cases in an IRM or a DRM is critically important. The analyst
can change the order of the cases by using the arrow buttons to the left of the IRM Cases list.
Simply stated, the selected (highlighted) case name is moved up or down one position in the
IRM Cases list for every time the Up Arrow or Down Arrow button is pressed, respectively.
This gives the analyst total control to order the cases in any way that would produce appropriate
IRM behavior.

+% DRH
Object Mame State Mame
Contraller Casze Editor |
Enwironment
TaniC Script Editor |
Tani E hd|
Add Caze Delete Caze | Add Script | Edit Script | Delete Script |
DRk Cazes Scripts
Script | Frobability | Delay
/ o) GoTo G 099 50
— vy Clarify 0.0 a0

24-LVC-MHF
24-LWEAR

Figure 4-10. Entering a Delayed Response Model.

The screen used to construct a DRM is shown in Figure 4-10. From the Object Definition screen
(Figure 4-2), one presses the Delayed Response Model button to bring up the DRM screen. This
screen is identical to the IRM screen in all respects except that it enables the analyst to enter and
view the delay times that must be associated with DRM scripts. The Add Case, Add Script,

92

Delete Case, Delete Script, and OK buttons all behave as described previously for the IRM
screen. Note that the same cases and scripts that were developed for the IRM can also be used in

the DRM if it would be appropriate to do so. There is no need to enter separate cases or scripts
for use in the DRM.

The foregoing discussion showed how an analyst could create IRMs and DRMs under the
assumption that cases and scripts had already been entered. Of course, when one is initially
developing the OBEST model, this assumption will not hold because the list of cases and the list
of scripts will both be empty. To enter and edit cases, the analyst presses the Case Editor button
on the IRM or DRM screen. This action causes the software to bring up the screen shown in
Figure 4-11. Initially, this screen will be blank because cases are not associated with individual
objects.

+F Case Editor
Cazes Objects Attributes YWalues
WCC-Low ﬂ HFCC Fatigued [Fake
Loc-GtAs/B
Drefault
WEC-Unzet

HPCC-Low

Caze Description

— Conditions

1zt zet of conditions fo
Object Mame Attribubes Attribute Walues Walue Logical

Adrcraft Traffic Clear [T Falze
Add Mew Case | Controller Lirnited
WCC
Delete Caze |
Delete Object | i o
andition |

Delete Attribute |

Delete Y alus | oK | Camcel |

Figure 4-11. Entering Logic Cases for Immediate and Delayed Response Models.

The first step in defining a new case is to add its name and description to the cases list in the
upper left corner of the screen. To do this, the analyst presses the And New Case button and
enters a name and description for the new case in the dialog provided. This sets up the structure
for the case that will be populated with logical statements. To enter those statements for a new
case, the analyst first selects the case’s name from the Cases list. The existing logic for this case,
if any, will be described in the Objects, Attributes, and Values lists at the top of the screen.
Since this is a new case, these lists will be empty. The logical statement that makes up this case
will be composed of attribute values — possibly from several different objects — that must take on
specified values in order for the logical statement to evaluate as true.

93

Before we describe how those attributes and values are incorporated into a case, it is important to
understand how the OBEST software will ultimately evaluate this logical statement. Simply
stated, if more than one value is specified for a particular object/attribute combination, the
OBEST software will use a logical OR condition between them. In other words, for a “bicycle”
object and “color” attribute, specifying the values “red,” “blue,” and “yellow” would cause the
software to respond positively if the bicycle were red, yellow, or blue, and negatively for all
other values. On the other hand, when the logical statement contains values from more than one
attribute (or even more than one object), the OBEST software will use a logical AND condition
between them. Consider a “weather” object with attributes “sky conditions” and “temperature.”
A case that specifies a value of “cloudy” for sky conditions and a value of “cold” for temperature
would only respond positively to weather conditions that are both cloudy and cold. Conditions
that are cold but not cloudy, or cloudy but not cold, or neither cloudy nor cold would not elicit a
positive response from the OBEST software. Thus, an OBEST case represents a logical AND
between objects and attributes, combined with a logical OR between values within a single
object/attribute combination.” Should the analyst wish to develop logical conditions that are
more complicated than those enabled by this method, the analyst must break those conditions
into multiple cases that can be evaluated sequentially, each one of which must follow these rules.

We have just described how each logical case is composed of a number of conditions and that
are evaluated according to a predefined set of AND and OR logical rules. Each condition is
based on a single object, attribute, and attribute value combination. These conditions can be
entered into the case in any order. The controls that are used to enter a single condition into the
case are located in the Conditions frame near the bottom of the screen. Once the analyst has
selected the case to be edited from the Cases list, the analyst selects the object that contains the
attribute and attribute value that are eventually to be used by clicking on the appropriate entry in
the Object Name list. The software responds by displaying all defined attributes for that object
in the Attributes list. When the analyst selects the appropriate attribute, the software displays all
of the defined attribute values for that object/attribute combination in the Attribute Values list.
The analyst then selects whether this object/attribute/value combination is to be true or false
using the Value Logical check box, then presses the Add Condition button to enter that condition
into the case. The process is repeated for other conditions (object/attribute/value combinations)
until the case definition has been completely entered. The analyst can check the conditions that
have been entered into the case using the Objects, Attributes, and Values lists at the top of the
screen, as described previously. To add additional conditions to a previously defined case, the
analyst selects that case from the Cases list and follows this same process to enter additional
conditions. Additional cases can be defined by pressing the Add New Cases button and then

* Note that the OBEST methodology also permits the analyst to specify the logical value of the attribute value being
used. Typically, this value is set to “True” as used in the previous examples. If this value were set to “False,” the
weather example would elicit a positive response from the OBEST software under conditions that were neither
cloudy nor cold. This is because the OBEST software would be evaluating the logical statement “NOT cloudy AND
NOT cold” in the object model. Similarly, in the bicycle example, the software would respond positively to bicycles
that were neither red nor yellow nor blue because the OBEST software would be evaluating the logical statement
“NOT (red OR yellow OR blue).”

94

repeating this process. The analyst can define the names of several new cases first, and then
populate the conditions of each later, if desired.

The original plans for this software would have enabled the analyst to do a number of editing
operations on a case using the buttons in the lower left-hand corner of this screen. These
functions, however, have not been fully implemented at this time. Currently, the accepted
method for dealing with errors in a case that cannot be corrected with additional conditions is to
delete the case and re-enter the information. A case is deleted when the analyst selects the case
from the Cases list and presses the Delete Case button. There is no “undo” capability for the
Delete Case operation (the Cancel button does not return the cases list or the case definitions to
their original configuration). The OK button causes the software to return to the screen that
invoked the case editor (either the IRM or DRM screen). It should be used when the analyst is
satisfied with the set of cases that have been defined in the OBEST model.

The remaining task in developing an OBEST model is to specify the scripts that will be executed
as part of the IRM and DRM. To enter and edit scripts, the operator presses the Script Editor
button on the IRM or DRM screen. This causes the software to display the screen shown in
Figure 4-12. Initially, the Script Name list and the Script Description box on this screen will be
blank if one is developing an OBEST model from scratch.

#% Script Editor =]
Object M ame Script Mame Script Description
|.f3\in:raft IEurrect destination w/o hold shart in

Ervironment

Add Mew Seanpt |

T Eventz T Special Events
Attributes Attribute Walues Script Attributes
D egtination hzet Desztination = 25A
Foute = Taxileft
HaoldShaort TaxiRight HaoldShort = Go

Stop

Add Abtribute Definitiunl Delete |
QK | Cancel |

Figure 4-12. Entering Script Definitions for Immediate and Delayed Response Models.

95

Each script is tied to a particular object because scripts can change the attributes of an object, and
an object is only allowed to change its own attributes. Thus, the analyst must select an object
from the Object Name list before that object’s scripts will be listed in the Script Name list. To
enter a new script, the analyst selects the name of the object to which it will apply, then presses
the Add New Script button. The software provides a dialog that will enable the analyst to enter a
name and description for this new script. When the analyst completes the form, the software
enters that new script name into the Script Name list. Consistent with previous screens in the
OBEST software, the analyst can enter names and descriptions for the scripts one at a time
(defining each script as it is named), or the analyst may enter a large block of names all at once
and then define each script later at his or her convenience.

When the analyst selects an object from the Object Name list, the software responds by
displaying the list of all script names that have been defined for that object in the Script Name
list. When a name is selected from this list, the software displays the current definition for that
script in the lower half of the screen. Each script can have three different types of elements:
Attribute Events (commands that will cause this object to change the value of its attributes),
object model events (entered on the Events tab, which may cause this object or other objects to
change state), and system events (entered on the Special Events tab, which may cause
termination or truncation of the scenario or cause this object to manipulate the status of its
internal clock).” Each type of event, as well as the facility to add or delete events of that type, is
found on the appropriately named tab. As each tab is displayed, the right hand section of the
screen displays those events that are already part of the script definition, while the left hand
section of the screen displays those events that are available for the analyst to add to the script
definition. Each tab also has a button for deleting particular events from the script definition.
One deletes events from the script definition in the same manner as one has deleted other parts of
the object model on other screens: one highlights the events to be deleted and presses the Delete
button. There is no “undo” capability for either the Add or Delete functions on the Script Editor
screen (and the Cancel button does not restore the script definitions to their original
configuration), so the analyst must be careful when adding and deleting items from scripts.

To add an event to a defined script, the analyst begins by selecting the object and script to which
this event will apply from the Object Name and Script Name lists. The analyst then selects the
tab that is appropriate to the type of event to be added to the script from the bottom of the screen.
The Events and Special Events tabs contain simple lists of events that can be added to the script.
The analyst simply highlights the desired event and presses the Add button to include this event
in the script. Attribute Events are defined in a similar manner, although the analyst must define
both the attribute to be modified (from the Attribute list) and the value to which it is to be set
(from the Attribute Values list) before pressing the Add button to include the event in the script.’

* Only one Special Event is allowed per script.
" Recall that, by convention, an object can only modify its own attributes. Thus, when defining Attribute Events, it

is not necessary to state which object’s attributes we want to modify. This also explains why the script cannot be
defined outside the context of an object, while a case is not so limited.

96

Note that the script definition at the right of the screen lists both the attribute and its value as
being part of the script.

4.4. Evaluating an OBEST Model

By following the steps in the preceding sections, we have now completed the definition of an
OBEST model. Currently there are very few automated checks in the software to determine
whether a completed OBEST model is fully specified and self consistent. Indeed, it is very
difficult for an automated facility to make such checks because it requires one to determine
whether particular features of the model were included simply for completeness or later
elaboration (in which case their lack of use does not represent an error), or they are critical
components of the object model (in which case the fact that they are not used will cause the
object model to behave very differently from the analyst’s expectations). It is possible that
future enhancements to the software will allow more of these features to be added.

One of the fundamental advantages of an object-based model is that, after the analyst
encapsulates the behavior of the system in objects, one can simulate a wide variety of scenarios
and conditions by simply changing the initial conditions or boundary conditions imposed upon
the object model. In OBEST, this is accomplished by presetting particular attributes to specific
values that might define a desired scenario, and by “seeding” the analysis with model events that
are to occur at the beginning of the scenario. To impose these initial conditions on the system,
one begins at the main OBEST screen (Figure 4-1) and presses the Initial Conditions button.
When this occurs, the software responds by displaying the Initial Conditions screen shown in
Figure 4-13. Initially, this screen provides a facility for setting initial condition attribute values
for the OBEST analysis. The analyst sets these conditions by selecting the object, attribute
name, and attribute value to be imposed on the system from the Objects, Attributes, and Values
lists on the left side of the screen. When the desired combination has been selected, the right
arrow button causes it to be entered as an initial condition in the Set Attributes list. To delete a
previously entered attribute, one highlights the combination in the Set Attributes list and presses
the left arrow button.

Figure 4-14 shows the screen used to seed the analysis with model events that are to occur at the
beginning of the scenario. These events are entered using exactly the same steps described for
Figure 4-13: an event is selected from the Available Events list and the right arrow button is
pressed in order to enter that event into the Initial Events list, while an event is deleted from the
Initial Events list when its name is highlighted and the left arrow button is pressed (note that
there is no “undo” capability for any of the actions related to the selection of initial conditions).

Another important part of the preparation to execute an OBEST model is to specify any
termination conditions that one wishes to impose on the system. The system automatically
terminates a scenario when it reaches “equilibrium conditions” — that is, when all IRMs are in
equilibrium and no further DRMs are active. However, the analyst may wish to terminate the
scenario under more restrictive conditions in order to save computational time or because further
analysis is simply beyond the scope of the problem to be solved. To impose additional
termination conditions, the analyst proceeds to the main OBEST screen (Figure 4-1) and presses

97

Initial Conditions E3

2arcratt
Contraller
Ehwironment

T Events
Attributes Walues Set Attributes
Destination Rookie Attribute
Route Weteran
HaoldShort

E xperience
Siteknowledge
MentalState
HPCC
Location

(]8 |

Figure 4-13. Setting Alternate Initial Conditions for the Model.

Initial Conditions

Set Attributes

Awailable Events

God
GoB
GolC
GoD
GoE
GoF
GoG
GoH
Gol

Acknowledged

Initial Events

Figure 4-14. Setting Events to Initialize the OBEST Model.

98

the Termination Conditions button. This causes the software to bring up the screen shown in
Figure 4-15. While not all of the options displayed on this screen are fully functional, it is
instructive to consider the variety of methods one might use to terminate a scenario.

Termination Conditions E
Attribute Yalues T Object States T Logical Conditionz T Time
Objects Attributes Walues Attribute W alues

Aircraft Destination Unset Ohject | sttribute [Walue
Contraller Hald
Ehwironment Go

E sperience

Siteknowledge

MentalState

HFCC =

Location

(]8 |

Figure 4-15. Setting Path Termination Conditions.

The simplest termination condition is time. The analyst may only be interested, for example, in
events that occur within 24 hours of scenario initiation. Such a termination condition is
implemented using the Time tab on the Termination Conditions screen. A second, simple
termination condition can be based on an attribute value. The analyst may have as a principal
purpose for an analysis the simple determination of whether or not a particular attribute value is
realized. For example, on a telephone central office object, the analyst may be most interested in

It is also possible to terminate scenarios by embedding Special Events in object scripts. One such event,
Terminate Scenario, causes the system to immediately terminate the scenario branch being processed and include it
in the final results tabulation. Another such event, Truncate Scenario, also causes the system to immediately
terminate the scenario branch being processed. However, truncated scenarios are not included in the final results
tabulation. The analyst uses a Truncate Scenario command when the OBEST model reaches a condition that
indicates that this scenario is not of interest to the analyst’s purpose in performing this OBEST analysis. One might
also wish to truncate a scenario because of its extraordinarily low probability in order to save the computational time
that might be incurred should further branching of the scenario occur, but this facility is not currently implemented
in the OBEST software.

99

whether the battery charge attribute reaches a value of “dead” before equilibrium conditions are
established when commercial power is restored. The Attribute Values tab provides a facility
whereby the analyst can select one or more attribute values as termination conditions. A
scenario will be terminated should any one of these attribute values be realized at any time
during a scenario. A similar set of termination conditions can be imposed when an object enters
a state that is of particular interest to the analyst. For example, if one state of a telephone central
office object were “operating under commercial power,” the analyst might specify that entry into
this state provides an adequate termination condition for scenarios that are initiated with a loss of
commercial power (blackout). The Object States tab enables the analyst to select one or more
object model states for use as termination conditions.

The final set of termination conditions envisioned for the OBEST software can be thought of as a
direct parallel to the concept of cases that was developed for the IRMs and DRMs. The analyst
might put together a set of logical conditions (a combination of object model attributes) which,
should it become true at any point during the analysis, would indicate that it is appropriate to
terminate the scenario being evaluated. This functionality will ultimately be provided under the
Logical Conditions tab on the Termination Conditions screen.

The final task that the analyst needs to accomplish before actually running the OBEST model is
to determine which features of each scenario will be saved for presentation as results to the
analyst. This process, known as “binning,” was initially described in Section 3.3.3." The
OBEST software does not allow the analyst to save every scenario generated through evaluation
of the object model because an object model of even moderate complexity will likely generate
thousands of probabilistic scenarios. Particularly complex object models may generate millions
of scenarios. It is unreasonable to expect a human analyst to wade through thousands or millions
of scenarios and extract meaningful insights. Also, given the time-dependent behaviors that
occur within these scenarios, it is unreasonable to expect a desktop computer to save all
information for thousands or millions of scenarios. Memory and disk storage space are limited,
and the sheer computational effort involved in just the input/output operations to write such
information to disk would become extremely burdensome.

Fortunately, the analyst is usually interested in only a subset of the information that is actually
generated as a scenario is solved. Our objective, then, is to save all information that is relevant
to the analyst’s purpose in performing the analysis, while throwing away all irrelevant
information. Furthermore, we combine those scenarios that are identical in all aspects that are
important to the analyst into a single “bin” that acts as a surrogate for all of these similar
scenarios. However, if the software is to save only relevant information, the analyst must define
for the software what “relevant” means. This is done on the Bin Categories screen shown in
Figure 4-16. The analyst reaches this screen from the main OBEST software screen (Figure 4-1)

By way of review, one can think of specifying bin definition information according to “topics” on which
information will be saved (known as dimensions), and “categories” within each topic that represent the discrete
values to be saved (known as values). For example, a topic or dimension might be the color of an object, and the
legal categories or values for the color might be red, yellow, green, blue, black, and white.

100

by pressing the Bin Categories button. Using the five tabs on this screen, the analyst can cause
the software to save answers to the following questions:

e What value did this attribute take on at the end of the analysis? (Answered on the Attribute
Values tab)

e What state was this object in at the end of the analysis? (Answered on the Object States tab)

e Within which time window did this logical condition become true? (Answered on the Time
Conditions tab)

e In which order did these logical conditions occur? (Answered on the Order Conditions tab)

e Which one of these all-inclusive logical conditions was true at the end of the analysis?
(Answered on the Logical Conditions tab)

J__; Bin Categories |

Bin Candition E ditar | Total Dimenzions: I2 Tatal Bina: I-|5

Attribute ¥alues T Object States T Logical Conditionz T Time Conditions T Order Conditions

Dimenzionz M ame Abtributes Objects

HaldShort ISiteKnawledge Destination Aircraft
Location Route Cantraller
HaldS hort Ervironment
E speniernce
-~ 5 kel nowled
=t MentalState
HPFCC
Location

Ok |

Figure 4-16. Binning Model Results Based on Attribute Values.

The Attribute Values and Object States tabs work in a manner similar to the Initial Conditions
screen. On the Attribute Values screen, the analyst selects the name of the object and attribute
for which values are to be saved from the Objects and Attributes lists, then presses the arrow
button to add that attribute name to the Dimensions list. Similarly, on the Object States tab, the
analyst selects the name of the object for which the final state is to be saved and presses the

101

arrow button to add that name to the Dimensions list. A dimension is removed from this list
when the analyst selects the dimension’s name and presses the appropriate arrow button.

The remaining three tabs on the Bin Categories screen all make use of logical conditions that are
similar to the cases described in the previous section. The analyst can define these logical
conditions using an editor that is accessed by pressing the Bin Condition Editor button. Since
the bin condition editor is relatively similar to the case editor described previously, it will not be
described here. Once an analyst has defined these logical bin conditions (which, as you might
expect, are identified by name and description fields), these conditions can be used to specify
time, order, or logical conditions. When specifying a time condition, the analyst will select one
logical bin condition as well as a series of breakpoints between time intervals. The OBEST
software will determine whether this logical condition occurs at all, and if so, the time interval
during which it first occurs. When specifying order conditions, the analyst will select two or
three logical bin conditions, and the OBEST software will determine the order in which these
conditions occur (if they occur at all). Finally, when specifying logical conditions, the analyst
will select two or more logical bin conditions that they believe to be fully inclusive (i.e., every
scenario will satisfy one of these logical conditions). The OBEST software will determine which
of these conditions is true at the end of the scenario.

When the analyst has defined all necessary binning conditions, they return to the main OBEST
program screen by pressing the OK button. The OBEST model will now be analyzed if the
analyst presses the Run Scenario button. While the software is processing scenarios, it keeps the
analyst appraised of its progress through the various indications shown on the model progress
screen (Figure 4-17). This screen provides the analyst with feedback regarding:

e How long processing has been running,

e The current state of the solution process (the number of entries in the scenario stack [see
Section 3.3] and the probability of the scenario currently being assessed),

e The number of scenarios that have been processed so far (broken down into scenarios that
have been binned and scenarios that have been truncated), and

e The total probability of all scenarios that have been processed so far (again, broken down
into scenarios that have been binned and scenarios that have been truncated).

If all of the IRM and DRM models in the OBEST model have been developed such that their
probabilities all sum to one, then the analyst can expect the scenario processing to be completed
when the sum of the Cumulative Probability and Truncated Probability reaches one. This can be
somewhat deceiving, however, for two reasons: first, numerical round off occurs as one
accumulates the sum of a long list of numbers (thus, the sum may not reach exactly one or may
even slightly exceed one when the analysis is complete), and second, the numerical algorithm
implemented in the OBEST software works to discover the most likely scenarios first. Thus, the
sum will increase quickly at first, then may dramatically slow down during the time when the
final scenarios are being discovered. To get an idea of how fast this sum is changing, the analyst
should examine the Scenario Probability box, as this indicates the most recent value that was
added to this sum.

102

#% DBEST - D:AScratch\OBEST Programs\Gas Burner.mdb

File Edit ‘“iew Help
Cumulative Probability Truncated Probability
[0.00000497664 o
I
Binned Scenarios Truncated Scenarios
| GE o
Stacked Scenarios Scenario Probability
| 1 |0.00000007776
Elapsed Time Scenario Clock
| 0:01:16 [1000140
| Turn Or Progress Digplays I Halt Scenarnio Evaluations

Figure 4-17. OBEST Software Display During Model Analysis.

This screen provides two additional capabilities to the analyst. First, the analyst may wish to
terminate evaluation of the OBEST model before the solution process is complete. The analyst
accomplishes this by pressing the Halt Scenario Evaluations button. Note that the software
cannot resume the solution process where it left off, so any reanalysis of this scenario must start
at the very beginning. Second, many analysts realize that the frequent update of a display can
divert significant computational resources away from the analysis task itself. The OBEST
software enables an analyst to maximize the resources devoted to model solution by providing a
Turn Off Progress Displays button which, when pressed, causes the progress displays to freeze at
their current value even though the model solution process is continuing. The label for this
button changes to Turn On Progress Displays (as seen in Figure 4-17) during the time that
progress displays are frozen, and the analyst simply presses this button a second time to restore
the progress displays to their original form.

The OBEST software also provides the analyst with a powerful software debugging tool. To use
this tool, the analyst starts from the main OBEST software screen (Figure 4-1) before pressing
the Run Scenario button, and selects the Scenario Debug Form entry from the View menu. This
action opens the Scenario Debug window shown in Figure 4-18 as a second window that
parallels the model progress screen (Figure 4-17). Once the Scenario Debug window is open, the
analyst presses the Run Scenario button as usual to begin solution of the OBEST model. With
the Scenario Debug window open, the analyst can cause the solution algorithm to pause after
each model generation, IRM execution, or DRM execution. The next step is taken when the

103

Continue button is pressed. Using the tabs at the bottom of the screen, the analyst can examine
virtually any part of the OBEST solution process.

#% Scenario Debug
Scenario Clock Cumulative Probability Truncated Probability — Scenario Probability Pauze After Each————————————
[+ Generation [Pauszed
|h 40 | | |u.nunuunu???s = IRM |
) . . : : [~ DRM Gt
Executing Binted Scenarios Truncated Scenarios Stacked Scenarios ontinue
IIHM | | |11
Objects T IRM T DRt T Scenario Stack T Branching
Truth Table # Generations MNext Generation Ewvents
Tank Fuel Syztem - IEI Mo Events. ﬂ
Casze: 1 Default Mo Ewents.
Script: IRM Empty Script 1 Mo Ewents.
Special Event: Reset Clock Mo Ewvents.
Walve ;I Mo Events. LI
Special Events Tranzitions Set Attbutes
Walve: “alve Mo Object Attributes Rezet,
Feset Clock From: On
To: O
Cloze |

Figure 4-18. OBEST Software Debugging Screen.

Once the OBEST software completes its analysis of this object model, the analyst will wish to
view the binned results. To do so, the analyst selects the Bin Results entry from the View menu
to reveal the screen shown in Figure 4-19. Initially the screen is blank except for the entries in
the Unused bin dimensions list. The analyst selects the first dimension that is to appear in the
bin results table from this list and presses the left arrow button to add it to the Used bin
dimensions list. The software responds by placing those values that were found for this bin
dimension in the table along with the probabilities that were realized for those values. Should a
particular value for a bin dimension be theoretically possible yet never be actually observed
during the analysis, it is omitted from the table. The analyst repeats the bin dimension selection
process to add additional columns to the table. In Figure 4-19, three dimensions have been
added to the table (as seen in the Used dimensions column) and one remains unused. Note that
the table contains all combinations of values that were observed for these attributes. Thus, the
third line in the table represents the situation where the value for the Destination dimension was
found to be “25R”, the value for the Route dimension was found to be “TaxiRight”, and the
value for the HoldShort dimension was found to be “Hold.” Scenarios where even one of these
dimension values was found to be different are found on different lines in this table. The analyst
can examine different combinations of dimensions by deleting dimensions from the Used
dimensions column (using the right arrow button) and/or using additional dimensions as

104

described above. The table is automatically updated, enabling the analyst to rapidly slice the
model results and distill global insights.

Bin Reszults E

Destination |Raute [Hold5hort | Probaility
25R | TauiLeft Hold (0.334866027183522
28R | TauiLeft Go 1.00123916570015E -04
28R | TauiRight Hold 9.96998699211023E -04

281 Tauileft Hald 5.00517433350375E -05
24R | TaniLeft Hold 0.000724570605433

Used Unuzed

Destination Aircraft
Route f,

l

Q. |

Figure 4-19. Displaying the Results of an OBEST Analysis.

4.5. Summary

In this chapter we have provided a description of the software that was developed to implement
the OBEST modeling methodology. Because of the budgetary limitations involved in this
LDRD project, the software has some rough edges, and a variety of features and enhancements
remain to be developed. The software should be viewed as demonstration software rather than
production software for these reasons. However, even in its current state, the software does
provide a powerful tool for developing and analyzing OBEST models. It is capable of
discovering the thousands or millions of possible scenarios that exists in a typical OBEST model
and categorizing them into binned results. It is further capable of helping the analyst slice those
binned results to develop genuine insights into the behavior of the model and, it is hoped, the
behavior of the system that this model is designed to represent. As such, it provides functionality
to implement a critical piece of the overall OBEST modeling methodology.

105

This Page Intentionally Blank

106

5. Example Problems

As part of this LDRD project several example problems were constructed to demonstrate the
application and explore the capabilities of the OBEST methodology. These example problems
range from modeling a racquetball game to aircraft runway incursions. The OBEST system
model for each example problem represents the functionality and behavior of the system. The
model is constructed by identifying the system’s blocks of functionality, and documenting the
interactions, behavior and attributes of those functional blocks.

The examples in this section closely follow the methodology described in Chapter 1. By way of
review, the OBEST system model for each example problem is developed using three views: a
system structure diagram, an interaction diagram, and a state transition diagram. The system
structure diagram presents the major blocks of functionality and specifies how these blocks
relate to one another. A second view, the interaction diagram, captures the dynamics of the
system at “black box™ levels, and identifies the “flows,” or functional interactions that occur
among the various blocks in the system structure diagram.

The different behaviors that a functional block can exhibit and the ways in which these behaviors
change are documented in the third view, a state transition diagram. Each type of behavior is
represented by a state. State transitions indicate the ways in which the behavior of a functional
block can change, and are caused by events. In a system model, each functional block is an
object with a state transition diagram that may include one or several different states. The
transitions specify the state to which an object moves if the required event occurs. Any state can
be associated with multiple transitions. Events may be generated internally to the object when a
specified state, set of attribute conditions, or time is reached, or may be externally generated
when conditions specified by another object are reached or by the analyst.

The details of the object’s behavior while it is in each state (how the object responds to stimuli
and the way its attributes change) are specified in the state transition diagram using sets of “if —
then — else if — else” scripts and logical conditions for the IRM and DRM models. Recall that
each “script” is a series of actions that will be taken by the object, and may include the
generation of object model events (to cause this or another object to change states), changing the
values of its own attributes, and/or generation of special “system events.”" Depending on the
domain and complexity of the problem, the sets of “if — then — else if — else” scripts and logical
conditions for each state can be quite lengthy.

* An attribute represents a changeable, measurable and calculable characteristic of the object, and is restricted to
discrete and Boolean values. To simplify modeling considerations, each object is only allowed to modify the values
of its own attributes, and cannot directly modify the values of attributes in other objects. The IRM and DRM models
for those objects must be “aware” of the objects around them and change their attribute values accordingly.

" System events relate to the management of the object model, and may include such events as starting, stopping or
resetting delay clocks, or terminating or truncating the evaluation of a scenario.

107

The example problems were constructed concurrently with the development of the OBEST
demonstration software. For each example problem, the system model was constructed.
Subsequently, the system models for selected example problems were implemented in and
analyses were performed using the OBEST demonstration software. This section describes six
example problems developed during the project, including the following:

e Electric power supply for a police station;

e Fuel tank supply for a gas burner;

e A singles racquetball game;

e Circuit analysis for nuclear power plant cable fires;
e A homeowner’s “Y2K” preparation; and

e Aircraft runway incursions.

Several of these examples relate to infrastructure outages and how they might affect particular
systems. For each example problem, a description of the system model is provided. This
description includes the graphical representations and narrative text for the system structure
diagram, the interaction diagram, and the state transition diagrams. For the state transition
diagrams, a narrative summary of the “if — then — else if — else” scripts and logical conditions is
provided. Complete description of each example problem including the “if — then — else if —
else” scripts are provided in various appendices to this report. Additionally, for the selected
examples, implementation of the models with and analysis results from the demonstration
software are discussed.

5.1. Electric Power Supply for a Police Station

The first example problem constructed for this project considered electric power supply for a
police station. This example problem was constructed to demonstrate some of the basic ideas
and capabilities of the OBEST methodology for modeling infrastructure systems, specifically
consideration of variable event ordering and interrelated infrastructure elements to determine
probabilistically-weighted scenarios. Note that the information in this sample problem is
completely fictional. The problem is vaguely tied to reality in that a very large-scale electric
power outage (on the scale envisioned by some for the “Y2K” problem) would be difficult to
restore without functional telecommunications links to coordinate that effort. Beyond that, any
connection with a “real” scenario is tenuous at best. However, the problem is simple enough to
describe and model (and related to the original infrastructure-related thrust of this LDRD project)
that it made a good first example problem for the project.

108

5.1.1. Problem Description

In this problem, the commercial power supply for a police station and a telephone central office
switch building is provided from a single electric power bus operated by the electric power
company.” If the power bus fails, the speed with which the power can be restored depends on
whether telephone service remains operational. If power fails but telephone service continues to
operate, it is 90% likely that commercial power can be restored within 2 hours. Without
telephone service, it takes at least 36 hours to restore electric power. It also takes at least 36
hours to restore power with operating telephone service if power is not restored within 2 hours as
this represents a major failure within the electric power distribution network.

The telephone central office building has generator backup power for 48 hours, and that
generator starts and runs properly 97% of the times it is demanded. The building also has battery
backup power for 8 hours, and for the sake of simplicity, that power supply is assumed to be
completely reliable. The same telephone central office switch provides telephone service for a
police station. The police station has generator backup power for 24 hours, and that generator
starts and runs properly 95% of the times it is demanded. The police station has a 90% likelihood
of success in obtaining additional fuel for their generator (i.e., maintaining power for more than
24 hours) if they do so before the telephone switch loses power (8 hrs, if the telephone central
office generator does not start). The initiating event for this example problem is that the electric
power bus fails. Of concern are the event scenarios that lead to power failure for the police
station up to 36 hours after the electric power bus fails.

5.1.2. Object Description

The system structure diagram for this example problem is shown in Figure 5-1. The functional
blocks are defined as the telephone central office switch building (TSB), police station power
(PSP), and the electric power bus (EPB). The lines between the functional blocks indicate that
interactions exist between the telephone switch building and the police station power, the
telephone switch building and the electric power bus, and the electric power bus and the police
station power. The interaction diagram is provided in Figure 5-2. The functional interactions
between the blocks are indicated by directed arrows and are specified in Table 5-1.

This section presents descriptions for the objects that represent the three functional blocks shown
in Figure 5-1. Each description includes a state transition diagram (with relevant events listed)
and a narrative of the “if — then — else if — else” scripts and logical conditions for the IRM and
DRM for each state. The detailed “if — then — else if — else” scripts and logical conditions are
provided with the complete model description in Appendix A.

" Here a “bus” refers to a main interconnection point within the power company’s distribution system that supplies
power to a particular local area.

109

Telephone Switch
Building (TSB)

Electric Power
/ Bus (EPB)

Figure 5-1. System structure diagram for police station power model.

Electric Power

Telephone Switch
Building (TSB)

» -

Figure 5-2. Interaction diagram for police station power model.

Table 5-1. Functional interactions for police station power model.

TSB-EPB: The telephone switch building provides telephone service to
support the electric power bus.

TSB-PS: The telephone switch building provides telephone service to
the police station.

EPB-TSB: The electric power bus provides normal power to the
telephone switch building.

EPB-PS: The electric power bus provides normal power to the police

station.

110

The state transition diagram for the electric power bus, as shown in Figure 5-3, includes two
states and two events. Within this model, the electric power bus object provides power for the
police station and the telephone switch building. The two states for the object, then, are
(Provides Power) and (Does Not Provide Power). The events that cause transition between these
two states are Power fails, and Power restored. The electric power bus object has one attribute
that reflects whether the object provides or does not provide power (this attribute is set to the
appropriate value in each state’s [IRM). Recall the initiating event for this problem is that the
electric power bus fails. When this occurs, normal power is no longer available for the telephone
switch building or the police station. Again, restoring normal power is dependent on the
telephone service remaining operational.

Power fails
Provides | i > Does Not
Power Jq Provide Power
Power restored

J

Figure 5-3. State transition diagram for the electric power bus.

The State:(Provides Power) has no DRM and only the IRM described above. The State:(Does
Not Provide Power) also has the IRM described above. The DRM for this state generates the
Event:Power restored at the appropriate time to reflect the time at which commercial power is
restored. It has two cases: First, if telephone service is available (determined by examining an
attribute of the telephone central office switch), the event is generated after a 2 hour delay (90%
probability) or after a 36 hour delay (10% probability). If telephone service is not available, the
event is only generated after a 36 hour delay.

The state transition diagram for the telephone central office switch building is shown in Figure
5-4. Within this model, the telephone central office switch object provides telephone service for
the police station and also to support the electric power bus. This object includes four states,
(Available With Normal Power), (Available With Generator Power), (Available With Battery
Power), and (Unavailable). The telephone central office switch object has one attribute that
reflects whether the object provides or does not provide telephone service, and a second attribute
that reflects the type of power under which the switch is operating (these attributes are set to the
appropriate values in each state’s IRM).

111

Available With
J—
Power Normal Power

restored Power fails
4 \
Power
Unavailable Power restored __ Available With
restored Generator Powe
Batteries fail Generator fails
Available With |, _—
Battery Power

Figure 5-4. State transition diagram for telephone switch building.

The State:(Available with Normal Power) has no DRM and only the IRM described above. The
Event:Power fails causes the transition from the State:(Available With Normal Power) to the
State:(Available with Generator Power). For the State:(Available With Generator Power), the
IRM makes a probabilistic branch to indicate whether the generator starts (97% likely) or fails to
start (3% likely). If the generator starts, the IRM updates the condition of its power supply
attribute (to indicate that the “Does the generator start?” question is not to be asked again);
otherwise, the Event:Generator fails is generated and causes the transition to the State:(Available
With Battery Power). The DRM for the State:(Available With Generator Power) uses a delay of
48 hours to represent the fuel tank capacity of the central office’s generator. Then it too
generates the Event:Generator fails, although this delay time would place us beyond the
timeframe assumed for this problem.

The IRM State:(Available With Battery Power) simply sets the object’s attributes to their
appropriate values. The DRM executes an 8 hour delay (to represent the reserve capacity of the
office’s battery power supply) before generating the Event:Batteries fail, which send the object
into the State:(Unavailable). The State:(Unavailable) has no DRM (since we are not modeling
recovery of telecommunications capabilities), and its IRM simply sets the object’s attributes to
their appropriate values. The Event:Power restored returns this object to its original
State:(Available) from any of the three failed power states.

The state transition diagram for the police station is shown in Figure 5-5. The entire police
station model is very similar to the telephone central office model except that the police station
does not have a backup battery power supply. This object includes three states, (Available With
Normal Power), (Available With Generator Power), and (Unavailable). The police station object
has one attribute that reflects the type of power under which the station is operating, and a
second attribute to indicate the degree to which it is able to fulfill its assigned duties (based on

112

the presence or lack of telecommunications and electric power. These attributes are set to the
appropriate values in each state’s IRM.

Available With
Normal Power
* Power fails
Power
restored P
ower
restored
v
Unavailable Available With

Generator Power

Police generator fails

Figure 5-5. State transition diagram for police station.

The State:(Available with Normal Power) has no DRM and only the IRM described above. The
Event:Power fails causes the transition from the State:(Available With Normal Power) to the
State:(Available with Generator Power). For the State:(Available With Generator Power), the
IRM makes a probabilistic branch to indicate whether the generator starts (95% likely) or fails to
start (5% likely). If the generator starts, the IRM updates the condition of its power supply
attribute (to indicate that the “Does the generator start?” question is not to be asked again);
otherwise, the Event:Police generator fails is generated and causes the transition to the
State:(Unavailable). The DRM for the State:(Available With Generator Power) uses a delay of
24 hours to represent the fuel tank capacity of the police station’s generator. Then it too
generates the Event:Police generator fails. The State:(Unavailable) has no DRM (since we are
not modeling recovery of the police station), and its IRM simply sets the object’s attributes to
their appropriate values. The Event:Power restored returns this object to its original
State:(Available) from either of the two failed power states.

5.1.3. Graphical Model Solution

One of the main reasons that this problem developed in the way that it did is that, as the first
example problem developed, there was no software available to solve the model. For this reason,
the model was kept simple enough to solve graphically, and that graphical solution is shown in
Figure 5-6. Each path in that figure shows a textual description of each of the various major
events that occur on that path. The interactions between the DRMs can be seen through the
times at which the different events occur. One can also see the probabilistic branching behavior
of both the DRM (whether power is restored after two hours) and the two power consuming

113

objects’ IRMs (generators fail to start). This behavior demonstrates, in a very simple way, the
basic concepts involved in the OBEST modeling methodology.

0 hrs 24 hrs 48 hrs
| T T AT A AT

Both generators start (.922) — Power restored in 2 hrs ((829) — All is OK

Power not restored (.0922) Police get more fuel ((0829) All is OK

Police don’t get fuel ((0092) — Station goes down
Phone generator starts (.0485) — Police w/o power — Power restored in 2 hrs (.0437) — Police OK

Power not restored (.0049) — Police continue without power — Station is down

Police generator starts ((0285) — Power restored in 2 hrs — All is OK

Power not restored (.0029)
Phone dies (@ 8 hrs (.0029) Police get more fuel (.0026) — Police OK; Phone down

[Police don’t get fuel ((0005) — Police & phone down

No generator starts (.0015) — Police station goes down immediately

Power restored ((00135) — Police station is only down for 2 hours total
Power not restored (.0002)
Phone dies @ 8 hrs (.0002)

Figure 5-6. Graphical Solution of the police station — electric power problem.

5.2. Fuel Tank Supply for a Gas Burner

An example problem was constructed to explore the use of DRMs in the OBEST methodology
considered the fuel tank supply for a gas burner. In this problem, the flame for a gas burner is
controlled by a valve that is opened according to a probabilistic schedule. The valve draws from
a fuel system consisting of five tanks (a tank farm), including one 10-gallon tank, one 15-gallon
tank, and three 25-gallon tanks. All tanks start out full. Changing from tank to tank occurs
without failure, and when all tanks are empty, the problem is over. An illustration of the
example problem is shown in Figure 5-7. The objective of the problem is to determine a
distribution for how long the fuel supply will last.

5.2.1. System Structure and Interactions

The system structure diagram (Figure 5-8) includes two functional blocks, the valve and the fuel
tank system. The interaction diagram is shown in Figure 5-9 and the functional interactions for
the model are specified in Table 5-2. Interactions occur between the two functional blocks in
both directions, as indicated in Figure 5-9. The valve object requests a specified fuel flow from

114

the fuel system, and the fuel system object provides the fuel supply in response to the valve
objects requests. The state transition diagrams for these objects are discussed in the following
paragraphs. The discussion includes a description of the object, events, and event transitions,
and a narrative of the “if — then — else” scripts and logical conditions for each state’s IRM and
DRM. The detailed “if — then — else” scripts and logical conditions are provided in Appendix B.

llln”i

Figure 5-7. Fuel tank supply for a gas burner.

Fuel System

Figure 5-8. System structure diagram for gas burner fuel supply model.

Fuel System

<

Figure 5-9. Interaction diagram for gas burner fuel supply model.

115

Table 5-2. Functional interactions for gas burner fuel supply model.

Valve - Fuel System: The valve requests a specified fuel
flow from the fuel system.

Fuel System - Valve: The fuel system provides fuel
supply in response to the valve’s requests.

5.2.2. The Valve Object

The conditions for requesting a specified fuel flow from the fuel system and turning the valve on
and off are embedded within the valve object. The valve object has two states (On and Off) and
two events that cause transitions between these states (7urn On and Turn Off). The state
transition diagram for the valve object is shown in Figure 5-10. One attribute is defined for this
object, FlowRequest (FR), with two possible values, 0 gallons per minute (gpm) and 2 gpm. The
initial state for the valve object is State:(Off) and the initial value for FR is 0 gpm. The analysis
is started by generating the Event:Turn On.

Turn Off

Turn On

Figure 5-10. State transition diagram for the valve.

The State:(Off) describes the situation where the valve is closed, no fuel from the tank farm is
flowing, that is the FR is 0 gpm, and thus, the gas burner is off. After several possible time
periods, the fuel level in the fuel system is evaluated, and if fuel is available, the valve will be
turned on. The possible time periods define the schedule for turning on the valve. These time
periods are defined as delay times and are probabilistically weighted. The various delay times
may be viewed as approximating the demands that have been placed on the system by an outside
source. For this example, the probabilistic schedule for turning on the valve is specified in Table
5-3. There is a 0.30 probability of a 10-minute or 30-minute delay time and a 0.40 probability of
a 20-minute delay time before the valve is turned on. These conditions are embedded in the IRM

116

and the DRM for this of valve object. When the valve object is in the State:(Off), the IRM sets
the FR to 0 gpm. Additionally, the IRM includes a clock that tracks the time the valve object is
in this state. The schedule for turning on the valve is embedded in the DRM for the State:(Off).
First the condition of the fuel level in the fuel system is considered. If the fuel level is 0, that is
empty, then the valve object does nothing and it remains in the State:(Off). If the fuel level is
not 0, then one of the three probabilistically weighted delay times is selected before the valve is
turned on and the gas burner is lit. After the selected delay time, the clock is reset, the
Event:Turn On is generated, and the object transitions from State:(Off) to State:(On).

Table 5-3. Probabilistic schedule for turning on the valve.

Probability Delay Time

0.30 10
0.40 20
0.30 30

The State:(On) describes the situation where the valve is open, fuel is flowing from the tank
farm, that is the FR is 2 gpm, and the gas burner is on. After running the gas burner for several
possible time periods, the valve will be turned off again. The probabilistic schedule for turning
off the valve is specified in Table 5-4. In this example, there is a 0.20 probability of 10-minute
delay, a 0.30 probability of a 20-minute delay, a 0.40 probability of a 30-minute delay, and a
0.10 probability of a 40-minute delay before the valve is turned off.

Table 5-4. Probabilistic schedule for turning off the valve.

Probability Delay Time
0.20 10
0.30 20
0.40 30
0.10 40

These conditions are embedded in the IRM and DRM for this state of the valve object. When the
valve object is in the State:(On), the IRM sets FR to 2 gpm and starts the clock to track the time
the valve object is in this state. The schedule for turning off the valve is embedded in the DRM
for State:(On). Within the DRM, one of the four delay times is selected before the valve is
turned off. After the selected delay time, the clock is reset, the Event:Turn Off is generated, and

117

the object transitions from State:(On) to State:(Off). In this manner, the valve object transitions
between State:(Off) and State:(On) until the fuel level in the fuel system is empty.

5.2.3. The Fuel System Object

The conditions for providing the fuel supply in response to requests from the valve object are
embedded within the fuel system object. These conditions include switching from one tank to a
new tank as the previous one is drained, as well as the possibility of refilling the tanks after they
have been drained. The fuel system has four states (Gas, Tank Change, Empty, and Refilling)
and five events (Change, Drained, Refill, Full, and New Tank) that cause transitions between the
four states. The state transition diagram for the fuel system object is shown in Figure 5-11. One
attribute is defined for this object, FuelLevel (FL), with six possible values (100 gallons (gal), 75
gal, 50 gal, 25 gal, 10 gal, or 0 gal) that correspond to 5, 4, 3, 2, 1, or 0 tanks that contain fuel.
The initial state for the fuel system object is State:(Gas), and the initial value of FL is 100. The
object includes a clock to track the time between changing tanks.

Refilling Full —» Gas
A
Refill Change]}/ae’:”k
v
Empty Drained —— C'Il‘lzlllllg(e

Figure 5-11. State transition diagram for fuel system.

The State:(Gas) describes the situation where the fuel system is providing fuel in response to the
request from the valve object. The response of this object is conditional on the fuel request from
the valve object (Valve:FR). The fuel system draws on the three 25-gallon tanks first, then the
15-gallon tank, and finally, the ten-gallon tank. Each tank provides fuel for a specified time
period before it is drained and the fuel system has to change to the next tank. These time periods
are delay times for the State:(Gas) before the Event:Change is generated to cause a transition to
the State:(Tank Change). The delay times for changing tanks are specified in Table 5-5. For the
25-gallon tanks, the delay time is 12.5 minutes; for the 15-gallon tank, 7.5 minutes; and for the
10-gallon tank, 5.0 minutes. These conditions are embedded in the IRM and DRM for the
State:(Gas). In the IRM, if Valve:FR=0 gpm, then the clock for the fuel system object is

118

stopped, and no activity occurs. Otherwise, when Valve:FR=2 gpm, the clock for the fuel
system is turned on and the object will proceed to the DRM. For each fuel level, the DRM will
delay for the corresponding time, then generate the Event:Change to cause a transition from this
state to the State:(Tank Change). Thus, time is a surrogate for the actual level of depletion
within each tank.

Table 5-5. Delay times for changing tanks.

Fuel Level (FL) Delay Time
100 12.5
75 12.5
50 12.5
25 7.5
10 5.0

The purpose of the State:(Tank Change) is to set the value of FL as the fuel system changes from
tank to tank. If the FL=100, the delay time of 12.5 has elapsed, and the Event:Change has been
generated, then the IRM for the State:(Tank Change) will set the FL=75, reset the clock for the
fuel system object, and generate the Event:New Tank. The fuel system object will continue to
transition between the State:(Gas) and the State:(Tank Change) until the fuel system reaches
FL=0, then the Event:Drained will be generated to cause the transition from State:(Tank Change)
to State:(Empty). There is no DRM for the State:(Tank Change).

As the basic problem for the gas burner fuel supply is defined, when the fuel system reaches the
State:(Empty), that is the end of the problem. With the probabilistic schedules defined in the
valve object for turning the valve on and off, a set of scenarios can be generated to develop a
probability distribution for how long the fuel supply will last. The State:(Refilling) and the
events Refill and Full are included in the state transition diagram for completeness. Currently,
the IRM for the State:(Empty) is used to set the FL=0 and to reset the clock. No DRM or
conditions for generating the Event:Refill are specified. Also, the IRM for the State:(Refilling) is
defined to set the FL=100, to reset the clock, and to generate the Event:Full. No DRM is
defined.

In terms of demonstrating the delay response capabilities of the OBEST method, from this
example, it is evident that time can be used a surrogate for the depletion of physical quantities
and/or resources, as long as this depletion happens at a constant rate. An alternative, and perhaps
better approach would be to develop an explicit depletion model that reflects more accurately the
depletion of a specific physical quantity of interest. This type of model could also be
incorporated in the OBEST model of the system.

119

5.3. A Singles Racquetball Game

As work on the project was initiated, the project staff decided that a model of a sports game
characterized by a number of fairly straightforward actions and responses between two
competitors would provide a good mechanism to investigate the capabilities of the OBEST
methodology, as well as to communicate generally the capabilities of the method. A singles
racquetball game was selected because of its simplicity and because it provided a mechanism to
demonstrate many of the capabilities of the OBEST method.

In a singles racquetball game, two players alternate serving and receiving serve, and making and
returning shots. For each point, the server has two opportunities to put the ball into play. All of
the play that occurs after the receiver executes a successful return of serve is called a rally. If the
server wins the rally (that is the receiver fails to return a server’s shot during a rally), one point is
scored. A server is entitled to continue serving until an out occurs (that is the server makes two
fault serves or fails to return the receiver’s shot during the rally). When an out occurs, there is an
exchange of serve, and the server becomes the receiver and the receiver becomes the server. A
standard game is played to 15 points. In a tournament situation, a referee would monitor the
serve exchanges and track the score for the game. In a recreational situation, the players
themselves track the status of the game.

A player in a racquetball game has a variety of serve and shot return options. Depending on a
player’s skill level, a player’s choice of serve or shot return is often conditional on a number of
factors including an assessment of an opponent’s skill level, the immediately previous shot, an
opponent’s position on the court, an expected return to a given shot or serve, and overall strategy
for winning the rally. Generally, serve options are of three basic types: a drive serve, which is a
hard, fast, straight serve to the far corner of the court; a lob serve, which has a high arc; and a Z
serve, which strikes the front wall, then the side wall at a tight angle, and then angles back to the
opposite corner of court. These basic serves, of course, have many variations depending on
speed and placement. Basic shots, including serve returns, include four types: a down the line
shot, which is a hard, fast, straight shot down either side of the court; a ceiling shot, which
generally strikes the ceiling before it hits the front wall; a crosscourt shot, which angles to the
opposite side of the court after striking the front wall; a pinch shot, which strikes the front wall
near the corner then strikes the side wall at a tight angle. Again, these basic shots have many
variations.

The OBEST model of a singles racquetball game was constructed based on the general
description in the previous two paragraphs. As this model was constructed, it evolved from a
relatively simple model of a rally between two players (with individual shot return percentages)
to a more complex model that considered player profiles defined by overall shot return
percentages, as well as specific serve returns, with success probabilities that are conditional on
the different serve types received from their opponent. Initially, each player had only one serve,
and subsequently, a second serve was incorporated into the model. Additionally, the racquetball
game itself was modeled as a separate functional block that tracked the status of overall system
attributes, namely the score in the game and the serve assignment. Again, this model
demonstrates several of the key ideas and capabilities of the OBEST methodology including
variable ordering of a set of repetitive events, how objects are related by similar events, and the
incorporation of conditional probabilistic information.

120

5.3.1. System Structure and Interactions

The system structure diagram (Figure 5-12) for the model was defined by three functional
blocks, two single player objects, Player A and Player B, and the game object. The interaction
diagram is shown in Figure 5-13, and the functional interactions for the model are specified in
Table 5-6. Interactions occur among the functional blocks, as indicated in Figure 5-13. The
players hit shots and return serves to each other and provide their status to the game. The game
tracks serving and scoring for both players. The state transition diagrams for the three functional
blocks are discussed in the following paragraphs. The discussion includes a description of the
object, events, and event transitions, and a narrative of the “if — then — else” scripts and logical
conditions for the IRM and DRM for each state. The detailed “if — then — else” scripts and
logical conditions are provided in Appendix C.

/ Game (G) \

Player A (A) Player B (B)

Figure 5-12. System structure diagram for model of a singles racquetball game.

Game (G)

"\

Player A (A) Player B (B)

Figure 5-13. Interaction diagram for model of singles racquetball game.

121

Table 5-6. Functional interactions for model of singles racquetball game.

A-B: Player A hits shot returns and serves to Player B.
A-G: Player A provides its status to the Game.
B-A: Player B hits shot returns and serves to Player A.

B-G: Player B provides its status to the Game.G-A:

The Game tracks serving and scoring for Player
A.

G-B: The Game tracks serving and scoring for Player B.

5.3.2. Player A Object

The Player A object represents one player in a singles racquetball game. Player A hits shot
returns and serves to Player B. Additionally, Player A provides its status to the Game. To model
Player A’s actions and responses during a racquetball game, five states are defined, as illustrated
in the state transition diagram for Player A in Figure 5-14. These states include Stop, Waiting
to/for Serve, Waiting to Serve2, Waiting to Return, and Making a Shot. These states are related
by a set of events that represents Player A’s actions and responses during a racquetball game.
These events cause transitions among the five states of the Player A object, as indicated by the
directed arrows in Figure 5-14. The set of events defined for the model include: Start new rally,
Player A faults I serve, Player A faults 2™ serve, Player A makes shot, Player A misses shot,
Player B makes shot, Player B misses shot, and Player B faults 2" serve.”

Two attributes are defined for this object to provide information about Player A’s serve, serve
return, and shot return profiles. The first attribute, SHOT TYPE, defines the serve and return
options Player A uses during a game. For this model, eight possible values are defined for the
attribute SHOT TYPE. Four of these values, (Drive, Lob, ZDrive, ZLob), define successful
serve options; the value (Fault) is used to define a first fault serve. The value (Out) is used to
define either a second fault serve or a failed return; the value (Return) is defined for successful
return shots during a rally; and the value (Unset) is defined to set initial conditions. The
quantitative values for Player A’s SHOT TYPE are defined by the player’s serve and shot return
profiles. The serve profile is defined by a set of probability values for first and second serve
options. The shot return profile is defined by the player’s overall shot return percentage. When
Player A is serving, the five applicable values of SHOT TYPE are (Drive, Lob, ZDrive, ZLob,
Fault, Out). The probability values for Player A’s serve options are presented in Table 5-7.
When Player A is making a shot during a rally, the applicable values are (Return, Out). Player

" The event Player B faults 1" serve exists, but is used within the Player B object as it demands no response from
Player A.

122

A’s overall shot return profile is 0.80 successful returns and 0.20 failed returns or outs. Note
that all of the individual probability values used in this example are for illustration purposes only
and are not based on actual “measurements” of real game conditions.

Player A
/ makes shot
Waiting
to Return
Player A Player A Waiting to

makes shot Serve2

makes shot
Player B \
makes shot

\\’ Making
a Shot

Player B
makes shot

Player A
Saults st serve

Player B

misses shot
Player A

misses shot _—
J Player B
Saults 2nd serve

g Stop

Waiting to/
for Serve

Player A
Saults 2nd serve

Start
new rally

Figure 5-14. State transition diagram for Player A object.

The second attribute for this object, SERVE _RETURN, defines the serve return options Player A
uses during a game. For this model, five possible values are defined for the attribute
SERVE RETURN. Three of these values (Down the line, Ceiling, Crosscourt/Pinch) define
successful serve return options. The value (Skip) is used to define a failed serve return, and the
value (Unset) is used to set initial conditions. The quantitative values for Player A’s serve return
profiles are defined by a set of probability values that are conditional on Player B’s serve. The
values for Player A’s serve return are presented in Table 5-8.

The State:(Stop) is defined to reflect the situation when play is stopped before each serve and
after each rally during a game. The Event:Start new rally causes the transition from the
State:(Stop) to the State:(Waiting to/for Serve). No IRM or DRM is defined for the State:(Stop).
The Event:Start new rally is generated external to the Player A object by the Game object.

123

Table 5-7. Player A’s serve profile.

Serve Option 1% Serve 2" Serve
Drive serve 0.72 0.05
Lob serve 0.03 0.84
ZDrive serve 0.03 0.00
ZLob serve 0.01 0.03
Fault serve 0.21 0.00
Out 0.00 0.08

Table 5-8. Player A’s serve return profile conditional on Player B’s serve.

Player B’s Serve
Player A’s Serve -
Return Options Drive Serve | Lob Serve ZDrive ZLob
Serve Serve
Down the line 0.45 0.25 0.40 0.20
Ceiling 0.35 0.60 0.30 0.50
Crosscourt/Pinch 0.05 0.15 0.05 0.25
Skip 0.15 0.05 0.25 0.05

The State:(Waiting to/for Serve) is used to describe the situation where Player A is waiting to
take the first serve of a point or waiting to receive Player B’s first and second serves. If Player A
is serving, the serve options will reflect the profile indicated in the column “1* Serve” in Table
5-7. This information is used to set the values (Drive, Lob, ZDrive, ZLob, Fault, Out) used for
the SHOT TYPE attribute for this state. That is, 72% of the time, Player A will execute a drive
serve; 3% of the time, a lob serve; 3% of the time, a ZDrive serve; and 1% of the time, a ZLob
serve. In the situation where Player A executes a successful serve, the Event:Player A makes
shot, will be generated by the object. This will cause a transition for Player A from the
State:(Waiting to/for Serve) to the State:(Waiting to Return). According to Player A’s serve
profile in Table 5-7, 21% of the time, Player A will fail to execute a successful first serve. In
this case, the Event:Player A faults I* serve will be generated by the object, and Player A will
transition from the State:(Waiting to/for Serve) to the State:(Waiting to Serve2). In the situation
where Player A is waiting for Player B’s serve, two events can occur. If Player B executes a

124

successful first or second serve, then the Event:Player B makes shot is generated, and Player A
will transition from the State:(Waiting to/for Serve) to State: (Making a Shot). Otherwise, Player
A will stay in the State:(Waiting to/for Serve) until Player B faults a second serve. Then the
Event:Player B faults 2™ serve is generated, and Player A will transition from the State: (Waiting
to/for Serve) to the State:(Stop). The conditions for this state are embedded in the IRM. No
delayed responses are defined and therefore no DRM is defined for this state.

The State:(Waiting to Serve2) describes the situation where Player A has faulted a first serve and
is waiting to make a second serve. When Player A is serving as second serve, the serve options
will reflect the profile indicated in the column “2"™ Serve” in Table 5-7. This information is used
to set the values used for the SHOT TYPE attribute for this state. That is, 5% of the time, Player
A will execute a drive serve; 84% of the time, a lob serve; 0% of the time, a ZDrive serve; and
3% of the time, a ZLob serve. In the situation where Player A executes a successful second
serve, the Event:Player A makes shot, will be generated by the object. This will cause a
transition for Player A from the State:(Waiting to/for Serve) to the State:(Waiting to Return).
According to Player A’s serve profile in Table 5-7, 8% of the time, Player A will fail to execute
a successful second serve. In this case, the Event:Player A faults 2" serve will be generated by
the object, and Player A will transition from the State:(Waiting to Serve2) to the State:(Stop).
The conditions for this state are embedded in the IRM. No delayed responses are defined and
therefore no DRM is defined for this state.

The State:(Waiting to Return) is used to describe the situation where Player A is waiting to
execute a serve return or a shot return during a rally. This will occur in a game after Player A
has executed a successful first or second serve or a successful shot return, that is after the
Event:Player A makes a shot has been generated. No IRM or DRM is defined for this state. It is
a waiting state, in which Player A will remain until some action from Player B occurs. Two
possible actions from Player B are considered; either Player B makes a shot and the rally will
continue, or Player B misses a shot and Player A wins the rally. When the Player B object
generates the Event: Player B makes shot, then Player A will transition from the State:(Waiting to
Return) to the State:(Making a Shot). When the Player B object generates the Event:Player B
misses shot, then Player A will transition from the State:(Waiting to Return) to the State:(Stop).

The State:(Making a Shot) describes the conditions for Player A’s serve returns or shot returns.
If Player A is serving for the point, then this state is used to define the conditions for Player A’s
shot return profile. For this model, a player’s shot return profile is defined by an overall return
percentage. No conditional statements are defined for a player’s shot returns, and the overall
return percentage is used for all the player’s shot returns, other than serve returns, during a rally.
As defined above, Player A’s shot return profile is 80% successful shot returns and 20%
unsuccessful shot returns. This information is used to set the values (Return, Out) used for the
SHOT_TYPE attribute for this state. If Player B is serving for the point, then this state is used to
define Player A’s serve return options, which are conditional on the type of serve Player B
executes. As indicated in Table 5-8, Player A has four different serve return profiles dependent
on four different types of serves Player B might execute. For example, if Player B executes a
drive serve, then 45% of the time, Player A will take a down the line return shot, 35% of the time
a ceiling shot, and 5% of the time a crosscourt/pinch shot. According to Table 5-8, Player A will
fail to execute, or skip, a return to Player B’s drive serve 15% of the time. This information,
along with the other information in Table 5-8 on Player A’s returns to Player B’s different

125

serves, are used to define the values for the attribute SERVE RETURN that are used for this
state. For either a shot return or a serve return, if Player A executes a successful return, then the
rally continues; if not, Player B wins the rally. That is, if Player A executes a successful shot or
serve return, then the Event:Player A makes shot is generated, and Player A transitions from the
State:(Making a Shot) to the State:(Waiting to Return). If Player A does not execute a successful
shot or serve return, then the Event:Player A misses shot is generated, and Player A transitions
from the State:(Making a Shot) to the State:(Stop).

5.3.3. Player B Object

The Player B object represents a second player in a singles racquetball game. Player B hits shot
returns and serves to Player A. Additionally, Player B provides its status to the Game. To model
Player B’s actions and responses during a racquetball game, five states are defined, as illustrated
in the state transition diagram for Player B in Figure 5-15. The state transition diagram for
Player B is very similar to that for Player A. The states and events are basically the same, but the
events differ to reflect actions and responses from Player B’s point of view. The states include
Stop, Waiting to/for Serve, Waiting to Serve2, Waiting to Return, and Making a Shot. These
states are related by a set of events that represents Player B’s actions and responses during a
racquetball game. These events cause transitions among the five states of the Player B object, as
indicated by the directed arrows in Figure 5-15. The set of events defined for the model include:
Start new rally, Player B faults I*' serve, Player B faults 2" serve, Player B makes shot, Player B
misses shot, Player A makes shot, Player A misses shot, and Player A faults 2" serve.

The two attributes, SHOT TYPE and SERVE RETURN, are also defined for this object to
provide information about Player B’s serve, serve return, and shot return profiles. The attribute,
SHOT_TYPE, defines the serve and return options Player B uses during a game. For this model,
eight possible values are defined for the attribute SHOT TYPE. Four of these values, (Drive,
Lob, ZDrive, Z1ob), define successful serve options; the value (Fault) is used to define a first
fault serve. The value (Out) is used to define either a second fault serve or a failed return; the
value (Return) is defined for successful return shots during a rally; and the value (Unset) is
defined to set initial conditions. The quantitative values for Player B’s SHOT TYPE are defined
by the player’s serve and shot return profiles. The serve profile is defined by a set of probability
values for first and second serve options. The shot return profile is defined by the player’s
overall shot return percentage. When Player B is serving, the five applicable values of
SHOT TYPE are (Drive, Lob, ZDrive, ZLob, Fault, Out). The probability values for Player B’s
serve options are presented in Table 5-9. When Player B is making a shot during a rally, the
applicable values are (Return, Out). Player B’s overall shot return profile is 0.75 successful
returns and 0.25 failed returns or outs.

The second attribute for this object, SERVE RETURN, defines the serve return options Player B
uses during a game. For this model, five possible values are defined for the attribute
SERVE RETURN. Three of these values (Down the line, Ceiling, Crosscourt/Pinch) define
successful serve return options. The value (Skip) is used to define a failed serve return, and the
value (Unset) is used to set initial conditions. The quantitative values for Player B’s serve return
profiles are defined by a set of probability values that are conditional on Player A’s serve. The
values for Player B’s serve return are presented in Table 5-10.

126

Player B
makes shot

i Player B Player B
Player A makes shot makes shot
makes shot \
> Player A Player B
makes shot Sfaults 1st serve
Player A

misses shot
Player B
misses shot o
Player A
Pl B
z Saults 2nd serve aer

Saults 2nd serve

Start
new rally

Figure 5-15. State transition diagram for Player B object.

Table 5-9. Player B’s serve profile.

Serve Option 1* Serve 2" Serve
Drive serve 0.63 0.03
Lob serve 0.05 0.80
ZDrive serve 0.05 0.00
ZLob serve 0.02 0.02
Fault serve 0.25 0.00
Out 0.00 0.05

127

Table 5-10. Player B’s serve return profile conditional on Player A’s serve.

Player A’s Serve
Player B’s Serve -
Return Options Drive Serve | Lob Serve ZDrive ZLob
Serve Serve
Down the line 0.48 0.18 0.45 0.30
Ceiling 0.26 0.64 0.15 0.40
Crosscourt/Pinch 0.08 0.16 0.02 0.20
Skip 0.18 0.02 0.33 0.10

The State:(Stop) is defined to reflect the situation when play is stopped before each serve and
after each rally during a game. The Event:Start new rally causes the transition from the
State:(Stop) to the State:(Waiting to/for Serve). No IRM or DRM is defined for the State:(Stop).
The Event:Start new rally is generated external to the Player B object by the Game object.

The State:(Waiting to/for Serve) is used to describe the situation where Player B is waiting to
take the first serve of a point or waiting to receive Player B’s first and second serves. If Player B
is serving, the serve options will reflect the profile indicated in the column “1* Serve” in Table
5-9. This information is used to set the values (Drive, Lob, ZDrive, ZLob, Fault, Out) used for
the SHOT TYPE attribute for this state. That is, 63% of the time, Player B will execute a drive
serve; 5% of the time, a lob serve; 5% of the time, a ZDrive serve; and 2% of the time, a ZLob
serve. In the situation where Player B executes a successful serve, the Event:Player B makes
shot, will be generated by the object. This will cause a transition for Player B from the
State:(Waiting to/for Serve) to the State:(Waiting to Return). According to Player B’s serve
profile in Table 5-9, 25% of the time, Player B will fail to execute a successful first serve. In this
case, the Event:Player B faults I* serve will be generated by the object, and Player B will
transition from the State:(Waiting to/for Serve) to the State:(Waiting to Serve2). In the situation
where Player B is waiting for Player A’s serve, two events can occur. If Player A executes a
successful first or second serve, then the Event:Player A makes shot is generated, and Player B
will transition from the State:(Waiting to/for Serve) to State: (Making a Shot). Otherwise, Player
B will stay in the State:(Waiting to/for Serve) until Player A faults a second serve. Then the
Event:Player A faults 2™ serve is generated, and Player B will transition from the State: (Waiting
to/for Serve) to the State:(Stop). The conditions for this state are embedded in the IRM. No
delayed responses are defined and therefore no DRM is defined for this state.

The State:(Waiting to Serve2) describes the situation where Player B has faulted a first serve and
is waiting to make a second serve. When Player B is serving as second serve, the serve options
will reflect the profile indicated in the column “2" Serve” in Table 5-9. This information is used
to set the values used for the SHOT TYPE attribute for this state. That is, 3% of the time, Player
A will execute a drive serve; 80% of the time, a lob serve; 0% of the time, a ZDrive serve; and

128

2% of the time, a ZLob serve. In the situation where Player B executes a successful second
serve, the Event:Player B makes shot, will be generated by the object. This will cause a
transition for Player B from the State:(Waiting to/for Serve) to the State:(Waiting to Return).
According to Player B’s serve profile in Table 5-9, 5% of the time, Player B will fail to execute a
successful second serve. In this case, the Event:Player B faults 2" serve will be generated by the
object, and Player B will transition from the State:(Waiting to Serve2) to the State:(Stop). The
conditions for this state are embedded in the IRM. No delayed responses are defined and
therefore no DRM is defined for this state.

The State:(Waiting to Return) is used to describe the situation where Player B is waiting to
execute a serve return or a shot return during a rally. This will occur in a game after Player B
has executed a successful first or second serve or a successful shot return, that is after the
Event:Player B makes a shot has been generated. No IRM or DRM is defined for this state. It is
a waiting state, in which Player B will remain until some action from Player A occurs. Two
possible actions from Player A are considered; either Player A makes a shot and the rally will
continue, or Player A misses a shot and Player B wins the rally. When the Player A object
generates the Event:Player A makes shot, then Player B will transition from the State:(Waiting to
Return) to the State:(Making a Shot). When the Player A object generates the Event:Player A
misses shot, then Player B will transition from the State:(Waiting to Return) to the State:(Stop).

The State:(Making a Shot) describes the conditions for Player B’s serve returns or shot returns.
If Player B is serving for the point, then this state is used to define the conditions for Player B’s
shot return profile. For this model, a player’s shot return profile is defined by an overall return
percentage. No conditional statements are defined for a player’s shot returns, and the overall
return percentage is used for all the player’s shot returns, other than serve returns, during a rally.
As defined above, Player B’s shot return profile is 80% successful shot returns and 20%
unsuccessful shot returns. This information is used to set the values (Return, Out) used for the
SHOT _TYPE attribute for this state. If Player A is serving for the point, then this state is used to
define Player B’s serve return options, which are conditional on the type of serve Player A
executes. As indicated in Table 5-10, Player B has four different serve return profiles dependent
on four different types of serves Player A might execute. For example, if Player A executes a
drive serve, then 48% of the time, Player B will take a down the line return shot, 26% of the time
a ceiling shot, and 8% of the time a crosscourt/pinch shot. According to Table 5-10, Player B
will fail to execute, or skip, a return to Player A’s drive serve 18% of the time. This information,
along with the other information in Table 5-8 on Player B’s returns to Player A’s different
serves, are used to define the values for the attribute SERVE RETURN that are used for this
state. For either a shot return or a serve return, if Player B executes a successful return, then the
rally continues; if not, Player A wins the rally. That is, if Player B executes a successful shot or
serve return, then the Event:Player B makes shot is generated, and Player B transitions from the
State:(Making a Shot) to the State:(Waiting to Return). If Player B does not execute a successful
shot or serve return, then the Event:Player B misses shot is generated, and Player B transitions
from the State:(Making a Shot) to the State:(Stop).

5.3.4. The Game Object

For this model, the Game object is defined to track the overall status of the game as it progresses,
that is, to track serving and scoring for the Player A and the Player B objects. The states, events,

129

and attributes for the Game object reflect aspects of a racquetball game occur during a change in
serve. These include serve assignments, starting and ending a rally, which player wins a rally,
and scoring. To model the progress of a racquetball game, five states are defined, as illustrated
in the state transition diagram for the Game in Figure 5-16. The states include Idle, Starting
Game, Waiting, Player A Wins Rally, and Player B Wins Rally. These states are related by a set
of events that represents the Game’s actions and responses, as well as the players’ actions
associated with a change of serve. These events cause transitions among the five states of the
Game object, as indicated by the directed arrows in Figure 5-16. The set of events defined for
the model include: Start game, Start new rally, Player A misses shot, Player A faults 2" serve,
Player B misses shot, Player B faults 2" serve, and End game.

End game —\

Player B
\ 4 / Wins Rally
Idle J‘\ Start
End game new r”][y
Player A
Start game /' Wins Rally P layer A
misses shot
Start
Player B new rally
v misses shot
Starting Player B
Game faults 2nd serve Player A
JSaults 2nd serve
v
Waiting

Start
new 1'(1/[)'_//

Figure 5-16. State transition diagram for Game Object.

Five attributes are defined for this object to provide information about the status of the game.
The attribute SERVE has two possible values, (A, B) and is used to track which player is serving
a point. For the initial conditions, SERVE=(A). The attribute SHOT has three possible values,
(A, B, 0), and is used to track which player wins a shot. The value SHOT=(0) is set for the

130

initial conditions. The attribute SCORE_A has integer values 0 to 15 and is used to track Player
A’s score during the game. For the initial conditions, SCORE_A=(0). The attribute SCORE B
has integer values 0 to 15 and is used to track Player B’s score during the game. For the initial
conditions, SCORE B=(0). The attribute WINNER has three possible values, (A, B, Unknown),
and is used to define the game winner. For the initial conditions, WINNER=(Unknown).

The State:(Idle) is used to represent the situation before the game is initiated and after the game
is concluded. The Event:Start game is generated external to the Game object to initiate a game,
and causes the transition from the State:(Idle) to the State:(Starting Game). No IRM or DRM is
defined for the State:(Idle).

The State:(Starting Game) is used to set the values of each of the attributes for the initial game
conditions. The initial conditions are set by the IRM for the state, the Event:Start new rally is
generated, and the Game object transitions from the State:(Starting Game) to the State:(Waiting).
There are no delayed responses for this state, so no DRM is specified.

The State:(Waiting) is used to describe the situation where Player A and Player B are engaged in
a rally and the Game is waiting for the rally to conclude. No IRM or DRM is defined for this
state. It is a waiting state, in which the Game object will remain until some specified action from
Player A or Player B ends the rally. Two possible actions from Player A will end a rally; either
Player A misses a shot or Player A faults a second serve. When the Player A object generates
the Event:Player A misses shot, or the Event:Player A faults 2" serve, then the Game object will
transition from the State:(Waiting) to the State:(Player B Wins Rally). The similar two actions
from Player B will end a rally; either Player B misses a shot or Player B faults a second serve.
When the Player B object generates the Event:Player B misses shot or the Event:Player B faults
2" gerve, then the Game object will transition from the State:(Waiting) to the State:(Player A
Wins Rally).

The State:(Player A Wins Rally) is used to update the scoring, set the winner of the shot, and set
the serve based on the conditions of the immediately preceding point. The related attributes are
updated in the IRM. If Player A was serving (SERVE=(A)) and had 14 points (SCORE_A=(14))
during the immediately preceding point, then by winning the rally, Player A would win the
game. The Game object will increment Player A’s score (SCORE_A=(15)), declare Player A the
winner (WINNER=(A)), and generate the Event:End game. If Player A was serving and did not
have 14 points during the immediately preceding point, then the Game object will increment
Player A’s score accordingly, declare Player A as the winner of the point (SHOT=(A)), and
generate the Event:Start new rally. The remaining situation occurs when Player A does not serve
the point (SERVE=(B)), and by winning the rally, Player A gets the serve. In this case, the
Game object will declare Player A the winner of the point (SHOT=(A)), assign the serve to
Player A (SERVE=(A)), and generate the Event:Start new rally. No delayed responses, and
therefore no DRM are defined for this state.

The State:(Player B Wins Rally) is also used to update the scoring, set the winner of the shot, and
set the serve based on the conditions of the immediately preceding point. The related attributes
are updated in the IRM. If Player B was serving (SERVE=(B)) and had 14 points
(SCORE_B=(14)) during the immediately preceding point, then by winning the rally, Player B
would win the game. The Game object will increment Player B’s score (SCORE B=(15)),

131

declare Player B the winner (WINNER=(B)), and generate the Event: End game. If Player B was
serving and did not have 14 points during the immediately preceding point, then the Game object
will increment Player B’s score accordingly, declare Player B as the winner of the point
(SHOT=(B)), and generate the Event:Start new rally. The remaining situation occurs when
Player B does not serve the point (SERVE=(A)), and by winning the rally, Player B gets the
serve. In this case, the Game object will declare Player B the winner of the point (SHOT=(B)),
assign the serve to Player B (SERVE=(B)), and generate the Event:Start new rally. No delayed
responses are defined for this state, and therefore no DRM is specified.

5.3.5. Modeling Application and Alternatives

Section 5 describes the model of the racquetball game as it was developed for this project. In an
actual racquetball game, a skillful player will execute each shot conditional on a number factors,
including an assessment of an opponent’s skill level, the immediately previous shot, an
opponent’s position on the court, an expected return to a given shot or serve, and overall strategy
for winning the rally. An opponent’s position on the court is an important condition for defining
shot placement, for example crosscourt shots. Another important consideration in a racquetball
game that is not incorporated in the model is whether a player is left-handed or right-handed, and
whether a player places shots to the opponent’s backhand or forehand. This model could be
applied to generate a number of different scenarios for games between two players with the
specified serve, serve return, and shot return profiles. The sequence of events that would occur,
the attribute values associated with each event in the sequence, as well as the probabilities for
which player would win will differ from game to game.

This model demonstrates how the OBEST method can be applied for systems that are
characterized by states, events, and associated attributes that reoccur in variable sequences.
Because waiting states were explicitly defined and no delayed responses were defined, this
model focused on IRMs rather than DRMs. Additionally, this model demonstrated how one
component in a system generates actions and responses based on events generated from another
component.

5.4. Circuit Analysis for Nuclear Power Plant Cable Fires

As work on the methodology progressed, the project team investigated possible areas of
application for ongoing projects in the risk and reliability area. One area of application for
which an example problem was developed is circuit analysis for nuclear power plant cable fires.
Currently, Sandia is involved in a project for the U.S. Nuclear Regulatory Commission (NRC) to
look at the potential effects on systems operations of fires in the cable trays of a nuclear power
plant. The cables in these cable trays are bundles of numerous conductors that connect the
equipment in a nuclear power plant. As part of this effort for the NRC, extensive circuit
analysis is being done manually to map the cables, conductors, and equipment at nuclear power
plants for normal operation and then for possible conditions in the event of a cable fire. It was
proposed that the OBEST methodology be applied to demonstrate how this process of circuit
analysis could be automated.

132

To develop an OBEST system model for this application, the following approach was taken.
First, a specific circuit of interest is defined as a set of partial circuits that reflect the connections
of plant equipment through conductors in the cables running through a cable tray. Then, the
possible conditions of connectivity between pairs of partial circuits are established to reflect
possible cable connections in the event of a fire. In the event of a fire in a cable tray, the
possible conditions of connectivity for a path between two partial circuits include the following:

e closed, the condition of normal operation in which a conductor in a cable has not been
affected by the fire;

e open, the condition in which a conductor in a cable has been severed as a result of the fire;

e short to positive (+), the condition in which a conductor in a cable has been shorted to the
positive power supply;

e short to negative (-), the condition in which a conductor in a cable has been shorted to
ground; and

e short to each other, the condition in which a conductor in a cable has been shorted to another
conductor within the same cable bundle.

After the possible conditions on connectivity between the partial circuits have been established,
then, for each of the possible connections, the conditions of current flow in a circuit are inferred.
The possible conditions of current flow include normal, none, short circuit, and unknown.
Additionally, for short circuits, the maximum current potential is evaluated to determine possible
effects of short circuits on system operations.”

For this approach, a partial circuit is defined as a series connection of one or more circuit
elements and their possible connection to a power supply. The elements of a partial circuit
include loads, conductors, switches, and power supplies. The load element represents loads in a
circuit, such as solenoid coils, indicators, or motors, that can draw electric current and can be
connected directly between the + and - voltage power supply terminals without causing a short
circuit. The conductor element represents conductors that connect other elements of the circuit
with a zero voltage drop in normal operation; if a conductor is connected directly between + and
- voltage sources, a short circuit results. The switch element in a partial circuit can act either as
an open circuit or as a conductor in normal operation. The power supply element of a partial
circuit represents the + or - design voltage for a partial circuit. For this analysis, the power
supply is assumed to provide enough current to power the loads in the circuit (in the absence of
short circuits).

* The OBEST cable fire model could have been implemented equally well using the DYLAM dynamic event tree
method. If this were done, the object model from this section would be replaced with a conventional circuit analysis
package driven through a DYLAM front end. The DYLAM analysis would produce results that embody continuous
parameter values (voltages, currents, etc.) as opposed to the discrete values required by the OBEST methodology.

133

The specific circuit of interest used for this example is the solenoid-operated valve control circuit
illustrated in Figure 5-17. For this model, this circuit is defined as a set of six partial circuits.
The first partial circuit (C;) includes the switch element 1-HS-3612 and its connection to the +
power supply. The second partial circuit (C,) includes a load element, the solenoid valve
1SV612, and its connection to the - supply. The third partial circuit (Cs) includes a load element,
the G, or green indicator, and its connection to the + power supply. The fourth partial circuit
(Cy) includes switch element, 12S612, indicated closed, and its connection to the - power supply.
The fifth partial circuit (Cs) includes a load element, the R, or red indicator, and its connection to
the + power supply. The sixth partial circuit (Ce) includes switch element, 1ZS612, indicated
open, and its connection to the - power supply. Of interest are the conditions of connectivity and
current in the conductors between partial circuits 1 and 2 (path 1-2), partial circuits 3 and 4 (path
3-4), and partial circuits 5 and 6 (path 5-6).

'
Fuse/10A
1
1-HS-3612

2
T C c

Cs

125 VDC @ 1C08

£
>—0—

Ce

1SV612
128612 ac—L 2o arergize SV

open
1CVe12

Fuse/10A

Figure 5-17. Example solenoid-operated valve control circuit.

In this model, a circuit completer is defined to establish the possible conditions of connectivity
between partial circuits. The number of partial circuits and paths between them are defined
when the model of the circuit of interest is developed. For this example, the circuit of interest is
initially comprised of six partial circuits with three paths (1-2, 3-4, and 5-6) between each of two
partial circuits. Again, the possible conditions of connectivity include closed, open, short to +,
short to -, and short to each other.

In this model, a circuit analyzer is defined to determine the conditions of current flow in a
circuit. The conditions of current flow are determined for each path between partial circuits in
the circuit of interest and are based on the conditions in the partial circuit and the corresponding
circuit completer. For this example, the circuit of interest is comprised of six partial circuits with
three paths (1-2, 3-4, and 5-6) between each of two partial circuits. Again, the possible
conditions of current flow include normal, none, short circuit, and unknown. For short circuits,
the maximum current potential is also evaluated.

134

5.4.1. System Structure and Interactions

The system structure diagram (Figure 5-18) for the circuit analysis model is defined by seven
functional blocks. The load (L), conductor (W), switch (S), and power supply (P;) objects are
elements of a partial circuit (C,). The other two objects of the model include the circuit analyzer
(CA) and the circuit completer (CC). The Circuit Analyzer is not a “physical” object. Rather, it
arbitrates among the various physical components to determine the collective behavior of the
overall circuit.

Circuit
Analyzer (CA)
Circuit
Completer (CC)
Partial
Circuit (C))
|
[|
Load (L) Switch (S) Power
Supply (P)
Conductor (W)

Figure 5-18. System structure diagram for circuit analysis.

The interaction diagram is shown in Figure 5-19, and the functional interactions for the model
are specified in Table 5-11. Interactions occur among the functional blocks, as indicated in
Figure 5-19. The circuit analyzer provides the circuit completer with information on current
flow through the conductors between partial circuits. The circuit completer provides the circuit
analyzer with information on physical connections and electric potential for the conductors
between partial circuits. The circuit analyzer provides to the partial circuit information on
current flow through partial circuit #n. Partial circuit #» provides information about current flow to
its power supply, load, conductor, and switch. The load, conductor, switch and power supply
provide to partial circuit # information on its physical connections and electric potential drop.

The state transition diagrams for the seven functional blocks are discussed in the following
paragraphs. The discussion includes a description of the object, events, and event transitions,

135

and a narrative of the “if — then — else” scripts and logical conditions for the IRM and DRM for
each state. The detailed “if — then — else” scripts and logical conditions are provided in
Appendix D.

Table 5-11. Functional interactions for circuit analysis model.

L-C,: A load provides to its partial circuit information on its physical connections
and electric potential drop.

W-C,: A conductor provides to its partial circuit information on its physical
connections and electric potential drop.

S-C,: A switch provides to its partial circuit information on its physical connections
and electric potential drop.

P,-C,: Power supply n provides to its partial circuit information about physical
connections and electric potential.

C,-L: The partial circuit provides to its loads information about current flow.
C,-W: The partial circuit provides to its conductors information about current flow.
C,-S: The partial circuit provides to its switches information about current flow.
C,-P,: Partial circuit n provides to its power supply information about current flow.

C,-CA: Partial circuit n provides to the circuit analyzer information on its physical
connections and electric potential.

CA-Cn: The circuit analyzer provides to the partial circuit information on current flow
through the partial circuit.

CA-CC: The circuit analyzer provides to the circuit completer information on current
flow through the conductors between partial circuits.

CC-CA: The circuit completer provides to the circuit analyzer information on physical
connections for the conductors between partial circuits.

136

CA
47
<] It
Cn
—
47
— —>
—>¢T<— P,
L w S

Figure 5-19. Interaction diagram for circuit analysis model.

5.4.2. Load Object

The Load Object (L) represents an element in a partial circuit that draws electric current, for
example solenoid coils, indicators, or motors, and can be connected directly between + and -
voltage without causing a short circuit. A load provides to its partial circuit information on how
it is connected in the circuit, that is, its physical connections and electric potential drop. In turn,
a load will receive information from its partial circuit about current flow.

To model the Load Object, one state, Load, is defined as indicated in the state transition diagram
in Figure 5-20. No state transitions are defined for this object; events external to this object will
cause changes in object attributes. Two attributes are defined for this object to provide to its
partial circuit information on its physical connections and electric potential drop within the
circuit. The first attribute, CONNECTIVITY, defines the physical connection of a load within
its partial circuit. Two values (Conducting, Not Conducting) are defined for this attribute. The
second attribute, V-DROP, defines the electric potential drop of the load within the circuit.
Three values (0, Operating, Open) are defined for this attribute.

For a circuit of interest, the analyst must define loads as elements of the partial circuits that
comprise it. Initial conditions are assumed to be those for normal operation
(CONNECTIVITY=Conducting, V-DROP=Operating) for each load defined by the analyst.
Three of the six partial circuits defined for the solenoid-operative valve control circuit include a
load element: the G and R indicators in C; and Cs, respectively; and the solenoid valve in C,.

137

Load

Figure 5-20. State transition diagram for the Load Object.

5.4.3. Conductor Object

The Conductor Object (W)" is an element in a partial circuit that represents conductors that
connect other elements of the circuit with a zero voltage drop in normal operation; if a conductor
is connected directly between + and - voltage sources, a short circuit results. A conductor
provides to its partial circuit information on how it is connected in the circuit, that is, its physical
connections and electric potential drop. In turn, a conductor will receive information from its
partial circuit about current flow.

To model the Conductor Object, one state, Conduct, is defined as indicated in the state transition
diagram in Figure 5-21. No state transitions are defined for this object; events external to this
object will cause changes in object attributes. Two attributes are defined for this object to
provide to its partial circuit information on its physical connections and electric potential drop
within the circuit. The first attribute, CONNECTIVITY, defines the physical connection of a
conductor within its partial circuit. Two values (Conducting, Not Conducting) are defined for
this attribute. The second attribute, V-DROP, defines the electric potential drop of the conductor
within the circuit. Two values (0, Open) are defined for this attribute.

Conduct

Figure 5-21. State transition diagram for the Conductor Object.

For a circuit of interest, the analyst must define conductors as elements of the partial circuits that
comprise it. Initial conditions are assumed to be those for normal operation

" The symbol W was selected to represent a conductor because the most common type of conductor is a wire, and
because the symbol C is being used to represent a partial circuit.

138

(CONNECTIVITY=Conducting, V-DROP=0) for each conductor defined by the analyst. Each
of the six partial circuits defined for the solenoid-operative valve control circuit could be, but is
not necessarily defined to include a conductor between the power supply and its respective load
or switch. It would be necessary to include a conductor as an element of a partial circuit that had
a power supply as its only other element.

5.4.4. Switch Object

The Switch Object (S) represents an element in a partial circuit that can act as an open circuit or
a conductor in normal operation. A switch provides to its partial circuit information on how it is
connected in the circuit, that is, its physical connections and electric potential drop. In turn, a
switch will receive information from its partial circuit about current flow.

To model the operation of the Switch Object, two states are defined as illustrated in the state
transition diagram in Figure 5-22. These states include Open and Close and are related by a set
of events that represents the switch’s operation. These events cause transitions among the two
states of the switch object, as indicated by the directed arrows in Figure 5-22. The set of events
defined for the object include Switch closes, and Switch opens.

Switch closes

Open Close

~_

Switch opens

Figure 5-22. State transition diagram for the Switch Object.

Two attributes are defined for this object to provide to its partial circuit information on its
physical connections and electric potential drop within the circuit. The first attribute,
CONNECTIVITY, defines the physical connection of a switch within its partial circuit. Two
values (Conducting, Not Conducting) are defined for this attribute. The second attribute, V-
DROP, defines the electric potential drop of the switch within the circuit. Two values (0, Open)
are defined for this attribute.

For a circuit of interest, the analyst must define switches as elements of the partial circuits that
comprise it. Initial conditions are assumed to be those for normal operation, either open or
closed, for each switch defined by the analyst. Three of the six partial circuits defined for the
solenoid-operative valve control circuit include a switch element: the switch element,

139

1-HS-3612, indicated open, in Cy; the switch element, 1ZS612, indicated closed, in C4; and the
switch element, 1ZS612, indicated open, in Cs.

The State:(Open) is used to describe a switch that is open during normal operation, such as the
switch elements in C; and Cg. The initial conditions for an open switch are defined as
S:CONNECTIVITY=(Not Conducting) and S:V-DROP=0Open. These conditions are embedded
in the IRM for this state. The Event:Switch closes is generated from outside the circuit system,
for example, by a human operator, and causes a transition from the State:(Open) to the
State:(Closed).

The State:(Closed) is used to describe a switch that is closed during normal operation, such as
the switch element in C4. The initial conditions for a closed switch are defined as
S:CONNECTIVITY=(Conducting) and S:V-DROP=0. These conditions are embedded in the
IRM for this state. The Event:Switch opens is generated from outside the circuit system, for
example, by a human operator, and causes a transition from the State:(Closed) to the
State:(Open).

5.4.5. Power Supply Object

The Power Supply Object (P;) is an element in a partial circuit that represents the + or — design
voltage for C,. The power supply provides to its partial circuit information about physical
connections and polarity. In turn, a power supply will receive information from its partial circuit
about current flow.

To model the operation of the Power Supply Object, two states are defined as illustrated in the
state transition diagram in Figure 5-23. These states include Provides Power and Does Not
Provide Power, and are related an event, Fuse blows, that represents the power supply’s
operation. This event causes a transition between the two states of the power supply object, as
indicated by the directed arrow in Figure 5-23. This model does not consider the replacement of
a blown fuse. Ifit did, it would be represented by a separate event, state transition, and arrow.

Fuse blows
Provides Does Not
Power Provide Power

Figure 5-23. State transition diagram for the Power Supply Object.

Two attributes are defined for this object to provide to its partial circuit information on its
physical connections and polarity within the circuit. The first attribute, CONNECTIVITY,

140

defines the physical connection of a power supply within its partial circuit. Two values
(Conducting, Not Conducting) are defined for this attribute. The second attribute, POLARITY,
defines the polarity of the power supply. Two values (+, -) are defined for this attribute.

For a circuit of interest, the analyst must define power supplies as elements of the partial circuits
that comprise it. A circuit model may include one or more power supplies that provide power for
one or more partial circuits. Initial conditions are assumed to be normal operation for design
voltage for each power supply defined by the analyst. Two power supplies are defined for the
solenoid-operative valve control circuit. P; is the positive power supply and an element of Cy,
Cs, and Cs . P, is the negative power supply and an element of C,, C4, and Cs.

The State:(Provides Power) is used to describe a power supply during normal operation. The
initial conditions for the two power supplies in the solenoid-operative valve control circuit are
defined as Pi:CONNECTIVITY = (Conducting), Pi:POLARITY = (+), and
P,:CONNECTIVITY = (Conducting), P,:POLARITY = (-), respectively. These conditions are
embedded in the IRM for this state. The Event:Fuse blows will be generated from the partial
circuit object and causes a transition from the State:(Provides Power) to the State:(Does Not
Provide Power).

The State:(Does Not Provide Power) is used to describe a power supply that has a blown fuse
and is not providing current to power the loads in its partial circuit. In this state, the connectivity
is set to P):CONNECTIVITY=(Not Conducting). These conditions are embedded in the IRM for
this state.

5.4.6. Partial Circuit Object

The Partial Circuit Object (C,) represents a series connection of one or more circuit elements and
their possible connection to a power supply. The partial circuit provides information about
current flow to its power supply, loads, conductors, and switches. The circuit analyzer provides
to the partial circuit information on current flow through the partial circuit.

To model the Partial Circuit Object, one state, Determine C, Elements & Attributes, is defined as
indicated in the state transition diagram in Figure 5-24. No state transitions are defined for this
object; events external to this object will cause changes in object attributes. Two attributes,
POLARITY and CONDUCTION, are defined for this object to provide information on the
polarity and conduction of the partial circuit. The values of these attributes are determined by
input from the associated circuit elements.

Determine C,
Elements &
Attributes

Figure 5-24. State transition diagram for the Partial Circuit Object.

141

The first attribute, POLARITY, defines the polarity (+ or -) of the partial circuit based on the
polarity of the corresponding power supply. Three values (+, -, Not Determined) are defined for
this attribute. The second attribute, CONDUCTION, defines the conduction in the partial circuit.
Four values (Open, Direct, Through Load, Unknown) are defined for this attribute. The initial
conditions for a partial circuit are set to await information from circuit elements
(Ch:POLARITY=(Not Determined) and C,,:CONDUCTION=(Unknown)).

Conditions to set the attribute values for a partial circuit are embedded in the IRM for the
State:(Determine C, Elements & Attributes). If the circuit analyzer generates a short circuit
current for the partial circuit, and the connectivity of the power supply for this partial circuit is
conducting (P;:CONNECTIVITY=Conducting), then the Event:Fuse blows will be generated.
Next, if the polarity of the partial circuit is not determined (C,:POLARITY=(Not Determined)),
then it will be set to the same polarity of the power supply for the partial circuit. If the
connectivity of any of the circuit elements is (Not Conducting), then the conduction for the
partial circuit will be set to open (C,:CONDUCTION=(Open)). If the electric potential of the
loads in the partial circuit is set for normal operating conditions, then the conduction for the
partial circuit is through the loads (C,:CONDUCTION=(Through Load)). Finally, if none of the
previous conditions apply, then the conduction is defined as direct through the partial circuit
(Ch:CONDUCTION:(Direct)).

5.4.7. Circuit Completer Object

The purpose of the Circuit Completer Object (CC) is to establish all possible conditions of
connectivity in a set of partial circuits. The circuit completer provides the circuit analyzer with
information on physical connections and electric potential for the conductors between partial
circuits. In turn, the circuit analyzer provides the circuit completer with information on current
flow through the conductors between partial circuits.

The number of partial circuits and paths between them are defined when the model of the circuit
of interest is developed. The solenoid-operative valve control circuit defined for this example is
comprised of six partial circuits with three paths (1-2, 3-4, and 5-6) between each of two partial
circuits.

To model the Circuit Completer Object, one state, Complete Circuit, is defined as indicated in
the state transition diagram in Figure 5-25. No state transitions are defined for this object;
however, once this object is initialized, it will progress to generate all possible conditions and
orders of completion for the paths between the partial circuits. The attributes for this object are
defined in terms of the paths between partial circuits in the circuit of interest. For the solenoid-
operative valve control circuit, three paths are defined and thus the attributes are PATH 1-2,
PATH 3-4, and PATH 5-6. Five values are defined to set the conditions for each path (Closed,
Open, Short to +, Short to —, and Short to Each Other).

The conditions of completion for the paths between partial circuits are embedded in the DRM for

the State:(Complete Circuit). No IRM is defined because the attributes for this object are not
dependent on what happens in other objects. The initial conditions of completion are set for

142

normal operation (PATH 1-2=(Closed), PATH 3-4=(Closed), and PATH 5-6=(Closed)).
Subsequently, the branching logic “randomly” generates a change in the overall model’s
completion characteristics by changing one of the paths to be (Open), (Short to +), or (Short to -),
or by shorting two or more of these paths to each other. The DRM then executes a prescribed
delay, then “randomly” generates another change in these completion characteristics. The
process is repeated until an analyst-specified time has expired (which will correspond to a pre-
defined number of changes in the model’s completion characteristics). All combinations and
orders of completion characteristics will eventually be explored because the OBEST solution
algorithm conducts an exhaustive search for all possible scenarios. Thus, the “random™ nature of
the DRM completion logic does not detract from the completeness of the overall circuit analysis.

Complete

Circuit

Figure 5-25. State transition diagram for the Circuit Completer Object.

The DRM model employed in the circuit completer object uses probabilities that embody the
relative likelihood of each possible completion condition, and the delay time represents the time
that elapses between changes in the circuit’s completion characteristics. If a scientific basis
exists for either the relative probabilities or the delay time, this information can be incorporated
directly into this object’s DRM. For this model, however, the probability values were set to be
equal (based on the number of possible adverse conditions to be considered) because no such
scientific basis was assumed. Thus, the likelihood of each path is not meaningful for this
model — only the insights gained from the path definitions themselves. For the solenoid-
operative valve control circuit, thirteen adverse conditions are considered, as indicated in Table
5-12, each with a probability of '/;3. For nine conditions, each path is individually set to either
(Open), (Short to +), or (Short to —). Additionally, four combinations of the shorts to each other
are possible: (1) PATH 1-2 and PATH 3-4; (2) PATH 1-2 and PATH 5-6; (3) PATH 3-4 and
PATH 5-6; and PATH 1-2, PATH 3-4 and PATH 5-6. After each change in the condition of
completion is made, the circuit completer object generates the Event:Reset/New Conditions,
which causes a state transition in the circuit analyzer object as described in the next section. The
circuit analyzer then assesses the current flows within the system model and generates the
appropriate values for the various partial circuit and component objects. The system then waits
for the circuit completer’s DRM clock to expire, and the process repeats itself.

143

Table 5-12. Probabilities for adverse conditions of completion.

Attribute Values for Adverse Conditions of Completion

Short to Each Other

Attribute Short | Short (4 possible combinations)
Open | o+ | to-

1-2/3-4 | 1-2/5-6 \ 3-4/56 | All

1 1 1 | (1)
PATH 1-2 3 13 13 | 3
PATH34 | = = ’ =
- 13 13 13 1 13
PATH 5-6 13 13 13 5
I

(D" Two parts of a single short combination — Path 1-2 to Path 5-6

5.4.8. Circuit Analyzer Object

The Circuit Analyzer Object (CA) infers conditions of current flow in the overall circuit based
on conditions in the partial circuits and the circuit completer. The circuit analyzer provides the
circuit completer with information on current flow through the conductors between partial
circuits. In turn, the circuit completer provides the circuit analyzer with information on physical
connections and electric potential for the conductors between partial circuits. Additionally, the
circuit analyzer provides information to the partial circuit regarding current flow through the
partial circuit. In turn, the partial circuit provides to the circuit analyzer information on its
physical connections and electric potential.

To infer the conditions of current flow in a circuit, two states (Initialize and Assess) are defined
for the circuit analyzer, as illustrated in the state transition diagram in Figure 5-26. These states
are related by two events, Analyze and Assess that cause transitions between the two states, as
indicated by the directed arrows in Figure 5-26. The Event:4nalyze is generated by the circuit
analyzer and causes a transition from the State:(Initialize) to the State:(Assess). The
Event:Reset/New conditions is generated by the circuit completer object and causes as transition
from the State:(Assess) to the State:(Initialize).

Three basic attributes (CURRENT,, MAXIMUM + CURRENT POTENTIAL, and
MAXIMUM — CURRENT POTENTIAL) are defined for this object to provide information on
the current flow for each partial circuit. The first attribute, CURRENT,, defines the current
conditions for each partial circuit in the circuit of interest based on the conditions of the partial
circuit and the circuit completion for the related path. This attribute represents the results
generated by the circuit analyzer object. Four values (Normal, None, Short Circuit, Unknown)
are defined for this attribute. A separate attribute CURRENT,, is defined for each partial circuit
in the circuit of interest. For the solenoid-operative valve control circuit, six partial circuits are
defined and thus the attributes are CURRENT;, CURRENT,, CURRENT;, CURRENT;,,
CURRENTS;s, and CURRENTg. For each short circuit condition, the other two attributes,

144

MAXIMUM + CURRENT POTENTIAL, and MAXIMUM — CURRENT POTENTIAL, are
also evaluated. Four values (Open, Direct, Through Load, Unknown) are defined for these two
attributes.

Analyze

Initialize Assess

~_

Reset/new conditions

Figure 5-26. State transition diagram for the Circuit Analyzer Object.

The conditions for setting the attributes for the Circuit Analyzer Object are embedded in the IRM
for the State:(Initialize). The initial conditions for the circuit analyzer’s attributes are set to await
information from the partial circuits and the circuit completer. Thus, all attribute values are set
to (Unknown). When the Event:Reset/new conditions is generated by the circuit completer
object, this causes the circuit analyzer object to transition to the State:(Initialize) where the
attribute values for the circuit analyzer are reset to initial conditions. Once the attribute values
are reset, the Event:Analyze is generated by the State:(Initialize). This causes the object to
transition into the State:(Assess), where the actual determination of current values within the
system is accomplished.

The State:(Assess) has a very complex IRM and no DRM. The IRM examines the conditions
within all six partial circuits plus the circuit completer to determine the currents that are flowing
through this connectivity configuration. There is no DRM because the analyzer must complete
its work “immediately” and report back its results to the circuit for recording or further
processing. It would be prohibitively complex to systematically identify all possible
combinations of polarities, connectivity conditions, open circuits, and loads, and to build these
combinations into the IRM. Instead, the IRM accomplishes its modeling through the use of more
general rules that must be evaluated in stages through the concept of “generations.” Here we
make use of the fact that when the OBEST solution algorithm detects that any IRM has changed
something, it determines that equilibrium has not yet been achieved, so an additional evaluation
of the system’s IRMs (an additional generation) is ordered. Thus, we can solve one portion of
the circuit analysis problem in one generation, and, as long as the rule that is applied causes an
attribute change or state transition, the IRM will be called again for an additional generation in
which additional rules can be applied and additional portions of the solution completed.

145

The details of the circuit analyzer’s rules can be found in Appendix D. However, a summary of
those rules is presented in the following paragraphs. The circuit analyzer first considers those
partial circuits that are not in the completion state “shorted together.” These circuits are
relatively straightforward to analyze. Rules applied here include:

If the circuit completer shows this path as “open,” then there is zero current flow through
these partial circuits.

If the circuit completer shows this path as “closed,” and either of the partial circuits to which
it is attached is an open partial circuit (or not attached to a power supply), then there is zero
current flow through these partial circuits.

If the circuit completer shows this path as “closed,” and both of the partial circuits to which it
is attached are of the same polarity, then there is zero current flow through these partial
circuits.

If the circuit completer shows this path as “closed,” and the partial circuits to which it is
attached are of opposite polarities, and neither partial circuit includes a load, then there is a
short circuit through these partial circuits.

If the circuit completer shows this path as “closed,” and the partial circuits to which it is
attached are of opposite polarities, and both partial circuits includes a load, then there is
insufficient current flow through these partial circuits.

If the circuit completer shows this path as “closed,” and the partial circuits to which it is
attached are of opposite polarities, and one partial circuit includes a load, then there is normal
current flow through these partial circuits.

Similar types of rules are employed for situations when the circuit completer shows this path is
connected directly to a positive or negative polarity current source. When two or more paths are
shorted together, several generations may be required to determine the current flow through the
combined circuit. The method that is used to compute these currents applies the following basic
algorithm:

1.

Determine which of the partial circuits has the potential to provide the greatest potential
current to the short circuit from a positive polarity current source, and note the value of that
potential current in the attribute MAXIMUM + CURRENT POTENTIAL. The greatest
potential current occurs when there is a partial circuit that is attached to a positive polarity
current source and has no load (there is a direct connection from the short to the positive
current source). The second greatest potential current occurs when there is a partial circuit
that is attached to a positive polarity current source through a load. Otherwise, there is no
potential positive polarity current.

Apply the same logic to determine which of the partial circuits has the potential to provide
the greatest potential current to the short circuit from a negative polarity current source, and
note the value of that potential current in the attribute MAXIMUM — CURRENT
POTENTIAL.

146

3. Determine the current through the various partial circuits attached to the short.

o If the MAXIMUM + CURRENT POTENTIAL is a “direct connection” and the
MAXIMUM — CURRENT POTENTIAL is also a “direct connection,” then there is a
short circuit involving two or more partial circuits. All other partial circuits have no
current.

o If either MAXIMUM + CURRENT POTENTIAL or MAXIMUM - CURRENT
POTENTIAL is a “none,” then none of the partial circuits supports sufficient current
flow.

e [f both the MAXIMUM + CURRENT POTENTIAL and the MAXIMUM — CURRENT
POTENTIAL are “through a load,” then none of the partial circuits supports sufficient
current flow.

o If either MAXIMUM + CURRENT POTENTIAL or MAXIMUM - CURRENT
POTENTIAL is a “direct connection,” and the other current potential is “through a load,”
then these partial circuits support a normal current flow, and all other partial circuits have
no current.

The actual rules that implement this algorithm are very complex — much more complex than they
would need to be if the OBEST software supported a more powerful IRM and DRM model
description language. As each partial circuit’s current is set (as an attribute) by the circuit
analyzer, the other objects respond to those attribute changes through their IRM logic. Once all
partial circuits’ currents are set, the OBEST model reaches equilibrium and awaits the time when
the circuit completer’s DRM generates the Event:Reset/New conditions, when the process repeats
itself.

5.4.9. Other Objects

This example problem has focused on the methods that would be used to analyze the electric
circuits themselves, and especially to determine the algorithms that would have to be used:

e To impose the circuit completion variations on the circuit object model that might be caused
by a fire event (the circuit completer object), and

e To analyze the circuit itself to determine the currents that flow through all of its segments for
each completion combination (the partial circuits and circuit analyzer objects).

Thus, the object model described in this section simply models the electrical portions of this
analysis. However, in order for this model to answer useful questions for an analyst, one needs
more information. Essentially, the analyst wants to know whether the various circuit completion
sequences generated by this OBEST model would present any unsafe conditions for the actual
system operations. “Unsafe” may be defined as the system performing in a manner different
from what the operator expects, or the definition may be more specific, noting particular
conditions that either must occur or must be avoided. The analyst must specify a way for the
OBEST software to know whether a situation is safe or unsafe. In some situations, the analyst

147

may be able to specify those conditions through the binning conditions. In other situations, the
analyst will need to build a special object that “monitors” the conditions of the various circuit
objects and sets states or attributes to denote the categories of circuit conditions that are of
interest to the analyst. In still other situations, the analyst may wish to build one object that
models how the system would act in the absence of electrical faults, and use either binning or a
monitoring object to capture differences between the proper and fire-altered system behavior. In
any case, it is possible to obtain a wide array of information from the OBEST analysis that can
be used to understand how the circuit and system might respond under the uncertainties of a fire
scenario, and to provide insights that can be used to help make these circuits and systems more
predictable and functional under these challenging conditions.

5.5. Basic Infrastructure Problem

During the term of this LDRD project, the world experienced the now infamous “Y2K” problem,
where it was feared that computer failures would cause widespread outages in major
infrastructures such as electric power generation and distribution, natural gas pipelines, and
telecommunications. This infrastructure problem, while not strictly related to the original
purpose of the LDRD project, illustrates how infrastructures can interact with one another and
how one can make various trades among replacement energy sources to achieve an optimal
strategy to prepare for potential infrastructure disruptions in energy supplies. The OBEST
method will be used in a manner similar to the police station — electric power model. We will
develop a model that simultaneously represents all of the various preparation options considered,
as well as a range of commercial infrastructure disruption scenarios. The analyst can modify the
probabilities and attribute values within the various object models to represent different
preparedness options using the same object model.

5.5.1. Problem Description and System Model

The initial situation, in which the analyst (or the “family” for which this analysis is being
performed) is assumed to live in a moderately rural area and be unprepared for long-duration
infrastructure disruptions. The family receives electric power and natural gas from “continuous”
commercial infrastructures (i.e., they are delivered continuously from a pipeline or other direct
connection). Since they are provided by the infrastructure “on demand,” they are difficult to
stockpile for use during outages. Water is derived from a well that is pumped using electric
power. In order to survive in relative comfort, the family needs to maintain access to water, heat,
light, and heat for cooking (food is not considered in this analysis because it can be readily
stockpiled in large quantities for later use). Many families have available flashlights, batteries,
candles and matches as their only preparations for electric power outages. The system structure
diagram for this “unprepared” situation is found in Figure 5-27.

When preparing for an outage of commercial infrastructures, one quickly realizes that most (if
not all) critical functions in a typical home are strongly dependent on electric power for at least
part of their functionality. Thus, one must decide either to provide a replacement source of
electric power that can function during infrastructure disruptions (such as a generator), or to
implement each of these functions in a manner that is independent of electric power. The first
contingency case assumes that one will prepare for such outages simply by providing a generator

148

(stocked with fuel) for use during times of severe infrastructure disruptions. Figure 5-28 shows
the system structure diagram for this situation.

Batteries Candles
Light
Matches
Electricity Cooking
/ Com. Gas
Cm. Power Heat
Water

\ Bottles

Figure 5-27. System structure diagram for the “Unprepared” situation.

The other major approach to prepare for major infrastructure disruptions is to implement the
major household functions in a manner that is independent of electric power. One might provide
heat for the house using firewood and/or a kerosene heater. Light can be provided by candles,
flashlights, and/or a gas-powered camping lantern. Heat for cooking can be provided by a gas-
powered camp stove and/or a charcoal or propane-fired barbecue grill. And drinkable water can
be obtained by storing bottled water, or by using cooking heat to boil non-potable water that
might be found or stockpiled outside in this rural environment. Figure 5-29 shows the system
structure diagram for this “no electricity” scenario.

For this analysis, we wanted to model many combinations of preparedness methods in order to
assess a variety of preparation options. For this reason, we combined all of the aspects of the
“unprepared,” “with generator,” and “no electricity” options into the combined (or unified)
object model shown in Figure 5-30. The object descriptions for this model are found in Table
5-13, while the interactions diagram can be found in Figure 5-31 (the interactions themselves are
noted and described in Table 5-14). Using a combined model, an analyst can add or remove
various preparation options from consideration with a simple change of an object’s initial
condition (to reflect its presence or absence) and then quickly rerun the analysis to determine the
effect of that change on system behavior.

149

Generator

\

Batteries

Electricity

Candles

Light

Cm. Power

-

Cooking

Heat

;i
X

Water

Com. Gas

N

Bottles

Matches

Figure 5-28. System structure diagram for the “With Generator” situation.

Electricity

Cm. Power

_/

Batteries Candles

Light

Camp Fuel
Cooking Matches

Com. Gas

Heat
Kerosene Firewood

Water

N

Bottles

Figure 5-29. System structure diagram for the “No Electricity” situation.

150

Batteries Candles
Generator Light
\ Camp Fuel
Electricity Cooking Matches
/ Com. Gas
Cm. Power Heat
Kerosene Firewood
Water
\ Bottles
Figure 5-30. System structure diagram for the combined model.
Batteries Candles
Generator 4\ Light
A | 4
Electricity Cooking Matches
A _ <
Cm. Powerf -~ Heat :
» Kerosene Firewood
A Water
All arrows are two-way except ------9 X
Bottles

Figure 5-31. Interactions diagram for the combined model.

151

Table 5-13. Objects in the combined structure diagram.

Object Name Object Description

Water Drinking/cooking water availability

Heat Space heat availability

Cooking Heat for cooking availability

Light Minimal light availability

Electricity Availability of electricity

Cm. Power Availability of commercial electrical power
Bottles Bottled water reserve

Com. Gas Availability of commercial (pipeline) gas
Batteries Battery reserve for flashlights

Candles Candle reserve for lighting

Matches Reserve of matches

Generator Reserve electric generating capacity (includes fuel supply for generator)
Kerosene Fuel reserve for kerosene heater

Firewood Firewood reserve for heating

Camp Fuel Fuel reserve for camp stove, lantern

152

Table 5-14. Functional interactions within the combined model.

Objects

Interactions

Com. Gas — Heat

Commercial Gas provides fuel to Heat

Gas — Cooking

Commercial Gas provides fuel to Cooking

Cm. Power — Electricity

Commercial Power provides electric power to Electricity

Generator — Electricity

Generator provides electric power to Electricity (Demand for Electricity passed back)

Electricity — Light

Electricity provides power to provide Light (Demand for Electricity passed back)

Electricity — Cooking

Electricity provides power to enable Cooking (Demand for Electricity passed back)

Electricity — Heat

Electricity provides power to provide Heat (Demand for Electricity passed back)

Electricity — Water

Electricity provides power to pump Water from the well (Demand for Electricity passed
back)

Batteries — Light

Batteries provide power to provide Light (Demand for Batteries resources passed back)

Candles — Light

Candles provide energy to provide Light (Demand for Candles resources passed back)

Matches — Light

Matches provide fire that enables candles or lanterns to provide Light (Demand for
Matches resources passed back)

Matches — Cooking

Matches provide fire that enables camp stove to provide Cooking (Demand for Matches
resources passed back)

Matches — Heat

Matches provide fire that enables firewood or kerosene heater to provide Heat (Demand
for Matches resources passed back)

Cooking — Water

Cooking provides boiling to purify Water

Bottles — Water

Bottles provide reserves to Water (Demand for water resources passed back)

Kerosene — Heat

Kerosene provides fuel to Heat (Demand for Kerosene resources passed back)

Firewood — Heat

Firewood provides fuel to Heat (Demand for Firewood resources passed back)

Water — Camp Fuel

Water provides an (additional) energy demand to Camp Fuel

Camp Fuel — Light

Camp Fuel provides energy to provide Light (Demand for Camp Fuel is passed back)

Camp Fuel — Cooking

Camp Fuel provides energy to provide Cooking (Demand for Camp Fuel is passed back)

153

5.5.2. Individual Object Models

Each element in the system structure and system interaction diagrams presented in the previous
section (especially Figure 5-30 and Figure 5-31) is represented as an object in the OBEST model
of this system and its behaviors. Thus, this OBEST model is composed of 15 separate objects.
However, by breaking the system into so many objects, we are able to keep the definition of each
object extremely simple. No object in the system has more than two states, and no IRM or DRM
in the system contains more than six cases. This section is dedicated to the description of these
15 objects and their interactions.

The first four objects to be discussed are the four vital household functions that are to be
maintained during infrastructure disruptions: the Light Object, the Heat Object, the Cooking
Object, and the Water Object. These objects are similar to one another in that each functions to
track the various sources that can provide its vital function and ultimately determines whether or
not that function is being met. Each has two states: one where the function is being met, and one
where the function has failed. The transition between these states occurs when the energy supply
on which the object relies becomes depleted or otherwise unavailable (the event that causes this
state transition is generated within this object’s own IRM). Each of these objects has one
attribute that represents the source from which that vital function is drawing its energy. Since
these objects track the availability of these vital functions (and do not themselves provide the
energy upon which these functions rely), none of these objects has a DRM. Furthermore, since
this analysis does not seek to model the recovery of these vital functions, there is neither
functionality contained in nor a transition out of the state in which the vital function is not being
provided. The IRM for the functional state simply searches other objects to determine whether
any of them are capable of providing energy to support this vital function.

The state transition diagram for the Light Object is found in Figure 5-32. There is no
functionality in state: (Dark), and the functionality in State: (Light), which is embodied only in
the IRM, determines whether the attribute that represents the source of power for light is set to
electric power, lantern, flashlight, candles, or none. Note that lantern and candles can only be
used if the supply of matches has yet to be exhausted. If none of these energy sources remains
available to support the Light Object’s vital function, this IRM “turns out the lights” by
generating the Lights Out event that causes this object to transition to state: (Dark).

The state transition diagram for the Heat Object is found in Figure 5-33. There is no
functionality in State: (No Heat), and the functionality in State: (Warm) determines whether the
attribute that represents the source of energy for heat is set to the regular furnace, a kerosene
heater, a fireplace, or none. This functionality is embodied in the IRM, which will not allow
either the kerosene heater or the fireplace to be used unless the supply of matches is not yet
exhausted. If none of these energy sources remains available to support the Heat Object’s vital
function, this IRM generates the Heat Out event that causes this object to transition to State: (No
Heat).

The state transition diagram for the Cooking Object is found in Figure 5-34. As with the object

models for the other vital functions, there is no functionality in State: (No Cooking), and the
functionality in State: (Cooking) uses the IRM to determine whether the source of energy for

154

cooking is the regular stove, a camping stove, or none. The attribute that represents this source is
set to the appropriate value within the IRM. This IRM will not allow the camping stove to be
used if the supply of matches has already been exhausted. If none of the energy sources that
support the Cooking Object’s vital function remains available, this IRM generates the Cooking
Out event that causes this object to transition into State: (No Cooking).

Lights Out

Lights Dark

Figure 5-32. State transition diagram for the Light Object.

Heat Out

Warm No Heat

Figure 5-33. State transition diagram for the Heat Object.

Cooking Out

Cooking No Cooking

Figure 5-34. State transition diagram for the Cooking Object.

The fourth and final vital function object is the Water Object found in Figure 5-35. All of the
functionality for this object is incorporated in the IRM in State: (Consuming), which sets an
attribute to indicate whether the source of potable water for the home is the well, bottled water,
boiled water, or none. Note that boiled water cannot be produced if the cooking vital function is
unavailable. Should all sources of water become unavailable, this IRM generates the Water Out

155

event that causes this object to transition to State: (No Water). The State: (No Water) embodies
no functionality of its own.

Water Out

Consuming No Water

Figure 5-35. State transition diagram for the Water Object.

The Electricity Object represents a variation on the theme that was generated for the vital
functions objects. Its purpose is to summarize the present source and status of electric power for
the other entities in the object model. This functionality is implemented in a single state with an
IRM and no DRM, as seen in Figure 5-36. The use of a single state for the Electricity Object (as
opposed to two states for the vital functions objects) means that the Electricity Object will
always represent the actual current state of electric power in the system, while the various vital
functions objects will “latch” in their nonfunctional states should they ever occur. This latching
behavior helps the analyst to determine whether a vital function was lost at any time during the
scenario. Since electric power is not itself a vital function, the latching behavior was omitted
from the Electricity Object.

Powering

Figure 5-36. State transition diagram for the Electricity Object.

The Electricity Object uses one attribute to indicate whether electric power is available or
unavailable, and a second attribute to identify the source of that electric power (commercial
electric power, a generator, or none). The sole function of this object’s IRM, then, is to set
appropriate values for these attributes based on the characteristics of the other objects in the
system.

Eight of the remaining 10 objects in the infrastructure disruption preparation model represent
consumable supplies that would be used in the event of a major infrastructure outage. These
objects are all extremely similar in their structure in behavior. Each has one attribute named
Supply that indicates whether the reserve supply of this commodity remains available or has
been exhausted. These two discrete values for the attribute correspond to the two states that

156

make up each of these object models — again, one to indicate that this commodity remains
available and one to indicate that it is unavailable. Each object’s IRM is used to ensure the
proper setting of the Supply attribute and to manipulate the object’s internal clock. The clock
represents a sort of “countdown” until this object’s resources will be exhausted. The delay that
is built into each object’s DRM indicates the number of days the analyst expects this resource to
last when used in a particular fashion. The object’s clock is started when the appropriate vital
functions object indicates that this object’s supplies are being used as a source to fulfill that vital
function’s needs. When the delay time is exhausted, this object’s resources are assumed to be
fully depleted, so the DRM generates an event that will cause the object to transition into its
depleted or unavailable state. The DRM may include multiple delay times to indicate that
different usage rates occur when the resource is used in different ways. For example, camp fuel
may last 15 days if it is used only for lighting, seven days if it is used for lighting and cooking,
and only four days if one is relying on boiled water. The object selects the appropriate delay by
reading the attributes from the various vital functions objects and comparing those attributes to
the logical cases in the object’s DRM.

The state transition diagram for the Camp Fuel Object is found in Figure 5-37. The object’s
states are Fuel and Empty, and the corresponding attribute values are Fuel and None. In State:
(Empty), the object sets the attribute value to None and stops the object’s internal clock to
indicate that there is no functionality embodied in this state. In State: (Fuel), the object’s IRM
ensures that the attribute value is set to Fuel and enables or disables the object’s clock as dictated
by fuel demands from the Cooking Object and the Light Object. The DRM implements the
delay times described in the previous paragraph to reflect the different lengths of time the supply
of camp fuel would be expected to last under different demand conditions.

Camp Fuel Out ™4

Fuel Empty

Refill Fuel

Figure 5-37. State transition diagram for the Camp Fuel Object.

The Bottles Object implements a similar functionality for a supply of bottled potable water that a
person may have stockpiled as a hedge against a protracted infrastructure outage. The state
transition diagram for this object, as shown in Figure 5-38, uses the states Water and Empty with
the corresponding attribute values Water and None. The functionality embodied in State:
(Empty) is identical to that embodied in State: (Empty) in the Camp Fuel Object. In State:
(Water), the IRM ensures that the attribute value is set to Water and enables or disables the
object’s clock depending on the value of the Source attribute in the Water Object. The DRM in
this object implements a five-day delay to model the fact that the analyst believes that the
stockpile of bottled water will last for five days under the expected usage conditions.

157

WA

Water Empty

Refill Bottles

Figure 5-38. State transition diagram for the Bottles Object.

The Batteries Object represents the supply of batteries that one might have on hand to power
flashlights for use as a light source during an infrastructure disruption. The state transition
diagram for this object in shown in Figure 5-39. It uses the states Power and Dead with the
corresponding Supply attribute values of Batteries and None. State: (Dead) embodies the same
functionality as found in the Empty states of the previous two objects. In State: (Power), the
IRM ensures that the attribute value is set to Batteries and that the object’s clock is enabled or
disabled according to the demands placed on this power source by the Light Object. The seven-
day delay implemented in this object’s DRM represents the analyst’s belief that the proposed
reserve supply of batteries would enable a flashlight to provide light for seven days.

m‘

Power Dead

New batteries

Figure 5-39. State transition diagram for the Batteries Object.

The Candles Object models the reserve supply of a second source of light that might be used in
the event of electric power failure: candles. Note that this object represents only the supply of
candles themselves, and not the matches that would be required to light them. As seen in Figure
5-40, this object uses the states Candles and Gone with the corresponding attribute values
Candles and None. The State: (Gone) implements the same functionality as the Empty states in
the first two consumables objects. State: (Candles) uses an IRM to ensure that the attribute value
is set to Candles and to enable or disable this object’s clock as required by the Light Object. A
three-day delay is implemented in the DRM to represent the three-day supply of candles that this
home might have on hand.

The supply of fuel for a kerosene heater is represented by the Kerosene Object. The state
transition diagram shown in Figure 5-41 makes use of the states Kerosene and Empty and the

158

corresponding Supply attribute values of Kerosene and None. State: (Empty) implements the
same functionality as the Empty states in the first two consumables objects. State: (Kerosene)
uses its IRM to enable or disable this object’s clock in accordance with the demands levied by
the Heat Object, as well as ensuring that the Supply attribute is set to the appropriate value. The
DRM in this state implements a five-day delay to account for the expected usage rate and the
supply of kerosene presumed to be on hand.

Candles Out ¢

Candles Gone

New Candles

Figure 5-40. State transition diagram for the Candles Object.

m4

Kerosene Empty

Refill Kerosene

Figure 5-41. State transition diagram for the Kerosene Object.

The OBEST infrastructure disruption preparation model assumes that the home for which
preparations are being made has a fireplace or wood stove that can be fueled for at least ten days
with the supply of firewood that is on hand. This functionality is modeled in the Firewood
Object, whose state transition diagram in shown in Figure 5-42. The Firewood Object makes use
of the states Firewood and Gone, as well as the corresponding attribute values Firewood and
None. The IRM and DRM in State: (Gone) are the same as those found in the Empty states of
the first two objects. The functionality implemented in the IRM and DRM for State: (Firewood)
is the same as that found in the Kerosene Object, with the exception that the DRM delay
represents a ten-day supply of firewood as opposed to the five-day supply of kerosene.

Several of the fuel supplies that are modeled in the previously mentioned objects depend on the
use of matches to start the fire that will enable the vital function to be performed. The Matches
Object models the supply of matches that is available for this purpose. This object makes use of
two states, Matches and Gone (as shown in Figure 5-43), and two corresponding values for the
Supply attribute: Matches and None. As with previous object models for consumable materials,

159

State: (Gone) sets the object’s attribute value to None and turns off the object’s clock to indicate
that there is no functionality embodied in this state. State: (Matches) implements a delay of 12
days to model the 12-day supply of matches that the analyst believes will exist when
infrastructure disruption occurs. The IRM in this state simply ensures that the Supply attribute is
set to the appropriate value and enables or disables the object’s clock in accordance with the
demands for matches by the Heat Object, the Cooking Object and the Light Object.

WA

Firewood Gone

Figure 5-42. State transition diagram for the Firewood Object.

WA

Matches Gone

Figure 5-43. State transition diagram for the Matches Object.

The final “consumables” object embodied in this OBEST model is the Generator Object. As
currently configured, this assessment assumes that the generator will produce electricity as long
as it has fuel. That is, this model does not consider failures in the generator equipment itself that
might render it incapable of producing electricity even though it still has remaining fuel.
Generator failure models could be incorporated in this object, but they were considered beyond
the scope of this analysis. The state transition diagram for the Generator Object is shown in
Figure 5-44. It consists of the states Available and Dead, and the object’s state is reflected by the
value of the Supply attribute, which can take on the discrete values of Available and None. The
behavior of this object in State: (Dead) mirrors the behavior of the other consumables object
models. Its behavior in State: (Available) is also similar to that seen for the other consumables
object models in that the IRM ensures that the Supply attribute is set to an appropriate value, and
starts and stops the object’s clock as appropriate based on demand from the Electricity Object.
The DRM in this state implements a nine-day delay to embody the nine-day supply of fuel that
has been proposed as an infrastructure disruption preparedness measure.

160

WA

Available Dead

Refuel Generator

Figure 5-44. State transition diagram for the Generator Object.

The remaining two objects in this OBEST model represent the availability of commercial electric
power and commercial natural gas. These objects are probabilistic in nature, and are designed to
provide the remainder of the OBEST model with a variety of “boundary conditions” that
represent the array of possible infrastructure outages that might have been expected as a result of
the transition to the year 2000. Each object has two states: Available and Dead, and one attribute
named Supply. The Supply attribute can take on three values: “Available” if the infrastructure is
available because it has yet to be exposed to the potential for failure (i.e., the transition to the
year 2000 has not yet occurred); “Restored” if the infrastructure is available because it has
already been exposed to the potential for failure and either did not fail or has been repaired; and
“None” if this infrastructure is not available to perform its designed function. The state
transition diagram for the Commercial Power Object is shown in Figure 5-45, while the diagram
for the Commercial Gas Object is shown in Figure 5-46.

The commercial infrastructure objects function as follows. Initially, each object is in State:
(Available) with the Supply attribute set to the Available value. State: (Available) has no DRM,
and its IRM is used to determine whether this infrastructure experiences an outage condition or it
sails right through the transition to the year 2000 without any disruption. This decision is
implemented as a probabilistic branching operation, with a likelihood of 10 percent for no
disruption and 90 percent for some kind of disruption. If the supply is not disrupted, the attribute
value is changed from Available to Restored to indicate that this infrastructure has been exposed
to the potential for failure but did not actually fail. However, if disruption occurs, this IRM
generates an event to cause the object to transition to State: (Dead). The only function of the
IRM for State: (Dead) is to reset the value of the Supply attribute from Available to None when
the object enters this state. The DRM in this state will be used to probabilistically determine the
length of the infrastructure outage. For this screening analysis, we have assigned identical
likelihoods of 10 percent to each of 10 possible outage durations (delay times) that range from a
minimum of 0.5 days to a maximum of 40 days. At the end of the outage (after the delay time
has expired), the DRM generates an event to cause the object to transition back into State:
(Available), where the IRM will change the value of the Supply attribute from None to Restored
to indicate that this outage is over and the infrastructure is once again performing its intended
function.

161

WA

Available Dead

w

Figure 5-45. State transition diagram for the Commercial Power Object.

m‘

Available Dead

Figure 5-46. State transition diagram for the Commercial Gas Object.

Now that we have described the objects that are involved in this infrastructure disruption
preparation problem, let us take a moment to consider how all of these pieces fit together into
one overall system model. Initially, all four of the vital functions are supplied with energy from
either the Commercial Power Object or the Commercial Gas Object. As the transition to the year
2000 occurs, one or both of these objects might move into State: (Dead) to indicate an outage has
occurred. The Electricity Object responds to this situation by calling for electric power from the
Generator Object. If there is no generator available (or when fuel for the generator runs out), the
four vital functions objects look to their other potential sources to determine whether the vital
functions continue to be provided. Each vital function goes through its potential sources of
energy in an order of preference. For example, the Heat Object first looks to kerosene, then to
fire wood, while the Light Object first looks to a camping lantern, then to flashlights, then to
candles. If any source is unavailable — either because its supply is exhausted or because its
capacity was set to zero for this analysis (to indicate, for example, that the owner did not wish to
purchase a portable generator) — then the vital function object moves on to its next preferred
source of energy. If the vital function object cannot find an appropriate source of energy, then it
enters into an “unavailable” state that denotes that, at some point during the analysis, this vital
function could not be performed. Eventually, as the delay times associated with the commercial
infrastructure objects expire, commercial power and commercial gas supplies are restored. Each
scenario is terminated when both commercial power and commercial gas are restored. At that
point, one can examine the four vital functions objects which, because of their latching behavior,

162

will remain in their “unavailable” states if there was any time during the scenario during which
their function could not be performed.

The ultimate result to be obtained from running this model is a series of scenarios that will
enable the analyst to determine the scenarios that might lead to failure for one or more of these
four vital functions. The probabilistic weights for those scenarios are determined based on the
probabilistic branching embodied in the commercial infrastructure objects, and ultimately may
embody the analyst’s expectations regarding the likelihood of various durations of infrastructure
outages that might occur as a result of the then still future transition to the year 2000. The
analyst could run this model under a variety of sets of assumptions related to outage durations
(changing the delay times in the commercial infrastructure objects DRMSs) and personal
preparations. Changes in personal preparations might reflect the inclusion or exclusion of
particular energy sources (implemented by changing the initial attribute values and states for
particular objects). These changes might also reflect options for purchasing different reserve
quantities for particular energy sources (implemented by changing the DRM delay values for the
appropriate consumables objects). These analyses, when taken together, would provide the
analyst with a valuable picture of how his or her current expectations would be expected to play
out when the actual transition to year 2000 occurred.

5.5.3. Summary and Insights

While this example problem did not directly address the “infrastructure interdependencies”
aspect of the original LDRD proposal, it should be easy to see how the concepts developed in
this example problem can be applied to these interdependency problems. Indeed, this problem
was selected because it revealed most of the same issues that would be examined in an
infrastructure interdependencies problem, but did so in a format that would be easy for the
uninitiated reader to identify with. This problem demonstrated how the failure of one
infrastructure (commercial electric power, for example) can impact a number of vital functions
simultaneously. It also demonstrated how a variety of remedies may be available to deal with
infrastructure outage situations, and how those various remedies can be embodied in a single
object model and exercised in various combinations without the need to revise the object model
itself. The principal element that was missing from this model but might be present in a more
generalized infrastructure interdependencies problem was feedback between infrastructures.
However, feedback was demonstrated in the “Electric Power for a Police Station” example
problem in Section 5.1. Thus, between these two sample problems, we have covered all of the
major aspects that might be involved in a real infrastructure interdependencies problem.

As we worked this infrastructure disruption problem, it became clear that one could solve a
relatively complex problem by building many objects — each of which, by itself, is quite simple —
and allowing them to interact with each other in such a way that we can observe the emergent
behavior. The OBEST model provides a mechanism for generating this behavior with
capabilities far beyond traditional object based techniques and agent based simulation methods in
that it can generate a whole family of probabilistically weighted scenarios that are self consistent,
and do so rapidly. It is this generation of an entire family of solutions that can be examined
together in context that leads to the system-wide insights that have been so beneficial from risk
assessment studies.

163

The infrastructure disruption model that was developed and described in this chapter can be
expanded in a number of ways. One might, for example, incorporate probabilistic branching into
the various consumables object models to represent the uncertainty that exists in that
commodity’s demand characteristics. One might also incorporate probabilistic branching to
model mechanical problems in the equipment being used (e.g., failure of the generator to start,
contamination in “old” can fuel, etc.). One might also introduce gradations into the four vital
functions objects to represent the fact that, for example, the light produced by candles is of a
lower intensity and, thus, less useful than that produced by electric lights or by a camping
lantern. In this way, one might include “quality of life” issues in scoring the relative merits of
potential infrastructure preparedness remedies.

The methods used to develop this model do point out one major limitation in the OBEST
methodology and OBEST software as it currently exists. To generate each consumables object,
we were required to combine the commodity’s expected usage rate with the amount of the
commodity in on hand storage to determine an estimate for the time that would elapse before the
stored commodity would be exhausted. We relied on the concepts of “nonlinearity” in DRM
time, as described in Section 3.3, to establish transitions in usage rates for commodities such as
camp fuel when additional demands were placed on the commodity to cook or boil potable
water. We believe it would be much more accurate and natural to represent the storage capacity
and utilization rate for each commodity as a separate value that would be combined within the
OBEST software to determine the time at which each DRM would expire. It is our hope that this
capability can be implemented in the OBEST software soon.

5.6. Aircraft Spacing During Runway Crossing Operations

Aviation safety is another area of application for which the OBEST methodology is being
investigated. Currently, Sandia is providing support in the area of risk and reliability analysis for
the joint National Aeronautics and Space Administration (NASA) and Federal Aviation
Administration (FAA) Aviation Safety Program. One area of emphasis for the Aviation Safety
Program is the development of advanced techniques for modeling safety issues in the national
airspace. Sandia has proposed using OBEST as a effective modeling method for developing
system safety models that integrate human performance as well as the operations of and
relationships among the numerous components of the complex aviation system environment.

Runway operations is an important area of concern in aviation safety. As part of this LDRD
project, we developed a preliminary model for this example problem that has possible
application for a number of runway operations. These models considered aircraft spacing for
runway crossings, as well as risk assessment for runway collisions, runway incursions and for
land-and-hold-short operations.

The OBEST system model for this application included components to model the
airport/airspace, a landing aircraft, a taxi aircraft, the air traffic controller, and the environment
(for example, weather, radio conditions, traffic levels). Due to resource constraints, only the
airport/airspace, landing aircraft, and taxi aircraft components were modeled in detail.

164

5.6.1. System Structure and Interactions

The system structure diagram (Figure 5-47) for the model is defined by five functional blocks.
The interaction diagram is shown in Figure 5-48, and the functional interactions for the model
are specified in Table 5-15. Interactions occur among the functional blocks, as indicated in
Figure 5-48 and Table 5-15. Each of the functional blocks is described in the following
paragraphs. The descriptions of the Airport/Airspace, Taxi Aircraft and Landing Aircraft objects
include a discussion of their respective state transition diagrams. The discussion of the state
transition diagrams includes a description of the object, events, and event transitions, and a
narrative of the “if — then — else” scripts and logical conditions for the IRM and DRM for each
state. The detailed “if — then — else” scripts and logical conditions are provided in Appendix D.

Environment
Tower Taxi Landing
Controller Aircraft Aircraft
Airport /
Airspace

Figure 5-47. System structure diagram for model of runway operations.

165

Environment

3

Tower I Taxi Landing
Controller > Aircraft Aircraft
Airport /
Airspace

Figure 5-48. Interaction diagram for model of runway operations.

Table 5-15. Functional interactions for model of runway operations.

AP-TC:
TC-AP:

TC-TA:

TA-AP:

TA-TC:

LA-AP:

Env-TC:

Env-TA:

Env-LA:

The Airport/Airspace provides to the Tower Controller information on aircraft positions.

The Tower Controller provides to the Airport/Airspace information about runway
reservations.

The Tower Controller provides taxi commands to a Taxi Aircraft and responds to requests
from a Taxi Aircraft.

A Taxi Aircraft provides to the Airport/Airspace information about it position.

A Taxi Aircraft makes requests to the Tower Controller and responds to commands from the
Tower Controller.

A Landing Aircraft provides to the Airport/Airspace information about its position.

The Environment provides to the Tower Controller information about distractions, visibility,
and radio interference.

The Environment provides to a Taxi Aircraft information about distractions, visibility, and
radio interference.

The Environment provides to a Landing Aircraft information about distractions, visibility,
and radio interference.

166

5.6.2. Airport/Airspace Object

The Airport/Airspace Object provides a physical layout of the runways and taxiways and the
airspace of an airport. For this model, a description of the physical layout of one runway and one
taxiway and their intersection was developed. This physical layout is presented in Figure 5-49.
The runway and taxiway are divided into segments, each of which represents discrete values for
locations to be occupied by aircraft. For purposes of simplification, runway segments R2 and R3
are merged (R23), and taxiway segments T1 and T2 are merged (T12). Aircraft separation is
defined in terms of the locations of a taxi aircraft and a landing aircraft. The potential for a
collision or a runway incursion can be evaluated by comparing the runway and taxiway segments
occupied by a set of aircraft. Table 5-16 provides a listing of the combinations of runway and
taxiway locations, the corresponding aircraft separation, and a severity ranking of that
combination of locations. The severity rankings for the different combinations of locations are
arbitrary and were defined by project staff for the purposes of this example problem.

The Airport/Airspace Object represents the physical layout of the airport and tracks the locations
of the Taxi Aircraft and Landing Aircraft within this layout. The Taxi Aircraft and Landing
Aircraft objects provide to the Airport/Airspace Object information about their respective
locations. The Airport/Airspace Object, in turn, provides this location information to the Tower
Controller.

To model the Airport/Airspace Object, one state, Airport Status, is defined as indicated in the
state transition diagram in Figure 5-50. No state transitions are defined for this object because
the behavior of physical layout of the Airport/Airspace does not change. Changes in airport and
airspace conditions are modeled through the use of attributes. Three attributes are defined for
this object to provide information on aircraft locations and runway status. The first attribute,
Taxi Aircraft Location — TAL, defines the location of the Taxi Aircraft. Six values (G, T12, T3,
X, TS5, BT) are defined for this attribute. For initial conditions, the Taxi Aircraft is at the gate
(TAL=(G)). The second attribute, Landing Aircraft Location — LAL, defines the location of the
Landing Aircraft. Six values (A, R1, R23, X, R5, BR) are defined for this attribute. For initial
conditions, the Landing Aircraft is airborne (LAL=(A)). The third attribute, Runway Status —
RS, defines the runway status. Two values (Reserved, Available) are defined for this attribute.
For initial conditions, the runway is reserved (RS=(Reserved)).

The State:(Airport Status) tracks the locations of the Taxi Aircraft and Landing Aircraft within
the physical layout of the Airport/Airspace and the status of the runway. The Airport/Airspace
Object considers the location information from the Taxi Aircraft and Landing Aircraft, and as
these locations change, updates the Airport/Airspace location attributes to correspond with this
information. For the runway status, if the Tower Controller clears a Landing Aircraft to land,
then the runway status is set to reserved (RS=(Reserved)). If the aircraft is not cleared to land,
then the runway status is set to available (RS=(Available)). The conditions for this state are
embedded in the IRM. No DRM is defined.

167

(BT) Beyond W
Taxiway

T2

(T1
(G))
Gate

Figure 5-49. Physical layout for the Airport/Airspace Object.

Figure 5-50. State transition diagram for the Airport/Airspace Object.

168

Table 5-16. Collision potential for combinations of runway and taxiway locations.

Runway Taxiway Aircraft Severity Rank
Location Location Separation
X X Collision 1
R23 X Very Close Call 1 2
X T3 (Not stopping) | Very Close Call 2 3
X T5 Very Close Call 3 4
RS X Very Close Call 4 5
R1 X Close Call 1 6
BR X Close Call 2 7
A X Incursion 8
All Other All Other No Problem 9
5.6.3. Landing Aircraft Object

The Landing Aircraft Object (LA) represents the behavior of a landing aircraft. As defined for
this model, the Landing Aircraft provides to the Airport/Airspace Object information about its
respective locations. The Environment would provide to the Landing Aircraft information on
environmental conditions including weather, visibility, radio interference, air traffic, and other
environmental distractions. To model the Landing Aircraft Object, four states are defined as
illustrated in the state transition diagram in Figure 5-51. These states include Change Location,
Flying, Moving, and Stopped. These states are related by a set of events that represents the
Landing Aircraft’s behavior. These events cause transitions among the four states of the
Landing Aircraft Object, as indicated by the directed arrows in Figure 5-51. The set of events
defined for the model includes: LA New Location (LA-NL), LA-Fly, LA-Move, and LA-Stop.

Three attributes are defined for this object to provide information about the Landing Aircraft’s
behavior and location. The first attribute, Mode, defines the mode of operation for the Landing
Aircraft. Two values (Takeoff, Landing) are defined for this attribute. For initial conditions, the
Landing Aircraft is flying in for landing (Mode=(Landing)). The second attribute, Location -
LAL, defines the location of the Landing Aircraft. Six values (A, R1, R23, X, R5, BR) are
defined for this attribute. For initial conditions, the Landing Aircraft is airborne (LAL=(A)).
The third attribute, Motion, defines the Landing Aircraft’s motion. Three values (Stopped,
Moving, Flying) are defined for this attribute. For initial conditions, the Landing Aircraft is
flying in for landing (Motion=(Flying)).

169

LA-Fly LA-Stop

LA New Location

LA-NL
(LA-NL)

LA-Move

\

LA NL

Figure 5-51. State transition diagram for the Landing Aircraft Object.

The State:(Flying) is defined to set the location of the Landing Aircraft as it begins to fly in for
landing. First, the object attributes are set for the Landing Aircraft in this state (Location=(A),
Motion=(Flying)). These conditions are embedded in the IRM. Then, after combinations of
probabilities and specified delay times, the Event:LA New Location is generated and the
Landing Aircraft proceeds to a new location. These conditions reflect a probabilistic timing that
the aircraft will occupy different segments of the runway. Three sets of timing conditions are
defined for the model: P=0.25 for Delay Time=120; P=0.50 and Delay Time=135; and P=0.25
for Delay Time=150. These conditions are embedded in the DRM.

The State:(Change Location), moves the Landing Aircraft down the runway from segment to
segment. When the Mode=(Landing) and the Location=(A), this state will move the aircraft
from segment A to segment R1 in response to the Event:LA New Location. The aircraft will
continue to move from segment R1 to R23 to X to R5 as the Event:LA-Move is successively
generated. When the aircraft location is in segment BR, then the object attributes are set to
Motion=(Stopped) and the Event:LA-Stop is generated. The state is also used for an aircraft
taking off as it proceeds from segment BR to segment A with the successive generation of the
Event:LA-Move. Then the object attributes are set to Motion=(Flying) and the Event:LA-Fly is
generated. The conditions for this state are embedded in the IRM. No DRM is defined.

The IRM for the State:(Moving) sets the Landing Aircraft Motion=(Moving). The DRM sets the
probabilistic timing for the aircraft motion down the runway as it moves from segment R1 to
segment RS when the aircraft is landing, or the reverse, RS to R1, when the aircraft is taking off.
This state does not apply for an aircraft in segments A or BR, because the respective motions for
the aircraft in these locations are Motion=(Flying) and Motion=(Stopped). The probabilistic
timing defined for aircraft movement in this state is provided in Table 5-17.

170

Table 5-17. Probabilistic timing for aircraft movement in State:(Moving).

Mode Movement Probability Delay Time
0.25 7
Landing R1 to R23 0.50 10
0.25 13
0.25 4
Landing R23 to X 0.50 5
0.25 7
Landing X to RS 1.00 3
0.25 10
Landing RS5 to BR 0.50 15
0.25 20
0.25 10
Takeoff R5t0 X 0.50 20
0.25 30
Takeoff X 1.00 3
0.25 5
Takeoff X to R23 0.50 7
0.25 9
0.25 10
Takeoff R23 to R1 0.50 13
0.25 16

171

The State:(Stopped) is defined to set the location of the Landing Aircraft as it completes its
landing or begins takeoff. First, the object attributes are set for the Landing Aircraft in this state
(Location=(BR), Motion=(Stopped)). These conditions are embedded in the IRM. Then, after
combinations of probabilities and specified delay times, the Event:LA New Location is
generated, and the Landing Aircraft proceeds to a new location. These conditions reflect a
probabilistic timing of the delay before the aircraft begins takeoff roll. Three sets of timing
conditions are defined for the model: P=0.25 for Delay Time=15; P=0.50 and Delay Time=25;
and P=0.25 for Delay Time=35. These conditions are embedded in the DRM.

5.6.4. Taxi Aircraft Object

The Taxi Aircraft Object (TA) represents the behavior of an aircraft on a taxiway. As defined
for this model, the Taxi Aircraft provides to the Airport/Airspace Object information about its
respective locations. The Environment would provide to the Taxi Aircraft information on
environmental conditions including weather, visibility, radio interference, air traffic, and other
environmental distractions. To model the Taxi Aircraft Object, five states are defined as
illustrated in the state transition diagram in Figure 5-52. These states include Change Location,
Gate Stop, Taxi, Hold, and Beyond Model. These states are related by a set of events that
represent the taxi aircraft’s behavior. These events cause transitions among the five states of the
Landing Aircraft Object, as indicated by the directed arrows in Figure 5-52. The set of events
defined for the model includes: 7A New Location (TA-NL), TA-Gate, TA-Taxi, TA-Hold, and
TA-Beyond Model.

Gate Stop /P Taxi

TA-Gate TA-Taxi

TA New Location \v/

(TA-NL)

TA-NL

Cha nge TA-Hold TA-Taxi
Location

TA-Beyond Model TA-Hold

/ A N
TA-NL TA-NL

Beyond T~ Hold
Model

Figure 5-52. State transition diagram for the Taxi Aircraft Object.

172

Four attributes are defined for this object to provide information about the taxi aircraft’s behavior
and location. The first attribute, Mode, defines the mode of operation for the Taxi Aircraft. Two
values (Takeoff, Landing) are defined for this attribute. For initial conditions, the Taxi Aircraft
is preparing for takeoff (Mode=(Takeoff)). The second attribute, Location - TAL, defines the
location of the Taxi Aircraft. Six values (G, T12, T3, X, TS5, BT) are defined for this attribute.
For initial conditions, the Taxi Aircraft is at the gate (LAL=(G)). The third attribute, Motion,
defines the Taxi Aircraft’s motion. Three values (Gate, Taxi, Hold, Beyond) are defined for this
attribute. For initial conditions, the Taxi Aircraft is at the gate (Motion=(Gate)). The fourth
attribute, PilotHold, is used to determine whether the Taxi Aircraft will hold position as directed
by the Tower Controller. Three values (Unset, WillHold, NoHold) are defined for this attribute.
For initial conditions, this attribute is unset (PilotHold=Unset).

The State:(Gate Stop) describes the Taxi Aircraft’s behavior at the gate. First the attributes for
this state are set (Location=(G), Motion=(Gate)). Then, if the Taxi Aircraft is preparing for
takeoff (Mode=TakeofY), the probability that the Taxi Aircraft will comply with the direction of
the Tower Controller (PilotHold=(WillHold)) is P=0.999." The probability that the Taxi Aircraft
will fail to comply (PilotHold=(NoHold)) is P=0.001. These conditions are embedded in the
IRM for this state. The DRM first considers if the Taxi Aircraft is landing. If it is and it is now
located at the gate, then the scenario is terminated. Next the DRM considers delays leaving the
gate. For different combinations of probabilities and specified delay times, the
Event:TA New Location is generated and the Taxi Aircraft proceeds to a new location. Three
sets of timing conditions are defined for the model: P=0.25 for Delay Time=100; P=0.50 and
Delay Time=120; and P=0.25 for Delay Time=140. These conditions are embedded in the
DRM.

The State:(Change Location), moves the Taxi Aircraft down the taxiway from segment to
segment. When the Mode=(Takeoff) and the Location=(G), this state will move the aircraft from
segment G to segment T12 in response to the Event:7A New Location. The aircraft will
continue to move from segment T12 to T3 to X to T5 to BT as the Event:74-Taxi is successively
generated. When the aircraft location is in segment BT, then the object attributes are set to
Motion=(Beyond) and the Event:TA-Beyond Model is generated. The state is also used for an
aircraft landing as it proceeds from segment BT to segment G with the successive generation of
the Event:TA4-Taxi. Then the object attributes are set to Motion=(Gate) and the Event:T4-Gate is
generated. The conditions for this state are embedded in the IRM. No DRM is defined.

The IRM for the State:(Taxi) sets the Taxi Aircraft Motion=(Taxi). The DRM sets the
probabilistic timing for the aircraft motion down the taxiway as it moves from segment T12 to
segment TS5 when the aircraft is landing, or the reverse, T5 to T12, when the aircraft is taking off.
This state does not apply for an aircraft in segments G or BT, because the respective motions for
the aircraft in these locations are Motion=(Gate) and Motion=(Beyond). The probabilistic timing
defined for aircraft movement in this state is provided in Table 5-18.

" These probabilities and delays were estimated based on the judgement of the analysts without the aid of a formal
human reliability analysis.

173

Table 5-18. Probabilistic timing for aircraft movement in State:(Taxi).

Mode Movement Probability | Delay Time
0.25 30
Takeoff T12to T3 0.50 40
0.25 50
0.25 10
Takeoff T3 to X & PilotHold=(NoHold) 0.50 15
0.25 20
0.25 10
Takeoff T3 to X & PilotHold=(WillHold) 0.50 15
0.25 20
Takeoff XtoT5 1.00 10
0.25 15
Takeoff TS5 to BT 0.50 23
0.25 30
0.25 15
Landing TS to X & PilotHold=(NoHold) 0.50 23
0.25 30
0.25 15
Landing T5 to X & PilotHold=(WillHold) 0.50 23
0.25 30
Landing XtoT5 1.00 10
0.25 10
Landing T5to T12 0.50 15
0.25 20
0.25 30
Landing T12t0o G 0.50 40
0.25 50

174

5.6.5. Tower Controller Object

For this model, the Tower Controller Object (TC) has not been further developed. This object
would be defined to represent the behavior of air traffic control behavior in coordinating aircraft
traffic for landing, taxi, and takeoff. As defined by the interaction diagram (Figure 5-48), the
Tower Controller would provide commands and responses to the Taxi Aircraft Object and
runway reservations to the Airport/Airspace Object. In turn, the Tower Controller Object would
receive requests and responses from the Taxi Aircraft Object and aircraft positions from the
Airport/Airspace Object. Additionally, the Tower Controller Object would receive information
on environmental conditions from the Environment Object, including weather, visibility, radio
interference, and traffic levels. The attributes for the Tower Controller Object would include
communicated information such as runway and taxiway destinations and routes, and hold,
proceed and stop commands. The states for the Tower Controller would include a commanding
state when the Tower Controller is issuing commands and a monitoring state when the Tower
Controller is monitoring aircraft traffic.

Even at this assumed level of detail, the control behaviors exhibited by such a Tower Controller
Object represent a relatively coarse abstraction of the actual intricacies of the procedures and
behaviors employed to control traffic at a major airport. For example, many airports separate the
“tower control” and “ground control” functions such that they are performed by different
individuals. A single controller object, as described above, would not be able to model the
details of this relationship or discover risks that might arise, for example, in the interactions
between these controllers as they hand off aircraft to one another. While a two-object controller
model might provide additional insights into aviation safety issues, it would be a significantly
more complex model to build and solve.

5.6.6. Environment Object

For this model, the Environment Object (Env) has not been further developed. This object
would be defined to set the attributes for the environmental context for the analysis. As defined
by the interaction diagram (Figure 5-48) for this example, the Environment Object would
provide information about environmental context to the Taxi Aircraft, the Landing Aircraft, and
the Tower Controller. The attributes for the Environment Object would include values for
visibility, lighting, radio conditions, taxi traffic, and airport signage.

5.6.7. Model Applications

This preliminary model can be applied for several different runway operations including aircraft
spacing for runway crossings, and risk assessment for runway collisions, runway incursions and
for land and hold short operations. This example problem demonstrates how the OBEST method
can be applied for developing system safety models that integrate human performance as well as
the operations of and relationships among the numerous components of the complex aviation
system environment. The Taxi Aircraft and Landing Aircraft Objects can be extended to
incorporate attributes that represent a pilot’s comprehension of assigned instructions as well as
flight crew characteristics including performance factors such as experience, site knowledge,
mental state, and task load. The environmental context can be developed to define visual cues,

175

which in combination with the flight crew characteristic can be used to model human
performance for recognizing and correcting dangerous situations during runway operations.

5.7. Summary

This chapter has provided six example problems that demonstrate the power and versatility of the
OBEST modeling methodology. While many of the problems were relatively simple, they were
selected to emphasize both the various features of OBEST as well as the wide variety of
problems and analysis domains that can be represented using OBEST. The details of the IRM
and DRM models were left out of the discussions in this chapter because of space limitations.
However, those models are presented in more detail in the appendices to this report. The curious
reader should take the initiative to review those models in detail and reconcile them with the
material presented in this chapter.”

After such an involved trip through these six example problems, the reader has undoubtedly
thought of other application domains where OBEST might be useful. Clearly, the flexibility that
is inherent to the OBEST methodology makes it applicable to numerous classes of problems.
One price that is paid for this high degree of flexibility is that it is incumbent upon the user to
provide large amounts of information to embody the details of system behavior within the
OBEST models. It is our hope, however, that one day we will be able to build libraries of
generic OBEST objects to represent frequently encountered components that can be rapidly
inserted into OBEST system models. This will help reduce the work required for the analyst to
make effective use of this very powerful methodology.

* The material presented in this chapter did not show numerical solutions for these example problems. This is
because the OBEST software was not completely functional at the time these models were developed. The models
for which the OBEST software was actually applied make use of data that we do not yet have permission to release
into the public domain. The results of these OBEST analyses are likely to be published at a later date.

176

6. Conclusions and Future Directions

6.1. Conclusions

The OBEST methodology described in this report provides a new way for looking at scenario
based risk assessment problems that has many desirable characteristics while removing a number
of the major limitations found in previous methods.

e [t provides the capability to explore a universe of probabilistic event scenarios (like an event
tree) while removing the limitation of a priori event ordering.

e [t provides a capability for variable event ordering (like a discrete event simulation) without
requiring computationally inefficient Monte Carlo simulation to infer the probabilistic
characteristics of the many scenarios.

e [t enables an analyst to describe the behavior of the various components within a system, and
let the analytical engine infer the emergent behavior that results from their interactions (like
an object-oriented analysis) rather than requiring the analyst to distill the system behavior
within the task of risk model construction (as required in an event tree analysis).

e [t enables an analyst to model many different types of initial and boundary conditions for a
system using a single object model (like a simulation tool) rather than requiring the analyst to
construct separate models for each set of system conditions to be considered (as is often
required in an event tree analysis).

We have demonstrated that this methodology is applicable to a broad variety of risk assessment
problems. In this project we have provided example problems related to race conditions,
infrastructure assessment, air traffic safety, fire damage assessment, and even a recreational
activity. We noted (see Section 3.6) the potential to apply this methodology for a broad range of
infrastructure interdependencies problems (this class of problems provided motivation for the
original methodology development activities). We also see immediate applicability for this
method in a broad variety of risk assessment domains, including:

e Nuclear reactor safety (OBEST is a potential replacement methodology for accident
progression event tree applications).

e Nuclear weapons safety (OBEST could replace current event tree analyses for characterizing
the boundary conditions to which a weapon would be subjected during a transportation
accident),

e Physical security (OBEST could replace current event tree analyses in certain applications,
and may also provide a probabilistic methodology for simulating “force on force™ exercises),

e Information assurance (OBEST could provide a probabilistic method to characterize broad

classes of information system attack scenarios — and especially the probabilistic aspects of
the system’s defensive responses), and

177

e Aviation safety (the variable event ordering in the OBEST enables probabilistic
characterization of many types of aviation safety scenarios, including the already surveyed
areas of flight through icing conditions and airport runway transgressions).

The beauty of this methodology is that it is very general and not tightly tailored to any single
application domain. We believe that the number of application domains will increase as the
methodology gains wider exposure.

In its current form, the OBEST methodology is most applicable to situations where the order of
events cannot be determined a priori (thus, making an event tree analysis very challenging).
Many of these situations involve race conditions — that is, situations where it is important to
know whether event A happens before event B. These situations often come about when a
system is making use of a limited and depletable resource such as fuel or water, and an
undesirable condition occurs if that resource becomes fully exhausted before the system stops
having need of it. The OBEST models these types of race conditions relatively well, and these
capabilities will only be improved as the methodology and software are enhanced in the future.

A second class of problems for which OBEST is highly applicable involves assessments where a
single system needs to be analyzed under a broad variety of situations. This is especially true if
these various situations will cause important events to happen in different orders, because this
lack of a consistent ordering will require the development of multiple ETA models— a
cumbersome and time-consuming process. Since the OBEST methodology embodies the
behavior of the system components, and then coaxes the system behavior from the probabilistic
interactions between these components, OBEST enables the analyst to develop a single
behavioral model of the system and then subject it to a variety of initial and boundary conditions
to represent this broad variety of situations. Thus, the analyst develops the OBEST model once
and exercises it many times to characterize these many situations, while they might be required
to construct many event tree models and exercise each of them only once to obtain the same
result. This characteristic of the OBEST methodology holds the potential to dramatically
improve the productivity of the risk analyst.

While OBEST is highly applicable to the classes of problems described above, it is not the most
appropriate tool for all applications. OBEST is fundamentally an inductive analysis method that
uses a discrete model space in search of a large number of potential system scenarios. Thus, as
an inductive method, it is not appropriate for deductive modeling of system failure criteria (i.e., it
is not a suitable replacement for FMECA or FTA). As a discrete analysis method, it is
unsuitable for modeling systems that cannot be adequately modeled apart from the use of
continuous variables (or for systems that would require a large number of discrete intervals to
approximate a continuous variable). As a branching methodology, it is inappropriate for
modeling systems that exhibit either minimal branching (those would be better analyzed using
traditional design of experiments methods) or quasi-continuous branching (the enumeration and
categorization of a complete set of scenarios for such problems requires prohibitive amounts of
computational effort and storage). Finally, since OBEST requires the analyst to manually
encode the behaviors of system components into objects, OBEST may be difficult to apply to
systems whose components exhibit a very high degree of behavioral complexity and yet are
irreducibly complex (i.e., cannot be broken down into simpler components or subsystems
without unacceptably sacrificing model fidelity). However, even with these limitations, the

178

OBEST methodology provides a powerful new tool for analyzing a broad array of problems that
are important to the risk assessment community.

6.2. Recommendations for Future Work

In its current form, the OBEST methodology and software are a little bit like a rough cut
diamond. They have a certain amount of obvious value in their current state, but could become
dramatically more valuable given some additional refinement. We recommend the following
specific steps be taken in future projects to help the OBEST methodology reach its full potential.

Complete the Software. The task of developing the OBEST software proved much more
difficult than originally envisioned by the LDRD project team. Therefore, numerous features
that were originally envisioned for this software had to be deferred for later implementation.
Some of these are cosmetic or convenience features (e.g., many of the Cancel buttons do not
function as one would normally expect). However, there are a number of computational features
that also remain to be implemented. Bringing the software in line with the original design
specification would go a long way toward helping the OBEST methodology gain a wider
acceptance.

Graphical Modeling Interface. While the current OBEST software is a Microsoft Windows
application, a large amount of its user interface — especially its model development interface —
makes use of a text-based paradigm. On the other hand, the examples shown in Chapter 5 make
use of a variety of types of diagrams to communicate the basic model concepts. The OBEST
software should be extended to enable the analyst to develop models using a graphical paradigm
to directly create these diagrams.

Uncertainty Analysis Capabilities. The current OBEST software makes use of point estimate
values for all of its numeric values. Current Sandia philosophy rightly holds that the analyst
should examine the effects of all input parameter uncertainties on the results generated by the
model. The SETAC large event tree analysis software incorporates uncertainty analysis
capabilities through its interface with the LHS code. SETAC solves the event tree model
separately for each observation generated within LHS. A similar capability could easily be
implemented in the OBEST software. This should be a high priority item in any future OBEST
software development work.

Separate Capacities and Utilization Rates. In its current form, OBEST uses time as a
surrogate variable to incorporate both the storage capacity of a consumable commodity and the
rate at which that commodity is being consumed. This poses problems when the rate of
consumption changes as a function of the changing system conditions. It is conceptually simpler
(and more straightforward for the analyst) to explicitly specify the amount of the commodity that
is present as one parameter value, and the rate at which that commodity is being consumed as a
second parameter value. The computation of the time at which this commodity would be
exhausted is extremely simple, although it may be a challenge to develop a rich and appropriate
syntax that would allow the analyst the needed flexibility to incorporate these concepts into IRM
and DRM case statements. Implementation of this capability would make most OBEST models
vastly more scrutable and likely much more realistic. For this reason, this capability should also
be a high priority item in any future OBEST software development work.

179

Branching Based On “Side Computations.” The next step beyond using separate capacities

and utilization rates is the ability to make branching decisions in IRM and DRM case statements
based on a richer set of mathematical computations. This capability is implemented through the
use of “variables” in the SETAC event tree analysis software. A classic example from nuclear
power accident progression event tree analysis involves the accumulation of hydrogen gas from
multiple sources. In SETAC, one constructs a variable to represent the quantity of hydrogen
produced by each source, and then makes branching decisions related to the ignition
characteristics for that hydrogen based on the sum of those variable values. The variable values
are assigned based on the results of specific questions within the event tree (e.g., if this occurs
then set the hydrogen produced by rhat process to 10 kg; else set to 100 kg).” A similar
capability could be developed for OBEST in which the IRM and DRM scripts would be allowed
to set a variable to a particular value and the IRM and DRM case statements would be capable of
performing mathematical manipulations on those values to make branching decisions. This
would dramatically enhance the power of the OBEST methodology and could make it applicable
to whole new classes of problems.

Integrate With Network Analysis Tools. One long-term goal for OBEST development should
be to realize the vision of creating hybrid probabilistic-deterministic risk models. The example
cited most frequently in this report for such a hybrid model involves linking the OBEST software
with an electric power circuit stability analysis tool to perform infrastructure interdependency
assessments. Under such a vision, the interactions amongst the various elements within an
electric power grid are modeled using a circuit stability analysis tool at each time step in an
OBEST analysis. The results from that tool are used to set the conditions within each object in
the OBEST model, and OBEST models the effect that these conditions have on other
infrastructure entities (e.g. telephone central offices, public safety offices, water and sewer
facilities). Should these interactions feedback into changes in entities within the electric power
grid, these changes would be reflected in new boundary conditions for the circuit stability tool.
This allows both tools to do the parts of the infrastructure analysis problem for which they are
best suited and does not force either to be dramatically adapted to model the infrastructure
interdependency problem. One could envision a number of model hybridization opportunities
that might be implemented with similar success. Clearly, this would require a major research
effort that is not likely to be implemented in the near term.

Importance Measures. A key advantage to the fault tree analysis methodology has always been
the ability to easily extract information about the importance of particular component failures to

* One key aspect of the power of these variable computations in SETAC is that the actual values to which these
variables can be set are part of the uncertainty analysis. Thus, while the process might nominally produce 10 kg of
hydrogen, the uncertainty distribution for that parameter might range from 2 kg to 50 kg. By actually performing a
mathematical sum, and by allowing similar uncertainty in the thresholds to which this sum is compared, SETAC is
able to characterize very complex behavior using very straightforward modeling commands. While this same
problem could be done manually by the analyst using discrete attribute values and logical case statements, the
number of such case statements expands combinatorially with the number of variables, the number of discrete
values, and the number of thresholds. The quality assurance requirements alone for such a modeling method would
make it of questionable utility.

180

the reliability of the overall system. Importance measures such as risk reduction, risk increased,
partial derivative, and even cut set order all provide valuable insights to the analyst that are not
available from the “plain vanilla” fault tree analysis results. The lack of such importance
measures for event tree analysis has been one impediment to that method’s more widespread use.
While it is a nontrivial task, research effort should be expended to investigate what types of
importance measures one might be able to generate for OBEST models, and how those models
might relate back to the widely accepted fault tree importance measures.” Development of such
measures would provide important new avenues for analysts to draw insight and understanding
regarding the systems that they model.

Interface With Optimization Methods. Another key advantage to fault tree analysis methods
is that their results have been easy to interface with optimization methods. One can incorporate a
reliability metric (as derived from the cut sets generated by a fault tree analysis) into the utility
function for a variety of optimization methods in order to search for optimal system designs,
optimal maintenance schedules, optimal spare parts inventories, and so on. It has historically
been more difficult to generate metrics for event tree analysis results that are as useful in these
types of optimality analyses. In addition, the fact that cut sets can be requantified quickly while
event tree analysis results take much longer to regenerate has further restricted the use of event
tree analysis in optimization studies. Since OBEST shares many of the solution characteristics
of a large event tree model, one would expect similar problems when attempting to use OBEST
results in optimization studies. Future research on OBEST should examine how OBEST results
can be best incorporated into optimization utility functions as well as the potential for some
“shortcut™ solution schemes that would make using OBEST a practical alternative in these
optimization problems.

These paragraphs lay out a broad array of research opportunities for the OBEST methodology.
Clearly there are a number of short-term improvements to the software and methodology that can
dramatically improve the usefulness and, hopefully, acceptance of the method. The long-term
research directions would enable OBEST to become a truly mature integrating platform with the
potential to unite many currently disparate domains in the risk assessment world.

6.3. Summary

The purpose of this report has been to introduce the reader to the OBEST event scenario
modeling methodology and to demonstrate its use through several example problems. OBEST
uses concepts derived from event tree analysis, object-oriented analysis, and discrete event
simulation to enable an analyst to rapidly construct realistic models of scenarios for which an a
priori discovery of event ordering is either cumbersome or impossible (especially families of
scenarios that exhibit inconsistent or variable event ordering). Each scenario that results from an
OBEST analysis is automatically associated with an estimate of its likelihood because the

" This research might have the added benefit of providing insights that can be used to develop similar importance
measures for the event tree analysis method since they share a common heritage in terms of solution algorithm.

181

methodology employs probabilistic branching as an integral part of the object model definition.
The methodology solves the resultant object models through the use of a recursive algorithm that
identifies all possible scenarios and their associated occurrence probabilities. Since the
occurrence probabilities are developed directly by the solution algorithm, they need not be
computed by statistical inference from a large sample of Monte Carlo observations (as is
common in some discrete event simulation methodologies). Thus, OBEST is not only much
more computationally efficient than these discrete event simulation methods, but it also
discovers scenarios that have extremely low probabilities as a natural analytical result—
scenarios that would likely be missed by a Monte Carlo-based method. While the ultimate
completion and enhancement of the OBEST software tool for production use would dramatically
increase the utility of the OBEST technique, the methodology and demonstration software
developed under this project provide a basis for significant improvements in the way risk
assessment studies are performed both now and in the future.

182

7.References

1. Wyss, Gregory D., “Risk Assessment and Risk Management for Energy Applications,” in
Energy 2000: State of the Art, ed. Peter Catania, Balaban Publishers, L’ Aquila, Italy, pp.
163-184 (2000).

2. Roberts, N.H., Vesely, W.E., Haasl, D.F., and Goldberg, F.F., Fault Tree Handbook,
NUREG-0492, U.S. Nuclear Regulatory Commission, Washington, DC, 1981.

3. Beaver, C., Schroeppel, R., and Snyder, L., “A Design for Anonymous Authenticated
Information Sharing,” To appear in Proceedings of the IEEE Systems, Man, and
Cybernetics Information Assurance Workshop, IEEE Press, New York, 2001.

4. Painton, L., and Campbell, J., “Genetic Algorithms in the Optimization of System
Reliability,” IEEE Transactions on Reliability, Special Issue on Design, 44(2):172-178,
1995.

5. Basu, N., Pryor, R.J., and Quint, T. Aspen - A Microsimulation Model for the Economy,
SANDO96-1225A, Sandia National Laboratories, Albuquerque, NM, 1996.

6. Barton, D.C and Stamber, K.L.. “An Agent-Based Microsimulation of Critical
Infrastructure Systems,” in Energy 2000: The Beginning of a New Millennium, ed. Peter
Catania, Balaban Publishers, L’ Aquila, Italy, pp. 709 - 714 (2000).

7. Gauntt, R.O., et al., MELCOR Computer Code Manuals — Version 1.8.4,
NUREG/CR-6119, SAND97-2398, Vols.1-2, Rev.1, prepared by Sandia National

Laboratories, Albuquerque, NM, for the U.S. Nuclear Regulatory Commission,
Washington, DC, July 1997 (Revised May 1998).

8. Polif, T., and Sathyanarayana, A., “Efficient Algorithms for Reliability Analysis of Planar
Networks — A Survey,” IEEE Trans. Reliability, Vol. R-35, No. 3, pp. 252-259, August
1986.

9. Wood, R K., “Factoring Algorithms for Computing K-Terminal Network Reliability,”
IEEE Trans. Reliability, Vol. R-35, No. 3, pp. 269-278, August 1986.

10. Karger, D.R., “Random Sampling in Cut, Flow and Network Design Problems,” in
Proceedings of the 26™ ACM Symposium on Theory of Computing, pp. 648-657, ACM
Press, May 1994.

11. Karger, D.R., “A Randomized Fully Polynomial Approximation Scheme for the All-

Terminal Network Reliability Problem,” in Proceedings of the 27" ACM Symposium on
Theory of Computing, pp. 11-17, ACM Press, May 1995.

183

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Wyss, Gregory D., A Mathematical Foundation for the Development of Cut Sets for
Arbitrarily Interconnected Networks, SAND97-1967 (Limited distribution — patent
caution), Sandia National Laboratories, Albuquerque, NM, August 1997.

Kleinrock, L., Queuing Systems Volume 1: Theory, John Wiley & Sons, New York, 1975.

Frost, V.F., and Melamed, B., “Traffic Modeling for Telecommunications Networks,”
IEEE Communications Magazine, pp. 70-81, March 1994.

Singh, SN, and Srivastava, SC, “Improved contingency selection algorithm for voltage
security analysis,” Electric Machines and Power Systems, 26:8(855-871), October 1998.

McCormick, N.J., Reliability and Risk Analysis: Methods and Nuclear Power Applications,
Academic Press, New York, 1981.

Greenberg, H.R., and Cramer, J.J., editors, Risk Assessment and Risk Management for the
Chemical Process Industry, Van Nostrand Reinhold, New York, 1991.

Cramond, W.R., et al., Probabilistic Risk Assessment Course Documentation,
SAND85-1495, NUREG/CR-4350, 7 volumes, prepared by Sandia National Laboratories,
Albuquerque, NM, for the U.S. Nuclear Regulatory Commission, Washington, DC, 1985.

Hays, K.M., 4 User’s Guide to GAETR: Sandia’s “Graphical Analysis of Event Trees”
Software, SAND97-2097, Sandia National Laboratories, Albuquerque, NM, September
1997.

Griesmeyer, J.M., and Smith, L.N., 4 Reference Manual for the Event Progression
Analysis Code (EVNTRE), SAND88-1607, NUREG/CR-5174, Prepared by Sandia National
Laboratories, Albuquerque, NM, for the U.S. Nuclear Regulatory Commission,
Washington, D.C., September 1989.

Jae, M., and Apostolakis, G.E., “The Use of Influence Diagrams for Evaluating Severe
Accident Management Strategies,” Nuclear Technology 99:142-157, August 1992.

Jansma, R.M., et al., Risk-Based Assessment of the Surety of Information Systems,
SAND96-2027, Sandia National Laboratories, Albuquerque, NM, July 1996.

Wyss, G.D., The Formulation and Solution of Time-Variant Markov Models for
Probabilistic Risk Analysis, Master’s Thesis, University of Illinois at Urbana-Champaign,
Urbana, IL, 1985.

Devooght, J., and Smidts, C., “Probabilistic Reactor Dynamics — I: The Theory of
Continuous Event Trees,” Nuclear Science and Engineering 111:229-240, 1992.

184

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Smitds, C., and Devooght, J., “Probabilistic Dynamics: A Numerical Comparison Between
a Continuous Event Tree and DYLAM-Type Event Tree,” from the Proceedings of
PSAMII, G.E. Apostolakis and J.S. Wu of the University of California at Los Angeles,
editors, San Diego, California, March 20-25, 1994.

Devooght, J., and Smidts, C., “Probabilistic Reactor Dynamics — III: A Framework for
Time-Dependent Interaction Between Operator and Reactor During a Transient Involving
Human Error,” Nuclear Science and Engineering 112:100-113, 1992.

Iman, R.L., Helton, J.C., and Johnson, J.D., “A Methodology for Grouping Source Terms
for Consequence Calculations in Probabilistic Risk Assessments,” Risk Analysis
10(4):507-520, 1990.

Wyss, G.D., and Jorgensen, K.H., A User’s Guide to LHS: Sandia’s Latin Hypercube
Sampling Software, SAND98-0210, Sandia National Laboratories, Albuquerque, NM,
February 1998.

Wyss, G.D., Cassini Spacecrafi Uncertainty Analysis Data and Methodology Review and
Update: Volume 2 — A Technical Description of the Sampling Methods Employed in the
Cassini Uncertainty Analysis, SAND2000-1764, Volume 2, Sandia National Laboratories,
Albuquerque, NM, July 2000.

Press, W.H., et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing,
2"ed., Cambridge University Press, Cambridge, 1992.

Cochran, W.G., Sampling Techniques, nd ed., Wiley, New York, 1963.

Robinson, D.G., 4 Survey of Probabilistic Methods Used in Reliability, Risk and
Uncertainty Analysis: Analytical Techniques I, SAND98-1189, Sandia National
Laboratories, Albuquerque, NM, June 1998.

Siu, N., “Risk Assessment for Dynamic Systems: An Overview,” Reliability Engineering
and System Safety, 43(1):43-73, 1994.

Acosta, C., and Siu, N., “Dynamic Event Trees in Accident Sequence Analysis:
Application to Steam Generator Tube Rupture,” Reliability Engineering and System Safety,
41(2):135-154, 1993.

NUS Corporation, Final Safety Analysis Report for the Ulysses Mission, ULS-FSAR-006,
Prepared for the U.S. Department of Energy Office of Special Applications, Washington,
DC, 1990.

U.S. Federal Aviation Administration Technical Center, Airport and Airspace Delay

Simulation Model (SIMMOD), http://www.tc.faa.gov/act-500/nasacb/simmod.html,
Atlantic City, New Jersey, 2000.

185

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Abkin, M.H., personal communications regarding ATAC Corporation’s use of the
SIMMOD Pro! Simulation software, ATAC Corporation, 757 N. Mary Avenue, Sunnyvale,
California, October 2000.

Bobick, J.C., Abkin, M.H., ef al., Development of Fast-Time Simulation Techniques to
Model Safety Issues in the National Airspace System: Phase I Final Report, Prepared for
the National Aeronautics and Space Administration Ames Research Center by ATAC
Corporation, Sunnyvale, California, December 1999.

Wyss, G.D., Craft, R.L., and Funkhouser, D.L., The Use of Object-Oriented Analysis
Methods in Surety Analysis, SAND99-1242, Sandia National Laboratories, Albuquerque,
NM, May 1999.

Shlaer, S., and Mellor, S.J., Object Lifecycles: Modeling the World in States, Prentice Hall,
Englewood Cliffs, N. J., 1992.

Booch, G., Jacobson, 1., and Rumbaugh, J., The Unified Modeling Language User Guide,
Addison-Wesley, New York, 1998.

Ziegler, B.P., Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent
Agents and Endomorphic Systems, Academic Press, San Diego, California, 1990.

Kuipers, B., Qualitative Reasoning, The MIT Press, Cambridge, MA, 1994.

Griesmeyer, J.M., and Smith, L.N., 4 Reference Manual for the Event Progression
Analysis Code (EVNTRE), SAND88-1607, NUREG/CR-5174, Prepared for the U.S.
Nuclear Regulatory Commission by Sandia National Laboratories, Albuquerque, New
Mexico, September 1989.

Wyss, Gregory D., “Training Materials for the SETAC Event Tree Analysis Software,”
Memo to Susan Dingman, Sandia National Laboratories, Albuquerque, New Mexico,
September 5, 2000.

Firebaugh, M.W., Artificial Intelligence: A Knowledge-Based Approach, Boyd and Fraser
Publishing Co., Boston, 1988.

U.S. Nuclear Regulatory Commission, Severe Accident Risks: An Assessment for Five U.S.
Nuclear Power Plants, NUREG-1150, U.S. Nuclear Regulatory Commission, Washington,
D.C., 1990.

Ericson, D.M., et al., Analysis of Core Damage Frequency: Internal Events Methodology,

NUREG/CR-4550, SANDS86-2084, Prepared for the U.S. Nuclear Regulatory Commission
by Sandia National Laboratories, Albuquerque, New Mexico, 1989.

186

49.

50.

51.

52.

53.

54.

Gorham, E.D., et al., Evaluation of Severe Accident Risks: Methodology for the
Containment, Source Term, Consequence, and Risk Integration Analyses,
NUREG/CR-4551, SANDS86-1309, Prepared for the U.S. Nuclear Regulatory Commission
by Sandia National Laboratories, Albuquerque, New Mexico, 1993.

U.S. Nuclear Regulatory Commission, 4 Review of NRC Staff Uses of Probabilistic Risk
Assessment, NUREG-1489, U.S. Nuclear Regulatory Commission, Washington, D.C.,
1994.

Payne, A.C., Jr., and Camp, A.L., Parametric HECTR Calculations of Hydrogen Transport
and Combustion at N Reactor, SAND86-2630, Sandia National Laboratories, Albuquerque,
New Mexico, June 1987.

Wyss, G.D., et al., Accident Progression Event Tree Analysis for Postulated Severe
Accidents at N Reactor, SAND89-2100, Sandia National Laboratories, Albuquerque, New
Mexico, June 1990.

Miller, L.A., et al., N Reactor Probabilistic Risk Assessment Supporting Calculations,
SAND89-2101, 3 Volumes, Sandia National Laboratories, Albuquerque, New Mexico,
June 1990.

Camp, A.L., et al., Level III Probabilistic Risk Assessment for N Reactor, WHC-MR-0045,
SAND89-2102, Prepared for Westinghouse Hanford Corporation by Sandia National
Laboratories, Albuquerque, New Mexico, April 1990.

187

This Page Intentionally Blank

188

A. Example Details for Electric Power Supply for a
Police Station

This appendix provides a description of the system structure, interactions, and state transition
diagrams for the electric power supply for a police station presented in Section 5.1 of the main
body of the report. This description includes the sets of “if — then — else if — else” scripts and
logical conditions for the IRM and DRM models of the state transition diagrams.

A.1 System Structure and Interactions

The system structure diagram for this example problem is shown in Figure A-1. The description
of the functional blocks is provided in Table A-1. The interaction diagram is provided in Figure
A-2. The functional interactions between the blocks are indicated by directed arrows and are
specified in Table A-2.

Electric Power
Bus (EPB)

Telephone Switch Police Station
Building (TSB) Power (PSP)

Figure A-1. System structure diagram for police station power model.

Table A-1. Functional blocks for police station power.

Telephone Switch Building (TSB): Provides telephone service for the
police station and for electric power company.

Police Station Power (PSP): Normal and backup power for the police
station to support community police service.

Electric Power Bus (EPB): Provides power for the telephone switch
building and police station.

189

Electric Power
/ Bus (EPB) \

Telephone Switch Police Station ‘

Building (TSB) — > Power (PSP)

Figure A-2. Interaction diagram for police station power model.

Table A-2. Functional interactions for police station power model.

TSB-EPB: The telephone switch building provides telephone service to
support the electric power bus.

TSB-PS: The telephone switch building provides telephone service to
the police station.

EPB-TSB: The electric power bus provides normal power to the
telephone switch building.

EPB-PS: The electric power bus provides normal power to the police
station.

A.2 Electric Power Bus Object

The Electric Power Bus Object (EPB) provides normal electric power for the telephone switch
building and the police station. The state transition diagram for the electric power bus is shown
in Figure A-3. The events and state transitions, attributes, initial conditions, and sets of “if —
then — else if — else” scripts and logical conditions for the IRM and DRM models for each state
are presented in the following sections.

Events and State Transitions

Event:Power fails can be generated internally or externally to the object and causes a transition
from State:(Provides Power) to State:(Does Not Provide Power).

Event:Power restored can be generated internally or externally to the object and causes a
transition from State:(Does Not Provide Power) to State:(Provides Power).

Attributes (Values)
Power Provided — PP (Provides Power, Does Not Provide Power)

190

P 1
Provides | ower fails > Does Not
Power Jq Provide Power
Power restored

J

Figure A-3. State transition diagram for the electric power bus.

Initial Conditions
Initial state is (Provides Power) until analyst generates Event:Power fails. The initial value of
attribute PP=(Provides Power).

State:(Provides Power)
Immediate Response Model:
If PP/=(Provides Power) Then Set PP=(Provides Power)

Delayed Response Model:
None.

State:(Does Not Provide Power)
Immediate Response Model:
If PP/=(Does Not Provide Power) Then Set PP=(Does Not Provide Power)

Delayed Response Model:

If TSB:TA=(Provides Telephone Service) Then
P=0.90, Delay 2 Hours, then Generate Event:Power restored
P=0.10, Delay 36 Hours, then Generate Event:Power restored

Else
P=1.00, Delay 36 Hours, then Generate Event:Power restored

A.3 Telephone Switch Building Object

The Telephone Switch Building Object (TSB) provides telephone service for the police station
and to support restoration of the electric power bus. The state transition diagram for the
telephone switch building is shown in Figure A-4. The events and state transitions, attributes,
initial conditions, and sets of “if — then — else if — else” scripts and logical conditions for the IRM
and DRM models for each state are presented in the following sections.

Events and State Transitions

Event:Power fails can be generated internally or externally to the object and causes a transition
from State:(Available With Normal Power) to State:(Available With Generator Power).

Event:Generator fails is generated internally to the object and causes a transition from
State:(Available With Generator Power) to State:(Available With Battery Power).

Event:Batteries fail is generated internally to the object and causes a transition from
State:(Available with Battery Power) to State:(Unavailable).

191

Available With

Power —
restored Normal Power Power fails
4 \
Power
Unavailable Power restored __ Available With
restored Generator Powe
Batteries fail Generator fails
Available With |, —
Battery Power

Figure A-4. State transition diagram for telephone switch building.

Event:Power restored can be generated internally or externally to the object and causes the
following transitions:
from State:(Available With Generator Power) to State:(Available With Normal Power);
from State:(Available With Battery Power) to State:(Available With Normal Power); and
from State:(Unavailable) to State:(Available With Normal Power).

Attributes (Values)

Telephone Available — TA (Provides Telephone Service, Does Not Provide Telephone Service)
Switch Mode — SM (Available With Normal Power, Available With Generator Power, Available
With Battery Power, Unavailable).

Initial Conditions

Initial state is (Available With Normal Power) until analyst generates Event:Power fails. The
initial values of object attributes are TA=(Provides Telephone Service) and SM=(Available With
Normal Power).

State:(Available With Normal Power)

This is the initial state.

Immediate Response Model:

If TA/=(Provides Telephone Service) Then Set TA=(Provides Telephone Service)

Else If SM/=(Available With Normal Power) Then Set SM=(Available With Normal Power)

Delayed Response Model:
None.

192

State:(Available With Generator Power)
Immediate Response Model:
If SM/=(Available With Generator Power) Then
This indicates that the object has just entered this state — it is only entered once.
P=0.03, Generate Event:Generator fails.
P=0.97, Set SM=(Available With Generator Power)
Else If TA/=(Provides Telephone Service) Then
Set TA=(Provides Telephone Service)

Delayed Response Model:
Always Do This
Delay 48 hours, Generate Event:Generator fails.

State:(Available With Battery Power)

Immediate Response Model:

If TA/=(Provides Telephone Service) Then Set TA=(Provides Telephone Service)

Else If SM/=(Available With Battery Power) Then Set SM=(Available With Battery Power)

Delayed Response Model:
Always Do This
Delay 8 hours, then generate Event:Battery fails.

State:(Unavailable)

Immediate Response Model:

If TA/=(Does Not Provide Telephone Service) Then Set TA=(Does Not Provide Telephone
Service)

Else If SM/=(Unavailable) Then Set SM=(Unavailable)

Delayed Response Model:
None.

A.4 Police Station Power Object

The Police Station Power Object (PSP) represents normal and backup power for the police
station to support community police service. The state transition diagram for the telephone
switch building is shown in Figure A-5. The events and state transitions, attributes, initial
conditions, and sets of “if — then — else if — else” scripts and logical conditions for the IRM and
DRM models for each state are presented in the following sections.

193

Power fails
Power

Power
restored

Police generator fails

Figure A-5. State transition diagram for police station.

Events and State Transitions

Event:Power fails can be generated internally or externally to the object and causes a transition
from State:(Available with Normal Power) to State:(Available with Generator Power).

Event:Police generator fails is generated internally to the object and causes a transition from
State:(Available with Generator Power) to State:(Unavailable).

Event:Power restored can be generated internally or externally to the object and causes the
following transitions:
from State:(Available with Generator Power) to State:(Available with Normal Power);
and
from State:(Unavailable) to State:(Available with Normal Power).

Attributes (Values)
Station Availability — SA (Available With Normal Power, Available With Generator Power,
Unavailable).

Initial Conditions
Initial state is (Available with Normal Power) until analyst generates Event:Power fails. The
initial value of attribute SA=(Available With Normal Power).

State:(Available with Normal Power)

This is the initial state.

Immediate Response Model:

If SA/=(Available With Normal Power) then Set SA=(Available With Normal Power)

Delayed Response Model:
None.

194

State:(Available with Generator Power)

Immediate Response Model:

If SA/=(Available With Generator Power) then
This indicates that the object has just entered this state — it is only entered once.
P=0.05, Generate Event:Police Generator fails.
P=0.95, Set SA=(Available With Generator Power)

Delayed Response Model:

If TSB:TA=(Provides Telephone Service) then
P=0.90, Delay 48 hours (at least one day’s additional generator fuel is obtained)
P=0.10, Delay 24 hours then generate Event:Generator fails.

Else
Delay 24 hours, then generate Event:Generator fails.

State:(Unavailable)
Immediate Response Model:
If SA/=(Unavailable) then Set SA=(Unavailable)

Delayed Response Model:
None

195

This Page Intentionally Blank

196

B. Example Details for Fuel Tank Supply for a Gas
Burner

This appendix provides a description of the system structure, interactions, and state transition
diagrams for the fuel tank supply for a gas burner presented in Section 5.2 of the main body of
the report. This description includes the sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models of the state transition diagrams.

B.1 System Structure and Interactions

An illustration of the fuel tank supply system is shown in Figure B-1. The system structure
diagram for this example problem is shown in Figure B-2. The description of the functional
blocks is provided in Table B-1. The interaction diagram is provided in Figure B-3. The
functional interactions between the blocks are indicated by directed arrows and are specified in

Table B-2.

Figure B-1. Fuel tank supply for a gas burner.

Fuel System

Figure B-2. System structure diagram for gas burner fuel supply model.

197

Table B-1. Functional blocks for gas burner fuel supply.

Valve: Opens and closes to control fuel flow for the gas
burner.

Fuel System: Five tanks that comprise fuel system for
gas burner.

Fuel System

<

Figure B-3. Interaction diagram for gas burner fuel supply model.

Table B-2. Functional interactions for gas burner fuel supply model.

Valve - Fuel System: The valve requests a specified fuel
flow from the fuel system.

Fuel System - Valve: The fuel system provides fuel
supply in response to the valve’s requests.

B.2 Valve Object

The Valve Object represents a valve that opens and closes to control fuel flow for the gas burner.
The state transition diagram for the valve is shown in Figure B-4. The events and state
transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models for each state are presented in the following sections.

Events and State Transitions

Event:Turn On is generated by the Valve Object, and also externally by the analyst to begin the
analysis, and causes a transition from State:(OfY) to State:(On).

Event:Turn Off is generated by the Valve Object and causes a transition from State:(Off) to
State:(On).

198

Turn Off

Turn On

Figure B-4. State transition diagram for the valve.

Attributes (Values)
FlowRequest — FR (0 gpm, 2 gpm)

Initial Conditions
State:(Off) (use “TurnOn” to start the analysis); FR=(0)

State:(Off)
Immediate Response Model:
Set FR=(0), Turn on my clock

Delayed Response Model:
If Fuel System:FL=(0) then
Do Nothing

Else
P=0.3, Delay 10, Reset my timer, Generate Event:TurnOn
P=0.4, Delay 20, Reset my timer, Generate Event:TurnOn
P=0.3, Delay 30, Reset my timer, Generate Event:TurnOn

State:(Off)
Immediate Response Model:
Set FR=(2), Turn on my clock

Delayed Response Model:

Always do this:
P=0.2, Delay 10, Reset my timer, Generate Event:TurnOn
P=0.3, Delay 20, Reset my timer, Generate Event:TurnOn
P=0.4, Delay 30, Reset my timer, Generate Event:TurnOn
P=0.1, Delay 40, Reset my timer Generate Event:TurnOn

B.3 Fuel System Object

The Fuel System Object represents a fuel system consisting of five tanks (a tank farm), including
one 10-gallon tank, one 15-gallon tank, and three 25-gallon tanks that provides fuel for the gas
burner. The state transition diagram for the fuel system is shown in Figure B-5. The events and

199

state transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and
logical conditions for the IRM and DRM models for each state are presented in the following
sections.

Refilling Full — Gas
A
Refill Change y;;vk
v
Empty Drained — C’Il;zlllll;e

Figure B-5. State transition diagram for fuel system.

Events and State Transitions

Event:Full is generated by the Fuel System Object and causes a transition from State:(Refilling)
to State:(Gas).

Event:Change is generated by the Fuel System Object and causes a transition from State:(Gas) to
State:(Tank Change).

Event:New Tank is generated by the Fuel System Object and causes a transition from State:(Tank
Change) to State:(Gas).

Event:Drained is generated by the Fuel System Object and causes a transition from State:(Tank
Change) to State:(Empty).

Event:Refill is generated by the Fuel System Object and causes a transition from State:(Empty)
to State:(Refilling).

Attributes (Values)
Fuel Level — FL (100 gal, 75 gal, 50 gal, 25 gal, 10 gal, 0 gal)
{Corresponds to 5, 4, 3, 2, 1, or 0 tanks contain any fuel.}

Initial Conditions
State:(Gas); FL=(100)

200

State:(Refilling)
Immediate Response Model:
Set FL=(100), Reset my clock, and Generate Event: Full

Delayed Response Model:
None.

State:(Empty)
Immediate Response Model:
Set FL=(0), Reset my clock

Delayed Response Model:
None.

State:(Gas)
Immediate Response Model:
If Valve:FR=(0) then
Stop my clock
Else Turn on my clock

Delayed Response Model:
If FL=(100) then

Delay 12.5, Generate Event:Change
Else If FL=(75) then

Delay 12.5, Generate Event:Change
Else If FL=(50) then

Delay 12.5, Generate Event:Change
Else If FL=(25) then

Delay 7.5, Generate Event:Change
Else If FL=(10) then

Delay 5.0, Generate Event:Change
Else (FL=(0))

No Operation

201

State:(Tank Change)
Immediate Response Model:
If FL=(100) then

Set FL=(75), Reset my clock, Generate Event:NewTank
Else If FL=(75) then

Set FL=(50), Reset my clock, Generate Event:NewTank
Else If FL=50 then

Set FL=(25), Reset my clock, Generate Event:NewTank
Else If FL=25 then

Set FL=(10), Reset my clock, Generate Event:NewTank
Else If FL=(10) then

Set FL=(0), Reset my clock, Generate Event: Drained
Else (FL=(0))

Reset my clock, Drained

Delayed Response Model:
None.

202

C. Example Details for A Singles Racquetball Game

This appendix provides a description of the system structure, interactions, and state transition
diagrams for the singles racquetball game presented in Section 5.3 of the main body of the
report. This description includes the sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models of the state transition diagrams.

C.1 System Structure and Interactions

The system structure diagram for this example problem is shown in Figure C-1. The description
of the functional blocks is provided in Table C-1. The interaction diagram is provided in Figure
C-2. The functional interactions between the blocks are indicated by directed arrows and are
specified in Table C-2.

Game (G)

Player A (A) Player B (B)

Figure C-1. System structure diagram for model of a singles racquetball match.

Table C-1. Functional blocks for singles racquetball game.

Player A (A): One player in a racquetball singles game
with an individual serve and shot profile.

Player B (B): A second player in a racquetball singles
game with an individual serve and shot profile.

Game (G): A singles game of racquetball.

203

Game (G)

"\

Player A (A) Player B (B)

Figure C-2. Interaction diagram for model of a singles racquetball match.

Table C-2. Functional interactions for model of singles racquetball match.

A-B: Player A hits shot returns and serves to Player B.
A-G: Player A provides its status to the Game.

B-A: Player B hits shot returns and serves to Player A.
B-G: Player B provides its status to the Game.

G-A: The Game tracks serving and scoring for Player A.

G-B: The Game tracks serving and scoring for Player B.

C.2 Player A Object

The Player A Object (A) represents one player in a singles racquetball game. Attributes for this
object are defined to provide information about Player A’s shot, serve and serve return profiles.
The state transition diagram for Player A is shown in Figure C-3. The events and state
transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models for each state are presented in the following sections.

Events and State Transitions

Event:Start new rally is generated by the Game Object (G) and causes transition from
State:(Stop) to State:(Waiting to/for Serve).

Event:Player A faults st serve is generated within (A) and causes transition from State:(Waiting
to/for Serve) to State:(Waiting to Serve2).

Event:Player A faults 2nd serve is generated within (A) and causes transition from
State:(Waiting to Serve2) to State:(Stop).

204

Player A

/// makes shot
Waiting
to Return

Player A
makes shot
Player B \
makes shot
Makin
\’ a Sh otg Player B
makes shot

Player A Waiting to

makes shot Serve2

Player A
faults 1st serve
Player B
misses shot
Player A
misses shot

J Player B

faults 2nd serve

Waiting to/
for Serve

Player A
faults 2nd serve
»> Stop

Figure C-3. State transition diagram for Player A object.

Event:Player A makes shot is generated within (A) and causes the following transitions:
from State:(Waiting to/for Serve) to State:(Waiting to Return);
from State:(Waiting to Serve2) to State:(Waiting to Return); and
from State:(Making a Shot) to State:(Waiting to Return).

Event:Player A misses shot is generated within (A) and cause transition from State:(Making a
Shot) to State:(Stop).

Event:Player B makes shot is generated by (B) and causes the following transitions:
from State:(Waiting to/for Serve) to State:(Making a Shot); and
from State:(Waiting to Return) to State:(Making a Shot).

Event:Player B faults 2nd serve is generated by (B) and causes transition from State:(Waiting
to/for Serve) to State:(Stop).

Event:Player B misses shot is generated by (B) and causes transition from State:(Waiting to
Return) to State:(Stop).

Attributes (Values)
SHOT_ TYPE (Drive, Lob, ZDrive, ZLob, Fault, Out, Return, Unset)
SERVE RETURN (Down the Line, Ceiling, Crosscourt/Pinch, Skip, Unset)

Initial Conditions
SHOT TYPE=(Unset); SERVE RETURN=(Unset)

205

State:(Stop)
The event to transition from this state is generated external to this object (Event:Start new rally is

generated by (G)).

Immediate Response Model:
None.

Delayed Response Model:
None.

State:(Waiting to/for Serve)

Immediate Response Model:

If SERVE=(A), then
P=0.72, SHOT TYPE=(Drive), Generate Event:Player A makes shot.
P=0.03, SHOT TYPE=(Lob), Generate Event:Player A makes shot.
P=0.03, SHOT TYPE=(ZDrive), Generate Event:Player A makes shot.
P=0.01, SHOT TYPE=(ZLob), Generate Event:Player A makes shot.
P=0.21, SHOT TYPE=(Fault), Generate Event:Player A faults Ist serve.

Delayed Response Model:
None.

State:(Waiting to Serve2)

Immediate Response Model:

If TRUE, then
P=0.05, SHOT TYPE=(Drive), Generate Event:Player A makes shot.
P=0.84, SHOT TYPE=(Lob), Generate Event:Player A makes shot.
P=0.03, SHOT TYPE=(ZLob), Generate Event:Player A makes shot.
P=0.08, SHOT TYPE=(Out), Generate Event:Player A faults 2nd serve.

Delayed Response Model:
None.

State:(Making a Shot)

Immediate Response Model:

If SERVE=(A) then
P=0.80, Set A:SHOT TYPE=(Return), Generate Event:Player A makes shot.
P=0.20, Set A:SHOT_ TYPE=(Out), Generate Event:Player A misses shot.

206

Else If B:SHOT TYPE=(Drive) then
P=0.45, A:SHOT TYPE=(Return), SERVE_RETURN=(Down the Line), Generate
Event:Player A makes shot.
P=0.35, A:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
A makes shot.
P=0.05, A:SHOT_ TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player A makes shot.
P=0.15, A:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event:Player A
misses shot.

Else If B:SHOT TYPE=(Lob) then
P=0.25, A:SHOT TYPE=(Return), SERVE _RETURN=(Down the Line) Generate
Event:Player A makes shot.
P=0.60, A:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
A makes shot.
P=0.15, A:SHOT TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player A makes shot.
P=0.05, A:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event: Player A
misses shot.

Else If B:SHOT TYPE=(ZDrive) then
P=0.40, A:SHOT TYPE=(Return), SERVE_RETURN=(Down the Line), Generate
Event:Player A makes shot.
P=0.30, A:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
A makes shot.
P=0.05, A:SHOT_ TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player A makes shot.
P=0.25, A:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event:Player A
misses shot.

Else If B:SHOT TYPE=(ZLob) then
P=0.20, A:SHOT TYPE=(Return), SERVE RETURN=(Down the Line), Generate
Event:Player A makes shot.
P=0.50, A: SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate
Event:Player A makes shot.
P=0.25, A: SHOT TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player A makes shot.
P=0.05, A: SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event: Player A
misses shot.

Else If B:SHOT TYPE=(Return) then
P=0.80, Set A:SHOT_ TYPE=(Return), Generate Event: Player B makes shot.
P=0.20, Set A:SHOT_ TYPE=(Out), Generate Event:Player B misses shot.

Delayed Response Model:
None.

207

State:(Waiting to Return)
The events to transition from this state is generated external to this object (Event:Player B makes
shot and Event:Player B misses shot are generated by (B)).

Immediate Response Model:
None.

Delayed Response Model:
None.

C.3 Player B Object

The Player B Object (B) represents one player in a singles racquetball game. Attributes for this
object are defined to provide information about Player B’s shot, serve and serve return profiles.
The state transition diagram for Player B is shown in Figure C-4. The events and state
transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models for each state are presented in the following sections.

Events and State Transitions

Event:Start new rally is generated by the Game Object (G) and causes transition from
State:(Stop) to State:(Waiting to/for Serve).

Event:Player B faults st serve is generated within (B) and causes transition from State:(Waiting
to/for Serve) to State:(Waiting to Serve?2).

Event:Player B faults 2nd serve is generated within (B) and causes transition from
State:(Waiting to Serve2) to State:(Stop).

Event:Player B makes shot is generated within (B) and causes the following transitions:
from State:(Waiting to/for Serve) to State:(Waiting to Return);
from State:(Waiting to Serve2) to State:(Waiting to Return); and
from State:(Making a Shot) to State:(Waiting to Return).

Event:Player B misses shot is generated within (B) and cause transition from State:(Making a
Shot) to State:(Stop).

Event:Player A makes shot is generated by (A) and causes the following transitions:
from State:(Waiting to/for Serve) to State:(Making a Shot); and
from State:(Waiting to Return) to State:(Making a Shot).

Event:Player A faults 2nd serve is generated by (A) and causes transition from State:(Waiting
to/for Serve) to State:(Stop).

Event:Player A misses shot is generated by (A) and causes transition from State:(Waiting to
Return) to State:(Stop).

208

Player B

Player B Player B
Player A makes shot makes shot
makes shot \
> Player A Player B
makes shot

faults Ist serve

Player A
misses shot
Player B
misses shot _—
J Player A
Player B
Jaults 2nd serve Sfaults 2nd serve

Start
new rally

Figure C-4. State transition diagram for Player B object.

Attributes (Values)
SHOT_ TYPE (Drive, Lob, ZDrive, ZLob, Fault, Out, Return, Unset)
SERVE RETURN (Down the Line, Ceiling, Crosscourt/Pinch, Skip, Unset)

Initial Conditions
SHOT TYPE=(Unset); SERVE RETURN=(Unset)

State:(Stop)
The event to transition from this state is generated external to this object (Event:Start new rally is

generated by (G)).

Immediate Response Model:
None.

Delayed Response Model:
None.

209

State:(Waiting to/for Serve)

Immediate Response Model:

If SERVE=(B), then
P=0.63, SHOT TYPE=(Drive), Generate Event:Player B makes shot.
P=0.05, SHOT TYPE=(Lob), Generate Event:Player B makes shot.
P=0.04, SHOT TYPE=(ZDrive), Generate Event:Player B makes shot.
P=0.02, SHOT TYPE=(ZLob), Generate Event:Player B makes shot.
P=0.25, SHOT TYPE=(Fault), Generate Event:Player B faults Ist serve.

Delayed Response Model:
None.

State:(Waiting to Serve2)

Immediate Response Model:

If TRUE, then
P=0.03, SHOT TYPE=(Drive), Generate Event:Player B makes shot.
P=0.80, SHOT TYPE=(Lob), Generate Event:Player B makes shot.
P=0.02, SHOT TYPE=(ZLob), Generate event Event:Player B makes shot.
P=0.05, SHOT TYPE=(Out), Generate Event:Player B faults 2nd serve.

Delayed Response Model:
None.

State:(Making a Shot)

Immediate Response Model:

If SERVE=(B) then
P=0.75, Set B:SHOT TYPE=(Return), Generate Event:Player B makes shot.
P=0.25, Set B:SHOT TYPE=(Out), Generate Event:Player B misses shot.

Else If A:SHOT TYPE=(Drive) then
P=0.48, B:SHOT TYPE=(Return), SERVE RETURN=(Down the Line), Generate
Event:Player B makes shot.
P=0.26, B:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
B makes shot.
P=0.08, B:SHOT TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player B makes shot.
P=0.18, B:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event:Player B
misses shot.

210

Else If A:SHOT TYPE=(Lob) then
P=0.18, B:SHOT TYPE=(Return), SERVE RETURN=(Down the Line) Generate
Event:Player B makes shot.
P=0.64, B:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
B makes shot.
P=0.16, B:SHOT TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player B makes shot.
P=0.02, B:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event: Player B
misses shot.

Else If A:SHOT TYPE=(ZDrive) then
P=0.45, B:SHOT TYPE=(Return), SERVE RETURN=(Down the Line), Generate
Event:Player B makes shot.
P=0.15, B:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
B makes shot.
P=0.02, B:SHOT TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player B makes shot.
P=0.33, B:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event.: Player B
misses shot.

Else If A:SHOT TYPE=(ZLob) then
P=0.30, B:SHOT TYPE=(Return), SERVE RETURN=(Down the Line), Generate
Event:Player B makes shot.
P=0.40, B:SHOT TYPE=(Return), SERVE RETURN=(Ceiling), Generate Event:Player
B makes shot.
P=0.20, B:SHOT TYPE=(Return), SERVE RETURN=(Crosscourt/Pinch), Generate
Event:Player B makes shot.
P=0.10, B:SHOT TYPE=(Out), SERVE RETURN=(Skip), Generate Event.: Player B
misses shot.

Else If A:SHOT TYPE=(Return) then
P=0.75, Set B:SHOT TYPE=(Return), Generate Event:Player B makes shot.
P=0.25, Set B:SHOT TYPE=(Out), Generate Event:Player B misses shot.

Delayed Response Model:
None.

State:(Waiting to Return)
The events to transition from this state is generated external to this object (Event:Player A makes
shot and Event:Player A misses shot are generated by (A)).

Immediate Response Model:
None.

Delayed Response Model:
None.

211

C.4 The Game Object

The Game Object (G) represents the game played between two racquetball players. Attributes
for this object are defined to assign the players’ serve and to track the score during the game.
The state transition diagram for the Game is shown in Figure C-5. The events and state
transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models for each state are presented in the following sections.

Events and State Transitions

Event:Start game is generated external to (G) to initiate the game and causes the transition from
State:(Idle) to State:(Starting Game).

Event:Start new rally is generated within (G) and causes the following transitions:
from State:(Starting Game) to State:(Waiting);
from State:(Player A Wins Rally) to State:(Waiting); and
from State:(Player B Wins Rally) to State:(Waiting).

Event:Player A misses shot is generated from (A) and causes the transition from State(Waiting)
to State;(Player B Wins Rally).

Event:Player B misses shot is generated from (B) and causes the transition from State(Waiting)
to State:(Player A Wins Rally).

Event:Player A faults 2nd serve is generated by (A) and causes the transition from
State:(Waiting) to State:(Player B Wins Rally).

Event:Player B faults 2nd serve is generated by (B) and causes the transition from
State:(Waiting) to State:(Player A Wins Rally).

Event:End game is generated within (G) and causes the following transitions:
from State:(Player A Wins Rally) to State:(Idle).
from State:(Player B Wins Rally) to State:(Idle).

Attributes (Values)
SERVE (A, B)

SHOT (A, B, 0)

SCORE_A (Integer = 0-15)
SCORE_B (Integer = 0-15)
WINNER (A, B, Unknown)

Initial Conditions
Initial conditions are set within State:(Starting Game) after Event:Start game is generated.

SERVE=(A); SHOT=(0); SCORE_A=(0); SCORE_B=(0); WINNER=(Unknown)

212

End game —\

Player B
v / Wins Rally
Idle J‘\ Start
End game new rally
Player A Plaver A
Start game Wins Rally missﬁ o
Start
Player B new rally
v misses shot
Starting Player B
Game Sfaults 2nd serve P ;;ltg/e:l A
aults 2nd serve
v
Waiting

Start
new rall 1_//

Figure C-5. State transition diagram for Game Object.

State:(Idle)
The event to transition from this state is generated by the analyst to external to this object to

initiate a game (Event:Start game).

Immediate Response Model:
None.

Delayed Response Model:
None.

213

State:(Starting Game)

Immediate Response Model:

If TRUE, then
Set SERVE =(A), Set SHOT=(0), Set SCORE_A=(0), Set SCORE_B=(0), Set
WINNER=(Unknown), Generate Event:Start new rally.

Delayed Response Model:
None.

State:(Waiting)

The events to transition from this state are generated external to this object. Event:Player A
misses shot and Event:Player A faults 2nd serve are generated by (A). Event:Player B misses
shot and Event: Player B faults 2nd serve are generated by (B).

Immediate Response Model:
None.

Delayed Response Model:
None.

State:(Player A Wins Rally)
Immediate Response Model:
If SERVE=(A) and SCORE_A=(14), then

increment SCORE_A, Set WINNER=(A), Generate Event:End game.
Else if SERVE =(A), then

increment SCORE_A, Set SHOT=(A), Generate Event:Start new rally.
Else Set SHOT=(A), Set SERVE=(A), Generate Event:Start new rally.

Delayed Response Model:
None.

State:(Player B Wins Rally)
Immediate Response Model:
If SERVE=(B) and SCORE B=(14), then

increment SCORE B, Set WINNER=(B), Generate Event:End game.
Else if SERVE =(B), then

increment SCORE B, Set SHOT=(B), Generate Event:Start new rally.
Else Set SHOT=(B), Set SERVE=(B), Generate Event:Start new rally.

Delayed Response Model:
None.

214

D. Example Details for Circuit Analysis for Nuclear
Power Plant Cable Fires

This appendix provides a description of the system structure, interactions, and state transition
diagrams for the circuit analysis for nuclear power plants presented in Section 5.4 of the main
body of the report. This description includes the sets of “if — then — else if — else” scripts and
logical conditions for the IRM and DRM models of the state transition diagrams. The circuit of
interest for the circuit analysis example is a solenoid-operated valve control circuit (Figure D-1).

'
Fuse/10A
1
1-HS-3612
2
«©
o
Q
Q T G4 C.
g Cs) c
& Cs I Cq
a 1SV612
128612 ac—L bo g erergize SV

toopen
1CVB12

¥ Fuse/10A

Figure D-1. Example solenoid-operated valve control circuit.

D.1 System Structure and Interactions

The system structure diagram for this example problem is shown in Figure D-2. The description
of the functional blocks is provided in Table D-1. The interaction diagram is provided in Figure
D-3 The functional interactions between the blocks are indicated by directed arrows and are
specified in Table D-2.

D.2 Load Object

The Load Object (L) is an element in a partial circuit that represents loads (for example solenoid
coils, indicators, motors) that can draw from + or - voltage. Attributes for this object are defined
to provide information about the physical connections and electric potential of a load in a partial
circuit. The state transition diagram for the load object is shown in Figure D-4. The events and
state transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and
logical conditions for the IRM and DRM models for each state are presented in the following
sections.

215

Circuit

| Analyzer (CA)

Circuit
Completer (CC)
Partial
Circuit (C))
|
I |
Load (L) Switch (S) Power
Supply (P
Conductor (W)

Figure D-2. System structure diagram for the circuit analysis model.

Table D-1. Functional blocks for the circuit analysis model.

Load: an element in a partial circuit that represents loads (for example
solenoid coils, indicators, motors); can draw from + or - voltage; can be
connected directly between + and - voltage without causing a short circuit.

Conductor (wire): an element in a partial circuit that represents conductors;
connects other elements of the circuit with 0 voltage drop in normal
operation; if connected directly between + and - voltage sources, a short
circuit results.

Switch: an element in a partial circuit that can act as an open circuit or
conductor in normal operation.

Power Supply: an element in a partial circuit that represents + or - design
voltage for Partial Circuit n; for this analysis, the power supply is assumed to
provide “enough” current to power the loads described above.

Partial Circuit n: a series connection of one or more circuit elements and
their possible connection to a power supply.

Circuit Completer: establishes conditions of connectivity between partial
circuits.

Circuit Analyzer: infers conditions of current flow in a circuit based on
conditions in the partial circuits and the corresponding circuit completer.

216

CA
‘7
cC LT
Cn
— >
‘7
«— —»
—>¢T4— P,
L w S

Figure D-3. Interaction diagram for the circuit analysis model.

Events and State Transitions
This object has only one state - (Load). No state transitions occur; events external to this object
will cause changes in object attributes.

Attributes (Values)
CONNECTIVITY (Conducting, Not Conducting)
V-DROP (0, Operating, Open)

Initial Conditions
Analyst must define loads as elements of a partial circuit of interest. Initial conditions are
assumed to be normal operation for each respective load defined by the analyst.

CONNECTIVITY=(Conducting); V-DROP=(Operating)

State:(Load)
Immediate Response Model:
None.

Delayed Response Model:
None.

217

Table D-2. Functional interactions for the circuit analysis model.

L-C,: A load provides to its partial circuit information on its physical
connections and electric potential drop.

W-C,: A conductor provides to its partial circuit information on its physical
connections and electric potential drop.

S-Cn: A switch provides to its partial circuit information on its physical
connections and electric potential drop.

Pi-C.: Power supply i provides to a partial circuit information about physical
connections and electric potential.

Cy-L: Partial circuit n provides to its loads information about current flow.
Cy-W: Partial circuit n provides to its conductors information about current flow.
C,-S: Partial circuit n provides to its switches information about current flow.

Cy-Pi: Partial circuit n provides to its power supply information about current
flow.

Cp-CA: Partial circuit n provides to the circuit analyzer information on its physical
connections and electric potential.

CA-C,: The circuit analyzer provides to the partial circuit information on current
flow through the partial circuit.

CA-CC: The circuit analyzer provides to the circuit completer information on
current flow through the conductors between partial circuits.

CC-CA: The circuit completer provides to the circuit analyzer information on
physical connections for the conductors between partial circuits.

Load

Figure D-4. State transition diagram for the Load Object.

D.3 Conductor Object

The Conductor Object (W) is an element in a partial circuit that represents a conductor (wire)
that can draw from + or - voltage. Attributes for this object are defined to provide information
about the physical connections and electric potential of a conductor in a partial circuit. The state

218

transition diagram for the conductor object is shown in Figure D-5. The events and state
transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models for each state are presented in the following sections.

Conduct

Figure D-5. State transition diagram for the Conductor Object.

Events and State Transitions
This object has only one state - (Conduct). No state transitions occur; events external to this
object will cause changes in object attributes.

Attributes (Values)
CONNECTIVITY (Conducting, Not Conducting)
V-DROP (0, Open)

Initial Conditions
The analyst must define conductors as elements of a partial circuit of interest. Initial conditions
are assumed to be normal operation.

CONNECTIVITY=(Conducting); V-DROP=(0)

State:(Conduct)
Immediate Response Model:
None.

Delayed Response Model:
None.

D.4 Switch Object

The Switch Object (S) is an element in a partial circuit that can act as an open circuit or
conductor in normal operation. Attributes for this object are defined to provide information
about the physical connections and electric potential of a switch in a partial circuit. The state
transition diagram for the switch object is shown in Figure D-6. The events and state transitions,
attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical conditions
for the IRM and DRM models for each state are presented in the following sections.

219

Switch closes

Open Close

~_

Switch opens

Figure D-6. State transition diagram for the Switch Object.

Events and State Transitions

Event:Switch closes is generated from outside the circuit system, for example, by a human
operator, and causes transition from State:(Open) to State:(Closed).

Event:Switch opens is generated from outside the circuit system, for example, by a human
operator, and causes transition from State:(Closed) to State:(Open).

Attributes (Values)
CONNECTIVITY (Conducting, Not Conducting)
V-DROP (0, Open)

Initial Conditions
Analyst must define switches as elements of a partial circuit of interest. Initial conditions are
assumed to be normal operation for an open switch.

CONNECTIVITY=(Not Conducting); V-DROP=(Open)

State:(Open)
Immediate Response Model:
If TRUE, then
Set S:CONNECTIVITY=(Not Conducting) and Set S:V-DROP=(Open)

Delayed Response Model:
None.

State:(Closed)
Immediate Response Model:
If TRUE, then
Set S:CONNECTIVITY=(Conducting) and Set S:V-DROP=(0)

Delayed Response Model:
None.

220

D.5 Power Supply Object

The Power Supply Object (P;) is an element in a partial circuit that represents + or - design
voltage for Partial Circuit n. For this analysis, the power supply is assumed to provide “enough”
current to power the loads (L) in its partial circuit. A circuit model may include one or more
power supplies that provide power for one or more partial circuits. Attributes for this object are
defined to provide information about the physical connections and polarity of a power supply in
a partial circuit. The state transition diagram for the power supply object is shown in Figure D-7.
The events and state transitions, attributes, initial conditions, and sets of “if — then — else if —
else” scripts and logical conditions for the IRM and DRM models for each state are presented in
the following sections.

Fuse blows
Provides Does Not
Power Provide Power

Figure D-7. State transition diagram for the Power Supply Object.

Events and State Transitions
Event:Fuse blows is generated by the Partial Circuit Object (C,) and causes transition from
State:(Provides Power) to State:(Does Not Provide Power)

Attributes (Values)
CONNECTIVITY (Conducting, Not Conducting)
POLARITY (+, -)

Initial Conditions
Analyst must define a power supply and it respective polarity as an element of a partial circuit of
interest. Initial conditions are assumed to be normal operation for design voltage.

CONNECTIVITY=(Conducting); POLARITY=(+) OR
CONNECTIVITY=(Conducting); POLARITY=(-)

State:Provides Power
Immediate Response Model:
If TRUE, then
Set P;:CONNECTIVITY=(Conducting)

221

Delayed Response Model:
None.

State:Does Not Provide Power
Immediate Response Model:
If TRUE, then
Set P;:CONNECTIVITY=(Not Conducting)

Delayed Response Model:
None.

D.6 Partial Circuit Object

The Partial Circuit Object (C,) is a series connection of one or more circuit elements and their
possible connection to a power supply. Attributes for this object are determined by input from
the associated circuit elements and are defined to provide information about the conduction and
polarity of the partial circuit. The state transition diagram for the partial circuit object is shown
in Figure D-8. The events and state transitions, attributes, initial conditions, and sets of “if —
then — else if — else” scripts and logical conditions for the IRM and DRM models for each state
are presented in the following sections.

Determine C
Elements &
Attributes

Figure D-8. State transition diagram for the Partial Circuit Object.

Events and State Transitions
This object has only one state - (Determine C, Elements & Attributes). No state transitions
occur; events external to this object will cause changes in object attributes.

Attributes (Values)
POLARITY (+, -, Not Determined)
CONDUCTION (Open, Direct, Through Load, Unknown)

Initial Conditions
Initial conditions are set to await information from circuit components.

POLARITY=(Not Determined); CONDUCTION=(Unknown)

222

State:(Determine C,, Elements and Attributes)

Immediate Response Model:
If CA:CURRENT,=(Short Circuit) AND P;:CONNECTIVITY=(Conducting), then
Generate Event:Fuse blows
Else If C:POLARITY=(Not Determined) AND P;:POLARITY=(+), then
Set C:POLARITY =(+)
Else If C,;: POLARITY=(Not Determined) AND P;:POLARITY=(-), then
Set C:POLARITY =(-)
Else If L:.CONNECTIVITY=(Not Conducting) OR W:CONNECTIVITY=(Not Conducting) OR
S:CONNECTIVITY=(Not Conducting) OR P;:CONNECTIVITY=(Not Conducting), then
Set C,,;:CONDUCTION=(Open)
Else If L:V-DROP=(Operating), then
Set C,:CONDUCTION=(Through Load)
Else Set C,,:CONDUCTION=(Direct)

Delayed Response Model:
None.

D.7 Circuit Completer Object

The Circuit Completer Object (CC) establishes all possible conditions of connectivity in a set of
partial circuits. The number of partial circuits and paths between them are defined when the
model of the circuit of interest is developed. For this example, the circuit of interest is
comprised of six partial circuits with three paths (1-2, 3-4, 5-6) between each of two partial
circuits. The state transition diagram for the circuit completer object is shown in Figure D-9.
The events and state transitions, attributes, initial conditions, and sets of “if — then — else if —
else” scripts and logical conditions for the IRM and DRM models for each state are presented in
the following sections.

Complete
Circuit

Figure D-9. State transition diagram for the Circuit Completer Object.

Events and State Transitions

This object has only one state -(Complete Circuit). No state transitions occur; once this object is
initialize, it will progress to generate all possible conditions of completion for the paths between
specified partial circuits.

223

Attributes (Values)

PATH 1-2 (Closed, Open, Short to +, Short to -, Short to Each Other)
PATH 3-4 (Closed, Open, Short to +, Short to -, Short to Each Other)
PATH 5-6 (Closed, Open, Short to +, Short to -, Short to Each Other)

Initial Conditions
Initial conditions for each path are assumed to be normal operation.

PATH 1-2=(Closed)
PATH 3-4=(Closed)
PATH 5-6=(Closed)

State:(Complete Circuit)
Immediate Response Model:
None; we’re not changing anything as other outside events happen.

Delayed Response Model:
Always do this:

P=1/13, Delay 10, then Set CC:Path 1-2=(Open) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 1-2=(Short to +) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 1-2=(Short to -) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 3-4=(Open) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 3-4=(Short to +) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 3-4=(Short to -) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 5-6=(Open) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 5-6=(Short to +) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 5-6=(Short to -) AND Generate Event:Reset/New
Conditions

P=1/13, Delay 10, then Set CC:Path 1-2=(Short to Each Other) AND Set CC:Path3-4=
(Short to Each Other) AND Generate Event:Reset/New Conditions

P=1/13, Delay 10, then Set CC:Path 1-2=(Short to Each Other) AND set CC:Path5-6=
(Short to Each Other) AND Generate Event:ReSet/New Conditions

P=1/13, Delay 10, then set CC:Path 3-4=(Short to Each Other) AND Set CC:Path5-6=
(Short to Each Other) AND Generate Event:Reset/New Conditions

P=1/13, Delay 10, then Set CC:Path 1-2=(Short to Each Other) AND set CC:Path3-4=
(Short to Each Other) AND Set CC:Path 5-6=(Short to Each Other) AND Generate
Event:Reset/New Conditions

224

D.8 Circuit Analyzer Object

The Circuit Analyzer Object (CA) infers conditions of current flow in a circuit based on
conditions in the partial circuits and the corresponding circuit completer. The conditions of
current flow are determined for each partial circuit in the circuit of interest. For this example, the
circuit of interest is comprised of six partial circuits with three paths (1-2, 3-4, 5-6) between each
of two partial circuits. The state transition diagram for the circuit analyzer object is shown in
Figure D-10. The events and state transitions, attributes, initial conditions, and sets of “if — then
— else if — else” scripts and logical conditions for the IRM and DRM models for each state are
presented in the following sections.

Initialize Assess

~_

Reset/new conditions

Figure D-10. State transition diagram for the Circuit Analyzer Object.

Events and State Transitions

Event:Analyze is generated by the Circuit Analyzer Object (CA) and causes transition from
State:(Initialize) to State:(Assess).

Event:Reset/New Conditions is generated by the Circuit Completer Object (CC) and causes
transition from State:(Assess) to State:(Initalize).

Attributes (Values)

CURRENT, (Normal, None, Short Circuit, Unknown)

MAXIMUM+CURRENT POTENTIAL (Open, Direct, Through Load, Unknown)
MAXIMUM-CURRENT POTENTIAL (Open, Direct, Through Load, Unknown)

Initial Conditions
Initial conditions are assumed to be normal circuit operation.

CURRENT ;=(Unknown); CURRENT,=(Unknown); CURRENT;=(Unknown);
CURRENT=(Unknown); CURRENTs=(Unknown); CURRENT=(Unknown);
MAXIMUM+CURRENT POTENTIAL=(Unknown);
MAXIMUM-CURRENT POTENTIAL=(Unknown);

225

State:(Initialize)

Immediate Response Model:

If TRUE, then
Set CURRENT; ;=(Unknown) AND Set CURRENT,=(Unknown) AND Set
CURRENT;=(Unknown) AND Set CURRENT,=(Unknown) AND Set
CURRENT;s=(Unknown) AND Set CURRENT¢=(Unknown) AND Set MAXIMUM+
CURRENT POTENTIAL=(Unknown) AND Set MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND Generate Event:Analyze

Delayed Response Model:
None.

State:(Assess)

Immediate Response Model:

If CC:PATH1-2=(Open) AND CURRENT;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT,=(None)

Else If CC:PATH1-2=(Closed) AND C;j:Polarity=(+) AND C,:Polarity=(+) AND
CURRENT ;=(Unknown), then
Set CURRENT ;=(None) AND Set CURRENT,=(None)

Else If CC:PATH1-2=(Closed) AND C;i:Polarity=(-) AND C,:Polarity=(-) AND
CURRENT ;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT,=(None)

Else If CC:PATH1-2=(Closed) AND (C;:Conduction=(Open) OR C,:Conduction=(Open)) AND
CURRENT ;=(Unknown), then
Set CURRENT ;=(None) AND Set CURRENT,=(None)

Else If CC:PATH1-2=(Closed) AND C;:Conduction=(Through Load) AND
C;:Conduction=(Through Load) AND CURRENT;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT,=(None)

Else If CC:PATH1-2=(Closed) AND CURRENT;=(Unknown), then
Set CURRENT ;=(Normal) AND Set CURRENT,=(Normal)

Else If CC:PATH1-2=(Short to +) AND C;:Conduction=(Direct) AND C;:Polarity=(-) AND
CURRENT ;=(Unknown), then
Set CURRENT =(Short Circuit)

Else If CC:PATH1-2=(Short to +) AND C,:Conduction=(Direct) AND C;:Polarity=(-) AND
CURRENT,=(Unknown), then
Set CURRENT,=(Short Circuit)

Else If CC:PATH1-2=(Short to +) AND C;:Conduction=(Through Load) AND C;:Polarity=(-)
AND CURRENT ;=(Unknown), then
Set CURRENT ;=(Normal)

Else If CC:PATH1-2=(Short to +) AND C,:Conduction=(Through Load) AND C;:Polarity=(-)
AND CURRENT,=(Unknown), then
Set CURRENT,=(Normal)

Else If CC:PATH1-2=(Short to +) AND CURRENT;=(Unknown), then
Set CURRENT, ;=(None)

226

Else If CC:Path1-2=(Short to +) AND CURRENT,=(Unknown), then
Set CURRENT,;=(None)

Else If CC:PATH1-2=(Short to -) AND C;:Conduction=(Direct) AND C;:Polarity=(+) AND
CURRENT ;=(Unknown), then
Set CURRENT =(Short Circuit)

Else If CC:PATH1-2=(Short to -) AND C,:Conduction=(Direct) AND C,:Polarity=(+) AND
CURRENT,;=(Unknown), then
Set CURRENT,=(Short Circuit)

Else If CC:PATH1-2=(Short to -) AND C;:Conduction=(Through Load) AND C;:Polarity=(+)
AND CURRENT ;=(Unknown), then
Set CURRENT ;=(Normal)

Else If CC:PATH1-2=(Short to -) AND C,:Conduction=(Through Load) AND C,:Polarity=(+)
AND Set CURRENT,=(Unknown), then
Set CURRENT,=(Normal)

Else If CC:PATH1-2=(Short to -) AND CURRENT;=(Unknown), then
Set CURRENT, =(None)

Else If CC:Path=(Short to -) AND CURRENT,=(Unknown), then
Set CURRENT,=(None)

Else If CC:PATH3-4=(Open) AND CURRENT;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT=(None)

Else If CC:PATH3-4=(Closed) AND Cjs:Polarity=(+) AND Cy:Polarity=(+) AND
CURRENT;=(Unknown), then
Set CURRENT; =(None) AND Set CURRENT,;=(None)

Else If CC:PATH3-4=(Closed) AND C;3 :Polarity=(-) AND C,:Polarity=(-) AND
CURRENT;=(Unknown), then
Set CURRENT; =(None) AND Set CURRENT,=(None)

Else If CC:PATH3-4=(Closed) AND Cj3 :Conduction=(Open) OR C,4 :Conduction=Open AND
CURRENT;=(Unknown), then
Set CURRENT; =(None) AND Set CURRENT,; =(None)

Else If CC:PATH3-4=(Closed) AND Cj3 :Conduction=(Through Load) AND
C4:Conduction=(Through Load) AND CURRENT;=(Unknown), then
Set CURRENT; =(None) AND Set CURRENT,=(None)

Else If CC:PATH3-4=(Closed) AND CURRENT;=(Unknown), then
Set CURRENT; =(Normal) AND Set CURRENT, =(Normal)

Else If CC:PATH3-4=(Short to +) AND C; :Conduction=(Direct) AND C; :Polarity=(-) AND
CURRENT;=(Unknown), then
Set CURRENT; =(Short Circuit)

Else If CC:PATH3-4=(Short to +) AND C4 :Conduction=(Direct) AND C, :Polarity=(-) AND
CURRENT=(Unknown), then
Set CURRENT, =(Short Circuit)

Else If CC:PATH3-4=(Short to +) AND Cj; :Conduction=(Through Load) AND
Cs :Polarity=(-) AND CURRENT; =(Unknown), then
Set CURRENT; =(Normal)

227

Else If CC:PATH3-4=(Short to +) AND C, :Conduction=(Through Load) AND
C4 :Polarity=(-) AND CURRENT,; =(Unknown), then
Set CURRENT, =(Normal)
Else If CC:PATH3-4=(Short to +) AND CURRENT;=(Unknown), then
Set CURRENT; =(None)
Else If CC:PATH3-4=(Short to +) AND CURRENT,;=(Unknown), then
Set CURRENT,=(None)

Else If CC:PATH3-4=(Short to -) AND Cj :Conduction=(Direct) AND Cj :Polarity=(+) AND
CURRENT; =(Unknown), then
Set CURRENT; =(Short Circuit)
Else If CC:PATH3-4=(Short to -) AND C4 :Conduction=(Direct) AND Cj, :Polarity=(+) AND
CURRENT,; =(Unknown), then
Set CURRENT,=(Short Circuit)
Else If CC:PATH3-4=(Short to -) AND Cj :Conduction=(Through Load) AND
Cs :Polarity=(+) AND CURRENTj;=(Unknown), then
Set CURRENT; =(Normal)
Else If CC:PATH3-4=(Short to -) AND C,4 :Conduction=(Through Load) AND
C4 :Polarity=(+) AND Set CURRENT, =(Unknown), then
Set CURRENT, =(Normal)
Else If CC:PATH3-4=(Short to -) AND CURRENT;=(Unknown), then
Set CURRENT; =(None)
Else If CC:PATH3-4=(Short to -) AND CURRENT,=(Unknown), then
Set CURRENT, =(None)

Else If CC:PATHS5-6=(Open) AND CURRENT;s=(Unknown), then
Set CURRENT;s=(None) AND Set CURRENTs=(None)

Else If CC:PATHS5-6=(Closed) AND Cs:Polarity=(+) AND Cg:Polarity=(+) AND
CURRENT;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT=(None)

Else If CC:PATHS5-6=(Closed) AND Cs :Polarity=(-) AND Cg :Polarity=(-) AND
CURRENT;=(Unknown), then
Set CURRENT;s=(None) AND Set CURRENT;=(None)

Else If CC:PATHS5-6=(Closed) AND Cs:CURRENT =(Open) OR Cg¢ :Conduction=Open AND
CURRENT;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT=(None)

Else If CC:PATHS5-6=(Closed) AND Cs :Conduction=(Through Load) AND
C,:Conduction=(Through Load) AND CURRENTs=(Unknown), then
Set CURRENT;s=(None) AND Set CURRENT;=(None)

Else If CC:PATH5-6=(Closed) AND CURRENT;s=(Unknown), then
Set CURRENT; =(Normal) AND Set CURRENT=(Normal)

Else If CC:PATHS5-6=(Short to +) AND Cs :Conduction=(Direct) AND Cs :Polarity=(-) AND

CURRENT; =(Unknown), then
Set CURRENT; =(Short Circuit)

228

Else If CC:PATHS5-6=(Short to +) AND C¢ :Conduction=(Direct) AND Cg¢ :Polarity=(-) AND
CURRENT¢ =(Unknown), then
Set CURRENT¢ =(Short Circuit)

Else If CC:PATHS5-6=(Short to +) AND Cs :Conduction=(Through Load) AND
Cs :Polarity=(-) AND CURRENT; =(Unknown), then
Set CURRENT;s =(Normal)

Else If CC:PATHS5-6=(Short to +) AND Cg :Conduction=(Through Load) AND
Cg :Polarity=(-) AND CURRENT =(Unknown), then
Set CURRENT¢=(Normal)

Else If CC:PATHS5-6=(Short to +) AND CURRENT;=(Unknown), then
Set CURRENT;s =(None)

Else If CC:PATHS5-6=(Short to +) AND CURRENT¢=(Unknown), then
Set CURRENT; =(None)

Else If CC:PATHS5-6=(Short to -) AND Cs:Conduction=(Direct) AND Cs :Polarity=(+) AND
CURRENT;=(Unknown), then
Set CURRENT; =(Short Circuit)
Else If CC:PATHS5-6=(Short to -) AND Cg:Conduction=(Direct) AND Cg :Polarity=(+) AND
CURRENT=(Unknown), then
Set CURRENT ¢ =(Short Circuit)
Else If CC:PATHS5-6=(Short to -) AND Cs :Conduction=(Through Load) AND
Cs :Polarity=(+) AND CURRENT;s=(Unknown), then
Set CURRENT ;s =(Normal)
Else If CC:PATHS5-6=(Short to -) AND Cg :Conduction=(Through Load) AND
Ce :Polarity=(+) AND Set CURRENT{=(Unknown), then
Set CURRENT¢=(Normal)
Else If CC:PATHS5-6=(Short to -) AND CURRENT;=(Unknown), then
Set CURRENT; =(None)
Else If CC:PATHS5-6=(Short to -) AND CURRENT¢=(Unknown), then
Set CURRENT¢ =(None)

Else If CC:Path1-2=(Short to Each Other) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) AND ((C;:Polarity=(+) AND C;:Conduction=(Direct)) OR
(Cy:Polarity=(+) AND C,:Conduction=(Direct))) then
Set MAXIMUM+CURRENT POTENTIAL=(Direct)

Else If CC:Path3-4=(Short to Each Other) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(+) AND C;:Conduction=(Direct)) OR
(C4:Polarity=(+) AND C4:Conduction=(Direct))) then
Set MAXIMUM+CURRENT POTENTIAL=(Direct)

Else If CC:Path5-6=(Short to Each Other) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(+) AND Cs:Conduction=(Direct)) OR
(Cg:Polarity=(+) AND C¢:Conduction=(Direct))) then
Set MAXIMUM+CURRENT POTENTIAL=(Direct)

229

Else If CC:Path1-2=(Short to Each Other) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) AND ((C;:Polarity=(+) AND C;:Conduction=(Through
Load)) OR (C;:Polarity=(+) AND C;:Conduction=(Through Load))) then
Set MAXIMUM+CURRENT POTENTIAL=(Through Load)

Else If CC:Path3-4=(Short to Each Other) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(+) AND C;:Conduction=(Through
Load)) OR (C4:Polarity=(+) AND C4:Conduction=(Through Load))) then
Set MAXIMUM+CURRENT POTENTIAL=(Through Load)

Else If CC:Path5-6=(Short to Each Other) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(+) AND Cs:Conduction=(Through
Load)) OR (Cg:Polarity=(+) AND Cs:Conduction=(Through Load))) then
Set MAXIMUM+CURRENT POTENTIAL=(Through Load)

Else If (CC:Path1-2=(Short to Each Other) OR CC:Path3-4=(Short to Each Other) OR
CC:Path5-6=(Short to Each Other)) AND MAXIMUM+CURRENT
POTENTIAL=(Unknown) then
Set MAXIMUM+CURRENT POTENTIAL=(Open)

Else If CC:Path1-2=(Short to Each Other) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND ((C;:Polarity=(-) AND C;:Conduction=(Direct)) OR
(Cy:Polarity=(-) AND C;:Conduction=(Direct))) then
Set MAXIMUM-CURRENT POTENTIAL=(Direct)

Else If CC:Path3-4=(Short to Each Other) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND ((C;:Polarity=(-) AND Cs:Conduction=(Direct)) OR
(C4:Polarity=(-) AND C4:Conduction=(Direct))) then
Set MAXIMUM-CURRENT POTENTIAL=(Direct)

Else If CC:Path5-6=(Short to Each Other) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(-) AND Cs:Conduction=(Direct)) OR
(Ce:Polarity=(-) AND Cg:Conduction=(Direct))) then
Set MAXIMUM-CURRENT POTENTIAL=(Direct)

Else If CC:Path1-2=(Short to Each Other) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND ((C;:Polarity=(-) AND C,:Conduction=(Through Load))
OR (Cj:Polarity=(-) AND C,:Conduction=(Through Load))) then
Set MAXIMUM-CURRENT POTENTIAL=(Through Load)

Else If CC:Path3-4=(Short to Each Other) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(-) AND Cs:Conduction=(Through Load))
OR (C4:Polarity=(-) AND C4:Conduction=(Through Load))) then
Set MAXIMUM-CURRENT POTENTIAL=(Through Load)

Else If CC:Path5-6=(Short to Each Other) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) AND ((Cs:Polarity=(-) AND Cs:Conduction=(Through Load))
OR (Cg:Polarity=(-) AND Cg:Conduction=(Through Load))) then
Set MAXIMUM-CURRENT POTENTIAL=(Through Load)

230

Else If (CC:Path1-2=(Short to Each Other) OR CC:Path3-4=(Short to Each Other) OR
CC:Path5-6=(Short to Each Other)) AND MAXIMUM-CURRENT
POTENTIAL=(Unknown) then
Set MAXIMUM-CURRENT POTENTIAL=(Open)

Else If CC:Path1-2=(Short to Each Other) AND (MAXIMUM+CURRENT
POTENTIAL=(Open) OR MAXIMUM-CURRENT POTENTIAL=(Open)) AND
CURRENT ;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT,=(None)

Else If CC:Path3-4=(Short to Each Other) AND (MAXIMUM+CURRENT
POTENTIAL=(Open) OR MAXIMUM-CURRENT POTENTIAL=(Open)) AND
CURRENT;=(Unknown), then
Set CURRENT;=(None) AND Set CURRENT,=(None)

Else If CC:Path5-6=(Short to Each Other) AND (MAXIMUM+CURRENT
POTENTIAL=(Open) OR MAXIMUM-CURRENT POTENTIAL=(Open)) AND
CURRENT;=(Unknown), then
Set CURRENT;s=(None) AND Set CURRENT=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,;=(Unknown) AND
C;:CONDUCTION=(Open), then
Set CURRENT ;=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND
C,:CONDUCTION=(Open), then
Set CURRENT,;=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
C;:CONDUCTION=(Open), then
Set CURRENT;=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND
C4:CONDUCTION=(Open), then
Set CURRENT=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;=(Unknown) AND
Cs:CONDUCTION=(Open), then
Set CURRENT;s=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND
Cs:CONDUCTION=(Open), then
Set CURRENT=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT ;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct) AND C;:Conduction=(Direct) then
Set CURRENT ;=(Short Circuit)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct) AND C,:Conduction=(Direct) then
Set CURRENT,=(Short Circuit)

231

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct) AND Cs:Conduction=(Direct) then
Set CURRENT;=(Short Circuit)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct) AND C4:Conduction=(Direct) then
Set CURRENT,=(Short Circuit)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct) AND Cs:Conduction=(Direct) then
Set CURRENT;s=(Short Circuit)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct) AND Cgq:Conduction=(Direct) then
Set CURRENT¢=(Short Circuit)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT ;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct), then
Set CURRENT ;=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct), then
Set CURRENT,=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct), then
Set CURRENT;=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct), then
Set CURRENT =(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;s=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct), then
Set CURRENT;s=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND MAXIMUM-CURRENT
POTENTIAL=(Direct), then
Set CURRENT=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,;=(Unknown) AND

MAXIMUM+CURRENT POTENTIAL=(Through Load) AND MAXIMUM-CURRENT

POTENTIAL=(Through Load) AND C;:Conduction=(Open) then
Set CURRENT;=(None) AND Set CURRENT,=(None)

232

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Through Load) AND MAXIMUM-CURRENT
POTENTIAL=(Through Load) AND Cj;:Conduction=(Open) then
Set CURRENT;=(None) AND Set CURRENT=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Through Load) AND MAXIMUM-CURRENT
POTENTIAL=(Through Load) AND Cs:Conduction=(Open) then
Set CURRENTs=(None) AND Set CURRENT=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT ;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C;:Polarity=(+) AND
C;:Conduction=(Direct) then
Set CURRENT ;=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C,:Polarity=(+) AND
C,:Conduction=(Direct) then
Set CURRENT,=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT ;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C;:Polarity=(-) then
Set CURRENT ;=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C,:Polarity=(-) then
Set CURRENT,=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT ;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C;:Polarity=(+), then
Set CURRENT ;=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C,:Polarity=(+), then
Set CURRENT,=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cj:Polarity=(+) AND
C;:Conduction=(Direct) then
Set CURRENT;=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C4:Polarity=(+) AND
C4:Conduction=(Open) then
Set CURRENT,=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cs:Polarity=(-) then
Set CURRENT;=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cj:Polarity=(-) then
Set CURRENT,=(Normal)

233

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cj:Polarity=(+), then
Set CURRENT;=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C4:Polarity=(+), then
Set CURRENT=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;s=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cs:Polarity=(+) AND
Cs:Conduction=(Direct), then
Set CURRENT;=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C¢:Polarity=(+) AND
Cs:Conduction=(Open), then
Set CURRENT¢=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;s=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cs:Polarity=(-), then
Set CURRENT;s=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C¢:Polarity=(-), then
Set CURRENT¢=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;s=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND Cs:Polarity=(+), then
Set CURRENT;s=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND
MAXIMUM+CURRENT POTENTIAL=(Direct) AND C¢:Polarity=(+), then
Set CURRENT=(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT, ;=(Unknown) C;:Polarity=(-) AND
C;:Conduction=(Direct), then
Set CURRENT ;=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND C,:Polarity=(-)
AND C;:Conduction=(Direct), then
Set CURRENT,=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,;=(Unknown) AND C;:Polarity=(+),
then
Set CURRENT ;=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND C,:Polarity=(+),
then
Set CURRENT,=(Normal)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,;=(Unknown) AND C;:Polarity=(-),
then
Set CURRENT, =(None)

Else If CC:Path1-2=(Short to Each Other) AND CURRENT,=(Unknown) AND C,:Polarity=(-),
then
Set CURRENT,;=(None)

234

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND Cj:Polarity=(-)
AND C;s:Conduction=(Direct), then
Set CURRENT;=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND C,:Polarity=(-)
AND C,4:Conduction=(Open), then
Set CURRENT,=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND Cj:Polarity=(+),
then
Set CURRENT;=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND C,:Polarity=(+),
then
Set CURRENT,=(Normal)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT;=(Unknown) AND Cj:Polarity=(-),
then
Set CURRENT;=(None)

Else If CC:Path3-4=(Short to Each Other) AND CURRENT,=(Unknown) AND C,:Polarity=(-),
then
Set CURRENT, =(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;=(Unknown) AND Cs:Polarity=(-)
AND Cs:Conduction=(Direct), then
Set CURRENT;=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND Cg:Polarity=(-)
AND Cg:Conduction=(Open), then
Set CURRENT¢=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;s=(Unknown) AND Cs:Polarity=(+),
then
Set CURRENT;=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND Cg:Polarity=(+),
then
Set CURRENT¢=(Normal)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT;=(Unknown) AND Cs:Polarity=(-),
then
Set CURRENT;s=(None)

Else If CC:Path5-6=(Short to Each Other) AND CURRENT¢=(Unknown) AND Cg:Polarity=(-),
then
Set CURRENT=(None)

235

This Page Intentionally Blank

236

E. Example Details for Basic Infrastructure Problem

This appendix provides a description of the system structure, interactions, and state transition
diagrams for the basic infrastructure problem presented in Section 5.5 of the main body of the
report. This description includes the sets of “if — then — else if — else” scripts and logical
conditions for the IRM and DRM models of the state transition diagrams.

E.1 System Structure and Interactions

This example problem is formulated to allow the analyst to consider portions of three separate
situations: where a person has neglected all preparation for infrastructure disruption, where a
person has prepared by purchasing a portable electric generator, and where a person has made
preparations to survive without electricity. The system structure diagrams and interaction lists
for these three situations are found in Figure E-1, Figure E-2, and Figure E-3, respectively. The
system structure diagram and interactions list for the combined model are found in Figure E-4,
while a more complete functional interactions diagram for this combined model is shown in
Figure E-5, while the functional interactions are described in Table E-1.

b . Batteries Candles
“Unprepared” Situation
Light
Matches
Electricity Cooking
Com. Gas
Cm. Powe Heat
Water
COMPONENTS : Bottles | INTERACTIONS :
Water = Drinking/cooking water availability Cooking — Water Com. Gas — Heat
Heat = Space heat availability Bottles — Water Com. Gas — Cooking
Cooking = Heat for cooking availability Electricity — Light Cm. Power — Electricity
Light = Minimal light availability Electricity — Cooking Batteries — Light
Electricity = Availability of electricity Electricity — Heat Candles — Light
Cm. Power = Availability of commercial electrical power Electricity — Water Matches — Light
Bottles = Bottled water reserve
Com. Gas = Availability of commercial (pipeline) gas
Batteries = Battery reserve for flashlights
Candles = Candle reserve for lighting
Matches = Reserve of matches

Figure E-1. Components and interactions in the '"Unprepared'' situation.

237

“With Generator” Situation

Batteries Candles
Generator \ Light
Matches
Electricity Cooking
/ Com. Gas
Cm. Power Heat
Water
\ Bottles
ADDITIONAL COMPONENTS: ADDITIONAL INTERACTIONS:
Generator: Reserve electric generating capacity Generator — Electricity

(includes fuel supply for generator)

Figure E-2. Components and interactions in the '""With Generator'' situation.

Batteries Candles

“No Electricity” Situation

Matches

ADDITIONAL COMPONENTS: ADDITIONAL INTERACTIONS:

Kerosene: Fuel reserve for kerosene heater Matches — Cooking Kerosene — Heat
Firewood: Firewood reserve for heating Matches — Heat Firewood — Heat
Camp Fuel: Fuel reserve for camp stove, lantern Camp Fuel — Light Camp Fuel — Cooking

Water — Camp Fuel (boiling water needs more fuel)

Figure E-3. Components and interactions for the '""No Electricity' situation.

238

Combined Model

Batteries Candles
Generator Light
\ Camp Fuel
Electricity Cooking Matches
Cm. Power Heat
Kerosene Firewood
Water

N

Bottles

Figure E-4. Components and interactions for the combined model.

Batteries Candles

Generator 4\ Light

Y - Camp Fuel)
Electricity Cooking [4=— Matches
A "= Com. Gas 2
Cm. Powerf =" Heat

A 4

Kerosene Firewood

A Water

All arrows are two-way except ------ > X
Bottles

Figure E-5. Functional interaction diagram for the combined model.

239

Table E-1. Functional interactions for the combined model.

Com. Gas — Heat Commercial Gas provides fuel to Heat

Com. Gas — Cooking Commercial Gas provides fuel to Cooking
Cm. Power — Electricity Commercial Power provides electric power to Electricity

Generator — Electricity ~ Generator provides electric power to Electricity (Demand for

Electricity — Light

Electricity — Cooking

Electricity — Heat

Electricity — Water

Batteries — Light

Candles — Light

Matches — Light

Matches — Cooking

Matches — Heat

Cooking — Water
Bottles — Water

Kerosene — Heat

Firewood — Heat

Water — Camp Fuel
Camp Fuel — Light

Camp Fuel — Cooking

Electricity passed back)

Electricity provides power to provide Light (Demand for Electricity
passed back)

Electricity provides power to enable Cooking (Demand for Electricity
passed back)

Electricity provides power to provide Heat (Demand for Electricity
passed back)

Electricity provides power to pump Water from the well (Demand for
Electricity passed back)

Batteries provide power to provide Light (Demand for Batteries
resources passed back)

Candles provide energy to provide Light (Demand for Candles
resources passed back)

Matches provide fire that enables candles or lanterns to provide Light
(Demand for Matches resources passed back)

Matches provide fire that enables camp stove to provide Cooking
(Demand for Matches resources passed back)

Matches provide fire that enables firewood or kerosene heater to
provide Heat (Demand for Matches resources passed back)

Cooking provides boiling to purify Water

Bottles provide reserves to Water (Demand for water resources passed
back)

Kerosene provides fuel to Heat (Demand for Kerosene resources
passed back)

Firewood provides fuel to Heat (Demand for Firewood resources
passed back)

Water provides an (additional) energy demand to Camp Fuel

Camp Fuel provides energy to provide Light (Demand for Camp Fuel
is passed back)

Camp Fuel provides energy to provide Cooking (Demand for Camp
Fuel is passed back)

240

E.2 The Vital Household Functions Objects

The first four objects to be discussed are the four vital household functions that are to be
maintained during infrastructure disruptions: the Light Object, the Heat Object, the Cooking
Object, and the Water Object. These objects are similar to one another in that each functions to
track the various sources that can provide its vital function and ultimately determines whether or
not that function is being met. The complete OBEST models for these four objects are found in
Figure E-6, Figure E-7, Figure E-8, and Figure E-9, respectively. The state transition diagram
within each of these figures provides the object’s states and events, while the text within the
figure provides the object’s attributes and “if — then — else if — else” scripts and logical
conditions for each model and state. Each object’s initial conditions follow its figure.

Light Object

Lights Out

Lights Dark

OBJECT ATTRIBUTES (VALUES):
Source (Electric, Lantern, Flashlight, Candles, None)

RESPONSE MODELS:
State Lights
DRM: None

IRM:

If Electricity:Power = Power & Source /= Electric Then
Set Source = Electric

Else If Camp Fuel:Supply /= None & Matches: Supply /=
None & Source /= Lantern Then Set Source = Lantern

Else If Batteries:Supply /= None & Source /= Flashlight
Then Set Source = Flashlight

Else If Candles:Supply /= None & Matches:Supply /= None
& Source /= Candles Then Set Source = Candles

Else If Source /= None Then
Set Source = None; Event Lights Out

Else
Do Nothing

State Dark
IRM & DRM: None

Figure E-6. States, attributes, and response models for the Light Object.

241

The initial conditions for the Light Object are State:(Lights) and attribute value
Source=(Electric).

Heat Object

Heat Out

Warm No Heat

OBJECT ATTRIBUTES (VALUES):
Source (Furnace, Kerosene, Fireplace, None)

RESPONSE MODELS:
State Warm
DRM: None

IRM:

If Electricity:Power = Power & Com. Gas:Supply /= None &
Source /= Furnace Then Set Source = Furnace

Else If Kerosene:Supply /= None & Matches: Supply /= None
& Source /= Kerosene Then Set Source = Kerosene

Else If Firewood:Supply /= None & Matches: Supply /= None
& Source /= Fireplace Then Set Source = Fireplace

Else If Source /= None Then
Set Source = None; Event Heat Out

Else
Do Nothing

State No Heat
IRM & DRM: None

Figure E-7. States, attributes, and response models for the Heat Object.

The initial conditions for the Heat Object are State:(Warm) and attribute value
Source=(Furnace).

242

Cooking Object

Cooking Out

Cooking No Cooking

OBJECT ATTRIBUTES (VALUES):
Source (Stove, Camping, None)

RESPONSE MODELS:
State Cooking
DRM: None

IRM:
If Electricity:Power = Power & Com. Gas:Supply /=
None & Source /= Stove Then Set Source = Stove
Else If Camp Fuel:Supply /= None & Matches: Supply
/=None & Source /= Camping Then
Set Source = Camping
Else If Source /= None Then
Set Source = None; Event Cooking Out
Else
Do Nothing

State No Cooking
IRM & DRM: None

Figure E-8. States, attributes, and response models for the Cooking Object.

The initial conditions for the Cooking Object are State:(Cooking) and attribute value
Source=(Stove).

243

Water Object

Water Out

Consuming No Water

OBJECT ATTRIBUTES (VALUES):
Source (Well, Bottled, Boiled, None)

RESPONSE MODELS:
State Consuming
DRM: None

IRM:

If Electricity:Power = Power & Source /= Well
Then Set Source = Well

Else If Bottles:Supply /= None & Source /= Bottled
Then Set Source = Bottled

Else If Cooking:Source /= None & Source /= Boiled
Then Set Source = Boiled

Else If Source /= None Then
Set Source = None; Event Water Out

Else
Do Nothing

State No Water
IRM & DRM: None

Figure E-9. States, attributes, and response models for the Water Object.

The initial conditions for the Water Object are State:(Consuming) and attribute value
Source=(Well).

244

E.3 The Consumable Supplies Objects

The following eight objects in the infrastructure disruption preparation model represent
consumable supplies that would be used in the event of a major infrastructure outage. These
objects are all extremely similar in their structure in behavior. Each has one attribute named
Supply that indicates whether the reserve supply of this commodity remains available or has
been exhausted. These two discrete values for the attribute correspond to the two states that
make up each of these object models — again, one to indicate that this commodity remains
available and one to indicate that it is unavailable. Each object's IRM is used to ensure the
proper setting of the Supply attribute and to manipulate the object's internal clock. The clock
represents a sort of "countdown" until this object's resources will be exhausted. The delay that is
built into each object's DRM indicates the number of days the analyst expects this resource to
last when used in a particular fashion. The object's clock is started when the appropriate vital
functions object indicates that this object's supplies are being used as a source to fulfill that vital
function's needs. When the delay time is exhausted, this object's resources are assumed to be
fully depleted, so the DRM generates an event that will cause the object to transition into its
depleted or unavailable state. The DRM may include multiple delay times to indicate that
different usage rates occur when the resource is used in different ways.

The complete object model for each of these eight objects is presented in a figure on the
following pages. The state transition diagram within each of these figures provides the object’s
states and events, while the text within the figure provides the object’s attributes and ““if — then —
else if — else” scripts and logical conditions for each model and state. Each object’s initial
conditions follow its figure.

The object models and figures are as follows:

e The Camp Fuel Object — Figure E-10

e The Bottles Object — Figure E-11

e The Batteries Object — Figure E-12

e The Candles Object — Figure E-13

e The Kerosene Object — Figure E-14

e The Firewood Object — Figure E-15

e The Matches Object — Figure E-16, and

e The Generator Object — Figure E-17

245

Camp Fuel Object

Camp Fuel Out 4

Fuel Empty

Refill Fuel

OBJECT ATTRIBUTES (VALUES):
Supply (Fuel, None)

RESPONSE MODELS:
State Fuel
IRM:
If Supply = None Then Set Supply = Fuel
Else If Cooking:Source = Camping OR Light:Source =
Lantern Then Start My Clock
Else
Stop My Clock

DRM:
If Water:Source = Boiled : Delay 4 days, Then Set
Supply = None; Event Camp Fuel Out
Else If Cooking:Source = Camping : Delay 7 days, Then
Set Supply = None; Event Camp Fuel Out
Else Delay 15 days, Then Set Supply = None; Event
Camp Fuel Out

State Empty

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-10. States, attributes, and response models for the Camp Fuel Object.

The initial conditions for the Camp Fuel Object are State:(Fuel) and attribute value
Supply=(Fuel).

246

Bottles Object

WQ

Water Empty

Refill Bottles

OBJECT ATTRIBUTES (VALUES):
Supply (Water, None)

RESPONSE MODELS:
State Water
IRM:
If Supply /= Water Then Set Supply = Water
Else If Water:Source = Bottled Then
Start My Clock
Else
Stop My Clock

DRM:
(always) Delay 5 days, Then
Set Supply = None; Event Bottles Out

State Empty

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-11. States, attributes, and response models for the Bottles Object.

The initial conditions for the Bottles Object are State:(Water) and attribute value
Supply=(Water).

247

Batteries Object

m4

Power Dead

New batteries

OBJECT ATTRIBUTES (VALUES):
Supply (Batteries, None)

RESPONSE MODELS:
State Power
[RM:
If Supply /= Batteries Then Set Supply = Batteries
Else If Light:Source = Flashlight Then
Start My Clock

Else
Stop My Clock
DRM:
(always) Delay 7 days, Then
Set Supply = None; Event Batteries Out

State Dead

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-12. States, attributes, and response models for the Batteries Object.

The initial conditions for the Batteries Object are State:(Power) and attribute value
Supply=(Batteries).

248

Candles Object

Candles Out 4

Candles Gone

New Candles

OBJECT ATTRIBUTES (VALUES):
Supply (Candles, None)

RESPONSE MODELS:
State Candles
IRM:
If Supply /= Candles Then Set Supply =Candles
Else If Light:Source = Candles Then
Start My Clock
Else
Stop My Clock

DRM:
(always) Delay 3 days, Then
Set Supply = None; Event Candles Out

State Gone

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-13. States, attributes, and response models for the Candles Object.

The initial conditions for the Candles Object are State:(Candles) and attribute value
Supply=(Candles).

249

Kerosene Object

m<

Kerosene Empty

Refill Kerosene

OBJECT ATTRIBUTES (VALUES):
Supply (Kerosene, None)

RESPONSE MODELS:
State Kerosene
IRM:
If Supply /= Kerosene Then Set Supply = Kerosene
Else If Heat:Source = Kerosene Then
Start My Clock

Else
Stop My Clock
DRM:
(always) Delay 5 days, Then
Set Supply = None; Event Kerosene Out

State Empty

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-14. States, attributes, and response models for the Kerosene Object.

The initial conditions for the Kerosene Object are State:(Kerosene) and attribute value
Supply=(Kerosene).

250

Firewood Object

WA

Firewood Gone

"~ Now Firewood

OBJECT ATTRIBUTES (VALUES):
Supply (Firewood, None)

RESPONSE MODELS:
State Firewood
IRM:
If Supply /= Firewood Then Set Supply = Firewood
Else If Heat:Source = Fireplace Then
Start My Clock
Else
Stop My Clock

DRM:
(always) Delay 10 days, Then
Set Supply = None; Event Firewood Out

State Gone

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-15. States, attributes, and response models for the Firewood Object.

The initial conditions for the Firewood Object are State:(Firewood) and attribute value
Supply=(Firewood).

251

Matches Object

WQ

Matches Gone

™ New Matches

OBJECT ATTRIBUTES (VALUES):
Supply (Matches, None)

RESPONSE MODELS:
State Matches
IRM:
If Supply /= Matches Then Set Supply = Matches
Else If Light:Source = Lantern Or Light:Source =
Candles Or Heat:Source = Kerosene Or
Heat:Source = Firewood Or Cooking:Source =
Camping Then Start My Clock
Else
Stop My Clock

DRM:
(always) Delay 12 days, Then
Set Supply = None; Event Matches Out

State Gone

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-16. States, attributes, and response models for the Matches Object.

The initial conditions for the Matches Object are State:(Matches) and attribute value
Supply=(Matches).

252

Generator Object

WA

Available Dead

Refuel Generator

OBJECT ATTRIBUTES (VALUES):
Supply (Available, None)

RESPONSE MODELS:
State Available
IRM:
If Supply /= Available Then Set Supply = Available
Else If Electricity :Source = Generator Then
Start My Clock
Else
Stop My Clock

DRM:
(always) Delay 9 days, Then
Set Supply = None; Event Generator Out

State Dead

IRM:
If Supply /= None Then Set Supply = None
Else Stop & Reset My Clock

DRM: None

Figure E-17. States, attributes, and response models for the Generator Object.

The initial conditions for the Generator Object are State:(Available) and attribute value
Supply=(Available).

253

E.4 The Commercial Power and Commercial Gas Objects

The Electricity Object summarizes for the remainder of the object model the current status of
electric power and its source. This functionality is implemented in a single state with an IRM
and no DRM, as seen in Figure E-18. It uses only one state and no events (as seen in the state
transition diagram in Figure E-18). Its attributes, values and response models are shown in the
text in the figure. Its initial conditions are State:(Powering), and attribute values
Source=(Commercial) and Power=(Power).

Electricity Object

Powering

OBJECT ATTRIBUTES (VALUES):
Source (Commercial, Generator, None)
Power (Power, None)

RESPONSE MODELS:
IRM:
If Commercial Power:Supply /= None & Source /=
Commercial Then
Set Power = Power; Source = Commercial
Else If Generator:Supply = Available & Source /=
Generator Then
Set Power = Power; Source = Generator
Else If Source /= None Then
Set Power = None; Source = None
Else
Do Nothing

DRM: None

Figure E-18. States, attributes, and response models for the Electricity Object.

The remaining two objects in this OBEST model model the availability of commercial electric
power and commercial natural gas. These objects are probabilistic in nature, and are designed to

254

provide the remainder of the OBEST model with a variety of "boundary conditions" that
represent the array of possible infrastructure outages that might have been expected as a result of
the transition to the year 2000. The state transition diagram for the Commercial Electric Power
Object is found in Figure E-19. This diagram shows the states and events for this object. The
attributes, initial conditions and response models (with their “if — then — else if — else” logic) and
scripts follow the figure.

Commercial Power Object

WA

Available Dead

Figure E-19. States transition diagram for the Commercial Power Object.

Object Attributes (Values)
Supply (Available, Restored, None)

Initial Conditions
The initial conditions are State:(Available) and attribute value Supply=(Available).

State:(Available)
Immediate Response Model:
If Supply=(None) then
Set Supply=(Restored)
Else If Supply=(Available) then
P=0.1, Set Supply=(Restored)
P=0.9, Reset My Clock, Generate Event:Power’s Out

Else
Do Nothing

Delayed Response Model:
None.

255

State:(Dead)
Immediate Response Model:
If Supply=(Available) then

Set Supply=(None)

Delayed Response Model:
Always do this:
P=0.1, Delay 0.5, Generate Event: Power’s On
P=0.1, Delay 1, Generate Event:Power’s On
P=0.1, Delay 2, Generate Event:Power’s On
=0.1, Delay 4, Generate Event:Power’s On
0.1, Delay 7, Generate Event:Power’s On
0.1, Delay 10, Generate Event:Power’s On
0.1, Delay 15, Generate Event:Power’s On
0.1, Delay 20, Generate Event:Power’s On

0.1, Delay 25, Generate Event: Power’s On
=0.1, Delay 30, Generate Event:Power’s On

"U"U"U"”U"U"U"U

The state transition diagram for the Commercial Gas Object is found in Figure E-20. This
diagram shows the states and events for this object. The attributes, initial conditions and
response models (with their “if — then — else if — else” logic) and scripts follow the figure.

Commercial Gas Object

 Gasou__a

Available Dead

Figure E-20. State transition diagram for the Commercial Gas object.

Object Attributes (Values)
Supply (Available, Restored, None)

Initial Conditions
The initial conditions are State:(Available) and attribute value Supply=(Available).

256

State:(Available)
Immediate Response Model:
If Supply=(None) then
Set Supply=(Restored)
Else If Supply=(Available) then
P=0.1, Set Supply=(Restored)
P=0.9, Reset My Clock, Generate Event:Gas Out

Else
Do Nothing

Delayed Response Model:
None.

State:(Dead)
Immediate Response Model:
If Supply=(Available) then

Set Supply=(None)

Delayed Response Model:

Always do this:
P=0.1, Delay 1, Generate Event:Gas On
P=0.1, Delay 2, Generate Event:Gas On
P=0.1, Delay 3, Generate Event:Gas On

0.1, Delay 4, Generate Event:Gas On

257

This Page Intentionally Blank

258

F. Example Details for Aircraft Spacing for Runway
Operations

This appendix provides a description of the system structure, interactions, and state transition
diagrams for the aircraft spacing for runway operations example presented in Section 5.6 of the
main body of the report. The descriptions of the airport/airspace, taxi aircraft and landing
aircraft include a discussion of their respective state transition diagrams. This description
includes the sets of “if — then — else if — else” scripts and logical conditions for the IRM and
DRM models of the state transition diagrams.

F.1 System Structure and Interactions

The system structure diagram for this example problem is shown in Figure F-1. The description
of the functional blocks is provided in Table F-1. The interaction diagram is provided in Figure

F-2. The functional interactions between the blocks are indicated by directed arrows and are
specified in Table F-2.

Environment

(Env)

Tower Taxi Landing
Controller ——mmm Aircraft Aircraft
(TC) (TA) (LA)

Airport /
Airspace
(AP)

Figure F-1. System structure diagram model of runway operations.

259

Table F-1. Functional blocks for runway operations.

AP = Airport/Airspace: Represents the physical layout of the airport/airspace
and tracks aircraft location within this layout.

TC= Tower Controller: Provides commands and responses and monitors
airport/airspace and aircraft.

TA = Taxi Aircraft: An aircraft either taxing from the gate to the runway for
takeoff or from the runway to the gate after landing.

LA = Landing Aircraft: An aircraft either flying in for landing on a runway or
taking off.

Env = Environment: Provides environmental context for an analysis, including
weather conditions, visibility, air traffic levels, flight crew performance,
lighting, radio conditions, and airport signage.

Environment
Tower ‘ Taxi
Controller > Aircraft

Airport /
Airspace

Figure F-2. Interaction diagram for the model of runway operations.

260

Table F-2. Functional interactions for runway operations.

AP-TC:

TC-AP:

TC-TA:

TA-AP:

TA-TC:

LA-AP:

Env-TC:

Env-TA:

Env-LA:

The airport/airspace provides to the tower controller information on
aircraft positions.

The tower controller provides to the airport/airspace information
about runway reservations.

The tower controller provides taxi commands to a taxi aircraft and
responds to requests from a taxi aircraft.

A taxi aircraft provides to the airport/airspace information about it
position.

A taxi aircraft makes requests to the tower controller and responds to
commands from the tower controller.

A landing aircraft provides to the airport/airspace information about
its position.

The environment provides to the tower controller information about
distractions, visibility, and radio interference.

The environment provides to a taxi aircraft information about
distractions, visibility, and radio interference.

The environment provides to a landing aircraft information about
distractions, visibility, and radio interference.

F.2 Airport/Airspace Object

The Airport/Airspace Object (AP) provides a representation the physical layout of the
airport/airspace and tracks aircraft location within this layout.
defined to provide information about the physical locations of taxi and landing aircraft and about
the status of the runway. The physical runway/taxiway layout used for this example is provided
in Figure F-3. The state transition diagram for the airport/airspace object is shown in Figure F-4.
The events and state transitions, attributes, initial conditions, and sets of “if — then — else if —
else” scripts and logical conditions for the IRM and DRM models for each state are presented in

the following sections.

Events and State Transitions
This object has only one state - (Status).
No state transitions; events external to this object will cause changes in object attributes.

Attributes (Values)

Taxi Aircraft Location — TAL (G, T12, T3, X, TS5, BT)
Landing Aircraft Locations — LAL (A, R1, R23, X, R5, BR)
Runway Status — RS (Reserved, Available)

261

Attributes for this object are

Initial Conditions
TAL=(G)

LAL=(A)
RS=(Reserved)

State:(Airport Status)
Immediate Response Model:
If TA:Location=(G) AND TAL/=(G) then
Set TAL=(G), Generate Event:7A New Location
Else If TA:Location=(T12) AND TAL/=(T12) then
Set TAL=(T12), Generate Event:74 New Location
Else If TA:Location=(T3) AND TAL/=(T3) then
Set TAL=(T3), Generate Event:TA New Location
Else If TA:Location=(X) AND TAL/=(X) then
Set TAL=(X), Generate Event:74A New Location
Else If TA:Location=(T5) AND TAL/=(T5) then
Set TAL=(TS), Generate Event:TA New Location
Else If TA:Location=(BT) AND TAL/=(BT) then
Set TAL=(BT) Generate Event:7A New Location

Else If LA:Location=(A) AND LAL/=(A) then

Set LAL=(A), Generate Event:LA New Location
Else If LA:Location=(R1) AND LAL/=(R1) then

Set LAL=(R1), Generate Event:LA New Location
Else If LA:Location=(R23) AND LAL/=(R23) then

Set LAL=(R23), Generate Event:LA New Location
Else If LA:Location=(X) AND LAL/=(X) then

Set LAL=(X), Generate Event:LA New Location
Else If LA:Location=(R5) AND LAL/=(R5) then

Set LAL=(RS), Generate Event:LA New Location
Else If LA:Location=(BR) AND LAL/=(BR) then

Set LAL=(BR), Generate Event:LA New Location
Else If TC:Land Clear=(CTL) AND RS/=(Reserved) then

Set RS=(Reserved)
Else If TC:Land Clear=(NO) AND RS/=(Available) then

Set RS=(Available)

Else Do Nothing

Delayed Response Model:
None.

262

((BT) Beyond \W
Taxiway

Segment labels represent discrete attribute values
for locations to be occupied by aircraft.

T2 For purposes of simplification, runway segments
R2 and R3 are merged (R23), and taxiway
/ segments T1 and T2 are merged (T12).
(T1 Closeness of approach: Severity Rank
X-X Collision 1
I R23-X Very Close 1 2
RI-X Close Call 1 6
(G) A-X Incursion 8
Gate R5-X Very Close 2 5
BR-X Close Call 2 7
X-T5 Very Close 3 4
X-T3(NS*) Very Close 4 3
(All Other) No Problem 9

Figure F-3. Physical layout for the Airport/Airspace Object.

Figure F-4. State transition diagram for the Airport/Airspace Object.

263

F.3 Landing Aircraft Object

The Landing Aircraft Object (AP) represents an aircraft either flying in for landing on a runway
or taking off. Attributes for this object are defined to provide information about the physical
location and motion of the landing aircraft and its mode of operation (landing or takeoff). The
state transition diagram for the landing aircraft object is shown in Figure F-5. The events and
state transitions, attributes, initial conditions, and sets of “if — then — else if — else” scripts and
logical conditions for the IRM and DRM models for each state are presented in the following
sections.

LA-Fly LA-Stop

LA New Location

LA-NL

(LA-NL)

LA-Move

\

LA NL

Figure F-5. State transition diagram for the Landing Aircraft Object.

Events and State Transitions

Event:LA New Location (LA-NL) is generated by the Landing Aircraft Object and also by the
Airport/Airspace Object and causes the following transitions:
from State:(Flying) to State:(Change Location)
from State:(Moving) to State:(Change Location)
from State:(Stopped) to State:(Change Location)

Event:LA-Fly is generated by the Landing Aircraft Object and causes transition from
State:(Change Location) to State:(Flying).

Event:LA-Stop is generated by the Landing Aircraft Object and causes transition from
State:(Change Location) to State:(Stopped).

Event:LA-Move is generated by the Landing Aircraft Object and causes transition from
State:(Change Location) to State:(Moving).

264

Attributes (Values)

Mode (Takeoff, Landing)
Location (A, R1, R23, X, R5, BR)
Motion (Stopped, Moving, Flying)

Initial Conditions
Mode=(Landing)
Location=(A)
Motion=(Landing)

State:(Flying)
Immediate Response Model:
If Location/=(A) then
Set Location=(A)
Else If Motion/=(Flying) then
Set Motion=(Flying)
Else Do Nothing

Delayed Response Model: {This models final approach timing.}

If Mode=(Takeoff) then
Terminate Scenario

Else P=0.25, Delay 120, Generate Event:L4A New Location
P=0.50, Delay 135, Generate Event:LA New Location
P=0.25, Delay 150, Generate Event:LA New Location

State:(Change Location)
Immediate Response Model:
If Mode=(Landing) AND Location=(A) then
Set Location=(R1), Generate Event:LA4-Move
Else If Mode=(Landing) AND Location=(R1) then
Set Location=(R23), Generate Event:LA-Move
Else If Mode=(Landing) AND Location=(R23) then
Set Location=(X), Generate Event:LA4-Move
Else If Mode=(Landing) AND Location=(RX) then
Set Location=(R5), Generate Event:LA-Move
Else If Mode=(Landing) AND Location=(R5) then
Set Location=(BR), Set Motion=(Stopped), Generate Event:LA-Stop

Else If (when Mode=(Takeoff) AND) Location=(BR) then
Set Location=(R5), Generate Event:LA-Move

Else If (when Mode=(Takeoff) AND) Location=(R5) then
Set Location=(X), Generate Event:LA-Move

Else If (when Mode=(Takeoff) AND) Location=(X) then
Set Location=(R32), Generate Event:LA4-Move

Else If (when Mode=(Takeoff) AND) Location=(R32) then

265

Set Location=(R1), Generate Event:LA-Move
Else (when Mode=(Takeoff AND Location=(R1))
Set Location=(A), Set Motion=(Flying), Generate Event:LA-Fly

Delayed Response Model:
None

State:(Moving)
Immediate Response Model:
If Motion/=(Flying) then

Set Motion=(Moving)
Else Do Nothing

Delayed Response Model: {Note: can’t be in location A while not flying.}
If Mode=(Landing) AND Location=(R1) then

P=0.25, Delay 7, Generate Event:LA New Location

P=0.50, Delay 10, Generate Event:LA New Location

P=0.25, Delay 13, Generate Event:LA New Location

Else If Mode=(Landing) AND Location=(R23) then
P=0.25, Delay 4, Generate Event:LA New Location
P=0.50, Delay 5, Generate Event:LA New Location
P=0.25, Delay 7, Generate Event:LA New Location

Else If Mode=(Landing) AND Location=(X) then
Delay 3, generate Event:LA New Location

Else If Mode=(Landing) AND Location=(R5) then
P=0.25, Delay 10, Generate Event:LA New Location
P=0.50, Delay 15, Generate Event:LA New Location
P=0.25, Delay 20, Generate Event:LA New Location

{Note: from here on, mode can only be (Takeoff). Can’t have BR while plane is moving.}

Else If Location=(R5) then
P=0.25, Delay 10, Generate Event:LA New Location
P=0.50, Delay 20, Generate Event:LA New Location
P=0.25, Delay 30, Generate Event:LA New Location

Else If Location=(X) then
Delay 3, Generate Event:LA New Location

Else If Location=(R23) then
P=0.25, Delay 5, Generate Event:LA New Location
P=0.50, Delay 7, Generate Event:LA New Location
P=0.25, Delay 9, Generate Event:LA New Location

266

Else (Location=(R1))
P=0.25, Delay 10, Generate Event:LA New Location
P=0.50, Delay 13, Generate Event:LA New Location
P=0.25, Delay 16, Generate Event:LA New Location

{Note that the location cannot be A while in the state Moving — only when Flying.}

State:(Stopped)
Immediate Response Model:
If Location/=(BR) then
Set Location=(BR)
Else If Motion/=(Stopped) then
Set Motion=(Stopped)
Else Do Nothing

Delayed Response Model: {This represents the delay before takeoff rolls tarts.}
If Mode=(Landing) then

Terminate Scenario
Else P=0.25, Delay 15, Generate Event:LA New Location

F.4 Taxi Aircraft Object

The Taxi Aircraft Object (AP) represents an aircraft either taxing from the gate to the runway for
takeoff or from the runway to the gate after landing. Attributes for this object are defined to
provide information about the physical location and motion of the landing aircraft, its mode of
operation (landing or takeoff), and pilot response to hold commands from the tower controller.
This object initially ignores the tower controller and the environment. The state transition
diagram for the taxi aircraft object is shown in Figure F-6. The events and state transitions,
attributes, initial conditions, and sets of “if — then — else if — else” scripts and logical conditions
for the IRM and DRM models for each state are presented in the following sections.

Events and State Transitions

Event:TA New Location (LA-NL) is generated by the Taxi Aircraft Object and also by the
Airport/Airspace Object and causes the following transitions:
from State:(Gate Stop) to State:(Change Location)
from State:(Taxi) to State:(Change Location)
from State:(Hold) to State:(Change Location)
from State:(Beyond Model) to State:(Change Location)

Event:TA-Gate is generated by the Taxi Aircraft Object and causes transition from State:(Change
Location) to State:(Gate Stop).

Event:TA4-Taxi is generated by the Taxi Aircraft Object and causes transition the following
transitions:
from State:(Change Location) to State:(Taxi).
from State:(Hold) to State:(Taxi).

267

Gate Stop /P Taxi
TA-Gate T4-Taxi

TA New_ Location V

(TA-NL)

TA-NL

? Change TA-Hold TA-Taxi
Location

TA-Beyond Model TA-Hold

/ A \

TA-NL TA-NL

Beyond T~— Hold
Model

Figure F-6. State transition diagram for the Taxi Aircraft Object.

Event:TA-Hold is generated by the Taxi Aircraft Object and causes transition the following
transitions:
from State:(Change Location) to State:(Hold)
from State:(Taxi) to State:(Hold)

Event:TA-Beyond Model is generated by the Taxi Aircraft Object and causes transition from
State:(Change Location) to State:(Beyond Model).

Attributes (Values)

Mode (Takeoff, Landing)

Location (G, T12, T3, X, TS5, BT)
PilotHold (Unset, WillHold, NoHold)
Motion (Gate, Taxi, Hold, Beyond)

Initial Conditions
Mode=(Takeoff)
Location=(G)
PilotHold=(Unset)
Motion=(Gate)

State:(Gate Stop)
Immediate Response Model:
If Location/=(G) then
Set Location=(G)
Else If Motion/=(Gate) then
Set Motion=(Gate)

268

Else If Mode=(Takeoff) AND PilotHold=(Unset) then
P=0.999, Set PilotHold=(WillHold)
P=0.001, Set PilotHold=(NoHold)

Else Do Nothing

Delayed Response Model: {This models delays leaving the gate.}

If Mode=(Landing) then
Terminate Scenario

Else P=0.25, Delay 100, Generate Event:7A New Location
P=0.50, Delay 120, Generate Event:7A New Location
P=0.25, Delay 140, Generate Event:74 New Location

State:(Change Location)
Immediate Response Model:
If Mode=(Takeoff) AND Location=(G) then
Set Location=(T12), Generate Event:74-Taxi
Else If Mode=(Takeoff) AND Location=(T12) then
Set Location=(T3), Generate Event:TA-Taxi
Else If Mode=(Takeoff) AND Location=(T3) then
Set Location=(X), Generate Event:74-Taxi
Else If Mode=(Takeoff AND Location=(X) then
Set Location=(T5), Generate Event:TA-Taxi
Else If Mode=(Takeoff AND Location=(T5 then
Set Location=(BT), Set Motion=(Beyond), Generate Event:74-Beyond Model

Else If (when Mode=(Landing) AND) Location=(BT) then
Set Location=(T5), Generate Event:TA-Taxi
Else If (when Mode=(Landing) AND) Location=(T5) then
Set Location=(X), Generate Event:TA4-Taxi
Else If (when Mode=(Landing) AND) Location=(X) then
Set Location=(T3), Generate Event:TA-Taxi
Else If (when Mode=(Landing) AND) Location=(T3) then
Set Location=(T12), Generate Event:TA-Taxi
Else (when Mode=(Landing) AND Location=(T12))
Set Location=(G), Motion=(Gate), Generate Event: TA-Gate

Delayed Response Model:
None

State:(Taxi)
Immediate Response Model:
If Motion/=(Taxi) then

Set Motion=(Taxi)
Else Do Nothing

269

Delayed Response Model: {Can't be in location G in Taxi state.}
If Mode=(Takeoff) AND Location=(T12) then
P=0.25, Delay 30, Generate Event:7A New Location
P=0.50, Delay 40, Generate Event:7A New Location
P=0.25, Delay 50, Generate Event:7A New Location

Else If Mode=(Takeoff) AND Location=(T3) AND PilotHold=(NoHold) then
P=0.25, Delay 10, Generate Event:7A New Location
P=0.50, Delay 15, Generate Event:7A New Location
P=0.25, Delay 20, Generate Event:7A New Location

Else If Mode=(Takeoff) AND Location=(T3) (AND PilotHold=(WillHold) then
P=0.25, Delay 10, Generate Event:TA Hold
P=0.50, Delay 15, Generate Event:TA Hold
P=0.25, Delay 20, Generate Event:TA Hold

Else If Mode=(Takeoff) AND Location=(X) then
Delay 10, Generate Event:TA New Location

Else If Mode=(Takeoff) (AND Location=(T5) then
P=0.25, Delay 15, Generate Event:TA New Location
P=0.50, Delay 23, Generate Event:7A New Location
P=0.25, Delay 30, Generate Event:7A New Location

{Note: from here on, mode can only be (Landing). Can’t have BT while plane is in Taxi state.}

Else If (Mode=(Landing) AND) Location=(T5) AND PilotHold=(NoHold) then
P=0.25, Delay 15, Generate Event:7A New Location
P=0.50, Delay 23, Generate Event:7A New Location
P=0.25, Delay 30, Generate Event:7A New Location

Else If (Mode=(Landing AND) Location=(T5 (AND PilotHold=(WillHold) then
P=0.25, Delay 15, Generate Event:TA Hold
P=0.50, Delay 23, Generate Event:7A Hold
P=0.25, Delay 30, Generate Event:TA Hold

Else If (Mode=(Landing) AND) Location=(X) then
Delay 10, Generate Event:TA New Location

Else If (Mode=(Landing) AND) Location=(T3) then
P=0.25, Delay 10, Generate Event:7A New Location
P=0.50, Delay 15, Generate Event:7A New Location
P=0.25, Delay 20, Generate Event:7A New Location

270

Else (If Mode=(Landing) AND Location=(T12)) then
P=0.25, Delay 30, Generate Event:7A New Location
P=0.50, Delay 40, Generate Event:7A New Location
P=0.25, Delay 50, Generate Event:7A New Location

{Note that the location cannot be G or BT while in the state Taxi.}

State: Hold

{This is a very crude model — they wait 3 minutes until this plane is gone, then proceed. This
state’s final behavior will need to interface with the tower controller object.}

Immediate Response Model:

None

Delayed Response Model:
Always do this:
Delay 180, Set PilotHold=(NoHold), Generate Event:74 New Location

State:(Beyond Model)
Immediate Response Model:
If Location/=(BT) then
Set Location=(BT)
Else If Motion/=(Beyond) then
Set Motion=(Beyond)
Else If Mode=(Landing) AND PilotHold=(Unset) then
P=0.999, Set PilotHold=(WillHold)
P=0.001, Set PilotHold=(NoHold)
Else Do Nothing

Delayed Response Model: {This represents the delay before plane enters taxiway T5.}
If Mode=(Takeoff) then

Terminate Scenario
Else P=0.25, Delay 15, Generate Event:74 New Location

P=0.50, Delay 20, Generate Event:7A New Location

P=0.25, Delay 25, Generate Event:7A New Location

271

This Page Intentionally Blank

272

DISTRIBUTION

External Distribution

Mark A. Cunningham

Probabilistic Risk Analysis Branch
US Nuclear Regulatory Commission
MS TWF 10 E50

Washington, DC 20555-0001

Mary T. Drouin

Probabilistic Risk Analysis Branch
US Nuclear Regulatory Commission
MS TWF 10 E50

Washington, DC 20555-0001

Alan S. Kuritzky

Probabilistic Risk Analysis Branch
US Nuclear Regulatory Commission
MS TWF 10 E50

Washington, DC 20555-0001

Alan M. Rubin

Probabilistic Risk Analysis Branch
US Nuclear Regulatory Commission
MS TWF 10 E50

Washington, DC 20555-0001

Harry F. Martz

Group Al, F-600

Los Alamos National Laboratory
Los Alamos, NM 87545

George Apostolakis

Massachusetts Institute of Technology
Nuclear Engineering Department

77 Massachusetts Avenue, Room 24-223
Cambridge, MA 02139-4307

Kevin Corker

San Jose State University Foundation
NASA Ames Research Center

Mail Stop 262-1

Moftett Field, CA 94035-1000

Dist-1

Irv Statler

APMS Project Manager
NASA Ames Research Center
Code IHS, Mail Stop 262-7
Moffett Field, CA 94035-1000

Mary Connor

NASA Ames Research Center
Code IHS, Mail Stop 262-4
Moftett Field, CA 94035-1000

Mike Abkin

ATAC Corporation
757 N. Mary Avenue
Sunnyvale, CA 94085

Michael Stamatelatos

NASA Headquarters

Code QE

300 E St. SW

Washington, DC 20024-3210

Gareth W. Parry

Division of Systems Safety and Analysis
MS 10 A1l

US Nuclear Regulatory Commission
Washington, DC 20555-0001

Nathan O. Siu

Probabilistic Risk Analysis Branch
MS 10 E50

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Sandia Distribution

MSO0188
MS0405
MS0405
MS0405
MS0405
MS0434
MS0451
MS0451
MS0451
MS0490
MS0615
MS0615
MSO0717
MSO0736
MS0744
MS0746
MSO0746
MS0746
MSO0747
MS0747
MS0747
MS0747
MS0747
MS0747
MS0747
MS0747
MS0747
MS0748
MS0748

D. L. Chavez, 1030

T. R. Jones, 12333

M. P. Bohn, 12333

T. D. Brown, 12333

S. E. Dingman, 12333
R. J. Breeding, 12334
J. E. Nelson, 6515

L. A. Snyder, 6515

D. C. Barton, 6515

J. A. Cooper, 6252

R. L. Perry, 6252

R. D. Hartman, 6252
R. L. Craft, 6514

T. E. Blejwas, 6400
F.J. Wyant, 6420

D. J. Anderson, 15312
L. Swiler, 15312

R. D. Browitt, 15312 [2]
A. L. Camp, 6410

R. S. Campbell, 6410
R. G. Cox, 6410

V. J. Dandini, 6410

S. L. Daniel, 6410

F. A. Duran, 6410 [10]
J. LaChance, 6410

T. T. Sype, 6410

G. D. Wyss, 6410 [10]
R. D. Waters, 6413

C. B. Atcitty, 6413

Dist-2

MS0748
MS0748
MS0748
MS0748
MS0748
MS0748
MS0748
MSO0748
MSO0759
MSO0759
MSO0779
MS0828
MS9018

MS0899
MS0612

W. Cheng, 6413

J. A. Forester, 6413

S. P. Nowlen, 6413

C. P. Ottinger, 6413

D. G. Robinson, 6413
H. O. Whitehurst, 6413
T. A. Wheeler, 6413
D. W. Whitehead, 6413
I. G. Waddoups, 5845
M. K. Snell, 5845

J. C. Helton, 6849

M. Pilch, 9133

Central Technical Files,
8945-1

Technical Library, 9616 [2]

Review and Approval Desk,
9612, for DOE/OSTI [1]

	Front Matter
	Cover
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Nomenclature

	1. Introduction
	1.1 Motivation
	1.2 Overview of the Report

	2. Survey of Other Methods
	2.1 Infrastructure Indications & Warnings
	2.2 Aspen
	2.3 Network Analysis Methods
	2.4 Enumerative Risk Assessment Methods
	2.5 Probabilistic Risk Assessment Methods
	2.6 Markov Models
	2.7 Simulation Methods
	2.9 Discrete Event Simulation Methods
	2.8 Dynamic Risk Assessment Methods
	2.10 Object-Oriented Risk Assessment Methods
	2.11 Summary

	3. The OBEST Methodology
	3.1 Background
	3.2 Methodology Description
	3.2.1 Common Elements with Previous Methods
	3.2.2 The OBEST Action Language
	3.2.3 OBEST Methodology Summary

	3.3 Solving an OBEST Model
	3.3.1 IRM Branching Methodology
	3.3.2 DRM Evaluation & Branching Methodology
	3.3.3 Truncation & Binning

	3.4 Compatibility With Parallel Processing
	3.5 Comparisons With Other Methodologies
	3.6 Potential OBEST Applications
	3.7 OBEST Limitations & Possible Extensions
	3.8 Summary

	4. OBEST Software Implementation
	4.1 Software Overview
	4.2 Entering a Basic Object Model
	4.3 Entering Immediate & Delayed Response Models
	4.4 Evaluating an OBEST Model
	4.5 Summary

	5. Example Problems
	5.1 Electric Power Supply for a Police Station
	5.2 Fuel Tank Supply for a Gas Burner
	5.3 A Singles Racketball Game
	5.4 Circuit Analysis for Nuclear Power Plant Cable Fires
	5.5 Basic Infrastructure Problem
	5.6 Aircraft Spacing During Runway Crossing Operations
	5.7 Summary

	6. Conclusions & Future Directions
	6.1 Conclusions
	6.2 Recommendations for Future Work
	6.3 Summary

	7. References
	A. Example Details for Electric Power Supply for a Police Station
	B. Example Details for Fuel Tank Supply for a Gas Burner
	C. Example Details for A Singles Racquetball Game
	D. Example Details for Circuit Analysis for Nuclear Power Plant Cable Fires
	E. Example Details for Basic Infrastructure Problem
	F. Example Details for Aircraft Spacing for Runway Operations

