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In this paper the development of a gridless method to solve compressible flow problems is
discussed. The governing evolution equations for velocity divergence , vorticity , density

, and temperature are obtained from the primitive variable Navier-Stokes equations. Sim-
plifications to the equations resulting from assumptions of ideal gas behavior, adiabatic flow,
and/or constant viscosity coefficients are given. A general solution technique is outlined with
some discussion regarding alternative approaches. Two radial flow model problems are con-
sidered which are solved using both a finite difference method and a compressible particle
method. The first of these is an isentropic inviscid 1D spherical flow which initially has a
Gaussian temperature distribution with zero velocity everywhere. The second problem is an
isentropic inviscid 2D radial flow which has an initial vorticity distribution with constant
temperature everywhere. Results from the finite difference and compressible particle calcula-
tions are compared in each case. A summary of the results obtained herein is given along
with recommendations for continuing the work.

δ ω
ρ T

Abstract



4

(this page intentionally left blank)



Table of Contents

5

1    INTRODUCTION  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    7
1.1    Motivation  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    7
1.2    Past and Present Efforts .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    7
1.3    Paper Organization    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    8

2    GOVERNING EQUATIONS .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    9
2.1    Governing Equations for Newtonian Fluids  .   .   .   .   .   .   .   .   .   .   .    9
2.2    Divergence Evolution Equation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    10
2.3    Vorticity Evolution Equation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    11
2.4    Simplifications to the Equations    .   .   .   .   .   .   .   .   .   .   .   .   .   .    12

3    SOLUTION TECHNIQUES  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    15
3.1    General Method .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    15
3.2    Particle Generation at Body Surfaces    .   .   .   .   .   .   .   .   .   .   .   .    15
3.3    Viscous Diffusion  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    16
3.4    Acoustic Propagation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    16
3.5    On the Solution of Evolution Equations    .   .   .   .   .   .   .   .   .   .   .    17

3.5.1    Continuity/Energy  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    17
3.5.2    Vorticity .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    19
3.5.3    Divergence .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    20
3.5.4    Moving Least Squares   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    21

4    MODEL PROBLEMS    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    23
4.1    1D Spherical Flow: Temperature Disturbance  .   .   .   .   .   .   .   .   .    23

4.1.1    Finite Difference Solution .   .   .   .   .   .   .   .   .   .   .   .   .   .    23
4.1.2    Compressible Particle Solution  .   .   .   .   .   .   .   .   .   .   .   .    26

4.2    2D Radial Flow: Vorticity Disturbance .   .   .   .   .   .   .   .   .   .   .   .    30
4.2.1    Finite Difference Solution .   .   .   .   .   .   .   .   .   .   .   .   .   .    31
4.2.2    Compressible Particle Solution  .   .   .   .   .   .   .   .   .   .   .   .    34

5    DISCUSSION .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    39
5.1    General Observations .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    39
5.2    Some Questions to Answer    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    39
5.3    A Set of Investigations   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    40
5.4    Some Model Problems   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    40

6    REFERENCES   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    43



(this page intentionally left blank)

6



7

1   INTRODUCTION

1.1   Motivation

Sandia National Laboratories has been tasked with the simulation of nuclear weapons para-
chute performance. These high performance parachutes must operate under a variety of con-
ditions some of which are in the compressible flow regime. At the beginning of the
deployment sequence, the parachute is packed in a bag to a density approaching that of oak
wood. After the bag is stripped off, the parachute undergoes a very rapid inflation process
with large geometry changes. These parachutes are constructed from thousands of ribbon ele-
ments which have gaps between them. These gaps typically comprise about 20% of the total
area of the parachute. A discussion of the fluid dynamics of parachute inflation and relatively
recent simulation attempts are given by Peterson, Strickland, and Higuchi [1] as well as
Strickland and Higuchi [2].

As part of the Accelerated Strategic Computing Initiative (ASCI), Sandia has developed a 3D
incompressible gridless vortex code (VIPAR) which is capable of simulating unsteady bluff-
body flow over time-dependent geometries. In FY2001, Sandia will embark upon a joint
exploratory effort with Professor Nitsche at the University of New Mexico who has received
funding for a Sandia University Research Proposal (SURP) regarding gridless compressible
methods. The level of effort for this initial investigation will be quite modest in light of the
tremendous challenges associated with the formulation and implementation of such a
method.

In the present paper, the notion of extending classical incompressible gridless vortex methods
into the compressible regime is discussed along with possible directions which one might
take to eventually obtain a mature algorithm. The general motivation for extending the grid-
less vortex method is to be able to capitalize upon its inherent advantages (no gridding in the
fluid volume, limited computational domains, easily satisfied farfield boundary conditions,
etc.).

1.2   Past and Present Efforts

Although there is not a large body of work associated with compressible gridless vortex
methods, there are several researchers who have made progress in this area. These efforts
have been briefly reviewed by Homicz [3] and Nitsche [4]. In general, the works of Mas-Gal-
lic, Louaked, and Pironneau [5], Mas-Gallic [6], and Sod [7,8] are not truly gridless in that
they solve a portion of the problem on a grid, but they do provide some important insights.
The works of Ogami and Cheer [9,10] are gridless but require particles to be distributed over
the entire fluid flow domain.

Very recently, a 2D vortex method for isentropic compressible flows was presented by Eld-
ridge, Colonius, and Leonard [11]. While details of this work are not yet available, view-
graphs from their presentation indicate that this approach most closely follows our intended
direction [3,4] for the development of a 3D algorithm. In general, this method tracks the evo-
lution of the velocity divergence field , the vorticity field , and the enthalpy field . Using
the Helmholtz decomposition of a vector field, the velocity field is reconstructed at each time
step from and using a fast multipole solver [12,13]. In solving the evolution equations

δ ω h

δ ω
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which contain the Laplacians of vorticity and enthalpy , Eldridge et al. [11] use the parti-
cle strength exchange (PSE) method which was originally developed by Degond and Mas-
Gallic [14]. Gharakhani [15] suggests that a vorticity redistribution method (VRM) originally
developed by Subramaniam [16] may prove superior to the PSE method with regard to reduc-
ing the number of elements and rediscretization requirements associated with the PSE
method.

1.3   Paper Organization

In Section 2, the governing evolution equations for , , , and are obtained from the
primitive variable Navier-Stokes equations. Simplifications to the equations resulting from
assumptions of ideal gas behavior, adiabatic flow, and/or constant viscosity coefficients are
given. In Section 3, general solution techniques are discussed. Section 4 contains radial flow
initial value model problems which are solved using a discrete particle method. The first of
these is an isentropic inviscid 1D spherical flow which initially has a Gaussian temperature
distribution with zero velocity everywhere. The second problem is an isentropic inviscid 2D
radial flow which initially has a vorticity distribution with constant temperature everywhere.
The results in each case are compared with those from finite difference simulations. In Sec-
tion 5 a discussion and summary of the results obtained herein is given along with recommen-
dations for continuing the work.

ω h
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2   GOVERNING EQUATIONS

2.1   Governing Equations for Newtonian Fluids

The continuity equation is given by:

. (1)

The Navier-Stokes momentum equation is given by:

. (2)

Here, is the deformation rate tensor and is its transpose. As given by
Curry [17], the sum of the deformation rate tensor and its transpose is equal to twice the shear
rate tensor :

. (3)

Of note in Equation 2 is the fact that for compressible flow there is an additional viscous term
on the right hand side resulting from non-zero divergence of velocity. For example, use of

Stoke’s hypothesis for the viscosity coefficients along with an assumption that

the viscosity is constant, gives rise to the additional viscous term in the fol-

lowing momentum equation:

. (4)

The energy equation is given by:

, (5)

where the tensor multiplication notation “:” is from Bird, Stewart, and Lightfoot [18]. The

tensor product  is defined by . Thus, .

To complete the set of equations, one must provide equations of state for the pressure
 and energy  such as  and .

∂ρ
∂t
------ u ∇⋅( )ρ+ ρ– ∇ u⋅( )=

ρ∂u
∂t
------ ρ u ∇⋅( )u+ ∇ p– ∇ λ ∇ u⋅( )[ ] ∇ µ ∇ u ∇ T u+( )[ ]⋅ ρf+ + +=

∇ u ∇ T u ∇ u( )T≡

Sij

∇ u ∇ T u+ 2Sij xi∂
∂u j

x j∂
∂ui+= =

λ 2
3
---µ–= 

 

µ 1
3
---ν∇ ∇ u⋅( )

∂u
∂t
------ u ∇⋅( )u+ ∇ p

ρ
-------–

1
3
---ν∇ ∇ u⋅( ) ν∇ 2u f+ + +=

ρ∂e
∂t
----- ρ u ∇⋅( )e+ p ∇ u⋅( )– ∇ k∇ T( )⋅ λ ∇ u⋅( )2 µ ∇ u: ∇ u ∇ T u+( )[ ]+ + +=

a:b a:b aijb ji
j

∑
i

∑≡ ∇ u: ∇ u ∇ T u+( )
xi∂

∂u j 2 S ji( )=

p ρ T,( ) e ρ T,( ) e CvT= p ρRT=
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2.2   Divergence Evolution Equation

To obtain the divergence evolution equation, Equation 2 is first rewritten as:

, (6)

.

Taking the divergence of Equation 6, denoting the velocity divergence by , and add-

ing  to both sides yields:

. (7)

The first two terms on the right hand side are easily written in index notation as:

, (8)

This in turn can be written as:

, (9)

where is the rotation rate tensor . Therefore, the divergence evolution

equation can be given by:

. (10)

The first two terms on the right hand side of Equation 7 can alternatively be expressed as:

, (11)

∂u
∂t
------ u ∇⋅( )u ∇ p

ρ
-------––

1
ρ
---Ψ λ µ u, ,( ) f+ +=

Ψ λ µ u, ,( ) ∇ λ ∇ u⋅( )[ ] ∇ µ ∇ u ∇ T u+( )[ ]⋅+≡

δ ∇ u⋅≡
u ∇⋅( )δ

∂δ
∂t
------ u ∇⋅( )δ+ u ∇⋅( )δ ∇ u ∇⋅( )u[ ] ∇ ∇ p

ρ
-------– Ψ

ρ
---- f+ + 

 ⋅+⋅–=

u ∇⋅( ) ∇ u⋅( ) ∇ u ∇⋅( )u[ ]⋅– u j x j∂
∂

xi∂
∂ui

 
 
 

xi∂
∂

u j x j∂
∂ui

 
 
 

–
xi∂

∂u j

x j∂
∂ui–= =

xi∂
∂u j

x j∂
∂ui ∇ u:∇ u SijSij ΩijΩij–= =

Ωij Ωij
1
2
---

x j∂
∂ui

xi∂
∂u j–

 
 
 

≡

Dδ
Dt
------- ∇–

∇ p
ρ

------- Ψ
ρ
----– f– 

  ∇ u:∇ u–⋅=

u ∇⋅( )δ ∇ u ∇⋅( )u[ ]⋅– ∇ uδ( )⋅ δ2
– ∇ 1

2
--- u

2 u ω×–∇ 
 ⋅–=
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so that the divergence evolution equation is given by:

. (12)

The viscous term can be simplified significantly if it is assumed that the kinematic viscosity
as well as the dynamic viscosity are equal to a constant. Clearly, this assumption is valid

only if the change in is small since . Using the Stoke’s hypothesis for the viscos-

ity coefficients  then:

. (13)

The divergence of Equation 13 is:

. (14)

It should be noted that if only the dynamic viscosity is assumed to be equal to a constant
then an additional term containing the density gradient appears:

. (15)

2.3   Vorticity Evolution Equation

Taking the curl of Equation 6 and adding  to both sides yields:

. (16)

The term  can be expanded by using the following vector operations:

, (17)

.

Dδ
Dt
------- ∇– ∇ p

ρ
-------

1
2
--- u

2 u ω u– δ×–∇ Ψ
ρ
----– f–+ 

  δ2
–⋅=

ν µ
ρ ν µ/ρ=

λ 2
3
---µ–= 

 

Ψ
ρ
----

1
3
---ν∇δ ν∇ 2u+=

∇ Ψ
ρ
---- 

 ⋅ 1
3
---ν∇ 2δ ν∇ 2δ+

4
3
---ν∇ 2δ= =

µ

∇ Ψ
ρ
---- 

 ⋅ 4
3
---ν∇ 2δ ∇ρ

ρ
------- 

  Ψ
ρ
---- 

 ⋅–=

u ∇⋅( )ω

∂ω
∂t
------- u ∇⋅( )ω+ u ∇⋅( )ω u ∇⋅( )u[ ]∇× ∇ p

ρ
------- Ψ

ρ
---- f–– 

 ∇×––=

u ∇⋅( )u[ ]∇×

u ∇⋅( )u[ ]∇×– ∇–
1
2
--- ∇ u

2 u ω×– 
 × ∇ u ω×( )×= =

∇ u ω×( )× ω ∇⋅( )u ωδ– u ∇⋅( )ω–=
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The first two terms on the right hand side of Equation 16 can thus be replaced by:

, (18)

so that Equation 16 can be written as:

. (19)

The viscous term for constant kinematic viscosity and constant dynamic viscosity is
given by:

. (20)

For the case where the dynamic viscosity is equal to a constant but not the kinematic vis-
cosity , the viscous term in the vorticity equation becomes:

. (21)

2.4   Simplifications to the Equations

The evolution equations for density, divergence, vorticity, and internal energy, are repeated
here for convenience:

, (22)

, (23)

, (24)

. (25)

u ∇⋅( )ω u ∇⋅( )u[ ]∇×– ω ∇⋅( )u ωδ–=

Dω
Dt
-------- ω ∇⋅( )u ωδ ∇ ∇ p

ρ
------- Ψ

ρ
---- f–– 

 ×––=

ν µ

∇ Ψ
ρ
---- 

 × ∇ 1
3
---ν∇δ ν∇ 2u+ 

 × ∇ ν∇ 2u( )× ν∇ 2ω= = =

µ
ν

∇ Ψ
ρ
---- 

 × ν∇ 2ω ∇ρ
ρ

------- 
  Ψ

ρ
---- 

 ×–=

Dρ
Dt
-------- ρ– δ=

Dδ
Dt
------- ∇– ∇ p

ρ
------- Ψ

ρ
----– f– 

  ∇ u:∇ u–⋅=

Dω
Dt
-------- ω ∇⋅( )u ωδ ∇ ∇ p

ρ
------- Ψ

ρ
---- f–– 

 ×––=

ρDe
Dt
------- pδ– ∇ k∇ T( )⋅ λδ2 µ ∇ u: ∇ u ∇ T u+( )[ ]+ + +=
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If it is first assumed that there are no body forces and the viscosity coefficients and are

nearly constant and are governed by Stoke’s hypothesis then Equations 22-25

become:

, (26)

, (27)

, (28)

. (29)

Assuming that  and  then the energy equation can be written as:

, (30)

where and . There are now five equations (Equations 26, 27, 28, 30, and

) and five unknowns .

If the conduction heat transfer and viscous terms in the energy equation are also neglected
then:

. (31)

Eliminating from Equations 26 and 31 and using the equation of state yields the following
relationships between , , and which are recognized as those for an isentropic process in
an ideal gas:

. (32)

Note that if the conduction heat transfer and viscous terms in the energy equation are not neg-
ligible, the process is no longer isentropic.

µ ν

i.e.
∇ρ
ρ

------- 1« 
 

Dρ
Dt
-------- ρ– δ=

Dδ
Dt
------- ∇–

∇ p
ρ

------- 
  ∇ u:∇ u

4
3
---ν∇ 2δ+–⋅=

Dω
Dt
-------- ω ∇⋅( )u ωδ ∇ ∇ p

ρ
------- 

 × ν∇ 2ω+––=

De
Dt
-------

p
ρ
---δ–

1
ρ
--- ∇ k∇ T( ) 2

3
---νδ2

– ν ∇ u: ∇ u ∇ T u+( )[ ]+⋅+=

e CvT= p ρRT=

DT
Dt
-------- γ 1–( )T δ–

1
ρCv
---------- ∇ k∇ T( ) 2

3
--- ν

Cv
------δ

2
–

ν
Cv
------ ∇ u: ∇ u ∇ T u+( )[ ]+⋅+=

γ
C p

Cv
------≡ R C p Cv–≡

p ρRT= p ρ T δ and ω, , , ,( )

DT
Dt
-------- γ 1–( )T δ–=

δ
T ρ p

T
T 1
------

ρ
ρ1
----- 

  γ 1–( ) p
p1
----- 

 
γ 1–( )
γ

--------------

= =
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It is now instructive to write the term as a function of the temperature using the rela-
tionships in Equation 32.

(33)

For an ideal gas, the enthalpy is a function of temperature alone and can be written as:

 or . (34)

Therefore, the pressure gradient term can be written in terms of the enthalpy gradient.

. (35)

Thus, the baroclinic term in Equation 28 is identically zero. Therefore,

the governing equations for a constant viscosity ideal gas with negligible conduction heat
transfer and viscous energy dissipation can be written as:

, (36)

, (37)

. (38)

There are now three equations and three unknowns . The pressure and density,
which have been eliminated from this set of equations, may be obtained after-the-fact from
Equation 32 if so required. One may also substitute the enthalpy for in Equations 36

and 38 so long as is a constant and for . It is worth noting again that the

flow represented by Equations 36-38 is assumed to have negligible heat transfer and viscous
dissipation and is therefore isentropic yet it may be rotational as well as viscous.

∇ p
ρ

------- T

∇ p
ρ

-------

p1
T
T 1
------ 

 
γ

γ 1–
-----------

∇

ρ1
T
T 1
------ 

 
1

γ 1–( )
--------------

-------------------------------------
p1

ρ1T 1
------------ γ

γ 1–
----------- 

  ∇ T
Rγ

γ 1–
----------- ∇ T C p∇ T= = = =

dh C pdT= ∇ h C p∇ T=

∇ p
ρ

------- C p∇ T ∇ h= =

∇ ∇ p
ρ

------- 
 × ∇ ∇ h×=

Dδ
Dt
------- ∇–

2
C pT( ) ∇ u:∇ u

4
3
---ν∇ 2δ+–=

Dω
Dt
-------- ω ∇⋅( )u ωδ– ν∇ 2ω+=

DT
Dt
-------- γ 1–( )T δ–=

T δ and ω, ,( )

h C pT

C p h T( ) 0= T 0=
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3   SOLUTION TECHNIQUES

3.1   General Method

In general, the proposed gridless method tracks the evolution of the velocity divergence field
, the vorticity field , and the thermodynamic properties of the fluid ( ). Since the

solution using the evolution equations (for example Equations 22-25) requires that one con-
vect the particles, the particle velocity field must be reconstructed from the vorticity and
divergence fields. Using the Helmholtz decomposition of a vector field, the velocity field is
reconstructed at each time step from , , and a scalar potential function  according to:

. (39)

Here,  is a Green’s function which is given by:

(40)

It should be noted that the scalar potential is zero for bodies moving into otherwise undis-
turbed fluid. It is also assumed in Equation 39 that the volume integrals include all vortex and
divergence sheets associated with any boundaries. An alternative interpretation is to include
boundary integrals which explicitly account for the presence of such boundaries. For a
detailed discussion concerning this alternative interpretation of the Helmholtz decomposition
see Kempka et al. [19].

If the integrals in Equation 39 are discretized into particles or elements and the velocities

at the centers of those particles are required, a simplistic approach will require
operations. There are however, a number of fast multipole methods which can be used to effi-
ciently compute these velocities requiring only , or even operations. An
overview of such methods is given by Greengard [12] as well as Strickland and Baty [13].
Fast multipole methods for 2D planar flows have been developed by Carrier, Greengard, and
Rokhlin [21] (see also Strickland and Baty [22,23]). Axisymmetric fast multipole methods
have been developed by Strickland and Amos [20]. Recently an efficient 3D fast multipole
method has been developed by Cheng, Greengard, and Rokhlin [24]. The VIPAR code uses a
3D fast multipole method based on work by Strickland, Gritzo, Baty, and Homicz [25] which
has been optimized for parallel computing by Homicz and Burns [26].

3.2   Particle Generation at Body Surfaces

In order to gain some insight into the treatment of unsteady compressible flow over a bluff
body, let us assume that the body which is initially at rest moves into an otherwise undis-
turbed fluid. To satisfy the velocity boundary conditions on the body, vortex and possibly

δ ω p ρ T, ,

δ ω φ

u r( ) ∇ ω r'( )
R∞

∫× K r r',( )dR r'( ) ∇ δ r'( )K r r',( )dR r'( ) ∇φ+
R∞

∫–=

K r r',( )

K r r',( )
r r'–ln
2π

-------------------- for 2D

1
4π r r'–
--------------------- for 3D









=

φ

N

N O N
2( )

O N Nln( ) O N( )
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divergence sheets are placed on the boundaries. For example, in the work by Strickland [27]
for axisymmetric flow over bluff bodies comprised of thin shells, the normal velocity bound-
ary condition is satisfied by placing a set of discrete vortices to mimic vortex sheets on the
shell surface such that the stream function is equal to zero at a set of collocation points. The
tangential velocity boundary condition is then satisfied by splitting the resulting vortex sheet
into two sheets which are then placed on either side of the shell surface. In the work by Wolfe
et al. [28] for two-dimensional flow around tubes, the normal velocity boundary condition is
satisfied by first assuming a piecewise linear vortex sheets on the tube surface. The normal
velocity boundary condition is then satisfied by using a Galerkin scheme which produces a
linear system of equations for the unknown vortex sheet strengths. The tangential boundary
condition is again satisfied by splitting the vorticity sheet, resulting in vorticity sheets being
placed both inside and outside of the tubes. In the VIPAR code [29], two boundary element
methods are available for solving the velocity potential on the surface. The first of these
assumes constant potential over each triangular surface element while the second approach,
developed by Gharakhani, [30] assumes a piecewise linear potential distribution. In both
cases the resulting vortex sheet is smoothed to be piecewise linear and then split to satisfy the
tangential boundary condition.

In the case of compressible flow, the discretized surface sheets carry not only values of but
also values of and the thermodynamic properties , , and . It should be noted that algo-
rithms to compute appropriate wall values for and the thermodynamic properties will have
to be formulated. This is perhaps a non-trivial task and will require modification of the
boundary element computation if it is found that the flux of from the wall into the flow can-
not be arbitrarily set equal to zero.

3.3   Viscous Diffusion

The surface elements diffuse into the surrounding fluid using one of several diffusion
schemes. The diffusion velocity scheme originally developed by Ogami and Akamatsu [31]
and further developed by Strickland, Kempka, and Wolfe [32] is a convenient scheme if a
wall layer containing a moving grid is used to simulate the viscous boundary layer near the
body surface. If particles are used, the PSE method [14] or the VRM [15,16] are more appro-
priate. Both the PSE method and the VRM redistribute the vorticity so as to account for the

Laplacian on the right hand side of the vorticity evolution equation. According to Ghar-
akhani, the VRM is more accurate since quadratures involving randomly spaced points are
not required. In regions next to the undisturbed fluid, the VRM automatically and judiciously
adds new particles in regions which are within one diffusion length scale into the undisturbed

fluid. The Laplacian representing the diffusion of divergence appearing in the diver-
gence evolution equation may be treated in a similar fashion.

3.4   Acoustic Propagation

In general, velocity divergence is generated in the flow field by pressure gradients through

the term . Also, non-zero values of the shear rate tensor or rotation rate tensor

ω
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provide new sources of . The divergence field itself produces acoustic pressure distur-

bances via the energy equation which travel outward in an initially radial fashion from each
source. If there are no shock waves in the flow, these disturbances travel at the local sound

speed plus the local convection velocity. The acoustic pressure pulses from the
disturbed fluid which move into the undisturbed fluid and generate new divergence sources
are accounted for by adding new particles within one “acoustic length scale.” This is analo-
gous to the addition of particles at the interface between the disturbed and undisturbed fluid
so as to account for the viscous diffusion of vorticity.

While divergence is generated in the flow field due to pressure disturbances, vorticity is not,
so long as the flow is isentropic. From Equation 37 it can be seen that the only effect that the
divergence field has on vorticity is one of dilation in areas where the vorticity already exists.
Thus for the isentropic case, vorticity is only generated at the boundaries although it may be
intensified by stretching, weakened by dilation, and redistributed by viscous diffusion else-
where in the flow.

3.5   On the Solution of Evolution Equations

In this section, the evolution equations represented by Equations 36, 37, and 38 along with
Equation 32 are examined in greater detail in order to gain insight into their solution. This set
of equations allows the values of , , , , and to be updated at each time step. The vor-
ticity equation (Equation 37) and the continuity/energy equation (Equation 38) are familiar
and relatively straightforward while the divergence equation (Equation 36) is the least famil-
iar and the most challenging.

Using a particle approach, a general variable at position can be represented by a series
of  particles or elements as:

, (41)

where is the strength of the particle, is its position, and is a basis function.

3.5.1   Continuity/Energy

Applying the particle discretization to the continuity/energy equation (Equation 38), yields:

, (42)

. (43)
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If so desired, the value of at time may be obtained implicitly from Equation 42

as:

, (44)

. (45)

For the case where the basis function has compact support and does not overlap more

than one-half of that support,  may be replaced by  since .

A slightly different approach is to assume that each particle has a fixed mass so that the prod-
uct of the particle density times the particle volume is equal to a constant. Thus:

. (46)

From the continuity equation:

, (47)

so that the evolution equation for the particle volume from Equations 46 and 47 is:

. (48)

Thus, the alternative approach is to solve the particle volume evolution equation in place of
the continuity/energy equation by using Equation 48 and then obtain the density and/or tem-
perature from:

. (49)
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3.5.2   Vorticity

The vorticity equation (Equation 37) evaluated at  is:

. (50)

A general method for solving this equation is to split the contribution to into three

parts corresponding to the three terms on the right hand side of Equation 50.

. (51)

After applying the particle transformation (Equation 41) to the dilation equation, one obtains:

. (52)

The dilation of vorticity can be handled in an identical manner to that of the density outlined
in Section 3.5.1.

Application of Equation 41 to the diffusion portion of the equation yields the following:

. (53)

Of note is the fact that the Laplacian operates on the basis function so that

the resulting basis functions on the left and right hand sides of the equation are not the same.

This means that one cannot simply equate the components in the summations to each
other. Instead, Equation 53 can be cast in terms of a set of linear equations with unknown val-

ues of :

. (54)

This linear set of equations tends to be ill conditioned and is computationally expensive to
solve. Marshall and Grant [32] devised an iterative method which assumes that the strengths
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of the particles near particle that are contained in the set are nearly the same as that at
particle . In the present case, their method leads to a set of iterative equations given by:

. (55)

Here, is the complementary set of particles and is an iteration index. In establishing
the amplitudes of Gaussian basis functions to represent a vorticity field, Marshall and Grant
used 8-10 neighboring particles and found that the relative strengths converged to in
about 6-8 iterations.

The particle representation for the stretch equation is:

. (56)

A number of methods are currently available for simulating the diffusion and stretching of
vorticity. Gharakhani [33] provides a 1997 review of methods to model stretching and diffu-
sion. Since that time, his version of the VRM for treating diffusion has become available [15].
In the present version of VIPAR, the stretch term is satisfied by convecting the two ends of a
vortex filament which is embedded in each vorton. The present diffusion algorithm in VIPAR
is a modified expanding core method which includes the effect of stretch on core growth. This
diffusion method will eventually be replaced by the VRM in VIPAR. Work is presently
underway on a Sandia contract with Applied Scientific Research (ASR) to obtain improved
methods for simulating the vorticity stretching phenomenon.

3.5.3   Divergence

The divergence equation (Equation 36) evaluated at  is:

. (57)

The viscous diffusion term in the evolution equation can be handled in an analogous way to

that of the viscous diffusion term in the evolution equation. It is interesting to note that

diffuses at a faster rate than . This implies that a particle of a given size cannot have a single

basis function for both  and .

The source term was treated by Eldridge et al. [11] using the PSE method. It can be
noted that this term plays a key role in the wave like behavior associated with disturbances in
the flow. One can, for example, obtain the simple linearized wave equation for the tempera-
ture by setting all of the convective and viscous terms to zero in Equations 36 and 38 to
obtain:

, (58)

. (59)
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Eliminating and neglecting gradients in the local acoustic velocity yields the wave equa-
tion:

. (60)

This suggests that a time splitting scheme might be devised in which those parts of the diver-
gence and energy equations represented by Equations 58 and 59 are satisfied by the wave
equation. For example, fluid particles might first be convected to new positions and then be
allowed to behave as wavelike disturbances in the flow. Lighthill [34] and Whitham [35]
show that the superposition of such waves is appropriate under certain conditions. A large
body of work is available for studying wave phenomenon spanning the range from weak
acoustic waves to those produced by nuclear explosions (see Sedov [36]).

The term in Equation 36 can take on a variety of forms, several of which are given
in the following list:

. (61)

The forms using index notation are, of course, only appropriate for Cartesian coordinates but
appear to be relatively simple to compute since they only involve gradients of the velocity
vector. On the other hand, the most complicated variation in the list (the 4th item in the list)
might be advantageous since it results in a divergence equation whose right hand side is the
divergence of a vector plus a simple dilation term:

. (62)

3.5.4   Moving Least Squares

One general method to compute the right hand side of the evolution equations is to use mov-
ing least squares (MLS). One might also simply differentiate the basis function in Equation
41. This becomes quite inaccurate, however, when obtaining the Laplacian. Marshall and
Grant [37] point out that the MLS method also yields much better results than a centered dif-
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ference scheme when obtaining derivatives on an irregular grid. Gossler (see Marshall et al.
[38]) provides some error estimates for a quadratic MLS scheme used to compute the Lapla-
cian of the vorticity in a columnar vortex. He concludes that the method is between first- and
second-order accurate.

To summarize the MLS method, a variable in the vicinity of a particle at is approxi-

mated by an  order Taylor series as:

. (63)

Assuming that is known at a set of particles neighboring the particle at , Equation 63

can be written as a set of linear equations containing the unknown

partial derivatives . In most cases it is desirable, from the standpoint of

smoothness, to include more neighbors than the number of unknown partial derivatives. The
resulting overdetermined set of equations is then solved in a least squares sense. Baty (see
Wolfe et al. [40]) suggests that a singular value decomposition (SVD) scheme should be used
to solve the resulting set of equations. According to Baty, “the least squares solution is the
best approximation... in the sense that it minimizes the error in terms of the Euclidean norm.”

Wolfe et al. [40] showed that the arrangement of neighboring particles affects the accuracy of
the MLS method. For instance, a set of particles arranged along a line should not be expected
to give any information on derivatives perpendicular to that line. Wolfe et al. also investigated

the accuracy with which one could obtain where using different

neighboring point locations and different orders for the Taylor series. A third order Taylor
series yielded about two orders of magnitude decrease in the error from that of a second order
series while a fourth order series reduced the error by about another factor of two.
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4   MODEL PROBLEMS

4.1   1D Spherical Flow: Temperature Disturbance

In order to develop some insight into the use of the proposed compressible particle method,
consider a purely radial inviscid isentropic flow which has an initial Gaussian temperature
distribution given by:

. (64)

Here, the temperature at time and radial position is and . The initial
radial velocity is zero everywhere.

4.1.1   Finite Difference Solution

First, this initial value problem is solved by using a finite difference solution to the following
radial momentum and energy equations which may be obtained from Equations 36 and 38
respectively:

, (65)

, (66)

where is the dimensionality of the problem (1, 2, or 3). Non-dimensional versions of these
equations are given by:

, (67)

, (68)

. (69)

The finite difference method used consists of a simple central difference in space and forward

difference in time. Time steps of and spatial steps of were used for
all of the calculations. While these step sizes appear to give reasonable results, it is suggested
that the choice of step sizes as well as the differencing scheme itself be studied in a more rig-
orous fashion in a follow up investigation.
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In Figure 1, the temperature distribution for a 3D radial flow with and

is given. As can be seen from this figure, the initially gaussian temperature
disturbance does not expand into the surrounding fluid in any sort of self similar way but in
fact produces compression waves at its periphery with expansion near the center. As
Sedov [36] notes, a similarity solution will exist only for the case where an initial disturbance
at  moves into a vacuum.

Figure 1.  Temperature Distribution for 1D Spherical Flow

The radial velocity distribution is shown in Figure 2. In this figure, the convection velocity
initially increases with time in the region to a Mach number of about . As the
peripheral waves develop, the peak convective velocity tends to follow the wave crests at a
Mach number of about near . Thus an estimate of the wave speed is

about 1.35 times the acoustic velocity of the undisturbed fluid. It is interesting to

note from Figure 1 that the peripheral waves near move a distance of about

during a time period which indicates a wave speed of

about 1.39 times the acoustic velocity of the undisturbed fluid.

Another less accurate estimate of the wave speed is to treat the wave as a weak shock wave.
The speed of a shock wave into still fluid is given by Anderson [41] as:

, (70)

where is the pressure behind the shock. Estimating the pressure as the pressure at the

wave crest and using the isentropic relationship between temperature and pressure with
from Figure 1, the calculated wave speed is 1.22 times the acoustic velocity

of the undisturbed fluid. Such wave speed estimates will eventually be important with regard
to inserting new particles at the edges of dilation zones.
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Figure 2.  Velocity Distribution for 1D Spherical Flow

In Figure 3, the divergence (computed from the finite difference approximation) of the veloc-
ity field is shown. The negative divergence at the periphery essentially cancels out the influ-
ence of divergence inside the expanding radial flow at radial positions exterior to the
peripheral waves. The radial thickness of this negative divergence region can be seen to be
decreasing as the wave moves out. One would expect this thickness to continue to decrease
until a shock is formed. Numerical instabilities in the solution are noticeable at the last couple
of times which have been plotted.

Figure 3.  Divergence Distribution for 1D Spherical Flow
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4.1.2   Compressible Particle Solution

From Equations 36 and 38 the equations for the evolution of the divergence and temperature
fields associated with this problem are:

, (71)

, (72)

where

, (73)

. (74)

For the present simulation, a number of discrete particles are placed along the radius. These
particles moving at a velocity carry the variables and . The spacial derivatives of in
Equation 73 are calculated using the particle at  and its near neighbors at  and .

, (75)

, (76)

, (77)

. (78)
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At  ( ) these derivatives are:

, (79)

. (80)

Normally, the velocity would be calculated from the scalar potential associated with the
divergence . However, in the present case since the velocity at is known, the velocity
and velocity gradient can be computed in terms of  by use of the following development:

. (81)

Therefore,

, (82)

. (83)

Equation 82 can be approximated by:

, (84)

which can be written in the following recursive form:

. (85)
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A summary of the solution method is as follows:

1.  Assign zero values to all  and .

2.  Assign initial values of  to all particles using Equation 64.

3.  Compute the value of  from Equation 71.

4.  Compute the value of  from Equation 72.

5.  Update all values of  and .

6.  Compute  from Equation 84.

7.  Convect all particles.

8.  Go to step 3 and repeat.

Comparisons of the results obtained for the particle simulation versus those for the finite dif-
ference calculations are shown in Figures 4-6 using the same time steps and initial spatial dis-
cretization. As can be seen for Figure 4, the temperature results are almost indistinguishable
between the two computational methods. The particle method yields a slightly steeper wave
front for the wave near . In Figure 5, the velocity results show some noticeable dif-
ferences at the crests of the last two waves with the particle method yielding more continu-
ous, less oscillatory results. In Figure 6, the divergence results near are
significantly different with the particle method predicting more spiked results for the negative
divergence at the edge of the disturbance. It is proposed that these differences be explained
and resolved in follow up studies.

Figure 4.  Temperature Comparison for 1D Spherical Flow
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Figure 5.  Velocity Comparison for 1D Spherical Flow

Figure 6.  Divergence Comparison for 1D Spherical Flow

In Figure 7, the distribution of particles for the seven time steps displayed in Figures 4-6 is
shown. The clustering of particles near at the last time step is evident as is the rar-
efaction of particle densities near the center of the flow. The sharper divergence gradients
seen in Figure 6 near for the particle simulation may be related to the clustering
of particles near this almost shock like feature. Thus, it appears that the particle method pos-
sesses a naturally occurring adaptability which is quite advantageous.
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Figure 7.  Compressible Particle Distribution

4.2   2D Radial Flow: Vorticity Disturbance

In order to develop some additional insight into the use of the proposed compressible particle
method, consider a 2D isentropic swirling flow which is inviscid and which has an initial tan-
gential velocity distribution given by:

, (86)

where  and  are constants. In non-dimensional terms, Equation 86 becomes:

. (87)

The corresponding initial vorticity distribution is:

, (88)

. (89)

The initial radial velocity is zero everywhere and the temperature .
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4.2.1   Finite Difference Solution

The radial momentum, tangential momentum, and energy equations for this problem are
given by:

, (90)

, (91)

. (92)

Non-dimensional versions are:

, (93)

, (94)

. (95)

The same finite difference scheme as that used for the 1D spherical flow of Section 4.1 was
also employed for the present case. The spatial and temporal discretization is also identical

( , ). In Figure 8, the vorticity evolution for a 2D swirling flow with

, , and is given. Both the vorticity distribution and the tangential

velocity distribution shown in Figure 9 are relatively stationary even though the tangential
velocity has a maximum in the 0.7-0.8 Mach number range. This is consistent with a state-
ment made by Lighthill [34] about the relative insensitivity of the vorticity field to compress-
ibility effects and to the observations made in Section 3.4 concerning the propagation of

but not  at acoustic speeds through the flow.
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Figure 8.  Vorticity Evolution for 2D Radial Flow

Figure 9.  Tangential Velocity Evolution for 2D Radial Flow

r/σ

 ω
 σ

/(γ
 R

 T
∞

 )0.
5

0.0 1.0 2.0 3.0 4.0 5.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

t > 0

t = 0

∆t plot
*

0.4=

t
*

0.0=

t
*

2.4=

r/σ

 U
q 

/(
γ 

R
 T

∞
 )0.

5

0.0 1.0 2.0 3.0 4.0 5.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t > 0

t = 0

θ

∆t plot
*

0.4=

t
*

0.0=

t
*

2.4=



33

The radial temperature distribution is shown in Figure 10. As can be seen from this figure, the
peripheral waves move about during the last time step indicating a wave speed of
about 1.08 times the acoustic velocity. From Figure 11, the radial fluid velocity at the peak of
this peripheral wave is about 0.082 times the acoustic velocity. This also indicates a wave
speed of about 1.08 times the acoustic velocity.

Figure 10.  Temperature Evolution for 2D Radial Flow

Figure 11.  Radial Velocity Evolution for 2D Radial Flow
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The divergence of the velocity field is shown in Figure 12 which also shows the peripheral
waves traveling into the undisturbed fluid at a speed of about 1.08 times the acoustic velocity.
The initial divergence is zero since the initial radial velocity is zero. However, by the second
time at which results are plotted, the divergence grows into an “N wave.” The results near the
origin are somewhat complex, with the divergence going from zero to positive to negative and
back to zero.

Figure 12.  Divergence Evolution for 2D Radial Flow

4.2.2   Compressible Particle Solution

From Equations 36, 37, and 38 the equations for the evolution of the divergence, the vorticity,
and the temperature for a 2D inviscid flow are:

, (96)

, (97)

. (98)

where

, (99)

. (100)

Here, the initial values throughout the domain for  and  are zero and  respectively.
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Normally, the velocity would be calculated from the vector potential associated with the
vorticity . However, in the present case since the velocity at is known, the velocity
and velocity gradient can be computed in terms of  by use of the following development:

. (101)

Therefore,

, (102)

. (103)

Equation 102 can be approximated by:

, (104)

which can be written in the following recursive form:

. (105)

Comparisons of the results obtained for the particle simulation versus those for the finite dif-
ference calculations are shown in Figures 13-17 using the same time steps and initial spatial
discretization. As can be seen for Figures 13 and 14 the vorticity and tangential velocity
results are virtually indistinguishable between the two computational methods. In Figure 15,
the temperature results are almost the same for the two computations although there are some
slight differences near the origin and near the periphery. In Figure 16, the differences are
noticeable for the radial velocity computation near the origin and near the periphery. In gen-
eral, the particle method appears to yield more continuous, less oscillatory results. In Figure
17, the divergence results near are significantly different with the particle method
predicting more spiked results for the negative divergence at the edge of the disturbance. The
particle method, on the other hand, is considerably smoother near the origin at the last time
step.

Some of the differences near the origin stem from treatment of the governing equations at

. Terms such as and are indeterminate at the origin and require either

assumptions about their functional form in that region or avoidance of their use altogether. In
the work presented herein, linear extrapolations to the origin were made for estimating vari-
ables which were otherwise unknown and which could only be calculated from an indetermi-
nate set of variables. Use of low order polynomial functional forms for these indeterminate
grouping of variables yielded similar results to those presented herein.

Uθ
ω r 0=

ω

ω r( ) ∇ Urêr Uθ êθ+( )×≡ 1
r
---

r∂
∂

rUθ( )êz
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Figure 13.  Vorticity Comparison for 2D Radial Flow

Figure 14.  Tangential Velocity Comparison for 2D Radial Flow
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Figure 15.  Temperature Comparison for 2D Radial Flow

Figure 16.  Radial Velocity Comparison for 2D Radial Flow
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Figure 17.  Divergence Comparison for 2D Radial Flow

For completeness, the particle distribution is shown in Figure 18. It is interesting to note that
the particle distribution is not changed in a significant way even though the vortical distur-
bance contains maximum tangential velocities in the 0.7-0.8 Mach number range. Therefore,
one can conclude that the effects of the sudden appearance of this vortical disturbance are pri-
marily acoustic in nature outside of the vortical region itself.

Figure 18.  Compressible Particle Distribution
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5   DISCUSSION

5.1   General Observations

• The Lagrangian evolution equation for the velocity divergence has been derived and
examined in some detail. The right hand side of this equation may be represented in
several ways, especially the term which contains the product of the deformation rate
tensor and its transpose.

• The viscous terms in each of the evolution equations for divergence, vorticity, and
energy are greatly simplified if one assumes constant dynamic as well as kinematic
viscosity coefficients. This assumption is only valid for small variations in density.

• Results using the gridless compressible method for both an isentropic inviscid 1D
spherical flow which initially has a Gaussian temperature distribution with zero veloc-
ity everywhere and an isentropic inviscid 2D radial flow which has an initial vorticity
distribution with constant temperature everywhere compare favorably with results
from their associated finite-difference formulations.

• The gridless compressible method possesses a natural adaptability in that particles
tend to cluster in regions of high density where shock waves and sharp gradients are
most likely to form.

• While divergence is generated in the flow field due to pressure disturbances, vorticity
is not, so long as the flow is isentropic. For the isentropic case, vorticity is only gener-
ated at boundaries although it may be intensified by stretching, weakened by dilation,
and redistributed by viscous diffusion elsewhere in the flow.

5.2   Some Questions to Answer

• In compressible flow, the discretized surface sheets carry not only values of but also
values of and the thermodynamic properties , , and . What are the appropriate
values of and the thermodynamic properties , , and in the nascent elements at
the body surface?

• How can the formation of shocks in the flow be handled? Is shock capturing possible
with a “non-conservative scheme?” Is the Lagrangian method really non conservative?
For example, in inviscid flow away from boundaries and shocks, the particle circula-
tion may be conserved. Likewise, for isentropic flow, the particle energy and mass may
be conserved.

• Can core functions be developed which will mimic some of the wavelike behavior of
the , , , and fields? Can time splitting be used to first convect particles and then
allow them to produce waves which can then be superimposed?

• Under what conditions may the divergence contributions be neglected? For example,
filtering out the acoustic phenomenon in low Mach number flows or allowing acoustic
signals to simply disappear at the edge of a specified domain (i.e. see Eldridge et
al. [11]).

• Is it worthwhile or perhaps necessary to sub-cycle time steps in order to adapt to the
different length scales associated with the diffusive, convective, and acoustic pro-
cesses?

ω
δ p ρ T
δ p ρ T

δ p ρ T
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5.3   A Set of Investigations

• Boundary Conditions: For bounded flow or external flow over boundaries the thermo-
dynamic properties as well as the vorticity and velocity divergence must be specified
for the newly created Lagrangian particles at the boundaries. If a PSE method or the
VRM is used where new particles are simply flowing over the surface, the flux from
the wall into the particles must be determined. This process is well understood for vor-
ticity but needs to be revisited for divergence and the thermodynamic properties. For
instance, divergence may be generated at the wall due to an incoming pressure pulse or
the temperature changed due to heat transfer from the wall into the fluid. This study
should include situations where the boundary is assumed to be adiabatic as well as
non-adiabatic. The pressure distribution along the wall needs to be formulated with
due consideration to divergence generation at the surface.

• Shock Capturing: Proper treatment of shocks embedded in the flow will be necessary
for simulations where the flow is no longer isentropic everywhere. The feasibility of
treating the flow as being isentropic except across shocks should be investigated. Ini-
tial investigations should include a study of shock capturing methods and their appli-
cability to the gridless Lagrangian method. As Whitham [35] points out “For shocks of
weak or moderate strength, it is a reasonable approximation to neglect changes in the
entropy and the Riemann invariant. With these approximations, the simple wave solu-
tion can be retained and used even when weak shocks are included.”

• Evolution Equation Representation: Work needs to be undertaken to develop appropri-
ate core functions and/or use those developed by Eldridge et al. [11]. Core functions
which mimic both particle and wave behavior should be investigated. In addition, core
functions which are compatible with boundaries should be further developed. The
method by which the Laplacian terms on the right hand side of the evolution equations
are treated (i.e. PSE, VRM, diffusion velocity, etc.) should be further studied. Use of
moving least squares (MLS) or some variation of the VRM should be considered for
treating all of the terms on the right hand side of the evolution equations. The best
form for the right hand side of the divergence evolution equation should be investi-
gated.

5.4   Some Model Problems

• The radial flow problems should be solved using more sophisticated conservation
forms of the governing equations to provide more accurate results by which to judge
the gridless methods. The radial flow problems should be solved in a gridless manner
by actually using the Helmholtz decomposition for obtaining the velocity field from
the vorticity and divergence fields. Particles should be placed throughout the disturbed
portion of the domain as opposed to the strictly radial placement used in the present
study.

• One dimensional shock tube problems characterized by breaking a diaphram separat-
ing a high and low pressure gas should be simulated using the gridless method. These
results should be compared to existing exact and numerical solutions to see that the
resulting shock wave, rarefaction wave, and contact discontinuity are successfully sim-
ulated.
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• Free shear layer simulations such as those done by Mas-Gallic [5] should perhaps be
repeated using a truly gridless method. Shear layer simulations might also include
those in which heat addition is occurring such as in the work of Soteriou and
Ghoniem [42].

• A number of wall-bounded flows should be examined. These can be as simple as an
impulsively started infinite flat plate (a compressible version of “Stoke’s First Prob-
lem”) which requires inexpensive 1D calculations but which may be used to answer a
number of fundamental modeling questions. Inviscid transonic and supersonic flows
over airfoil geometries should be simulated in order to compare the gridless method
against classical results. It may also be worthwhile to simulate some classical acoustic
problems in which walls are involved.
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