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Abstract

A multiscale analysis was performed to develop a macroscale microstructure-mechanical
property model that includes several types of microstructural inclusions found in an A356-T6
cast aluminum alloy for use in automotive chassis component design. This microstructure-
property model can be used for finite element analysis in which the deformation history,
temperature dependence, and strain rate dependence vary. To capture the history effects from
the boundary conditions and load histories, the microstructural defects and progression of damage
from these defects and microstructural features such as casting porosity, silicon particles, and
intermetallics must be reflected in the model. Internal state variables are used in the material
model to reflect void/crack nucleation, void growth, and void coalescence from the casting
microstructural features under different temperatures, strain rates, and deformation paths.
Furthermore, internal state variables are used to reflect the dislocation density evolution that
affects the work hardening rate and thus stress state under different temperatures and strain rates.
In order to determine the pertinent effects of the microstructural features, several different length
scale analyses were performed. Once the pertinent microstructural features were determined and
included in the microstructure-mechanical property model, tests were performed on a control arm
to validate its precision. Very encouraging results were demonstrated when using the model for
optimizing structural components in a predictive fashion.
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From Atoms to Autos
A New Design Paradigm Using Microstructure-Property Modeling
Part 1: Monotonic Loading Conditions

EXECUTIVE SUMMARY

In designing a structural component, a failure analysis will typically include a finite element
analysis and microstructural evalutation. Sometimes the microstructural evalution will quantify
the inclusion content (source of damage in a component) in a prioritized fashion differently than
the finite element analysis. Let us consider the hypothetical situation exemplified in Figure 1.
Here we have an automotive control arm that shows that has undergone certain boundary
conditions in a finite element analysis. The finite element analysis revealed that the highest
Mises stress occurred at point D. For the different regions of interest, microstructural analysis
using optical imaging revealed the largest defect occurred at point B. Both camps would argue
about the location of final failure. However, in our hypothetical example, both are wrong,
because the final failure state is both a function of the initial inclusion state and boundary
conditions. As such, point A failed first. The key is the development of the microstructure-
property model that can be included in a finite element analysis, which includes the inclusion
content (or the sources of damage progression).

Stress (fror highest to lowest) Inclusion (from most severe to less severe) Darnage (from most severe to less severe)
D B A
& E D
C B E
E D C
B cC B

Figure 1. Stress and inclusion analysis studies can be done independently on this control arm, but both would give
an erroneous location of failure because damage accumulation is dependent upon both entities.s



In order to accomplish such a task, a multiscale analysis was performed with a focus on a
macroscale microstructure-mechanical property model that includes several types of
microstructural inclusions found in an A356-T6 cast aluminum alloy for use in automotive
chassis component design. This microstructure-property model can be used for finite element
analysis in which the deformation history, temperature dependence, and strain rate dependence
vary. To capture the history effects from the boundary conditions and load histories, the
microstructural defects and progression of damage from these defects and microstructural features
such as casting porosity, silicon particles, and intermetallics must be reflected in the model.
Internal state variables are used in the material model to reflect void/crack nucleation, void
growth, and void coalescence from the casting microstructural features under different
temperatures, strain rates, and deformation paths. Furthermore, internal state variables are used
to reflect the dislocation density evolution that affects the work hardening rate and thus stress
state under different temperatures and strain rates. In order to determine the pertinent effects of
the microstructural features, several different length scale analyses were performed. Once the
pertinent microstructural features were determined and included in the microstructure-mechanical
property model, tests were performed on a control arm to validate its precision. Very
encouraging results were demonstrated when using the model for optimizing structural
components in a predictive fashion.

Optimization in the context of this study has to do with weight reduction. In order to reduce
weight from structural components, the influence of the microstructures/defects needs to be
quantified. In the absence of the microstructure-property model, optimization can be relegated to
a fruitless exercise. To quantify the microstructures/defects and their influence on the mechanical
properties, we performed a multiscale hierarchy of numerical simulations coupled with
experiments to determine the internal state variable equations of macroscale plasticity and damage
progression. The microstructures/defects observed in the cast A356 aluminum alloy in descending
order of deleterious effect are large oxides/pores, smaller oxides/pores, silicon particles, dendrite
cells size, and intermetallics. The attributes of these features that are included in the model are the
size distributions, volume fractions, and nearest neighbor distances.

The modeling philosophy is illustrated in Figure 2, which shows experiments, modeling, and
analysis at each size scale. Figure 3 shows the important features and size scales that were
pertinent at each size scale.

At the atomic scale (nanometers), simulations were performed using Modified Embedded Atom
Method (MEAM) potentials to determine the conditions when silicon fracture would occur
versus silicon-interface debonding. Atomistic simulations showed that a material with a pristine
interface, would incur interface debonding before silicon fracture. However, if a sufficient number
of defects were present within the silicon, it would fracture before the interface would debond.
Microstructural analysis of larger scale interrupted strain tests under tension revealed that both
silicon fracture and debonding of the silicon-aluminum interface in the eutectic region would
occur.
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Figure 2. Microstructure-property modeling philosophy using a multiscale analysis.

Another important result from the atomistic simulations was that the stress-strain response of a
region of material around an interface that was debonding could be represented by an elastic
fracture analysis at the next higher size scale if the interface were assumed to be larger than 40 A.
Hence, an elastic fracture criterion was used in the microscale (1-20 microns) finite element
analysis, which focused on void-crack nucleation, and mesoscale (1-200 micron) finite element
analyses, which focused on silicon-pore coalescence.

In the micron size scale finite element analyses, we focused on the void-crack nucleation
progression by examining the parameters that influenced silicon fracture and silicon-aluminum
interface debonding. In particular, we included temperature, shape, size, nearest neighbor
distance, number density, prestrain history, and loading direction as parameters for the silicon in
the finite element analyses. The parametric study clearly showed that the temperature
dependence on void nucleation from silicon fracture and interface debonding was the most
dominant influence parameter. To verify this result, we performed notch tensile tests at ambient
temperature and the two extreme limits of temperatures that a control arm would experience: 222
K and 600 K. From examining the fracture surfaces and cross-sections of deformed samples and
counting the number of void nucleation sites, it was clear that at the coldest temperature, the
largest voids nucleated and at the hottest temperature, the least amount of voids nucleated.
Essentially, the colder temperatures induce a higher local stress state. The higher stresses fuse
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damage at an increased rate. These results corroborate the microscale finite element analyses and
thus a temperature dependence on the void nucleation rate was included in the macroscale
microstructure-mechanical property model. As a follow-on, strain rate tests were also performed
in which the strain rate effect on void nucleation was quantified for the model.

200-500 wm

50-100um

1-20 wm

10-1000 A«

Figure 3. Schematic of important modeling aspects at each size scale .

An important set of experiments was performed to determine the void nucleation rate under
different stress states and strain levels. Interrupted equivalent strain tests performed in tension,
compression, and torsion were examined via optical imaging and the number densities were
quantified. The experimental data showed that the void nucleation rate under torsion was the
highest followed by tension and then by compression. Interestingly, the highest work hardening
rate was exhibited in compression followed by tension and then by torsion. Note that the work
hardening rate was in reverse order of the void nucleation rate thus revealing a coupling between
the stress state and damage progression. The void nucleation rate and work hardening rate
differences were included in the macroscale void nucleation model.

In the Mesoscale I analysis (1-200 microns), we focused on pores arising from silicon fracture
and interface debonding that interacted with pores from the casting process. In performing these
finite element analyses, we first constructed finite element meshes on real A356 micrographs.
Hence, the sizes, distributions, and volume fractions of silicon, casting porosity, and dendrite
cells were inherently imbedded in the simulations. We performed indenter tests on the particular
second phases to determine the elastic moduli of the silicon, intermetallics, and matrix aluminum.



We also performed compression tests on the eutectic aluminum at different temperatures to
obtain the stress-strain responses for the mesoscale analyses. We used those values for the finite
element simulations. We then matched the progression of silicon fracture and interface debonding
from the interrupted strain experiments described earlier by a trial-and-error method for the local
elastic fracture silicon stresses. We further varied the applied stress state, temperature, and strain
rate. The results gave insight into the functional form of the equation needed for the macroscale
coalescence equation. Furthermore, temperature dependence was deemed as very important here.
In fact, the influence of temperature on void coalescence was the opposite trend as that of void
nucleation. For void nucleation, as the temperature decreased (increasing the stress level), the
void nucleation rate increased. For void coalescence, as the temperature increased (increasing the
plastic strain), the void coalescence rate increased. This temperature dependence was included in
the macroscale coalescence equation.

The Mesoscale II finite element simulations (100-500 microns), focused on pore-pore
interactions to give insight into coalescence from casting porosity. First we performed a
parametric study by varying temperature, shape, size, nearest neighbor distance, number density,
prestrain history, and loading direction and monitored the total void growth and strain at
localization. The results showed that temperature, again, was a first order influence parameter on
void coalescence because it increases the local plastic strains, but the size of pore and type of
loading (triaxial state of stress) were first order influence parameters on strain localization.
Furthermore, microporosity, prestrain history, and number density were first order influences,
along with temperature, on the total void growth. Hence, these attributes were placed in the
macroscale coalescence equation.

Another important result from this study showed that if a pore were within eight diameters of
another pore, the void growth rates would be enhanced. Alternatively, if a casting can have
nearest neighbor distances of greater than eight pore diameters, then the strain to failure will be
increased.

Tension experiments on flat bars were performed to analyze void growth from surface pores
under different temperatures (222K, 297K, 600K). The surface pores were first measured in the
virgin state and then the specimens were tested to a certain strain level. The identical voids were
then measured again. This process occurred until the specimens fractured. The voids were further
than eight diameters apart; hence, the results could be used to determine the single void growth
equation for the macroscale microstructure-mechanical property model. As it turns out, little void
growth was measured from these surface pores until the final fracture occurred indicating that
void nucleation is probably more important than void growth and coalescence in this cast A356
aluminum alloy under uniaxial monotonic loads. Furthermore, little difference was observed from
the temperature changes indicating that macroscale void growth equation does not need to include
the temperature dependence.

Given the lower size scale information, the macroscale total void volume fraction (cm) is a
function of the void nucleation rate, void growth rate, and coalescence rate. The coalescence rate
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arises from two sources: pores from silicon fracture and interface debonding interacting with
casting pores and two or more casting pores interacting. Once the macroscale equations and the
corresponding material constants were determined from the aforementioned analyses, we
performed compression tests at different strain rates and temperatures to determine the plasticity
parameters. Included in the compression tests were high strain rate Hopkinson bar analyses
(~4000/sec).

Several types of macroscale tests (cm) were then performed to verify our methodology. First,
reverse uniaxial tests (Bauschinger effect tests) were performed in which tension was followed by
compression and compression was followed by tension up to 2%, 3%, and 5% strain levels.
Because the work hardening rate is different in compression than tension due to the preferred
damage, the stress state at the end of the reverse test would be different depending on the path
history. Indeed, this occurred and the microstructure-mechanical property model was able to
accurately capture this coupling of damage and plasticity. Typical power law plasticity
formulations would not be able to capture this. The second set of experiments included
interrupted notch tests in which the specimens were analyzed nondestructively by x-ray
tomography and analyzed via optical imaging analysis. Void volume fractions, sizes, and
distributions were quantified at failure, 90% of failure, 95% of failure, and 98% of failure. The
finite element analyses, which included the macroscale microstructure-mechanical property
model, gave very close results (to within 1%) to the x-ray tomography and optical imaging data.

Once the verification of the physics and validation of numerical implementation was completed,
control arm simulations (m) were performed with two goals in mind: first, to finally judge the
predictive capability of the model for a control arm, and second, use the model to optimize the
control arm by adding mass to certain “weak” regions and taking away mass from “strong”
regions. As it turned out, the simulations accurately predicted the final failure locations of the
control arm as demonstrated by control arm experiments (Figure 4), and the control arm weight
was reduced approximately 26% of the original weight with an increase in load-bearing capacity
of 40%.

As another validation comparison, we used the microstructure-mechanical property model for a
failure analysis that was of importance to the Department of Energy (DOE). A DOE weapons
carrier that had failed in a cast A356 aluminum alloy component required a redesign. The
microstructure-mechanical property model described in this report accurately matched the three
failure sites (Figure 5) on the component and was used to successfully redesign the component.

In summary, a math-based microstructure-property model was developed based on a multiscale
analysis that is implemented in a UMAT routine for (ABAQUS) finite element analysis. This
model was used to determine maps of failure strains as a function of silicon particle size and void
volume fraction. Hence, a designer/caster can determine the strain at failure given the average
silicon particle size and casting porosity fraction as a function of various temperatures, strain
rates, dendrite cell sizes, and applied stress states. This information is imperative for designing
castings where processing and microstructure are invariably linked.
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1. INTRODUCTION

The Partnership for New Generation Vehicles (PNGV) has mandated that a mass produced mid-
size automobile be developed in order to achieve greater gas mileage (80 mpg). This is motivated
by greater emission requirements and less reliance on foreign oil sources. To achieve this
unprecedented milestone in an automobile, weight reduction is a necessity. Of particular interest
are the chassis components that have been chosen to be a focal point of weight reduction by the
USCAR-USAMP Lightweight Metals Group. This group has identified the cast A356 aluminum
alloy to be the material of choice for the chassis components.

Different methods exist to manufacture cast A356 components, and each of the methods
introduces a different level of casting porosity and microstructural fineness. The modeling effort
described in this report must account for all the possible scenarios of microstructure/inclusion
sizes, distributions, and nearest neighbor distances. As such, it is worth briefly describing the
different casting processes for context. Castings with the least amount of porosity typically come
from squeeze casting. Like all the other casting processes considered here, squeeze casting uses
fully liquid metal as the feed material. Squeeze casting is characterized by slow filling rates,
minimum turbulence, and high pressure throughout solidification thus lowering the amount of
shrinkage porosity. High pressure die casting is popular because it can produce thin walls, great
detail, and good dimensional control at a fairly low cost. High pressure die casting is
characterized by high pressure during casting compacting trapped pores to small sizes. In
vacuum die casting, the dies are evacuated and sealed before the gate is opened. The molten
metal is forced in by atmospheric pressure. Shrinkage porosity generally occurs in isolated
regions of the casting. In semi-solid metal castings, a partially solidified alloy is introduced into
the die and is agitated during flow to produce a rounded, global microstructure. It is used to
produce thin sections and high integrity structural components, although this method is a bit
expensive. Tilt Pour mold castings are characterized by a gravity pour into a permanent (or semi-
permanent sand core). Vacuum riserless castings is a low pressure casting process that has been
used for automotive chassis and suspension components. Lost foam castings come from another
low pressure method that uses foam for the mold. This inexpensive process can give significantly
larger porosity levels than the others. All of these processes are used depending on the design
requirements and cost constraints.

Aluminum castings have a rich history of successful use in the automotive and aircraft industry
because they are lightweight, fairly inexpensive, and well tested. However, because of their
complex microstructure, understanding the mechanical response has been elusive and thus large
safety factors in design are needed. Unfortunately, increased safety factors mean increased
weight. Finite element analyses are typically performed to determine the highly stressed regions
and microstructure analysis and experiments are performed in those regions. However, other
regions that have more damaging inclusions could fail sooner than the expected higher stressed
region. Alternatively, if only the worst microstructural regions were analyzed, the critical failure
location could also be missed since the stresses from the finite element analyses are not
considered. Hence the goal of this work is to develop the cause-and-effect understanding of the
microstructure-mechanical property relationships. Moreover, our task was to develop a material
model that can be used in conjunction with a finite element code. Hence, a chassis designer could
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use the microstructure-property model to more precisely design components without such large
safety factors. Consequently, a lighter, yet structurally safe component could be designed.

1.1 MATERIAL: CAST A356 ALUMINUM ALLOY

In recent years there has been a strong research initiative by the automotive industry to improve
the performance of cast aluminum components. One critical aspect of optimizing design is to
better understand and quantify damage progression. Developing the ability to predict damage
progression is imperative for the design of components that will experience overloads during
service due to impacts, rough ground, and crash environments. The progression of damage in
nearly all ductile materials subjected to monotonic loading is due to the nucleation, growth, and
coalescence of voids (Cocks and Ashby, 1982; Garrison and Moody, 1987). In metallic alloys,
the nucleation and subsequent growth of voids occurs primarily at second phase inclusions or
precipitates (Palmer and Smith, 1967; Gurland, 1972; Cox and Low, 1974; Hahn and Rosenfield,
1975). Due to their heterogeneous microstructure, cast aluminum alloys are particularly
vulnerable to void-crack nucleation, growth and coalescence from Si, Mg, and Fe particles. In
addition, cast aluminum alloys contain pre-existing voids (porosity) due to local feeding
obstruction through dendritic solidification fronts, trapped gases, or temperature gradient driven
solidification shrinkage (Pan ef al., 1990, 1991). Notably, pores can form at different material
length scales ranging from the sub-micron size to several hundred microns, depending on the
solidification process. The size, shape and distribution of the pores will have a strong influence
on damage evolution, localization, and mechanical properties of aluminum castings (Pan ef al.,
1991; Samuel and Samuel, 1995; Horstemeyer and Ramaswamy, 1999).

The microstructure of hypoeutectic cast A356-T6 Al consists of proeutectic (Al-1.6wt%Si) and
eutectic (Al-12.6wt%Si) phases. In the eutectic regions, large silicon particles and clusters form a
dendritic substructure while the Si remains solutionized in the proeutectic phase. Solidification
rate, modification, and heat treatment all dictate the morphology and size of the Si substructures.
Faster solidification rates decrease the average dendrite arm spacing (DAS) or equivalently the
dendrite cell size (DCS) (Spear, 1963). The controlled addition of modifiers such as pure
strontium has little effect on dendrite arm spacing, but can spheroidize elongated Si particles
(Hess and Blackman, 1975). Prolonged exposure to a solutionizing temperature (~ 800 K) after
casting has a similar effect as modifiers on the Si particle morphology (Meyers, 1986). The
aforementioned microstructural alterations have a strong influence on the mechanical properties
of Al castings through changes in void nucleation, growth, and coalescence characteristics.
Under monotonic loading, cast aluminum alloys with a smaller DAS and/or spheroidized Si
particles generally demonstrate more macroscopic ductility and higher ultimate tensile strengths
(Harris et al., 1956; Frederick and Bailey, 1968; Closset and Gruzleski, 1982; Vorren et al,
1984; Caceres et al., 1995; Samuel and Samuel, 1995; Yeh and Liu, 1996).

The cast A356 aluminum alloy considered in this study has a work hardenable aluminum matrix
with the major second phase being silicon particles in the eutectic region. The aluminum alloy
comprises 7% Si, 0.4% Mg, 0.01% Fe, 0.01% Cu, 0.01% Mn, 0.01% Sr, 0.01% Ti, and 0.01%
Zn. The material used for this study was retrieved mainly from cast horizontal plates, although
we also used data from actual automotive cast components and data from the literature. All of
these A356 castings had a T6 annealing.



2. MACROSCALE MICROSTRUCTURE-MECHANICAL PROPERTY MODEL

In this section, we describe the macroscale model which includes the kinematics, damage
progression equations, and the elastic-plastic framework. The motivations for the macroscale
model equations described in this chapter are given in this chapter but are elucidated in
subsequent chapters.

Standard notation is used throughout. Boldface symbols denote tensors the orders of which are
indicated by the context. All tensor components are written with respect to a fixed Cartesian
coordinate system, and the summation convention is used for repeated Latin indices, unless
otherwise indicated. A superposed dot indicates the material time derivative, and a prime ‘ the
deviatoric part of a tensor. Let a and b be vectors, A and B second order tensors, and C a fourth
order tensor; the following definitions are used in the text (A-B);=AxBy, A:B=A;B;,
(6A/6B)ijk1=6Aij/6Bk1, (CA)IJ = CijklAkla and | A ‘ = (Aiinj)l/z.

2.1. KINEMATICS OF THE MACROSCALE MODEL

The formulation of the kinematics development follows closely that of Davison et al. (1977) and
Bammann and Aifantis (1989). The kinematics of motion combine elastic straining, inelastic
flow, and formation and growth of damage and is illustrated by the multiplicative decomposition
of the deformation gradient shown in Figure 2.1. The deformation gradient, F, is decomposed

into the isochoric inelastic, or plastic, (E Z), dilational inelastic (I_7 b ), and elastic parts (1_7 ‘*) given
by

F=FFF,. Equation 2.1

Equation 2.1 assumes that the motion of the body is described by a smooth displacement
function. This precludes the initiation of discrete failure surfaces but still allows a continuum
description of damage. The elastic deformation gradient, F*, represents lattice displacements
from equilibrium. The inelastic deformation gradient, F”, represents a continuous distribution of
dislocations whose volume preserving motion produces permanent shape changes. The
volumetric inelastic deformation gradient, F”, represents a continuous distribution of voids
causing the volume change of the material from that arises from inelastic deformation. It is
assumed to have the form F? = ®1, where ® is a function to be determined from kinematics (or
conservation of mass).

The Jacobian of equation (2.1) is related to the change in volume or change in density for
constant mass as

V,
J=det F/ =2 = L4} Equation 2.2
Voo o
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Figure 2.1. Multiplicative decomposition of the deformation gradient into the deviatoric plastic, dilational plastic, and elastic parts.

and must be positive. The change in volume from the reference configuration (State 0) to the
intermediate configuration (State 2) is V, = V, + V, assuming that the volume in State 0 equals
that in State 1 because of inelastic incompressibility. The volume and density in the reference
configuration are given by V, and p,, respectively. In transforming the configuration from State
0 to State 2, an added volume from the voids, V,, is introduced to the total volume, but the
volume of the solid matter remains unchanged at its reference value, because the material is
unstressed in this configuration. The intermediate configuration in State 2 then designates when
elastic unloading has occurred. Damage, ¢, can be defined as the ratio of the change in volume
of an element in the elastically unloaded state (State 2) from its volume in the initial reference
state to its volume in the elastically unloaded state,

Equation 2.3

ASS
Il
=

From this definition, we get

V, = (1-9)V, Equation 2.4

where now the Jacobian is determined by the damage parameter, ¢, as
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1
J=det F! = W Equation 2.5

Consequently, the restriction that damage is assumed to produce isotropic dilatation gives the
volumetric part of the deformation gradient as

1

Ey = Wl’ Equation 2.6

where © = (1 - q))_%. The velocity gradient associated with the deformation gradient, L = FF™",
from Equation 2.1 is given by

Equati :
LeL+L’+L quation 2.7
1 1 : . :
where D = E(L+ I_f) and W = 5(]:_ LT) with analogous formulas holding for the elastic,
volumetric plastic, and deviatoric plastic parts of the velocity gradients expressed as L = FF™'.

The volumetric part of the velocity gradient is then given by

0 S L A

r.r, = 3(1_¢) L Equation 2.8

which defines the plastic volumetric rate of deformation as

D? LI

D’ = 1. Equation 2.9
3(1-9)

Also note here that W” vanishes. The trace of the volumetric part, Equation 2.9, is given as

(D7) = (1%) Equation 2.10

so the damage parameter, ¢, directly relates to the volumetric rate of deformation. The elastic
rate of deformation relates to the volumetric rate of deformation by the additive decomposition
of the deformation rates similar to Equation 2.7,

D*=D-D;-Dj. Equation 2.11
Similarly, the elastic velocity gradient can be decomposed into components like Equations 2.7

and 2.11, where the elastic spin equals the total spin when no plastic spin is prescribed. Recall
that no volumetric component exists for the spin tensor, that is, W” = 0.
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Now that the rate of deformation related to the damaged state is defined, we can describe damage
in terms of void nucleation and void growth in the unstressed intermediate configuration. First,
we let N equal the total number of voids in a representative continuum volume V; of material in

the reference configuration (State 0) and letn* be the number of voids per unit volume in the

N
reference configuration; hence, 17* = N/V,. The average void volume then is v, =1/NYv,,

i=1
where v, is the void volume from each particle that has nucleated a void. As such the volume of
voids is given by

V. =n*Vy, Equation 2.12

By combining this definition and inserting them into Equation 2.3, the damage parameter, ¢, can
be written as

n*yv,  n*y,

- - . Equation 2.13
Vo +n*Voy,  1+m*y, e

This formulation for damage was employed by Davison et al. (1977). If the number of voids per
unit volume is defined in the intermediate configuration, we can write

¢ = VV = va =v1. Equation 2.14
2 2

where
N NY, Vi .

TI=7=77=TI*7- Equation 2.15
2 0 "2 2

Recalling that the unstressed intermediate configuration has the volume V, =V, -V and
employing Equation 2.3, we get the relation

n=n/(1-¢). Equation 2.16

The density of voids is counted after the specimen is loaded to a certain strain level and then
unloaded. From this point, the specimen is machined and the number counting of voids nucleated
is performed representing the elastically unloaded intermediate configuration; hence, 1 is
experimentally determined.

The damage formulation is shown conceptually in Figure 2.2. The number density of voids can
change and growth of voids can occur independently or simultaneously. This framework is
illustrated by the schematic in Figure 2.3 when examining the limiting cases. One void growing
can exist or many voids can nucleate without void growth. A typical void growth model is
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assumed to have an initial void embryo of a size determined by optical micrographs or some
other method. As such, the growth rule applies to both voids that are already present and those
that are nucleating. These two types of voids would experience the same void growth rule in the
damage analysis. Because the void growth rule is initialized with a positive volume, the
nucleated void volume is assumed to incur this same initialization volume. Perhaps the most
realistic embryo size for the newly nucleated site is the size of the second phase particle. The
framework conceivably allows for this initialization as well. For materials with second phases
and pre-existing voids, one would anticipate that the average size of the second phase and
average size of the pre-existing voids would be different owing to solidification mechanisms.
Finally, nucleation is assumed to occur by decohesion of the particle/matrix interface or by
particle fracture, and more than one void can be nucleated at a given particle at different sides of
the particle.

second phase

\ void
‘/ ¢ @-

-
-

main constituent

Domain R

second phase

\ void
®
0/ N\
-~

main constituent

Domain R

second phase

main constituent

Domain R

Figure 2.2. Schematic of fictitious material with increasing void nucleation density and void growth
in which the model conceptually comprises.

2.2. VOID NUCLEATION, GROWTH, AND COALESCENCE ASPECTS OF
MACROSCALE MODEL

In this section, the parameters for the void nucleation, growth, and coalescence terms are
determined and explained. We first start with void nucleation.
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(a) increasing void growth
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(b) increasing nucleation sites
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Figure 2.3. The damage model encompasses the limiting cases shown by (a) a single void growing in and (b) just void nucleation.

The void nucleation rule of Horstemeyer and Gokhale (1998) is used to model the results from
the cast A356 aluminum data under compression, tension, and torsion. The integrated form of the
void nucleation rate equation is given by

JA 2
&(r)d 4 I, Jg

—F3 da —_
Kef5| 127 1] g

1

A

where 1)(r) is the void nucleation density, &(¢) is the strain at time 7, C,,;is a material constant.
T is temperature in the absolute scale, and Cy, is the temperature dependent material constant
determined from experiments (Figure 3.19). The material parameters a, b, and c relate to the
volume fraction of nucleation events arising from local microstresses in the material. These
constants are determined experimentally from tension, compression, and torsion tests in which
the number density of void sites is measured at different strain levels. The stress state
dependence on damage evolution is captured in Equation 2.17 by using the stress invariants
denoted by /;, J5, and J;, respectively. /; is the first invariant of stress (1, = 0,,). J, 1s the second
invariant of deviatoric stress (J, = %SZ.J.SU), where S, =0, - %Qjakk. J; 1s the third invariant of
deviatoric stress (J, = §,5,.S,;), The rationale and motivation for using these three invariants of
stress is discussed in Horstemeyer and Gokhale (1998). The volume fraction of the second phase
material is £, the average silicon particle size is d, and the bulk fracture toughness is K.

T’( t) = Ccoeﬁ‘ eXp +C

C
exp( ™ T)’ Equation 2.17
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For the cast A356 aluminum alloy in our study, K;~17.3 MPa-m”"0.5, d=6 um, and /=0.07. The
volume fraction and average size were determined from optical images of the sectioned test
specimens. Fracture toughness tests were performed to determine K;c. The stress state
parameters were determined to be a=615.46 GPa, 5=58.64 GPa, ¢=30.011 GPa, and C.,;=90.
In tension, compression, and torsion, specimens were strained to various levels and then
unloaded. Samples from the specimens were extracted for image analysis, and the number of
damaged sites were then counted.

A crucial feature in determining the damage state, besides nucleation of voids, is void growth.
Many void growth rules have been developed and studied (Garrison and Moody, 1987;
Tvergaard, 1990) but none can comprehensively capture different levels of stress triaxialities,
different hardening rates, different strain rates, and different temperature regimes. The damage
framework allows for different void growth rules to be included and evaluated. We considered
several void growth models. The first one by McClintock (1968) is given in terms of the void
radius as ,

. _ \/gRo
= 2(1—n)

sinh{ \/3(1 - n)ﬂ ;. Equation 2.18
30,

In Equation 2.18 the void volume grows as the strain and/or stress triaxiality increases. The
material constant n is related to the strain hardening exponent and is determined from the
tension tests. R, is taken to be the initial radius of the voids. As with most void growth models,
the McClintock model allows voids to grow in tension, but not in compression or torsion. This
complies with physical observations from measurements of this cast Al-Si-Mg aluminum alloy.
Another void growth model in terms of void radius is given by Rice and Tracey (1969) is given

by,

F —0.283R, exp| S~ 20| Equation 2.19
23/,

Another void growth model by Budiansky et al. (1982) in terms of void volume rate is given by,

A
jo2y2m ﬁi +(1+m)(1+0.4319m)| & Equation 2.20
2| 2 3,7,

The last one worth mentioning in this context is that by Cocks and Ashby (1981) given in terms
of the void volume fraction rate,

;1 _ (1 _ ¢) sinh Mﬂi & Equation 2.21
(1- ) 2+4m 3,J,

2-7



As it turns out, all of these void growth rules give very similar results as will demonstrated later.
In practice, the McCintock (1968) model was used for the silicon particles and the Cocks and
Ashby (1982) model was used for the casting pores.

Another item related to damage is the phenomenon of void coalescence. Coalescence is the
joining of voids either at the microscale or macroscale and has been observed to occur by two
main mechanisms. The first mechanism (Garber et al., 1976) occurs when two neighboring voids
grow together until they join as one, that is, as the ligament between them necks down to a point
as illustrated in Figure 2.4. Another mechanism occurs when a localized shear band occurs
between neighboring voids (Cox and Low, 1974; Rogers, 1960), often referred to as the “void
sheet” mechanism also shown in Figure 2.4.

Coalescence can be added to the damage framework described in Equations 2.14. It arises
naturally with the multiplicative relation between the nucleation and growth terms. As Figure 2.4
demonstrates, we start with two voids that are nucleated and each independently grows until they
join together. Then, one void emerges as they coalesce together. The coalescence event causes a
discontinuous jump in the nucleation evolution and growth evolution but allows for continuous
growth of total damage evolution, ¢. Although discontinuities occur in discrete regions for the
nucleation and growth rules, the rate equations evolve as internal state variables at a higher
length scale in the continuum where their effects are observed on macroscale effective quantities
and thus are continuous functions.

In a phenomenological manner, we include a coalescence term as

C=[C, + Cm??"]( l;ii?) (TC,.), Equation 2.26

to get

b=+ b,,)C Equation 2.27
In the limiting case when the function C,, =0 in Equation 2.26 equals zero, simple coalescence
occurs. In this case, the model reflects the growing of two voids into one. When C,, , 0,
microvoid linking is reflected and the rate of damage is increased. Garrison and Moody [1987]
and Magnusen et al. [1988] observed that the microvoid sheet mechanism is related to particles
initiating small voids in between two larger voids as the larger voids impose their influence on
the surrounding region. As such, coalescence is a function of both nucleation and void growth.
Actually, both forms of coalescence occur in this material and hence both constants Cp; and Cp,
are nonzero.

From Equation 2.27, we see that the void nucleation and growth arise from the 1 and v, which
relate to the silicon particles. The ¢, term is related to the casting porosity and its growth is

pore
given by the Cocks and Ashby (1981) void growth form (Equation 2.21). Here, the coalescence
operates on the both the silicon fracturing/debonding into voids and the initial porosity that
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grows. Results from the mesomechanical finite element simulations motivated this
phenomenological form.

natural coalescence void sheet mechanism
increasing

deformation

O O O O

OO0 | OO
O—0

i C=O

Figure 2.4. Two different coalescence mechanisms observed in various materials.

The dependence on DCS comes in based on the work of Major et al. (1994). They noted a
dependence of the elongation to failure with the DCS. Since the elongation to failure is directly
a result of the damage progression, we can assert that the DCS influences the damage
progression. But in what way? It may be that the DCS really scales with the casting pore size
and that would directly influence the damage progression. If that is true, then there would be no
need to include the DCS in the coalescence model because the initial void size is already
included in the model via the void growth model; however, the DCS may come into play as it
reveals a length scale by which the nearest neighbor voids are represented in some, at this point,
unquantifiable fashion. If the DCS reflects a quasi-nearest neighbor distance, then dislocation
interaction around voids would be enhanced by a smaller DCS as described by the
mesomechanical finite element simulations show in Chapter 4. In this case, the DCS would need
to be included in the coalescence term. The parameter z comes in to normalize the effect of the
DCS and also plays a role in the work hardening rate as will be shown in the next section. The
effect of the DCS is minor compared to the other features in the model.

2-9



The temperature dependence of the coalescence term was determined from the multitude of
mesomechanical simulations discussed in Chapter 4. A general trend was determined from the
mesomechanical simulations, and the constant Cy- was determined. More work related to the
coalescence needs to be done, but to first order this form captures most of the features observed
from microstructure/inclusion behavior.

2.3. ELASTIC-PLASTIC ASPECTS OF MACROSCALE MODEL

The internal state variable (ISV) plasticity model (Bammann et al., 1993) is modified to account
for stress state dependent damage evolution. The pertinent equations in this model are denoted
by the rate of change of the observable and internal state variables. The equations used within
the context of the finite element method are given by,

D

0=G-Wa-0oW* = Al-D)r(D°)I +2u(l - D)D" - o Equation 2.28
D'=D-D" Equation 2.29
—d|| - {R+Y(T)H1-D}| o'-
D" f(T) sinh ”Q Q“ { i ( )}{ } Ql ¢ Equation 2.30
v(r){1-D} [l
° . e e in \“‘E in DCS :

a=a-Wa+aW' = {h(T)Q - \;‘grd(T)HQ +1,(T) ||Q||QH DCS ] Equation 2.31

- in 2 in DCS ‘ .
R = {H(T)l_) - ng(T)Hl_) +R(T) RzHﬁ Equation 2.32
D = [q‘)particles + (bpores]c + [¢particl€s + ¢pores:|é s Equation 233
D parictes = 1V + 1V Equation 2.34

o d? 4 72 i c
1=|D"|———n1a|— - =5 |+ b— + c|—— exp(— G ) Equation 2.35
= K fh { 27 00 | } T
Y(T%
(1)
3,3V oy f,_Y(T) (1+0.4319) D" Equation 2.36
2 12Y(T)o,, Y(T)
¢=C, v+ ﬁv]exp(CCTT)(D s/ CS) Equation 2.37
v(T)

! 2] | |

i’ HQ Equation 2.38
(o}

¢pores =|——— — (1= 9,,., ) [sinh
(1 - ¢P0V“) ( ) (2‘/(%(7,) + 1) vim

The rate equations are generally written as objective rates (é,é ) with indifference to the
continuum frame of reference assuming a Jaumann rate in which the continuum spin equals the
elastic spin ( W = W°). The internal state variable (ISV) Equations 2.28-2.38 are functions of
the observable variables (temperature, stress state, and rate of deformation). In general, the rate
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equations of generalized displacements, or thermodynamics fluxes, describing the rate of
change may be written as independent equations for each ISV or as derivatives of a suitably
chosen potential function arising from the hypothesis of generalized normality (Rice, 1971). An
advantage of assuming generalized normality, although somewhat restrictive, is unconditional
satisfaction of the Kelvin inequality of the second law of thermodynamics (nonnegative intrinsic
dissipation), i.e.

Q:Qi”—lgzé—K-R—qb-DzO. Equation 2.39

The selection of the ISVs may, in principle, be somewhat arbitrary, but the kinematic hardening,
isotropic hardening, and damage rate equations are physically motivated and strongly influence
the history of the material. The ISV model accounts for deviatoric inelastic deformation
resulting from the presence of dislocations in crystallographic material, dilatational
deformation, and ensuing failure from damage progression. Damage will reduce the material
strength, enhance the inelastic flow, and soften the elastic moduli.

In Equation 2.28, the elastic Lame constants are denoted by A and u. The elastic rate of
deformation ( D) results when the the flow rule as shown in Equation 2.28 is subtracted from
the total deformation ( D), which is defined by the boundary conditions.

The independent variables for the inelastic rate of deformation are given in Equation 2.30 as the
stress, temperature, and internal state variables. This is similar to power law and Garofalo
equations for creep except that the ISVs are now included. The deviatoric inelastic flow rule,
D", encompasses the regimes of creep and plasticity and is a function of the temperature, the
kinematic hardening internal state variable ( &), the isotropic hardening internal state variable
(R), the volume fraction of damaged material ( D), and the functions f(T), V(T), and Y(T),
which are related to yielding with Arrhenius-type temperature dependence. The function Y(7)
is the rate-independent yield stress. The function f(7) determines when the rate-dependence
affects initial yielding. The function V(T) determines the magnitude of rate-dependence on
yielding. These functions are determined from simple isothermal compression tests with
different strain rates and temperatures,

V(T)=C, exp(_c%), Y(T)=C, exp(c%), F(1)=C, exp(_c%). Equation 2.40

The kinematic hardening internal state variable, o, reflects the effect of anisotropic dislocation
density, and the isotropic hardening internal state variable R, reflects the effect of the global
dislocation density. As such, the hardening Equations 2.31-2.32 are cast in a hardening-
recovery format that includes dynamic and static recovery. The functions r (7) and R, (T) are
scalar in nature and describe the diffusion-controlled static or thermal recovery, while r,(T) and
R,(T) are scalar functions describing dynamic recovery. Hence, the two main types of
recovery that are exhibited by populations of dislocations within crystallographic materials are
captured in the ISVs. The anisotropic hardening modulus is 4(T), and the isotropic hardening
modulus is H(T).



The hardening moduli and dynamic recovery functions account for deformation-induced
anisotropy arising from texture and dislocation substructures by means of stress-dependent
variables. Miller and McDowell (1992) showed that by using J, in the hardening equations the
different hardening rates between axisymmetric compression and torsion (torsional softening)

were accurately captured. Miller et al. (1995) and Horstemeyer et al. (1995) included this
feature in the Bammann ISV model as

' 2
4 J -
Ty (T) = G|+ Cy| -5 exp( C%) , Equation 2.41
27 J,
4 J; .
h(T) =1G| 1+ Cy| = ——5 ||~ Ci T, Equation 2.42
2
—C .
r(T)=C, exp( l%)a Equation 2.43
' 2
4 J -
R, (T) = C,|1+ Gy, E - J_gsl GXP( Cl%) , Equation 2.44
2
4 J; .
H=1Cs|1+C,, 57" — 1= CT, Equation 2.45
2
—C .
R(T)=C, exp( 1%), Equation 2.46

o1 co 1 . . e
where J, =5(Q'—g)2 and J, =§(g'—g)3. The deviatoric stress o' is expressed in indicial
notation as

0,;'=0; _%On" Equation 2.47

The damage variable D represents the damage fraction of material within a continuum element.
The mechanical properties of a material depend upon the amount and type of microdefects
within its structure. Deformation changes these microdefects, and when the number of
microdefects accumulates, damage is said to have grown. The notion of a damaged state in
continuum field theory emerged when Kachanov (1958) introduced a damage variable to
describe the microdefect density locally in a creeping material. The idea was that damage could
be measured by the volume fraction of voids under creep conditions. Rabotnov (1969)
furthered this notion with an rate equation of void density.

Equation 2.6 introduces the void volume fraction (porosity) as damage. By including damage,
D, as an ISV, different forms of damage rules can easily be incorporated into the constitutive
framework. Bammann et al. (1993; 1996) and Horstemeyer (1992, 1993) have demonstrated
the applicability of the Cocks and Ashby (1980) void growth rule used as the damage rate
equation in the ISV model.
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The generalized thermodynamic force conjugate, ¢, is often referred to as the energy release

rate for elastic brittle materials and the J-integral for inelasticity. In essence, an increment of
damage will have associated energy released per unit damage extension as new damaged area
(or volume) is developed.

In Equations 2.33-2.38, the damage progression is divided into void nucleation and growth from
silicon particles and from pores. Coalescence is introduced to reflect pore-pore interactions and
silicon-pore interactions as expressed in Equation 2.37. The void nucleation evolution described
by Equation 2.35 is discussed in length by Horstemeyer and Gokhale (1999). The void growth
related to silicon particles, Equation 2.36, is that from Budiansky et al. (1982). Other forms can
be used and evaluated (cf., Horstemeyer et al., 1999), but this equation allows for a strain rate
sensitivity in relation the plasticity model (m=V(T)/Y(T)). For the porosity evolution, the Cocks
and Ashby (1981) void growth rule is used as shown in Equation 2.38.

2.4. MACROSCALE MODEL SUMMARY

A damage evolution model that incorporates separate evolving functions for void nucleation,
growth, and coalescence was implemented into the modified finite strain ISV plasticity model
(Bammann et al., 1993) to solve boundary value problems with the finite element method. The
practicality and physical basis for the void nucleation model of Horstemeyer and Gokhale (1999)
is illustrated by determining the model parameters to cast A356 aluminum experimental
observations. The experiments revealed that void nucleation is a function of the stress state of the
material and that void nucleation proves critical to the developing damage state of cast A356
aluminum. Finite element calculations of notch tensile bars were performed to illustrate the use
of the model.
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3. VOID-CRACK NUCLEATION

In order to develop a macroscale phenomenological void-crack nucleation model for ductile
metals with second phases, atomic scale and microscale physical observations are needed. The
competing processes of silicon fracture and aluminum-silicon interface debonding need to be
sorted out in terms of developing the critical limiting parameters. Not only with respect to a cast
A356 aluminum alloy, understanding the debonding and fracture characteristics of bi-material
interfaces is central to modeling the mechanical response of a broad range of engineering
materials. Metal matrix composites (Everett and Arsenault, 1991), unidirectional composites
(Daniel and Ishai, 1994), cast aluminum alloys (Plumtree and Schafer, 1986; Gall et al., 1999),
commercial grade wrought aluminum (Grosskreutz and Shaw, 1969), and wrought steel alloys
(Lankford and Kusenberger, 1973) all contain bi-material interfaces via second phase particles or
fibers embedded in a matrix material. An interface between two different materials is
traditionally classified as coherent, semi-coherent, or incoherent based on the local atomic
arrangement. Relatively strong coherent interfaces usually only exist for second phase particles
(precipitates) much smaller than a micron. Coherent precipitates control, for example, the high
monotonic strength levels in age-hardenable aluminum alloys (Bray, 1990). Larger second phase
particles (inclusions) embedded in a matrix material usually have incoherent interfaces, unless
the crystal lattice mismatch between the adjoining two materials is negligible. The local
deformation characteristics within large incoherent inclusions and in the surrounding matrix
material have a strong influence on the mechanical properties of a composite material. For
example, under cyclic loading conditions, second phase silicon or aluminum-oxide inclusions
serve as fatigue crack nucleation sites in cast (Plumtree and Schafer, 1986; Gall et al., 1999) and
wrought (Grosskreutz and Shaw, 1969) aluminum alloys.

Predicting the monotonic or cyclic mechanical properties of materials containing incoherent
inclusions requires knowledge of the local misfit stress and strain distributions near such
particles when a material is subjected to far-field boundary conditions. For pristine and perfectly
bonded inclusions, an Eshelby based approach (Eshelby, 1957) can be used to obtain a
relationship between local and far-field stresses and strains. However, second phase inclusions
within a ductile matrix are not always pristine, but rather can be fractured or debonded (Puttick,
1959; Grosskreutz and Shaw, 1969; Broek, 1973; Lankford and Kusenberger, 1973; Hahn and
Rosenfield, 1975). For example, Figure 3.1 is a duo of scanning electron microscope (SEM)
images taken from a fracture surface of A356 cast Al, subjected to cyclic loading conditions
(Gall et al., 1999). The SEM images demonstrate that pure silicon inclusions within a ductile
aluminum matrix may (a) fracture or (b) debond depending on the fatigue crack tip driving force
(striation spacing) and inclusion morphology. Predicting whether an inclusion will fracture
versus debond for different particle shapes and loading conditions is difficult without
information on the relative strength of the particle versus its interface with the matrix material.
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Figure 3.1. Scanning electron microscope images of the fracture surface of a cast £356-al alloy subjected to cyclic loading conditions.
The mmages demonstrate that pure silicon inclusions are observed to both () fracture and (b) debond.

As second phase particles fracture or debond, finite element calculations can be used to obtain
the evolution of local stress and strain distributions with respect to the far-field boundary
conditions (Harkegard, 1973; Gall et al., 1999-B). One consideration in the finite element
modeling of interface debonding, and crack propagation in general, is modeling the generation of
free surfaces. Previous finite element studies have used cohesive zone approaches (Dugdale,
1960; Barenblatt, 1962) to model, for example, fracture in rocks (Boone et al., 1986), inclusion
debonding in ductile materials (Needleman, 1987; Xu and Needleman, 1993) dynamic crack
propagation in brittle materials (Camacho and Ortiz, 1996), failure of adhesive joints (Tvergaard
and Hutchinson 1994, 1996), and various other interfacial crack growth problems (Needleman,
1990-a, b; Suo et al., 1992; Tvergaard and Hutchinson 1992; Needleman, 1992; Xu and
Needleman, 1993, 1995, 1996; Needleman, 1997; Bigoni et al., 1997; Siegmund et al., 1997; Xu
et al., 1997). The mathematical forms for cohesive zone equations are motivated (Needleman,
1990-a) from metallic atomic binding energy relationships (Rose et al., 1981; Rose et al., 1983;
Ferrante and Smith, 1985).

Given this background we proceed first with atomistic simulations to determine an understanding
of silicon fracture and silicon-aluminum interface debonding. Second, we perform microscale
finite element analyses to determine the parameters of interest for macroscale microstructure-
mechanical property model.
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3.1. ATOMISTIC STUDIES

The present atomistic study will consider the deformation characteristics of the interface between
pure FCC aluminum (Al) and diamond cubic silicon (Si). Al-Si interfaces have technological
importance in cast Al-Si alloys and electronics packaging applications. We will use the semi-
empirical Modified Embedded Atom Method (MEAM) (Baskes, 1992) to model the Al-Si
interfaces under imposed tensile boundary conditions. The MEAM (Baskes, 1992) differs from
the standard EAM (Daw and Baskes, 1984) in that the angular dependence of the electron
density is included in the MEAM. With exception to one MEAM simulation, which was
deformed under static loading conditions at 0 K, all models were deformed in the molecular
dynamics framework at high strain rates (1 x 10’ 1/s). The MEAM is a powerful tool for
analyzing local interfacial failure mechanisms since the structure and/or strength of the interface
need not be assumed a priori. Consequently, the predictions of the MEAM simulations provide
insight into the underlying physics of interfacial decohesion and fracture.

Previous MEAM simulations on the characteristics of Ni-Si interfaces (Baskes et al., 1994) have
provided insightful results. In general, the work of Baskes ef al., (1994) determined the structure
and adhesion energy of a thin layer of Ni on a Si substrate. However, such MEAM studies on Ni-
Si interfaces have not considered the effects of different MEAM models on the strength of the
interface. In order to draw accurate comparisons with continuum based debonding models, a
more thorough study of the effects of MEAM model geometry, loading, and displacement
measurement conditions should be undertaken. The current MEAM simulations consider the
stress-strain and traction-displacement responses of Al and Si blocks of various size, attached at
a flat interface, and subjected to tensile boundary conditions applied parallel to the interface
normal. The effect of randomly dispersed point vacancy defects on the strength of the interface is
investigated. In addition, the effect of crack-like vacancy defect size on the competing failure
mechanisms of Al-Si interface debonding versus isolated fracture in the Al or Si is considered.
Finally, different locations for measuring opening displacement are discussed in the framework
of a continuum based cohesive zone approach. This preliminary study will not consider the
effects of pertinent metallurgical factors such as interface misorientations (Kurtz and Hoagland,
1998), dislocations (Kurtz and Hoagland, 1998), or impurities (Rice and Wang, 1989; Olson,
1997). We attempt here to determine the overall applicability of atomistic simulations to study
interfacial decohesion in the context of current continuum based modeling approaches. Once the
task at hand has been accomplished, the effects of the aforementioned metallurgical factors can
be more effectively studied.

The results of the present study augment the findings of different experimental techniques used
to characterize the structure, strength, and fracture behavior of bi-material interfaces. For
example, the properties of material interfaces have been studied using a wide range of
mechanical testing methods such as: peel tests (Yoshino and Shibata, 1992), laser spallation tests
(Gupta et al., 1993), zero-creep tests (Josell and Spaepen, 1993-a, b), push-through tests (Warren
et al., 1992; Mackin et al., 1992; Izawa et al., 1996), pull-out tests (Lamon et al., 1995), normal
tension tests (He et al., 1996), transverse compression tests (Turner and Evans, 1996), and
bending tests (Reimanis et al., 1990; Reimanis et al., 1991; Bartlett and Evans, 1993; Leung et
al., 1995). The particular conclusions of the aforementioned collection of experimental studies
are dependent on the material studied. However, the interface between two adjoining materials
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almost always serves as the weak link for failure for all material systems and loading conditions
considered. In addition to the experimental studies, numerous analytical approaches (Erdogan,
1963; Rice and Sih, 1965; Comninou, 1990; Loboda, 1998) have been used to study the stress
and strain fields near interfacial cracks in dissimilar materials, analogous to fracture mechanics
based approaches for homogeneous materials. Energy based criteria have also been utilized to
study the competing modes of interface debonding versus fracture into the bulk materials (Evans
etal.,, 1989; He et al., 1994).

3.1.1 ATOMISTIC SIMULATION PRELIMINARIES

Atomistic calculations, starting from atomic pair potentials or some related modification, have
been used for a wide variety of materials. Brenner (1996) summarized the class of bond order
formalism that has proven valuable for covalently bonded systems. Stoneham et al. (1996)
summarized the shell model, which is a modification of a pair potential, used for ceramics. For
metals, Daw and Baskes (1984) developed the MEAM, which employs a pair potential
augmented by a function of another pair-wise sum based on the electron density. We use the
MEAM in the atomistic simulations for the study of finite deformations of single crystal
aluminum and silicon and the interface between the two materials.

The notion of embedding energy was first suggested by Friedel (1952) and further developed by
Stott and Zaremba (1980). Daw and Baskes (1984) proposed a numerical method for calculating
atomic energetics. Daw et al. (1993) summarize many applications of MEAM. Essentially,
MEAM comprises a cohesive energy of an atom determined by the local electron density into
which that atom is placed. A function, p, is viewed as the contribution to the electron density at a
site due to the neighboring atoms. The embedding energy, F, is associated with placing an atom
in that electron environment. The functional form of the total energy is given by

E=2Ff Epi(r”)]+%lzj¢’j(r’j), Equation 3.1

i j

where i refers to the atom in question and j refers to the neighboring atom, 1V is the separation
distance between atoms i and j, and f’ is the pair potential. Because each atom is counted,
contravariant and covariant index notation is not used here. Subscripts denote the rank of the
tensor, for example, one subscript denotes a vector, two subscripts denote a second rank tensor,
and so on. Superscripts identify the atom of interest. In molecular dynamics, the energy is used
to determine the forces on each atom. At each atom the dipole force tensor, b, , is given by

ij >
4 1 5N o
Biow = aQ Efkl(”'j)rn'f, Equation 3.2
J=0)

where 1 refers to the atom in question and j refers to the neighboring atom, f is the force vector
between atoms, 1, is a displacement vector between atoms i and j, N is the number of nearest
neighbor atoms, and W' is the atomic volume. If stress could be defined at an atom, then b;
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would be the stress tensor at that point. Since stress is defined at a continuum point, we
determine the stress tensor as a volume average over the block of material,

1, .
O = N Eﬁrlnk ) Equation 3.3

in which the stress tensor is defined in terms of the total number of atoms, N* , in the block of
material. A discussion of the atomistic stress tensor in relation to continuum based stress
concepts is presented in Horstemeyer and Baskes (1999). The average uniaxial true strain for a
given simulation was determined from the following relationship:

g, = ln(l + 0 t), Equation 3.4
L

where v; is the velocity of the atoms at the far end of the model (applied boundary condition), t is
the simulation time, and L is the half-length of the model. In some simulations the displacement
of selected atomic planes is used as a deformation metric rather than the average strain in
Equation 3.4.

For the present study on Al-Si interfaces, MEAM potential functions are required for the various
pair interactions between Al and Si. For the Al-Al and Si-Si interactions, we employ MEAM
potentials developed previously for elemental Al and Si (Baskes, 1992). The lattice constant for
the two materials were assumed to be 4.05 A for Al and 5.4 A for Si, to give an integer ratio of 3
for the enforcement of periodicity. The real ambient temperature lattice constants are 4.041 A
and 5.42 A for Al and Si, respectively. For Al-Si, we compute, within the Local Density
Approximation (LDA), some ground-state properties for a representative Al-Si structure, namely
the B1 (NaCl) structure, and fit the MEAM potential to this data. LDA calculations were carried
out using an all-electron, full-potential method (Methfessel, 1988) to obtain the cohesive energy
and three cubic elastic constants for B1 Al-Si, as shown in Table 3.1. A basis set of 27 orbitals
per atom (f+ 2d + 3p + 3s), and a k mesh of 20 by 20 by 20 divisions was used to ensure that
no errors arose from the basis or Brillouin zone integration.

Table 3.1:Properties of the Al-Si system in the B1 structure. The * indicates that the parameter is
fitted by construction. LDA is local density approximation.

LDA MEAM
aaisi(A) 3.64 3.64*
Eassi (€V) 3.85 3.85%
B (GPa) 85 85*
(011-012)/2 (GPa) 89 89*
cis (GPa) 19.9 13

For comparison, c44 was computed to be 30 GPa in Al and 76 GPa in Si. The experimental values
extrapolated to 0 K are 28 GPa and 80 GPa, respectively. The lattice constant asi resulted in an
Al-Si nearest neighbor distance of 2.576 A which, as expected, falls between the Al-Al nearest
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neighbor distance of 2.86 A and Si-Si nearest neighbor distance of 2.35 A. As expected from the
absence of compound formation in the Al-Si phase diagram, the cohesive energy Eas; shows that
the B1 structure is endothermic with respect to FCC Al and diamond cubic Si by 0.255 eV/atom.
There is very little experimental data available to compare the computations at this scale. We
calculate approximately the solubility of Al and Si in Al at 577C, the eutectic temperature. From
the model, the heat of solution of Si in Al is 0.42 eV and for Al in Si 1.8 e¢V. These values lead to
a solubility of 0.3% for Si in Al and essentially zero for Al in Si. The experimental values range
from 1-2% and zero, respectively. Data is not available to obtain a better approximation. Shown
in Table 3.1 are MEAM results. The anisotropy in the calculated shear constants is remarkably
large; we were encouraged that the MEAM does a reasonable job in reproducing it. These values
were used in the Universal Equation of State (UES) (Rose et. al., 1984) to determine the Al-Si

pair potential:
Psi p
S ! ) ) FSt(p—Alo)
12 py, 4 P

where E" is the UES for Al-Si using the parameters in Table 3.1, Z=6 is the nearest neighbor
coordination for the BI structure, r, and rg; are the electron densities for the aluminum and
silicon. The background electron densities are given by:

2
D, (r)= ~ E*“(r)-F, Equation 3.5

=ZpY(r) Equation 3.6
P =2pYy (r) Equation 3.7

where p(? and pY” are the s-like partial electron densities for aluminum and silicon. The
scaling of the electron densities p¢, and pg was chosen by fitting to the shear elastic constants

calculated from the LDA. The resultant shear moduli are presented in Table 3.1 for pg / p9, =

3.42. It was not possible to fit both shear moduli with the single electron density ratio, but the
resultant shear moduli are in reasonable agreement with the LDA calculations. We note that the
aforementioned procedure for estimating the bi-materials potentials is outlined in more detail by
Baskes et al. (1994), and is only overviewed here for completeness.

3.1.2. INTERFACE STRUCTURE AND MODEL SENSITIVITY

In the present MEAM simulations, the following parameters remained fixed throughout the
investigation:

1. The model is periodic in the [010] and [001] crystallographic directions, and it contains free
surfaces perpendicular to the [100] direction.

2. The constant temperature molecular dynamics simulations were conducted at 300 K and the
static simulations were conducted at 0 K.
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3. The cubic axis for the FCC aluminum and the diamond cubic silicon blocks are aligned, i.e.
[100]a1l|[100]si, [010]a1]|[[010]si, [001]41/[[001]si, and the interface normal is parallel to the [100]
direction.

4. The two complimentary atomic planes farthest from, and parallel to the interface, are
displaced at velocities of 1 A/ps along the [100] and [100] crystallographic directions. Atoms in
the displaced planes were fixed from moving in the [010] and [001] directions.

The velocity of 1 A/ps was chosen arbitrarily. Although there may be an influence of strain rate
on the simulation results, we have not studied this effect systematically. Instead, we have used
one extremely high strain rate (dynamic simulation with velocity of 1 A/ps) and one extremely
low strain rate (static simulation). The forthcoming results show that the influence of strain rate
is small compared to other significant effects. The results of the MEAM simulations on the Al-Si
interfaces are presented in Figure 3.2 through Figure 3.13. In all figures containing atomistic
images, with exception to Figure 3.2b, the viewing direction is always along the [001] direction.
Since the MEAM model is three-dimensional, many other viewing directions are possible,
however, the images viewed from the [001] direction provided the easiest interpretation of
results.

[010]-Periodic

%o

Si Atom Displaced ’ I
Awsray From ].nterface

[001 ]-Periodic [100]
Figure 32, T he relaxed structure (total energy minimized through a static simulation at 0 K of the
aluminum-silicon interface where [100]Si | 1[100]AL The model is periodic in the [010] and [001]

directions, and the viewing direction is the (a) [001] direction and the (b) [100] direction. In(b)
only the two planes closest to the interface are shown.

Si Atom Displaced
I owards Interface

[010]-Perindic

An image of the interface viewed from the (a) [001] and (b) [100] directions is presented in
Figure 3.2. The model in Figure 3.2 has been subjected to a static MEAM calculation (total
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energy of the aggregate is minimized at 0 K under no external velocities) to assure that the
structure of the interface is relaxed. We note that the initial distance between the atoms at the Al-
Si interface was chosen by experience of modeling interfaces (Baskes et al., 1994). Although this
choice is arbitrary, the interface relaxes to an equilibrium structure during the static or dynamic
simulations. Thus, as long as the initial interface separation is not too small or large to cause
numerical problems, the initial interface separation is not a critical issue. In Figure 3.2a, all
atoms appear the same size, however, many of the atoms lie on different planes owing to the
three dimensional structure of the lattice. In Figure 3.2b, all atoms are removed from the model
with the exception of one Si plane and one Al plane at the interface. Although it is not trivial to
identify the structure of the interface, the interface does posses a mild degree of order with some
inevitable local distortions. The interface is clearly incoherent since a one-to-one correspondence
between the Si and Al atoms does not exist across the junction. Similar to Ni-Si interfaces
(Baskes et al., 1994), the Al-Si interface posses a rippled appearance, i.e. some atoms are
displaced towards a perfect interface plane and some are displaced away. The cause of the
rippling is undoubtedly the strong interaction of neighboring Al and Si atoms located in the two
different crystal lattice structures. If a Si or Al atom near the interface sees a void in the adjacent
material, the atom will be drawn toward that void. Conversely, if a Si or Al atom near the
interface is placed directly next to an atom in the adjacent material, the atom will be pushed
away from that atom. Although atoms from both materials are displaced at the surface, the
aluminum atoms are predicted to ripple more severely compared to the Si atoms.

Figure 3.3 is a representative example of the response of the interface model to applied far-field
velocity boundary conditions. The center figure is a plot of the average uniaxial stress versus the
true uniaxial strain for the aggregate shown in Figure 3.3. The average stress is calculated using
Equation 3.3 for the entire aggregate of atoms, while the true strain is determined from equation
3.4. Upon initial application of the end velocities, the average axial stress in the model is
compressive (negative). The initial negative stresses, which exist even in a statically relaxed
model, is caused by the attempted contraction of the Al and Si due to the presence of the free
surfaces. Moreover, the lattice constants of the materials are not exact (.5 % error) since their
ratio must be an integer to properly enforce periodicity. During continued movement of the end
atoms, the average axial stresses become tensile, and the stresses continue increasing until a
critical stress level is reached. At the critical stress level, the failure of the interface between the
Al and the Si atoms begins to nucleate (Figure 3.3). The nucleation of interfacial failure occurs
spatially at the location where the Al and Si atoms are displaced (rippled) in the relaxed and
undeformed state (Figure 3.2). In fact, aside from differences in the bonding potentials between
Al and Si atoms, the rippled nature of the interface is one reason that the interface is weak
compared to the pristine bulk material. The rippling facilitates local stress concentrations and
failure through local damage nucleation and a subsequent unzipping of the interface atoms rather
than simultaneous bond breakage. Such a failure mechanism is analogous to the severe decrease
in strength for the movement of a single dislocation versus the simultaneous failure of all
adjacent atomic bonds.
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Figure 3.3. Represenlative average-stress versus true-strain response of the [100]5i | 1[100]aluminum
interface model to bound ary velocities, v1, at the far ends of the blocks in the [100] and [-100]
directions. T he model is periodic in the [010] and [001] directions.

As the interface debonds, the average stresses in the atomistic model decrease over a finite strain
increment (Figure 3.3). Moreover, during interfacial debonding, the Si atoms are slightly
distorted from their elastic positions, however the Al atoms undergo gross permanent changes in
position, revealing that plastic dissipation occurs in the Al. Owing to the highly constrained and
pristine state of the present lattice, it is difficult to envision any explicit dislocation emission or
movement near the fracturing interface. When the average stress in the block reaches
approximately 0 GPa, the interfacial separation is complete and several Al atoms are still
attached to the Si (Figure 3.3). After separation, the two blocks experience elastic springback in
an oscillatory manner as indicated in Figure 3.3. For the remaining figures, the elastic springback
portion of the stress-strain curve is removed since it is not pertinent to understanding the local
debonding mechanisms. We note that the predicted debonding stress levels (~20 GPa) in the
present study are elevated compared to, for example, the ultimate tensile strength (~200 MPa) of
cast Al-Si alloys where debonded and fractured Si particles are observed (Dighe and Gokhale,
1997; Samuel and Samuel, 1995). The high attainable stress levels are due to the pristine state of
the interface (defect and impurity free), the highly constrained (relatively thin and periodic)
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nature of the interface model, and the dynamic loading conditions. The periodic nature and
relatively high applied strain rates are inherent to practical MEAM simulations, thus revealing a
limitation of current atomistic modeling efforts. The addition of defects such as point vacancies
will slightly lower the strength of the “perfect” incoherent interface, as will be demonstrated in
Section 5. Interface misorientations, dislocations (Kurtz and Hoagland, 1998), and impurities
(Rice and Wang, 1989; Olson, 1997) will further lower the strength of the interface as much as
several orders of magnitude. We also note that under some stress states other than pure tension, a
size scale effect, which is the basis of strain gradient plasticity, will also cause the local stresses
to be much higher than experimental observations on large scale samples (Fleck et al., 1994;
Horstemeyer and Baskes, 1999).

In order to assure that the results do not have a strong sensitivity to the boundary velocity
conditions or periodic lengths in the transverse directions, several MEAM interface models were
deformed under varying conditions. The average-stress versus true-strain response of the MEAM
interface models to the selected conditions is demonstrated in Figure 3.4. It was discovered that
applying a velocity at both ends versus fixing one end and moving the other has no effect on the
model response. Furthermore, applying a velocity exclusively to the end atoms creates conditions
for the propagation of an elastic shock wave. To eliminate the propagation of an elastic shock
wave we give the atoms within the model a spatially linear initial velocity distribution with a
zero value at the interface and the same maximum value at the displaced far-field end. However,
by applying end velocities augmented by the initial velocities for the internal atoms, we
demonstrate that the average stress-strains response is unchanged (Figure 3.4), thus the shock
wave is not significantly affecting the debonding behavior.

1] T T T

Dirersians ALSi Biceystal [100], 1[100],,
i [100] = 40 Angstmms —— Loaded from bothends
L o 0 s au e O fined end, one baded end
HEHOLI008) = penpqie ™o Mo shock initial conditions
. : - = - Static relaxed mibal condibions
10 Displaged along [100] — - - Doukle [010] and [001] perindic ity

# Static Smulation
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-0 4

True Strain 5, (%)

Figwre 3.4,  The average-stress versus tne-strain response of the [100][100] , interface model under various conditions.
The model is periodic in the [010] and [001] directions.
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We also relax the interface through a static calculation at 0 K, before applying the external
boundary velocities. The results show that, regardless if the interface is statically relaxed or not,
the interface quickly reaches an equivalent deformed state under the imposed boundary velocities
as evidenced from the similarity in the stress-strain responses in Figure 3.4. In addition, an
incremental static simulation was conducted at 0 K with incrementally increased end
displacement values. Upon loading, the response of the model under static and dynamic
conditions is essentially the same. However, the drop-off of stresses in the static simulation
occurs at a slightly smaller critical stress (strain) level. Finally, periodic lengths along the [010]
and [001] directions, were initially assumed to be four aluminum unit cells and three silicon unit
cells, i.e. 16.2 A. Doubling the periodic lengths to eight unit cells for the aluminum and six unit
cells for the silicon, i.e. 32.4 A, had a negligible effect on the predicted stress strain response
(Figure 4).

3.1.3. INTERFACE DEBONDING

Before investigating the interface debonding in detail, we first studied the differences between
the average stress-strain response of the MEAM interface model and equivalent MEAM models
containing only silicon or aluminum (Figure 3.5). Although nonlinear at such large strains, the
loading slopes of the stress-strain curves for the Al and Si are on the order of the measured
elastic constants for this crystallographic direction, i.e. Ci; (Si) = 166 GPa (Suwito et al., 1998)
and C;; (Al) = 108 GPa (Meyers and Chawla, 1984). This agreement is inherent to the MEAM
since the potentials are determined from the elastic properties of both materials (Table 3.1). The
failure strain of all three models occurs over a finite increment, with the interface model having
the lowest failure stress and strain, followed by the pure aluminum and then the pure silicon. At
this atomistic size scale, the fracture of the pure silicon is more abrupt compared to the
aluminum and the Al-Si interface models, i.e. less curvature at the peak and a more rapid stress
drop. The brittle nature of pure silicon single crystals for large-scale mechanical testing samples
has been experimentally observed (Suwito et al., 1998). Most importantly, in the absence of
defects, the Al-Si interface is weaker than either the pure Al or pure Si materials, however the
interfacial fracture resembles failure characteristics in pure Al

We now illustrate the dependence of the MEAM interface model response on the block size
(length) in the non-periodic [100] loading direction. Figure 3.6 shows the (a) average-stress
versus true strain response, (b) average-stress versus far-field displacement response, and (c)
average-stress versus local displacement response of the MEAM interface model with four
different block sizes. The far-field opening displacements and true strains were calculated from
the velocities at the far ends of the respective MEAM models. The local opening displacements
were calculated as the displacement difference during the simulation between the atomic planes
initially at +/- 3 planes (approximately +/- 5 A) from the interface. For reference, the overall
length of the block shown in Figure 3.3 is 40 A, and the other block sizes investigated are one-
fourth (10 A), one-half (20 A), and twice (80 A) this length in the [100] direction. We note that
the sizes here indicate the entire model length, such that the Si and Al block lengths are each half
of this overall length. The results in Figure 3.6a indicate that the average stress-strain response
exhibits a relatively strong dependence on the block size in the [100] direction. A possible reason
for the dependence is a size scale effect, however, this argument is circumvented below.
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Figure 3.7 presents four average stress-strain curves from the 80 A Al-Si interface model. The
bounds to determine the average stress-strain response were systematically decreased. For
example, averaging from —40 to 40 A encompasses the entire 80 A model. However, averaging
from -5 to 5 A only includes six total atomic layers near the interface. The other averaging
bounds are in between these two extremes. The averaging bounds for the 80 A model in Figure
3.7 were chosen to match the different MEAM model sizes studied in Figure 3.6. Essentially, the
overall shapes of the curves in Figure 3.7 are independent of the averaging volume even if the
atoms exclusively near the interface are considered. As such, the postulate of locality in
macroscale continuum mechanics is valid even at these size scales when developing an
interfacial debonding damage criterion under pure tension. However, we note that as the
averaging volume becomes very small the response demonstrates significant local fluctuations
due to the smaller number of atoms sampled. In either case, owing to the results in Figure 3.7,
the differences in the curves in Figure 3.6 cannot be attributed to differences in the averaging
volume for different size models.

As the block size is increased, the average stress versus true strain response (Figure 3.6a)
converges since the interaction of the interface atoms with the displaced surface atoms
diminishes. However, due to the localization phenomenon in the present bi-material atomistic
simulation, the average stress-strain response is not the most appropriate approach for studying
the interface debonding. To gain further insight into the debonding mechanisms, several stress
(traction) versus displacement curves were plotted from the same MEAM simulations as Figure
3.6a. As the block size is increased, the average-stress versus far-field displacement response
(Figure 3.6b) diverges since the applied end displacement is dispersed over a larger MEAM
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model length. However, when local displacements are measured at the same location for all
model sizes, the average-stress versus local-displacement curves are far less sensitive to the
block size (Figure 3.6¢). Moreover, a static traction versus local-displacement curve is also
shown in Figure 3.6c, and the result is similar to the molecular dynamics simulations for the
different block sizes. The results in Figure 3.6¢ indicate that local displacement measurements
provide much different results than far-field displacement measurements. The most appropriate
location of the measured opening displacement reference planes for the 40 A model.
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Figure 3.6. (a) Average-stress versus true-strain (b) average-stress versus far-field displacement and (o) average-stress versus local

displacernent for the [100] 4I[100] ., interface model for different lengths in the [100] civection. The model is periodic in the
[010] and [001] directions.

On the other hand, the most suitable block size for MEAM modeling is one that minimizes the
interaction between the displaced far-field surfaces and the interface atoms. The average-stress
versus true strain response is used as a measure of the interaction between the interface atoms
and the displaced free surfaces. As the free surfaces are moved farther from the interface, and the
block size increases, the average-stress versus true strain response converges towards a nominal
response centered at the origin (Figure 3.6a). Based on the curves in Figure 3.6a, the differences
in the responses of the 40 A and 80 A models are minimal, whereas models below 20 A show
significant deviations from the responses of the larger blocks. The aforementioned observation,
coupled with the excessive computation time for the 80 A model, render the 40 A model the
most appropriate for the MEAM simulation of interface debonding for a pristine Al-Si interface.
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The stress distributions across the interface, predicted by the MEAM simulations, provide insight
into the local failure mechanisms. Figure 3.8 is a distribution of average uniaxial stresses just
before interfacial failure (14 % strain in Figure 3.4). The stresses were averaged in the [010] and
[001] directions, and the average stress in the entire volume is also indicated in Figure 3.8 as a
straight line. The distributions predicted by both the molecular dynamics and static simulations
are presented in Figure 3.8. The average stresses in the stiffer silicon material are higher for an
equivalent dynamic displacement of both model ends. The different stress levels in the two
materials are artifacts of the dynamic nature of the simulations. However, in the static case, the
stresses away from the interface are comparable in both materials, consistent with static stress
equilibrium concepts. Very close to the interface, the stresses in both materials are higher than
the nominal values away from the interface, under both static and dynamic loading conditions.
The magnification of stresses is due to the rippled nature of the interface and the local balance of
forces. In other words, owing to the different crystal structures and lattice parameters of the two
phases, some atoms cannot interact strongly with immediate neighbors across the interface. The
low interaction force levels between certain atoms promotes high forces between other atoms
which are attempting to keep the interface intact. Thus, extremely close to the interface, several
atoms are equilibrated under relatively higher forces as evident in Figure 3.8. This microscopic
disturbance of stresses near the interface facilitates the nucleation and propagation of debonding
failure. We note that such a local disturbance in the stress fields is produced by the
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heterogeneous nature of the interface as caused by the lattice structure of the two materials. Of
course, in a homogeneous continuum based model, no stress intensification would be predicted
for the given periodicities and boundary conditions.
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3.14. ROLE OF VACANCY TYPE DEFECTS

The strength of material interfaces will invariably be degraded by the presence of metallurgical
defects such as dislocations, vacancies, and chemical impurities. Although chemical impurities
(Rice and Wang, 1989; Olson, 1997) and interface dislocations (Kurtz and Hoagland, 1998) are
expected to have a significant influence on the strength of an interface, the present MEAM
simulation will exclusively consider the effects of vacancy-type defects on interface debonding.
The incorporation of impurity atoms in MEAM simulations requires the development of atomic
potentials for such materials and is beyond the scope of the present study. Moreover, a thorough
study of different interface dislocations and misorientations is a separate topic altogether and can
be attacked once the present framework is set forth. Figure 3.9 illustrates the dependence of the
strength of the interface on the number fraction of defects near the interface. The point vacancy
defects in the simulations in Figure 3.9 were distributed randomly throughout the two atomic
planes adjacent to the interface in (a) just the Al, (b) just the Si, and (c) both the Al and Si. In all
three situations (Figures 3.9 a-c) the incorporation of vacancy defects at the interface lowers the
fracture strength of the interface. In the range of defect number fractions considered, the decrease
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in the interfacial strength scales nearly linearly with the number fraction of defects (Figure 3.9a).
The small reductions in strength due to the randomly dispersed vacancies (Figures 3.9 a-c) are
absolutely negligible given the small overall concentration (<< 1%) of vacancies traditionally
found in metals (Meyers and Chawla, 1984).
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We have established that the Al-Si interface with and without point vacancy defects is a weak
link for failure under tensile loading parallel to the [100]4j/|[100]s; interface normal. Now we
investigate the role of microscopic crack like defects in the bulk materials on the competing
mechanisms of fracture in the pure Al, pure Si, or at the Al-Si interface. Figures 3.10 and 3.11
are compilations of the initial damaged state and final failure mode of four different MEAM
simulations with different sized and spaced flaws in the Si or Al, respectively. Before conducting
the MEAM simulations, atomic rows along the [001] direction were removed to create a crack-
like vacancy defect in the silicon (Figure 3.10) or aluminum (Figure 3.11). Since the model is
periodic in the [010] direction, the models in Figures 3.10 and 3.11 simulate a periodic array of
evenly spaced cracks rather than a single defect. As the initial flaw size is increased (periodic
flaw spacing is concurrently decreased) in both materials, failure in the pure materials is favored
over interfacial failure. Flaws in the Si do not distract the failure from occurring at the interface
until the flaw area projected onto a plane normal to the tensile axis is nearly 30% (Figure 3.10).
Flaws in the Al are even less effective in moving the failure away from the interface since it
takes a larger flaw area projected on a plane normal to the tensile axis (about 50%) to accomplish
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bulk failure in the Al (Figure 3.11) versus the interface. These values are only valid for pristine
materials with defects on this size scale.

Initial Damaged State Final Failure Mode
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Figure 3.10. Effect of initial defect size in the pure silicon material on the failure mode of the40
Angstrom [100]Si] 1[100] Al interface model All models have equivalent geometry’s, and they
are periodic in the [010] and [001] d irections,
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Figure 3.11. Effect of initial defect size in the pure aluminum material on the failure mode of the
40 Angstrom [100]5i | [[100] Al interface model. All models have equivalent geometry”’s, and
they are periodic in the [010] and [001] directions.

Figure 3.12 demonstrates that the periodic size scales of the model in the [010] and [001]
directions have an influence on the fracture behavior of the material in the presence of defects.
The lower model in Figure 3.12 has double periodicity in both directions and a flaw size that is
also double compared to the model at the top of the figure. Recall that changing the transverse
periodic lengths had a negligible influence on the tensile stress-strain behavior of the model
without defects (Figure 3.4). However, the size of the periodic lengths has an influence when
flaws within the materials are introduced. The dependence of the fracture mode of the model on
the flaw size is consistent with fracture mechanics notions where the intrinsic flaw size is related
to the driving force for fracture. However, in the present simulations, the larger flaw in the Si
does not promote earlier fracture in the Si compared to the smaller flaw, which is not entirely
consistent with static fracture mechanics concepts. One reason that the smaller flaw could
promote earlier failure is due to the propagation of elastic waves in the dynamic MEAM model.
Such elastic waves can promote premature fracture in the smaller model since the ligament
between the cracks is smaller than in the larger model, and shorter time is required for spatial
movement of the waves. As such, the probability that the local stress field that initiates fracture
will be augmented by an elastic stress wave is increased in the smaller scale MEAM model.
Moreover, we note that the interaction between the different flaw sizes and the interface, which
is a flaw itself, may also provide some rational for the qualitative disagreement with static
fracture mechanics flaw size concepts. In either case, caution must be exercised when extending
static fracture mechanics based ideas to dynamic debonding problems since complex local stress
states may develop due to interactions with the flaws, elastic waves, and the interface. Moreover,
extending fracture mechanics based ideas to atomistic size scales is not trivial due to the small
flaw and geometry size scale inherent to atomistic simulations.
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Figure 3.12. Effect of initial defect size in the pure silicon material on the failure mode of the40
Angstrom [100]5il [ [100] Al interface model The two models are periodic in the [(10] and [001]
directions and have periodicity’s scaled equivalently with the two different initial flaw sizes.

3.1.5. COMPARISON TO CONTINUUM DECOHESION MODELS

Continuum based decohesion models, developed for implementation into finite element codes,
traditionally assume a traction versus opening-displacement relationship dictated by closed-form
equations. Several different versions of the equations exist, however, we focus on the Equation
3.8 used by Needleman (1987), and Equation 3.9 by Needleman (1990a) and Tvergaard and
Hutchinson (1992, 1994, 1996). The equations of Needleman (1987, 1990-a) are given below:

2
9 _ ZL[ - L] Equation 3.8
Gmax 4 umax umax
or
O _ 13.136 “ exp[—4.833 t ] Equation 3.9
Gmax umax umax

Where o,, and o, are the instantaneous traction normal to the interface and the maximum

traction normal to the interface, respectively. Similarly, u, and u,_, represent the instantaneous

normal opening displacement and maximum normal opening displacement, respectively.
Although Equations 3.8 and 3.9 usually have a coupling to shear stresses across the interface
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(Needleman, 1987; Needleman, 1990-a), the pure normal traction forms are used for comparison
to the present MEAM results. The separation laws are contrived such that when u, approaches

u,... O, approaches zero and the interface is considered to be separated. The model of
Tvergaard and Hutchinson (1992, 1994, 1996) uses a tri-linear approximation with similar s ___
and u,, parameters (Figure 3.13b). The Tvergaard and Hutchinson model (1992, 1994, 1996)

includes adjustable shape parameters which alter the positions of the intercepts between the
stress plateau at o, and the loading and unloading lines. The graphical versions of Equation
3.8, Equation 3.9, and the linear model are presented in Figure 3.13b. The adjustable shape
parameters in the linear model have been chosen to fit one of the MEAM results.
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Figure 3.13. (a) Schematic of the three different reference planes used to caleulate the opening

displacement in the MEAM simulations. (b) T raction-displacement curves for the 40 Angstrom

MEAM model and different continuum based cohesive laws.

o

In Figure 3.13b, three traction versus displacement relationships from the 40 A MEAM
simulation are included in addition to the predictions of the continuum based models. The
locations of the different reference planes for the measurement of the model displacements are
indicated in Figure 3.13a. The displacements were calculated point-wise during the simulation by
averaging the difference between the positions of the atoms initially in corresponding planes
indicated in Figure 3.13a. In general, the MEAM simulations predict that as the relative opening
displacement is measured from reference planes farther from the interface, the location of the
stress-drop is shifted to a larger normalized displacement value. Regardless of where the opening
displacement is measured, the interface failure is ultimately governed by individual atomic
separations through a cohesive type relationship. However, when the opening displacement is
measured farther from the interface, a significant fraction of the total displacement comes from
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the stretching of the bulk materials away from the interface. Consequently, the location of the
stress peak on the normalized displacement axis is shifted to a larger normalized displacement as
evident in Figure 3.13b. The MEAM results using opening displacements near +/- 10 A of the
interface demonstrate strong quantitative agreement with all continuum based traction-
displacement relationships.

The adjustable linear model of Tvergaard and Hutchinson (1992, 1994, 1996), yields the best
overall correlation with MEAM results, owing to the two adjustable parameters. Basically, the
adjustable parameters in the Tvergaard and Hutchinson model (1992, 1994, 1996) control the
physical rate at which the interface accumulates stresses and the rate of stress drop during
decohesion. The present analysis suggests that these two rates are dependent on the measurement
point of the opening displacement, i.e. the required cohesive zone size of the bi-material system
considered. In the Needleman analysis these two rates are fixed as motivated by the atomic
separation of paired atoms. However, complex atomic interactions due to different lattice
structures and interfacial defects may require an analysis of opening a few atoms away from the
interfacial plane for the sake of robustness. In this case the unloading and loading rates will be
different depending on the location of the measured opening, and will require adjustable
parameters. Therefore, the adjustable parameters are useful from a physical standpoint when the
separation a particular material interface does not strictly obey a universal binding energy curve
due to local atomic interactions.

The results in Figure 3.13b demonstrate that the predictions of current continuum based cohesive
models are consistent with dynamic MEAM predictions. However, when choosing a continuum
based approach it is imperative to consider the distance over which atoms from the two materials
near the interface interact with one another during the debonding, i. e. the physical cohesive zone
size. Appropriately, the cohesive model should represent the response of the entire volume of the
material near the interface that is contributing to the debonding failure mechanisms in the
material. In Figure 3.13b the local distortions are evident within +/- 10 A from the interface
plane. Thus, the traction-displacement MEAM results from the reference planes 20 A apart are
appropriate for the present material interface system, and Equation 3.8, Equation 3.9, and the
linear model are sufficient to represent the debonding character of such an interface. It is not
appropriate to measure the displacement within the bounds of the physical cohesive zone. Using
planes within the cohesive zone to measure the opening displacement is inaccurate since the
atoms do not remain in a planar structure, and atoms contributing to the debonding mechanism
are discarded in the analysis. The physical cohesive zone size in the present material system is
relatively small since an AI-Si compound does not exist. For other materials systems, applied
stress states, or interface geometries, the cohesive zone may be larger, and appropriate MEAM
simulations would be required to determine if the interfacial debonding behavior followed
Equations 3.8 and 3.9 with equivalent accuracy.

In closing, we note that the material outside of the cohesive zone bounds may be treated with
traditional elastic-plastic constitutive laws. Consequently, it is not necessary to measure the
opening displacement outside the cohesive zone boundary. However, as the displacements are
measured farther from the interface, and away from the cohesive zone, the traction versus
displacement relationship of the MEAM model approaches that of a traditional elastic solid
undergoing linear elastic fracture (Figure 3.13b). Improving the continuum based approaches can
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be suggested based on these atomistic simulation results. Most importantly, the adjustable
parameters necessary to capture the actual shape of the traction-separation curve can be obtained,
owing to interactions between the different structures of the joined materials at the interface.
Consideration of the cohesive zone size with a continuum based approach must also be taken.
Defects at the interface can alter the actual size of the cohesive zone, and we want to make sure
that we capture all interacting entities within the zone. By admittance of a cohesive zone size we
have introduced a length scale to the problem, and we should recognize that this length scale
may change based on the interface debonding characteristics. If we are unsure of the cohesive
zone size, the present atomistic results suggest that the fracture may be modeled with a local
critical stress approach. Such an approach requires that the element size be correlated to the
fracture strength to avoid a severe mesh size dependence.

3.1.6. ATOMISTICS SUMMARY

The [100]41/|[100]s; incoherent interface between pure aluminum (Al) and silicon (Si) possesses a
rippled structure with respect to a perfect interface plane. If the silicon and aluminum atoms are
directly adjacent then they are displaced away from the interface plane. If a silicon or aluminum
atom is adjacent to a void in the corresponding material, the respective atoms are displaced
towards the interface plane.

A composite aluminum and silicon block attached at a [100]a/|[100]s; interface, subjected to far
field velocities, fails through interfacial debonding before the bulk Al or Si materials fail. In the
absence of vacancies, dislocations, impurities, and mechanical defects, the nucleation of
interfacial fracture occurs at the atomic positions where the local displacement of interface atoms
creates a rippled structure. The interfacial failure occurs over a finite strain (displacement)
increment with fracture characteristics similar to the pure aluminum.

During tensile loading parallel to the interface normal, the atoms +/- 10 A from the Al-Si
interface contribute to the debonding process. The physical cohesive zone size in of an Al-Si
interface is around 20 A. The introduction of random point vacancy defects near the interface
lowers the interface strength at a rate nearly linearly proportional to the number fraction of point
defects.

Crack-like vacancy defects in the bulk Al or Si must reach projected areas onto the plane normal
to the tensile axis of approximately 50% and 30%, respectively, before failure occurs in the bulk
materials versus the interface. These area fractions are for tensile loading parallel to the interface
normal along the [100] direction, and they may be lower for other loading configurations not
considered in the present study. When defects are introduced into the bulk Al and Si materials
near the interface, the cohesive zone size is increased.

Continuum based cohesive laws have mathematical forms consistent with the present MEAM
simulation results which consider local opening displacements. However, as the displacement is
measured farther from the interface, the present results show that the peak stress position is
increased, and the following stress drop-off becomes more severe. As such, the MEAM
predictions approach those of linear elastic fracture mechanics with elastic loading up to a far
field critical stress level for bulk fracture.
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3.2. MICROSCALE VOID NUCLEATION PARAMETRIC STUDY

This section describes micron scale analyses that were performed to examine the role of seven
independent parameters (number of silicon particle sites, uniformity of particle sizes, shape of
particles, additional microporosity, temperature, prestrain history, and loading conditions) on
debonding and fracture of silicon particles in A356 aluminum by performing a series of
parametric calculations using the finite element method. Owing to the wide range of parameters,
an optimal matrix of finite element calculations is generated using the statistical method of design
of experiments (DOE). The DOE method is also used to screen the finite element results and
yield the desired parametric influences as outputs. Concerning void nucleation, we observe that
temperature was the most dominant influence parameter with the other parameters not even
being a close second.

No substantial effort thus far has gone into studying the individual roles played by
simultaneously interacting parameters on fracture and/or interface debonding. Developing a
macroscale model for void nucleation needs to include the first order influence parameters from
the lower size scales. The main focus of the micromechanical analyses in the present section is to
qualify and, to a certain extent, quantify the influences of the interacting set of different
parameters on void nucleation.

Because we are considering seven parameters, it becomes helpful to use a statistical procedure
such as the DOE technique (Fisher, 1935a,b) for efficiency’s sake. The DOE approach,
popularized by Taguchi (1960; 1987) in the field of quality engineering, has recently been utilized
in various contexts of mechanics and design by Trinh and Gruda (1991), Horstemeyer (1993),
Stutsman et al. (1996), Young (1996), and Horstemeyer and McDowell (1997). The DOE
methodology enables an investigator to select levels for each parameter and then conduct
experiments in order to evaluate the effect of each parameter in an efficient manner. Any number
of parameters and levels for each parameter can be placed in an orthogonal array which lends
itself to the optimal determination of parametric effects. Here, orthogonality refers to the
requirement that the parameters be statistically independent. The basic terminology of orthogonal
arrays L,(b°) goes as follows: a denotes the number of calculations, » denotes the number of
levels for each parameter and ¢ denotes the number of parameters. For example, in order to
examine 8 parameters at 3 levels per parameter, one would have an orthogonal array represented
by L;5(3%) (Taguchi, 1960; 1987) which would reduce the number of calculations if done linearly
in series from 6561 to 18.

Eight finite element calculations under plane strain tensile conditions were performed on a cast
A356 aluminum alloy using the Sandia material model. The DOE method is then used to screen
the finite element results and yield the desired parametric influences on debonding and fracture of
the silicon particles.

In our study, we seek to obtain the influences of seven independent parameters on two
responses, namely, fracture of silicon particles and debonding of the aluminum matrix from the
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silicon particles, through micromechanical calculations. The following are the seven parameters
adopted in our study: number of particles, size of particles, shape of particles, microporosity,
temperature, prestain history, and loading direction.

Inclusions within metals are generally inhomogeneously present in various shapes and sizes
throughout the material. The pattern of the inclusion distribution becomes important while
considering nucleation in ductile metals. Some regions of the material could have heavy
concentrations of particles, while other regions may be relatively free of the inclusions. The
number of interacting particles in this study are either two or four.

The particle size in our study deals with the uniformity of the particle size with respect to the
other sizes. We chose a uniform distribution of sizes and a non-uniform distribution of particle
sizes for our study.

Two shapes were chosen for use in our study, circular and elliptical. The elliptical particles have
a major-to-minor axis ratio of 2:1.

Microporosity below a void volume fraction of 10™ is difficult to measure experimentally. Yet,
levels of porosity lower than 10 do occur within a material thereby influencing the resulting
macromechanical properties. We used initial values of microporosity of zero and 10 in this
study.

Very little has been accomplished in the way of determining void nucleation at wide ranges of
temperature. The temperature range chosen in this study is in the low homologous temperature
range (294 K and 400K).

Prestrain effects can arise from manufacturing processes where anisotropic hardening can arise
from directional deformation that is imposed upon the material or under conditions where
nonmonotonic loading sequences are experienced. Mackenzie et al. (1997) has shown from
experimental data for several steels that, under rolling conditions, notch tensile tests are sensitive
to the direction of loading. Horstemeyer and Revelli (1996) have also illustrated pre-strain effects
on damage accumulation in several boundary value problems. A moderate pre-strain level of 10%
is chosen in this study to examine the history effects.

The loading direction is a rather obvious influence parameter that plays an important role in
determining the stress state of a material which in turn has important consequences for void
nucleation. In our plane strain finite element computations, the two directions of consideration
are chosen to be the horizontal direction and the vertical direction.

3.2.1 Design of Experiments Description

In an effort to handle seven interacting parameters in an efficient manner, we make use of the
design of experiments (DOE) technique. We use the DOE method to generate the optimal matrix
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(an orthogonal array) of finite element calculations suited for the present set of parameters.
Furthermore, once the necessary finite element computations have been performed and the
responses obtained, the DOE method is used as a screening process to obtain the desired
parametric influences.

Each of the seven parameters is allowed to occupy one of two possible states during each
calculation. The appropriate orthogonal array in our case is the Lg(27), or simply Lg, array which
allows up to seven independent parameters with two levels for each parameter. Each level is
characterized by a particular attribute. For example, the two levels for the temperature parameter
could be the end points of the temperature range of interest in a particular application. Although
a full factorial set of calculations could be performed to vary each parameter in a linear fashion
(the full set of calculations with seven parameters would be 2*7 = 128), the DOE approach using
an Lg array requires only eight calculations. The advantage of DOE as a screening process for
parameter influence grows exponentially as the number of parameter variations increases. Table
3.2 shows the Lg array with the seven parameters and the two corresponding levels for each
parameter.

In essence, the DOE method provides a linear system of equations that relates the responses {R}
from the finite element computations to the desired influences {A} as

{R}=[P{A} Equation 3.10

where [P] is the parameter matrix corresponding to the chosen orthogonal array. The components
of {R}, {A}, and [P] are denoted by (cf. Box et al., 1978)

[+1 +1 -1 -1 -1 -1 +1 +1]
+1 +1 -1 -1 +1 +1 -1 -1
+1 +1 +1 +41 -1 -1 -1 -1
[P = +1 +1 +1 +1 +1 +1 +1 +1 Equation 3.1

+1 -1 -1 +41 -1 +1 -1 +1
+1 -1 -1 +1 +1 -1 +1 -1
+1 -1 +1 -1 -1 +1 +1 +1
+1 -1 +41 -1 +1 -1 -1 -1

Rp=1 .t {Al=

P EEEE

A N N

The goal is to determine the values for {A}, given the DOE methodology provides [P] and the
finite element calculations give the response vector {R}. This is achieved by inverting the matrix
[P] in Equation 3.10 to obtain

{A}=[P]'{R}. Equation 3.12
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As mentioned earlier, two sets of responses are considered in our study. They are nucleation by
means of fracturing of the silicon particles and also by debonding of the aluminum from the
silicon particles. The quantities 4;, 4,, A3, A4, As, Ag, and A reflect the influences of particle size,
number of particles, particle shape, pre-strain, temperature, additional micro-porosity, and
loading direction, respectively.

The first column in the parameter matrix [P] given in Equation 3.11 relates to A, , a statistical
average of the DOE outputs. Except for column 1 in [P], each level within any of the remaining
columns occurs an equal number of times. This introduces the statistical independence, or
balance, into the orthogonal array. If the response {R} associated with one level change at
another level, then the parameter from one level to the other has a strong impact on the response
being considered. Because different levels occur an equal number of times, an effect on the
particular response of interest by each of the other parameters is canceled out. Hence, the
positive and negative ones in matrix [P] are simply used to express the effect of the two different
levels.

3.2.2. Design of Experiments Results

The constitutive model outlined in the previous section is implemented using the ABAQUS
general purpose finite element program (Hibbitt ef al., 1998). The code provides a general
interface by which the user may introduce a constitutive model by means of a “user-material
subroutine’ (UMAT). One DOE analysis with eight calculations was performed under plane
strain tensile loading conditions. The schematic representations of the geometries and boundary
conditions for the calculations performed in the analysis are shown in Figure 3.14. The initial
void fraction is kept constant at 0.001 for all calculations performed. The exterior boundaries of
the undeformed configurations in each of the eight calculations are chosen to be unit squares. In
our analysis we are interested in symmetric deformation modes and therefore analyze only one
quadrant of the domain in calculations 1 to 6, and one half of the domain in calculations 7 and 8.
Four-noded isoparametric plane strain elements with 2 x 2 Gauss integration points are used in
the calculations. The determination of the material parameters C; (I = 1,...,18) and the damage
parameter m is described in detail in Bammann et al. (1993). The values of these parameters for
A356 Aluminum are provided in Appendix A.

The criterion used to determine fracture and interface debonding included important assumptions.
To determine the influence from silicon fracture we did not have a fracture stress available. As
such, we ran the simulations all to the same applied strain level. Then, we determined the
maximum principal stress within the silicon particle. These principal stresses for each of the
simulations were used to determine the relative parametric influence on fracture. The same
procedure was used to analyze debonding except that the negative pressure (tensile pressure) in
the aluminum matrix adjacent to the silicon was used. Figure 3.15 illustrates the distribution of
principal stresses for the fracture case for simulation #5.
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Figures 3.16 and 3.17 show the normalized parametric influences on fracture and debonding,
respectively, from the DOE analysis. It can be observed that temperature is by far the most
influential parameter in both cases. Although individual studies have shown the importance of the
other parameters, no studies have revealed that temperature is much more important to a macroscale
model than the other parameters.
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Figure 3.16. Morralized design of experiments result forvoid nucleation from silicon particle fracture.
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TABLE 3.2 Design of experiments simulation conditions.

Calc. Loading Size Pre-strain Temp. Dist. Shape Microporosity
1 X uniform | o,>0, o,<0 294 K 4 round 10e-6
H) ) ) () ) () )
2 Y uniform | <0, o,,>0 400 K 4 round 0
) ) H) (&) ) ) ()
3 Y uniform | 0,,>0, 0, <0 294 K 2 elliptical 0
) ) ) ) ) (&) )
4 X uniform | <0, o, >0 400 K 2 elliptical 10e-6
H) ) ) (&) ) ) (&)
5 Y non- 0,,>0, o, <0 400 K 4 elliptical 10e-6
(-) uniform -) () (+) (+) )
)
6 X non- 0, <0, 0, >0 294 K 4 elliptical 0
(+) | uniform +) () () ) ()
)
7 Y non- >0, o, <0 400 K 2 round 0
(-) | uniform ) ) ) () ()
(&)
8 X non- 0,,<0, a.,>0 294 K 2 round 10e-6
(+) | uniform (H) ) ) ) ()
)

3.3. Temperature Effects

The micromechanical parametric study indicated that temperature was the most dominant
influence behavior for silicon fracture and aluminum-silicon interface debonding. We performed
notch tensile experiments at different temperatures to measure the number density of fractured
particles and debonds on the fracture surfaces. Figure 3.18 shows that as the temperature is
increased, the number density of total fractured and debonded particles decreases. The same trend
is observed when the area fraction (number fractured and debonded over the total number of
particles) is used in the figure as well. The reason that the number density of fracture/debond
sites increases at a lower temperature is that the stress level and work hardening rate are higher.
These observations are in agreement with those of Yeh and Lih (1996), who varied the strength
of an A357 alloy through heat treatment and measured the fraction of broken silicon particles in
the failed tensile test specimens. They observed at room temperature that the rate of fracture of
silicon particles increases with the strength of the alloy.
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Figure 3.18. {a) Nuraber of damaged particles wversus teraperature and (b)) cornosponding load-displacernent curves from notch tensile data.

An exponential function is used to fit to the data, which is shown in Figure 3.18a. This function
was used to determine the temperature dependence needed for macroscale void nucleation rate
equation.

3.4. Strain Rate Effects

Because the macroscale microstructure-property model includes both temperature and strain rate
effects, we now focus on strain rate effects for the cast A356 aluminum alloy. Compression tests
were performed at two extreme strain rates (0.0001/sec and 4900/sec) in which microstructural
damage from silicon fracture was observed by optical methods. The number of fractured particles
is quantified as a function of strain rate for constant uniaxial compression tests at approximately
the same strain (20%-25%). The results indicate that the fraction of damaged particles, their
average size, and size distribution do not vary significantly with the strain rate range chosen here.
Figure 3.19 shows optical images of a specimen that has undergone compression at the low strain
rate. Here, the cracks align themselves with the compression axis. This behavior was observed at
the high strain rate as well. Figure 3.20 shows the number density of damage particles as a
function of strain rate. At first glance, the results suggest that the damage level is invariant to the
applied strain rate. However, this may not be true.
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The stress-strain histories change as a function of strain rate. Figure 3.21 shows the stress-strain
responses of the low and high strain rate tests. One can see that the stress-strain response for the
high strain rate tests incur a higher yield than the lower strain rate tests; however, the work
hardening rate is lower for the high strain rate tests and at about 7% strain, the total stress levels
are approximately equal. After 7% strain, the lower strain rate specimen stress levels were higher
than the high strain rate specimen stress levels. Several things are occurring which complicate
matters. First, because we observed stress dependent fracture as a function of temperature in the
previous section, we would anticipate a strain rate dependence on silicon fracture as well, but
Figure 3.20 does not show the strain rate dependence. Unfortunately, that was the level chosen
for the experiments. Based on arguments of dislocation motion at temperatures and strain rates,
we would anticipate that as the strain rate increased the stress state, the silicon fracture level
would increase. Much like as the temperature decreased, thus increasing the stress state, the
silicon fracture level increased. The high strain rate test is more than likely not a constant
temperature test because of the local increases in plastic work that would raise the temperature in
an adiabatic fashion. More tests are warranted at different strain levels to sort out the
ambiguities. Surely one possibility is that the Hopkinson bar is creating a complex dynamic
stress state in a non-isothermal condition compared with the traditional tests. In Figure 3.20, the
damage sites do slightly increase with strain rate until the experimental method is switched.
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Figure 321, True stress-strain curves for compression perforreed at the lowest (0.0001)5) and highest (4900/s) strain rates.
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3.5. MACROSCALE VOID NUCLEATION MODEL

In this section, the macroscale model derivation for void nucleation will be explained. As
observed in the atomistic study, the microscale finite element study, and data in the literature,
voids nucleate at sites of local microscale stress/strain raisers. The majority of voids nucleate at
inclusions, precipitates, and other second phases of ductile metals (Palmer and Smith, 1967;
Gurland, 1972; Cox and Low, 1974; Hahn and Rosenfield, 1975). Voids can also nucleate at the
intersection of slip bands (Gysler et al., 1974; Asaro, 1979), at grain boundaries (Nieh and Nix,
1980), at twin boundaries (Lu et al., 1998), and at vacancy clusters (Wilsdorf, 1983). In this
writing, a void nucleation model is introduced based from microstructural analysis related to
second phase particles since they are the most numerous and the weakest links compared to the
other defects.

The formulation presented in this paper is consistent with the thermodynamic framework that
constrains internal state damage parameters (Coleman and Gurtin, 1967). Because this
development is cast in a macroscale continuum damage mechanics formulation,
phenomenological notions are recognized to play a role; however lower length scale physical
observations are used to motivate the void nucleation evolution equation. The thermodynamic
restrictions are elucidated further in Horstemeyer et al. (1998).

The void nucleation evolution equation is a function of a length scale parameter (chosen to be the
mean size of inclusions for this study), volume fraction of second phase materials, stress state
(invariants of stress), strain rate, and fracture toughness. Nucleation models have been proposed
in the past in trying to address some of these attributes (cf. Gurland and Plateau, 1963; Ashby,
1966; Rosenfield, 1968; Barbee et al., 1972; Argon et al., 1975; Raj and Ashby, 1975; Gurson,
1977a,b; Needleman and Rice, 1978; Goods and Brown, 1979; Tvergaard, 1982a; Saje et al.,
1982; Hirth and Nix, 1985), but none include all of the features mentioned above that have been
shown to influence the damage state.

In short, the void nucleation model will be motivated from fracture toughness and extended into
a rate form in a phenomenological manner. A complicated stress function will be added to
supplant the yield stress. A length scale parameter is added to incorporate a size effect within the
model. Finally the volume fraction of the second phase is added in a manner that reflects
experimental observations.

Void-crack nucleation truly starts at the atomic level where dislocations are emitted from the
crack tip. The void-crack then grows to a point where it can be empirically observed by
microscopy methods. In the present phenomenological formulation, a void-crack is observed
empirically by optical methods and the atomistic level of void-crack is not considered. Because
of this assumption for the initial embryo size, we first consider the Irwin (1958) fracture
mechanics equation, which accounts for a small amount of plasticity near an already formed
void-crack. The stress intensity from the Irwin equation is given by

K, =0,2r,A(w) Equation 3.13
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where o is the yield stress, r, is the plastic zone size, and A(w) is a function based on the

geometry of a specimen. When the stress intensity reaches a critical value, the fracture toughness
is defined. In generalizing Equation 3.13 for the dynamic fracture case, we get

K, = K, = f(0)g(d)A(w)h(rate) Equation 3.14

where f(0) is not just dependent upon a scalar yield strength but can be a flow stress function
that distinguishes stress state behavior based upon the three stress invariants. Instead of r,, we

propose g(d) a function related to size scale parameter. And for A(w), material constants will be
introduced that will account for fracture arising from the geometry. h(rate) is a function related
to strain rate. Cox and Low (1974) and Maloney and Garrison (1989) observed that a resistance
to void nucleation promotes higher fracture toughness. Hence, the more nucleation that occurs,
the less tough the material. No mathematical form was given for this relation, but a simple
function such as that following can be inferred from the qualitative statements made in those
papers,

i

h(rate) = Equation 3.15

By introducing this function, the strain rate, £, would be included into the fracture criterion.
Kanninen and Popelar (1985) summarized several works describing a nonlinear rate effect on
fracture that were dependent on assumptions related to elasticity and the geometry of the
specimen. Brickstad (1983) employed Perzyna’s viscoplastic model with experimental data that
eliminated the geometry effects and the nonlinear effects. Research to quantify fracture rate
effects as a function of void nucleation is still an open area. Nevertheless, we assume the form
expressed by Equation 3.15 with an openness to modification when more data is available.

The simplest representation for the flow stress function is a rate independent yield function. The
J,theory yield function is probably the most widely used form for inelasticity, where J, is the
second invariant of deviatoric stress defined by

1 .
J, = ESijSij' Equation 3.16

The second rank stress deviator is defined by S, = o, -0,,,0,, where 0, = %Gkk. The

stress function that we will employ in Equation 3.14 is introduced as
f(o)=z(1.J,.15), Equation 3.17
where

Il

NA

4 J;? J .
Z(II,JZ,J3):a|:2—7—Ji23:|+bJ—§/2+C , Equation 3.18

2

3-34



and

1
J,==S.S.S

Il =0y 3 i) * Equation 3.19

The material constants a, b, and ¢ are determined from different stress states. This complicated
form is elucidated further in the next section, but the reader should know that the motivation for
including these particular stress invariant forms in Equation 3.18 is to allow for the void
nucleation model to distinguish between tension, compression, and torsion (cf. Miller and
McDowell, 1992).

The size-related parameter is given by

g(d)="d, Equation 3.20
where d is a length scale parameter determined by the most important length scale feature that
drives the void nucleation. For example, it can be assumed to be the average particle size of the
second phase or the distance between particles.

We can now solve for the void nucleation rate as a function of fracture toughness by substituting

Equations 3.15, 3.17, 3.18, and 3.20 into Equation 3.14 and then solving for the void nucleation
rate,

oo lda® a[i_E}bLH
K 27 J; Jz% \/‘Tz

yielding a nondimensionalized function.

L,

}, Equation 3.21

Fracture toughness can be influenced by the initial volume fraction of inclusions as Gangalee and
Gurland (1967) observed for aluminum alloys, Hahn et al. (1968) for several steel and aluminum
alloys, and Moody et al. (1993) for powder-processed titanium alloys. Hence, the initial volume
fraction of inclusions is included in the nucleation rate from Gangalee and Gurland (1967) form
as

oo e a[i_ilwiw
Kef5 | 127 | g2

Gangalee and Gurland (1967) showed that the 4" f % ratio is useful over a broad range of
particle volume fractions and sizes for aluminum-silicon alloys. As a particle is fractured or
debonded from the matrix material, its capacity to hold strength is reduced and hence it would
probably not fracture or debond again as the energy is being released to drive void growth.
Because of this local stress redistribution, this particle is probably not capable of creating a void

I

J1,

}, Equation 3.22
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again, hence the volume fraction of the second phase that is capable of creating a void would be
reduced. This change would probably be negligible though in practical applications, so the
volume fraction of second phase particles, £, can be approximated by the initial volume fraction
of second phases. Regardless of whether one or more voids can start from a second phase
material, the model described in this section can accommodate either case.

The inclusion of the volume fraction in the denominator is counter intuitive at first glance. One
might think that the more volume of a second phase present, the more chances exist of nucleating
particles. However, the opposite has been experimentally observed (cf. Gangalee and Gurland,
1967; Hahn et al., 1968; Moody et al., 1993). This is due to the fact that the distribution of
particle spacing is inherently included in the diameter over volume ratio.

The void nucleation rate, denoted by Equation 3.22, is a function of stress state, strain rate,
fracture toughness, average size of second phase particles (which are assumed to be round), and
initial volume fraction of second phase particles. Rice and Johnson (1970) showed that for small
second phase particles, the fracture toughness scales linearly with particle spacing; hence,
particle spacing effects are effectively included in this model.

Equation 3.22 readily yields the following qualitative trends for the void nucleation rate. As the
fracture toughness and initial void volume fraction increase, the nucleation rate decreases. As the
stress, strain rate, and particle size increase, the void nucleation rate increases.

When integrating this evolution equation over time, a constant strain rate, fracture toughness,
particle size, and particle volume is assumed resulting in the following form,

end?| 4 1|, 4
chf% J232

1

1

0

n(t) = C,,;exp +c , Equation 3.23

a
27 J,;}

where €(¢) is the strain magnitude at time, t, and C,,, is material constant that scales the

oeff
response as a function of initial conditions since it is equal to a constant times 7, in whichn, is

the lower limit of the integration signifying an initial void nucleation level.

3.5.1. MACROSCALE VOID NUCLEATION PARAMETRIC STUDY

In the next section, we elucidate each of the void nucleation parameters employed in equation
(3.23) by examining ranges of the parameters. Table 3.3 summarizes the parameters used except

where the parameter was examined for its sensitivity. The strain rate, €, is given by the only
prescribed component for uniaxial tension as €,;.
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Table 3.3. The parameters used for various loading conditions.

parameters nominal values
d (um) 4
f 0.07
Kic (MPa-m”0.5) 46.0
Ccoeff 5.0
a (MPa) 3e5
b (MPa) 0
c (MPa) Sed
£, (sec™h 0.1

The length scale parameter chosen for this initial study is that of the average size of the second
phase particles. The average particle size of second phases can vary significantly depending on
the material and processing method. For materials such as powder processed titanium alloys (cf.
Moody et al., 1993), the second phase particle sizes can range from 1 to 3 um in diameter. For
A356 cast aluminum the second phase silicon can range from 3 to 10 um (cf. Gangalee and
Gurland, 1967). For the cast Al-Si-Mg alloy used in this study to analyze the different loading
conditions, the silicon particle size ranged from 4 to 70 um with an average of 6 um.

Figure 3.22a shows the density of voids nucleated per unit volume versus strain level for varying
particle size. The trends agree with the observations that void nucleation occurs first at larger
particles for a number of different materials (cf. Gurland, 1972; Cox and Low, 1974; Hahn and
Rosenfield, 1975). Figure 3.22a illustrates a nonlinear behavior for the nucleation rate. Figure
3.22b shows the increased accumulation of total damage from void nucleation and growth with
the increases in particle size as a function of strain.

Volume fractions of second phases in composites can be widespread depending on the material
and processing method. For materials such as powder processed titanium alloys (cf. Moody ef
al., 1993), the second phase can range from 0.2% to 7% by volume. For A356 cast aluminum the
second phase silicon can range from 1% to 13% (cf. Gangalee and Gurland, 1967) by volume.
Some metal matrix composites can have up to 50% by volume fraction of second phases.

The initial volume fraction of second phase is included in the void nucleation rate equation with
a power to the one-third because of observations made by Gangalee and Gurland (1967). For
silicon particles embedded in aluminum, Gangalee and Gurland observed that the fraction of
broken silicon particles and particles debonded from the aluminum increased in proportion to the

parameter 4/ f 5

We have shown the trends related to the changes in the particle size, d. Now we show the trends
for changes in the particle volume fraction. Figure 3.23a presents the number density of voids
nucleated per unit volume versus strain level for increasing volume size.
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As the volume of second phase particles increases, the nucleation rate decreases. Similarly
Figure 3.23b shows the decreased accumulation of total damage as the volume fraction increases.
As expected, these trends follow closely with those of Gangalee and Gurland (1967).

Spacing of particles is inherently incorporated into the nucleation evolution equation presented in
Equation 3.22 in a phenomenological manner by employing the fracture toughness (Green and
Knott, 1976; Rice and Johnson, 1970). This has been shown for small particles but not for large
particles (Lee et al., 1985; Wojcieszynski, 1993). A range of fracture toughness is given here to
illustrate the trends of the nucleation and damage rates. The fracture toughness for A356 cast
aluminum ranges from 16.7-18.0 MPa-m”"0.5 (Koh and Stephens, 1988), for titanium alloys (Ti-
10V-2Fe-3Al, Ti-6Al-4V, and Ti-6Al1-6V-2Sn) from 39.1 to 46.0 MPa-m”0.5, and for high
purity 4340 steel up to 474 MPa-m”0.5 (Cox and Low, 1974). Figure 3.24a shows the trends for
nucleation when the fracture toughness is varied over the ranges listed above as a function of
strain. Figure 3.24b shows the decreased accumulation of total damage as a function of strain as
the fracture toughness increases. In these strain regimes, when the fracture toughness is fairly
large (>46 MPa-m”"0.5), nucleation occurs in a linear fashion with respect to strain but is more
nonlinear as the fracture toughness decreases.
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The onset of nucleation can occur at various strains depending on the material. The material
constant C_.¢r 1s used to reflect this initial nucleation strain. It is essentially used to linearly scale
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the void nucleation equation to cover a wide range of materials. Figure 3.25a shows the trends
for the void nucleation rate and damage rate as functions of strain. Note in Figure 3.25b the
different types of nonlinearities that can be modeled for damage when C..¢ is changed an order
of magnitude.
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The motivation for including the stress invariants in Equation 3.22 is to allow for the void
nucleation model to account for other stress states besides tension. The three deviatoric stress
invariants used in Equation 3.22 have been used as yield “type” functions before. Perzyna (1985)
has introduced a general constitutive framework that uses a viscoplastic flow rule three
invariants of overstress and a failure criterion. Before this, McClintock (1968), Rice and Tracey
(1969), Gurson (1977a,b), Rousselier (1981), Tvergaard (1981, 1982a,b), Becker and Needleman
(1986), Kim and Carroll (1987), Lee (1988), Cocks (1989), Mear (1990), Eftis and Nemes
(1991), and Lee (1991) included the first two invariants in the yield function to analyze metallic
behavior. Rudnicki and Rice (1975) used the first two invariants in determining localization
effects in pressure-sensitive materials. Dorris and Nemat-Nasser (1980) and Nemat-Nasser and
Shokooh (1980) used the first two invariants with isotropic hardening for compressible frictional
geomaterials.

Edelman (1950) showed that the three independent stress invariants /,, J,, and J; represent a
minimal integrity basis for a yield criterion. Adding J, has had some practical advantages in
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material modeling. Goldman et al. (1983) used J, in the yield function for determining the

strength of polymers. Weng (1987) developed a micromechanical theory for high temperature
creep of polycrystals that included J; in the yield function and showed that the climb force

weakly depended on J,. Takeda et. al. (1987) showed by experiments on thin-walled cylindrical

specimens of a fully annealed mild steel under combined loadings of tension, internal pressure
and torsion that the effect of J, on the yield behavior of material was larger than that of initial

anisotropy. Papadopoulos (1988, 1989) employed J, to determine the crack propagation

direction in polycrystalline metals. Kearsley (1989) showed the stretch effects within a single
cube of using the three invariants. Gupta (1989) generalized Drucker's (1949) inclusion of J,

into the yield function as a series function. Ohtaki (1988) used a seventh-degree yield function
containing J; in a two dimensional finite element method for elasto-plasticity to get yield

surfaces other than the von Mises yield function.

Over the years, J, has been included for modeling certain geomaterials by Desai et al. (1984,

1986), for sand by Poorooshasb (1989), and for concrete and soils by Schreyer (1984). Schreyer
(1983a, 1983b) also used J, to examine strain hardening, strain softening, dilatation, and

compaction for frictional materials. De Boer and Dresenkamp (1989) used the three invariants
with a non-associative flow rule to determine failure in concrete. Simo and Meschke (1993)
added the first invariant to Desai's ef al. (1986) formulation along with the second and third
invariants to arrive at new computational algorithms for finite strain plasticity but the approach
was limited to rate independent, isotropic behavior.

Miller and McDowell (1992) were the first to employ stress invariants in internal state variable
hardening equations. Drucker (1949) explained that J, enabled the proper weighting of the

shearing stresses acting on the various slip planes. Miller and McDowell (1992) asserted that J,

reflects a change of constraint on slip as a function of stress state and thus should be used in the
hardening equations in addition to the yield function. Horstemeyer ef al. (1995) slightly modified
the Miller and McDowell (1992) form of the hardening equations of Bammann (1988) to
illustrate localization and shear bands related to forming limits.

To the authors’ knowledge, employing the three stress invariants to distinguish various stress
states has not been applied to modeling void nucleation. Hence, Equation 3.18 allows nucleation
to be a function of stress triaxiality and also distinguishes between tension, compression, and
torsion.

The material constants a, b, and ¢ in Equation 3.18 relate to the volume fraction of nucleation
events arising from local microstresses in the material and as such have dimensions of stress
(MPa). These constants are determined experimentally from compression, torsion, and tension
tests whereby the density of voids nucleated is measured at different strain levels.

The use of stress invariants in nondimensional form as shown in Equation 3.18 allows for robust
determination of the nucleation constants from the various stress state effects. If a, b, and ¢ are
zero, the damage evolution form reduces to just void growth. In torsion, the constant a is
determined. The constants b and c¢ are determined from tension and compression tests. For
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future reference, the constant a is referred to as the torsional constant, b as the
tension/compression constant, and c¢ as the triaxiality constant. Table 3.4 shows the delineation
of effects from the stress state dependence.

Table 3.4. The stress invariant expressions under different stress states.

tension compression torsion
472 4
27 J,)} 0 0 27
I3 2 _2
1,7 373 343 0
Il
J, 7 1 1 0

The influence of the stress triaxiality has been observed for nucleation of voids related to second
phases in the works of Cox and Low (1974) and French and Weinrich (1974). Park and
Thompson (1988) for 1520 steel, observed that voids started at both sides of the tensile pole of
the particle. Because tensile states exist for even compression loadings, some nucleation events
are expected to occur even under compression loads. The model allows for this capability.
Figures 3.26a and 3.26b show the increase in density of voids nucleated per unit volume and
damage, respectively, as a function of strain for an increase in the triaxiality constant, C.
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Figure 3.27a and 3.27b show the increase in voids nucleated per unit volume and damage,
respectively, as a function of strain for an increase in the tension/compression constant, . Note
that the trends are nonlinear in a similar manner as when the triaxiality constant, ¢, is used.
Also, note that nucleation occurs more rapidly in tension than compression which concurs with
intuition.
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Figure 3.28a and 3.28b show the increase in voids nucleated per unit volume and damage,
respectively, as a function of strain for an increase in the torsional constant, a. Figure 3.28
illustrates that much more torsional straining is needed to achieve the same amount of damage as
under tension. This arises because the void growth is based on the stress triaxiality which is zero
for torsion. Hence the damage purely accumulates due to nucleation events.

The void nucleation model can be used for multiaxial stress states as shown in Figure 3.29. The
nucleation model parameters were chosen such that the lowest void nucleation rate arises for
simple shear (torsion) and the next lower rate arises for compression. The upper limit of void
nucleation occurs when the multiaxial condition of tension plus torsion is applied giving just a
slightly higher nucleation rate than tension alone. The constants in Table 3.5 were employed for
illustrative purposes, but different values for the constants would obviously place a different
level of influence from the stress state on the nucleation behavior. As such, any material can be
accommodated given that experimental data is available.
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Figure 3.29b shows the damage level versus strain for the same multiaxial loading conditions in
Figure 3.29a. In these calculations the initial porosity level was assumed to be 0.001. The
damage trends are different than the nucleation trends because of the stress state dependence on
the void growth rule (Equation 3.22). Void growth would dominate over void nucleation when
tensile triaxialities are present. Under compression and torsion void growth is typically less.

Table 3.5. The parameters for a cast Al-Si-Mg alloy under various loading conditions.

parameters Multiaxial values
d (um) s

f 0.07
Kic (MPa-m”"0.5) 17.3
Ccoeff 0.01

a (MPa) 6.16e5

b (MPa) 5.86e4

c (MPa) 5.20e4

3.5.2. SUMMARY

A void nucleation evolution model is presented that is a function the fracture toughness of the
aggregate material, a length scale parameter (taken to be the average size of the second phase
particles in the examples shown in this writing), the volume fraction of the second phase, strain
rate, and stress state. Different loading tests were performed for this study for a cast Al-Si-Mg
aluminum alloy to analyze the stress state dependence of void nucleation. The void nucleation
model was then correlated to the void nucleation data under different stress states.
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4. VOID GROWTH AND COALESCENCE

Void nucleation, growth, and coalescence often characterize damage progression in ductile metals.
Of the three components, void growth has been studied the most. A wealth of researchers have
focused on different aspects of void growth, for example, strain rate effects (Cocks and Ashby,
1980; 1982; Budiansky et al., 1960), work hardening effects (McClintock, 1968), and yield
function effects (Gurson, 1977). However, the least amount of research has been performed on
understanding void coalescence, which is typically associated with the last step of the idealized
three stage damage process. Void coalescence realistically occurs at different spatial size scales
throughout the deformation and is not just limited to final failure. Understanding coalescence
throughout deformation is key for macroscale prediction of failure in finite element codes. As
such, numerical and physical micromechanical studies can provide important information for
constructing phenomenological equations that are necessary at higher spatial size scales.

Within the last 20 years, different aspects of void coalescence have been examined. Garrison and
Moody (1987) provide a thorough review of studies before 1987. Since that time, some work has
focused on quantifying void coalescence. Faleskog and Shih (1997) recently performed planar
micromechanical calculations based upon the constitutive model and numerical implementation of
Cuitino and Ortiz (1992) and Moran et al. (1990). In the Faleskog and Shih (1997) study,
different initial void volume fractions and different stress triaxialities were examined. Tvergaard
and Needleman (1995, 1997) and Ramaswamy and Aravas (1998) have discussed void
coalescence from a macroscale continuum perspective using an intrinsic spatial size scale
parameter. Pardoen et al. (1998) compared four different coalescence criteria in finite element
simulations and compared these results to experimental data for copper. Nagaki et al. (1993)
examined void growth by coalescence from using different nearest neighbor distances in a
numerical setting. Benson (1993) has numerically analyzed different void configurations
(coalescence) for high strain rate shock environments. Eftis et al. (1991) examined void growth
under high rate spall conditions and quantified void growth influences on the final damage state.
Chan (1988) has analyzed void growth under high temperature creep environments. Recent
physical experiments from studies in the materials science literature reveal a strong influence of
coalescence on final failure of metals (cf. Jun, 1991; Worswick et al. 1994; 1995; Geltmacher et
al., 1996; 1998; Zurek et al., 1997; Tonks et al., 1997; Al-Ostaz et al., 1997; Bandstra et al.,
1998; Lu et al., 1998).

Coalescence of voids has typically been categorized into either void impingement or void sheeting
(Figure 2.4). During void impingement, the material ligament between two voids necks to a point
as the two neighboring voids grow together (Cottrell, 1959). The void sheet mechanism occurs by
the following process. Primary voids can nucleate from second phase particles, and these voids
grow as the material is plastically deformed. At a higher strain/stress level, neighboring particles
will nucleate secondary voids. These particles tend to be smaller and have stronger bonds with
the matrix. Then, voids from the larger particle distributions will link to the smaller void
distribution through the ligament over a small interval of strain. The material path between the
void distributions looks sheet-like, hence, the name “void sheet” mechanism.

In the following sections, we focus on two types of coalescence operating at different length
scales. The first type occurs when silicon particles either fracture and/or debond from the
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aluminum matrix. Here the new pores will interact with casting pores. This type of coalescence is
a void sheet form. The second type includes void coalescence from void-void interactions from
casting pores, and this is the void impingement form of coalescence. Hence, both forms are
included in the macroscale model. In this section, we first proceed with the interaction from the
silicon and casting pores.

4.1. MESOSCALE I: SILICON-POROSITY COALESCENCE STUDY

Void growth and coalescence is a complicated mechanism in this cast A356-T6 aluminum alloy.
In order to understand the mechanisms related to voids growing from silicon and how they
interact with casting pores, we placed finite element meshes on actual micrographs. The
parameters we examined were the number of boundary elements, applied loading conditions, and
temperature. The microstructure-property model was used with constants that were determined
from dendritic aluminum (1% Si in solution) compression stress-strain curves at different
temperatures.

Figure 4.1 illustrates how we determined the finite element mesh from a micrograph. Because the
silicon particles were on average 4 um and the dendrite cell size on average were 20 um, the mesh
was made about 100 um square. The mesh included 50 elements on a side, so each element was 2
um in size. The region in Figure 4.1 was chosen because the pore was an averaged size pore in the
large micrograph (not shown). The maximum dimension of initial size of the pore was about 16
um and was fairly equiaxed. The initial void area fraction used in the simulation from the initial
casting pore equaled the overall initial void volume fraction (~1.4%), and the initial silicon area
fraction equaled the overall silicon volume fraction (7%).

Recall that the total damage comprises three components: void nucleation, void growth, and void
coalescence. From these simulations, we can determine the total void volume fraction. We know
the void nucleation rate from experiments. We also know the void growth rate from McClintock
(1968), for example. Hence, the only unknown is the coalescence. As such, we tune the void
nucleation rate, by trial-and-error, in the simulations to the experimental void nucleation rate data
for tension. Then, we quantify the total void volume fraction as a function of strain. Before we
get into the results, let us first explore the effects from various boundary layers.

Because we are examining local responses at the scale of microns, we must consider the
representative volume in the midst of the aggregate casting. To accomplish this, we used
microstructure-property model constants for the aggregate cast A356-T6 aluminum alloy in the
boundary elements analogous to a self-consistent approach. Figure 4.2 shows that a boundary is
indeed desired because when the local uniaxial true stress is examined in the boundary elements, a
difference arises from zero to two boundary elements. However, when more than two boundary
elements are used, the same results arise as the two element boundary layer. We examined just
the boundary elements because when the boundary element stresses start to drop that reflects
internal weakening of the representative volume chosen. From these simulations we conclude that
two boundary elements are the optimal choice to represent the aggregate response of the cast
A356-T6 aluminum alloy. The rest of the discussion in this section will include only two
boundary element layers.
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Figure 4.1. Conversion of micrograph into finite element mesh.
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We ran simulations that were correlated with the tensile void nucleation data. By examining cases
when only debonding occurred, when only silicon fracture occurred, and when both occurred (like
the actual material), we were able to ascertain the different failure mechanisms relation to the
global response. Practically though, the cast A356-T6 aluminum alloy experienced both silicon
fracture and silicon-aluminum interface debonding. Figure 4.3 shows a comparison of the
simulations to the experimental data when the void nucleation for both silicon fracture and
interface debonding were used. An elastic maximum critical principal stress was used for the
silicon fracture criterion. Two methods were used for the interface debonding. The first method
was using the Cocks and Ashby (1980) void growth rule that is driven from the local stress
triaxiality, which plays a major role in interface debonding. The second method included a local
maximum critical stress similar to the silicon fracture criterion. We employed this method after
running the atomistic simulations. The atomistic simulations showed that when the interface
debonding stress was determined approximately 40 A from the interface, an elastic fracture
criterion could model the debonding fairly accurately. Although both methods for the interface
debonding gave similar results, we mostly used the linear elastic debonding criterion. The silicon
fracture stress was determined to be 310 MPa, and the elastic debonding stress was determined
to be 1.5 GPa. From the atomistic simulations, we determined the elastic debonding stress to be
approximately 20 GPa. Higher atomistic simulation results are expected because no nearest
neighbors were included, idealized shapes were used, only uniaxial tension was used, only one
crystal orientation was used, and no initial dislocations were included. Hence, the
micromechanical simulation results give the correct order of magnitude of the fracture stress
levels.
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When only silicon fracture was assumed, the elastic fracture stress level changed in order to
match the experimental void nucleation data. Alternatively, when only interface debonding was
assumed, the elastic debonding stress level also changed in order to match the experimental void
nucleation data. These two simulations gave insight into how the material is dissipating energy
upon deformation. Also, one can anticipate that the stress level criteria would change as material
without pre-existing defects within the silicon or oxides at the aluminum-silicon interface would
change. Interestingly, when evaluating the total void volume fraction for the three cases: (1) just
debonding, (2) just silicon fracture, and (3) both fracture and debonding, the total void volume
fraction as a function of uniaxial strain is not much different between the three cases. Figure 4.4
shows the comparison.
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Figure 4.4. Comparison of total damage prgression from initial casting porosity growing under deformation and from cases
when (i) fracture of silicon occurs, (ii) debonding of the silicon-aluminum interface occurs, and (iii) when both occur.

Now let us discuss the results from the actual case in which both silicon fracture and aluminum-
silicon interface debonding occurs. Figure 4.5 shows a contour plot of total damage at failure of
the representative volume under uniaxial tension. One can see that the original casting pore grew
along with new voids that have nucleated from silicon particles. By examining the equivalent (von
Mises) plastic strain in Figure 4.6 one can see that the local plastic strain from the pore strongly
affects the nearby region that includes the silicon particles. Other simulations, not shown here,
show that the casting pore comprises most of the damage early on in deformation but gradually
lessens its influence as more voids are nucleated and grown from silicon particles.
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Under biaxial tension, one can see when comparing Figure 4.7 and Figure 4.8 that the total void
volume growth rate is higher for the biaxial tension case. One can expect biaxial and even triaxial
stress states to exist in a complex geometry such as a control arm. As such, caution needs to be
present when extrapolating uniaxial data to real 3D complex geometries that may incur stress
biaxialities or triaxialities.

Next we examine the micromechanical simulations at different temperatures in the context of the
biaxial and uniaxial loadings. Table 4.1 summarizes the results. Clearly, the final porosity level at
failure is different when considering different loading states and temperatures. The failure strain
was determined from the drop-off of the stress-strain response of the boundary elements and
correlating saturation of the total porosity level. Both of these indicators suggest that the
representative volume has failed since the load bearing capacity has been lost and no more void
growth occurs. Interestingly some patterns arise from the simulations. As temperature increases,
the strain at failure increases. This concurs with observations made from the notch tensile data
shown in Figure 3.19b. Another observation is that as the temperature increases, the porosity at
failure increases, at least for the uniaxial case. Clearly, the biaxial case had more influence than
temperature on these simulations. As far as macroscale modeling of coalescence, temperature
dependence and stress state dependence are critical for a coalescence model.

Table 4.1 Summary of % porosity and strain at failure for the micromechanical simulations.

%porosity at failure % strain at failure
Uniaxial (T=294 K) 7.8 14.0
Biaxial (T=294 K) 59.0 13.5
Uniaxial (T=400 K) 12.1 22.1
Biaxial (T=400 K) 58.5 15.0

4.2. MESOSCALE II: PORE-PORE COALESCENCE STUDY

Now that we have an idea of the void coalescence from the silicon-pore interactions, we must
consider the size scale from 10-500 um in which pore-pore interactions will occur. We attempt to
quantify pore-pore interactions in this section by first performing a Design of Experiments
(DOE) study similar to the one described in Section 3.2 for void nucleation. We then perform
more simulations to examine further parametric trends.

4.2.1. VOID COALESCENCE PARAMETRIC STUDY

Although void volume fraction has been the most examined quantity for void growth (cf.,
McClintock, 1968; Rice and Tracey, 1969; Gurson, 1977; Cocks and Ashby, 1980), a large
number of factors besides void volume fraction are known to play significant roles on influencing
void growth and strain localization. The works that have considered the void volume fraction and
void growth studies, for the most part, have neglected coalescence. Here, we examine the role of
seven parameters by performing a series of design of experiments (DOE) finite element
simulations to determine the most important parameters relative to each other. The DOE, as
described in Section 3.2.1., is used to screen the parametric effects related to the total void
growth and strain localization within the aggregate.
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For the seven parameters, we used two limits to determine the responses. The seven parameters
include: (1) number of pores, (2) size of pores, (3) shape of pores, (4) additional microporosity,
(5) temperature, (6) prestrain history, and (7) loading direction. These parameters have been
studied independently but not in the context of the others. Incidentally, each investigator showed
that all of these parameters are important. Although this may be true, for a macroscale model, one
must consider the first order effects and then if (1) it is simple or (2) time is allocated, then
further modeling to include the second order effects is warranted.

Voids within a casting are generally inhomogeneously present in various shapes and sizes. In fact,
many materials exhibit this behavior, and as a consequence the number of pores has been
examined by several investigators. Needleman (1972) has presented a numerical investigation that
accounts for interaction between neighboring voids. Becher (1987) has employed finite element
analyses to examine the effects of different distributions on final failure. Melander and Stahlberg
(1980) have analyzed void distribution effects on localization. All of these studies indicate that
the number of voids plays a role in void growth. In our micromechanical study, we chose either
two or four voids while keeping the void volume fraction the same.

Needleman ef al. (1995) studied the evolution of pore sizes as a function of loading using
micromechanical simulations. Recently, Faleskog and Shih (1997) have also used micromechanical
simulations to analyze multi-size effects on void growth. These studies have indicated the
important role that size has on the total void growth of the material. In our study, the pore size
deals with the uniformity of pore size with respect to the other sizes; hence, we chose a uniform
distribution and nonuniform distribution.

Gologanu ef al. (1993; 1994) have developed formulations to study effects of prolate and oblong
voids. Needleman (1972) performed micromechanical finite element simulations to analyze the
evolution of pore shape on initially equiaxed pores. These studies indicate that the shape of the
pores give rise to a pattern of void growth that is not typically captured using simple scalar void
growth equations. The shape is somewhat related to the pore size, but for the sake of quantifying
the relative influence effects on void growth and localization, we use round pores and elliptical
pores. The elliptical pores are chosen with a major-to-minor axis ratio of 2:1.

Microporosity below a void volume fraction of 10 is tedious and impractical and as such is
difficult to measure. Yet, levels of porosity below 10 can occur with a material. Tvergaard
(1982a) through micromechanical simulations concluded that microporosity can introduce highly
localized straining and voids can grow in bands between larger voids arise from the microporosity
present between the larger holes. Horstemeyer and Revelli (1997) have also shown that
microporosity can change the void growth and localization behavior in wrought 6061-T6
aluminum. In this study, we chose the initial levels of microporosity as identically zero and 107,

Except for small temperature changes Bridgman (1923) and Espey et al. (1959) imposed on notch
tests, very little has been accomplished in the way of determining void growth phenomena at
wider ranges of temperatures. Since plasticity is temperature dependent, void growth is too. In



this study, we chose 294 K and 400 K as the two temperature levels. This is a typical range
experienced by automotive chassis components.

Prestrain effects can arise from manufacturing processes where directional deformation is
imposed upon the material or under conditions where nonmonotonic loading sequences are
experienced. Mackenzie et al. (1977) showed experimentally that for several steels, notch tensile
tests are sensitive to prestraining loading direction. Horstemeyer and Revelli (1997) also showed
the prestrain effects on damage accumulation in several boundary value problems. A moderate
prestrain level of 10% was chosen for this study.

The loading direction is an obvious influence parameter that plays an important role in
determining the stress state of the material. Bourcier and Koss (1981) have shown that, in regions
where pairs of holes occur, different stress states and void growth rates arise depending on the
orientation of the holes with respect to each other and with the loading path. In this study, we
impose uniaxial conditions in the horizontal and vertical directions.

For the DOE study, eight simulations, shown in Figure 4.9, were performed using the
microstructure-property model with the constants determined from the cast A356-T6 aluminum
compression data at different temperatures. Two outputs were desired: total void volume
fraction and strain at localization. The total void volume fraction was determined from directly
measuring the total void area. To approximate the strain at localization, we examined the stress
drop-off from the stress-strain curve. Figure 4.10 shows the total void volume fraction versus the
applied strain, and Figure 4.11 shows the load versus applied strain for the related simulations.
Clearly, because of the various parameter levels, the void growth rates are different. The
simulations were terminated upon the onset of strain localization (or strain softening). The total
void volume fraction and strain at localization were then placed into the DOE array to get the
relative influences.

Figure 4.12 and 4.13 are histograms of the DOE results from the finite element simulations for
the strain localization and total void volume fraction, respectively. The results were normalized
to the peak value to illustrate the relative influence.

Unlike the DOE void nucleation study in Chapter 3 which showed one dominant influence
parameter (temperature), there were several first order influence parameters related to strain
localization (pore size, temperature, loading direction, and prestrain) and void growth
(microporosity, pore size, and temperature). Clearly, the macroscale model should have these
first order characteristics represented in order to determine realistic damage levels to determine
final failure. Fortunately, the macroscale plasticity model captures the prestrain effects and the
boundary conditions for the macroscale finite element simulations captures the loading direction
effects. The important parameters to include in the coalescence model are temperature and pore
size.
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The effects of the hydrostatic stress and equivalent plastic strain on the responses are critical.
Clearly, these two quantities influence single voids growing (e.g., Cocks and Ashby, 1980). We
would assume then that these two quantities would also drive void growth as related to
coalescence. Figure 4.14 shows a contour plot of the hydrostatic stress for simulation #5. Here,
the relative influence of the various parameters affects the magnitude of the hydrostatic stress
and the distribution. Figure 4.15 shows a contour plot of the equivalent plastic strain for
simulation #5. One can see the band between the two voids of large strains indicating its influence
on coalescence as well.

4.2.2. TEMPERATURE EFFECTS ON COALESCENCE

Now that we understand that temperature and pore size are crucial to void growth and
coalescence, we further examine these quantities in addition to the intervoid ligament distance. We
quantify the temperature effects by varying several parameters related to pore-pore coalescence
in a micromechanical setting (100-500 um) using the microstructure-property model. In doing so,
we varied the following characteristics:

1. number of voids (one void and various two void configurations),

2. three different temperatures (297 K, 400 K, and 600 K), and
3. intervoid ligament distance (ILD).
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4.2.2.1. FINITE ELEMENT PRELIMINARIES

The ABAQUS-Standard finite element program (Hibbitt ef al., 1998) was used to simulate the
large strain, void growth problems in this study. By using finite element analysis, we determined
the void configuration and temperature effects upon void growth and coalescence. Quarter space
analyses were used with one void and half space analyses were used with two voids. Nodal
constraints were placed on the free boundaries to ensure that planar boundary conditions
remained planar during the simulations. The various void configurations are shown in Figure 4.16.
Most of the two void calculations included an ILD of one void diameter to ensure coalescence.
However, we also performed calculations varying the ILD to determine a critical ILD that defines
the point of coalescence.

The term configuration used in the context of this study was the orientation of two voids with
the loading direction. Two types of configurations were run for the axisymmetric calculations.
One might suggest that fully three dimensional simulations are warranted to accurately model
void growth; however, Thomson et al. (1998) showed that one void axisymmetric simulations
gave practically identical results as three dimensional simulations.

The microstructure-property model constants (C;-C;s) were determined from quasistatic
compression tests of A356-T6 aluminum at different temperatures. Applied strain rates were
imposed under quasistatic conditions at 0.001/sec.

4.2.2.2 PORE-PORE TEMPERATURE COALESCENCE RESULTS

One major finding of this study is that when multiple voids are present within a dense ductile
material, the void growth rate is greater than for a one void material with the same initial void
volume. Figure 4.17 illustrates that for the material with two voids that had an ILD of one
diameter always incurred a higher void growth rate than the material with only one void under
biaxial stretching at 297 K. This void growth enhancement in the multiple void material occurs
because the free surface of the neighboring void introduces a local stress concentration and plastic
strain enhancement in the ligament between the voids. The ligament stress concentration and
plastic strain enhancement encourages the voids to grow larger and toward each other at a rate
that is higher than if they were alone.
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Figure 4.16. One void and two woid configurations.

Another major finding of this study is that as the temperature increases, the void growth rate is
more enhanced for a material with two voids. For example, Figure 4.18 and 4.19 show the
normalized void volume fraction as a function of strain for two voids and one void, respectively.
Figure 4.19 shows that the one void material experienced void growth in an almost linear fashion,
whereas the two void material experienced exponential growth. Other calculations showed that
material with two voids always grew faster.
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The difference in void growth for one and two void material evokes the question, “Why is there
such a difference?” Voids grow in ductile metals based on the level of stress triaxiality, defined
here as the hydrostatic stress divided by the equivalent deviatoric stress, and plastic deformation
(cf. Cocks-Ashby, 1980; 1982). In the one void material, the stress triaxiality remains essentially
constant for the different temperatures although the total stress decreases as temperature
increases. However, the plastic deformation increases as temperature increases, yet the one void
material experiences about the same void growth up to approximately 15% strain independent of
temperature. This result implies that the plastic deformation is less influential on void growth
than the stress triaxiality for the one void material. Although not shown in Figure 4.19, when the
von Mises strain level reached 30% for the one void material, the void grew at a different rate at
different temperatures. At these larger strains, the plastic deformation played an increased role in
promoting void growth. Figure 4.20 shows contour plots of effective plastic strain at the same
applied strain for two different temperatures of the two void material. Figure 4.20 shows that the
effective plastic strain for the 600 K two void material is an order of magnitude higher than for
the 297 K material. As such, the large difference of void growth rates from one void material
versus two void material is a function of the competing roles of the plastic deformation and stress
triaxiality.
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At higher temperatures, the plastic deformation seems to be more important than the stress
triaxiality. At lower temperatures, the stress triaxiality is more important than the plastic
deformation. A critical temperature exists at which both the stress triaxiality and effective plastic
strain have an equal amount of influence.

Up to this point, the ILD was initially one void diameter. Brown and Embury (1973) noted that
voids coalesce by impingement when they grow to a dimension in which the diameter is equal to
the spacing. This assertion was based upon the observation that the void shapes did not change
until they were one void diameter apart. Since Brown and Embury (1973) did not perform a
detailed finite element study of various intervoid distances, they could not determine if the void
growth rate was higher for ILDs greater than one diameter. Granted, a void may “spherically”
grow until a void one diameter away is sensed, but the void growth rate could be higher before the
strain level is achieved that changes the void shape. To study this, we performed different
calculations by varying the ILD, as shown in Figure 4.21, to determine a critical ILD. We define
void coalescence as a point of deviation from single void growth. As such, we do not designate
the onset of void coalescence when the shape changes, but when the growth rate changes from the
one void case.
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A typical example is shown in Figure 4.22 of the void growth in terms of void size normalized by
the initial void size plotted versus the applied strain for a biaxial calculation at 297 K. Figure 4.22
illustrates that at strains below 0.0005, the one void result and the result for two voids with an
ILD of six diameters are similar. From this result, we assert that if the ILD is less than six
diameters at the beginning of loading or during loading at some strain level, we claim that
coalescence has occurred.

Figure 4.23 summarizes the results showing that a critical ILD for coalescence is dependent on
temperature and boundary condition. The results indicate that for macroscale modeling of void
coalescence microstructural quantification of the initial void distribution is needed. For
engineering materials, coalescence is a continual process starts at the beginning of deformation as
different size voids grow together before final failure occurs. The void growth functions often
used in finite element simulations (cf. McClintock, 1968; Rice and Tracey, 1969; and Cocks and
Ashby, 1980, 1982) are based on a single void growing and need modification to account for
coalescence to accurately model engineering materials.

Since the previous calculations were displacement controlled, the evolving stress triaxiality can
make it difficult for macroscale modeling of coalescence. Therefore, we examined the multiple
void effects and temperature effects in the context of constant applied stress triaxiality. Force
controlled boundary conditions are actually used to determine the stress state. Constant

4-20



triaxialities ranging from 0.3 (representing uniaxial tension) to 10 were applied. Stress triaxialities
up to 10 can potentially be reached in shock environments.

The void growth enhancement trends observed for the constant stress triaxiality calculations are
similar to those of the displacement controlled boundary value problems. Figure 4.24 shows the
void volume fraction normalized by its initial void volume fraction as a function of von Mises
strain for finite element simulations in which the triaxialities were varied with one and two voids
at 297 K. From the displacement controlled two void simulations, we observed that the void
growth was always enhanced in the presence of two voids. The stress triaxialities can be fairly
small (~2) and still a large difference in void growth occurs. We can observe that the greater
difference in void volume increase as the stress triaxiality increases. For a one void material, at
strains below 5%, the growth is almost linear and the nonlinearity does not occur until larger
strains. For the two void material, the nonlinearity starts almost immediately at strains below 1%
for stress triaxialities above 0.3. Above a stress triaxiality of five, the void growth rate does not
change much for the two void material.
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Figure 4.23. The critical infervoid distances determined o enhance woid growih. The critical length , L,
iz determined for different loading conditons, temperatures, and woid configwrations.

Not covered in the analyses thus far have been strain rate effects. Budiansky et al., (1982) first
showed that a decrease in the strain rate sensitivity parameter enhanced void growth from a single
void in a dense solid. Briottet ef al. (1996) showed a similar trend albeit less pronounced for a
single void in a compressible solid. Benson (1993; 1995) from numerical simulations noted
different locations of failure from clustering effects in high strain rate micromechanical
simulations of different void configurations. One can reason based upon dislocation motion and
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interaction that void coalescence would occur in the opposite trend as that of the temperature
trend. Further studies of strain rate effects are planned to quantify this effect, but let us consider
a power law plasticity equation with strain rate and temperature effects,

o= Ae"¢" exp(—AG kT) Equation 4.1

where the state of stress is a function of the Gibbs free activation energy G, temperature 7, the
Boltzmann constant £, the strain rate €, hardening exponent n, hardening coefficient 4, and strain
rate exponent m. Equation 4.1 represents thermally activated dislocation glide past obstacles.
Equation 4.1 also reveals that as the temperature increases, the stress decreases, but as the strain
rate increases, the stress increases. Hence, one can observe the inverse relation that temperature
and strain rate have on the stress state. Because the stress state and strain state determine the
void growth and coalescence rates, void growth and coalescence trends for increasing strain rates
are anticipated to display the opposite trend of increasing temperatures. Since void coalescence is
enhanced at higher temperatures, we anticipate that void coalescence would be enhanced at lower
strain rates. Conversely, since void coalescence is inhibited at lower temperatures, we anticipate
that void coalescence would be inhibited at higher strain rates. This inhibited void coalescence is
observed in spall tests, which occur at high strain rates and can induce stress triaxialities on the
order of ten (cf. Eftis ef al, 1991; Zurek et al., 1997). Nemes and Eftis (1993) showed
numerically for notch tensile bars that the place of final fracture occurs at different locations
depending on the applied strain rate. One could expect this with temperature effects too (cf. Lu ef
al., 1998).

In terms of continuum damage modeling, one must consider distribution effects of voids or at
least a spatial dimension that relates neighboring voids as demonstrated by this numerical study.
Experimental studies have shown this in a qualitative manner in the past (cf. Garrison and
Moody, 1987). In particular, if the critical ILD is broached, then the continuum damage model
should include this coalescence effect. One can cast this into an internal state variable framework,
because the creation of new surface area is enhanced by coalescence. By assuming generalized
normality, the Kelvin inequality of the Second Law of Thermodynamics is unconditionally
satisfied (nonnegative intrinsic dissipation) and is expressed in the following equation

Q:Qin—lgié—K°R—¢n‘Dn—¢g‘Dg—¢C°DC =0. Equation 4.2

in which, ¢,_, is the generalized coalescence thermodynamic force conjugate (energy release rate)
of the macroscale internal variable damage coalescence parameter, D.; ¢, is the generalized

growth thermodynamic force conjugate (energy release rate) of the macroscale internal variable
damage growth parameter, D,; and ¢, is the generalized nucleation thermodynamic force
conjugate (energy release rate) of the macroscale internal variable damage nucleation parameter,
D,. In essence, an increment of damage will have associated energy released per unit damage
extension as new damaged area (or volume) is developed. The dissipation relation between the
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thermodynamic conjugates including a coalescence term (and nucleation term for completeness)
with a standard single void growth term.

One can certainly argue that separating void growth and coalescence may not be appropriate
because of their intimate connection. But typical equations for single void growth have been
formulated and have been used successfully in engineering practice thus encouraging their use.
Hence, another term for coalescence would be needed in that context. Needleman and Tvergaard
(1984) and Koplik and Needleman (1988) have proposed modifications to the Gurson model
(1977) to account for coalescence. However, it was not until recently that Tvergaard and
Needleman (1995; 1997) proposed a spatial gradient that represents effects of coalescence with a
spatial characteristic size. If coalescence is modeled with spatial gradients such as the one
proposed by Tvergaard and Needleman (1997), then one would need to include temperature
effects based on the current study.

4.2.3. PORE-PORE SUMMARY

Displacement and force boundary conditions with one and two voids at three different
temperatures to show the effect of different states of plastic deformation and stress triaxialities
acting upon the material were used in the context of finite element simulations. In general, the
results confirm the need for including stress triaxiality and plastic deformation in a
phenomenological void growth model (cf. Cocks and Ashby, 1980). However, these one void
growth models typically do not capture multiple void effects. In this context, we propose a
quantifiable definition of coalescence that is amenable to macroscale damage modeling. The major
conclusions can be summarized as follows:

1. When multiple voids are present and within a critical intervoid ligament distance (ILD),
the void growth rate is greater than a one void material with the same initial void volume.

2. Finite element calculations show that as temperature increases in the presence of multiple
voids, the void growth rate increases. This occurs because plastic deformation greatly
increases at higher temperatures although the stress triaxialities are almost equivalent.

3. Above a critical temperature, the effective plastic strain influences void growth more than
stress triaxiality, but below a critical temperature, the stress triaxiality influences void
growth more than the effective plastic strain.

4. The critical ILD for coalescence to enhance void growth depends on temperature and
boundary conditions.

5. Temperature and pore size distributions are needed for the macroscale model.
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5. MODEL IMPLEMENTATION INTO FINITE ELEMENT CODE

Now that the macroscale microstructure-property model has been derived as discussed in the
previous chapters, a few comments are warranted regarding the implementation of the
microstructure-property model. When damage ¢ approaches unity, failure is assumed to occur.
The goal is to implement the damage framework into a finite element code for solving complex
boundary value problems, so failure occurs as ¢ — 1.0 within an element. Damage accumulation
less than unity would be designated as failed material by many engineers. In fact, Budiansky
(1970) stated that a damage level of 50% is the limitation on the degraded elastic moduli.
Practically, the total damage for final failure should perhaps be even less than 50%, but in
applications (cf. Bammann et al. 1993) using the Cocks and Ashby void growth rule (1980,
1982), the damage goes rapidly to unity just after a few percent void volume fraction. More
complicated functions for the damaged elastic moduli can be used such as Zhao et al. (1989), but
these are computationally expensive. The final percentage of damage to determine failure can be
determined by the finite element analyst or micromechanical calculations. For the sake of this
writing, damage is allowed to approach unity.

To implement the model in a finite element code, we replace the deviatoric plastic rate of
deformation with the total rate of deformation in the recovery terms of the hardening rate
equations (Equations 2.31 and 2.32). This substitution makes the hardening rate equations
directly solvable. Equations 2.31 and 2.32 become:

@ = WD} - Fn i+ () el Equation 5.1
k= \24H)|D]) - [\,%Rd(T)”z_)” + RS(T)]|R|R Equation 5.2

At the beginning of each time step, we determine the values for J, and J; from the previous step
to modify r4 Ry, h, and H. We then employ a radial return method to determine the plastic part of
the strain by assuming the strain to be all elastic (i.e. D/ =0). Figure 5.1 schematically
illustrates the method. This gives the following trial values for the deviatoric stress and internal
hardening variables,

: C : po , PA? :
O =0+ [""2u1-9)Ddt-[""—dt =0c.,(1-—)+2u(l-¢)D At
O+ [ 2u(l - ¢)Ddr - [} e ( 1+¢) u(1-¢)D

—n+l

Equation 5.3

o, =, - [0 O 4D+ ) 2 leled = - 24100 + ) 24leAne,  Equation 5.4

R. =R, - f;”*‘ (Rd\/%”Q” +R)RR={1- (Rd\f%ngn + R)|RIAGR, Equation 5.5
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Fignre 5.1. Radial retum alzorithen used to update new state as predicted by model.

Note that a differential equation of the form R = —kR has a solution that tends to zero, but if we
take too large a time step, our approximate integration could oscillate about zero. To avoid this
behavior, we limit the terms multiplying a, and R, in Equations 5.4 and 5.5 to be greater than or
equal to zero.

If we define the tensor & = 0" - %g , the flow rule can be written as

7 [ 3)El - R+ YT - )
= 1'3 1 \ 2 E .
v /2f(T) SlnhL V- 9) J El Equation 5.6

By taking take the norm of both sides, we can then invert Equation 5.6 to get

v / ol

El-1-¢)R+Y +Vsinh'(-=2"")]=0 Equation 5.7
o= 3ld-



If on evaluation of @ we find ® <0, then the elastic assumption is valid, and we can use the
trial values of a, g, and R as the actual values. Otherwise, we look for a deviatoric plastic strain
component D such that

" prar= " g
Jf,, &
J;nm

This leads to corrections to the trial values of

Equation 5.8a,b

Hdt=)/

o, =0, —ﬁtm 2u(l- @)D"dt = 0:+1 - W%‘ Equation 5.9
& =+ [ NT)D dr =a, + ” 5” Equation 5.10
=R. + \/2/f H(T)|D’|dt = R, + v 2/H)’ Equation 5.11

Substituting these corrected values back into the inverted flow rule, it is easy to show that @ =0
is satisfied by choosing y as:

€] -240 - @)¥ + R+ Vsinh“(”l;”))

2u(l- @) +25(h+ H(1- @)

Equation 5.12

Equation 5.12 is then used to correct the trial values. At this point we can calculate J, and J;
from the corrected o/,, and calculate a new damage term ¢ from updated nucleation, void

growth, and coalescence from Equations 2.33-2.38. Finally, we add the pressure term to update
the total stress as

Ot = Opit * Dyt Equation 5.13
where
Pun = 3tr(0,)(1 = @) + (1 - 9)AtKtr(D). Equation 5.14

This is all that is needed for the implementation of the model. However, some work needs to be
done ahead of time to determine the appropriate values for the void nucleation constants. We
determine the void nucleation rate under tension, compression, and torsion in the following
manner. First, the material constant C,,.; was determined by using a trial-and-error method to
match the data from both tension and compression. For tension, the total void nucleation density,
which included fracture of silicon particles and debonding of the silicon/aluminum interface, was
used to determine the material constants. For compression, only fracture of silicon was observed.



Equation 2.35 was solved for independently for tension and compression by using a program that
correlates the experimental data with an exponential function,

Equation 5.15
Mnsion (1) = 90exp(25.608e(1))

Equation 5.16
(t) = 90exp(10.102¢(r))

ncompressi(m
The tension exponential term can be equated to the exponential term as

o)
25.608 = d—y[
Kief”

2

b7 +C].
343

Equation 5.17

The compression exponential term can be equated to the exponential term as

d” 2
10.102 = T [—b + c] . Equation 5.18
Kef*l 33

Here, the two equations can be used to solve for the two constants b and c, since K;~17.3 MPa-
m”0.5, (d=6 um), and (f=0.07). From this procedure, the material constants »=58,630 MPa, c=
30,011 MPa, and C.y =90 result.

The constant a in torsion can be determined independently of constants b and ¢ because
of the stress invariant forms. As such, the following equation

d” [ 4
3132 = —y[a—} Equation 5.19
Kf?L 27

gives a=615,369 MPa.



6. MACROSCALE MODEL-EXPERIMENT COMPARISONS

In this chapter, we present three different macroscale validation tests and use the model to
optimize a control arm. First, we show how the microstructure-mechanical property model
captures the void nucleation rate and stress-strain responses under compression, tension, and
torsion. Second, we show that the microstructure-mechanical property model captures path
history effects that arise from Bauschinger effect tests. Third, we compare finite element results
of the microstructure-mechanical property model to notch tensile test experimental data, optical
methods, and x-ray tomography analysis. These validation experiments reveal the model’s
capability and bring confidence regarding larger scale structural analyses which oftentimes are not
testable. Finally, we use the model to optimize a control arm based on mass and strength.

6.1. VOID NUCLEATION COMPRESSION, TENSION, AND TORSION ANALYSIS

A series of tension, compression, and torsion experiments were performed to different strain
levels to quantify void nucleation evolution of this cast A356-T6 aluminum alloy. The tests were
stopped at various effective strain levels, and the specimens were cut, polished, and examined for
void nucleation. The accumulation of new voids occurred by fracture of the second phase silicon
and by debonding of the silicon with the aluminum. The void nucleation sites were counted over a
statistically significant region of the material at the different strain levels, and then the void
nucleation model constants were determined. Figures 6.1, 6.2, and 6.3 show representative
optical micrographs of specimens strained under tensile, compressive, and torsional loading
conditions. In Figure 6.3, the arrow represents the torsional rotation axis. In each micrograph, the
loading direction is parallel to the height of the micrograph (see arrow). Observe that fractured Si
particles are observed under all three loading conditions. Note that the cracks-voids in the tensile
test specimen (6.1) are perpendicular to the loading direction, whereas the majority of the cracks-
voids in the compression test specimen (Figure 6.2) are parallel to the loading direction. In the
torsion specimen (Figure 6.3), the cracks-voids are observed in all directions. The fraction of
damaged particles is defined as the void nucleation density divided by the total number of silicon
particles. Under tension, both silicon fracture and interfacial debonding occurred, but under
compression and torsion only silicon fracture occurred. In each specimen, the broken/debonded Si
particles were counted, and their sizes and orientations were measured by using interactive digital
image analysis. These measurements were performed on more than one hundred continuous fields
of view at 500X in each specimen to obtain statistically reliable data for the fraction of damaged
Si particles, their average size, and corresponding orientation distribution.

Figure 6.4 shows a comparison of the void nucleation model to void nucleation-strain data from
compression, tension, and torsion tests at ambient temperature and quasi-static loading
conditions (10#/sec). These curves reflect the inclusion of the void nucleation, growth, and
coalescence terms. The hardening rate differences arising from these different global stress states
is driven more by void nucleation than the growth and coalescence as illustrated by the model
comparison to the void nucleation data in Figure 6.4. One can see from Figure 6.4 that the void
nucleation rate increases from compression to tension to torsion. The void nucleation relaxes the
local dislocation density, which was building up around the particles as to relieve the stress. As
such, the global hardening rate is increasing as you go from torsion to tension to compression, the
reverse order of the void nucleation rate. Figure 6.5 shows that the effective stress-strain
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responses are in reverse order of the void nucleation data indicating the direct link between the
microstructure and mechanical work hardening rate. Figure 6.5 also shows the microstructure-
property model captures the work hardening differences arising in tension, compression, and
torsion, but this will be discussed more later.

frachure sites

T

Figure 6.1, Micrograph of fracture zites of silicon in tension,

W fracture sites

Figure 6.2 Micrograph of fracture sites of silicon in compression.
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Figure 6.3, Miciograph of fractore sites of silizon in torsion
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Figure & 4. Murnber density of woid nucleated as a function of strain coraparing the microstructure-property mode] results and test data
for cormpression, tension, and torsion for cast A356 alurairnn alloy at arebient temperature and a strain rate of le-disec.

A comment should be made regarding the plotting of the nucleation density of voids in a finite
element code. First, measurements of the nucleation density are represented by the number count
per unit area, so in 2D finite element calculations, the void growth area must be used. Also, if a

6-3



total number of voids nucleated is desired as opposed to a number density, then the area of the
element must be included with the corresponding units conversion. The current measure is a
number count per millimeter squared.
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Figte 6 5. Stress-strain comparison of mictostrcture-property tmodel results and test data fior corpression, tension, and
torsion for cast £356 alumirr alloy at arabient teruperature and a strain rate of 1e-dfsec.

6.2. VOID GROWTH AND COALESCENCE ANALYSIS

Experiments were performed to understand the void growth and coalescence mechanisms within
the A356-T6 material. The micromechanical finite element analyses showed a definite trend: that
multiple voids interacting increased the total damage level at a greater rate than just a single void
with the same initial void volume fraction. To help separate these effects experimentally, we
conducted interrupted tensile tests in which the specimen surfaces were polished so that
individual pores could be monitored and measured for their size increase throughout deformation.
In particular, their centroids and sizes were measured before and after each loading. On the order
of 50 to 100 pores were measured for each specimen. The change in area was used to give an area
fraction. Because of nearest neighbor distances and surface effects, the scatter in the data was
large; however, it is worth noting the results because a qualitative trend was observed. The
specimens were machined from the horizontally cast plates that had an initial void volume
fraction of approximately 0.0015. We conducted these experiments at three temperatures: 222 K,
298 K, and 394 K. Table 6.1 summarizes the results.
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Table 6.1. Void area fraction as a function of strain level and temperature.

Strain level 222K 298 K 394K
0.01 0.29 0.15 0.87
0.015 0.008 0.35 1.60
0.02 0.012 0.36 0.83
0.035 0.01 0.40 1.97
0.05 - 0.51 -

One can see from the data the void growth is not very dramatic and though there exists much
scatter in the data as a function of strain certain qualitative trends are apparent related to
temperature. Remember that these results couple the void growth and void coalescence together.
Void growth and coalescence reach higher values as the temperature increases. This trend was
identically observed in the micromechanical simulations due to the higher plastic strains achieved.
This trend is included in the macroscale modeling of the void growth and void coalescence as
described in this report.

Coalescence is mathematically described in Equation 2.37. Before determining the coefficient for
the coalescence term, we varied the coefficient as shown in Figure 6.6 to illustrate the influence of
coalescence on the total damage state. Recall that coalescence is not just the final joining of voids
at the end of deformation but is defined as the enhancement of void growth as two or more voids
interact. Certainly other mathematical forms can be developed for coalescence. Future studies
should emphasize this; however, we developed a simple form that relates the interaction of the
void nucleation and void growth laws as prescribed by Equation 2.35 and Equation 2.36. In the
context of this A356-T6 Al alloy, coalescence is complicated as interactions from voids started at
fractured or debonded silicon sites can interact with casting pores and casting pores can interact
with other casting pores.
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Figure 6.6, Darnage evohition as a fnetion of strain. The coefficient in the colescence term is varled
to illustrate its influence on total darmage.
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6.3 PLASTICITY ANALYSIS

A nonlinear regression algorithm was developed to fit the plasticity model constants once the
damage parameter constants were determined. One set of constants found in Appendix A were
able to capture a wide range of the mechanical responses that arose from the experiments. Figure
6.5 shows how the model captured the differences between the work hardening rate in tension,
compression, and torsion. Figure 6.7 shows the stress-strain curves comparing the
microstructure-property model to experiments at different strain rates and temperatures for a
material with a dendrite cell size of 20 um. The amount of residual error in matching the
constants was just less than 4% from all the plots. Figure 6.8 is a plot of yield stress as a
function of temperature for various strain rates for the A356-T6 aluminum alloy. These data
come from the microstructure-property model, and the "Xx" data points represent experimental
data. This type of plot can be useful if an elastic design is used. Figure 6.9 illustrates that the
DCS differences in the work hardening rate were captured very well by the model.

—@— XD (T=2Z2ZK rate=.01/3) -eeqy--- Model (T=2Z2F , rate=.01{3)
—&—exp (T=2ZZE rate=1i3) ---f--- model (T=ZZZEK | rate=1/3)
—se—exp (T=294K rate=.0001!3) ~+--- model {T=294F , rate=.0001/3)
—— exp (T=294E rate=1/3) ---}--- model {T=294E , rate=1/3)
—a—exp (T=394E rate= 0001123 ~--- model (T=394E | rate= 0001/2)
—— exp (T=394K raw=.01/3) --- - model {T=394E, rate= 0113}
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Figure 6.7, Stress-strain curves comparing the model to experitnents at different strain rates and teraperatures for 4 material
with a dendrite cell size of 20 .

6.4. BAUSCHINGER EFFECT ANALYSIS
The Bauschinger effect is interpreted as anisotropic “yielding” that arises upon reverse loading

from internal backstresses that are attributed to dislocations accumulating at obstacles. Studies to
describe the Bauschinger effect have either focused on continuum mechanics modeling or on
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analyzing dislocation build-up at a microscopic scale. In continuum mechanics, the focus often is
on the relationship of the ratio of kinematic (anisotropic) hardening to isotropic hardening. In
materials science, the focus is often on determining mechanisms related to dislocation
arrangement. Few have studied both aspects together and fewer yet have considered cast Al-Si-
Mg aluminum alloys (Caceres et al., 1996). In (Caceres et al., 1996), only tension-followed-by-
compression was studied without consideration of damage accumulation. To the author’s
knowledge, no studies have examined the effect of void damage with regard to second phase
particles on the Bauschinger effect for a cast A356-T6 aluminum alloy that was mechanically
tested in tension-followed-by-compression and compression-followed-by-tension up to different
moderate prestrain levels.
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Test specimens were machined from the chill end of the casting, where the amount of
microporosity was measured to be low (< 0.1% volume fraction), to determine the number of
voids nucleated under tension, compression, and uniaxial cyclic boundary conditions. Test
specimens were stopped at different strain levels, and then the specimens were sectioned in two
pieces so that image analysis could be performed to quantify the void nucleation density.

The specimens used for the testing were ASTM-E606 low cycle fatigue specimens with an
outside diameter of 9.525 mm. The strain rate was 0.0001/sec and the test temperature was in
ambient conditions. A servohydraulic Instron test frame was used to test the specimens under
displacement control.

Figure 6.4 shows that the number of damaged sites is higher in tension than in compression. In
tension, voids can nucleate by silicon particle fracture or by silicon particles debonding from the
aluminum matrix, but in compression, voids nucleate by silicon particle fracture. Because the
fracture stress of the silicon particles is much higher than the ductile aluminum matrix because the
stiffness of the Si particle is greater than the ductile Al matrix, the particles incur a greater stress
upon loading as the aluminum incurs plastic deformation. This greater stress serves as a driving
force for voids to form by particle fracture or by debonding of the silicon particle-aluminum
interface. Eventually, void growth and coalescence in a tensile state lead to final failure. The local
voids weaken the material and reduce the work hardening rate, which in turn directly influences
the global stress state. Figure 6.5 shows the compression stress-strain curve is higher than the
tension stress-strain curve after yield. The trend of higher work hardening rate for compression
over tension was replicated for many specimens.

The Bauschinger effect is a phenomenon that is exhibited under a cyclic load when reverse yield
is lower than forward yield. The Bauschinger effect can be expressed by either the Bauschinger
stress parameter (BSP) or the Bauschinger effect parameter (BEP). The BSP is defined in terms
of the total forward and reverse flow stresses given by

o’ =|o”
o]

BSP = Equation 6.1

in which the forward stress, ¢/, is determined by the largest forward stress just before reversal
and the reverse stress, 0, is determined typically by a reloading in the reverse direction. Caceres
et al. (1996) used the BSP to illustrate the Bauschinger effect of an Al-Si-Mg casting alloy. The
BEP is given by

{M} Equation 6.2

1
B

2

where ¢ is the initial forward yield stress, determined typically by an 0.002 offset strain upon
the forward loading. Embury (1987) employed the BEP to describe the Bauschinger effect. From
a continuum mechanics perspective, the BEP is indirectly related to the amount of the kinematic
(anisotropic) hardening and isotropic hardening that occurs. As such, it reflects how much plastic
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anisotropy is induced during the deformation. The BSP is used to illustrate comparisons with
Caceres et al. (1996), and the BEP is used to explain the influence of damage on the stress-strain
response.

The forward applied prestrain levels reached for the tests were 2%, 3%, and 5% after which the
straining was reversed to the same level as the forward prestrain. Tests were performed in two
sequences: tension-followed-by-compression and compression-followed-by-tension. When a
specimen was strained to 5% in tension first followed by a compression unloading, a different
BEP (or BSP) arose than if the specimen were strained 5% in compression first followed by
tension. The same can be said for the 2% and 3% prestrains as well. Table 6.2 illustrates results
for the BEP and BSP for the stress-strain curves shown in Figure 6.10.

Table 6.2. Comparison of BSP and BEP for various one cycle tests at different strains.

experiment o’ (MPa) ‘gf ‘(MPa) ‘G"‘ (MPa) BSP BEP
2% tens-comp 241 276 186 0.326 1.286
3% tens-comp 241 296 193 0.348 0.936
5% tens-comp 241 310 207 0.332 0.746
2% comp-tens 241 303 190 0.373 0911
3% comp-tens 241 331 197 0.405 0.744
5% comp-tens 241 365 214 0414 0.609
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Figure 6.10. Beverse true stress-tme strain data for a cast 4356 alurainara alloy corparing tension-follonred-byr-compression
and commpression-followed-by-tension boundary conditions for different prestrains (2%, 3%, and 5%



Several observations can be drawn from these results. In Table 6.2, one can see that the
BSP and BEP for the tension-followed-by-compression case was lower than for the
compression-followed-by-tension case. The reason this phenomena occurs is because voids
nucleate at a higher rate under tension than for compression. As a consequence, the s/ is lower
for the forward prestrain in tension than in compression because the void nucleation rate is higher
in tension. The lower ¢ reflects that the internal stresses have relaxed because of the fracturing
process, which in turn reduce the BSP and BEP. Furthermore, this lowering of the BEP reveals
the kinematic hardening to isotropic hardening ratio is reduced, indicating that the plastic
anisotropy is reduced. This phenomenon should be captured in the microstructure-property
model. Figure 6.11 shows a comparison of the microstructure-property model to the tension-
followed-by-compression experimental data. This comparison illustrates that the microstructure-
property model can indeed capture the history effects that intimately couple the damage
progression and work hardening rate.
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Figure 6.12 illustrates data from Caceres et al. (1996) and from this current study. The BSP for
tension-followed-by-compression falls in the range of the Caceres ef al. (1996) study, but the
BSP for compression-followed-by-tension is higher. Furthermore, Caceres et al. (1996) do not
mention that the tests were tension-followed-by-compression, but the data from this study
indicates that they probably were tension-followed-by-compression tests.
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The second conclusion of the study is that as the forward prestrain increased, the plastic
anisotropy (backstress), which is reflected by the BEP, decreased. An attribute of the aluminum
matrix is a high stacking fault energy that allows for increased cross slip, which accommodates
screw dislocations. In the eutectic region, the screw dislocations can be impeded by the formation
of jogs. This would allow the buildup of dislocations around silicon particles. As the dislocation
population induces a certain local internal stress, fracture of the particle or debonding at the
aluminum-silicon interface occurs. When this happens, the internal stresses are relaxed and the
backstress is reduced. As the applied prestrain increased, damage accumulation increased relieving
the internal backstress in this cast A356-T6 aluminum alloy. This indicates that plastic
anisotropy (as reflected by the backstress) decreased as the number of fractured or debonding
particles increased.

It is noted that backstress can develop for “pure” aluminum, which means that the dendrite cell
could have some backstress. The amount of backstress in the dendrite cell would be expected to
be lower than within the eutectic region, where the hard silicon particles act as barriers for
dislocation build-up. The high stacking fault energy of aluminum accommodates screw
dislocations. Screw dislocations can move around barriers fairly easily, but in the eutectic region
screw dislocations would be impeded by jogs. This allows the build-up of dislocations at the
silicon particle-aluminum interface. As the dislocation population induces a local stress, fracture
of the particle or debonding of the particle-aluminum interface occurs. When this happens,
internal backstresses are relaxed and thus reduced.
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6.5. NOTCH TENSILE FINITE ELEMENT ANALYSIS

Damage progression from void nucleation, growth, and coalescence in cast A356-T6 aluminum
notch specimens was determined from a combination of experiments, finite element analysis,
nondestructive analysis, and image analysis. Experiments were performed on notch Bridgman
specimens to failure and then other specimens were tested to 98%, 95%, and 90% of the failure
load. The specimens were then evaluated with nondestructive x-ray tomographic methods.
Regions of the specimens were then sampled for optical image analysis. Finite element
simulations of the notch tests were performed with the microstructure-property model that
incorporated the pertinent microstructures related to the cast A356-T6 aluminum alloy such as
the silicon particle volume fraction and size distribution and porosity volume fraction and size
distribution. The various methods all corroborated the damage progression in terms of void
volume fraction evolution.

This work includes an unprecedented, comparative study of experimental data, numerical finite
element simulations, optical microscopy and stereology, and x-ray computed tomography of
notch tensile tests in a cast A356-T6 aluminum alloy. Notch Bridgman tensile specimens were
monotonically loaded to different levels up to and including failure. The notch geometry is used
to create stress triaxiality gradients in the specimen to validate the experimental and numerical
methods. After mechanical testing, the damage in the specimens was first determined using a
computed tomography (CT) method.

6.5.1. NUMERICAL MODELING

Figure 6.13 shows the load-displacement curves for the finite element simulations in which
random and homogeneous initial porosity distributions were assumed with porosity levels of
0.001 and 0.0001. One observes from these simulations that the initially randomized porosity
gives lower failure displacements than the homogeneous case. This difference lessens as the
initial porosity level increases. One can see from these initial assumptions that the failure
displacements ranged from approximately 0.05 mm to 0.11 mm. Later, we will show that the
experimental failure displacement was approximately 0.11 mm indicating that our initial
porosity assumptions were comparable to the experimental specimens.

Figure 6.14 illustrates that the point of failure can occur at different locations and applied
“strain” levels with different initial porosity levels and distributions. The notch geometry
generates stress and strain gradients from the notch center to the edge. The highest stress
triaxiality is at the specimen center, but the highest strain level occurs at the notch edge. This
affects the void growth much differently depending upon the initial void distribution and
porosity level. Figure 6.15 shows the progression of total damage for the case with a random
initial porosity level of 0.001.

6-12



25 L L L
20 k J
% 15 F -
=t s ‘ ¥
g 10 E homogeneous porosity (¢=0.0001) i
=====**=-homogeneous porosity (¢=0.001) ]
s L | random porosity ((])l =0.0001) ]
[ — — -random porosity (¢ =0.001) n

0 Lo o T o o T 0 by o T 0y T oy

(=]
—_
\S]

0 002 004 0.06 0.8 0.1
displacement (mm)
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In the case of initial homogeneous porosity distribution two cases arise. When the initial void
volume fraction is 0.0001, the first element failure location occurs near the notch edge. This
happens because when the initial porosity level is small, total damage is not driven by casting
pores but by voids nucleating from second phase particles. Although voids nucleate as a
function of stress triaxiality their dependence on the stress triaxiality is much less than for void
growth. As such, the effective plastic strain, which is highest near the notch edge, drives the
void nucleation and in this case the total damage. As the initial porosity level increases, damage
from the second phase particles becomes less important compared to the void volume fraction
of the casting pores. When the casting pore volume fraction is high, the initial voids grow as a
function of mostly the stress triaxiality, which is highest at the notch center. Figure 6.15
illustrates that for this case the voids with an initial porosity level of 0.001 (and above), failure
occurs at the notch center as opposed to the notch edge. Horstemeyer and Revelli (1997)
showed a similar trend for a wider range of initial porosity levels for wrought 6061-T6
aluminum, but no random initialization of porosity was performed.

When comparing a random versus a homogeneous distribution of voids, one can see from Figure
6.14 that very different failure locations can arise. When initializing the random distributions,
the overall porosity level of the total notch specimen was the same as in the homogeneous case.
Just like different initial porosity level simulations were run with the homogeneous distribution,
simulations with the same initial porosity levels were run with random distributions. The
motive for analyzing the random case arises because the casting process can yield various sizes
of porosity throughout the specimen. Interestingly though based upon these few simulations,
the triaxiality seems to play more of a role than the effective plastic strain as both the low and
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high initial porosity levels tend to show failure towards the notch center regardless if a random
or homogeneous distribution exists.

6.5.2. NOTCH EXPERIMENTS

Subsequent mechanical test specimens were cut from two separate cast plates (sl and s4 from
plate 1, s2 and s3 from horizontally cast plate). The samples were taken from different regions of
the plate assuring that different initial porosity levels would result. A variation in the initial
conditions of the test samples provided an additional dimension to evaluate the performance of
the damage characterization and prediction techniques. In addition, the different levels of initial
porosity in the specimens were helpful in determining if the driving force for ductile damage is
more dependent on the initial material characteristics, such as, pore size, volume fraction, and
distribution or the applied boundary conditions. The specimen notch radius was 2.97 mm, with a
notch root diameter of 9.23 mm and a shoulder diameter of 12.7 mm. Cross sectional views of the
samples are provided on several of the visual damage images. All specimens were loaded at an
approximate strain rate of 10~/sec at room temperature.

The load-displacement responses of the four different cast A356-T6 Al specimens are shown in
Figure 6.16. The specimens had a notch size of 2.97 mm and a gage radius of 4.7625 mm. Hence,
the ratio of gage radius to notch size, which reflects the stress triaxiality, is 1.6, a moderate
triaxiality. The displacements were measured using an extensometer with a 25.4 mm gage length
placed across the notch. The Bridgman specimen numbers s1, s2, and s3 were unloaded prior to
failure at 90%, 95%, and 98% of the failure load on the curves in Figure 6.16. Specimen s4 was
loaded until failure as indicated in Figure 6.16. By monitoring the loads instead of displacements
to determine the pre-failure point, we retrieved a more reliable result. When trying to control with
displacements, premature failure of the specimen would result because of the variability in the
initial porosity level and distribution. Because increased porosity can degrade the effective elastic
modulus, s2 and s3 (both from plate 2) have larger initial porosity levels as evident from the
immediately smaller effective elastic stiffness observed in these curves.

The maximum effective elastic stiffness among the four specimens, Smax, can be used in part to

estimate the relative difference in total damage between the Bridgman specimens. The value of
Smax represents the “elastic” response of the Bridgman specimen with the lowest initial porosity
level. As shown in Figure 6.16 by the dashed lines, the unloading of all specimens is assumed to
occur along Smax. With this construction, the area between the actual load-displacement response
and the idealized unloading curve is a relative measure of the initial porosity superposed with the
subsequent damage (plasticity) in the specimens. For example, in Figure 6.16 specimen sl is
brought to a higher load level than specimen s2. However, the total damage in specimen s2 is
larger (greater area between the Smax line and the load-displacement curve) due to its increased
initial porosity. Using the area criterion, the curves in Figure 6.16 are arranged in order of
ascending total damage. The developed trend in total specimen damage is consistent with
nondestructive and metallographic damage measurements that will be discussed later.
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6.5.3. COMPUTED TOMOGRAPHY

Computed tomography is a non-destructive testing technique that uses x-rays to accurately
determine the local density changes. For the optical image analysis, the specimens were split and
metallographically prepared. Optical microscopy coupled with digital image analysis techniques
were used to obtain high precision pictures of the pertinent surface. The metallographic study
was used to provide a benchmark comparison tool for the CT technique. The CT method
determines three dimensional porosity distributions, while the sectioning method only provides
information for a representative two dimensional cross section. However, the two dimensional
cross section technique represents the most widespread method for determining the evolution of
many microstructural parameters such as casting porosity (Tewari et al., 1998).

Computed tomography produces two and three dimensional spatial data convolved with a fourth
dimension which is the x-ray linear attenuation coefficient. The linear attenuation coefficient
(LAT) is a function of material density, elemental composition, and x-ray energy. For specimens
that have homogeneous elemental composition, changes in the LAT represent changes in material
density. For inhomogeneous samples, changes in the LAT represent either density changes or
segregation of elemental constituents, or both. Voids in the material result in LAT values of zero
or near zero depending on spatial resolution.
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Volumetric data is produced by first obtaining two dimensional x-ray transmission images
(projections) for a systematic set of specimen rotations. Computed tomography reconstruction
software converts the two dimensional projections into a complete volumetric representation of
the object. This volumetric data can be sectioned in any two dimensional plane to provide
arbitrary cross-sectional planes (tomograms) of the specimen. The tomograms, coupled with
volumetric image rendering techniques, accurately depict internal structures, geometries, and
density/elemental variations within the specimen. Discontinuities such as gas holes and porosity
are well defined in the computed tomography image, depending on the system resolution and
discontinuity size. When individual pores in a local region are smaller than the system resolution,
that region will appear to have a lower density than the surrounding nonporous material.

Two system parameters of importance for image interpretation are contrast sensitivity and
spatial resolution. Contrast sensitivity is the ability of the CT system to detect variations in
thickness and/or density. Spatial resolution is the ability of the system to resolve small features
or details. The CT system can detect density variations as small as 0.1 per cent, and provide this
information as a function of spatial location in the object. Spatial resolution depends on system
design, sampling plan, and image reconstruction method. The detector element size and projection
magnification together with sampling plan (i.e., number of projection angles) determine both pixel
size for two dimensional slice images and voxel (volume element) size for three dimensional
images. For the experimental setup employed here, the pixel (voxel) dimension was 28 pm.
Structural features smaller than approximately two pixel (voxel) dimensions are not resolved,
rather they lead to a lower average density measurement. Deconvolution of image blur using a
measured point spread function is accomplished before CT reconstruction to produce sharper
(higher contrast and resolution) reconstructed images.

The computed tomography data acquisition system used in the present study is an area-array
(two dimensional) third-generation (rotation only) system (Figure 6.17). It consists of a 450 kV
constant potential x-ray machine source with a 1.0 mm focal spot, and a detector system that
uses a thermoelectrically cooled CCD camera (14-bit, 1024 x 1024 pixels) optically coupled to a
high-density glass scintillator plate (100 x 100 x 6 mm) by a photographic lens. The mechanical
staging for the system consists of three degrees of freedom: rotational, and x- and y-translation.
These are driven by a computer-controlled system that provides movement in all three axes. Data
preprocessing, image reconstruction, and analysis are typically done on a high level workstation.
The system was configured with a projection magnification of nearly 1.0, and source-to-detector
distance of 3000 mm. All data were acquired at 80-kV peak energy over a range of 180° with 1°
scanning increments. Prior to reconstruction the images were preprocessed to subtract the camera
dark current, correct for the source and detector variations correct for point-spread function and
convert the raw data to CT number (i.e. linear attenuation coefficient). Ring removal and beam
hardening were also performed in preprocessing.
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Figure 6.17 Schematic of the computed tomography (CT) system and data acquisition setup.

6.5.4. OPTICAL METHOD EVALUATION

As metals are opaque to visible light, optical microscopy of metals involves observations on two
dimensional planes (metallographic planes) through three dimensional microstructural space. It is
possible to estimate mean values (or statistical expected values) of some geometric attributes of
three dimensional microstructure by using unbiased stereological estimators that can be measured
from observations on lower dimensional manifolds such as two dimensional planes or one
dimensional lines through the three dimensional microstructure, or projected images of three
dimensional microstructure. For example, volume fraction of constituents (Underwood, 1968),
total surface area of internal surfaces (Smith and Guttman, 1953, Baddeley, Gundersen, and Cruz
Orive, 1986, Gokhale and Drury, 1994), some attributes of curvatures of microstructural
surfaces (DeHoff, 1968, Gokhale, 1998), length density of lines (Gokhale, 1990), etc. can be
estimated by using unbiased equations of stereology. The stereological relationships have in their
roots stochastic geometry and global analysis (Santalo, 1976). In practice, stereological equations
provide a simple and efficient way for quantitative characterization of homogenous
microstructures, because any one plane at a location in the three dimensional structure is
statistically representative of all planes of that angular orientation. Therefore, measurements on
few such planes can yield unbiased and precise estimates of the attributes of three dimensional
structure.

Design based efficient stereological sampling techniques are available to obtain reliable averages of
measured quantities over angular orientations of test planes or test lines, which provide practical
means for handling anisotropic microstructures (see Baddeley, Gundersen, and Cruz Orive, 1986,
Gokhale and Drury, 1994, Gokhale, 1990, 1998). Microstructural features having sizes one
micron or larger can be easily detected and measured by using optical microscopy, and thus mean
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values corresponding to their populations can be precisely estimated by using the stereological
equations, in an unbiased manner. However, in the inhomogeneous microstructures (such as those
in the present study), a variation in the microstructure from one location to another exists, and
therefore, no one plane is representative of all the planes of that orientation. Consequently,
stereological measurements are needed on two dimensional planes at different locations to
estimate the microstructural mean values with good precision, which may be too tedious, and
may lead to large statistical variances and low precision. For the inhomogeneous three
dimensional microstructures, the direct three dimensional x-ray computed tomography appears to
be an attractive technique for characterizing microstructural geometry. However, in commercially
available x-ray tomographic equipment, the voxel size is usually larger than twenty-five microns,
and therefore, sizes of features (say a void) smaller than fifty microns or so (i.e., those occupying
about two or less voxels) cannot be measured with good precision. Consequently, a precise
estimate of three dimensional microstructural attributes of features may not be possible, if a
significant fraction of feature (say voids) population is smaller than about fifty microns. For
inhomogeneous microstructures encountered in the present investigation where sizes of features
of interest (voids) span over a wide range of length scales (five microns to five hundred microns),
we verify the microstructural damage data by using optical metallography and stereology (two
dimensional analysis) and x-ray computed tomography (three dimensional analysis). If both the
techniques generate comparable microstructural damage data, then such data can be used to draw
objective conclusions regarding damage evolution. Furthermore, these two approaches can be
used for comparative purposes of numerical predictions.

For optical microscopy, the specimens were sectioned along a central vertical plane in the loading
direction and were metallographically prepared using standard techniques (Tewari et al., 1998).
To quantify variations in the volume fraction of voids (void volume fraction is equal to the
statistical expected value of area fraction in a metallographic plane) as a function of radial and
axial distance in the notch specimen, many measurements are made. Typically, only a few
random individual frames are examined to obtain mean values, because homogeneous
microstructures are assumed to be present. However, to capture a large region such as desired for
these notch specimens, measurements must to be performed on high-resolution images captured
at sufficiently high magnification. The area of the observed microstructural field of view is
inversely proportional to the square of the magnification, and therefore, at a high magnification
only a very small region of the metallographic plane is observed in one field of view. To observe a
large area of the metallographic plane at high resolution (high magnification) a digital image
processing based technique (Louis and Gokhale, 1995, 1996, Yang, Tewari, and Gokhale, 1997)
was used to create a large area image "montage" from contiguous microstructural fields digitally
grabbed at high magnification. The procedure is equivalent to "cutting, matching, and pasting" of
large number of high magnification contiguous microstructural frames; the borders of individual
microstructural fields are matched within one pixel precision. Figure 6.18 illustrates the
technique. In the present work, image analysis was conducted on a Zeiss optical microscope
using KS-400 image analysis software from Kontron, Inc. To create a montage, the
microstructure was observed at 100X and the first field of view was selected at one end of the
specimen. The image of this first field of view was then stored in the memory of image analysis
computer. The right border (of about 60 pixel width) of this first image was then placed on the
left edge of a live second image. This resulted in a superimposed image on the left border of the
screen (of the previous right border and live image) with rest of the screen having the live image as
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shown in Figure 6.18. The computer controlled microscope stage was then automatically moved
so that the right border of the live image moved to the left border and gave a reasonable match
with the superimposed image. The physical movement of the automatic stage cannot achieve a
perfect match with the previous image, but small movements (to a least count of one pixel) of the
live image were made manually using image analyzer to achieve a perfect match. This resulted in a
match of the first and the second image with an accuracy of one pixel. This second image was
then stored in the computer memory. All successive images were grabbed by using the same
procedure, and finally a contiguous montage of fields was made.

(b

Figuie 6.15. Optical method wmicrograph pictire ilnstrating {a) the owerlap of the stored image and adjacent live image and (b} a collection
25 lmages.

Figures 6.19-6.21 are high resolution large area montage of microstructure created in this manner
and show the porosity distribution in the entire notch region of the specimens. Note that in
Figures 6.19-6.21, the large area montages have been digitally compressed for presentation. These
figures the porosity distribution and were used to estimate the size distribution of pores and their
area fraction as a function of radial distance and distance along the length of the specimen.

6.5.5. NDE/OPTICAL METHOD/FEM COMPARISONS

The typical progression of damage evolution for wrought materials in notch tensile tests arises
from voids growing at the center of the specimen because of the high stress triaxialities. Actually,
the peak stress triaxiality starts at the notch edge at the start of the deformation because of the
stress concentration but moves fairly rapidly to the center as deformation proceeds. The stress
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triaxiality is nonuniform throughout the cross section of the specimen and reaches a level
sufficient to start void growth when its peak reaches the center of the notch specimen. Figure
6.22 shows contour plots of the stress triaxiality (hydrostatic stress/deviatoric stress) of a notch
tensile test illustrating spatial movement of the peak stress triaxiality. Again, this is typical for
wrought, ductile materials.

Figure 6.19. Montage of many contignous optical ricrographs of notch specimen 1.

Fignre 6.20. hontage of many contignons optical micrographs of notch specimen 2.
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Figure 6.21. Iontage of many contignous optical micrographs of notch specimen 3.

highest triaiality =hlack

zern triaxiality =vwhite Peak thaxiality =1.04

Peak triaxiality =0.85

(e ]

Figure 6.22. Progression of stress triadalities (hyrdrostatic stressfeviatoric stress) over the spatial domain of a notch specirnen under
tensile deformation.

For ductile materials with brittle phases, such as the cast A356-T6 aluminum alloy examined in
this study, the final failure location may not occur at the specimen center depending on the
fracture mechanisms of pore growth from casting porosity versus from silicon particle breakage.
As the peak stress triaxiality increases in magnitude and moves toward the center of the
specimen, voids have been nucleated by the fracture of the particles and/or by debonding of the
particle-aluminum interface. As such, the damage increases by not only voids growing but by
new voids initiating and then growing. Damage reaches a certain level (interpreted as defining a
hole in the material the size of the finite element) before it reaches the center of the specimen like
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a wrought alloy. In a wrought alloy at first element failure, the highest level of plastic strain
occurs at the notch edge, but the highest stress triaxiality occurs at the center of the specimen. As
such, we conclude that the stress triaxiality drives the void growth as opposed to the plastic
deformation, because damage evolves mainly at the specimen center. For this cast aluminum, the
highest plastic strain occurs at the notch edge and the stress triaxiality occurs away from the edge
similar to wrought materials, but Figure 6.23 illustrates that the highest damage (which comprises
void nucleation, growth, and coalescence) occurs at two different locations when the initially
homogenous distribution of 0.0001 was used. The two different locations are aligned with the
peak plastic strain and peak stress triaxiality as shown in Figures 6.24 and 6.25, respectively. In
Figure 6.24, the dark contour shows that the plastic strain reached a level of 42% at the notch
edge and around only 1% near notch center. In Figure 6.25, the lightest contour shows that the
highest negative tensile pressure (stress triaxiality equals the negative pressure over the deviatoric
stress) occurs between the notch edge and specimen center. Figure 6.26 shows contour levels of
void nucleation in which the dark contour shows the peak levels occurring near the notch edge
and near the peak stress triaxiality. Figure 6.27 shows contours of void volume throughout the
specimen. Note in Figure 6.27 that the peak void growth occurs at the peak stress triaxiality.

Black=highest damage {0.99)
White=lowrest damage (0.0}

.- Peak damage=0.99

D ¢

Figure 6,23, Total damsage contowrs just before final fadlure of & notch tensile specimen with a noteh acvity w0 radine ratio of 0.117 for a cast
A356 alwminmm alloy. Mot that the dack region indicates the peak damage lesel in oo locations along the radial plane of swmmety.
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Black=highest effective plastic strain (0.427)
White=lowrest effective plastic steadn (0.0)

peak effective plastic strain=.427

effective plastic stain=.107

Fignre 6.24. Plastic strain contours just before final failure of & notch tensile specimen with a notch acwity 1o radivs rado of 0,117 for a cast
2356 alominum alloy. Hote that the dark region indicates the peak plastic strain level near the noich edge.

Elack=lowrest tensile pressure
White=highest tensile pressure

Peak tensile pressure=200 MPa

Figure 6.25. Pressure contonrs just before final failure of a notch tensile specimen with a notch acuity fo radins rato of 0.117 for a cast
£.356 aluminm alloy. Hote that the light region indicates the peak tensile hydrostatc stwess between the notch center and notch edge.
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Black=highest woid nucleadon
White=lowrest woid nucleation

M_,.—" Peak woid rcleation=A96 zitesinm 3
L]

Figure 6.26. ¥oid nucleation contonrs just before final failure of a notch tensile specimen with a notch acvity 1o radivs ratio of 0.117 for a cast
2356 aluminnm alloy. Maote that the daok region indicates the peak nocleation lewel at tn0 locations.

Black=highest woid growth
White=lowest woid growth

Peak woid volume= 204 mm?

woid swolmme=. 120 mm?

Figure 6.27. ¥oid growth contours just before final failure of a notch tensile specimen with & notch acuity o radins ratio of 0.117 for a cast
£.356 aluminom allow, Mote fhat te dadk region indicates the peak woid zrowsh lesel bergreen the notch center and notch edge.

6-25



The coalescence constant, C,,,, in Equation 2.37 was assumed to be unity for the above finite
element analysis. Other analyses were performed in which the coalescence term was increased.
The results showed that as the coalescence term increased, the total damage level reached 15%
(limit observed in the x-ray tomography measurements) closer to the notch edge. One can
interpret this as the following: as coalescence increases, the void microlinking increases. This in
turn makes the response look more brittle on a macroscale, since the more ductile the material, the
closer to the center of the specimen would final failure occur.

This progression of damage in notch tensile specimens for this cast A356-T6 aluminum alloy
gives understanding of the role of the nonhomogeneous distribution of initial porosity and second
phase silicon on the final failure state. With this understanding, we now focus on comparisons of
the finite element simulations and experimental results, which include image analysis and x-ray
tomography of the physical specimens.

Numerical-experimental comparisons of the peak void volume indicate that initial void volume
fraction was about 0.001. Table 6.3 summarizes results from the damage progression from the x-
ray tomography and finite element analyses. The finite element results show that similar
porosity levels compared to the experimental results can be achieved by the right combination of
initial porosity level and the distribution. When the finite element results were averaged over a
larger region, the results were much closer to the optical image results. Figures 6.28-6.34 clearly
illustrate this point.

Table 6.3. Peak void volume fractions within notch specimen at different strain levels.

Failure| x-ray tom. FEM FEM FEM FEM
load % (¢, =0.0001 | (¢,=0.0001 | (¢,=0.001 [ (¢,=0.001
homog.) random) homog.) random)
90 0.09 0.004 0.076 0.095 0.097
95 0.13 0.013 0.096 0.12 0.13
98 0.15 0.033 0.12 0.13 0.14

Figure 6.28 shows a comparison of the image analysis montage, x-ray tomography picture, and a
contour plot of total void volume fraction from the finite element simulation in which an initially
random porosity with a level of 0.001 was assumed for the 90% of fracture load case. The
differences in the montage and x-ray tomography picture arise because the image analysis only
shows one plane cutting axially through the specimen. The x-ray tomography results average 360
planes rotated at one degree throughout the specimen. As one would expect, the x-ray
tomography would be slightly different than the image analysis but would be expected to be close
the finite element analysis, since they are averaged in the annular regions radially throughout the
specimen. The comparisons are encouraging.
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Figure 6.28. Pictorial illustration of porosity distribution for the 90% of failure
load specimen from (a) xray tomography, (b) image analysis, and

(c) finite element simulation with an initially random distribution

of porosity at a level of 0.001.

Figure 6.29 is the quantitative data retrieved from Figure 6.28. From the finite element
simulations, two averages were conducted. One in which the area fraction was the same as the
image analysis, and another in which the area was the same as the x-ray tomography. For the
optical image analysis (large area average) three sections were averaged as a function of the radius
of the specimen in the notched region. The larger area average give slightly different results
compared to the image analysis because the image analysis results were determined from one
plane, and the finite element analysis results were taken -circumferentially around the
axisymmetric geometry. The x-ray tomography and finite element analysis gave much closer
results.

Comparisons along the radial and axial dimensions were made within the specimen. Since the
notch induces a stress triaxiality that drives void growth from the center, one can observe a higher
void volume fraction at the center than at the edge. Figures 6.28-6.34 confirm this notion.

Figures 6.30 and 6.31 showed similar qualitative trends as Figures 6.28 and 6.29 but for the 95%
of failure load case. Here, the porosity levels are higher than the 90% case (Figures 6.28 and 6.29)
as damage has progressed, and all three methods (x-ray tomography, optical metallography, and
finite element analysis) quantitatively capture the trend fairly well.
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Figure 6.30. Pictorial illustration of porosity distribution for the 95% of failure load
specimen from (a) xray tomography, (b) image analysis, and (c) finite element
simulation with an initially random distribution of porosity at a level of 0.001.
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Figures 6.32 and 6.33 show the comparisons for the 98% of fracture load case. Again, all three
methods appear to reflect the expected damage progression. Based on these six figures, one’s
confidence in all three methods is enhanced since they seem to independently corroborate each
other’s results. Differences in the x-ray tomography and optical metallography results arise
because each of the measurements were from different specimens which had different initial
porosity levels, while the finite element simulations were from a single calculation using an initial
starting porosity level of 0.001 that provided qualitative damage progression agreement with both
the x-ray tomography and optical metallography. One must not forget that the optical
metallography results were obtained in a two dimensional plane, but the x-ray tomography and
finite element analyses results were obtained in three dimensions.

One last point of extreme importance can be extracted from this data. The final porosity level at
which final fracture occurs is material dependent and has not been clearly defined for many
materials. Based upon the x-ray tomography data shown in Figure 6.34, we can conclude that the
peak void volume fraction at which specimen fracture occurs is about 15%. This percentage of
porosity can be viewed as a percolation limit in the sense that 100% of an aggregate need not fail
before the aggregate loses its strength holding capacity. Voids grow from the initial porosity and
from particles that fracture or debond. The voids can then coalesce from the original pore-pore
interactions or from the pore-silicon void interactions. Upon reaching a certain total damage level
upon coalescence, a certain level of void volume fraction is present to finally fracture the
specimen, in this case approximately 15%. This final porosity level may be stress state
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dependent and hence further studies should be done at different triaxialities to determine if this is

true.
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Figure 6.32. Pictorial illustration of porosity distribution for the 98% of failure
load specimen from (a) xray tomography, (b) image analysis, and
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Figure 6.34. (a) Xray tomography data and (b) finite element simulation at final failure.

In summary, damage progression has been quantified and confirmed by independent methods of
evalution for a cast A356-T6 aluminum alloy notch tensile testing. The methods include
experiments, finite element simulations that include a history dependent elastic-plastic internal
state variable plasticity model involving evolution equations for void nucleation, growth, and
coalescence; x-ray computed tomography; and optical microscopy/stereology metallography
analysis. This study provides a new methodology of evaluating metal damage progression and
provides the quantitative data needed to establish increased confidence in using a simulation-
based finite element analysis to achieve optimal geometries and reduced masses for structural
components.
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6.6. WEAPONS CARRIER ANALYSIS

In this numerical/experimental study we simulate the response of a transportation carrier, used to
transport U.S. Department of Energy weapons, to levels exceeding the design load. This loading
environment is similar to certain impacts on automotive parts in a crash. Good agreement
between the numerical analyses which used the microstructure-property model and tests on the
transportation carrier illustrates the usefulness of these simulations.

Cast A356 aluminum has been used in a U.S. Department of Energy (DOE) weapon
transportation carrier as a load bearing structure subjected to shipping environments. Cracks were
observed in some carrier brackets when two weapons were stacked.

Optical microscopy of the cast material in several regions of the transportation carrier was
performed. The porosity was fairly uniformly distributed amongst the eutectic region in the
interdendritic boundaries. The dendrites consisted of silicon lean cores with eutectic silicon
distributed as particles along interdendritic boundaries and may play a role in the damage
evolution. The dendrite cell spacing (DCS) was approximately 50 mm. The initial porosity
ranged from 1.0% to 1.5% volume, with pores as large as 0.5 mm. As such the dominant
mechanism for failure was porosity growth and coalescence with only minor influences from
silicon fracture and debonding.

Experiments in which the weapon and tranportation carrier were tested under vertical
compressive, monotonically increasing quasistatic loads were performed until fracture of the
weakest structural component was observed. The failure occurred suddenly at a vertical load of
approximately 121.5 kN; the crack initiation load could not be determined. Post-test evaluation
revealed three radially aligned cracks around the periphery of the quick release pin housing made
of cast A356 aluminum. The location of the cracks were consistent in the four brackets tested.
The location of the first crack can be deduced from examining the cracks observed in the quasi-
static tests mentioned here and in transportation carriers pulled from actual field use. In some of
the failed transportation carrier brackets from the field, one crack was consistently observed.
This radial crack emanated from the edge of the bracket toward the center of the quick release pin
housing, terminating at the housing where the quick release pin made contact with the bracket.

With model parameters determined from the experimental data, the internal state variable
plasticity/damage model was used to analyze the boundary value problem related to the
transportation carrier bracket failure. The finite element analysis included the A356 cast
aluminum bracket with a 303 stainless steel sleeve. Approximately 4500 elements were
employed in this 3D analysis which included one plane of symmetry. A “welded” interface was
assumed between the sleeve and the bracket. The load was applied at an angle of 27° from the
horizontal on the sleeve as indicated in Figure 6.35 to simulate the experimental loading. The load
amplitude was increased in increments of 26.7 kN to 133.5 kN, the final load corresponding to a
5 gacceleration of the weapon and carrier. The finite element calculations took approximately
nine hours of CPU time on a Cray J90.
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Figure 6.35. Boundary conditions for weapons carrier analysis.

The calculations indicated that damage accumulation starts at the three critical areas, where the
high tensile hydrostatic stresses arise. Figure 6.36 shows the highest tensile pressure areas
showing three failed location points in the bracket material around the pin housing. This
corresponds to the three failed areas in the experiment. Figure 6.36 reveals that damage first
occurred at the bracket edge towards the direction of the load. This damage accumulation, which
is represented by porosity level, initiated failure in the bracket. This corroborates the location of
the bracket failures observed in the field. Note that the regions of high stress (negative) pressure
and high damage accumulation in the finite element calculations compare closely to the locations
of the cracks resulting from the experiment. The results in Figure 6.36 occurred at 109.5 kN,
about a 10% lower load level than the experimental results. The calculations “died” at 109.5 kN,
so the propagation of failure in the three locations was not reached, although the highest tensile
pressures indicated where the three failed regions were located. Hence, the locations and load
levels of the damaged areas experienced from the tests were verified fairly well with the finite
element analyses. This also verifies that the model parameters from the other tests described in
this report were accurately determined.

This structural analysis and a corroborative metallographic analysis of the failed A356 cast
aluminum carrier bracket revealed that poor design and poor cast properties led to crack
formation in the bracket. A sizable tolerance between the bracket and cradle caused the quick
release pin to bear against the steel sleeve which in turn loaded the A356 bracket.
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Figure 6.36. Comparison of (a) experiment and (b) microstructure-property model failure prediction (damage=SDV14)
for weapons carrier analysis.

6.7. AUTOMOTIVE CONTROL ARM ANALYSIS

In this numerical/experimental study we use the microstructure-mechanical property model to
simulate the response of a control arm given certain boundary conditions. Three types of
simulations were conducted at the structural scale. The first type were related to validating the
microstructure-property model. Previous to this work, the simulations using the microstructure-
property model have been correlative in nature. The simulations presented in this section were
completely predictive. In fact, all of the simulations were performed ahead of the experiments. In
the end, the finite element simulations matched rather well with the experimental results. The
second two types of simulations were related to the design of the control arm. Over twenty
boundary conditions and loading conditions were used to evaluate the design of the control arm
several years before this study started. We ran simulations on the two worst cast boundary and
loading conditions to show the usefulness of the microstructure-property model.

One item to keep in mind. Often, the Mises stress is used by analysts to determine the location
of failure. Discussed earlier was the how ductile damage progresses via the hydrostatic stress
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divided by the Mises stress. This would argue that as the Mises stress has an inverse affect on
the damage. However, in some cases (maybe many) the Mises stress will be the highest in
locations that have the highest tensile hydrostatic stress. In these cases, the Mises stress will
work; unfortunately, one does not know ahead of time if the Mises stress will be the primary
location of failure; it depends on boundary conditions, part geometry, and
microstructure/inclusion content. The microstructure-property model provides a safer design.

6.7.1. Validation Experiments/Analysis

In order to evaluate the predictive capability of the microstructure-property model within the
context of finite element modeling, control arm experiments were designed to validate the model.
Figure 6.37 shows the boundary conditions for the validation experiments of the control arm.
Two different control arms, labeled later as Control Arm 1 and Control Arm 2, were cast that
would ensure different levels of initial porosity. The microstructure/inclusion content was
quantified by NDE using radiography and by optical imaging and analysis. The pertinent features
of interest were the spatial location of the following entities:

. porosity volume fraction,

. pore size distribution,

. pore nearest neighbor distances,

. silicon particle volume fraction,

. silicon particle size distribution,

. silicon particle nearest neighbor distances, and
. dendrite cell size.

NN N R W=

Before analyzing the actual microstructure/inclusion content, future finite element analyses using
the microstructure-property model may not have the benefit of having radiography and optical
imaging. What should an analyst do in this case? To answer this question, several finite element
analyses were performed with different initial microstructure/inclusion levels so that an analyst
can see the relative differences in responses. Consequently, we ran several simulations in which
we varied the silicon particle size distribution and the porosity volume fraction with
homogeneous and random distributions throughout the control arm at levels of 0.001 and 0.0001.

Figures 6.38-6.41 illustrate the results of the damage distribution at first element failure. For ease
of discussion Figure 6.42 shows five regions of importance on the control arm. Several
conclusions can be drawn from the simulations. First, no difference in location or displacement at
failure was observed between the cases homogeneous versus random distributions except for the
case with an initially random porosity distribution with a level 0.001. All of the simulations
showed first element failure near Region 3 in Figure 6.42. In the case with an initially random
porosity at a level 0.001, Region 1 also experienced failure at the same elongation as Region 3.
The trend is evident. As the porosity level increases, the location of failure can change to that
region, especially if porosity gradients are observed. The comparable results of the homogeneous
to random distributions can be attributed somewhat to the component geometry inducing stress
concentrations and the boundary conditions applied. In the notch tensile tests described earlier in
this chapter, the trend was similar. One might expect differences in damage locations with the
random initializations if the stress concentrations from the component geometry were lessened.
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Figure 6.37. Boundary conditions for model validation tests.
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Figure 6.38. Failure prediction of control arm with random initialization for
silicon particle size and porosity sizes with initial perosttytevel at 0.0001.
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Figure 6.39. Failure prediction of control arm with homogeneous initialization for
silicon particle size and porosity sizes with initial porosity level at 0.0001.
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Figure 6.40. Failure prediction of control arm with random initialization for
silicon particle size and porosity sizes with initial porosity level at 0.001.
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Figure 6.41. Failure prediction of control arm with homogeneous initialization
for silicon particle size and porosity sizes with initial porosity level at 0.001.

Figure 6.42. Lower control arm casting showing five locations from which samples are extracted for metallography and computed
tomography analyses.
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The second conclusion one can draw from these simulations is related to the elongation at failure.
Because we prescribed the velocity at the load points, we can compare the displacements at
failure for the different simulations. In all four of the simulations, the final displacement for each
component of the velocity vector was 0.24 mm. Hence, first element failure occurred at the same
displacement regardless of the microstructure-inclusion initialization. From these simulations, it
is apparent that the distribution of the porosity and silicon sizes and volume fractions have a
second order influence on the results when compared to the boundary conditions and component
geometry, at least with those examined here. This conclusion cannot be made for every part but is
problem dependent as illustrated by the notch tensile tests/analyses. Furthermore, because the
calculation with the initially random porosity at a level of 0.001 incurred two failed regions, one
might strongly suspect that if the porosity level were higher that we would see Region 1 be the
location of failure at the expense of Region 3.

In the next set of calculations we initialized the microstructure/inclusion content with data from
radiography and optical imaging. Table 6.4 summarizes the microstructure/inclusion content for
the five regions on the control arm as discussed above.

Table 6.4. Summary of results for control arm microstructure/inclusion content from optical
images and radiography.

region %V, pore Nearest 3D Si Si density DCS
size neighbor | pore particle | (#/mm?)| (um)
(um) dist size Size
(um) (um) (um)
Control Arm 1 (optical imaging results)
1 2.35 67.3 315 129 5.8 7088 50
2 0.30 38.9 669 54 4.8 7557 -
3 0.19 38.8 652 56 4.9 7738 -
4 0.19 45.0 402 66 4.6 6950 39
5 0.31 44.8 395 55 4.6 7659 42
Control Arm 1 (Radiography results)
1 0.72 - - - - - -
2 0.33 - - - - - -
3 0.33 - - - - - -
4 0.33 - - - - - -
5 0.41 - - - - - -
Control Arm 2 (optical imaging results)
1 0.43 68.7 - - 4.7 4251 -
2 - - - - 5.2 5389 -
3 0.34 62.7 - - 4.8 6318 -
4 - - - - - - -
5 0.32 57.8 - - 4.7 6803 -
Control Arm 2 (Radiography results)
1 0.48 - - - - - -
2 0.33 - - - - - -
3 0.33 - - - - - -
4 0.33 - - - - - -
5 0.33 - - - - - -
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The results in Table 6.4 are averages of the at least three measurements for two different control
arms using optical imaging (Gokhale, 2000) and radiography (Dolan, 2000). Table 6.4 shows that
the radiography and optical imaging results are very close for each of the control arms. One can
see that the initial porosity volume fraction for Control Arm 1 is larger in certain regions than for
Control Arm 2. Moreover, these initial values are larger than those used for the results shown in
Figures 6.38-6.41.

Finite element simulations for Control Arms 1 and 2 were performed with the bounding limits of
the microstructures that were averaged in Table 6.4. Table 6.5 shows the lower and upper limits
of the quantitites measured by optical imaging in Regions 1 and 3. The other regions gave very
similar results and hence were included as limiting bounds for the rest of the control arm. The
simulation predictions for the failure locations were all near Region 1 but the previous
calculations in which homogeneous or random distributions were used with a much lower initial
void volume fraction incurred failure in Region 3. This was mainly due to the initial void volume
fraction and not the assumption of the homogeneous or random distribution. The experiments for
both control arms showed that they failed in Region 1. Figures 3.43-6.44 show the results for
Control Arm 1 with the best and worst initial microstructure/inclusion content. Figures 3.45-6.46
show the results for Control Arm 2 with the best and worst initial microstructure/inclusion
content. The exact location of failure initiation in the control arm was document by video during
the testing. Figure 6.47 shows that Region 1 did indeed fail first followed by the fracture of that
strut. The parallel strut then fractured as shown in Figure 6.47. This verified the predictability of
the microstructure-property model.

Table 6.5. Summary of mininum/maximum optical image results for control arms
microstructure/inclusion content.

| Region 1 | Region 3 | Other regions
Control Arm 1
attribute min max min max min max
%Vv 0.003 0.1118 [ 0.0001 [ 0.0032 0 0.0006
1
Pores size 34 118 25 63 0 67
Particle 4.5 7.1 4.5 5.5 4.1 5.2
size
DCS 49 54 40 54 40 40
Control Arm 2
%Vv 0.00085 [ 0.005 [ 0.00095 [ 0.0056 | 0.00015 | 0.0069
Pores size 29 100 43 82 31 82
Particle 4.6 49 4.4 5.2 4.5 5.2
size
49 54 40 54 40 40
DCS

For the calculations using the minimum values for the microstructure/inclusion content, the region
of failure in both control arms was Region 1. However, in Control Arm 1, Region 3 failed shortly
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after Region 1. For the maximum values, two different results arose for the different control arms.
The calculation for Control Arm 1 showed failure in Region 3, but the calculation for Control
Arm 2 showed failure in Region 1 for the maximum values. These trends are similar to the results
discussed earlier in which the initial void volume fraction appears to drive final failure up to a
point. When the void volume fraction is low enough, final fracture is dependent upon silicon.

We also took specimens from these different regions and tested them under monotonic uniaxial
tension (Table 6.6). Note that the stress state experienced by the control arm under the boundary
conditions considered was not uniaxial but was a multiaxial stress state. What is clear in these
data is the ambiguity in the results. First, the stress state in the uniaxial test specimens is not the
same as in the control arm. Second, these data give a wide range of scatter that makes it difficult
to assess the final elongations at failure microstructure-property relations. Third, it is not really
clear which control arm is “better” in terms of structural performance based on these data. If
Region 1 were the first location of failure, one would not expect that from this data. Since
Regions 3 and 4 have the lowest elongations at failure, a designer/analyst would be tempted to
pick those locations to redesign. The moral of this story is that taking uniaxial tensile data from
specimens from a structural component could give erroneous and, at best, tenuous information
about designing a control arm.
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Figure 6.43 Comparison of microstructure-property model failure prediction (damage=DSV14) with experiment for
Control Arm 1. The best case microstructure/inclusion content was assumed in the calculation.
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Figure 6.44 Comparison of microstructure-property model failure prediction (damage=SDV 14) with experiment for
Control Arm 1. The worst case microstructure/inclusion content was assumed in the calculation.
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Figure 6.45 Comparison of microstructure-property model failure prediction (damage=SDV14) with experiment for
Control Arm 2. The best case microstructure/inclusion content was assumed in the calculation.
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Control Arm 2. The worst case microstructure/inclusion content was assumed in the calculation.

Table 6.6. Summary of % strains at failure taken from uniaxial tension experiments in which

specimens within the five regions of the control arm were extracted.

Region Control Arm 1 (min-max) Control Arm 2 (min-max)
1 6.3-8.6 6.1-9.7
2 1.6-10.1 6.9-9.3
3 4.7-7.1 10.8-23.4
4 4.0-8.6 4.2-8.5
5 6.3-16.1 9.8-16.2

6.7.2. 0.8 g Panic Brake Analysis

One of the worst case design scenarios comes from the 0.8 g panic brake condition. Boundary and
loading conditions were applied to the control arm, as shown in Figure 6.48, in a finite element
simulation that used the microstructure-property model. Figure 6.49 shows the Mises stress
contours at failure, and Figure 6.50 shows the damage level contours at failure. Designers
sometimes use the Mises stress to determine the failure locations. This can be dangerous since

the final location of failure can be different than the highest Mises stress. Voids grow and
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Figure 6.47. Experiment control arm test showing that (a) the strut with Region 1 failed before
the(b) other strut as illustrated in (c) the diagram.
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coalesce where the highest stress triaxiality occurs, which is defined as the hydrostatic stress over
the Mises stress. Hence, hydrostatic stress is more of an indicator of failure than the Mises
stress. In notch tensile specimens, the location of final failure starts at the center of the notch
where the triaxiality is the highest. The same is true in these control arm simulations. Figure 6.49
shows several locations where the Mises stress is the highest, but Figure 6.50 shows one
particular region where first failure will occur. The design can be optimized better if damage is
used instead of the Mises stress. Although the Mises stress is high near the first failure region,
many times it may not be, so Mises stress can be a false indicator of failure locations.

6.7.3. Pothole Strike Analysis

The pothole strike is another worst case loading/boundary condition used for design of the
control arm. Boundary and loading conditions for the pothole strike were applied to the control
arm, as shown in Figure 6.51, in a finite element simulation that used the microstructure-property
model. Figure 6.52 shows the Mises stress contours at failure, and Figure 6.53 shows the damage
level contours at failure. Although the boundary/loading conditions were different than the 0.8 g
panic brake analysis, the results were very similar. In fact, the first failure location was observed
in the same location as that from the 0.8 g panic brake analysis. Here again, the Mises stress
shows peak values in several regions, but the actual failure occurs in one local region.

1536 N-mm

o,
= 5199 N-mm

37979 N-mm

%13725 N
2562 N-mm

6603 N

)jlwa N
9913 N-I

_—
603 N

Figure 6.48. Boundary conditions for 0.8g panic brake analysis.
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6.7.4. Optimization of Control Arm

Based on the simulations using the microstructure-property model we optimized the control arm
using the pothole strike/0.8 g panic brake analyses boundary/loading conditions. Here, we define
"optimized" to mean that we reduced the total weight of the control arm by reducing mass from
regions that were overdesigned. Alternatively, we add mass to regions where the damage was the
highest. Overall a weight reduction of approximately 26% was achieved. Interestingly, in the
original design much of the control arm was still in the elastic region when failure was first
observed in the regions shown in Figures 6.50 and 6.53. Hence, mass in these regions was reduced
just to allow the component to uniformly reach yield under the boundary/loading conditions used
here. Figure 6.54 shows the regions in which mass was reduced according to Table 6.7, and
Figure 6.55 shows the lightweight design. Hence, the weight was reduced from 2.92 kg to 2.18 kg.

Table 6.7 Summary of regions with their corresponding mass on control arm.

Region Initial mass (kg) Final mass (kg)
1 0.31951 0.22952
2 0.070447 0.055449
3 0.10408 0.078174
4 0.10408 0.073174
5 0.41132 0.25452
6 0.13635 0.10226
7 0.49859 0.36178
8 0.31860 0.23907
9 0.26452 0.19771
10 0.022270 0.022270
11 0.050904 0.065903
12 0.0090900 0.0086355
13 0.20271 0.19134
14 0.12726 0.095445
15 0.12726 0.095445
16 0.020453 0.015453
17 0.039996 0.029997
18 0.0095445 0.0000
19 0.099990 0.055994
20 0.030906 0.0000

Total 2.922 2.177
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Figure 6.49. Mises stress contours for 0.8 g panic brake using microstructure-property model.

DAMAGE VALUE
a

0.0

0.14
0.28
0.42
0.56
0.70
0.85
0.99
113
1.27
1.41
155
1.69

S

Figure 6.50. Damage contours for 0.8 g panic brake using microstructure-property model.
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Figure 6.51. Boundary conditions for pothole strike.
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Figure 6.52. Mises stress contours for pothole strike using microstructure-property model.
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Figure 6.53. Damage contours for pothole strike using microstructure-property model.
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Figure 6.54. Control arm regions designated for reduced weight opportunities.
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Figure 6.55. Picture of optimized, lightweight design.

Figure 6.56 shows a load-displacement comparison of control arm 1, control arm 2,
and the new lightweight design. In Figure 6.56, one can examine that two major
peaks arise for each specimen. These two peaks correlate with the fracture of the two
struts on the control arms as observed in Figure 6.47. The first fracture site
corresponds to Region 1, and the second site corresponds to the strut opposite of
Region 1. Hence, for a designer the first peak is most important since an elastic
design is assumed here. We should note that all of the control arms failed in the same
Region 1. Several replicates were performed on each test showing less than 10%
difference on the peak loads at first damage initiation. On average, Control Arm 1
exhibited a design load of 48 kN (10850 lbs); Control Arm 2 exhibited a design load
of 45 kN (10200 1bs); and the lightweight design exhibited a design load of 70 kN
(15700 lbs), approximately a 40% increase in load-bearing capacity!
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Figure 6.56. Load-displacement comparison of different control arms.
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7. SUMMARY

Previous material models used in finite element analyses for elastic and plastic responses
cannot capture changing history effects from temperature, strain rate, damage states, and
deformation paths. For example, power law forms for plasticity are limited in this scope.
Presented in this work is a microstructure-property material model that has been
implemented and used in finite element codes that reflects microstructural behavior so
that material history effects and damage progression are captured, thus enabling an
accurate, predictive tool. A multi-length scale approach, from atoms to large structural
scale analyses, to relate the key microstructural features to the mechanical properties.

The specific inputs to microstructure-property model include the following:
(1) silicon volume fraction

(2) silicon particle size distribution

(3) pore volume fraction

(4) pore size distribution

(5) pore nearest neighbor distance

(6) dendrite cell size distribution

The material constants were determined from:

(1) varying strain rate and temperature compression tests
(2) tension tests

(3) torsion tests

The validation tests include the following:
(1) notch tensile tests

(2) Bauschinger effect tests

(3) control arm component tests

The microstructure-property model is capable of capturing the same trends for other
castings, such as magnesium or iron, for forgings, and for any wrought material because
the mechanisms are similar to this A356 aluminum alloy. Experiments would be needed
to determine the material constants. If some experiments are not available, the
microstructure-property model can still be used without that particular feature. In fact,
the microstructure-property model can be reduced all the way back to just an elastic
model if so desired without loss of generality. The model was validated by component
scale experiments and was used to optimize a part. Moreover, the microstructure-
property model can be used for more just design purposes. It can be used for
crashworthiness and impact analyses.
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APPENDIX A. MICROSTRUCTURE-PROPERTY MODEL CONSTANTS

Microstructure-property model constants for Al-Si-Mg castings with varying amounts of silicon
are shown in Table A.1. The 1% silicon represents the dendritic aluminum material. The 7%
silicon represents the cast A356 aluminum alloy. The 12% silicon represents the eutectic

material.

Table A.1. Microstructure-property (elastic-plastic) model constants for Al-Si-Mg castings with

varying amounts of silicon.

Constant 1% silicon 7% silicon 12% silicon
shear modulus 25920 25920 25920
(MPa)
bulk modulus (MPa) 67630 67630 67630
density (kg/m’) 2700 2700 2700
C1 (MPa) 0 53.09 53.09
C2 (K) 0 945.3 945.3
C3 (MPa) 142.5 1559 1559
C4 (K) 51.8 110.5 110.5
C5 (1/sec) le-5 le-5 le-5
C6 (K) 0 0 0
C7 (1/MPa) 0.00392 0.001128 0.0008704
C8 (K) -1731 -1796.2 -1877
C9 (MPa) 42630 4820 4820
C10 (K) 129.6 10.94 8
Cl11 (sec/MPa) 0 0.002385 0.01369
C12 (K) 0 1441 2000
C13 (1/MPa) 0.224 0.001674 0.00001644
C14 (K) 898.5 0 1000
C15 (MPa) 2305 2818 2818
C16 (K) 1.48 4.622 4.622
C17 (sec/MPa) 0 0 0
C18 (K) 0 0 0
C19 0 -5 -7
C20 (K) 0 -0.3895 -0.3776

Note: base units in MPa, m, s, K.
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Table A.2. Microstructure-property (damage) model constants for A356 aluminum alloy.

Constant A356
C21 428
C22 37.97
C23 0.0035
C24 0.009
n 3
initial small void radius (m) 2e-6
a (MPa) 61546
b (MPa) 58640
¢ (MPa) 30011
Coett 86.6
fracture toughness (MPa-mm*0.5) 17.3
silicon particle size (m) 4e-6
silicon volume fraction 0.07
DCSO0 (um) 20
z 0.0509

Note: base units in MPa, m, s, K.



APPENDIX B. FAILURE STRAIN MAPS BASED ON THE INITIAL MICROSTRUCTURE

The following set of design failure maps based on the strain to failure were generated from the microstructure-property that was
validated by several experiments from idealized cast plates and from real automotive components. Each failure strain level was
determined with different initial silicon particle sizes and with different initial void volume fraction of porosity. They are to be
used as a guide. The parameters that were varied include:

(1) temperature (222 K, 297 K, and 394 K)

(2) applied strain rate (2e-4/sec and 1000/sec)

(3) dendrite cell size (20 wm, 50 um, and 100 pm)

(4) deformation path (uniaxial tension, biaxail tension, and plane strain)
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Table B.1. List of failure strain maps.
map temp.‘ DCS| strain rate (1/s)|loading

‘ (K)| (mm)
1 297 20 0.0002 uniaxial
2 297 20 0.0002 biaxial
3 297 20 0.0002 plane strain
4 297 20 1000 uniaxial
5 297 20 1000 biaxial
6 297 20 1000 plane strain
7 297 50 0.0002 uniaxial
8 297 50 0.0002 biaxial
9 297 50 0.0002 plane strain
10 297 50 1000 uniaxial
11 297 50 1000 biaxial
12 297 50 1000 plane strain
13 297 100 0.0002 uniaxial
14 297 100 0.0002 biaxial
15 297 100 0.0002 plane strain
16 297 100 1000 uniaxial
17 297 100 1000 biaxial
18 297 100 1000 plane strain
19 222 20 0.0002 uniaxial
20 222 20 0.0002 biaxial
21 222 20 0.0002 plane strain
22 222 20 1000 uniaxial
23 222 20 1000 biaxial
24 222 20 1000 plane strain
25 222 50 0.0002 uniaxial
26 222 50 0.0002 biaxial
27 222 50 0.0002 plane strain
28 222 50 1000 uniaxial
29 222 50 1000 biaxial
30 222 50 1000 plane strain
31 222 100 0.0002 uniaxial
32 222 100 0.0002 biaxial
33 222 100 0.0002 plane strain
34 222 100 1000 uniaxial
35 222 100 1000 biaxial
36 222 100 1000 plane strain
37 394 20 0.0002 uniaxial
38 394 20 0.0002 biaxial
39 394 20 0.0002 plane strain
40 394 20 1000 uniaxial
41 394 20 1000 biaxial
42 394 20 1000 plane strain
43 394 50 0.0002 uniaxial
44 394 50 0.0002 biaxial
45 394 50 0.0002 plane strain
46 394 50 1000 uniaxial
47 394 50 1000 biaxial
48 394 50 1000 plane strain
49 394 100 0.0002 uniaxial
50 394 100 0.0002 biaxial
51 394 100 0.0002 plane strain
52 394 100 1000 uniaxial
53 394 100 1000 biaxial
54 394 100 1000 plane strain
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