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Abstract

The work in this report was a five year effort to foster fundamental advances in microstructure-
property fatigue relations of a cast A356-T6 aluminum alloy. We identified and quantified
microstructure-property relations and then developed a mathematical tool for fatigue analysis of
a cast A356-T6 aluminum alloy that is used in automotive structural components. We focused on
three main areas of research: a wide variety of cyclic experiments in which specimens were
examined with scanning electron microscopic imaging, finite element micromechanical modeling,
and the development of a macroscale microstructure-property model for fatigue. Collaborations
with Lawrence Livermore National Laboratory (LLNL) and Oak Ridge National Laboratory
(ORNL) were important to this work. LLNL provided quantitative data for casting pore size,
distribution, volume fraction, and nearest neighbor distance using nondestructive methods. ORNL
performed solidification modeling of the casting process and provided insight into the silicon
particle size, distribution, and volume fraction; the pore size, distribution, volume fraction, and
nearest neighbor distance; and the dendrite cell size.
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From Atoms to Autos
A New Design Paradigm Using Microstructure-Property Modeling

Part 2: Cyclic Fatigue

EXECUTIVE SUMMARY

The work in this report, performed by Sandia National Laboratories (SNL) in collaboration with
Georgia Institute of Technology, was a five year effort to foster fundamental advances in
microstructure-property fatigue relations of a cast A356-T6 aluminum alloy. The goal was to
identify and quantify microstructure-property relations and then develop mathematical tools for
fatigue analysis of a cast A356-T6 aluminum alloy that is used in automotive structural
components. This comprehensive experimental-computational fatigue study was conducted in
parallel with developing microstructure-property relations for monotonic loading conditions,
covered in a companion report (Microstructure-Property Relations for a Cast A356 Aluminum
Alloy). We focused on three main areas of research: a wide variety of cyclic experiments in which
specimens were examined with scanning electron microscopic imaging, finite element
micromechanical modeling, and the development of a macroscale microstructure-property model
for fatigue. Collaborations with Lawrence Livermore National Laboratory (LLNL) and Oak Ridge
National Laboratory (ORNL) were important to this work. LLNL provided quantitative data for
casting pore size, distribution, volume fraction, and nearest neighbor distance using
nondestructive methods. ORNL performed solidification modeling of the casting process and
provided insight into the silicon particle size, distribution, and volume fraction; the pore size,
distribution, volume fraction, and nearest neighbor distance; and the dendrite cell size.

The mechanical, physical, and casting properties of this A356 aluminum alloy make it attractive
for use in cheaper and lighter engineering components. However, to successfully use cast A356 in
long life components, it is necessary to understand its resistance to fatigue. The standard method
in determining failure locations is to perform finite element analysis to obtain the highest
stresses/strains in a particular region of the material. Some material from that region is then
extracted and small coupons are extracted for uniaxial, completely reversed tension-compression
fatigue tests. These results are used to estimate the life of the component. Other material
typically adjacent to the coupons is extracted for microstructure/inclusion analysis.
Unfortunately, regions that may be important from the stress analysis may not be important to
the microstructural analysis. More importantly, it is the combination of the
microstructure/inclusion content with the stress analysis that is needed to determine a precise
location for fatigue failure. Figure 1.1. illustrates the point. In this figure, Region D illustratively
shows the highest stressed region. If finite element analysis alone were used to determine the
failure location during design, then Region D would be the region of interest. However, Region B
shows the most severe inclusion. If microstructural analysis alone were used to determine the
failure location during design, then Region B would be the region of interest. A relationship that
demonstrates the clear connection between the microstructure/inclusion content and mechanical
properties are necessary, because neither of these locations may in fact be the location of the
failure region. Figure 1.1 shows that the relationship between microstructure/inclusion content
combined with the stress/strain state would induce failure in Region A, where neither the highest
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stresses nor most severe inclusion exists. Our work clearly demonstrates the relationship
between the microstructure/inclusion content and the fatigue properties of a cast A356 aluminum
alloy.

The cast A356 aluminum alloy is a highly heterogeneous ductile matrix composite materials with
several dominant types of inclusions that dictate fatigue resistance. We use the term inclusion as
distinctly different from a crack, as the former occur naturally as products of the casting process,
while the latter are usually a result of applied loading. Silicon particles are much

Figure 1. Illustration of control arm showing locations of the highest stress, worst inclusion, and most
severe damage location showing that the combination of stress state and inclusion type both matter
to where final failure will occur.

stiffer than the surrounding eutectic aluminum rich matrix and deform elastically, reinforcing the
matrix. The matrix is an elastic-plastic material with a low work hardening behavior and is
therefore subject to plastic shear strain localization; aluminum exhibits wavy slip behavior
(extensive cross slip) and is well approximated using an initially isotropic yield surface with
nonlinear kinematic hardening, notwithstanding mild rate sensitivity at room temperature. The
extent of reinforcement and the nucleation of crack-like defects depend on the interface strength
between the particles and matrix. The microporosity levels engendered by entrapped hydrogen
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gas in the melt, which grow in concert with the dendrite cell size (secondary dendrite arm
spacing) as microstructure coarsens with solidification, also contribute significantly to the
localization of cyclic plastic shear strain in the interdendritic regions under fatigue loading. Both
gas pores and shrinkage pores affect the local intensification of cyclic plastic strain and
fatigue/fracture resistance of the alloy. Large shrinkage pores are especially potent in degrading
the fatigue resistance; they serve as sites for formation of particularly large cracks that then
propagate to premature failure. Finely distributed intermetallics and oxides in the matrix affect
the rate of crack propagation of small fatigue cracks and overall ductility. Large scale oxide films
are highly prone to forming large fatigue cracks that then propagate rapidly to premature failure.
Advances in casting technology have continuously improved control of the largest pore size and
have minimized the introduction of oxide films into the pour in order to enhance ductility and
fracture/fatigue resistance. Nevertheless, our task was to develop a macroscale microstructure-
property model for fatigue that includes all of these types of inclusions.

For the microstructure-property fatigue model, we designate the inclusions in descending order of
deleterious effect as the following: (1) When pores/oxides are larger than 200 microns, (2)
pores/oxides larger than 100 microns near the free surface, (3) pores/oxides between 60-90
microns with a large volume fraction of porosity, (4) small pores/oxides below 60 microns with a
large volume fraction of porosity, and (5) small pores/oxides with a low volume fraction of
porosity. These categories signify when different casting features dominate the fatigue life, and
they are included in the macroscale microstructure-property fatigue model. In fact, Figure 1.2
illustrates the model’s calibrated predictions for each type of inclusion. Note that the final
number of cycles decreases with increasing level of inclusion severity.

The microstructure-property fatigue model was developed with the following loading
environments in mind:

1. Low cycle fatigue
2. High cycle fatigue
3. Mean stress effects
4. Periodic overloads
5. Multiaxial stress effects

In order to capture the responses arising from these various cyclic loading environments, we
compartmentalize the fatigue life into four stages. First, we model the incubation stage of fatigue
crack growth. Incubation is defined as the number of cycles to initiate a fatigue crack. This is
typically not included in fatigue modeling. Most models assume an initial crack size. The second
stage is the Microstructurally Small Crack (MSC) in which the crack initiates on the order of a
micron. The crack will then grow until it reaches a Physically Small Crack (PSC) stage. This
occurs on the order of up to several dendrite cell sizes. It has been noted in the literature that 60-
80% of the life is spent in these three domains. In fact, some researchers have combined these
three stages into one and called it crack initiation. We separate these stages, because
mathematically they differ. The crack will then grow into a Long Crack (LC) in which Paris Law
type of analyses will work. The microstructure-property model is used for several different
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initial inclusion sizes. We should mention that although we focus on a cast A356 aluminum alloy,
other materials and alloys could be analyzed with this same modeling framework.

Figure 2. Plot of crack length versus number of cycles for different dominant inclusion
 types that drive the final fatigue failure.

In order to understand the microstructure/inclusion content on the fatigue life of each stage of this
material, we conducted a comprehensive experimental program. Out intent for the experiments
was to explore and quantify the small and long crack behaviors for different strain amplitudes,
mean stresses, and loading sequences. Furthermore, scanning electron microscope (SEM)
analyses were performed on many of these experimental specimens so that correlation between
the microstructure and fatigue stage could be ascertained. The following type of experiments were
conducted:

1. Smooth specimen, strain-life and stress-life experiments
2. Multiaxial fatigue
3. Small crack experiments
4. Long crack experiments
5. Mean stress experiments
6. Sequence experiments
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Of importance here was the quantification of different stages of fatigue cracks as a function of the
dendrite cell size, porosity volume fraction, inclusion size that induced final failure fatigue crack,
nearest neighbor distance, distance to free surface, and applied strain level. Cast plates were
meticulously made in which these microstructures/inclusions were quantified upon testing.

With such a myriad of heterogeneities and factors that contribute to fatigue resistance, it is easily
understood why separation of these attributes is difficult from an experimental viewpoint. Due
to the large range of length scales and types of inclusions, which may be present in a given
casting, two important observations are worth mentioning. First, the fatigue life for a given
loading condition may vary substantially over a range of specimens obtained from nominally the
same casting (a factor of ten variation is not uncommon) even under Low Cycle Fatigue (LCF)
conditions, quite distinct from wrought alloys. Second, experiments can lead to ambiguous
outcomes with regard to controlling mechanisms of fatigue crack formation and propagation
through the microstructure because cracks can form at unknown locations within the bulk and
propagate undetected by surface inspection through much of the fatigue life, especially in High
Cycle Fatigue (HCF); it is difficult to perform enough experiments to obtain sufficient
quantitative observations of fatigue crack formation and early propagation through the
microstructure for each inclusion type to formulate truly interpolative or extrapolative empirical
fatigue life estimation schemes that contain microstructure parameters. Furthermore, artificially
introduced inclusions (e.g. machined surface cracks) do not behave in like manner to naturally
occurring cracks, particularly for lower scale inclusion types.

What the experiments did not provide (even with scanning electron microscopy imaging of the
failure surfaces), the micromechanical finite element simulations did. Because quantification of the
crack incubation and small crack formation stage experimentally is extremely difficult,
micromechanical finite element simulations were used to help clarify our understanding of the
microstructure-property relations and provide the needed information for the development of the
microstructure-property fatigue model. Since quantification of the local cyclic plastic strain in the
microstructure is essential in driving fatigue crack initiation, we focused on that aspect in the
micromechanical finite element analyses using both idealized geometries and realistic geometries
for the microstructure/inclusion morphology. In particular, we examined the effects of applied
stress amplitude, microstructure-inclusion content on the maximum plastic shear strain for crack
incubation and the cyclic crack tip opening displacement for MSC/PSC crack propagation. For
the MSC/PSC crack propagation regimes, we also analyzed the effects of particle shape, particle
size, particle nearest neighbor dimension, particle distribution, dendrite cell size, pore size, pore
shape, pore nearest neighbor distance, and pore distribution. In this context we examined such
characteristics as crack driving force and crack closure behavior. These analyses were based on
sophisticated constitutive laws with experimentally determined material constants for the Al 1%
Si dendritic matrix region and A356 aluminum alloy under cyclic loading. The results showed
excellent agreement with experimental observations and gave insight into the microstructural
behavior for LCF and HCF regimes.
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In summary, a synergistic program that included experiments, micromechanical finite element
modeling of local microstructures, and macroscale modeling of the microstructure-property
relations in fatigue gave definitive results for optimizing the design of structural cast components.
We developed relations that contain explicit treatment of each inclusion type in order to offer a
link between quantitative characterization of inclusion populations and fatigue life estimates,
including the variability of fatigue life. Such relations provide a link to the foundry to help guide
the selection of section thickness, impurity and gas level controls, solidification rates, and other
parameters, especially when used in concert with predictive models for pouring, mixing, and
microstructure evolution during solidification which have been developed in the ORNL part of
the USCAR program.  A shown in Figure 3, this type of modeling effort has proven successful
here an increase in load-bearing capacity (by 40%) was exhibited with the optimized, lightweight
design (25% lighter) and the fatigue life was lengthened.
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Figure 3. (a) Load-displacement and (b) load-life curves of control arms before 
and after CRADA work.
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This five year effort was performed under the DOE USCAR-USAMP CRADA including collaborations with LLNL,
ORNL, and Georgia Tech.  An American Foundrymen’s Society award for technical excellence and an R&D 100
award were received as a result of this work.
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1. INTRODUCTION

The Partnership for New Generation Vehicles (PNGV) has mandated that a mid-size automobile
be developed in mass production mode in order to achieve greater gas mileage (80 mpg). This is
motivated by greater emission requirements and less reliance on foreign oil sources. To achieve
this unprecedented milestone in a mass produced automobile, weight reduction is a necessity. Of
particular interest are the chassis components, which have been chosen to be a focal point of
weight reduction by the USCAR-USAMP Lightweight Metals Group. This group has identified
the cast A356 aluminum alloy to be the material of choice for the chassis components.

Different methods exist to manufacture cast A356 components, and each of the methods
introduces a different level of casting porosity. The modeling effort described in this report must
account for all the possible scenarios of microstructure/inclusion sizes, distributions, and nearest
neighbor distances. As such, it is worth briefly describing the different casting processes for
context. Castings with the least amount of porosity typically come from squeeze casting. Like all
the other casting processes considered here, squeeze casting uses fully liquid metal as the feed
material. Squeeze casting is characterized by slow filling rates, minimum turbulence, and high
pressure throughout solidification thus lowering the amount of shrinkage porosity. High pressure
die casting is popular because it can produce thin walls, great detail, and good dimensional
control at a fairly low cost. High pressure die casting is characterized by high pressure during
casting compacting trapped pores to small sizes. In vacuum die casting, the dies are evacuated
and sealed before the gate is open. The molten metal is forced in by atmospheric pressure.
Shrinkage porosity is generally occurs in isolated regions of the casting. In semi-solid metal
castings, a partially solidified alloy is introduced into the die and is agitated during flow to
produce a rounded, global microstructure. It is used to produce thin sections and high integrity
structural components, although this method is a bit expensive. Tilt Pour mold castings are
characterized by a gravity pour into a permanent (or semi-permanent sand core). Vacuum
riserless castings is a low pressure casting process that has been used for automotive chassis and
suspension components. Lost foam castings come from another low pressure method that uses
foam for the mold. This inexpensive process can give significantly large porosity levels than the
others. All of these processes are used depending on the necessary design requirements and cost
constraints.

Aluminum castings have a rich history of successful use in the automotive and aircraft industry
in that they are lightweight, fairly inexpensive, and are well tested. However, because of their
complex microstructure, understanding the mechanical response has been elusive and thus
greater safety factors in design are needed. Unfortunately, increased safety factors mean
increased weight. The typical method to design a component under fatigue. Finite element
analyses are typically performed to determine the highly stressed regions and then microstructure
analysis and experiments are performed in those regions. However, other regions that have worse
inclusions could fail sooner than the expected higher stressed region. Alternatively, if only the
worst microstructural regions were analyzed, the critical failure location could also be missed
since the stresses from the finite element analyses are not considered. Hence, the goal of this
work is twofold: to understand the microstructure-property cause-and-effect relationships and to
develop a microstructure-property fatigue model. Hence, a chassis designer could use the
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microstructure-property fatigue model to more precisely design components without such large
safety factors. Consequently, a lighter, safer component could be designed.

1.1. MODELING PHILOSOPHY

In recent years there has been a strong research initiative by the automotive industry to improve
the performance of cast aluminum components. One critical aspect of optimizing design is to
understand and quantify damage progression under fatigue loading conditions. Developing the
ability to predict cyclic damage progression is imperative for the design of components that will
experience overloads during service due to impacts, rough ground, and crash environments. The
ability to predict fatigue damage is rooted in the ability to understand the inclusion content and
microstructure's influence on the mechanical response.

Cast Al-Si-Mg alloys are highly heterogeneous ductile matrix composite materials with several
types of inclusions that dictate fatigue resistance. We use the term inclusions to distinguish them
from cracks, as the former are naturally occurring constituents of the casting process, while the
latter are usually a result of applied loading.  First, eutectic Si particles are much stiffer than the
surrounding eutectic Al-rich matrix and deform elastically, reinforcing the matrix. The matrix is
an elastic-plastic material with a low work hardening behavior, and is therefore subject to plastic
shear strain localization; aluminum exhibits wavy slip behavior (extensive cross slip) and is well-
approximated using an initially isotropic yield surface with nonlinear kinematic hardening,
notwithstanding mild rate-sensitivity at room temperature. The extent of reinforcement and the
nucleation of crack-like defects depends on the interface strength between the particles and
matrix. Second, the microporosity levels engendered by entrapped hydrogen gas in the melt,
which grow in concert with the dendrite cell size (secondary dendrite arm spacing) as
microstructure coarsens with solidification time (cf. Major, 1994; Tynelius et al., 1993), also
contributes significantly to the localization of cyclic plastic shear strain in the eutectic regions
under fatigue loading conditions. Both gas pores and shrinkage pores affect the local
intensification of cyclic plastic strain and fatigue/fracture resistance of the alloy. Large shrinkage
pores are especially potent in degrading the fatigue resistance, as they serve as sites for formation
of particularly large cracks which then propagate to premature failure. Third, finely distributed
intermetallics (cf. Gall et al, 2000b) and small oxides (Wang et al., 1998) in the matrix affect the
rate of crack propagation of small fatigue cracks and overall ductility. Finally, large scale oxide
films offer high potential to form fatigue cracks of the same length scale which then propagate
rapidly to premature failure. Clearly, advances in casting technology have continuously
improved control of the largest pore size and have minimized the introduction of oxide films into
the pour in order to enhance ductility and fracture/fatigue resistance.

With such a myriad of heterogeneities and factors that contribute to fatigue resistance, it is easily
understood why separation of these variables is difficult from an experimental viewpoint. Due to
the large range of length scales and types of inclusions, which may be present in a given casting,
there are two relevant observations:

•      The fatigue life for a given loading condition may vary substantially over a range
of specimens obtained from nominally the same casting (a factor of 10 variation is
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not uncommon), even under Low Cycle Fatigue (LCF) conditions, quite distinct
from wrought alloys.

•      Experiments often lead to ambiguous outcomes with regard to controlling
mechanisms of fatigue crack formation and propagation through the
microstructure because cracks can form at unknown locations within the bulk and
propagate undetected by surface inspection through much of the fatigue life,
especially in High Cycle Fatigue (HCF); it is difficult to perform enough
experiments to obtain sufficient quantitative observations of fatigue crack
formation and early propagation through the microstructure for each inclusion
type to formulate truly interpolative or extrapolative empirical fatigue life
estimation schemes that contain microstructure parameters. Furthermore,
artificially introduced defects (e.g. machined surface cracks) do not behave in like
manner to naturally occurring cracks, particularly for smaller inclusion types.

The last point is important. We desire microstructure-property fatigue model that contain explicit
treatment of each inclusion type in order to offer a link between quantitative characterization of
inclusion populations and fatigue life estimates, including the variability of fatigue life. Such a
treatment also may provide a link to the foundry to help guide the selection of section thickness,
impurity and gas level controls, solidification rates, etc., especially when used in concert with
predictive models for pouring, mixing and microstructure evolution during solidification.

Because of the cooperative synergism of the microstructure and stresses/strains from the loading
conditions, it is important to include microstructures/inclusions in an analysis. This can be
illustrated in Figure 1.1. Figure 1.1 clearly illustrates that in one location, A, the highest stress
may result, and in another location, B, the most deleterious inclusion may result. Yet, the critical
location for failure may be neither as the combination of lesser values for both at location C
would be the critical location for failure. As such, a hierarchical classification of inclusion
severity on fatigue life is introduced here. Five inclusion types and associated range of length
scales are listed as follows, according to the order of ascending level of severity:

Type Inclusion
A Distributed microporosity and silicon particles: no significant pores or oxides
B High levels of microporosity: no large pores or oxides (length scale < 60 µm)
C Large Pores (length scale > 60-90 µm)
D Large Pores near the free surface; no large oxides (length scale < 100 µm)
E Large oxides (length scale greater than 200 µm)

Figure 1.2 illustrates the microstructure-property fatigue model’s calibrated predictions for each
type of inclusion. Note that the final number of cycles decreases with increasing level of
inclusion severity and the character of the function changes with inclusion type.



1-4

1.2. MATERIAL: CAST A356 ALUMINUM ALLOY

The cast A356 aluminum alloy has a work hardenable aluminum matrix with the major second
phase being silicon particles in the eutectic region. The aluminum alloy comprises 7% Si, 0.4%
Mg, 0.01% Fe, 0.01% Cu, 0.01% Mn, 0.01% Sr, 0.01% Ti, and 0.01% Zn. The material used for
this study was retrieved mainly from cast horizontal plates, although we also used data from
actual automotive cast components and data from the literature. All of these A356 castings had a
T6 annealing. In the eutectic regions, large silicon particles and clusters form a dendritic
substructure while the Si remains solutionized in the proeutectic phase. Solidification rate,
modification, and heat treatment all dictate the morphology and size of the Si substructures.
Faster solidification rates decrease the average dendrite arm spacing (DAS) or equivalently the
dendrite cell size (DCS) (Spear, 1963). The controlled addition of modifiers such as pure
strontium has little effect on dendrite arm spacing, but can spherodize elongated Si particles
(Hess and Blackman, 1975). Prolonged exposure to a solutionizing temperature (~ 800 K) after
casting modifies the Si particle morphology (Meyers, 1986). The aforementioned microstructural
alterations have a strong influence on the mechanical properties.

The plates of A356 aluminum (20 cm by 14 cm by 5 cm) were cast in iron chill molds on the top,
bottom, and end of the casting cavity to simulate a permanent mold. A no-bake silica sand was
used to create the sides of the plate, the riser, and the down sprue. A ceramic foam filter was
used between the down sprue and the riser. A356.2 ingot was melted in an induction furnace.
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The melt was grain refined with titanium-boron, modified with strontium, and degassed using a
rotary degasser. The castings were poured between 950 K and 977 K, and then cooled over a 16
hour period. The plates were removed from the mold and then heat treated to a T6 anneal
(solutionized at 810.8 K for 16 hrs, quenched in hot water at 344 K, and then aged for 4 hours at
492.7 K). The microstructure contained aluminum rich dendrite cells, equiaxed fine silicon
particles distributed within the eutectic regions, and submicron intermetallics.

Figure 1.2. Plot of crack length versus number of cycles for different dominant inclusion types that drive the final fatigue failure.
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2 Microstructure-Based Fatigue Model for Cast A356-T6 Alloy 
 
2.1  Mechanisms of Fatigue of Casting Alloys 
 
Fracture mechanics, particularly Linear Elastic Fracture Mechanics (LEFM), has been used 
rather extensively in the literature to formulate fatigue life estimation schemes for the various 
types of inclusions in cast Al alloys.  The logic of doing so derives from the observed 
dependence of the fatigue life corresponding to a given crack size or critical fracture condition 
on the inclusion type at which the crack formed.   In contrast to conventional strain-life or stress-
life approaches for fatigue crack initiation (in this case defined as formation and early 
propagation to a defect size on the order of ½ to 1 mm) as outlined in the round robin SAE 
program on cast A356-T6 (Stephens et al., 1988a, 1988b), the application of LEFM offers a 
means of introducing microstructure into the correlation/prediction of fatigue life since the 
dimension of the identified life-limiting inclusion type serves as the initial size of the crack for 
the propagation analysis.  For example, based on the work by Murakami and Endo (1994), 
Shiozawa et al.  (1997) have developed an algorithm based on defining the maximum projected 
area on a plane perpendicular to the maximum principal stress range of the largest inclusion 
within a critically stressed volume as the initial crack length for an LEFM analysis for 
subsequent propagation life and have obtained sensible correlations for a wide range of casting 
alloys, when combined with an “initiation” criteria for the formation of the crack at the inclusion.   
The number of cycles to crack initiation (formation in this case) is assumed to depend on the 
maximum value of the stress intensity factor for a pseudo-crack with length on the order of the 
maximum inclusion diameter. The application of LEFM is also appealing, especially in the HCF 
regime, because the behavior of the cast material appears to be that of a brittle material, with 
propagation nominally mode-I dominated.  Cordes et al. (1988) found that the Smith-Watson-
Topper (SWT) parameter (product of the maximum stress and cyclic strain range) appeared to 
correlate mean stress effects within the context of a strain-life algorithm relatively well for 
A356-T6; the SWT parameter is well-known to describe normal stress-dominated early growth 
of fatigue cracks in alloys (cf. Socie, 1993; McDowell, 1996a). 
 
There is no question that LEFM is a useful and valid tool for analysis of the propagation of long 
fatigue cracks in heterogeneous cast alloys, under standard conditions for which LEFM itself is 
valid.  However, there are serious limitations of LEFM that must be understood when attempting 
to use it as more of a quantitative tool for injecting microstructure dependence into 
microstructure-property relations.  Since the matrix is ductile, the local behavior at inclusions 
where cracks are formed and at tips of growing fatigue cracks is elastic-plastic.   Hence, it is 
necessary to consider both the scale of crack tip plasticity relative to crack length and the scale 
relative to inclusion sizes and spacings in order to assert the validity of singularity-based fracture 
mechanics concepts (for a review of related issues see McDowell, 1996b).   In particular, for 
LEFM to be valid, the scale of the cyclic plastic zone at the crack tip must be small relative to 
crack length, as must the scale of the damage process zone which governs the advance of the 
crack. 
 
Further, for homogeneous material solutions for the mode I stress intensity factor, KI, to be valid, 
the cyclic plastic zone must enclose a sufficient number of lower scale inclusions that control the 
rate of crack advance in order for homogeneity to offer a good approximation; this is typically 
much more demanding than the LEFM requirements on cyclic plastic zone size relative to crack 
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length.  This issue remains even if Elastic-Plastic Fracture Mechanics (EPFM) is employed.  
Another issue: even if detailed LEFM solutions are used for local geometries of cracks forming 
at lower scale inclusions and growing away from them (cf. DeBartolo and Hillberry, 1998; Laz 
and Hillberry, 1998; Ting & Lawrence, 1993), the ductile nature of the matrix material calls into 
question the validity of the LEFM treatment since the local cyclic plastic strains at the notch root 
are often substantial, even in the HCF regime.  In fact, this point likely renders an overly detailed 
analysis of stress intensity factors for cracks growing from Si particles or moderate gas or 
shrinkage pores more of academic than practical value, even if interaction effects of the crack 
with other adjacent inclusions are considered (i.e. heterogeneity accounted for), because it is 
based on linear elasticity. 
 
The same comments apply to the treatment of crack closure effects, whether due to either 
plasticity or roughness (in reality a combination of these for casting alloys) which are essential to 
include within the LEFM framework in order to capture R-ratio effects in fatigue crack 
propagation.  These effects may be directly experimentally quantified using conventional LEFM 
for long cracks which sample sufficient microstructure within the damage and closure process 
zones at the crack tip, although alternative interpretations and treatments based on intrinsic 
factors have been argued (cf. Sadananda and Vasudevan, 1995) which favor a dependence of 
da/dN on both Kmax and ∆K rather than on ∆Keff as in closure models.  For small fatigue cracks 
which are on the order of 10-500 mµ , a simple quantitative treatment of closure effects within 

the context of a simple approach such as ∆Keff is difficult to justify for cast alloys in view of the 
heterogeneity of the material on the scale of the closure phenomena combined with the strongly 
heterogeneous elastic-plastic nature of plasticity ahead of and in the wake of the crack.  It is 
almost impossible to unambiguously experimentally measure these closure effects for cracks 
from 10-500 mµ in length other than inferring them from a dependence on the crack growth rate 
(in a few cases) or the total life of smooth specimens (majority of cases) on the R-ratio.   In some 
sense, closure can be introduced as a means to correct intrinsic shortcomings of the treatment of 
microstructure heterogeneity in the LEFM formulation, and perhaps this is common in existing 
works that address propagation from microstructure-scale inclusions, particularly for 
heterogeneous composites such as cast Al alloys.  This objection may not be as strong for crack 
growth from isolated fractured inclusions in wrought Al alloys, because the scales of 
heterogeneity (other than grain size) in the Al matrix are smaller than the cyclic plastic zone size 
for all conceivable stress amplitudes in the HCF range (Newman, 1994). 
 
Consider some examples. For plane strain, the cyclic plastic zone size (Bannantine et al., 1990) 
is on the order of 1/(12π)(∆KI/Sy)

2, where Sy is the cyclic yield strength (about 160 MPa for 
horizontally cast A356-T6 plate based on deviation from linearity); therefore for an applied 
stress amplitude on the order of the yield strength, the maximum cyclic plastic zone size for a 
crack length of ½ mm is on the order of 30-40 mµ , assuming ∆KI = 

( ) ( ) y2 / a 2 / 2S aπ ∆σ π = π π  for R = -1, where a is the crack length. This is only slightly 

larger than the largest Si particles within the distribution, and on the order of the typical dendrite 
cell size.  Certainly, this cyclic plastic zone does not encompass a statistically significant set of 
microstructural obstacles.  For higher applied stress levels, the interdendritic microplasticity 
transitions towards extensive plasticity conditions and large scale yielding and damage process 
zones are likely to not amenable to LEFM.  For lower applied stresses, the cyclic plastic zone 
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size drops as the square of the stress amplitude; at ½ Sy, for example, the cyclic plastic zone size 
is on the order of only the Si particle diameters among the distribution, about 7-10 mµ  for a 
crack length of ½ mm.  Hence, the concept of homogeneous material fracture mechanics really 
doesn’t make sense for stress amplitudes in the HCF region for crack lengths below about ½ mm.  
Nor do concepts of plasticity-induced closure based on homogeneous material assumptions.  For 
more details on crack closure, see micromechanics sections 4.3.1.2.7-9.  The crack grows 
through and around fields of obstacles (Si particles) that serve to intensify the local plastic strain 
ahead of the tip and further change the nature of the crack tip plasticity. 
 
On the other hand, an EPFM model (e.g. crack tip opening displacement) which accounts for 
heterogeneity and plasticity is most rigorously acceptable; unfortunately, the computational 
effort involved is substantial, even for just a few geometries and loading levels of interest, 
because of the strong gradients of cyclic plasticity and contact conditions across the crack faces.  
Moreover, the results are instructive but not particularly amenable to simple generalization.  
However, as shown by Shiozawa et al. (1997), the propagation of small cracks (in the range of 
0.1mm to 1 mm) in two squeeze cast Al-Si alloys (Si particle nucleation controlled, minimum 
porosity) for R = min max/σ σ = -1 followed a type of elastic-plastic law which has been found to 

be valid for steels as well (Nisitani, 1987; Wang and Miller, 1992) 
 

n

u

da
A a CTD

dN 2S

 ∆σ= ∝ ∆ 
 

                                                                                        Equation 2.1 

 
where Su is the ultimate strength and A, n are constants, with n = 4.8.   The range of crack tip 
displacement at some distance behind the crack tip (say a few mµ ) is denoted by CTD∆ . 
McDowell and Bennett (1999) argued that this type of relation may be expected based on shear 
strain localization ahead of the crack tip with the cyclic crack tip opening displacement regime as 
the governing  parameter for crack extension (see also McClintock, 1999), even under nominally 
high cycle fatigue conditions for small cracks. 
 
Of course, for large pores, say greater than ½ mm or so in diameter, the validity requirements of 
LEFM are easier to satisfy.  Ting and Lawrence (1993) clearly state the limits of applicability of 
their hybrid stress-life (for nucleation)/LEFM-based treatment of nucleation and growth of 
cracks from large (> ½ mm) pores near the surface in polished specimens, which includes the 
effect of the decay of the stress intensity factor as the crack grows away from the notch until it 
extends beyond the influence of the notch.  Notwithstanding the scale effects, for cracks growing 
within elastic-plastic notch root fields (as are most small cracks in cast alloys from small pores or 
particles), large scale yielding must be considered (cf. Lalor and Sehitoglu, 1987).  In contrast, 
Dugdale type models for plasticity-induced closure for cracks growing from inclusions in 
wrought Al alloys (cf. Newman, 1994) ignore any other sources of heterogeneity such as grain 
boundaries and are especially unsuitable for interdendritic particle interactions of 
microstructurally small fatigue cracks in cast alloys.  Anyway, the constraint offered by particles 
on bulk cracks in the A356-T6 alloy likely induces more of a plane strain condition at the crack 
front, on average, than plane stress (Sehitoglu and Sun, 1991). 
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There are two types of notches of interest in fatigue life prediction for cast alloys.  First, for cast 
structures there are typically higher length scale notches such as fillet radii or holes which arise 
as part of the component geometry.  This type of notch dictates structural stress concentration. 
Typically, stress concentration factors or elastic finite element analyses are conducted to quantify 
the intensification of local stresses at these macronotches.   The second type of a notch is a 
micronotch such as a fractured Si particle or a 100 mµ shrinkage pore.  This type of inclusion or 
micronotch dictates the level of microstructural stress concentration, in rough terms.  Hence, the 
micronotches dictate material fatigue resistance while the macronotches engender structural 
fatigue driving forces.   Provided that the volume over which the concentrated stress field acts is 
sufficiently large compared to microstructure, we can use the material model with micronotch 
effects as a life prediction tool based on elastic or elastic-plastic stress analysis of the structure, 
or using Neuber notch root analysis, as appropriate.  Of course, for very large casting pores, the 
distinction of a structural notch and microstructural notch may become blurred.   Acting in 
concert, this combination is extremely potent in decreasing fatigue life. 
 
We may summarize the philosophy of our approach as follows. LEFM is rigorously valid and 
useful as a crack propagation framework for cracks beyond a certain length scale, typically on 
the order of about ½ to 1 mm.  It is an engineering algorithm for cracks below this scale, perhaps 
useful for post-mortem failure analysis to ascertain the initial flaw size or help to understand the 
nature of the failure, but of little use in understanding microstructure-property relations.  It is 
already well-known that 800 mµ shrinkage pores or 1 mm trapped oxide films are very severe 
inclusions with severe reductions in fatigue strength for a given life.  Of course, homogeneous 
material LEFM concepts handle these cases very well.  As foundry practice improves for ever 
increasing demands on reliability and the defect sizes are controlled to lower levels, the 
convenience of LEFM must be foregone in favor of a characterization of microstructural scale 
plasticity or so-called microplasticity at various inclusions using computational micromechanics, 
as well as detailed cyclic elastic-plastic analyses of small cracks interacting with particles in 
eutectic regions.  These computational micromechanics results serve as input to a microstructure-
based fatigue model developed in this work which, while still an engineering model, provides a 
more firmly justified foundation for treating fatigue mechanisms occurring at inclusions below 
scales or extremely large pores or folded oxides.  This model can serve as a means of connecting 
microstructure to fatigue life estimates, including variability arising from populations of different 
size inclusions.  Since the treatment of long fatigue cracks using LEFM is well-documented and 
understood for its purposes, we focus here on the problem of cracks which form at inclusions in 
high quality castings, which is not so well understood. Moreover, the fraction of lifetime spent in 
forming and propagating small cracks in HCF at these lower scale inclusions completely 
dominates the fraction spent in LEFM-governed propagation in the long crack regime in many 
cases, so this kind of focus is of considerable practical importance. In the following sections we 
will summarize the microplasticity phenomena for different inclusions at different levels of 
applied loading and provide details of the incorporation of computational micromechanics as 
well as EPFM-based small crack growth calculations and experimental observations into this 
“first-generation” model. 

 
 
 
 



 2-5 

2.2  Multiple Regimes of Fatigue Crack Development and Growth 
 
Our computational micromechanics studies are reported in Chapter 4 of this report and are based 
on a substantial range of inclusion geometries (pores and Si particles), size distributions, nearest 
neighbor distances, distance to the free surface, and shapes.  In some cases, multiple scale 
analyses of actual cast (digitized) microstructures were performed to determine local cyclic 
plasticity in eutectic regions as affected by long range stress fields of large pores, arrangement of 
particles, and so forth. The matrix elastoplasticity conforms to experimental cyclic stress-strain 
behavior of Al-1%Si specimens at room temperature and a frequency on the order of 1-10 Hz.  
Nonlinear kinematic hardening plasticity theory of Armstrong-Frederick (1966) type is employed 
(cf. McDowell, 1994). 
 
The micromechanical studies in Chapter 4 provide insight into the nature of fatigue processes for 
cast alloys with fine scale heterogeneity.  Figure 2.1 shows a schematic of three distinct regions 
of the constant amplitude, completely reversed uniaxial strain- and stress-life plots for a low 
porosity A356-T6 alloy based on our studies.  In this plot, the length scale ‘D’ pertains to the 
diameter of either a typical Si particle or a gas pore for the case of significant microporosity.  
The length scale � pertains to the size of the plastic zone at the notch root, defined as the scale 
over which the local plastic shear strain exceeds or meets 0.01% (see Figure 2.2).   Given that 
particle spacing is on the order of particle diameter in the eutectic regions, for / D� < about 0.3, 
the local plasticity at cracked or debonded particles or gas pores is confined to the vicinity of the 
inclusion and does not interact strongly with neighboring inclusions.  Hence, we term this as the 
constrained microplasticity regime.  Interestingly, for pores or debonded Si particles, the value of 

/ D� = 0.3 approximately corresponds to the macroscopic cyclic yield strength of the alloy, so 
we can make the connection that macroscopic plasticity (hysteresis in the global stress-strain 
curve) is apparent when the local microplasticity develops past the constrained state – we term 
this as the domain of unconstrained microplasticity.  Hence, we may regard / D� = 0.3 as a sort 
of percolation limit for microplasticity through the microstructure.  Eventually, as 

/ D� approaches unity, the plasticity becomes extensive and the macroscopic state of cyclic 
plasticity as measured on test specimens is virtually indistinguishable from the connected 
microplasticity – we term this as the regime of limit plasticity.   It is essential to point out that 
constrained microplasticity exists even below the macroscopic yield point, which in fact leads to 
the formation and growth of fatigue cracks.  The applied uniaxial strain amplitude for the yield 
point is well-approximated as 0.0023 ( / D 0.3≈� ), which corresponds to the percolation limit for 
microplasticity and the point of demarcation between LCF and HCF for this class of materials.  
For applied strain amplitudes less than 0.0023, the micronotch root cyclic plastic strain 
amplitude (averaged over a length scale on the order of D/4 as discussed later) is less than the 
notch root elastic strain amplitude.  Above an applied strain amplitude of 0.0023 but below about 
0.005 to 0.007, the micronotch root cyclic plastic strain amplitude is greater than the remote 
cyclic elastic strain amplitude, so this is a kind of transition regime to LCF.  In the limit plasticity 
region the remote plastic strain amplitude becomes on the order of the micronotch plastic strain 
amplitude, and both eventually exceed the remote applied elastic strain amplitude at an applied 
strain amplitude of about 0.008.  This distinction from the conventional definition of HCF and 
LCF in wrought alloys (where applied elastic and plastic strain amplitudes are equal) is 
important.  For A356-T6, the HCF region according to our definition is beyond about 5x104 
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cycles, whereas according to the conventional definition it is approximately 100 cycles, an 
untenable result. 
 

 

 
 
Fig. 2.1 – Regimes characterizing cyclic microplasticity at Si particles and casting pores: (A) 
EPFM propagation-dominated, (B) transition regime,  (C) incubation-dominated.  Here, D is the 
inclusion diameter and � is the cyclic plastic zone size. 
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Fig. 2.2 –  Computational micromechanics results for / D� (plasticity length scale) as a function 
of applied total strain (Horstemeyer et al., 1999). 
 
 
We identify three kinds of thresholds, in ascending order in terms of applied stress or strain 
amplitude level: 

 
• microplasticity threshold for crack nucleation – corresponding to absence of cyclic 

microplasticity at debonded or cracked particles or at pores; a shakedown or lower 
bound fatigue limit associated with a microplasticity threshold. 

• CTD∆  threshold for small crack propagation – corresponding to nonzero cyclic 
microplasticity below the percolation limit which is sufficient to nucleate cracks at 
inclusions, but insufficient to propagate the small crack away from the influence of 
the notch root field, leading to arrested or nonpropagating cracks with length on the 
order of the inclusion size.  Small MSC/PSC cracks incubate in this case but do not 
continue to propagate out of the influence of the inclusion notch root field. 

• long crack da/dN versus effK∆ threshold, which corresponds to an arrest of the 

development or coalescence of cooperative elastic-plastic deformation and separation 
processes that contribute to crack extension for a long crack which samples a 
statistically homogeneous set of Si particles. 

 
In cast alloys, it is essential to take a hierarchical approach to the modeling of the fatigue damage 
process for several reasons.  First, the formation of fatigue cracks is highly sensitive to both 
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stress amplitude and initial casting defects such as microporosity or gas pores, shrinkage 
porosity, intermetallics and large brittle second phase particles.  So cracks can form at different 
length scales, with larger defects leading to cracks that can bypass stages of growth observed for 
cracks which form at much smaller defects. Second, the propagation behavior of fatigue cracks 
depends on their scale relative to microstructure. Cracks of length on the order of the secondary 
dendrite arm spacing (denoted as the dendrite cell size, DCS) are observed to propagate in 
irregular fashion through the microstructure; these interactions tend to dominate the total lifetime 
under high cycle fatigue (HCF) conditions which are targets for most casting design applications.  
The total fatigue life is modeled as the sum of numbers of cycles spent in four fatigue regimes as 
follows: 
 

T inc MSC PSC LCN N N N N= + + +                   Equation 2.2 
                                   
• Ninc is the number of cycles to incubation of a microstructurally small crack, with initial 

length, ai, on the order of ½ the maximum Si particle diameter, partD̂ , or pore size, pD̂ .  This 

component of life is the related principally to the magnitude of cyclic microplasticity in the 
vicinity of microstructural notches or casting inclusions and the scale of the inclusion relative 
to the microstructure, with a secondary dependence on details such as defect shape.  The 
nucleation of naturally occurring cracks at casting inclusions is related to the local cyclic 
plastic shear strain through a Coffin-Manson relation for the matrix material (Al-1% Si for 
A356), as has been derived for the mechanism of matrix/persistent slip band nanometer-scale 
void nucleation and coalescence (cf. Venkataraman et al., 1991a, 1991b).  Once nucleated, 
the small cracks (typically on the order of a fraction of one mµ ) must then propagate through 
an enclave involving a significant gradient of cyclic stress and plastic strain away from the 
inclusion, typically losing driving force for fatigue crack growth as it grows, until the crack 
effectively leaves behind the influence of the notch and behaves as a crack with a physical 
length that includes the inclusion diameter (cf. Dowling, 1979; Ting and Lawrence, 1993).  
The zone of cyclic plastic deformation at the defect scales with inclusion size, as does the 
length scale over which the decelerative effect of the notch root stress/plastic strain 
concentration acts.   The crack incubation life, as defined here, is neither the conventional 
“nucleation life” in the sense of fundamental studies of PSB/matrix decohesion of 
Venkataraman et al. (1991b) nor the “initiation life” as employed extensively in stress-life or 
strain-life correlations of fatigue experiments conducted on smooth specimens.  Rather, it is 
the number of cycles required to nucleate a crack at an inclusion and then grow the crack 
away from the inclusion to the point where some type of EPFM crack growth law can be 
applied, essentially an incubation period for giving birth to a propagating MSC/PSC crack.  
As discussed by Bathias (1998), for hard particle-reinforced ductile matrix alloys, the case of 
a 100 mµ machined defect exhibits only about 1% of the total HCF life of that associated 
with an inclusion of the same size for a given applied loading condition; hence, incubation is 
a significant part of HCF life even for fairly large inclusions. 

 
• NMSC is the number of cycles required for propagation of a microstructurally small crack 

(MSC) with length ai < a < kDCS, with DCS defined as the dendrite cell spacing/diameter, 
and k is a non-dimensional factor which is representative of the saturation limit for the 
encountering of the 3-D crack front with sets of Si particles.  For a < k DCS, a significant 
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portion of the the three-dimensional crack front may propagate through Al-rich matrix in 
dendrite cells.  Since cracked or debonded particles amplify local cyclic plasticity, there is a 
tendency for cracks to form there or to be attracted towards them because of the 
intensification of local cyclic plastic strain - however, the crack opening displacement is 
reduced during encounters with debonded particles largely due to crack deflection around 
particles.  Hence, particle encounters represent a rate-limiting step for crack advance.  In 
A356-T6, propagation through the Al-1%Si dendrite cells or α -aluminum eutectic matrix 
material is impeded much less by comparison.   Experimental observations show that the 
crack front may become pinned at low stress amplitudes at triple points of dendrite cells 
(Plumtree and Schafer, 1986), such that one may expect k to be on the order of a few DCS.  
Si particle debonding is predominant for MSC crack growth through eutectic regions.  At 
higher stress amplitudes, the MSC crack is engulfed in extensive cyclic plasticity in the 
interdendritic regions, a condition far from applicability of conventional singularity-based 
fracture mechanics.  At low stress amplitudes, the highly heterogeneous field of obstacles 
renders conventional LEFM solutions for homogeneous materials and growth constants 
based on large laboratory specimens invalid. 

 
• NPSC is the number of cycles required for propagation of a physically small crack (PSC) (~1-

2DCS < a < O(10DCS)) during the transition from microstructurally small crack status to 
that of a dominant, long crack.   Since the dendrite cell size is typically on the order of 30 to 
100 µ m, depending upon the solidification rate, the PSC regime may conservatively extend 
to 300-800 µ m.  The primary distinction of the PSC and long crack (LC) regimes is defined 
as follows: the microstructurally small crack at the onset of the PSC regime has a crack front 
that is largely engaged in Si particle encounters, advancing intermittently along segments that 
propagate through cell interiors.  However, the crack is sufficiently small that the stress 
concentration and cyclic plastic zone ahead of the crack extends only over a fraction of the 
adjacent cell, e.g. a few Si particle spacings, depending, of course, on amplitude of applied 
loading.  Hence, the mechanisms involved in the fatigue damage process zone vary 
significantly along the crack front, and there is still an insufficient level of the average 
elevated stresses ahead of the crack to wholly debond or fracture particles; the crack grows 
by a sequence of successive particle encounters.  It is very important to note that the scale of 
the crack tip plastic zone is typically so small for PSC cracks that it samples individual 
microstructure elements (Si particles or dendrite cells); hence, there is an insufficient volume 
of material to achieve the length scale-independent description afforded by homogeneous 
material K∆ solutions in long crack fracture mechanics. As the crack continues to grow, 
however, at some point ( ≈  500 to 1000 mµ ), it is large enough to concentrate stress over a 
sufficient distance ahead of the crack tip so that the mechanisms for crack advance are 
uniform along the crack front, and the crack is a “macroscopic” stress concentrator in its own 
right.  In this case, the crack front spends most of the time engaged in damaging Si 
particle/matrix interfaces, in concert with microporosity, fracturing compatible Si particles, 
and growing principally through and around the eutectic regions.  The PSC definition 
employed here is distinguished from another common definition ascribed to a PSC crack as 
otherwise mechanically long crack that propagates under the influence of a notch. 

 
• NLC is number of cycles required for long crack propagation (a > ~10-20 DCS, depending on 

the amplitude of loading and the corresponding extent of microplasticity ahead of the crack 
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tip.  Ultimately, the crack becomes long enough and the crack tip stress field high enough 
over great enough distances to dominantly fracture Si particles ahead of the crack tip, leading 
to overload fracture and relatively rapid crack advance later in fatigue life, as is apparent 
even in smooth specimens in the later stages of fatigue crack growth across the section.  This 
stage of crack extension is commonly characterized using standard, long fatigue crack 
growth experiments (da/dN versus K∆ ).  But from a practical standpoint, this regime of 
crack growth only encompasses a large fraction of the fatigue life if large defects such as 
shrinkage pores or large scale oxides are present in the casting. 
 

A hierarchical classification of inclusion severity on fatigue life is employed here.  Five 
inclusion types and the associated range of length scales are listed as follows, according to the 
order of ascending level of severity: 
 
Type      Inclusion 
  A Distributed microporosity and Si particles; no significant pores or oxides 
  B  High levels of microporosity; no large pores or oxides (length scale of < 60 mµ ) 
  C  Large pores (length scale > 60 -90 mµ ) 
  D   Large pores near the free surface; no large oxides (length scale > 100 mµ ) 
  E    Large folded oxides (length scale greater than 200 mµ )  
 
The hierarchical approach to fatigue modeling of cast alloys distinguishes among these length 
scale classifications of inclusions by bypassing crack growth regimes if the cracks incubate at 
defects among the higher length scales.   
 
2.3  Crack Incubation 
 
Under HCF loading conditions, crack incubation controls the lifetime in many practical cases, 
especially for controlled porosity castings.  For example, smaller parts made of squeeze cast 
alloys have limited macroporosity; in this case, microporosity and the heterogeneous 
microstructure within the interdendritic regions control the processes of fatigue crack formation 
which may dominate HCF lifetime.  On the other hand, castings with large pores or trapped 
oxides suffer rapid crack propagation after incubation.  It is therefore necessary to obtain 
solutions to boundary value problems which resolve the microstructure heterogeneity.  In this 
manner the issues of applied stress amplitude and microstructure stress concentrations can be 
jointly taken into account. 
 
2.3.1  Threshold for incubation 
 
Our finite element calculations of digitized cast A356-T6 microstructures (Section 4.2.1.1) have 
indicated an absence of cyclic plasticity in the microstructure (microplasticity) for a completely 
reversed uniaxial applied strain amplitude less than 0.05%, which corresponds to a stress 
amplitude of about 35 MPa. Using the range of values for �f� and b for the range of A356-T6 
alloys in this study gives a nominal life of about 4x1010 cycles for this stress amplitude, 
assuming that this relation holds beyond the data generated in this program.  This is comparable 
to the fatigue limit levels observed for Al-SiC particle reinforced composites by Bathias (1996), 
who conducted gigacycle fatigue tests 20 kHz.  There is no observable macroscopic plastic shear 
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strain for a uniaxial strain amplitude below 0.20% - only microscopic.  In fact, the macroscopic 
yield strength corresponds roughly to an applied macroscopic strain level of 0.23%.  For these 
reasons, the computational micromechanics formulation (Fig. 2.2) for nucleation is a fruitful 
route to better understand and quantify the role of microstructure on fatigue crack incubation and 
early growth. 
 
Two criteria for fatigue crack nucleation have been employed in this research.  Experimental 
results and theoretical analyses show that there is an intensification of cyclic plastic strain (slip) 
between pores and the free surface under cyclic loading (Ting and Lawrence, 1993).  A local 
form of the Coffin-Manson law may be applied to correlate the cycles to nucleation of fatigue 
cracks in the Al-rich matrix material, i.e. 
 

p*
max

incC N
2

α∆γβ = =                 Equation 2.3 

 
where Ninc denotes the number of cycles for crack incubation (crack nucleation plus small crack 
growth within the notch root field), and  ��max

p* is the micronotch root maximum shear plastic 
strain range in the Al-rich matrix.  In general, ��max

p* significantly exceeds the macroscopic 
applied plastic shear strain in the HCF and transition regimes. Constants � and C are material-
dependent parameters which have characteristic values for the Al-rich matrix. 
 
With an eye towards treating variable amplitude loading and decohesion/particle fracture effects 
due to overloads, we may re-state the local approach above to the incremental form 
 

v
v

dV
C

dN
Ω= β                        Equation 2.4 

    
where 0 � V � 1, and V(0) = 0 for undamaged material and V = 1 for an incubated crack.  This 
rule, for constant Cv and �v, is equivalent to the Miner’s linear damage summation law, i.e.  

( )i inc i
n / N 1=∑  for i = 1,2,..., N loading levels.   

  
2.3.2  Nonlocal considerations in estimating the micronotch root �-parameter 
 
In order to account for the averaging processes that occur in reality for cyclic plastic deformation 
over finite volumes of material (plastic deformation does not occur only at distinct mathematical 
points and therefore cannot exhibit infinite gradients), we must set a limit on the finest length 
scale of resolution (element size) in our modeling.  For example, near the tip of a notch or crack 
in a wrought polycrystalline alloy, slip within each grain is much more uniform than would be 
predicted based on the assumption of homogeneity (no grain structure), simply because gradients 
of plastic deformation are accommodated and spread over finite distances by dislocation glide 
until barriers such as grain boundaries are encountered.  In the case of fatigue crack formation, 
persistent slip bands form within the interior of surface grains.  Upon crack formation, energy is 
released over a segment of the band ranging from about half a micron to a few microns 
(Venkataraman et al., 1991a, 1991b).  Hence, we must preclude plastic strain gradients and stress 
gradients from occurring over length scales that are less than some critical dimension which is 



 2-12 

associated with scale at which uniform dislocation arrays/structures form in response to applied 
stress.   In other words, any parameter associated with the damage process zone of significant 
cyclic plastic strain is subject to a nonlocal averaging procedure, i.e. 
 

V

1
dV

V
ββ

′β = β∫                 Equation 2.5 

 
where Vβ  is a process zone volume for crack incubation/nucleation, typically on the order of 

approximately 0.1 µm3 to 1 µm3.  This limits the maximum refinement of the linear dimensions 
of the finite element mesh, for example, to the order of 0.2 µm to 1 µm.  Finer elements cannot 
properly account for the nonlocal nature of the process of damage formation within the 
microstructure, and instead will always lead to increasingly localized and intensified cyclic 
plasticity with mesh refinement, a physically untenable result.  In reality, slip is transmitted over 
some finite length scale on the order of interparticle spacing, for example.  Selection of a specific 
value for the minimum element size is important, but so is the application of a consistent 
definition throughout all calculations.  Otherwise, the solutions would display unacceptable mesh 
sensitivity in terms of fatigue models.  In Chapter 4, we adhere to the minimum element sizes 
listed above in the vicinity of microstructural stress concentrations.   For purposes of averaging 
the notch root cyclic plastic strain, a mesh size of about D/20 is used in the calculations 
discussed in the next section, where D is the particle or pore diameter.   It is found that the results 
averaged over a constant area are independent of further refinement of mesh size (cf. Gall et al., 
2000b). 

 
2.3.3  Microstructure “Notch” Size Effects on Crack Incubation 
 
To account for the effects of size of inclusions (e.g. Si particles, voids, large scale oxides) on 
crack incubation, we appeal to the notion of a length scale for the fatigue process zone in the 
vicinity of microstructure stress-raisers or micronotches.  Based on our micromechanical 
calculations (Chapter 4), we may correlate (i) the average local plastic shear strain (averaged 
over 1% of the particle area) with the applied total strain and (ii) the length scale of micronotch 
plasticity, � = A/SA, with the applied total strain for cracked and debonded Si particles as well as 
voids.  In 2-D calculations, A is the “cyclic plastic zone area”, defined as the area over which the 
cyclic plastic effective strain exceeds 0.01%, and SA is the perimeter of this area.   In the 3-D 
case, � = V/SV, where SV is the area enclosing the cyclic plastic zone with volume V, which is 
similarly defined as in the 2-D case.  Effectively, � gives a length scale over which local cyclic 
plastic strain concentration is “substantial” as defined by an arbitrary but consistently applied 
definition.  Here, we restrict the values of � to lie in the range 0 D≤ ≤� , such that we regard the 
case D→� as a limiting case of unconstrained plasticity associated with macroscopic yielding 
and ultimately extensive plasticity. From 2-D finite element calculations, the relations are 
captured to first order approximation for debonded Si particles and oxides (most severe local 
cases) as follows: 
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                    Equation 2.6 

 
where D is the representative inclusion diameter, exponent r (r < 0.2) is a constant selected to fit 
the transition into the domain of unconstrained plasticity (beyond macroscopic yield point), and 

aε is the far field applied strain. Here, the Macauley brackets are defined by f f= if f ≥  0; 

0f =  otherwise.   The line in Figure 2.2 shows the relation in Equation 2.6 for / D� < 0.3.   

 
Chapter 4 presents results of 2-D finite element calculations for cyclic plastic strain 
concentration at voids and debonded inclusions in which the plastic shear strain amplitude is 
averaged over a notch root region of either 1% of the void or particle cross-sectional area 
(0.012D2) or 6% of the void or particle cross-sectional area (0.0625D2).   The probability of pre-
existing matrix-particle debonds following solidification is high, particularly if there is sufficient 
hydrogen gas level and microporosity in the melt. The results for A356-T6 Alloy with Al-1%Si-
0.3%Mg matrix and Si particles are shown in Figs. 2.3-2.4.  From the cyclic loading calculations 
shown in Figs. 2.3-2.4, we select the averaging area of 0.0625D2, which corresponds to a length 
scale of 0.25D over which the plastic strain is averaged at the notch root.  Since the cyclic plastic 
shear strain for debonded inclusions in Fig. 2.3 is nearly linear with the size of the inclusion, for 
a given area of averaging, we can reduce the calculated results in Fig. 2.4 for an averaging area 
of 0.01 D2 according to the ratio of 0.1D/0.25D to obtain the average notch root values for R = 0 
and R = 0.5 over a notch root length scale on the order of 0.25D for an inhomogeneity diameter 
of D.  In so doing, the results for the R = -1 case agree very well between the two plots.  The 
results are shown in the plotted symbols in Fig. 2.5. We can heuristically assert that formation 
and earliest growth of small cracks will span this scale, which includes the difficult-to-treat 
phenomenon of propagation of the small cracks through the notch root field (cf. Smith and 
Miller, 1977; Dowling, 1979) and eventually out of its dominance.  The following R-ratio 
dependent relation is found between the notch root average maximum plastic shear strain 
amplitude and applied strain amplitude in Fig. 2.5 below macroscopic yield ( / D� < 0.3), for the 
most severe case of inclusion: 

 

{ }p* 2.45
max a/ 2 (0.1666 0.0266 R) 100 0.00025(1 R)β = ∆γ = + ε − −                         Equation 2.7  

 
while for fractured Si particles for the case of intact particle/matrix interfaces, about 1/3 of this 
level of plastic strain intensification is calculated, i.e. 
 

{ }p* 2.45
max a/ 2 0.32(0.1666 0.0266R) 100 0.00025(1 R)β = ∆γ = + ε − −                 Equation 2.8 
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Fig. 2.3 - Effect of inclusion size (multiples of D) on the driving force for fatigue crack 
formation for the idealized, debonded inclusion and the idealized void, with a notch root area of 
0.0625D2 for averaging the maximum plastic shear strain amplitude, as a function of the applied 
far-field total strain amplitude which is below macroscopic yield. 
 
Note that the effect of the R-ratio is included here in the HCF regime via the exponent.  From 
these relations we may derive a relation between � and �/D for constant amplitude loading.   Note 
also that aε  = 0.0023 is the macroscopic completely reversed cyclic yield strain (percolation 

limit for heterogeneous microplasticity), so the relations above reveal significant microstructure-
scale cyclic plasticity (microplasticity) well below the macroscopic yield.  In the vicinity of 
macroscopic yield the transition to fully developed microplasticity begins to occur.   We note 
that the threshold for � shifts downward with an increase of the R-ratio, evidently in a manner 
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very similar to that described by the Smith-Watson-Topper parameter - an increase of the applied 
peak stress due to an overload drops the threshold level for local microplasticity associated with 
pre-existing debonds. 

 

 
 

Fig. 2.4 -  Notch root average (over an area of 0.012D2) maximum plastic shear strain 
amplitude, ave p*

max max/ 2 / 2∆γ = ∆γ , as a function of the far field total strain amplitude for the third 

cycle under R = -1, 0 and 0.5 loading conditions below the macroscopic yield point. 
 

We have used debonding to define a worst case local driving force for crack incubation, 
assuming that it will occur over part of the particle interface due to localized impingement of slip 
bands on the interface and interface decohesion.  Microporosity should effectively exacerbate the 
decohesion by enhancing plastic strain localization in the vicinity of the interface.  From the 
calculations reported in Figs. 2.3-2.4, it is evident that pores do not display a strong mean stress 
dependence as is exhibited by debonded particles.  However, even for pores/voids, we expect 
that adjacent Si particles within the zone of cyclic plastic deformation of the void will be subject 
to the more extreme debonding case; hence, we employ it for all cases of voids or pores for 
simplicity.  These results indicate why the mode of crack incubation may shift from pores to 
particles as the mean stress is increased in HCF; because of the enhanced intensification of the 
notch root cyclic plastic shear strain for tensile mean stresses, the particle debonding mechanism 
for crack formation is expected to dominate void incubation at higher R-ratios.  This has been 
observed experimentally by Bathias (1996, 1998) for hard particle-reinforced ductile matrix 
alloys. 
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Fig. 2.5 - Correlation of Equations (7)-(8) with the FE computational results of Gall et al. 
(2000b) for average p*

max / 2∆γ  (in %) versus far-field total strain amplitude, a / 2ε = ∆ε (in %) for 

idealized debonded inclusions (Equation 2.7, upper curves) and for cracked Si particles 
(Equation 2.8, lower curve).  An area of A = 0.0625 D2 was used in averaging the cyclic plastic 
strain in calculations.  

 
These calculations are conducted for particle sizes typical of those found in A356-T6 Al, but 
since the calculations are performed for isolated defects subjected to uniform far field loading 
conditions, the applied εa versus notch root average p*

max / 2∆γ  relation is independent of inclusion 

length scale and only modestly dependent upon shape of defect (Section 4.2.1.2).  To first order, 
the details of the shape of the debonding defect or pore are not important.  Although studies of 
the effects of aspect ratio indicate some dependence on this variable (although it is not too 
strong, cf. calculations in Chapter 4 of this report), the random orientation distribution of 
particles and pores within the microstructure suggest that some inclusions will always be 
favorably oriented to realize the most severe effect.  The calculations of Gall et al. (2000b) 
demonstrate that the inclusion size relative to the scale over which the plastic strain is averaged 
has a much stronger effect, with the local notch root average cyclic plastic strain increasing 

roughly linearly with inclusion diameter for debonded particles and roughly with the vD  for 

voids (see Fig. 2.3).  This argues in favor of characterizing the most severe inclusion within each 
inclusion type as the most extreme among the population of sizes.  This essentially agrees with 
the use of the projected maximum area of the inclusion on a plane normal to the maximum 
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principal stress range, which has been previously used by Murakami and Endo (1994) to define 

an effective crack size ( maxarea ) for use in an equation for the fatigue limit Sf  (in MPa),  i.e. 

 

( )
n

n
f max V

1 R
S area C 1.43 H 120

2

θ − = = +     
                                              Equation 2.9 

 

where Hv is the Vicker’s hardness (in kgf /mm2), 4
V0.226 10 H−θ = + , and maxarea  has the units 

of mµ .  They report a value of n ≈  6 for a wide range of materials. This relation is conceptually 
linked to the fatigue limit for a nonpropagating crack (through a threshold stress intensity factor 
range in LEFM).  The relation in Equation 2.9 has demonstrated agreement to within 15% for a 
wide range of hardnesses (Hv from 100-740).   They consider the valid upper limit on 

maxarea to be 1000 mµ . 

 
However, for purposes of determining the average micronotch root cyclic plastic shear strain, the 
averaging length scale is assumed to be proportional to the defect diameter, D.  The local cyclic 
plastic zone size � scales linearly with the size of the associated defect (e.g. Si particles) for a 
given applied strain range.  Recalling that the process zone volume for slip band formation is on 
the order of a micron or so, the maximum local values of maximum plastic shear strain 
amplitude at the notch root will increase with an increase of defect diameter; hence, fatigue 
cracks will form more quickly at large defects, but must still grow away under the influence of 
the notch root stress-strain field, which is assumed to be on the order of the averaging distance, 
about 0.25D.   The averaging area will therefore be on the order of 0.0625D2 , as assumed in the 
calculations in Fig. 2.3.  We assume further that: 
 

• The gradient of applied strain range (or strain field at large notches such as machined 
holes or large scale pores) is weak over distances comparable to Si particle diameter or 
spacing 

• The initial crack size for the MSC propagation relation scales with D, i.e. ai = D/2 + 
D / 2ς , with ς < 1. 

 
The Coffin-Manson law in Equation (2.3) for the matrix phase applies to the correlation of crack 
formation and growth within the finite notch root region over which the maximum plastic shear 
strain is averaged.  For the Al-1%Si matrix, smooth specimen fatigue experiments in the LCF 
regime (approximately 100-1000 cycles to failure) give the value 0.5α = − . Therefore, we 
assume that this relation encompasses not only the formation of cracks (so-called nucleation 
phase), but also the phase of propagation of tiny cracks within the field of influence of the notch 
root in which they form.  This type of notch root crack growth has been the subject of 
considerable computational study for large notches, where a decelerative effect on the driving 
force has been understood for single phase ductile alloys in terms of plasticity-induced closure 
transients and notch root stress/strain field decay.  However, although some have used fracture 
mechanics approaches for crack incubation and growth for microstructurally small cracks from 
inclusions in wrought Al alloys (cf. Newman, 1994; DeBartolo and Hillberry, 1998; Laz and 
Hillberry, 1998;), the MSC growth phase eludes quantitative treatment in terms of the details of 
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the notch root geometry, dependence of crack tip plastic strain intensification and crack wake 
plasticity on details of the contact problem with the inclusion, and interface separation relations, 
not to mention the lingering question of the validity of singularity-based fracture mechanics at 
these relative scales of crack length to heterogeneity size and plasticity and damage zones at the 
notch root.  For these reasons, we prefer to use the term “crack incubation” for the formation and 
notch root field growth of cracks in a heterogeneous two phase cast alloy.  Of course, in the 
regime of constrained microplasticity, the value of C in the Coffin-Manson relation must reflect 
the combined processes of small crack formation and propagation within the micronotch root 
cyclic plastic field. 

 
The second assumption leads to nonarbitrary assignment of the initial crack length for the 
propagation analysis, and is justified by the finding (cf. Bazant and Chen, 1997) that energy 
release for crack extension in real (granular) materials is related to the scale (and configuration) 
of intensified strain energy density due to heterogeneities.  For most practical cases in cast A356-
T6 alloy, cracks form in the matrix phase and hence the enclave of local cyclic plastic strain 
defines the length scale of the initiated crack. The fact that � scales linearly with the size of the 
associated inclusion (e.g. Si particles) for a given applied strain range results in more intense 
local driving forces for fatigue associated with large debonded particles compared to small 
particles due to the relation between � and ��implied in Equations 2.6-2.7.  This is very 
commonly observed in systems where particle fracture controls void nucleation.  In this case it 
suggests that only the largest particles/voids among the population control the fatigue crack 
incubation process, particularly at low applied strain levels.  As the cyclic strain amplitude is 
increased, a broader spectrum of particle sizes in the distribution produce local values of � which 
are high enough to form a set of more densely distributed, competing fatigue cracks.  The same 
comments apply to pore size distributions for pore-dominated fatigue crack incubation. 
 
The values of notch root average cyclic plastic shear strain for intact particle-matrix interfaces 
are much lower than those reported in Fig. 2.3.  In our view, it seems most appropriate to assume 
that interfaces will debond, at least for particles with extreme characteristics; furthermore, it is 
difficult to envision particle fracture without some accompanying degree of local debonding.  
Plumtree and Schafer (1986) observed particle fracture in low gas porosity A356-T6 at higher 
strain amplitudes (around 0.5%), while particle/matrix debonding was observed to form cracks in 
the HCF regime. The effect of hydrogen gas micropores in the neighborhood of particles might 
be expected to follow the debonding characteristic in terms of intensification of micronotch root 
cyclic plastic strain. 
 
2.4  Microstructurally and Physically Small Crack (MSC/PSC) Growth Regimes 
 
Since the incubation life includes both crack nucleation and MSC growth within the domain of 
influence of the micronotch, and in view of the shortcomings of LEFM with regarding to driving 
forces and threshold concepts for the MSC regime as stated earlier, we employ a cyclic crack tip 
displacement law of EPFM type to govern the propagation of small cracks in both the MSC and 
PSC regimes, prior to application of a long crack LEFM growth law.  Hence, Equation 2.2 is 
modified as 
 

T inc MSC/ PSC LCN N N N= + +                                                Equation 2.10 
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The form of the growth law for the MSC and PSC regimes, including a threshold for crack 
growth, is given in general terms by 
 

( )th
MSC/ PSC

da
G CTD CTD

dN
  = ∆ − ∆                                         Equation 2.11 

where G is a constant for a given microstructure, typically less than unity (cf. McClintock, 
1999).  The threshold value of cyclic crack tip displacement, thCTD∆ , is on the order of the 

Burger’s vector of the Al-rich matrix; this threshold provides a nonpropagating crack limit which 
is generally applicable at higher stress levels than the intrinsic threshold limit for cyclic 
microplasticity associated with incubation.  Typical fatigue limits reported for cast Al alloys are 
at stress amplitudes that would be typical of microstructurally small, nonpropagating cracks.  
They form and grow to a limited extent away from the nucleation sites, but eventually arrest 
when they lose sufficient cyclic crack driving force according to Equation 2.11.  It is noted that 
the CTD∆  in Equation 2.11 is the local value for the MSC/PSC crack, and is much lower than 
the value calculated based on homogeneous LEFM, 2

LEFM yCTD K /( ES )∆ ≈ ∆ π  because of the 

tortuous, three-dimensional crack path of the microstructurally small crack, with a distribution of 
pinning points along the front (McClintock, 1999). The threshold is much lower then the long 
crack LEFM threshold ( )LEFM th

CTD∆  as well, and in principle represents the effect of lattice 

friction.  We assert that when the local value of CTD∆  is used, the irreversibility factor G is on 
the order of that for long cracks, about 0.5 (cf. Kuo and Liu, 1976; McClintock, 1999); it would 
be much lower (perhaps two orders of magnitude) if the macroscopic LEFMCTD∆  were used. 
 
Of course, the functional form of Equation 2.11 for growth through a cell interior will differ from 
that for growth through the eutectic regions.  If the particles in the eutectic regions offer little 
capacity to block or pin the crack front and propagation through the matrix is relatively easy 
(perhaps assisted by distributed microporosity), then there is little or no retardation at the 
interdendritic boundaries; at this point the transition begins to occur towards applicability of the 
long crack solutions for crack driving force based on da/dN versus �K. The crack propagates 
through the dendrites and eutectic region without arresting.  If the particles pin the crack front 
and thereby provide toughening, or if there is substantial distributed microporosity in the cells at 
or near the interdendritic regions to guide propagation along these regions, then propagation may 
proceed rapidly within the first few cells but at a decreasing rate as the 3D crack front begins to 
sample enough interdendritic boundary to effectively pin it, i.e. out to a scale on the order of 1-2 
DCS.  Under HCF conditions, the number density of cracks should be lower, so that multiple 
dendrite cells (perhaps a very large number at very low stress amplitudes) can separate adjacent 
microcracks in the distribution.  Triple points of dendrite cells offer particularly potent sites for 
crack front pinning (cf. Plumtree and Schafer, 1986).   The A356-T6 alloy appears to conform to 
the crack front pinning mechanism – the rate-limiting step is provided by bypass of Si particles 
in the eutectic regions. 
 
Cyclic elastic-plastic calculations for the A356-T6 alloy presented in Section 4.3.1.2.2 examine 
the CTD∆  1-2 mµ behind the crack tip for microstructurally small cracks of different initial 



 2-20 

lengths (some on the order of the dendrite cell diameter, some on the order of Si particle spacing) 
as they grow around debonded Si particles.   In these calculations, the CTD∆  is on the order of 2 
to 60 nm. These calculations are conducted for three cycles at each crack position and include 
particle/matrix contact.   An example is shown in Fig. 2.6. 
 

 
 
Fig. 2.6 – Effect of the applied stress amplitude on the cyclic crack tip displacement CTD∆ as a 
function of projected crack length for growth around the first two particles in an in-plane Si 
particle cluster. 
 
Principal findings/implications are as follows: 
 

• The CTD∆ for crack tips in the middle of dendrite cells are much higher (factor of 2-
3) than those for crack tips engaged in Si particle bypass events for similar projected 
crack lengths. 

• Although the CTD∆  is much higher for 50-60 mµ initial crack lengths than for 10-
20 mµ initial crack lengths, once both cracks have engaged 2-3 Si particles in the 
eutectic regions, they have very similar CTD∆  levels; this implies that cracks can 
sweep rapidly through the first dendrite cell interior, but become entangled with 
particle interactions fairly rapidly, a sort of interaction saturation limit.  Since cracks 
are three-dimensional in reality, the crack may expand to the order of the DCS 

relatively quickly, but then exhibit a growth rate similar to a crack with length on the 
order of Si particle spacing.  Furthermore, the average local CTD∆  values during 
particle bypass events are considerably lower than would be calculated based on the 
assumption of homogeneous FCC Al, even for these idealized calculations.  Much 
greater reductions would be expected for more realistic conditions of a 3-D crack 
front interacting with a set of microstructural obstacles (cf. McClintock, 1999). 
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• The CTD∆  scales more or less linearly with the crack length a after several Si 
particle encounters, i.e. 

 
nCTD a∆ ∝ ∆σ          Equation 2.12 

 
certainly not as a2 or a3 as might be expected from LEFM concepts, in conformity to 
the experimental measurements by Shiozawa et al. (1997) on squeeze cast Al-Si 
alloys for microstructurally small fatigue cracks (see also Equation 2.1). 

• There are very significant dips in the CTD∆ as cracks come in contact with particles 
and propagation around them, followed by a restoration of higher CTD∆ as the cracks 
re-engage matrix material on the other side of the debonded particle.  These dips are 
on the order of half the magnitude of the peak CTD∆ for crack growth in the matrix 
after each bypass event.  This is on the order of the dip in growth rate observed for 
A356-T6 for a crack blocked by a dendrite cell triple point by Plumtree and Schafer 
(1986) at an applied strain amplitude of 0.18%.   Shiozawa et al. (1997) measured 
even larger dips relative to the maximum growth rate in da/dN for squeeze cast Al-Si 
alloys during particle encounters.  Both studies report minimum measured surface 
crack growth rates on the order of 0.1-0.3 nm/cycle, which is likely a lower bound for 
the actual minimum crack growth rate.  This growth rate is on the order of the 
interatomic spacing in the Al-rich eutectic matrix phase. The average growth rate for 
crack extension across the scale of a dendrite cell is therefore higher than the 
minimum and lower than the maximum growth rates at various points within the cell. 

• An exponent on stress amplitude (as in Equations 2.1 o r 2.12) of n ≈  4 is determined 
from the FE calculations for the average CTD∆  over the encounter with the third Si 
particle in the HCF regime, based on strain amplitudes of 0.15% and 0.2%, whereas n 
≈ 2 applies to early propagation in the matrix phase prior to particle encounters 
( CTD∆  still linear in a in this case).  Yet higher values of exponent n are plausible 
for further particle encounters – they have not yet been computationally studied due 
to the intensive CPU time involved. If Equation 2.11 applies, the value of n = 2 in this 
case, as well as a linear dependence on crack length, is expected for the dominantly 
elastic crack tip field (small scale yielding in homogeneous material) of the elastic J-
integral or CTD∆ -controlled growth in the HCF regime away from particles since the 
matrix yields only locally in the vicinity of particles.  Higher values of exponent n 
observed experimentally therefore derive from crack-particle interactions involving 
cyclic plasticity and particle contact. 

• Similar FE calculations involving higher R-ratios for the remote applied stress 
indicate that after several particle encounters, to first order the combined effects of 
plasticity and roughness induced crack closure are that the crack is open over the part 
of the cycle for which the remote applied stress is tensile.  Plumtree and Schafer 
(1986) observed HCF propagation through the Al-rich matrix in the interdendritic 
regions (not through the dendrite cell interiors), but along meandering paths away 
from Si particle/matrix interfaces.  Direct encounters with the crack running into Si 
particles were observed only at triple points.   Similar observations were reported by 
Shiozawa et al. (1997) for squeeze cast Al-Si alloys.  This is also consistent with the 
observation of striations within dendrite cells for MSC cracks. Hence, in-between the 
interactions with Si particles the crack is likely able to develop limited plasticity-
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induced closure which may result in somewhat positive crack opening stress levels 
with increasing R-ratios, which is classical for purely plasticity-induced closure 
models.  However, Couper et al. (1990) found for an alloy similar to A356-T6 that the 
effects of mean stress for fatigue lifetime of cracks incubated at interdendritic pores 
was fairly well described (neglecting any incubation lifetime component and using 
LEFM) by introducing the assumption that the crack is open over only the tensile part 
of the cycle for the R = -1 loading case, i.e. U = 0.5 in the relation eff appliedK U K∆ = ∆ ; 

they asserted that U ≈  1/(1-R) for R < 0, U ≈  1 for R ≥  0,  which is reasonably 
representative of our computational results.  It appears that for cast Al alloys, the 
influence of roughness-induced closure (contact with Si particles) and constraint of Si 
particles on plasticity in the wake of the crack leads to a quasi-brittle, normal stress-
dominated growth behavior. 

• Prior to Si particle encounters, the CTD∆ scales nearly linearly with the size of the 
initial crack length; this implies that there will be a systematic effect of the dendrite 
cell size on the fatigue crack growth rate, more or less linear in nature.  Higher 
dendrite cell sizes lead to higher CTD∆ and therefore we may expect a commensurate 
increase in da/dN based on Equation 2.11.   

 
The last point is expected to apply in particular for eutectic propagation in the HCF regime, since 
it is more likely that the majority of Si particles will remain intact with the matrix in this case 
and therefore will provide reinforcement and affect crack deflection around them. At high 
applied strain amplitudes, particle/matrix decohesion and even particle cracking is extensive 
enough over a larger fraction of the population of Si particles such that the cracks will likely be 
‘attracted’ to these damaged particles and will prefer to grow by a debond coalescence 
mechanism, which is an entirely different mode of propagation from the HCF case.  At high 
levels of microplasticity, the field of slip forms an interconnected network through the 
microstructure, facilitating bypass of the particles in eutectic regions; the particles are much less 
effective in pinning the crack and therefore the crack growth rate is much higher, on the order of 
that for elastic-plastic propagation in the aluminum rich eutectic α -phase absent particle 
interactions. Therefore, we must introduce both modes of propagation into the da/dN versus 

CTD∆  relation in Equation 2.12, by incorporating the change of mechanism through an applied 
strain amplitude (or / D� ) dependence. 
 
The role of microporosity (e.g. gas porosity) on fatigue resistance has been cited as a 
complicating effect (cf. Major, 1994), since it is coupled closely with the dendrite cell size by 
virtue of kinetics of microstructure coarsening during solidification.  Of course the level of 
microporosity is also highly dependent upon the hydrogen gas content in the melt.  It seems 
logical to assert that the role of microporosity is principally to affect cyclic plastic strain 
localization in the Al-rich matrix within the eutectic regions ahead of the crack tip and in the 
vicinity of debonds ahead of the crack thereby contributing to an increase in the CTD∆ , which 
governs the small crack propagation rate.  It is observed in recent data from fatigue tests 
performed on vertically cast specimens obtained from F. Major of Alcan, Inc. (August 1999) that 
even for very low hydrogen content, the fatigue resistance is enhanced substantially relative to 
alloys of comparable DCS with higher hydrogen content, even though cracks are observed to 
form at relatively large shrinkage pores. These results strongly indicate that the eutectic fatigue 
ductility is effectively compromised by the introduction of microporosity above a certain 
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threshold level.  This is quite independent of the relation between the dendrite cell size and the 
CTD∆  found in computational simulations in the HCF regime below the microplasticity 

percolation limit.  From the kinetics of growth during solidification, it is necessary to have 
hydrogen content below about 0.07 ml/100 g alloy (cf. Major, 1994) in order to achieve 
microporosity levels below 0.1% during solidification times typical of thin section castings.  
Lower levels yet would be required for thick castings, e.g. < 0.05 ml/100 g alloy.   Fatigue 
experiments conducted on A356-T6 specimens with nearly zero hydrogen content over a 
systematic range of the DCS from about 20 to 60 mµ  reveal that the fatigue life for a given 
strain amplitude in the HCF regime is roughly tripled for the near-zero hydrogen content relative 
to horizontally cast plate behavior for the same dendrite cell size (20-35 mµ ), while the fatigue 
life is not much different from horizontally cast plate for a dendrite cell size of 60 mµ with 
equivalent porosity.  For the vertically cast specimens with 0.16 ml/100 g alloy content and 20 

mµ DCS , the fatigue life is roughly doubled relative to the horizontally cast plate, while the 
fatigue life is increased by only about 20-30% for  DCS = 35 mµ ; Again, the DCS = 60 mµ data 
are not much different than the horizontally cast plate data.  For a 20-30 mµ dendrite cell size 
and 0.16 ml/100 g alloy hydrogen content, the corresponding microporosity level is about 0.1% 
for a solidification time on the order of 15 sec from Major’s plot (1994) for an unmodified alloy.  
Hence, a combination of 0.1% porosity with a dendrite cell size less than approximately 30 

mµ (representative of fairly rapid solidification rates in thin sections) is an effective threshold 
level above which the onset of microplastic strain localization affects propagation by decreasing 
the eutectic matrix fatigue ductility.  If the microporosity is maintained below the 0.1% 
threshold, then larger dendrite cell sizes can be admitted (longer solidification times) while still 
maintaining good fatigue ductility of the eutectic matrix.  Above this threshold, differences 
between fatigue life as a function of the dendrite cell size are due to effects of the dendrite cell 
size on the constraint of the CTD∆  in the MSC/PSC propagation law.   One possible explanation 
for the compounding influence of the dendrite cell size for the case of very low hydrogen content 
is that for highly refined microstructures it is unlikely that even low levels of microporosity can 
grow during solidification, whereas for higher gas content the microporosity levels may always 
exceed the threshold.  Indeed for the near zero hydrogen content specimens cited above, post-
mortem metallographic examination at Sandia National Laboratories (Yang, 1999) revealed 
crack incubation at near surface pores on the order of 150 mµ in diameter for the 60 mµ dendrite 
cell size, whereas the 20 and 35 mµ  cell sizes had negligible porosity and small cracks were 
observed to incubate at small “pre-crack” features or oxides.  Only one of the DCS = 35 

mµ specimens was found to have a 40 mµ pore that is 20 mµ  from the surface that incubated 
the failure crack, and this was by far the most damaging case.  From an engineering standpoint, 
the tentative conclusion is therefore that when porosity levels exceed approximately 0.1% within 
some critically stressed volume, the matrix fatigue ductility degrades. 
 
Based on the correlations of Shiozawa et al. (1997) in the MSC/PSC regimes, we choose to 
express the �CTD parameter in the HCF regime as  

 

( )
n

II
o u

ˆDCS U
CTD f C a

DCS S

   ∆σ∆ = φ    
   

                                                      Equation 2.13 
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where ( )a 1ˆ 2 1∆σ = θσ + −θ ∆σ  is the range of the uniaxial equivalent stress, which is a linear 

combination of the von Mises uniaxial effective stress amplitude aσ (= ( )( )ij ij3 / 2 / 2 / 2′ ′∆σ ∆σ ) 

and the range of the maximum principal stress, 1∆σ ; θ  is a constant factor ( 0 1≤ θ ≤ ) introduced 
by Hayhurst et al. (1985) to model combined stress state effects.  Here, CII is a coefficient 
intended to apply to both the MSC and PSC regimes for crack lengths ranging from a few 
microns to hundreds of microns, even up to the millimeter range (cf. Shiozawa et al., 1997; 
Gungor and Edwards, 1993), as long as the crack tip cyclic plastic zone is substantially less than 
the DCS.   The factor U (consistent with FE calculations and Couper et al. (1990)) addresses 
mean stress effects on propagation which are influenced strongly by interdendritic particle 
interactions in the ahead of and in the wake of the crack; U = 1/(1-R) for R < 0, U = 1 for R ≥  0, 
where R is based on the maximum principal stress. The exponent n ��4.8 in the work of 
Shiozawa et al. (1997) is much greater than the usual LEFM value due to the local cyclic 
plasticity associated with interactions with heterogeneities.  Furthermore, da/dN is linear in crack 
length and does not follow LEFM either.  The MSC/PSC growth rate is linear in DCS as 
motivated by our FE calculations.  Although this is associated with the decreasing constraint on 
slip with increasing DCS, other influential factors such as Fe-rich intermetallic particle sizes 
(Wang et al., 1998; Gall et al., 2000a) and microporosity also may be linked to increases of the 
DCS.  
 
The fatigue limit which corresponds to the threshold condition in Equation 2.11, CTD∆  = 

thCTD∆ , is almost identical to that proposed by Murakami and Endo (1994) in Equation 2.9 for 

R = -1; it differs slightly for other R-ratios, but Equation 2.13 is consistent with experimental 
observations of small crack growth (Couper et al., 1990) and our calculations for the R-ratio 
dependence of da/dN.  In the limit plasticity regime, Equation 2.13 must be modified to include 
the dominant effect of essentially plastic strain driven, linear damage evolution; da/dN is 
essentially independent of the crack length in this regime.  We will discuss this later when the 
model is completely described. 
 
In accordance with the previous discussion regarding the role of microporosity in decreasing 
matrix ductility, we assign a dependence of the eutectic matrix fatigue ductility in the HCF 
regime on the level of microporosity, using the average porosity ϕ  as a measure, i.e. 
 

4
th

th

f ( ) 1 1 exp , 10
2

−  ϕ ϕ = + ω − − ϕ ≈  ϕ   
                                       Equation 2.14 

 
where ω  is a constant on the order of 2-10.   The factor of 2-3 reduction in fatigue life observed 
for higher microporosity cast specimens relative to low microporosity specimens suggests a 
value of ω ≈ 2, based on ratio of incubation life to total life of about 1/3 for stress amplitudes in 
the range of HCF-transition regime, as suggested by the data of Shiozawa et al. (1997).  For two 
different low porosity squeeze cast alloys in the HCF regime, Shiozawa et al. (1997) measured 
the combined coefficient GCII = 3.11x10-4 m/cycle for units of crack length in m and for a 
reference dendrite cell size of DCSo = 30 mµ , assuming that in this case the microporosity is 

very low, i.e. ( )f ϕ ≈  1. 
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Hence, in this model both macroporosity (large pores) and microporosity (interdendritic gas 
pores) play a role in reducing the fatigue strength, the latter through reduction of eutectic matrix 
fatigue ductility and the former through reduced incubation lifetimes and larger initial crack sizes 
for the propagation analysis. 
 
The type of small crack growth law of the form given in Equations 2.11 and 2.13 has been shown 
to be consistent with experimental results for cast Al-Si alloys for cracks exceeding well over 1 
mm by Shiozawa et al. (1997) for stress amplitudes ranging from the vicinity of the fatigue limit 
to 70% of the ultimate strength (well into the transition regime), so it appears that there is no 
limitation in using Equation 2.13 as a good approximation for the growth law of small cracks in 
small, smooth, uniformly stressed laboratory specimens over the entire life.  Furthermore, it is 
consistent with the empirical form given in Equation 2.9 which has demonstrated extensive 
fatigue limit correlations by Murakami and Endo (1994). 
 
2.5  Long Crack (LC) Growth Regime 
 
In this regime, the influence of the crack extends over a sufficient distance relative to Dp and 
DCS and the cyclic plastic zone and damage process zone at the crack tip is small compared to 
crack length (less than approximately 1/10) such that the homogeneous material da/dN versus 
�Keff relations may be applied based on constants fit from long crack experiments.  It is observed 
that Si particle fracture ahead of the growing crack is the dominant mode of fatigue process zone 
degradation, as a high fraction of fractured Si particles appear on the fracture surface for a > 
kDCS (cf. Fig. 3.17).  Note that the effects of R-ratio and plasticity/roughness-induced closure 
are manifested through �Keff = Kmax - Kopen. = U K∆ .  A crack which is incubated at large oxides 
or shrinkage pores may effectively be treated with the LC growth relation, as evidenced in the 
literature (cf. Ting and Lawrence, 1993).  For practical purposes, we may write, for cracks 
greater than about 10-20DCS  (almost always valid for crack lengths exceeding 1 mm) the 
growth law as  
 

( ) ( )( )MM

p eff eff ,th
LC

da
A K K

dN
  = ∆ − ∆  

            Equation 2.15 

 
where M is the Paris growth law exponent and Ap is the growth coefficient.  Data for A356-T6 
(horizontally cast plate) in this program indicate that M ≈ 4.2 and Ap ≈  1.5x10-11 m-

( ) 4.2

MPa m
−

/cycle. Here we are using the effective or intrinsic (closure free) threshold value of 

eff ,thK 1.3 MPa m∆ ≈ for A356-T6 (only slightly less than the value of 1.4 found by Couper and 

Griffiths, 1990). The apparent long crack threshold depends both upon the R-ratio of applied 
loading in the regime, and is given by 
 

( )( )th op th eff ,th

th eff ,th

th

K 1.0 K 1 R for K 1.0 K

K K for R 0.8

K 4.4 for R 0

∆ = + − ∆ ≥ = ∆

∆ = ∆ > ≈
∆ ≈ <

                               Equation 2.16 
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The opening stress intensity factor level is given by (Couper and Griffiths, 1990)  
 

2
opK 3.4 3.8R= +  for R > 0,  

opK 3.4= (1+ R) for 0 ≥  R ≥  -1, and        Equation 2.17  

opK 0=  for R < -1           

 
Finally, effK∆ is defined by effK∆ = Kmax – Kop if Kmin < Kop,  effK∆ = Kmax – Kmin if Kmin ≥  Kop.  

The fit to long crack data from the USCAR program for A356-T6, horizontally cast plate, is 
shown in Fig. 2.7.   It appears that the opening K levels from Couper and Griffiths are reasonably 
similar to this alloy. 

 
Fig. 2.7 – Fit of Equations 2.15 and 2.17 with data from the horizontally cast plate of the 
USCAR program for the long crack growth rate versus applied K∆ .   Arrows denote the 
experimentally measured apparent threshold, thK∆ , for each R-ratio. 
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2.6  Outline of Model 
 
In this section we outline the equations for the comprehensive fatigue model for A356-T6 alloy, 
in ascending order according to inclusion severity type. 
 
2.6.1  Type A: Distributed Microporosity and Si Particles; No Significantly Large Pores  
 
2.6.1.1 Incubation 
 
 

a

1

r

a

0.0006
for 0.3

D 0.00567 D

0.0023
1 0.7 for 0.3 1

D D

ε −
= ≤

 
= − < ≤ ε 

� �

� �

 

 
where f f= if f ≥  0; 0f =  otherwise.  In these equations, D is the maximum Si particle 

diameter in the distribution, D = partD̂ .  Also, ‘r’ is a shape constant for the transition to limit 

plasticity, which we have taken r = 0.1 to provide a rapid transition into the limit plasticity 
regime as observed in finite element calculations; / D� is approximately 0.951 at a strain 
amplitude of 0.003.  Hence, incubation rapidly becomes insignificant above the percolation limit 
for microplasticity as extensive shear localization dominates the eutectic regions. The uniaxial 
von Mises equivalent strain amplitude is defined by aε . The micronotch Coffin-Manson law for 

incubation life (nucleation plus growth in the notch root field) is written in terms of the notch 
root averaged cyclic plastic shear strain amplitude as: 

 
p*
max

inc incC N
2

α∆γβ = =  

 

( ) ( )inc n m n n m n

1
C C 0.3 C C C z C C

0.7 D
= + − − = + −�

                         

 

( )nC 0.24 1 R= −  

 
where Cn is the coefficient for nucleation and small crack growth at inclusions in the HCF regime 
(constrained microplasticity), and Cm is the Coffin-Manson coefficient for incubation (cycles to 
formation of a dominant EPFM crack) in the limit plasticity regime (LCF), obtained from the 

dendrite cell Al-1%Si alloy.  The localization multiplier 1z / D 0.30.7= −�  is nonzero only 

above the microplasticity percolation limit, and rapidly transitions to unity as the interdendritic 
plastic shear strain localization sets in just above the microplasticity percolation limit.  Beyond 
this point, the incubation process is negligible (only a few cycles) due to the severe levels of 
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strain localization around particles or pores.  The matrix fatigue ductility coefficient is estimated 
as Cm = 0.03, based on LCF experiments on Al-1%Si specimens at lives below 5x103 cycles.  
Note the additional positive mean stress dependence embedded in Cn, which reflects an effective 
decrease in matrix fatigue ductility at higher positive load ratios due to plastic strain localization 
associated with significant local monotonic plastic shear strain computed on the first half cycle 
(order of a few % even for applied strain amplitudes of 0.15%); this localized plastic strain level 
increases with R-ratio (Gall et al., 2000b).  Furthermore, ratchetting or progressive plastic 
deformation of the notch root plastic shear strain is also evident in the calculations of Gall et al. 
(2000b) and is known to degrade fatigue ductility.  The exponent α  also pertains to the eutectic 
Al-rich matrix, and is estimated from LCF tests on Al-1%Si as α  = -0.5.  Based on the fit to 
computational micromechanics solutions below macroscopic yield ( / D� < 0.3), we write: 

 

{ }p* 2.45
max a/ 2 Y 100 0.00025(1 R)β = ∆γ = ε − −    

For debonded particles or pores (default assumption): 
 

Y (0.1666 0.0266 R)= +  
 

For fractured Si particles in case of intact particle/matrix interfaces 
 

Y 0.32(0.1666 0.0266 R)= +  
 

For / D� > 0.3, finite element simulations (Horstemeyer et al., 1999) show that β rapidly 
saturates to a level well above its value at the percolation limit (on the order of 2% plastic strain 
in the interdendritic regions), i.e. 

 

{ } ( )2.45Y 100 0.0023 0.00025(1 R) 1 zβ = − − + ζ    

 
For debonded particles, the value of ζ = 9 is estimated based on finite element results as 

/ D� →1, for the R = -1 case.   Here, ζ is a multiplier on β to represent eutectic strain 
intensification in the LCF regime. 
 
It is intended that the R-ratio in these incubation relations is based on the maximum principal 
stress. 
 
2.6.1.2 Propagation 
 
Initial crack length: assuming spherical inclusions as a reasonable approximation, 
 

part part
i part

ˆ ˆD Dˆa 0.5625D where
2 4 4

= + = ≈
�� ��  
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and partD̂ in this case is the largest Si particle diameter from among the population within the 

highly stressed volume.  The length scale ��  corresponds to about ¼ the particle diameter, 
according to our averaging scheme discussed earlier (0.0625 D2 at the notch root); this also 
corresponds closely to the scale of microplasticity at the percolation limit for microplasticity 

( / D� = 0.3).  The value �� /4 is used for the scale of the initial crack size because it is about 0.125 
times the notch root radius, corresponding to the Smith and Miller (1977) estimate of the 
transition crack length, beyond which the crack growth may be assumed to be outside the 
primary influence of the notch stress field and therefore subject to the MSC/PSC propagation 
relation.  This is why we have emphasized that the incubation life consists of both crack 
nucleation and propagation out to the length �� /4. 
 
The growth law is given by 
 

( )th
MSC/ PSC

da
G CTD CTD

dN
  = ∆ − ∆    

where we assign the threshold value thCTD∆ = 2.86x10-10 m = b, where b is the Burger’s vector 

for pure FCC Al.  This value is just slightly above the minimum cyclic crack growth rates 
measured for squeeze cast Al-Si alloys (Plumtree and Schafer, 1986; Shiozawa et al., 1997).  
Plumtree and Schafer (1986) reported the minimum crack growth rate for cracks blocked at 
dendrite cell triple points.   It should not be surprising that the average measured minimum crack 
growth rates can even be slightly lower, since near threshold the crack front has mobile segments 
and immobile segments which result in a lower average crack growth rate.  We assume that G ≈  
0.3 to 0.5 (cyclic crack advance above threshold is about 1/ 3 to1/ 2  of CTD∆ , cf. Kuo and Liu, 
1976). 
 
The cyclic crack tip displacement assigned to follow the form 
 

( ) ( )
n

2
p

II I max ma cro
o u o

ˆDCS U DCS
CTD f C a C / 2

DCS S DCS

     ∆σ∆ = ϕ + ∆γ    
     

                        Equation 2.18 

 

4
th

th

f ( ) 1 1 exp , 10
2

−  ϕ φ = + ω − − ϕ ≈  ϕ   
 

 
For horizontally cast A356-T6 plate, we assume that G = 0.32 and the other nondimensional 
constants that result from data correlation give CI = 0.31 , CII = 1.88x10-3 , n = 4.8, and ω = 2.  
The reference DCS value is assumed as DCSo = 30 mµ , corresponding to the horizontally cast 
plate.   The constraint offered by particles on plasticity-induced closure and effects of particle 
contact upon unloading are reflected by the assignment U = 1/(1-R) for R < 0, U = 1 for R ≥  0, 
where R is based on the maximum principal stress, 1σ ;  U = 0 if the peak principal stress in the 
cycle is compressive.  For horizontally cast plate, Su is taken as 310 MPa.  The exponent n = 4.8 
is used in correspondence to that found for two different squeeze cast Al-Si alloys by Shiozawa 
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et al. (1997).  It is also reasonably close to the stress amplitude dependence of da/dN of the 
A356-T6 alloy for a given crack length in the long crack regime, and is supported by limited 
finite element calculations of the CTD∆  versus applied stress for cycling in the HCF regime as 
discussed earlier. 
 
The CTD∆  expression above has two components, the first addressing propagation in the HCF 
and transition regimes, and the second addressing crack length independent propagation in the 
limit plasticity regime.  As previously discussed, the linearity with crack length is experimentally 
well-verified for MSC/PSC cracks in cast Al alloys, as well as in wrought structural alloys (cf. 
McDowell and Bennett, 1997).   Figure 2.8 below shows that close inspection of the data of 
Gungor and Edwards (1997) for an Al-Mg-Si alloy similar to A356-T6 shows that many of the 
“strands” of data which each correspond to a constant stress amplitude follow very closely to 

proportionality of da/dN with crack length a; since K a∆ ∝ , the lines of slope 2 superimposed 

on this Figure show that da/dN ( )2

a∝ .  Some of the data at lower K∆ levels appear to have a 

somewhat higher slope, but the crack lengths for these lower values are only on the order of a 
few microns.  There is no compelling evidence of departure from linearity with crack length.  
These authors, and a number of authors, however, have interpreted such data extensively using 
LEFM concepts.  One consequence of such interpretation is that crossovers may occur in 
predicted growth rates which are somewhat aphysical.  For example, the da/dN values for higher 
stress amplitudes in Fig. 2.8 actually lie below those for lower stress amplitudes in some cases, 
which would not occur on a plot of da/dN versus crack length. 
 

 

 
 
Fig. 2.8 – Data of Gungor and Edwards (1993) for an Al-Mg-Si alloy, with lines that signify 
proportionality of da/dN with crack length added for reference.  It is noteworthy that most of the 
data well above threshold, when separated by applied stress amplitude, follow these lines.  
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For the second term in the CTD∆  relation, we determine the macroscopic cyclic plastic 
maximum shear strain amplitude.   In the uniaxial case, for example, we use the experimentally 
determined cyclic stress-strain curve to write 
 

1
pn

p
max ma cro

3 3
/ 2

2 2K 2 2

′∆σ ∆ε ∆γ = = ′ 
 

 
 
Finally, the long crack LEFM growth relation is given by 
 

( ) ( )( )MM

p eff eff ,th
LC

da
A K K

dN
  = ∆ − ∆  

 

 

where for A356-T6 (horizontally cast plate), M ≈ 4.2 and Ap ≈  1.5x10-11 m- ( ) 4.2

MPa m
−

/cycle.  

The intrinsic threshold eff ,thK 1.3 MPa m∆ ≈ for A356-T6 (cf. Couper and Griffiths, 1990).  The 

opening stress intensity factor level is given by (Couper and Griffiths, 1990) .  effK∆ is defined 

by effK∆ = Kmax – Kop if Kmin < Kop,  effK∆ = Kmax – Kmin if Kmin ≥  Kop , where 

 
2

opK 3.4 3.8R= +  for R > 0, opK 3.4= (1+ R) for 0 ≥  R ≥  -1, and opK 0= for R < -1 

 
We select between the MSC/PSC and LC growth laws as the crack extends by selecting the 
maximum of either of the two rates, i.e. 
 

MSC / PSC LC

da da da
max ,

dN dN dN

    =         
 

 
subject to a constraint that the requirements for validity of the homogeneous LEFM approach to 
model fatigue in the heterogeneous microstructure, as can be approximately expressed by  
 

2

y

eff

S
a 30 DCS

 
>  ∆σ 

 

 
where eff max op∆σ = σ − σ .  This criterion corresponds to a cyclic plastic zone enclave at the crack 

tip on the order of the dendrite cell size.  The validity limits of LEFM are otherwise less stringent 
(e.g., the ratio of the cyclic plastic zone to the crack length is small) in the HCF regime, although 
for many reasons elaborated in this report we advocate using EPFM type relations for growth of 
cracks up to the range of 0.5 to 1 mm.  For stress amplitudes on the order of the cyclic yield 
strength, this crack length is on the order of 1 mm for typical dendrite cell size, and increases for 
lower stress amplitudes. 
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Finally, we sum the various components as follows: 
 

T inc MSC/ PSC LCN N N N= + +  

 
 
2.6.2  Type B: Shrinkage or Gas Pores with Maximum Diameter pD̂ < 3DCS but Greater 

than the Maximum Si Particle Diameter, partD̂  

 
 
2.6.2.1 Incubation 
 
In this case, the relevant definition of maximum inclusion diameter D is the maximum pore 

diameter, D = pD̂ .  The incubation analysis is the same as for type A inclusions except 

that Y (0.1666 0.0266 R)= + always for these pores (both below and above / D� = p
ˆ/ D�  = 

0.3), since pores do not offer the constraint of bonded particles.  
 
2.6.2.2 Propagation 
 
Same as type A inclusions with the exception that  
 

p
i p

D̂ ˆa 0.5625D
2 4

= + =
��

 

 

2.6.3  Type C: Large Shrinkage or Gas Pores with Diameter pD̂ > 3DCS  

 
2.6.3.1 Incubation 
 
Same as type A or B inclusions except that for / D� < 0.3, 

 

{ } pp* 2.45
max a

D̂
/ 2 Y 100 0.00025(1 R)

3DCS

 
β = ∆γ = ε − −         

and Y (0.1666 0.0266 R)= + always for these pores (both below and above p
ˆ/ D� = 0.3). 

 
For / D� > 0.3, we assume that β is the maximum of either the percolation limit value of 

p*
max / 2∆γ  (at / D� = 0.3) or the macroscopic maximum plastic shear strain amplitude, i.e. 

 

{ } ( )pp 2.45
max ma cro

D̂
max / 2 , Y 100 0.0023 0.00025(1 R) 1 z

3DCS

  
 β = ∆γ − − + ζ         
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These particles are large enough such that there cyclic plastic notch root strain fields may engulf 
multiple particles; hence, the R-ratio dependent threshold is still used for microplasticity, taking 
into account effects of particle contact of debonds upon unloading and associated plastic strain 
intensification. The modification involving the ratio of the pore diameter to three times the 
dendrite cell size is introduced to reflect the linear dependence of the crack opening displacement 
on the cell size for small cracks (even those under the influence of a large notch root field) 
growing away from the large pores as implied by the computational micromechanics studies. 
 
2.6.3.2 Propagation 
 
Same as type A inclusions with the exception that the initial crack size is given by 
 

p p
i

ˆ ˆD D1 DCS DCS
a

2 2 2 2 4
 = + = +  

 

 
in order to reflect the fact that the scale of averaging does not increase further in linear fashion 
with the inclusion size, because large shrinkage pores with typically tortuous shape are observed 
to exhibit radii of curvature on the order of half the dendrite cell size.  Therefore, a limit is 
placed on the extent of growth of small cracks away from pores in the incubation phase, on the 
order of a fraction of the dendrite cell size. 
 

2.6.4  Type D: Large  Pores Near the Free Surface ( pD̂ > 3DCS )  

 
2.6.4.1 Incubation 
 
Same as type C inclusions except that the notch root plastic strain intensification is modified to 
account for proximity to the free surface according to a fit to finite element simulations (cf. 
Section 4.2.2.2) of pores interacting with the free surface, i.e. 
 
 
 

p* p*
max max Type C

p p

5
/ 2 / 2 1 10 exp

ˆ ˆD D

  χβ = ∆γ = ∆γ + −      

�
 

 
 
 

where χ is the nearest distance of the pore to the free surface.  Here, p*
max Type C

/ 2∆γ is the value 

from Type C analysis of pores.  The ratio χ / pD̂  must be below unity for this correction to be 

significant, following the computational results.  Clearly, the intensification is very significant 
for large pores very near the free surface, rendering a tremendous decrease in the incubation life.  

χ
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For example, for χ / pD̂  = 0.2, the incubation life is reduced by a factor of 5 near the percolation 

limit, whereas it is reduced by a factor of 20 in the LCF regime. 
 
2.6.4.2 Propagation 
 
Same as Type C inclusions with the exception that the initial crack size is given by 
 

i p p

p

1 DCS DCSˆ ˆa D D for 1
ˆ2 2 4 D

χ = + + χ = + + χ <  
 

 
in order to reflect the fact that the nucleated crack grows rapidly to the free surface, producing a 
crack on the order of the particle diameter plus the distance to the free surface.  Clearly, this very 
significantly decreases the crack propagation life relative to the previous cases, as is 
experimentally observed. 
 
2.6.5  Type E: Large Oxide Films  
 
These inclusions are particularly deleterious if they are contiguous and are on the order of the 

largest pore size or larger for pD̂  > 3DCS .  In the low hydrogen content specimens in the 

USCAR program 50-100 mµ oxide films or plates were found to serve as the initial crack site in 
many cases when the porosity was insignificant.  Of course, oxides and intermetallics are 
relatively prevalent as “chopped” or small-scale heterogeneities in the Al-rich matrix in the 
A356-T6 alloy, but this is accounted for implicitly in the crack propagation law coefficients. 
 
2.6.5.1 Incubation 
 
Incubation is negligible as these inclusions act as cracks essentially from the outset.  Hence, Ninc 

= 0. 
 
2.6.5.2 Propagation 
 
Same as Type C inclusions with the exception that the initial crack size is given by 
 

i oxide

1 ˆa D
2

=  

 

where oxideD̂  is the maximum length of the oxide, presumably projected normal to the maximum 

principal stress.   
 
It is noted that for a given constant amplitude loading condition, the crack growth relations can 
all be integrated explicitly without the need for numerical integration.  This greatly facilitates 
implementation and parameter identification.   
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2.7 Coalescence and Widespread Fatigue Damage in LCF 
 
Rather remarkably, the scatter in LCF life for a given applied strain amplitude for cast alloys is 
almost as large as that in the HCF regime.  By contrast, the scatter in fatigue life for wrought 
alloys in the LCF regime is much less significant.  This may be understood by virtue of the 
nature of distribution of crack incubation and propagation in both cases.  Under HCF conditions, 
the fatigue life is controlled by the most severe inclusion and a single, dominant crack normally 
propagates to failure.  Therefore, scatter in HCF is dictated by the extreme statistics of 
inclusions, namely by the most extreme, life-limiting inclusions within the highly stressed 
volume.  Often, these are present either at or just under the surface for large pores and oxides. 
 
However, as / D� →1 in LCF, the probability is almost unity for any significant inclusion to 
form cracks.  Hence, the problem of statistical variation shifts entirely to crack propagation from 
multiple inclusions.  Virtually all significant pores can be expected to have a high probability of 
rapid crack incubation.  In addition, the larger, favorably oriented Si particles among the 
population will fracture (accounting for the roughly 1% fraction of fractured particles under 
tensile loading at 0.5% strain, cf. Gokhale et al., 1998).  Particle fracture begets debonding and 
formation and propagation of cracks that compete, and indeed may interact, with those formed at 
large pores or oxides. Coalescence of multiple cracks increases the effective growth rate 
exponentially.   Hence, the statistics of the distribution of the large pores, oxides and larger Si 
particles becomes critical in considering multi-site fatigue damage and coalescence in LCF. 
 
Some authors have applied continuum damage concepts to fatigue of cast alloys with the notion 
of multi-site fatigue damage in mind (cf. Weinacht & Socie, 1987).  Such approaches consider 
damage to be continuously distributed.   However, we take care to distinguish between the HCF 
regime in which this sort of approach would not be appropriate and the LCF regime where the 
approximations involved may become more satisfactory.   One treatment of the problem is to 
apply Monte Carlo numerical simulations for the growth and interaction of cracks from multiple 
defects in the field involving fairly significant idealizations; this is not particularly difficult (cf. 
Hoshide and Socie (1988) for wrought alloys), just time-consuming and demanding of quite 
detailed characterization of inclusion distributions in the case of cast alloys.  Instead, we take a 
simple approach which is aimed more at establishing a sort of lower bound that could be 
expected for a give average porosity and mean pore size, along with extremal statistics of the 
spacing of the larger (fractured) Si particles and larger pores/oxides. 
 
The assumption of a dominant crack that propagates from the most severe inclusion might be 
expected to produce an upper bound (although not a rigorous bound) on the fatigue life for strain 
amplitudes in the LCF regime (stress amplitudes exceeding the cyclic yield strength).  In the 
HCF regime, experiments indicate that the life is indeed limited by the formation and 
propagation of dominant cracks at the most severe inclusions among the population, often near 
surface pores.  Above the percolation limit for microplasticity as / D 1→� , however, plastic 
shear strain localization in the interdendritic regions is intense and cracks incubate rapidly, as is 
shown in Fig. 2.11.  Cracks incubate profusely at all significant pores and the largest Si particles 
which undergo increasing probability of fracture with increasing strain level, particularly the 
largest particles among the population with the highest aspect ratios in the direction of the 
applied principal stress.   Since the lifetime is almost entirely propagation-dominated in the LCF 
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regime, the basic problem is to track the growth of cracks from various incubation sites in the 
microstructure.  To do this, we make use of spatial statistics related to nearest neighbors or mean 
spacing of large pores and particles.  The complicating feature of competitive growth processes 
is the need to introduce convolution of crack growth at different rates from different 
characteristic incubation sites to track the network of crack advance and eventual coalescence.  
Here we take a rather simple but effective approach by considering cracks associated with: 
 
a. maximum pore or oxide film size 
b. average pore size and spacing 
c. maximum fractured Si particle size and spacing 
 
For a random distribution of pores, the average porosity, ϕ , is related to the average nearest 

neighbor spacing between pores, poreδ , of a given average diameter, pD , by the relation 

(Gokhale, 2000) 
 

p
pore 1/3

D
0.811δ =

ϕ
          Equation 2.19 

 
where the units of poreδ  and pD are in mµ . This relation is rigorous for a random (Poisson) 

distribution, based on the relation of number density to porosity and average particle size.  From 
the stereological work of Gokhale et al. (1998), the fraction of fractured Si particles is well-
approximated in tension beyond the percolation limit by the relation 
 

( )part a af 0.01 0.8 0.0023 for 0.0023= + ε − ε >       Equation 2.20 
 
In view of the arrangement of Si particles in the interdendritic regions and the morphology of the 
secondary dendrite arms, we consider a two-dimensional relation for the average spacing 

between fractured Si particles, partδ , i.e.  1/ 2
part partf −δ ∝ .  Specifically, calculations performed by 

Horstemeyer (1999) under monotonic tensile loading are fit well by the expression 
 

part
part

0.01
113

f
δ =                                      Equation 2.21 

 

where the units of partδ are in mµ . The spacing starts out at around 120 mµ but reduces to about 

90 mµ  at higher strain amplitudes.  For torsion, the relation 
 

part
part

0.01
113 107

f
δ = +                    Equation 2.22 

 
appears to match Horstemeyer’s simulations reasonably well. 
 
For the evaluation of coalescence, we make several assumptions: 
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a. uniform stress throughout the critically stressed volume 
b. constant amplitude loading is applied 
c. incubation occurs immediately at all pores and large Si particles, with an initial crack length 
      of ½ the inclusion diameter 
d. the crack growth rate for cracks at from each incubation site is proportional to the length of 
      each crack and is well above threshold 
e. interaction between cracks prior to joining (propagating together) is ignored. 
 
2.7.1 Recursion Relation for Propagation from Large Pore through a Field of Si Particles 
 

If a crack forms at a large pore of diameter pD̂  and propagates through a field of fractured Si 

particles with extremal diameter, partD̂ , on the order of the largest Si particles in the distribution 

and spacing given by partδ  in the last section, then the crack will grow more rapidly from the 

large pore than from Si particles, and will successively coalesce with cracks incubating at Si 
particles.   As the crack lengthens, it will take successively fewer cycles to coalesce due to more 
time for crack extension from the Si particles in the field.  Accordingly, the crack may only have 
to grow 2 or 3 average Si particle spacings before the entire field of cracks coalesce.  This 
motivates the introduction of an effective coalescence crack length for growth from the largest 
inclusion, which is shorter than the specified crack length for dominant crack growth, in general.  
This effective length can be estimated as follows.  After initial incubation at all inclusions 
considered, we must first compute the distance the crack must grow between the large pore and 
the nearest fractured Si particle in the same number of cycles at the point of coalescence.    Since 
the MSC/PSC propagation relation is linear in crack length and the stress amplitude is assumed 
everywhere uniform, the operative fatigue life multiplier is given by 
 

coalesce

o

a
coalesce

a
o

a da
ln

a a

 
Λ = = 

 
∫                     Equation 2.23 

 
where oa is the initial crack length.  Defining as 1 partξ δ the distance the crack must grow from the 

large pore to join with the crack from the first Si particle, and ( )1 part1 − ξ δ as the distance that the 

joining crack grows from the particle, it is found from the relation 
 

p
1 part

part
1 1

p p

D̂

2ln ln 1 2
ˆ ˆD D

2

 
+ ξ δ   δ Λ = = + ξ       

       Equation 2.24 

 
that  
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p
1

p part

D̂
ˆ ˆD D

ξ =
+

                                Equation 2.25 

 
such that 11/ 2 1≤ ξ < always if the pore size exceeds the average maximum fractured particle 
size.  During this process, a crack has grown from the second nearest neighbor fractured Si 
particle by a distance precisely equal to ( )1 part1 − ξ δ .  For the next segment of propagation, 

therefore, the crack from the large pore has an initial length that encompasses half the pore 
diameter plus the spacing to the nearest fractured Si particle plus ( )1 part1 − ξ δ .  It need only grow 

a distance ( )( )2 1 part1 2 1ξ − − ξ δ to meet with the crack from the next Si particle that extends a 

distance ( ) ( )( )2 1 part1 1 2 1− ξ − − ξ δ , and so on.  Growth continues until a specified final crack 

length is reached by the largest crack or until widespread coalescence occurs; eventually cracks 
will join between evenly spaced fractured Si particles ahead of the crack, resulting in 
spontaneous coalescence over the entire highly stressed volume considered (on the order of the 
final crack length selected).  For the second coalescence step on, i = 2, 3,…, n, the recursion 
relation may be written as 
 

i
p

i i i
p part

D̂
ˆ ˆD D

ξ =
+

,      
i
part

i i i
p

ln 1 2
D̂

 δ
Λ = + ξ   

       Equation 2.26 

 
where 
 

( )( )i i 1
part i 1 part1 2 1 −

−δ = − − ξ δ          Equation 2.27 

 

( )
i i 1
part part i 1

i 1 part

ˆ ˆD D
1

2 2

−
−

−= + − ξ δ          Equation 2.28 

 

( )
i i 1
p p i 1 i 1 i 1

i 1 part i 1 part part

ˆ ˆD D ˆ2 1 D
2 2

−
− − −

− −= + ξ δ + − ξ δ +        Equation 2.29 

 
where for i = 1 we start the algorithm with Equations 2.24 and 2.25, using the initial pore and 

particle diameters.   i
partD̂ may be viewed as the effective particle diameter for the next segment 

of crack growth (it includes all prior crack extension from that particle).  Similarly, i
pD̂ may be 

viewed as the effective pore diameter at the beginning of the propagation process for the 
thi particle coalescence event.  As such, the recursion is performed until one of two conditions 

holds: 
 

( )
n n
p part

f part part

ˆ ˆD D 1 ˆa or D
2 2 2

≥ ≥ δ +        Equation 2.30 
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Mathematically, we may view the effects of coalescence as effectively contributing to a decrease 
in the final crack length for a dominant crack propagating from the largest inclusion, in this case 
a pore.  Well above threshold (easily satisfied in the LCF regime), the lifetime can be expressed 
for the largest crack as 
 

f

n
a a

T i
i 1 f

G CTD
N

a
=

=

∆ = Λ 
 
∑          Equation 2.31 

 
We may define the effective final crack length as 
 

n
f f

i
i 1o p

a a
ln ln

ˆa D / 2 =

  
= = Λ       

∑� �
                    Equation 2.32 

 
or more directly as 
 

n

f o i
i 1

a a exp
=

 = Λ  
∑�                      Equation 2.33 

 

Since 
n

i
i 1=

Λ∑ will always be less than f

o

a
ln

a

 
Λ =  

 
 in the presence of coalescence, it is clear that 

fa� < fa , often substantially.  This is due to the fact that significant jumps of crack length are 
realized instantaneously during coalescence events.  Close inspection of this recursion relation 
reveals that if the pore size is relatively close to the particle size, then 1 1/ 2ξ ≈  and the most 

dramatic reduction of fa�  relative to the specified final crack length, fa , is realized.   In fact, for 

propagation from a field of monosize particles or pores, the lower bound on fa�  is realized as 
 

part part
f

part

D̂
a 1

ˆ2 D

 δ
= +   

�           Equation 2.34 

 
for a field of fractured Si particles, and 
 

p pore p
f 1/3

p

D D 0.811
a 1 1

2 D 2

 δ  = + = +     ϕ  
�         Equation 2.35 

 
for an average pore diameter of pD .   For example, for the case of extremal fractured Si particle 

sizes of 12 mµ , the resulting fa�  is only about 54 mµ .   Typical fa� values for large pores might 
be on the order of several hundred mµ .   All of these values result in fatigue lives that are 
considerably less than would be required for the growth of a dominant crack in the absence of 
coalescence.   
 



 2-40 

Conversely, the recursion relation reveals that pores that are large compared to the Si particle 
size result in 1 1ξ ≈  ; therefore, in this case the Si particles do not have much effect on reducing 

the fatigue life because fa�  is not reduced nearly to the extent as for 1 1/ 2ξ → . 
 
Finally, it is noted that the recursion relations can be applied to the case of a fatigue crack 
growing from a large pore through a field of monosize pores that are spaced according to 
Equation 2.19 simply by considering them to play the precise role that the particles played in this 
formulation.  Similarly, we can apply these relations to propagation through a field of Si particles 
or pores of some average diameter and spacing of a crack originating at an oxide, simply by 

replacing pD̂ by oxideD̂ . 

 
2.7.2 Approximation of Recursion Relation Using Only Initial Microstructure Geometry 
 
By considering the geometrically compounding nature of the recursion relation, it is possible to 
develop a simple series expansion in odd powers of 1ξ as defined in Equation 2.25.  While 

approximate, this relation has been found to accurate to within 5-10% percent for fa�  over a wide 

range of 1ξ  values, as demonstrated in Fig. 2.9 for several relevant cases.  For the preceding 
problem of propagation of a crack from a large pore through a field of fractured Si particles, it is 
written quite simply as 
 

( )( ) ( ) ( ) ( )n
2i 1 2 n 1 1p part1 1 f f

f part 1 1
i 1 part part

ˆ ˆD D0.685 0.04 1 a a
a INT

2 2 2
− + −

=

     − ξ ξ +  ≈ + δ + ξ + − ξ        δ δ       
∑�  

 
            Equation 2.36 
 

where ( )f partn INT a /= δ .  To apply this relation, it is required that pore partδ > δ , which is the 

usual case.  As before, 11/ 2 1≤ ξ < .  It should be noted that the series in this expression is 

strongly convergent as 1 1/ 2ξ → , but weakly convergent for 1 1ξ → ; 5-10 terms may suffice for 

values of 1ξ  up to 0.6, while as many as 40-50 terms may be required for convergence for values 
near 0.85 or 0.9, in which the recursion relation in the last section may be more efficient. 
 
Another application is to consider the accelerative effect of fractured Si particles in-between a 
field of monosize pores.  This can be easily treated by identifying the final crack length as half 
the averaging pore spacing, i.e. 
 

( ) ( ) ( ) ( ) ( )n
2i 1 2 n 1 1p part pore pore1 1

f part 1 1
i 1 part part

ˆ ˆD D0.685 0.04 1
a INT

2 2 2 2 2
− + −

=

     δ δ− ξ ξ +  ≈ + δ + ξ + − ξ        δ δ       
∑�  

 
            Equation 2.37 
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where ( )( )pore partn INT / 2= δ δ . This is not a substantial effect unless the average pore size and Si 

particle size are of comparable dimensions, with the pore space considerably greater than the 
particle spacing.  This may be the case for gas porosity, for example. 
 
As with the full recursion relation, the set of assumptions we have adopted here permit use of 
only mean microstructure distribution statistics readily obtained from stereology to assess 
coalescence.   In applying these relations, the inclusion diameter must be equal to or exceed the 
average pore diameter, since extremal inclusions dominate failure. In the absence of pores, 
Equation 2.34 holds.  There are no adjustable constants in this formulation beyond these 
quantitative inputs.  Figure 2.9 shows the significance of coalescence for cast microstructures 
with fractured/debonded Si particles, since f fa a� � as the largest inclusion decreases in size.  As 

the maximum inclusion size increases to large values, f fa a→�  and the effect is much less 
significant. 

 
Fig. 2.9 – Effective final crack length versus maximum inclusion (pore) diameter for a specified 
final crack length of fa 1000 m= µ .  Solid lines represent results of the recursion relations, while 
dashed lines represent the approximate series expansion.   The top two cases are for a crack 
growing from pores greater than 12 mµ in diameter through a field of fractured Si particles 
spaced either 70 or 100 mµ apart, while the bottom case is for propagation through a field of 
monosize pores of 50 mµ diameter, spaced 200 mµ  apart.  
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2.8  Model Correlations and Predictions for USCAR Data, Horizontally Cast Plate 
 

TABLE 2.1   Summary of Parameter/Constant Set for Horizontally Cast Plate A356-T6 
   (Boxed values indicate experimentally-based) 
 
Stress-strain behavior: 

3
uK 430 MPa, n 0.065, E 71x10 GPa, S 310 MPa′ ′= = = =

 

Average Porosity and Pore Size:  3
p1.5x10 , D 45 50 m−ϕ = = − µ  

Maximum Pore Size: pD̂ 50 55 m= − µ ,   Dendrite Cell Size: DCS 30 m= µ  

Maximum Si Particle Size: partD̂ 12 15 m= − µ  (including effect of aspect ratio) 

 
Incubation: 

( )n mC 0.24 1 R , C 0.03, 0.5= − = α = −   

 

{ }
{ } ( )

qp*
max a th

qp*
max th

th

for / D 0.3, / 2 Y 100

1for / D 0.3, / 2 Y 100 0.0023 1 z , z / D 0.30.7
0.00025(1 R) , q 2.45, 9

Y (0.1666 0.0266 R) for debonds

Y 0.32 (0.1666 0.0266R) for bonded particle / matrix

≤ β = ∆γ = ε − ε  

> β = ∆γ = − ε + ζ = −  
ε = − = ζ =

= +
= +

�

� �

� a

1

r

a

0.0006
for 0.3

D 0.00567 D

0.0023
1 0.7 for 0.3 1 , r 0.1

D D

ε −
= ≤

 
= − < ≤ = ε 

�

� �

 

 
Propagation: 

 
MSC/PSC regime:  
      
G = 0.32, thCTD∆ = 2.86x10-10 m, CI = 0.31 , CII = 1.88x10-3 , n = 4.8    

DCSo = 30 mµ , DCS = 30 mµ , 0.4θ ≈  
 
Microporosity constants: ω  = 2,  4

th 10−ϕ =  

 
Long Cracks: 

M = 4.2 , Ap ≈  1.5x10-11 m- ( ) 4.2

MPa m
−

/cycle,  eff ,thK 1.3 MPa m∆ =  

2
opK 3.4 3.8R= +  for R > 0, opK 3.4= (1+ R) for 0 ≥  R ≥  -1, and opK 0= for R < -1 
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2.8.1 Dominant Cracks 
 
Correlations and predictions of smooth specimen uniaxial fatigue tests for horizontally cast plate 
A356-T6 are presented in this section, with the constants used in Table 2.1.  We assume for 
purposes of these calculations that the final crack size is 1 mm, which is a reasonable 
approximation for smooth specimens with failure defined as a 20% increase in compliance.  
Hence, T inc MSC/ PSCN N N= + .  The initial crack length corresponds to inclusion type as outlined 

in the description of the model and in the legends.  In these calculations, we assume that a 
dominant crack forms at the most severe inclusion and propagates to failure, unassisted by any 
coalesence with other cracks.  The influence of coalescence will be examined in the next section, 
as it is important in the LCF regime at stress amplitudes above the macroscopic yield strength.  
In the HCF regime, however, dominant cracks are commonly observed since cracks tend to avoid 
Si (cf. Wang and Zhang, 1994). 
 
Model simulations are shown in Figures 2.10 for strain-life and Fig. 2.11 for stress-life under 
completely reversed uniaxial loading to a final crack length of fa  = 1 mm for various maximum 
inclusion sizes for horizontally cast A356-T6 plate.  In these plots the case ’50 mµ pore’ is a 
correlation, while all other cases are predictions.   

 
Fig. 2.10 – Model predictions for uniaxial, completely reversed strain-life for incubation at 
various maximum pore sizes (horizontally cast plate material has a maximum pore size of 
approximately 50 mµ ), as well as for the cases of incubation at 12 mµ Si particles and 
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500 mµ oxides.  Note the drop of fatigue life with maximum pore size, with a strong influence of 
surface proximity of large pores. 

 

 
 

Fig. 2.11 – Model predictions for uniaxial, completely reversed stress-life for incubation at 
various maximum pore sizes.  

 
It is noted that 200 to 400 mµ pores reduce fatigue life in the HCF regime by factors of roughly 
2 and 3, respectively, with increasing factors at amplitudes near the fatigue limit.  The predicted 
fatigue limits for each case are shown with arrows pointing to the right, in each case associated 
with nonpropagating cracks at the end of the incubation phase.  Eliminating the 50 mµ pores 
would result in the particle-dominated incubation enhancement in HCF resistance shown in Figs. 
2.10 and 2.11.  The point where the slope abruptly changes on the strain-life curve corresponds 
to the percolation limit for microplasticity. 
 
Figure 2.12 compares the correlation of horizontally cast plate with 50 mµ pores and predictions 
for various other inclusion scales/types with the upper and lower bounds of experimental data for 
the Al-7%Si alloys within the USCAR program.  It is noted that the 400 mµ pore results are 
close to the lower bound front cradle tilt-pour material in the HCF regime, which was reported to 
have maximum pore sizes of approximately 500 mµ .  Of course, the statistical variation in all 
the data in the HCF regime, including that of horizontally cast plate, reflects the variations of the 
incubating pore (inclusion) size from specimen to specimen.  It would appear that this variability 
is predicted reasonably well by the model.   The upper bound materials are all characterized by 
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low porosity levels (in fact, below the threshold 4
th 10−φ = ) which are expected to lead to an 

increase of the MSC/PSC propagation life by a factor of 2-3 for these materials, commensurate 
with the upper bound in the HCF regime.  It is important to note that the predictions in the LCF 
regime above a strain amplitude of approximately 0.4% form an upper bound to the observed 
lives due to the neglect of multisite fatigue damage in the microstructure and associated 
coalescence phenomena in these particular calculations.  
 

 
Fig. 2.12 – Strain-life diagram for uniaxial, completely reversed loading for incubation at various 
inclusion scales/types for horizontally cast plate and comparison with the upper and lower 
bounds of the strain-life results from the various A356-T6 alloys of the USCAR program. 
 
To illustrate the relative fractions of incubation life and MSC\PSC propagation life, Fig. 2.13 
shows the curves for incubation life Ninc (dashed lines) for maximum pore sizes of 50 mµ and 
200 mµ .  The incubation life is calculated from the relation 

p*
0.5max

inc incC N
2

−∆γβ = =                                                        Equation 2.38 

 
Clearly, the incubation life is negligible in the transition and LCF regimes.  However, this is not 
the case in the HCF regime.  Since the growth relation is based on a combination of cyclic crack 
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tip displacement mechanics/calculations and empirical observations, it is conceivable that 
shielding interactions of small cracks with neighboring Si particles is intrinsic to the model.  The 
incubation life is about 50 to 70% of the total life in the HCF regime for the 50 mµ pores, but 
only about 20 to 30% of the total life for 200 or 400 mµ pores in the HCF regime.  The data of 
Plumtree and Schafer (1986) for A356-T6 for a strain amplitude of 0.18% give an incubation to 
total life ratio of about 65%, while the predictions here are about 50% at that amplitude for a 
relatively low porosity casting. 

 
Fig. 2.13 – Strain-life diagram for uniaxial, completely reversed loading for horizontally cast 
plate with 50 mµ  and 200 mµ pores, including the crack incubation (dashed lines) as well as the 
total fatigue life (solid lines). 

 
Figure 2.14 shows the effects of tensile mean stress on fatigue life for horizontally cast plate in 
the HCF regime where these effects are of most practical significance.  Note that the fatigue limit 
is reduced very substantially for tensile mean stresses, as are fatigue lives, relative to the 
completely reversed case.  The R-ratio dependence in the model for Cn was selected to fit the 
103.5 MPa mean stress case, and augments the R-ratio dependence of the local cyclic 
microplastic shear strain range.  Note that the predictions for the other mean stress levels appear 
reasonable, but there is a paucity of data for comparison given the inherent scatter. 
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Fig. 2.14 – Mean stress correlations/predictions of model in the HCF regime with horizontally 
cast plate data for mean stresses ranging from 0 to 207 MPa and uniaxial loading conditions. 
 
A comparison of several different inclusion severity types for three different dendrite cell sizes 
for A356 alloy with low hydrogen content appears in Fig. 2.15.  These vertically cast specimens 
were obtained from Alcan (F. Major), tested by Westmoreland and then image analyzed by 
Sandia-Livermore. The 20 and 30 mµ dendrite cell size specimens had no large pores and 

negligible porosity overall ( 4
th 10−ϕ < ϕ = ), containing only 50-100 mµ oxides.  The larger 

dendrite cell size (60 mµ ) specimens had 150 mµ pores which served as sites for crack formation 
and early propagation.   It is noted that in this case the fatigue behavior of the small DCS 
material in the HCF regime is described quite well by Si particle-dominated incubation as an 
upper bound and 50-100 mµ oxide incubation as a lower bound.  Of course, ( )f 1ϕ = + ω  = 3 for 

the 20 and 30 mµ dendrite cell sizes.  On the other hand, the case of DCS = 60 mµ is well-
described by the use of the observed 150 mµ pore sizes for incubating cracks; in this case, 

( )f 1ϕ = . 
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Fig. 2.15 – Comparison of model predictions with data for completely reversed, uniaxial fatigue 
of specimes with several different inclusion severity types for three different dendrite cell sizes 
for vertically cast A356-T6 alloy with low hydrogen content (specimens from Alcan, Inc.).   The 
20 and 30 mµ dendrite cell sizes had no large pores and negligible porosity overall, containing 
only 50-100 mµ oxides.  The larger dendrite cell size (60 mµ ) specimens had 150 mµ pores.   
 
It is interesting to note that the variation of the fatigue life for a given strain amplitude in A356-
T6 over a wide range of maximum pore sizes and dendrite cell sizes is rather well described 
using nominal stress-strain, incubation and propagation properties for the horizontally cast plate; 
variability in the HCF regime is reasonably well-predicted using the appropriate maximum 
inclusion size, as shown in Fig. 2.12.  It is likely that the fatigue of this material is strain-
controlled, since the incubation phase it is dictated by the micronotches.   Furthermore, the small 
crack propagation behavior is evidently relatively insensitive to details of the alloy (cf. Shiozawa 
et al., 1997).   It is well-known that fatigue of materials with macronotches is a strain-controlled 
process. 
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2.8.2 LCF Coalescence 
 
In this section we add the coalescence treatment derived in Section 2.7 to establish lower bounds 
on LCF life.  This is done by assigning the final crack length for propagation of the most severe 
(largest diameter) inclusion as the effective final crack length, fa� , in the LCF regime.  
Accordingly, we assume that 
 

( )f f f fdomin ant domin ant
final crack length a a z a a= = + −�       Equation 2.39 

 
where the dominant final crack length is that which is normally assigned in a propagation 

analysis which assumes a single crack grows to failure, and  1z / D 0.30.7= −� as before.   

Since z = 0 in the HCF regime, coalescence effects only become significant in the LCF regime, 
for strain amplitudes above 0.0023. 

 
Fig. 2.16 – Variation in completely reversed, uniaxial strain-life behavior as a function of 
maximum inclusion size for horizontally cast plate, including coalescence effects in the LCF 
regime.  In the coalescence propagation analysis, parameters were assigned as follows based on 

experimental work: 3
p1.5x10 , D 50 m−ϕ = = µ , partD̂ 12 m= µ , and DCS 30 m= µ . 
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Two observations are noteworthy.  First, contrasting Fig. 2.16 with Figs. 2.10 or 2.12, it is 
evident that coalescence is the most likely explanation for the very significant range of fatigue 
lives observed experimentally in the LCF regime for this material.  Multisite fatigue damage has 
been frequently observed in experiments conducted at amplitudes near the upper range of the 
HCF region and above.  In fact, it is not uncommon to see crack development at multiple sites in 
HCF, although only one crack typically becomes dominant.  Second, a striking result from Fig. 
2.16 is that the case of profuse incubation at the largest Si particles gives the lower bound fatigue 
life in the LCF regime!  This is expected since fa� is minimum in this case (see Fig. 2.9).  The 
fatigue life for the 150 mµ pore is much greater, approaching the dominant crack behavior shown 
in Fig. 2.10.   Therefore, we have an important and somewhat counter-intuitive result from the 
coalescence analysis: highly refined microstructures appear to offer less LCF resistance than 
coarse microstructures with higher levels of porosity. At first glance, one might assume that the 
larger pores are responsible for the shortest lives in the LCF regime, but this is not the case 
according to this analysis.  On the other hand, the model predicts that highly refined 
microstructures (low porosity, small DCS) provide substantial enhancement to HCF resistance 
relative to coarse microstructures, as observed in the crossover from the LCF regime to the HCF 
regime for the three cases in Fig. 2.10, for example.  This enhanced HCF resistance is 
experimentally well-documented; near threshold, cracks tend to grow between Si particles in the 
eutectic regions because most particle-matrix interfaces are intact (cf. Wang and Zhang, 1994). 
The lack of detailed documentation of variability of fatigue lives in LCF and transition regimes 
as a function of average and maximum inclusion sites and observed multisite fatigue crack 
formation and growth likely reflects the rather prevalent bias towards assuming that dominant 
crack fracture mechanics applies in all cases.  In wrought alloys, the variability in LCF response 
is typically much less than HCF; this analysis suggests that this is because the distribution of 
initial crack sizes in the former is much tighter than the latter. 
 
Figure 2.16 also labels the cases of fractured Si particle-controlled coalescence as belonging to a 
characteristically different set than cases of pore-pore crack interactions.  The former form the 
lower bound LCF behavior, while the latter are intermediate to the dominant crack case, which 
appear to serve as the upper bound for modeling these experiments.    
 
Figure 2.17 shows results of approximate calculations for the behavior of two other A356-T6 
castings in the USCAR program, the Control Arm and the Front Cradle, selected as 
representative of very low and very high porosity, respectively.  In these calculations, all 
properties correspond to those of the horizontally cast plate, except for those pertaining to 
porosity and inclusion sizes, as well as the DCS.   Even though at first glance this may appear 
crude, in many respects these are the key parameters that control the fatigue behavior of the 
A356 system, irrespective of other properties and fatigue at micronotches is more or less strain-
controlled.  It is interesting to note that the experimentally observed upper and lower bounds on 
strain-life behavior (shown as solid black lines in the Figure) are reasonably well-described as 
between the dominant crack calculations in Fig. 2.10 and the lower bound calculations for Si-
particle-controlled crack incubation in LCF.  Moreover, the upper and lower bounds in the HCF 
regime are fairly well predicted using the observed range of maximum inclusion sizes for these 
materials. 
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Fig. 2.17 – Estimated variation in completely reversed, uniaxial strain-life behavior as a function 
of maximum inclusion size for (top) control arm and (bottom) front cradle, including coalescence 
effects in the LCF regime.  In the coalescence propagation analysis, parameters were assigned as 

follows based on experimental work: control arm ( 5
p1.0x10 , D 1 m−ϕ = = µ , partD̂ 6 m= µ , 

and DCS 25 m= µ ); front cradle ( 2
p1.1x10 , D 128 m−ϕ = = µ , partD̂ 9 m= µ , and DCS 45 m= µ ). 
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Although the data of any experimental program are necessarily limited and precise statements on 
upper and lower bounds must be treated with caution, it appears that the following are useful 
working bounds on fatigue lives for a given constant amplitude loading condition: 
 
HCF (only dominant cracks) 
Upper bound – Largest Si particle as crack incubator, porosity < 10-4 , fine DCS 
Lower bound – Largest possible pore or oxide as crack incubator, occurring just below the free 
surface 
 
LCF 
Lower bound – Largest Si particle as crack incubator, microporosity and larger DCS favored 
Upper bound – Dominant, single crack, with largest Si particle as crack incubator producing the 
longest life 
 
2.9  Load Sequence Effects and Variable Amplitude Loading 
 
The present model decomposes the small crack behavior into incubation and propagation 
components.  It can be integrated in closed form for a given material condition (i.e., given 
dendrite cell size, flow properties, maximum inclusion and pore sizes, microporosity, etc.) and 
loading condition (constant strain amplitude and load ratio) to give 
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                     Equation 2.41 

 
If we neglect long crack propagation, then T inc MSC/ PSCN N N= + . 

 
If we regard the rate of incubation damage as an incrementally linear form (see Equation 2.4), 
 

2 2
inc

dV
C

dN
−= β                 Equation 2.42 

    
where 0 � V � 1, and V(0) = 0 for undamaged material and V = 1 for an incubated crack (at N = 
Ninc), leads us to the result that for constant Cinc , the incubation damage is subject to the Miner’s 
linear damage summation law, i.e.  ( )i inc i

n / N 1=∑  for i = 1,2,..., N loading levels/conditions.   

Here, ni is the number of cycles applied under the ith amplitude and R-ratio condition.  However, 
if Cinc varies from one loading condition to the next, as would be the case for loading above the 
microplasticity percolation limit (i.e. above macroscopic yield point) or for variable R-ratio even 
for strain amplitudes below this limit, then Cinc depends on amplitude and the linear damage 
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summation breaks down.  The change of Cinc for the LCF regimes is due to extensive 
particle/matrix debonding or particle cracking and commensurate loss of constraint on 
micronotch cyclic plasticity.  In the case of LCF-HCF interaction, Equation 2.42 must be 
integrated in rate form.   It remains to be seen how sequences of loading involving excursions 
above the macroscopic yield point affect the incubation process for subsequent low amplitude 
cycles, as the literature does not present many results for this type of history for A356-T6.  Of 
particular interest is whether higher amplitude cycles in the transition or LCF regime result in a 
lasting increase on the rate of small crack formation and growth within the notch root field; if so, 
then it might be necessary to write  
 

( )inc n m n
max

1
C C 0.3 C C

0.7 D
 = + − −  
�

                                             Equation 2.43 

 
However, the model inherently has sequence effects even without the dependence on ( )max

/ D� in 

Equation 2.43 in the incubation regime, provided that some of the amplitudes within the 
spectrum exceed the microplasticity percolation limit of / D� = 0.3.  Sequences of high 
amplitude cycling (above / D� = 0.3) followed by low amplitude cycling will lead to a model 
prediction of a cycle summation less than unity, and vice versa for low-high amplitude 
sequences.  As a practical matter, above the percolation limit for microplasticity crack incubation 
is very rapid and so only a small number of cycles are necessary to reach the incubation life.   
Therefore, we can regard linear damage summation as valid only for all stress amplitudes within 
the HCF regime; any overload cycles are expected to result in highly accelerated crack 
incubation which will invalidate the linear damage summation. 
 
As is the case in classical crack initiation analyses based on rainflow counting a history of 
applied load or strain and then applying of a damage accumulation procedure to the amplitude 
histogram, certain approximations may be made, depending on the loading history.  For example, 
for simplicity R-ratio effects in Cinc might be neglected by assuming some characteristic value 
(zero or some positive value) based on engineering judgement.  Of course, this is an 
approximation. 
 
Turning to MSC/PSC crack propagation, almost identical comments apply.  As long as (a) Ψ is a 
constant, independent of strain/stress amplitude and R-ratio, (b) the effect of the Ω  term is 
negligible ( aΨ Ω� ), (c) coalescence is neglected, and (d) the driving force is sufficiently 

above threshold ( tha CTDΨ ∆� ), linear damage summation applies to the MSC/PSC crack 

growth in the HCF regime as well as up to the limit plasticity regime for given initial and final 
crack lengths, i.e. ( )i MSC / PSC i

n / N 1=∑ .  Here, ni is only the number of cycles applied under the 

condition of MSC/PSC crack growth and does not include cycles involved with crack incubation.   
The requirement of exceeding threshold is not severe since the driving force depends on a power 
of 4.8 on the stress range. Similar to incubation, the MSC/PSC growth relation for dominant 
cracks exhibits amplitude dependence when Ω  becomes significant, and therefore linear damage 
summation breaks down for overload excursions involving limit plasticity.  Physically this is 
sensible in view of the fact that particles and interfaces are damaged at higher amplitudes, 
increasing the rate of crack propagation in the eutectic regions at higher amplitudes in a manner 
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disproportionate to the HCF growth relation.  Again, load sequence effect studies would shed 
light on whether periodic LCF excursions are adequately described by the present formulation or 
whether some permanent memory of overloads should be retained in the crack growth rate 
relation for lower strain amplitudes.  It should be noted that R-ratio effects are introduced in the 
propagation relation as a modification of the effective stress range and therefore do not 
contribute to load sequence effects.   
 
It is emphasized that linear cycle fraction-based damage summation never applies over multiple 
regimes of crack incubation and propagation.  It would be inappropriate to argue in favor of 
linear summation based on the fraction of NT, for example.  Unfortunately, this is common 
practice when using strain-life or stress-life approaches.  The nature of damage accumulation is 
fundamentally governed by different functions of applied stress and R-ratio in these regimes, and 
they cannot be combined into one simple summation rule.  However, it is fortunately 
unnecessary to develop ad hoc nonlinear damage summation rules, as the equations of the model 
may be integrated in rate form to give the actual sequence effects. 
 
Finally, at high strain amplitudes in the LCF regime (limit plasticity), Miner’s rule again applies 
because the coefficients of the damage growth rate saturate to the values corresponding to 

/ D 1→� .  It is commonly observed that wrought alloys obey Miner’s rule for sequences of LCF 
loading, and the same is predicted for the limit plasticity regime of cast alloys since the influence 
of particle constraint is lost. 
 
The impact of LCF overloads on the formation of multisite fatigue cracks which may eventually 
coalesce under lower amplitude HCF loading is an area of uncertainty.  Although multiple cracks 
can form through the microstructure in HCF, only one typically becomes dominant and grows in 
a manner relatively unaffected by the others.  However, periodic excursions in the LCF regime 
may result in multisite incubation and coalescence of fatigue cracks under even subsequent HCF 
amplitudes, as discussed in a previous section.   The definition of fa�  in Section 2.7 would 
require revision to account for variable amplitude loading. 
 
To summarize, according to the present formulation for variable amplitude loading, 
 

• Miner’s rule applies to the incubation component of fatigue life for strain amplitudes in 
the HCF regime ( / D� < 0.3) and only for a fixed R-ratio. 

• Miner’s rule applies to the MSC/PSC propagation component of fatigue life for strain 
amplitudes in the HCF regime ( / D� < 0.3) and into the LCF regime below limit plasticity 
( aΨ Ω� ), but only for driving forces sufficiently higher than the threshold level. 

• Miner’s rule is invalid if applied on the basis of the total fatigue life, which includes 
multiple regimes of crack formation and growth. 

• Miner’s rule does not apply for the incubation component of fatigue life if cycles are 
applied in the history at amplitudes exceeding the macroscopic yield point ( / D� > 0.3). 

• The identification of stronger sequence effects (e.g. permanent) than described in the 
model due to a single or periodic overloads is a matter for further research, as this study 
has focused on constant amplitude and R-ratio experiments.  However, rather simple 
modifications are possible to incorporate any such strong sequence effects. 
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• The equations of the model may be integrated in rate form in any case to give sequence 
effects or to support other approximations of damage summation for use in spectrum 
loading. 

  
2.10  Application of Model to Macronotches 
 
It is common industrial practice to use finite element analysis and/or Neuber notch analysis to 
evaluate the local stresses and strains at component notches or to measure notch root strains 
directly in instrumented components.   The same methodology can be applied with the present 
model, treating it as an algorithmic equivalent of the strain-life approach, for example.  The 
model requires mechanical parameters (macroscopic stress/strain range history, along with the R-
ratio or mean stress) in addition to the various material parameters that may vary from case to 
case (e.g. maximum pore size, degree of porosity/microporosity, dendrite cell size).   The only 
serious limitation is that for relatively small macronotches the sampling of microstructure within 
the highly stressed volume near the notch root will be small enough to preclude a statistically 
representative sample of microstructure.  This is not so much of an issue for extremely low 
porosity, fine dendrite cell castings but more for large dendrite cell, high porosity castings; in 
this case, even reasonably large notches may behavior differently from smooth specimens with a 
larger highly stressed volume of material due to the variability of the higher scale 
inclusions/pores.  This will be discussed later in the context of statistical considerations. 
 
The fatigue strength for a given life may be relatively insensitive to small notches (on the order 
of dendrite cell size, for example) since there may be other defects in the microstructure of 
comparable dimensions and because the crack growth from such notches is subject to arrest as is 
the case for wrought alloys (cf. Murakami and Endo, 1994).  On the other hand, pre-existing 
crack-like defects within the microstructure should be treated as initial cracks, especially in the 
HCF regime, competing with cracks that are incubated at higher scale inclusions.  Surface 
scratches or machining marks are good examples. 
 
The model requires input of stress and strain amplitudes at the root of macronotches.  Quite 
often, linear elastic finite element analyses are employed as part of the design process for cast 
components.  As long as the notch root von Mises uniaxial equivalent effective stress range 

ij ij3 / 2 ′ ′∆σ = ∆σ ∆σ does not exceed twice the macroscopic cyclic yield point (about 300 MPa) 

for A356-T6, the stresses and strains from elastic analysis are suitable as input to the fatigue 
model.  Of course, large overloads may induce notch root plasticity and residual stresses that can 
only be addressed using elastic-plastic analysis, whether based on finite elements or Neuber 
notch analysis.  Alternatively, theoretical elastic stress concentration factors, if they have been 
tabulated, may be used in this case.  However, elastic analysis can be used even for higher 
stresses as long as the component remains elastic everywhere except at the notch root(s) with the 
highest stress concentration; in this case, standard techniques of Neuber notch analysis can be 
used to provide input to the model in terms of local, notch root stresses and strains.  Other notch 
root stress analysis algorithms have also been developed in the past 5-10 years as alternatives to 
the Neuber analysis. 
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2.11  Multiaxial Stress State Effects 
 
The model is written in a form which is applicable to multiaxial stress states.  The incubation 
driving force is based on the maximum plastic shear strain amplitude at micronotches, while the 
MSC/PSC driving force is based on the maximum principal stress range.  While the former has 
been reckoned in terms of local cyclic plasticity forming and growing small cracks, the latter is 
due to the constraint on cyclic crack tip plasticity offered by the Si particles on an otherwise 
ductile matrix.  It is left to future work to identify stress state dependencies based on finite 
element simulations that include a variation of the applied loading over a broad range of stress 
states.  The current form of the model for combined stress states is therefore subject to 
modification as these results become available. 

 
Fig. 2.18 – Comparison of experiments and dominant crack model predictions for completely 
reversed uniaxial and torsional loading of thin-walled tubular specimens for the horizontally cast 
plate A356-T6 alloy for several maximum pore sizes and a range of θ values. 
 
Completely reversed torsional fatigue experiments discussed in Section 3.4 at Georgia Tech on 
thin-walled tubular A356-T6 specimens from the horizontally cast plate show that the fatigue 
lives for the cases of uniaxial and torsional fatigue are reasonably well-correlated using the 
Mises equivalent strain for strain amplitudes that are below the percolation limit for 
microplasticity (for / D� < 0.3) for final crack lengths of approximately 1 mm, while torsional 
specimens are longer lived for strain amplitudes exceeding this level (see Fig. 2.18).   This 
suggests that the assumption of uniaxial Mises equivalent strain in the incubation driving force is 
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appropriate.  It is apparent from Fig. 2.18 that a value of 0.4θ ≈ in the uniaxial equivalent stress 

( )a 1ˆ 2 1∆σ = θσ + −θ ∆σ is necessary to match these results.  It is noted that the CTD∆  is in its 

own right a local mixed mode quantity (cf. McDowell and Bennett, 1999) since it includes the 
vector magnitude of combined crack tip sliding and opening displacements.  The role of the ˆ∆σ  
is to assign a dependence of this mixity on stress state in a phenomenological way, with the 
relative magnitudes of a2θσ  and ( ) 11−θ ∆σ  prescribing the relative effects of crack tip sliding 

and opening, respectively. 
 
2.12 Transition to Long Crack Fracture Mechanics 
 
The fatigue crack growth rate as predicted by the EPFM-based da/dN versus CTD∆  relation in 
Equation 2.11 for microstructurally and physically small crack regimes is generally higher than 
that for mechanically long fatigue cracks.   Recalling that the transition from the small crack 
growth regime to the long crack growth regime described by Equation 2.15 is assumed to occur 
at the point of crossover of the two rates, i.e.  

 
Fig. 2.19 -  Plot of predicted da/dN from the model for three constant amplitude, completely 
reversed stress amplitudes in the HCF regime in terms of the range of the effective stress 
intensity factor, including transition to long crack behavior where the MSC/PSC and LC growth 
rates are equal.  The dashed line shows the point where a 1 mm crack is reached in the small 
crack propagation history.  The incubation pore size is 50 mµ in these calculations.   
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MSC / PSC LC

da da da
max ,

dN dN dN

    =         
                                                                           Equation 2.44 

 
Note in Fig. 2.19 that the value of the effective stress intensity factor range, effK∆ ,at the point of 

transition to long crack behavior is on the order of 6 MPa m under HCF conditions, for a 
completely reversed HCF stress amplitudes just above threshold, 90 MPa.   This is very close to 
the value of maximum stress intensity factor determined by Gall et al. (1999) for transition from 
fatigue crack growth along the interface between Si particles and the Al-1%Si matrix to crack 
growth through the Si particles, presumably by virtue of particle fracture ahead of the advancing 
crack.   
 
2.13     Small and Long Crack Thresholds 
 
It is possible to represent the three thresholds graphically, as shown in Fig. 2.20 for horizontally 
cast A356-T6 alloy with a maximum pore size of 50 mµ .  The lowest threshold (green line, 
yellow region) is corresponds to the elastic shakedown limit of cyclic microplasticity within the 
microstructure absent of cracks.  The MSC/PSC crack propagation threshold dominates for 
cracks up to about 400-500 mµ , with the LEFM propagation threshold relevant to longer cracks 
holding at lower applied stress levels.  The dashed line at 84 MPa designates an inadmissible 
boundary because the maximum pore size is 50 mµ  in this case.   

 
Fig. 2.20 – Kitagawa diagram for completely reversed uniaxial fatigue thresholds constructed 
from the present model of horizontally cast A356-T6 alloy.   In the yellow shaded region, cracks 
do not incubate.  In the blue-shaded region, MSC/PSC cracks arrest.  The dashed line represents 
the stress amplitude corresponding to 50 mµ  average pore diameter.  Note that outside the blue- 
and yellow-shaded envelopes, MSC/PSC or long cracks can propagate to failure. 
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2.14      Use of Model for Parametric Studies 
 
The model presented in this Chapter is useful for parametric studies since it explicitly represents 
the role of various key microstructural descriptors.  For example, Fig. 2.21 shows the computed 
dependence of total fatigue life to a crack length of 1 mm on inclusion size for three stress 
amplitudes within the HCF and transition regimes for horizontally cast A356-T6 alloy.  Such 
plots can be generated rapidly for a wide range of casting inclusions and stress amplitudes. 
 

 
Fig. 2.21 – Example of parametric computational study of total fatigue life (1 mm crack) as a 
function of completely reversed uniaxial stress amplitude for a wide range of maximum 
inclusion sizes for horizontally cast A356-T6 alloy.  
 
 
2.15  Statistical Aspects of Fatigue Life Prediction 
 
This model is deterministic but has been framed to explicitly incorporate microstructure features, 
thereby allowing for variability of microstructure to enter naturally and directly into the resulting 
variability in estimated fatigue life.  Hence, the model is amenable to prediction of variability to 
any level of microstructure variability input by the user.  Microstructure features include dendrite 
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cell size, maximum Si particle size, maximum pore size, maximum oxide size, proximity to the 
free surface (for large pores) and average porosity level.    
 
If the probability distributions of these features are specified based on quantitative 
metallography, then the probability distributions for the fatigue life can be computed directly 
from the model, without resorting to ad hoc incorporation of variability in the fatigue constants 
that is characteristic of probabilistic fracture or damage mechanics.  This is a natural feature of a 
micro-mechanical framework for fatigue.   
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3. EXPERIMENTAL PROGRAM

A comprehensive experimental program was conducted in order to explore and quantify the
small and long crack behaviors for different strain amplitudes, mean stresses, and loading
sequences. Scanning electron microscope (SEM) analyses were performed on many of these
experimental specimens so that the microstructure/inclusion content could be correlated to the
fatigue data. Crack incubation experimental data is difficult to obtain and was not covered here.
The crack incubation information was obtained in the micromechanical finite element chapter of
this report. The following sections delineate the type of experiments.

1. Smooth specimen, strain-life and stress-life experiments
2. Multiaxial fatigue
3. Small crack experiments
4. Long crack experiments
5. Mean stress experiments
6. Sequence experiments

Westmoreland Mechanical Testing and Research conducted the experiments except for the
multiaxial fatigue experiments, which were conducted at Georgia Institute of Technology. The
major results of the experimental program are included in this chapter.

3.1. SMOOTH SPECIMEN UNIAXIAL CYCLIC EXPERIMENTS

Smooth specimen uniaxial cyclic experiments were the mainstay of the study although multiaxial
and precracked experiments were also performed. The smooth specimen uniaxial experiments
are the usual means to obtain strain-life and stress-life fatigue curves. In fact, many designers
will not consider other types of data other than evaluation of uniaxial strain-life data. As such,
we examine different uniaxial fatigue data in which the specimens had different dendrite cell
sizes (DCS) and different initial porosity levels. Furthermore, we examine these data in the
context of literature data for this cast A356 aluminum alloy and automotive component data.
These experiments were conducted at room temperature and under relatively low frequencies
(strain rates) in accordance with ASTM Standard 606-99.

3.1.1. UNIAXIAL STRAIN-LIFE CURVES FROM HORIZONTALLY CAST PLATES

For our study, we considered uniaxial tension/compression experiments and did not consider
bending. Bending induces higher stresses/strains at the surface, and we desired to understand the
mechanisms internally under uniform stress. As discussed in another section, we determined the
surface effects by micromechanical simulations.

Figure 3.1 shows the strain-life and stress-life curves for the horizontally cast A356 aluminum
alloy plates used in our study. Numerous smooth cylindrical (dog-bone) shaped fatigue
specimens, shown in Figure 3.1c were machined from the cast plate with a gage length of 19 mm
and a gage section diameter of 6.35 mm. A voltage (potential) drop was measured across the
entire specimen gage length in the dog-bone specimens to determine the number of cycles at
failure. Typically, a 50% load drop was used to determine final failure of the specimen, although
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most of the specimens experienced catastrophic fracture once the load dropped to approximately
20% of its starting level. The experiments were conducted in strain control with R-ratios of -1 at
room temperature. A triangle wave from was applied at a frequency of 0.5 Hz.

When comparing the cyclic stress-strain response to the monotonic stress-strain response, one
can observe in Figure 3.2 that the material cyclically hardens, that is, an increased work
hardening rate under cyclic loading is exhibited when compared to a monotonic loading. We
note that this type of cyclic work hardening was observed previously by Stephens et al. (1988)
for A356-T6.

3.1.2. COMPARISON OF HORIZONTAL CAST PLATE STRAIN-LIFE CURVES TO
OTHER DATA

Figure 3.3 shows the strain-life curves from several different types of A356 aluminum castings
from uniaxial cyclic fatigue experiments. Horizontal plates were cast in which specimens were
machined for round, smooth cyclic fatigue experiments with an average DCS of 30 µm, and an
initial average porosity of 0.0015 was determined. The horizontal plates were the main source for
specimens in the later sections of this chapter, so characterizing them with actual component data
and literature data is worthwhile. From Figure 3.3, one can see that the strain-life curves from the
horizontal cast plates fall in the broad scatterband of automotive component data or data from
Stephens et al. (1988).
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The strain-life behavior is typically characterized by the following equation which includes an
elastic portion (Basquin, 1910) and a plastic portion (Coffin,1954; Manson, 1953),

∆ε σ
ε

2
2 2= ( ) + ( )f

f

b

f f

c

E
N N

'
'  Equation 3.1

where σ f
'  is the fatigue strength coefficient, b is the fatigue strength exponent, E is the elastic

modulus, 2Nf are the number of reversals to failure, ε f
'  is the fatigue ductility coefficient, and c is

the fatigue ductility exponent.

Tables 3.1 and 3.2 summarize the fatigue property and microstructure/inclusion parameter values
for the materials shown in Figure 3.3. Some observations can be made regarding the data. The
first observation is that the cyclic yield strength is greater than the monotonic yield strength for
all the material data collected indicating that it is a cyclic hardening material. Here, a 0.2% offset
was assumed to determine the yield point.

A second observation from Table 3.1 is that in wrought materials, the fatigue strength
coefficient, σ f

' , is often related to the true fracture strength, and the fatigue ductility coefficient,

ε f
' , is similarly related to the true fracture ductility. We see that the fatigue strength coefficient is

almost twice that of the ultimate strength for each of the materials from the components,
horizontal plate, and Stephens et al. (1998) data. For the fatigue ductility coefficient, the results
are on the same order of magnitude as the elongation at failure. The conclusion is that the fatigue
strength coefficient and fatigue ductility coefficients do not directly relate to the elongation at
failure and the ultimate tensile strength. A third observation from Table 3.1 is that differences in
the fracture toughness, KIC, (17-25 MPa-m^0.5), and the elongation to failure (2-12%) are
observed for A356-T6. These differences under monotonic conditions arise from a combination
of the microstructure and inclusion content. In particular, they can be delineated as the following:

(1) initial volume fraction of casting porosity,
(2) initial pore sizes and distribution,
(3) nearest neighbor distance of large pores,
(4) volume fraction of particles,
(5) particle size and distribution,
(6) particle nearest neighbor distance, and
(7) dendrite cell size.

The volume fraction of particles was essentially the same at 7%. After viewing Figure 3.3, one
might tend to assume equivalence of the data when considering statistical significance, excusing
differences to scatter. However, upon closer examination of the microstructures and sites for
crack formation at different strain amplitudes, there arises a much more deterministic evaluation.
This is also evident by observing that the data in Figure 3.3 are layered or ordered according to
the specific component/casting. The seven microstructural aspects mentioned above have a
synergistic effect on the outcome, not only on the elongation at failure, but the final number of
fatigue cycles as well. One should not just independently assign the final number of cycles to one
parameter, for example, the dendrite cell size, unless of course all of the other parameters are
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statistically equivalent. Although one might examine just the dendrite cell size, the other
parameters/inclusions could play a much larger role in the outcome of the fatigue life. As such,
all of these microstructure/inclusions must be considered when evaluating the fatigue life of a
material. This is illustrated by the next set of experiments.

3.2. Small Crack Incubation Cyclic Experiments

We cast plates after the method of Major (1997) in order to quantify the different initial porosity
levels and DCSs. These plates were cast in a vertical environment to give a gradation in porosity
level as the material solidified. The specimen and experiment conditions were identical to those
for strain-life experiments on the horizontally cast plates. Figure 3.4 shows the strain-life curves
comparing the horizontally cast plate with the vertically cast plate. Note that as the DCS
increases, the number of cycles (reversals) to failure decreases. Again, one must not attribute the
differences just to DCS though as the initial inclusion size is different for these data.
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Table 3.1. Fatigue property parameters comparing plate, literature, and automotive components.
Property Rear

Knuckle
Front
Cradle

Front
Knuckle

Control
Arm

Horiz.
Plate

Stephens
x

Stephens
y

Stephens
z

Cyclic yield
strength

(Sy -MPa)

312 272 281 291 290 260 245 230

Cyclic strain
hardening
exp (n')

0.049 0.082 0.099 0.053 0.065 0.045 0.061 0.057

Cyclic
Strength

coefficient
(K' - MPa)

436 473 528 408 430 384 408 384

Fatigue
strength

coefficient
(σf' - MPa)

813 609 543 644 490 594 502 495

Fatigue
ductility

coefficient
(εf')

0.061 0.070 0.144 0.149 0.087 0.0269 0.0166 0.0117

b -.0132 -0.120 -0.101 -.0123 -0.105 -0.124 -0.119 -0.117
c -.0572 -1.164 -0.687 -0.694 -0.479 -0.530 -0.544 -0.458

Fracture
toughness

(MPa-
m^0.5)

25.7 N/A 22.2 17.1 17.1 18.0 16.7 17.3

K thresh
(R=0.5)

MPa-m^0.5

2.58 N/A 2.60 2.86 2.85 4.2 3.6 4.0

K thresh
(R=0.1)

MPa-m^0.5

3.75 N/A 3.66 3.73 4.53 6.0 6.2 6.2

Failure strain 12.3% 7.0% 9.5% 8.5% 8.2% 3.5% 1.8% 1.7%
Elastic Mod

(GPa)
72.3 70.7 67.9 74.0 71.0 71.0 70 70

Yield (MPa) 249 222 217 279 249 229 224 217
Ult. Stress

(MPa)
327 287 285 336 335 283 266 252
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Table 3.2. Summary of microstructure/inclusion parameters comparing plate, literature, and
automotive component data.

Property Rear
Knuckle

Front
Cradle

Front
Knuckle

Control
Arm

Horiz.
Plate

Stephens
x

Stephens
y

Stephens
z

DCS
(µm)

41 45 106 25 30 33 61 66

Ave
particle

size
(µm)

3.3 3.2 2.8 2.8 5 N/A N/A N/A

Largest
particle

size (µm)

25 30 20 25 40 N/A N/A N/A

Particle
aspect
ratio

1.6 1.8 1.6 1.6 2.5 N/A N/A N/A

Porosity
Volume
fraction

1.3e-4 1.1e-2 1e-5 1e-5 1.5e-3 4e-3 5e-3 5e-3

Ave pore
size (µm)

28 128 1 1 45 380 380 380

Largest
pore size

(µm)

50 500 2 2 55 500 500 500

Nearest
neighbor
distance

(µm)

470 210 N/A N/A 900 N/A N/A N/A

Pore type Isolated
shrink

Gas
pores

Small
pores

Small
pores

Isolated
shrink

N/A N/A N/A

oxides no yes yes yes no N/A N/A N/A

Many specimens were analyzed under SEM and Energy Dispersive xray Spectoscopy (EDS) to
quantify the size of the initiation site and to determine if the initiation site arose from a pore,
oxide, silicon particle, or intermetallic. In some castings with no pores or oxides visible,
nucleation sites were determined to be less than a micron in size. Alternatively, when many
pores were present, fatigue cracks nucleated at the large pores and coalesced in a ductile manner.
Figure 3.5 shows a plot of the number of cycles versus inclusion size for different DCSs in order
to show the interactive effects. Here, the trend is not obvious regarding the DCS but the size of
the inclusion is clear until a certain volume fraction of porosity is reached. Figure 3.6 shows the
number of cycles versus porosity volume fraction for the case when the strain amplitude of
0.0015. Clearly, the volume fraction of pores along with the pore size can be used as a metric to
model the phenomenological behavior. As the inclusion size and porosity volume fraction
decreased, the number of cycles to failure is increased. In one case one large pore dominated the
failure and in another case many small pores initiated fatigue cracks to grow and coalesce. As an
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example of the size effects, three specimens with a different number of cycles to failure are
shown for illustrative examples in Figures 3.7-3.9. Figure 3.7 shows a specimen that had over
3.28x106 cycles in which an oxide was found on the order of 5 µm. Figure 3.8 shows a fairly
large pore (150 µm) near the edge of the specimen in which the fatigue life was approximately
2.05x105 cycles. In this specimen, the volume fraction of pores was fairly low. Figure 3.9 shows
a specimen that had over 5.1x104 cycles in which large pores (~200 µm) were found with a fairly
large volume fraction of pores.
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Figures 3.7-3.9 illustrate the different microstructural features affect the fatigue life. Fatigue
striations were observed locally near the inclusions in Figures 3.7-3.9, but after a certain
distance, differences arose in the samples with different inclusion types. For example, the
specimens in Figures 3.7-3.8 experienced fatigue striations to a fairly large distance in
comparison to the specimen in Figure 3.9, which had a larger volume fraction of porosity. On the
fracture surface of the specimen in Figure 3.9, we observed that fatigue cracks grew from the
pores, and then they coalesced in a ductile fashion. Figure 3.10 shows a close-up of Figure 3.9.
The pores designated by "a" and "b" in the pictures signify the same pores. In Figure 3.10, two
regions are marked to show the change in mechanisms. Figure 3.10b is a secondary electron
image (SEI) at higher magnification to illustrate the fatigue striations near the pore. Figure 3.10b
shows a region between two pores illustrating the ductile region where voids and broken silicon
particles are observed.
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Table 3.3 summarizes the results from the uniaxial fatigue experiments in which each fracture
surface was analyzed with SEM in order to quantify the initiation sites for damage. Parameters of
interest were the inclusion type, inclusion size, distance of inclusion to free edge, volume
fraction of porosity, and nearest neighbor distance. The number density of pores, volume
fraction, and nearest neighbor distances were determined from regions within the bulk specimen
from a metallographically polished cross section that were not directly related to the fracture
surface. However, the other data in the table were indeed determined from the fracture surfaces.
The nearest neighbor distance was calculated from the area of the cross section divided by the
number of pores. When more than one pore was present, an average was taken to determine the
pore (inclusion) size. An interesting observation can be made from these data. Major et al.
(1994) have used the DCS as a metric to evaluate the fatigue life of this cast A356-T6 aluminum
alloy. Interestingly, the porosity volume fraction maps directly with the DCS. It certainly may be
true that the DCS is a length scale related to fatigue life, but it is clouded a bit by the direct link
to the porosity volume fraction which is related to the number density of pores and nearest
neighbor distances.

3.3. Long Crack Growth Experiments

Long crack growth experiments were performed at different R-ratios on the horizontally
cast plates to determine the long crack behavior. The specimen dimensions were 7.62 cm x 1.27
cm with a notch length of 2.5 cm. Experiments were conducted at room temperature, with
constant load amplitude in accordance with ASTM 647-95. The frequency was set at 10 Hz, and
R-ratios ranged from 0.1, 0.5, 0.7. Pregrowth cracking and testing satisfied the requirements of
ASTM E647-83.

The long crack region can be assumed to reflect the Paris Law (1963) relation and is given above
threshold by

da

dN
C K m= ( )∆ Equation 3.2

in which a is the crack length, N is the number of cycles, ∆K is the stress intensity range, and C
and m are material constants determined from long crack growth experiments. Because this
generates a sigmoidal type of response, several regions exist. In the context of this cast A356
aluminum alloy, we examine Region I, where threshold effects are important, and Region 2,
where stable long crack growth occurs according to Equation 3.2. Figure 3.11 schematically
summarizes the regimes of the crack growth rate curves.
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Table 3.3. SEM results from specimens that had experienced a constant strain fatigue amplitude
(R=-1) from the vertically cast A356 plate.

DCS (µµµµm) Cycles Strain
(%)

Inclusion
Type

Dist.
to edge
(µm)

Inclusion
Size (µm)

Porosity vol.
fraction

Nearest
neighbor
distance

60 33,603 0.25 2 pores 0 100 - -
60 34,959 0.25 2 Pores 0 150 - -
60 46,450 0.25 2 pores 0 150 - -
60 53,166 0.25 3 pores 0 150 - -
60 81,409 0.25 1 pore 0 100 - -
60 30,400 0.25 14 pores 0 145 - -
60 39,900 0.25 15 pores 0 260 - -
60 38,000 0.25 15 pores 0 260 - -
60 26,400 0.25 16 pores 0 325 - -
35 30,368 0.25 1 Pore 20 40 - -
35 87,747 0.25 1 pore, 1

oxide
0 175 - -

35 89,285 0.25 1 oxide, 1
pore

0 150 - -

35 90,700 0.25 1 thin oxide 0 20 - -
35 59,600 0.25 35 pores 0 140 - -
35 63,500 0.25 11 pores 0 200 - -
35 73,700 0.25 16 pores 0 155 - -
35 95,900 0.25 33 pores 0 150 - -
20 56,329 0.25 1 oxide 100 90 - -
20 86,245 0.25 1 oxide 300 75 - -
20 107,712 0.25 1 oxide 0 80 - -
20 38,400 0.25 14 pores 0 165 - -
20 87,800 0.25 19 pores 0 125 - -
20 42,000 0.25 15 pores 0 155 -
60 241,401 0.15 1 pore 0 100 - -
60 651,460 0.15 1 pore 0 170 - -
60 983,387 0.15 3 pores 0 130 - -
60 451,000 0.15 13 pores 0 265 0.0083 488
60 512,000 0.15 11 pores 0 255 0.0107 577
60 724,000 0.15 10 pores 0 250 0.0121 635
60 961,000 0.15 9 pores 0 240 0.0248 705
35 1,636,185 0.15 1 oxide 200 100 - -
35 3,281,904 0.15 1 thin oxide 0 5 - -
35 5,405,563 0.15 1 thin oxide 0 100 - -
35 1,030,000 0.15 13 pores 0 140 0.005 488
35 1,120,000 0.15 17 pores 0 117 0.0059 373
35 1,140,000 0.15 12 pores 0 175 0.0075 529
35 6,140,000 0.15 17 pores 0 147 0.0075 373
20 205,032 0.15 1 pore 0 150 - -
20 1,722,050 0.15 1 thin oxide 0 0 - -
20 2,543,075 0.15 oxide 0 150 - -
20 1,620,000 0.15 15 pores 0 108 0.0019 423
20 2,070,000 0.15 8 pores 0 90 0.0020 794
20 1,210,000 0.15 14 pores 0 124 0.0048 453
20 3,210,000 0.15 15 pores 0 96 0.0063 423
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Table 3.4. Summary of the Paris Law parameters for the different R-ratios.
R-ratio ∆Kth C (m/cyc-MPa-m0.5)-m m

A356 aluminum alloy
0.1 - 3.2x10-12 5.3
0.5 - 98.1x10-12 4.3
0.7 - 165.5x10-12 5.1

Al 1%Si alloy in dendritic region
0.1 3.23 6.8x10-12 4.9
0.5 3.06 45.1 x10-12 4.7

Figure 3.12 shows the long crack growth results for the horizontally cast A356 aluminum alloy
and Al1%Si dendritic region. Although the coefficient to the Paris Law gradually increases with
increasing R-ratio, the exponent essentially remains constant. Several replicates of each test were
conducted and the values were averaged. The experimental results were fairly close so averaging
was worthwhile. These results contrast those from Wigant and Stephens (1988).
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The Wigant and Stephens (1988) study only included results for A356-T6 alloy for R-ratios of
0.1 and 0.5. In their R-ratio experiments of 0.1, they noted a wide range of Paris Law
coefficients, ranging from 1.5x10-20 to 8.6x10-17. Note that these values are much lower than the
values observed in this study. They also observed for the R-ratio experiments of 0.1, the Paris
Law exponent varied from 8-11, a much broader range than those experienced in this study with
a higher value as well. A similar broader range of results owing to microstructure/inclusion
variation was observed in the Wigant and Stephens (1988) R-ratio experiments of 0.5 for the
coefficient (2.2x10-15 to 1.2x10-12) and the exponent (5 to 8.4).

Although Wigant and Stephens (1988) analyzed threshold values for A356-T6, we concerned
ourselves only with the threshold values for the Al1%Si because of our modeling framework that
examines crack incubation, MSC, and PSC crack regimes. The threshold values for the Al1%Si
dendritic material is important for the small crack propagation analysis because the fatigue
cracks mainly propagate through the aluminum early on in the fatigue life.

3.4. Multiaxial Cyclic Experiments

The stress states of automobile components are generally three dimensional. In design, however,
fatigue data are frequently obtained from uniaxial cyclic experiments. To obtain information
regarding the influence of stress state on fatigue life, we carried out fatigue experiments under
multi-axial loading. One type of multi-axial fatigue experiment was conducted under completely
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reversible cyclic axial-torsional loading of thin-walled tubular specimens, i.e., the maximum and
minimum effective strains (Von Mises strain) are opposite in sign and equal in magnitude. These
fatigue experiments were conducted under cyclic tension-compression, pure torsion, and under a
combination of tension-compression and torsion. In the latter case, the non-proportionality
parameter λ is taken as one. Here, λ is defined as 1.732∆ε/∆γ with ∆ε and ∆γ indicating the range
of tensile-compression strain and shear strain. Figure 3.12 shows the experimental curves of
fatigue life versus effective strain amplitude obtained for the three cases of completely reversible
cyclic loading.

The results show that when the amplitude of effective applied strain (stress) varies from 0.2%
(133 MPa) to 0.3% (188 MPa), the fatigue life varies from 4,000 to 100,000 cycles. For these
relatively high stress amplitudes, there are distinct differences between fatigue life obtained for
tension-compression, pure torsion, and their combination. However, when the effective strain
(stress) amplitude is less than 0.2% (133 MPa), the difference between the three loading
conditions is not obvious. This result indicates that using the fatigue data for uniaxial loading is
reasonable for design of automobile components in high cycle fatigue under fully reversed cyclic
loading conditions. On the other hand, one should be cautious in using uniaxial fatigue for
designing components under low cycle fatigue conditions. From Figure 3.13, we see that above
the strain amplitude of 0.25% the fatigue life for pure tension is smaller than for the case of a
combination of torsion and tension-compression; and it is much smaller than for pure torsion.
Therefore, the effects of stress state on the low cycle fatigue life is quite different from that
arising under monotonic loading where pure torsion can cause more damage and lower strength
than other stress states.

The other type of multi-axial fatigue experiment performed in our work was cyclic symmetric
torsion under constant applied tensile stress conditions. This was designed to investigate effects
of effective mean stress under multi-axial loading conditions. An increase in the constant tensile
stress increased the effective mean stress. Figure 3.14 shows the experimental curve of fatigue
life versus applied constant tensile stress for a completely reversible cyclic torsion with effective
cyclic strain amplitude of 0.1%. The result indicates that fatigue life drops quickly when the
tensile stress amplitude increases, indicating significant effects of the effective mean stress.

3.5 Mean Stress Effects

Various mean stress experiments were performed at different R-ratios on the horizontally cast
A356 plates in order to provide more data beyond the fully reversed zero mean stress data. These
tests were conducted under uniaxial tension-compression without torsion included. Cordes et al.
(1988) provided some data for a cast A356 aluminum alloy and showed that the Smith-Watson-
Topper (1970) approximates the results fairly well. In the long life regime, the Cordes et al.
(1988) model gives unconservative estimations of the fatigue life. The data in the study as well
as that from Cordes et al. (1988) was used for the development of the microstructure-property
fatigue model discussed in Chapter 2 of this report.
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Figure 3.15 shows the deleterious effect that increased tensile mean stress has on the fatigue life
of cast A356 aluminum. The mean stress levels used in these experiments included 34, 69, 103,
and 207 MPa with the stress amplitude ranging from + 48 to +103 MPa. This trend was similar
to that observed by Cordes et al. (1988). As the tensile mean stress increases, silicon particle
fracture and debonding will increase thus weakening the resistance of the material in fatigue. As
such, the driving force for crack growth will increase thus reducing the fatigue life when
compared to the case when no tensile mean stresses are present.

3.6 Sequence Effects

Besides mean stress effects, we also examined the effect of varying boundary condition
sequences on the fatigue life of the horizontally cast A356 aluminum alloy. Different types of
sequence effects were examined. In the first set, we examined the effects of overloads. Typically,
in wrought materials, the application of overloads was observed to retard crack growth (cf.
Schijve, 1960; Hudson and Hardrath, 1961; Hudson and Hardrath, 1963). The crack retardation
is related to the plastic zone size that arises when the overload occurs. Some notions to explain
the effect of crack retardation have been crack tip blunting, compressive residual stresses at the
crack tip, and crack closure effects. Although crack closure somewhat occurs as explained in
Chapter 4, the overloads actually degrade the fatigue life in this cast A356 aluminum alloy.
Hence, the crack retardation that occurs in wrought metals does not seem to occur with this cast
aluminum alloy.
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Figure 3.16 shows the stress amplitude versus number of reversals. Data in this figure comes
from specimens that were tested at two different overload stress amplitudes (83 and 124 MPa)
and applied at three different intervals (every 10, 100, and 1000 cycles) for a stress level of 83
MPa. Several trends can be observed from these data. First, as the frequency of the overload
increased, the fatigue life decreased. This occurred for both overload amplitudes. Second, as the
overload amplitude increased, the fatigue life decreased. Because both the amplitude and
frequency affect the fatigue in an adverse manner, it is worthwhile describing the mechanism.

Every fracture surface of the overload specimens contained multiple fatigue crack nucleation
sites that once they reached a certain size coalesced into a larger fatigue crack. Figure 3.17 shows
a facture surface images of specimens tested to a stress amplitude of 83 MPa in which one
specimen (a) was tested with no overloads and another specimen (b)-(c) which was tested with
an overload of 207 MPa every 10 cycles. This figure illustrates that when no overload occurred,
one fatigue crack initiation site was observed, but for an overloaded specimen, several fatigue
crack initiation sites were observed. For this cast material, fatigue cracks can incubate and
initiate at a number of different inclusion sites. However, in the absense of tensile overloads, one
dominant fatigue crack may generally arise in the specimen if the porosity is a dilute
concentration. When tensile overloads are present, the statistical chances of generating more
fatigue cracks is greater because more silicon particles are fractured and debonded in the plastic
zone near a crack tip. This fracturing and debonding of silicon weakens the resistance of the
material and allows the separate cracks to grow in a distributed manner. This effect is opposite to
wrought alloys because the second phase silicon is 7% of the total volume and is distributed
everywhere. Other materials with weak second phases would also be expected to experience this
same result.

In other sequence experiments, we ran uniaxial (strain-life) cyclic experiments to a certain
number of cycles (100, 1000, 10000, and 100,000) and then conducted tensile experiments to
examine the effect of fatigue degradation on the strain at failure. The cycling was performed at
0.2% strain amplitude at room temperature in accordance to ASTM E606-92. The tensile loading
was performed under ASTM E8-96. Specimens were taken from the horizontally cast A356
plates. Table 3.5 summarizes the results of this study. We mention here that several replicates
were used and the average values are included in Table 3.5.

Table 3.5. Summary of failure strain results from different initial pre-cycling.
number of pre-cycles failure strain (averaged)

0 8.2%
100 7.2%
1000 7.1%

10,000 7.0%
100,000 5.0%
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For insight into the results summarized in Table 3.5, we should examine other data shown in
Figure 3.18. Figure 3.18 shows the (a) number density and (b) area fraction of fractured and
debonded particles as a function of number of cycles. As the first half cycle is loaded, some
silicon particles are cracked and nucleated. This was also observed and described by
Horstemeyer (2000) for monotonic loading. From one cycle up to approximately 30,000 cycles
(for a strain amplitude of 0.2%), the number of damaged particles is constant, revealing that the
dissipation of energy is not occurring in the breaking and debonding of the silicon, but in the
development of fatigue cracks within the aluminum. However, at a certain number of cycles,
approximately 30,000, the number of damaged particles increases dramatically. At this point, the
driving force of the fatigue cracks is large enough to debond and fracture the silicon particles.
This point may signify the transition from incubation to a MSC/PSC crack. At 100,000 cycles,
the number of damaged particles was constant again, signifying a saturation of many cracks
throughout the specimen. From Figure 3.18 the number of damaged particles that fractured and
debonded remained constant from one cycle up to approximately 30,000 cycles and then an
exponential growth was exhibited above that number of cycles. Because the tensile failure strain
under monotonic loading is a function of void nucleation, growth, and coalescence, the tensile
failure strain decreased once the number of cycles reached above 30,000 cycles in the pretests
because more void/crack nucleation sites were present.

Another set of experiments included prestrain tension followed by cyclic fatigue. Specimens
were strained to different strain amplitudes according to ASTM E8-96 and then fatigued
according to ASTM E606-92. The results revealed a consistent trend with the mean stress data
and the overload data. The prestrain amplitudes ranged from 1% (265 MPa) to 3% (290 MPa),
and the corresponding minimum and maximum number of cycles ranged from 70,000 to
126,000. These quasistatic prestrains seem to have a much more deleterious affect on the fatigue
life, as the mean stress experiment and overload experiment specimens reached greater fatigue
lives by an order of magnitude more than these quasistatically prestrained experiments even
though the peak stresses for the mean stress experiments reached 265 MPa (when adding the
mean stress and amplitude) and the overload experiments reached 290 MPa (when adding the
overload and amplitude).

3.7 MULTISTAGE FATIGUE MICROSTRUCTURAL ANALYSIS

In order to relate the microstructure/inclusion features to the cyclic fatigue response, we
performed several types of post-test analyses on specimens under uniaxial conditions with and
without mean stresses. Before we describe the results, we first summarize the methods of
evaluation.

Fracture surfaces were examined with a scanning electron microscope (SEM) using either
secondary electron imaging (SEI) or backscatter electron imaging (BEI). When information
containing the spatial arrangement and area fraction of a particular phase was required, BEI was
used. BEI differs from SEI in that the contrast depends on the atomic mass of the constituent
elements of a particular phase. Because of this, phases comprised of higher atomic mass
elements create more backscatter electrons and thus appear brighter on the SEM image. In the
current material, iron has a much higher atomic weight versus aluminum or silicon thus it
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appears brighter in BEI. Since aluminum and silicon have comparable atomic weights they
appear similar in BEI. Consequently, the chemical compositions on the samples were measured
using an energy dispersive x-ray (EDX) analysis. The EDX analysis is a semi-quantitative
measurement of the relative composition of the area of interest. The EDX measurements are not
used to characterize the exact composition of the alloy, but rather to approximate the relative
differences in the area fraction of different phases between fractured samples and undeformed
cross sections. In addition, x-ray mapping was used to determine the spatial arrangement of
silicon particles on one particular fracture surface.

SEM was used on specimens that underwent various cycles at 0.2% applied strain in uniaxial
conditions at room temperature (R= –1) to give us an idea of the progression of number of
damaged silicon particles as the number of cycles increased. These damaged particle sites,
though not directly identified as fatigue cracks, allow for an assessment of mechanisms and
hopefully a definition of when the different stages of fatigue crack growth occur.

The results from Figure 3.18 directly tie in to other fracture surface analyses in which we
examined the propagation of MSC/PSC and LCs. A fracture surface of the sample with the
smallest fatigue crack nucleating inclusion was examined using the scanning electron
microscope for a constant amplitude high cycle fatigue experiments (σmax= 133 MPa, R = 0.1).
For low crack tip driving forces (fatigue crack growth rates of da/dN < 1 x 10-7 m/cycle), we
discovered that a small semi-circular surface fatigue crack propagated primarily through the Al-
1%Si dendrite cells. The silicon particles in the eutectic remained intact and served as barriers at
low fatigue crack propagation rates. When the semi-circular fatigue crack inevitably crossed the
three-dimensional Al-Si eutectic network, it propagated primarily along the interface between the
silicon particles and Al-1%Si matrix. Furthermore, nearly all of the silicon particles were
progressively debonded by the fatigue cracks propagating at low rates, with exception to
elongated particles with a major axis perpendicular to the crack plane, which were fractured. As
the fatigue crack grew with a high crack tip driving force (fatigue crack growth rates of da/dN >
1 x 10-6 m/cycle), silicon particles ahead of the crack tip were fractured, and the crack
subsequently propagated through the weakest distribution of pre-fractured particles in the Al-Si
eutectic. Only small rounded silicon particles were observed to debond while the fatigue crack
grew at high rates. Using fracture surface markings and fracture mechanics, a macroscopic
measure of the maximum critical driving force between particle debonding versus fracture during
fatigue crack growth was calculated as approximately     K

tr
max .» 6 0    MPa m  for the present cast

A356 alloy.

Previous fatigue crack growth studies (Couper et al., 1990; Plumtree and Schafer, 1986: Lee et
al., 1995) have qualitatively shown that silicon particles in cast Al-Si alloys have a tendency to
debond or fracture depending on the crack tip driving force. However, such investigations have
not outlined the microstructural and external conditions that promote particle debonding versus
cracking during fatigue crack growth. Furthermore, many previous studies on cast Al-Si alloys
have considered fatigue cracks growing from large microstructural inclusions such as casting
porosity (Couper et al., 1990: Ting and Lawrence, 1993) or in compact tension specimens with
large initial crack sizes (Lee et al., 1995). Such studies do not provide insight into the early
stages of fatigue crack propagation when the overall crack size is on the order of several dendrite
cells. In the present work, we quantitatively analyzed the transition driving force between crack
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growth along the particle-matrix interface versus across a fractured particle. The foundation of
the analysis is based on fracture surface observations of the conditions that promote particle
fracture versus debonding over a varying range of crack lengths and crack tip driving forces.

A summary of the fatigue experiments on the cast A356 aluminum specimens is presented in
Table 3.6. As shown in Table 3.6, the combined characteristics and overall size (fracture surface
area) has a dramatic influence on the number of cycles required to create a crack of significant
size (~ 1 mm) in the specimen.

Table 3.6. Crack nucleation site characteristics for constant amplitude fatigue test results (R=0.1)
from horizontally cast plate.

ID# # of Applied
Cycles

Crack Nucleation
Site Characteristics

5 9,369
Casting pore with major axis (900

µm) along specimen surface

14 49,420
Two near surface casting pores 200

µm apart from each other

8 142,755
Two near surface casting pores 300

µm apart from each other

10 157,569
Distributed casting porosity near

specimen surface
11 331,629 Oxides near specimen surface

In general, the larger the inclusion, the smaller the fatigue life of the sample. In order to study the
mechanisms of fatigue crack growth over a wide range of crack sizes, the specimen with the
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smallest nucleation site (specimen number 11) was selected for further metallographic
examination. Figure 3.19 is a SEM image of the overall fracture surface of specimen number 11.
The fatigue crack nucleation site is located at the bottom of the fracture surface as indicated in
Figure 3.19. The black curve in Figure 3.19 corresponds to the approximate position of the crack
front along which the fracture surface demonstrates a noticeable change in the surface roughness.
The semi-circular shape of the crack front is consistent with other observations on fatigue cracks
growing in a solid circular cylinder (Mackay and Alperin, 1995). In a previous study on cast
A356 aluminum (Gall et al., 1999), it has been demonstrated that the increase in the surface
roughness corresponds to a change in the fatigue crack growth path at the microstructural level.
At low stress intensity ranges, the fatigue cracks grow primarily through the Al-1%Si dendrites,
while at high ranges the cracks grow through the Al-Si eutectic regions and iron intermetallics, if
present. In the aforementioned study (Gall et al., 1999), this transition point was marked by a
drastic increase in the area fraction of damaged iron intermetallics on the fracture surface. The
present study will demonstrate that the transition from fatigue crack growth primarily through
the Al-1%Si dendrites to growth primarily through the Al-Si eutectic is also accompanied by a
change of the debonding and fracture characteristics of the Si particles.

A higher magnification image of the fatigue crack nucleation site is shown in Figure 3.20. A pair
of aluminum and magnesium oxides at the specimen surface serves as the fatigue crack
nucleation site in specimen number 11. The effective nucleation site is outlined with a black
curve on Figure 3.20. As indicated in Figure 3.19, several representative locations were chosen
on the fracture surface to elucidate the local fatigue crack growth mechanisms as influenced by
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silicon particle fracture and debonding. Images from Locations 1, 2, and 3 are presented in
Figures 3.21, 3.22, and 3.23, respectively. Figures 3.21 (a-c) are a series of SEM images of a
fatigued region at a distance of 100 µm from the crack nucleation site (Location 1 in Figure
3.19). Although the crack passed primarily through the Al-1%Si dendrite cells very close to the
nucleation site, the three dimensional nature of the dendrite cell structure evidently forced the
crack to pass through some Al-Si eutectic regions. When the fatigue crack encountered silicon
particles within the eutectic, the small crack primarily propagated along the interface between the
silicon particles and the Al-1%Si matrix (Figure 3.21a). Crack growth along the interface
between the two phases is asserted due to the extremely smooth and rounded surface of the
exposed silicon particles at extremely high magnifications (Figure 3.21c). The apparently smooth
Al-1%Si matrix material (Figure 3.21b) shows evidence of fatigue crack growth striations at
higher magnifications (Figure 3.21c). The striations are extremely fine (less than 0.1 µm),
indicating that the fatigue crack growth rate in the vicinity of the debonded particles is very low
(da/dN < 1 x 10-7 m/cycle). Low growth rates for a fatigue crack indicate that the crack tip
driving force, i.e. the stress intensity range, is also relatively small. It should be noted that the
striation spacing was difficult to estimate due to the fine scale of the markings. However,
striation spacing is certainly less than 0.1 µm.

The shapes of the debonded silicon particles on the fracture surface in Figure 3.21 provide
insight into the operant fatigue mechanisms. Numerous elongated silicon particles were found on
the fracture surface near the fatigue crack nucleation site. The extended (major) axis of the
debonded elongated particles was always parallel to the fracture surface plane. Debonded
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elongated particles with a major axis protruding out of the fracture surface were not observed.
These observations indicate one of two mechanisms: (1) the fatigue crack evaded elongated
particles with a major axis perpendicular to the crack plane, or (2) the fatigue crack fractured
such particles even at low crack tip driving forces. Since there were a few fractured particles on
the fracture surface within 100 µm of the nucleation site, and significant crack tip meandering
was not evidenced near the debonded particles, the latter explanation is more plausible.

As shown in Figure 3.22a, silicon particle debonding is still the dominant particle failure
mechanism 300 µm away from the crack nucleation site (Location 2 in Figure 3.18). Similar to
Location 1 near the nucleation site, fine fatigue striations surround the debonded particles
(Figure 3.22b). However, the overall tolerance for the fracture of elongated particles with a
major axis parallel to the crack plane decreases as the crack size increases (due to the constant
amplitude experiment conditions, the maximum crack tip driving force also increases). In other
words, the number density of fractured silicon particles on the fracture surface is larger at a
greater distance from the nucleation site. For example, in the upper right corner of Figure 3.22a,
several silicon particles are fractured rather than debonded. The increase in the number of
fractured particles is partially due to a local difference in the crack tip driving force, i.e. the
striations in the upper right corner are coarser than the striations near the center of the image.
Small differences in the local crack tip driving force and growth rates are inevitable due to the
three dimensional nature of the crack fronts and spatial distribution of microstructural features in
a heterogeneous material. Nevertheless, when the fatigue crack passed through the eutectic near
Location 2, it primarily propagated along the silicon particle and Al-1%Si matrix interface.
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Generally speaking, while the fatigue crack tip was within the black boundary line in Figure
3.19, the crack progressed along the interface between the silicon particles and the Al-1%Si
matrix when eutectic regions were encountered. However, in an overall sense, the fatigue crack
avoided the eutectic regions when it was within the boundary line. The dominant fatigue crack
grew primarily straight through the Al-1%Si dendrite cells as evidenced by the large planar
sections of Al-1%Si on the fracture surface. Furthermore, within the boundary line, fatigue
striations were often observed on the surfaces of cavities that once contained silicon particles
(Figure 3.22b). These fatigue striations indicate that debonding occurred gradually as a fatigue
crack grew up to and around a silicon particle. Therefore, it can be asserted that the silicon
particles retard the growth of the fatigue cracks at low crack tip driving forces since the cracks
generally avoid the particles, and must grow around the particles when they are encountered. If
the particles were debonding a significant distance away from the crack tip, then the debonded
Al-Si eutectic regions would provide a weak material path for the fatigue cracks rather than a
deflective one. Subsequently, the fatigue crack would be expected to propagate preferentially
through the damaged eutectic region. However, the crack did not grow preferentially through the
Al-Si eutectic at low crack tip driving forces within the boundary line.

Observations past the boundary line in Figure 3.19 (Location 3) show a significant change in the
fatigue crack growth mechanisms (Figure 3.23). The overall area fraction of Al-Si eutectic
(including damaged Si particles) on the fracture surface increases dramatically past this boundary
line. On the microscale, the fatigue crack striations are coarser (about 1 µm) and the morphology
of damaged silicon particles on the fracture surface changes. Comparing Figures 3.21b, 3.22b,
and 3.23b, it is obvious that the striations just past the boundary line are much coarser than
within the boundary. The increase in the spacing of the fatigue striations is consistent with an
increase in the local crack tip driving force. When the fatigue crack propagates with an increased
driving force and growth rate (da/dN ~ 1 x 10-6 m/cycle), nearly all of the silicon particles in the
crack path are fractured (Figure 3.23a). Although both round and large irregular shaped particles
(in the plane of the fracture surface) are cracked past the transition boundary, the abnormal
number of irregular shaped particles indicates that a biased crack path is followed.

The fact that a fatigue crack growing with a large crack tip driving force is biased towards
growth through irregular shaped silicon particles is consistent with observations during
monotonic material failure (Dighe and Gokhale, 1997). The irregular shaped particles readily
fracture since the local stress concentrations are higher than in rounded particles. Furthermore, in
order for the crack to consistently locate fractured particles during growth, such particles must
experience fracture before the crack tip reaches them. Fractured particles may also act as
nucleation sites for microcracks, which increases the local driving force for the coalescence of
fractured particle regions and the dominant crack. In other words, the crack will only meander, as
evidenced by the rougher fatigue fracture surface, if there is a weak path for the fatigue crack to
propagate through. The mechanism of local material weakening through silicon particle fracture
at high fatigue crack tip driving forces is in contrast to the shielding mechanism offered by intact
silicon particles at low crack tip driving forces.
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We assert that the silicon particles have an explicit, discrete influence on the mechanisms of
fatigue crack growth when the fatigue crack is small or has a low crack tip driving force. The
present observations on cast aluminum alloys are consistent with previous findings on wrought
alloy systems. During typical small fatigue crack growth (incubation, MSC, and PSC regimes in
our terminology), microstructure plays an explicit role on the fatigue crack growth behavior for
many classes of wrought engineering alloys (Pearson, 1975; Lankford, 1982; Lankford, 1985;
Tanaka, 1989; Suresh, 1991; McClung et al, 1996). Furthermore, microstructure has an
extremely dominant influence on cracks growing in the small crack regime that are very small
with respect to pertinent microstructural features (microstructurally small cracks (Pearson, 1975;
Lankford, 1982; Lankford, 1985; Tanaka, 1989; Suresh, 1991; McClung et al, 1996)). As the
fatigue crack length and corresponding crack tip driving force increases, cracks are characterized
as growing in the Long Crack regime. During Long Crack growth, the microstructure still affects
fatigue crack growth, but the microstructural effect is accurately represented by overall material
properties. The explicit influence of the microstructure at smaller crack lengths and crack tip
driving forces is governed by the statistical nature of microstructural features in engineering
alloys. The plastic zones of the small cracks simply cannot sample a statistically significant
portion of the local microstructural features to represent a continuum. Consequently, average
properties do not accurately represent the fatigue crack growth process for such cracks, and
information on the influence of microstructural features is necessary to accurately predict fatigue
crack growth. With this in mind, the present discussion focuses on mechanisms pertinent to small
fatigue crack growth and the transition to Long Crack growth.

The SEM images of the fracture surface on the fatigued samples indicate two distinctly different
growth mechanisms through the silicon rich Al-Si eutectic regions. Figure 3.24 schematically
illustrates the dominant fatigue crack growth mechanisms that operate depending on the relative
intensity of the maximum crack tip driving force. Figure 3.24 summarizes the mechanisms of
fatigue crack growth through the Al-Si eutectic regions, not the Al-1%Si dendrites. At low crack
tip driving forces, fatigue cracks propagate primarily along the interface between the silicon
particles and the Al-1%Si matrix. Only elongated particles with the major axis perpendicular to
the primary crack plane are fractured. Furthermore, the particles are gradually debonded as the
fatigue cracks grow around the particles. At high crack tip driving forces, silicon particles
fracture ahead of the crack tip, and the crack subsequently propagates through the damaged
regions (Figure 3.24). Although some smaller particles may debond during this stage of fatigue
crack growth, particle fracture is the dominant failure mechanism.

Essentially, we maintain that the transition between particle debonding and particle fracture is
controlled by the extent of the crack tip cyclic plastic zone. A small fatigue crack with a low
crack tip driving force (small plastic zone) only samples a fraction of a silicon particle, including
the particle matrix interface ahead of the crack tip. Among possible particle failure modes, local
debonding is the most probable since the small plastic zone at the crack tip cannot produce the
elastic strain energy required to fracture the entire silicon particle. Conversely, for particle
orientations where the major axis is perpendicular to the crack plane, the resistance to debonding
is relatively high since a large area of the interface is parallel to the maximum principal stress
field for a fatigue crack growing under Mode I loading conditions (McClung and Sehitoglu,
1989). In addition, numerical simulations show that the resistance to silicon particle fracture
decreases as the major axis of a particle is parallel to a principal stress direction (Gall et al.,
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1999). The counterbalancing effects of shape on fracture and debonding mechanisms promotes
the fracture of silicon particles with a major axis perpendicular to the crack plane, even for a
small crack tip plastic zone. When the fatigue crack becomes large enough, the crack tip cyclic
plastic zone engulfs a representative set of particles and is capable of fracturing particles since
the elastic strain energy released by particle fracture is less than the energy supplied by the crack
tip. Although the silicon particles may not contain initial precracks per se, many of them have
discontinuous shapes and local sharp corners. In single crystal silicon deformed at room
temperature, such sharp notches lead to failure stresses significantly lower than in a pristine
particle as predicted by modified fracture toughness criteria (Gall et al., 1999).

Due to the three dimensional nature of fatigue cracks coupled with the heterogeneity of this
A356 aluminum alloy, crack growth mechanisms are never uniform along the periphery of a
crack front. However, at the macroscale, a relatively abrupt transition between the two different
growth mechanisms is observed. This transition point is accompanied by a dramatic increase in
the roughness of the fracture surface, as marked by a black line in Figure 3.19. Given the two
growth mechanisms outlined in Figure 3.24, an increase in the fracture surface roughness is
expected as the fatigue cracks begin to follow paths dictated by the fracture of silicon particles in
the Al-Si eutectic. The local crack tip driving force for fatigue is estimated using an effective
stress intensity range, ∆Keff. In the present study the maximum stress intensity value, Kmax, will
be calculated and used as the parameter governing the transition between growth patterns in the
Al-Si eutectic. The Kmax and ∆Keff parameters both have potential advantages for analyzing the
transition behavior. In general, ∆Keff may better characterize the fatigue crack driving force;
however, Kmax may better characterize the propensity for the silicon particles to crack during



3-31

fatigue. Consequently, Kmax will be used to quantify the transition point between growth through
the silicon particles versus around them.

Using computational fracture mechanics, we estimated the value of the maximum applied stress
intensity factor at the transition crack size between the two growth mechanisms (the black
boundary line in Figure 3.19). Such an analysis provides an average critical value for crack
growth through the silicon particles versus crack growth along the interface between the silicon
particles and the Al-1%Si matrix. The general solution for the maximum crack tip driving force
during fatigue is:

K f g amax max( )= σ π Equation 3.3

where f(g) is a function of the specimen geometry and loading configuration, σmax is the
maximum applied stress during the fatigue experiment, and a is the crack length. For a round
cylinder with a circular edge crack subjected to axial loading, the numerical solution for f(g) is
given as (Liu, 1995):
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where a is the maximum crack length into the specimen, and d is the diameter of the cylindrical
specimen. The values for the crack front marked in Figure 3.19 are: a = 0.75 mm, d = 3 mm, and
σµαξ = 133 MPa. From Equation 3.4, the geometry factor is calculated as f(g) = 0.88. Using the
above numbers, the maximum stress intensity factor at the transition point is calculated as:

    K
tr
max . .= »5 69 6 0   MPa m Equation 3.5

The value of     K
tr
max » 6.0   MPa m  is slightly lower than previous calculations, for the same cast

material, which gave a transition value of     K
tr
max » 7.0   MPa m  (Gall et al., 1999), which relied

on the increase in the area fraction of iron intermetallics on the fracture surface to estimate the
transition point between growth through the Al-1%Si dendrite cells versus growth through the
Al-Si eutectic regions. The difference between the two values is an indication of the error
involved in choosing the crack front position using two different criteria (Figure 3.19).

We conclude that the fatigue cracks propagating with a maximum applied stress intensity lower
than 6.0   MPa m  either avoid eutectic regions, weave around the silicon particles, or debond a
few particles. Fatigue cracks propagating with maximum applied stress intensity above 6.0

  MPa m  can travel through eutectic regions and can fracture silicon particles. It should be
noted that if the crack length is on the order of the mean silicon particle spacing, then a fatigue
crack may debond silicon particles even if it is propagating with a maximum applied stress
intensity above 6.0   MPa m . Even with a significantly large crack tip driving force, the
extremely small fatigue crack cannot sample a statistically significant number of silicon
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particles. Since we do not have definitive data, the transition value determined here cannot be
used strictly to quantify the growth behavior of extremely small fatigue cracks. However, the
present observations do help to qualitatively understand the growth of microstructurally small
fatigue cracks, as will be discussed in closing.

Small fatigue cracks can nucleate from microporosity or damaged silicon particles in the eutectic
(Plumtree and Schafer, 1986; Shiozawa et. al, 1997). Immediately after nucleation, such cracks
are considered microstructurally small. Under typical high cycle fatigue loading conditions, the
maximum crack tip driving force for microstructurally small cracks is well below the transition
value of 6.0   MPa m . Thus, during its propagation life, the microstructurally small cracks are
unable to fracture silicon particles, and they are forced to grow along the particle-matrix
interface. Consequently, during growth along the particle-matrix interface, the silicon particles
should act as barriers to the growth of microstructurally short cracks. Experimental observations
have shown that microstructurally small cracks exhibit a severe decrease in growth rates as they
approach silicon particles; our micromechanical computations in Chapter 4 provide justification
for this statement.

SEM images were used to examine three failed specimens cycled at strain amplitudes of 0.2%,
0.4%, and 0.8% to help determine the progression of fatigue cracks. Of the samples fatigued at
different strain amplitudes, the fracture surface on the specimen cycled at 0.2% strain
demonstrated the most obvious demarcation between a region that failed by progressive fatigue
crack propagation and one that failed by local tensile overload. Figures 3.25a and 3.25b are low
magnification images of the overall fracture surface on the samples cycled at 0.2% strain. Figure
3.25a was imaged using SEI while Figure 3.25b was imaged using BEI to reveal the area fraction
and spatial distribution of the α intermetallics. On Figure 3.25b, the dark gray regions are Al-
1%Si and the Al-Si eutectic, the bright particles are α intermetallics (Al15(Fe,Mn)3Si2) and the
black areas are valleys on the fracture surface. We note that Al5FeSi or so-called α intermetallics
are also common in the present alloy system (Samuel and Samuel, 1995).

The crack initiation site was identified as a horseshoe shaped aluminum oxide inclusion
(confirmed with EDX) shown in Figure 3.26. Aluminum oxide inclusions trapped during
solidification often serve as nucleation sites for shrinkage assisted gas porosity (Campbell, 1991;
Tynelius et al, 1993). However, in this particular specimen machined from the casting, a casting
pore surrounding the oxide inclusion was not present.

Although it is difficult to partition the growth of the crack into different regimes using Figure
3.25a, the backscatter SEM picture in Figure 3.25b more clearly identifies the transitions
between different growth patterns. Black lines on Figure 3.25b are used to indicate the crack
positions corresponding to macroscopic transitions in the fracture surface morphology. The
curvatures of the crack paths were drawn to match approximate contours of constant area
fraction of the α intermetallics. The positions of the crack paths were chosen where the area
fraction of α intermetallics was the largest. Notably, the local fatigue mechanisms do not change
abruptly at the distinct crack fronts, but rather undergo a gradual transition at a smaller length
scale. However, since there are significant changes in the overall fracture surface appearance at
low magnifications, the two crack fronts drawn in Figure 3.25b are meaningful from a
macroscopic point of view. The different growth stages proposed within these regions are labeled
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on Figure 3.25a (FCGR stands for Fatigue Crack Growth Rates). The justification for the labels
in Figure 3.25b will now be discussed in detail using SEM and EDX results.

High magnification images in the low crack growth rate region reveal extended flat areas
that are perpendicular to the loading axis (Figure 3.27a). The corresponding backscatter image to
Figure 3.27a revealed that the area fraction of α intermetallics in the low crack growth rate
region (Figure 3.27b) was only slightly higher than on the undeformed material cross section. At
even higher magnifications, we found that the flat surfaces in Figure 3.27 were covered with fine
fatigue striations (Figure 3.28a). In these regions, the very low volume fraction of silicon
particles on the fracture surface, coupled with the overall planar appearance of the fracture
surface, indicates that the fatigue cracks cut straight through the Al-1%Si dendrite cells and
likely avoided particles in the eutectic region. Consequently, the cracks did encounter some α
intermetallics, which are found randomly within the Al-1%Si dendrite cells (Figure 3.27b).
When the crack encountered the α intermetallics, it propagated preferentially along or through
them as evident from the slight increase in the area fraction. It should be noted that wherever the
area fraction of damaged α intermetallics on the fracture surface was low, the corresponding area
fraction of silicon particles was also relatively low. Thus, the α intermetallics served as reliable
indicators for the overall silicon particle distribution on the fracture surface. The observations
near the crack nucleation site in the 0.2% sample also hold true for the sample cycled at 0.4%
strain as demonstrated in Figures 3.29a and 3.29b. The nucleation site in the 0.4% sample was
also an oxide inclusion; however, the area of the fracture surface covered by fatigue striations in
the Al-1%Si was smaller compared to the 0.2% sample. The sample cycled at 0.8% strain
showed very little evidence of fatigue striations on the specimen fracture surface.
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As the crack grows a significant distance from the initiation site, the local crack tip driving force
increases since the maximum far field applied strain (stress) amplitude is kept constant. An
increase in the local crack tip driving force results in higher fatigue crack growth rates. In the
regime of steady crack growth rate, the area fraction of α intermetallics is notably higher
compared to regimes where the cracks exhibited a low crack growth rate (Figure 3.25b).
Furthermore, the gradual increase in local crack tip driving force is also accompanied by
increases in the area fraction of damaged silicon particles during steady crack growth rate. The
fatigue cracks exhibit instantaneous extension through the α intermetallics since the particles
showed clear evidence of cleavage failure as will be shown in subsequent micrographs. Such a
brittle phase is not capable of promoting crack tip blunting and resharpening, a mechanism
required for the steady growth of fatigue cracks (Pelloux, 1969; Neumann, 1974). Consequently,
the irregular shaped α intermetallics provide little or no resistance to fatigue crack propagation.
The silicon particles in the eutectic provide more resistance to fatigue crack growth due to their
dispersed and spheroidized nature within the ductile Al-1%Si phase.

When the crack tip driving force becomes large enough, the remainder of the specimen fails by
tensile overload. Figures 3.30(a-c) are representative images taken from an overloaded region of
the fracture surface on the specimen cycled at 0.8% strain. The fracture surfaces in the
overloaded regions on the 0.4% and 0.2% specimens appeared identical to Figure 3.30. The
overloaded regions (Figure 3.30a) consist of an even mixture of faceted and dimpled areas. To
identify the phases corresponding to the different types of fracture, images of the region in
Figure 3.30a were captured using backscattered electrons (Figure 3.30b) and x-ray mapping
(Figure 3.31c). Figure 3.31b shows the distribution of α intermetallics (the bright areas) in a
typical overloaded region. The area fraction of the α intermetallics on the overloaded fracture
surface is significantly larger than in the undeformed material cross section, the low crack
growth rate region, or the steady crack growth rate region. By comparing Figures 3.30a and
3.30b, one observes that the faceted regions correspond directly to fractured α intermetallic
particles. Figure 3.30c highlights the distribution of silicon particles (the white specks) on the
region of the fracture surface that failed through tensile overload. The area fraction of silicon
particles on the overloaded fracture surface is also significantly larger than was found on an
arbitrarily undeformed material cross section or the low crack growth rate regions. Higher
magnification images of the different fractured phases in the overloaded regions are shown in
Figures 3.31a and 3.31b. The α intermetallics demonstrate a very flat appearance on the fracture
surface, which indicates that they fractured through cleavage. We observed that the α
intermetallics demonstrated brittle fracture characteristics in both the fatigued and overloaded
regions. The Al-Si eutectic regions are covered with dimples containing fractured silicon
particles. Thus the eutectic regions failed primarily through particle cleavage and extensive
ductile tearing.
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To confirm and better quantify the above observations, measurements of element concentrations
were made on the fracture surfaces and the arbitrary undeformed material cross section. If a
phase area fraction is relatively high on the fracture surface, it can be asserted that the particle
provides a weak link for material failure, regardless of the local fracture mechanism.
Measurements on the undeformed cross section provide a baseline comparison tool for EDX
measurements on the fracture surfaces. Row 1 of Table 3.7 presents the measured elemental
concentrations on the arbitrary undeformed material cross section for a sampling area of
approximately 4 mm2.

The measured Fe and Mn concentrations on the surface of the undeformed sample are less than
1.0%. The difference between this result and the nominal composition of the alloy is on the order
of the experimental detection limitations (< 1%) of the EDX measurements. The silicon
concentration on the undeformed sample surface is twice what is expected, and this is primarily
due to the peak overlap between the aluminum and silicon spectra. The peak overlap will affect
all semi-quantitative EDX calculations similarly, thus the relative differences in compositions
between samples will still have comparative significance. Since all of the iron in the melt will
readily form intermetallics (Kearney and Rooy, 1990), the area fraction of α particles, Al, and
silicon particles expected on an arbitrary cross section can be calculated from the EDX data. The
results of these calculations are shown in the shaded area of row 1 in Table 3.7.
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Table 3.7. Average element concentrations on an arbitrary transverse cross section surface and
the specimen fracture surfaces. EDX measurements are cumulative values taken at a
magnification of 50x, covering large specimen areas. Area fraction calculations assume that the a
particles have a Al15(Fe,Mn)3Si2 composition.

Measured Elemental
Concentrations (at %)

Calculated Approximate Phase
Area Fractions (%)

Sample Al Si Fe Mn Al-1%Si Si Particles a
Undeformed

Arbitrary
Cross Section

85.0 14.3 0.2 0.4 84.0 14.2 1.3

0.2 %
Low FCGR

Region
86.8 11.8 1.0 0.4 81.8 11.1 6.7

0.2 %
Overloaded

Region
67.8 25.1 4.9 2.2 43.3 21.8 32.7

On the sample cycled at 0.2% strain, EDX measurements were taken over 1mm2 areas in the
“low FCGR” region and “overloaded region” indicated on Figure 3.21a. The last two rows in
Table 3.7 present the results of the EDX measurements on the 0.2% sample’s fracture surface.
For calculations of the area fraction of different phases on the fracture surfaces, we assumed that
all of the Fe forms the α intermetallic. The calculated phase area fractions on the respective
fracture surface regions are shown in the shaded regions in Table 3.7. The area fractions found in
row 2 of Table 3.7 are consistent with visual SEM observations in regions that failed through
progressive fatigue failure on all specimens (0.2%, 0.4%, and 0.8%). The EDX measurements
confirm that the fatigue cracks initially propagate straight through the Al-1%Si dendrite cells
since the arbitrary material cross section and low FCGR region have comparable phase area
fractions. Since the overall area fraction of the silicon phase decreases in the fatigued region, the
fatigue cracks growing at low rates are effectively evading the modified silicon particles.
Furthermore, the fatigue cracks growing at low rates must be avoiding the eutectic phases
altogether since a larger volume fraction of silicon particles on the fracture surface would be
observed if they cut through the tortuous network of silicon particles in the Al-Si eutectic.
However, fatigue cracks are expected to propagate preferentially along the α intermetallics when
the crack tip directly encounters them. This is evident from the slight increase in the area fraction
of α in the EDX calculations (Table 3.7) and the fatigued fracture surface images.

The region that failed through tensile overload (Figure 3.25a) demonstrates a greater area
fraction of α and silicon on the 0.2% fracture surface compared to the undeformed cross section
(Table 3.7). The area fractions found in row 3 of Table 3.7 are consistent with SEM observations
in regions that failed through tensile overloaded on all specimens (0.2%, 0.4%, and 0.8%). The
increase of silicon on the fracture surface is undoubtedly due to preferential fracture through the
Al-Si eutectic. The progression of fracture through the silicon particles in the eutectic under large
strain monotonic loading (i.e. an overload) is consistent with previous observations on modified
alloys (Murali et al., 1997; Samuel and Samuel, 1995; Voigt and Bye, 1991; Dighe and Gokhale,
1997). However, the progression of fracture through the α intermetallics during a tensile
overload has not received considerable attention. It has been previously observed that Fe
intermetallics fracture during tensile loading (Voigt and Bye, 1991); however, it was not
quantitatively demonstrated that they play such a dominant role as reported here. According to
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the results presented in Table 3.7, the α intermetallics cover about one-third of the fracture
surface in an overloaded region. Considering the fact that the area fraction of α intermetallics in
the undeformed material cross section is about 1% (Table 3.7), this increase is remarkable. The
fact that the α intermetallics appear this frequently on the overloaded fracture surface compared
to a random cross section decisively identifies them as weak microstructural links for damage
progression during an overload. In unmodified cast Al-Si alloys, the large volume fraction of
coarse silicon particles in the eutectic controls the ductility of the alloy (Voigt and Bye, 1991).
However, in the present alloy, which contains an optimally modified silicon particle
microstructure, the α intermetallics limit the macroscopic ductility of the material.

Using the SEM and EDX results on the fatigued fracture surfaces as a guide, we can
schematically detail the progression of fatigue damage in cast Al-Si alloys is presented in Figure
3.32. As previously reported, the most dominant fatigue crack is envisioned to nucleate from the
largest microstructural inclusion such as an oxide inclusion or a casting pore near the specimen
surface. The incubation period, as we have defined it, for the formation of such cracks in Al-Si
alloys has not received much attention in the literature. A local strain approach for predicting
fatigue crack nucleation life from large initial pores (average size of 500 µm) was utilized by
Ting and Lawrence (1993) on cast A319 aluminum. For smaller initial inclusions (Si particles
and pores ranging from 10 to 190 µm), Shiozawa et al. (1997) used a fracture mechanics based
approach to predict the nucleation life of fatigue cracks. However, some uncertainty exists
concerning inclusions that will control fatigue crack nucleation when the maximum pore size
becomes less than approximately 100 µm. In the absence of large pores, it has been argued that
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fatigue crack nucleation occurs from the largest silicon particles or clusters (Shiozawa et al.,
1997; Plumtree and Schafer, 1986). Gungor and Edwards (1993) observed that fatigue cracks
initiate from micropores on the specimen surface on the order of 12 µm despite the fact that
silicon particles as large as 15 µm were present. During high cycle fatigue, the time spent
forming cracks near inclusions is critical since it will constitute a considerable fraction of the
total fatigue life of premium cast Al-Si alloys.
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Figure 3.32. Schematic illustration of the crack paths and progression of fatigue damage in cast
Al-Si alloys containing defects on the order of several dendrite cells.

After the crack incubation stage, cracks propagate towards the specimen surface and into the
bulk material. A crack is considered microstructurally small if the crack length and crack tip
plastic zone exist at the same length scale as pertinent microstructural features. The crack tip
plastic zone is a region containing highly localized plasticity and relatively high triaxial stress
levels. Research on low porosity squeeze cast Al-Si alloys has demonstrated that a crack
experiences microstructural small growth rate effects if its length is on the order of several
dendrite cell sizes and below (Gungor and Edwards, 1993). Therefore, if the initial inclusion size
is larger than several dendrite cell sizes, the crack will, on average, be subjected to less variations
of growth rate.

Even after the crack is no longer microstructurally small, it continues to propagate straight
through the Al-1%Si dendrite cells (Figure 3.32). During this growth period, the local fracture
surface is rather flat and perpendicular to the tensile axis even at the microscale. The advancing
fatigue crack avoids silicon particles.
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In summary, not all of these experimental details are required for inclusion in the macroscale
microstructure-property fatigue model as presented in Chapter 2. For example, the effects of α
intermetallics can be captured with the long crack equations in a phenomenological manner
without directly incorporating them into the equations. However, other details such as the
interactive effects of silicon, porosity, and dendrite cell size are deemed as first order attributes
to the include in the model and have been as described in Chapter 2.
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4. MICROMECHANICS FATIGUE ANALYSIS

The fatigue life of A356 Al alloy is strongly dependent on casting inclusions and material
microstructure, and establishing quantitative relationships of fatigue life with those inclusions
and microstructural constituents is the purpose of this computational work. Since local cyclic
plastic strain in the microstructure is essential in driving fatigue crack initiation, we concentrate
on computational finite element studies at the microscale and present results in this chapter
regarding the effects of applied stress amplitude, microstructure, and inclusion structure on the
maximum plastic shear, ∆γp*

max,, for crack incubation and the cyclic crack tip opening
displacement for MSC/PSC crack propagation. For the MSC/PSC crack propagation regimes, we
analyzed the effects of particle shape, particle size, particle nearest neighbor dimension, particle
distribution, dendrite cell size, pore size, pore shape, pore nearest neighbor distance, and pore
distribution. In this context we examined such characteristics as crack driving force and crack
closure behavior during fatigue crack growth in the MSC/PSC regime. These analyses are based
on sophisticated constitutive laws with experimentally determined material constants for the Al
1% Si dendritic region and A356 Al alloy under cyclic loading. One final note is worth
mentioning. The simulations were not performed in which the cracks had an evolving history but
were semi-stationary in nature.

4.1. MICROMECHANICAL FEA PRELIMINARIES

Two very similar internal state variable plasticity material models were used for these
micromechanical simulations. They are detailed in the appendix. To determine the material
constants for the micromechanical material models, two cyclic stress-strain tests were conducted
(experimental results were repeated). One is the cyclic test of A356 Al alloy, and the other is for
the Al-1%Si dendritic region, which was used for the aluminum matrix between silicon particles
as well. From the experimental stress-strain curves, the material constants and elastic constants
are determined and listed in that appendix. Figures 4.1 and 4.2 compare the experimental cyclic
stress/strain curves with the models. The material models were embedded into a UMAT, a user-
defined subroutine in the ABAQUS finite element code (Hibbitt et al., 1998).

The micromechanical finite element analyses (FEA) were conducted using a plane strain
approximation. Figure 4.3 shows the definitions of notations used for particles and pores. All
particles and pores are assumed to be ellipses; Dmax and Dmin are the maximum and minimum
diameters of the ellipse. The size, D, of the particle or pore is defined as the average, i.e., (Dmax+
Dmin)/2. Shape effects are described by the aspect ratio, Dmax/Dmin. The radius of curvature is
considered by changing the local radius of the major axis of the ellipse in the pore analysis.

Figure 4.4 is a schematic of the geometry and boundary conditions for the finite element analyses
related to incubation and MSC/PSC propagation. A completely reversed, uniaxial displacement
was prescribed in all of the calculations in this chapter other than the ones that directly describe
the mean stress effects. The area in the analysis is divided into two domains: the domain of
effective homogeneous medium adjacent to the external boundary and the domain inside this
region consisting of particles and the matrix. For the effective medium, macroscopic A356
properties are used. Considering the loading in the y-direction as an example, the bottom
boundary is pin supported and can only move along the x-direction. For the left boundary, there
are two cases: one is a free boundary, and the other permits motion along the y-direction. The
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former case is used for investigating pores near the free surface. The latter case is used for the
effects of particle clusters, using the symmetry of the boundary to reduce the number of
elements.

Figure 4.1. A comparison of stress/strain curves for A356 Al alloy showing the cyclic
experimental data and the simulation curve using the obtained material constants: (a)
experimental curve, (b) simulation.
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In most cases, four-node bilinear plane strain quadrilateral elements are used. For a realistic
microstructure, three-node linear elements are also used to enhance mesh smoothness. In some
cases, mixed meshes are also used; in the effective medium, four-node quadrilateral elements are
used, and in the region of detailed analysis, three-node elements are used. Boundary
displacements are prescribed. In the y-direction along the top boundary, cyclic displacement is
applied while the bottom boundary is held fixed. In general, the boundary region far removed
from any microstructure to alleviate extraneous boundary effects in the solutions.

w
Figure 4.2. A comparison of stress/strain curves for Al-1%Si matrix showing the cyclic
experimental data and the simulation curve using the obtained material constants: (a)
experimental curve, (b) simulation.
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Figure 4.3. Definition of symbols and notations for particle and pore clusters.

Figure 4.4. An example of domain and boundary design used in finite element analysis for the
MSC growth passing through particles under uniformly cyclic displacement at the top boundary.
Here, a1f is the crack length from point “o” to the first particle, and a2f  is the crack length from
point “o” to the second particle. (boundary conditions: uniformly cyclic displacement along the
y-direction at the top side, simple support at the right side with ux=0, simple support at the
bottom side with uy=0, and free at the left side).
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4.2 CRACK INCUBATION

Crack incubation may be the most difficult entity to quantify because of the lack of experimental
observations. As such, micromechanical calculations are crucial in determining the appropriate
effects related to different microstructures and inclusions.

To estimate the number of cycles spent on fatigue crack incubation, fatigue tests of Al-1%Si
dendritic material were conducted to determine material constants. The values of C, α, C', and α'
are shown in Table 4.1, determined from specimens with homogeneous strain fields. On the
other hand, the plastic shear and Fatemi-Socie (1988) parameters are obtained at Gaussian points
of small elements with sizes of about 1 µm in highly heterogeneous regions. To use these
constants for Ninc, average values of the plastic shear should be used in Equation 2.2 and
Equation 2.3. The averaging length scale for particle clusters is half of the particle spacing. For
pores, the length of averaging is over the smallest length of the plastic zone. The boundary of the
plastic zone is determined when the shear plastic reaches 500 µε.  For most pores specified in the
FEA simulations in this chapter, the length varies from 15 to 25 microns.

Table 4.1. Material parameters of A356 Al alloy for Coffin-Manson Laws.
Parameters Equation (2.2) Equation (2.3)

C 0.0211 -
α 0.5001 -
C' - 0.0622
α' - 0.5464

4.2.1. SILICON PARTICLES

The issue of fatigue crack incubation at silicon particles arises when no large pores or oxides are
present to initiate fatigue cracks. In high quality castings, understanding and quantifying the
microstructure-property relationships is mainly based on silicon particle size, spacing, aspect
ratio, and cluster density.

4.2.1.1 REALISTIC MICROSTRUCTURE

SEM images were used to obtain a realistic microstructure of A356 Al alloy with minimal
porosity. A finite element mesh was developed based on the SEM images (Yang, 1999), and
FEA simulations were performed under symmetric cyclic loading of tension and compression.
Perfect bonding between the silicon and aluminum was assumed. Perfect bonding means the
particles remained intact during the deformation. Figures 4.5 and 4.6 illustrates distributions of
effective plastic strain and the largest principal stress in dendrite cells and particle clusters given
a remote applied strain of 0.2%. The important results are as follows:
- For intact particle clusters of pore-controlled castings, the maximum plastic strain generally

occurred at the following locations: (a) at the middle of intervals between particles which
were located along the loading direction, such as point C of Figure 4.5, (b) at the edge of
large particles whose maximum axes were perpendicular to the applied loading direction (e.g.
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points A and B), (c) near the crack-tip zone of a matrix crack (point D) and an interfacial
crack between a particle and the matrix (crack length is assumed).

Figure 4.5. Distribution of effective plastic strain, Pε , within a realistic microstructure with ideal,
intact particle/matrix interface of A356 Al alloy (Rε = –1, εa=0.2%, boundary conditions:
uniformly cyclic displacement along the x-direction at the left side, simple support at the right
side with ux=0, simple support at the bottom side with uy=0, and free at the top side).

- A quantitative relationship between the maximum effective plastic strain and applied strain
amplitude was obtained. The results show that as the applied strain amplitude increased, the
percentage of the maximum effective plastic strain over the applied strain amplitude
increased. In the limit where the local plastic strain approaches zero, the applied strain
amplitude equals about 0.122%. This value gives a calculated proof-fatigue-strength of 90
MPa. Here, the calculated proof-fatigue-strength is defined as the maximum applied stress at
which the local plastic strain is zero. The value of 90 MPa is anticipated to be lower, since
these calculations assume no possible fracture of silicon particles or debonding of the
interface throughout the fatigue cycling.

-  The maximum principal stress occurs in large particles whose major axis is along the
loading direction as seen in Figure 4.6. They play a large role in transferring the load. For a
large particle whose long axis is perpendicular to the loading direction, the stress level is
low. The maximum stress at the particle in Figure 4.6 is about 200 MPa. This gives a stress
concentration factor of 1.5 at an applied stress amplitude of 133 MPa. This stress
concentration may not be sufficient to fracture or debond the particle. From this result, we
conjecture that particle fracture or debonding may be caused by overloading associated with
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load transfer from existing matrix cracking near the particle, and/or if pre-existing inclusions
are present in the silicon.

Figure 4.6. Distribution of the maximum principal stress, σI , in a realistic microstructure with
ideal, intact particle/matrix interface of A356 Al alloy (Rε = –1, εa=0.2%, boundary conditions:
uniformly cyclic displacement along the x-direction at the left side, simple support at the right
side with ux=0, simple support at the bottom side with uy=0, and free at the top side).

Differences in local cyclic plastic strain levels can exist when comparing overloading-produced
microcracking, which can spread to a lot of sites, compared to completely reversed loading.
These microcracks are more life limiting than isolated cracks (or pores), since they can coalesce
and accelerate the crack growth rate. It merits notice that the corresponding microstructure
analyzed is not an optimized microstructure, since it includes a largest particle with a size of 17
µm and an aspect ratio of 3.05.

4.2.1.2 IDEALIZED MICROSTRUCTURE: PARAMETRIC STUDIES

Under HCF loading conditions, crack incubation controls the fatigue life, especially for
controlled porosity castings, such as squeeze castings. In this case, microporosity and the
heterogeneous microstructure within the interdendritic regions control the processes of fatigue
crack formation. In this section we examine a myriad of parameters that affect fatigue crack
incubation using FEA. Experiments to date are ambiguous with regard to the influence of many
of these parameters. For particles and pores we examine the size distribution, shape, spacing,
alignment, clustering, and aspect ratio. We also include effects of dendrite cell size and impose
different amplitudes of applied strain (stress).
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4.2.1.2.1. EFFECTS OF PARTICLE SIZE DISTRIBUTION, SHAPE, SPACING,
CONFIGURATION, ALIGNMENT, CLUSTER DENSITY, AND MICROPOROSITY IN
RELATION TO EACH OTHER

In this section, finite element simulations are reported concerning the effects of particle cluster
morphology on the fracture and debonding of silicon particles embedded in an Al-1%Si matrix
subjected to tensile-compressive cyclic loading conditions. Similar to the experiments in which
the number of damaged particles was monitored as a function of the number of cycles, these
simulations allow us to quantify the effects from silicon particle damage as related to incubation
of fatigue cracks. No previous studies have reported the relative influence of each of the
pertinent features. A total of seven parameters were varied to create sixteen idealized
microstructures: relative particle size, shape, spacing, configuration, alignment, grouping, and
matrix microporosity. Clusters of silicon particles (4 to 8 particles) were considered rather than a
single isolated particle or an infinite periodic array of particles. The silicon particles were
modeled using a linear elastic constitutive relationship and the matrix material was modeled
using an internal state variable cyclic plasticity model. A two-level design of experiment
methodology was used to screen the relative importance of the seven parameters on the fracture
and debonding of the silicon particles. The results of the study demonstrate that particle shape
and alignment were undoubtedly the most dominant parameters influencing initial particle
fracture and debonding. Particle debonding results in a local intensification of stresses in the Al-
1%Si matrix that is significantly larger than that due to particle fracture. The local stresses after
particle fracture are primarily concentrated within the broken particle halves. After the fracture
of several particles within a cluster, the spacing between adjacent particles enters as a second
order effect. When several particles within a cluster debond, the spacing between adjacent
particles enters as a dominant effect due to the large local stress intensification in the
surrounding Al-1%Si matrix.

Under cyclic loading conditions, the silicon particles in the eutectic have several potential
influences on the fatigue response of cast Al-Si alloys. If the maximum internal defect (oxide or
pore) size is small (<<100 µm), then silicon particles can serve as crack nucleation sites. For
example, in squeeze cast Al-Si alloys with silicon concentrations ranging from 7% to 12%,
fatigue cracks have been observed to nucleate at silicon particle clusters (Plumtree and Schafer,
1986) or large silicon particles (Shiozawa et al., 1997) and this can affect the crack growth rate
of neighboring fatigue cracks. Moreover, cracks growing in the long crack regime have a crack
tip driving force strong enough to fracture a statistically significant number of silicon particles
near the crack tip (Gall et al., 1999-A, B). The long crack will then subsequently propagate
through the damaged silicon particles in the eutectic regions (Gall et al., 1999-A, B).
Consequently, the growth rate of long cracks is significantly influenced by the silicon particle
morphology through differences in the fracture characteristics of the particles (Hoskin et al.,
1988; Lee et al., 1995-A; Lee et al., 1995-B). Finally, the damage associated with silicon
particles has also been shown to influence the Bauschinger effect in cast Al-Si alloys subjected
to cyclic loading (Horstemeyer, 1998).

Despite the strong influence of the silicon particles on the evolution of damage under monotonic
and cyclic loading conditions, the fracture and debonding characteristics of such particles is only
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quantified for idealized particle configurations and geometries (Gurland and Plateau, 1963;
Needleman, 1987; Yeh and Liu, 1996). It is still necessary to quantify the relative influence of
more realistic microstructural parameters on the fracture and debonding of silicon particles
embedded in an aluminum matrix. Previous metallurgical investigations (Gurland and Plateau,
1963; Yeh and Liu, 1996) have shown that the fracture of silicon particles embedded in an
aluminum matrix is linked to dislocation motion in the Al. The latter study (Yeh and Liu, 1996)
further asserted that continuum theory was unable predict the proper dependence of the volume
fraction of fractured particles on the applied stress and plastic strain amplitudes. The particle
fracture hypothesis was based on the observation that cast materials with drastically different
aluminum matrix yield exhibited silicon particle fracture at similar levels of macroscopic plastic
deformation. Consequently, Yeh and Liu (1996) concluded that the fracture process was only
dictated by the impingement of dislocations on the particles as caused by large scale yielding in
the specimens, and that a continuum analysis could not capture such an effect. However, the
conclusion by Yeh and Liu (1996) was not based on consideration of the stress and strain
distributions for a material containing inclusions that is undergoing plastic flow in the matrix.
From a continuum standpoint, the onset of plastic flow in the matrix is also accompanied by
sharp increases of the stress in the silicon particles as the elastic inclusion attempts to maintain
compatibility with the flowing matrix. In addition, continuum theory predicts trends in particle
fracture that are not easily captured with dislocation-based models, as will be further discussed.

A proposed micromechanical model based on dislocation pileups (Yeh and Liu, 1996) captured
the overall dependence of the volume fraction of fractured silicon particles on the applied stress
and strain. However, despite the fact that particle shape has a strong impact on the fractured
silicon particle distribution under monotonic (Gurland and Plateau, 1963; Yeh and Liu, 1996;
Dighe and Gokhale, 1997) and cyclic (Gall et al., 1999-B) loading conditions, the model did not
capture the geometrical aspects of particle fracture. Localized plastic flow near the particles will
lead to dislocation pileups and hardening at the microscale. However, it is insufficient to
exclusively consider the local pileup stresses as influenced by the external loading, regardless of
the particle geometry. The driving force for particle fracture is also affected by the distribution of
mismatch stresses in the particle. If the mismatch stresses did not influence particle fracture,
particles would be expected to fracture in a random distribution, irrespective of the particle
geometry. However, particles with high aspect ratios consistently show an increased propensity
for fracture (Gurland and Plateau, 1963; Yeh and Liu, 1996; Dighe and Gokhale, 1997). In
addition, the fracture plane in the silicon is usually perpendicular to the applied loading axis
(Gurland and Plateau, 1963; Yeh and Liu, 1996; Dighe and Gokhale, 1997). These two effects
are arguably the most dominant ones observed in micrographs, and they are both predicted by
continuum analysis of the particles (Gurland and Plateau, 1963). Consequently, the fracture and
debonding of silicon particles in a ductile aluminum matrix can be properly modeled by
calculating stress values near the particles using a continuum-based approach. An accurate
continuum analysis must capture stresses due to mismatches of the elastic and plastic flow
properties between the two phases. Other effects such as the relative cleavage plane and slip
system orientation will also play a role in the particle fracture (Yeh and Liu, 1996). However,
due to the low anisotropy of aluminum coupled with the multiple cleavage plane variants in
silicon, it is probable that the geometrical features of particles overshadow these effects.
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The current lack of agreement over the relative importance of different mechanisms for local
silicon particle fracture is partially due to the complexity of extracting quantitative information
from metallurgical studies. Quantifying the relative importance of different microscopic
parameters on particle fracture and debonding will contribute to the development of improved
monotonic and cyclic micromechanical models, which include more than just the volume
fraction of second phase particles as microstructural parameters.

The numerical investigation will consider parameters known to affect particle fracture and
debonding based on previous metallurgical studies, such as particle shape, relative particle size,
and particle alignment (Gurland and Plateau, 1963; Yeh and Liu, 1996; Dighe and Gokhale,
1997; Gall et al., 1999). In addition, some parameters, which are difficult to obtain from
metallurgical observations, will be studied to quantify their relative influence on the fracture and
debonding of silicon particles. The latter parameters include particle spacing, particle
configuration, grouping of particle clusters, and microporosity. The advantage of using idealized
microstructures to study particle fracture and debonding is that the quantitative influence of
many parameters can be studied independently. In metallurgical studies, it is difficult to
independently quantify the effects of microstructural parameters when complex interactions are
inherent. The quantitative predictions of the numerical study are presented in light of
metallurgical findings to assure that the numerical results provide insights that are consistent
with observations. In addition, the numerical study will compare the effects of particle
debonding versus particle fracture. Particle debonding has received considerably less attention
than particle fracture even though it is important during the initial stages of fatigue crack growth
in Al-Si alloys (Gall et al., 1999-B). Our numerical study does not explicitly consider the
mechanics of debonding since this issue has been previously addressed (Needleman, 1987). In
addition, particle fracture is assumed to occur instantaneously at a critical stress level due to the
brittle nature of silicon particles. We focus on the effect of fully bonded, partially debonded, and
fractured silicon particles on the subsequent initiation of debonding and fracture in neighboring
particles. A design of experiment (DOE) methodology (Devor et al., 1992) is utilized to help
reduce the number of finite element models necessary to systematically determine the effects of
all seven parameters in all three damaged states. Ultimately, 48 unique finite element meshes and
analyses were required to obtain the desired information. Although the numerical analyses
pertain to the behavior of a cast A356 aluminum alloy, the results provide insight into the
debonding and fracture characteristics for any alloy system with stiff and strong particles which
are surrounded by a work hardenable matrix.

4.2.1.2.1.1. MORPHOLOGICAL PARAMETERS AND MESHES

The seven parameters to be considered in this study are summarized in Figure 4.7. The ranges of
the parameters in Figure 4.7 were determined by examining multiple micrographs provided from
a previous study on a cast A356 aluminum alloy with modified silicon particles (Dighe and
Gokhale, 1997). Unmodified alloys are of little interest from a practical standpoint due to
insufficient mechanical properties, such as low tensile ductility. We recognize that more extreme
values than indicated in Figure 4.7 could exist in the microstructure for each of the different
parameters. However, the high and low values in Figure 4.7 represent a statistically significant
deviation from the norm for a given parameter. The proposed ranges are sufficient to screen the
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relative influence of the parameters on the debonding and fracture characteristics of the silicon
particles. Once these first order effects are understood, the more dominant parameters can be
studied over a wider range of values in future studies. With exception of microporosity, all of the
parameters in Figure 4.7 may be quantified from micrographs.

To systematically study the effect of these seven parameters on particle fracture and debonding,
a two-level factorial design of experiment methodology (DOE) was incorporated (DeVor et al.,
1992). Such a DOE study provides both main effects and interaction effects. A main effect, E, is
a quantitative measurement of the average shift in the measured system response due to a change
in an input parameter value from the low to high setting. For example, the quantitative main
effect of the particle shape parameter on the largest principal stress in the silicon particle, σI, is
the difference in σI for an elliptical versus a round particle. An interaction effect quantifies how
the magnitude of the main effect for a given parameter depends on the other parameters in the
DOE study. In this study, only main effects are reported since interaction effects were either
negligible or obvious from a physical standpoint. For example, a large interaction between
particle shape and alignment was determined. An interaction between shape and alignment is
consistent with expectations since round particles demonstrate no alignment effects; however,
elliptical particles demonstrate significant alignment effects. Table 4.2 demonstrates the
computational matrix for studying the effects of silicon particle morphology on particle
debonding and fracture in cast Al-Si alloys, for each of the three cases of intact, fractured, and
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debonded particles. The high (+) and low (-) levels for the silicon morphological parameters are
listed in Figure 4.7. In Table 4.2 the ellipsoidal particles had an aspect ratio of 2:1.

Table 4.2. The design matrix used to create different finite element meshes to study of the effect
of morphological parameters on the debonding and fracture of silicon particles embedded in an
Al-1%Si matrix. A prolate particle has a major axis parallel to the loading axis, while an oblate
particle has a major axis perpendicular to the loading axis.

Mesh

#

Size

Distribution

Particle

Shape

Particle

Spacing

Config-

uration

Particle

Alignment

Grouping

Effect

Micro-

Porosity

1 Uniform (-) Round (-) d (-) 4 (-) Prolate (-) No (-) No (-)

2 Non-Uniform(+) Round (-) d (-) 4 (-) Oblate (+) Yes (+) No (-)

3 Uniform (-) Ellipse (+) d (-) 4 (-) Oblate (+) No (-) Yes (+)

4 Non-Uniform(+) Ellipse (+) d (-) 4 (-) Prolate (-) Yes (+) Yes (+)

5 Uniform (-) Round (-) 2d (+) 4 (-) Oblate (+) Yes (+) Yes (+)

6 Non-Uniform(+) Round (-) 2d (+) 4 (-) Prolate (-) No (-) Yes (+)

7 Uniform (-) Ellipse (+) 2d (+) 4 (-) Prolate (-) Yes (+) No (-)

8 Non-Uniform(+) Ellipse (+) 2d (+) 4 (-) Oblate (+) No (-) No (-)

9 Uniform (-) Round (-) d (-) 8 (+) Prolate (-) Yes (+) Yes (+)

10 Non-Uniform(+) Round (-) d (-) 8 (+) Oblate (+) No (-) Yes (+)

11 Uniform (-) Ellipse (+) d (-) 8 (+) Oblate (+) Yes (+) No (-)

12 Non-Uniform(+) Ellipse (+) d (-) 8 (+) Prolate (-) No (-) No (-)

13 Uniform (-) Round (-) 2d (+) 8 (+) Oblate (+) No (-) No (-)

14 Non-Uniform(+) Round (-) 2d (+) 8 (+) Prolate (-) Yes (+) No (-)

15 Uniform (-) Ellipse (+) 2d (+) 8 (+) Prolate (-) No (-) Yes (+)

16 Non-Uniform(+) Ellipse (+) 2d (+) 8 (+) Oblate (+) Yes (+) Yes (+)

For each of the sixteen configurations shown in Table 4.2, a representative finite element mesh
was constructed. In the interest of space limitations, it is impractical to show all of the finite
element meshes; however, a schematic of run number 10 is shown in Figure 4.8a. The silicon
particles are enlarged for clarity, and their actual size is indicated in the lower left corner of the
Figure 4.8a. In run 10 all of the parameters have the high (+) values (Table 4.2). The finite
element analyses were conducted using the code ABAQUS (Hibbitt et al., 1998) which employs
a user material subroutine containing the cyclic plasticity model described in the appendix. The
finite element models were two-dimensional plane strain analyses with four noded
isoparameteric elements. The overall mesh size was 240 x 240 µm to alleviate any boundary
edge effects. Because the boundaries remained orthogonal, double periodicity was enforced. The
spacing parameter “d” in Figure 4.8 was always 4 µm from edge to edge. In all meshes the total
area fraction of silicon particles was also kept arbitrarily constant at 0.174%, regardless of the
shape and number of silicon particles. The low value of 0.174% is chosen to alleviate any edge
(surface) interactions on silicon particle fracture and debonding. Each mesh contained
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approximately 10,000 elements and the fine mesh near the particles contained elements on the
order of 0.1 times the particle size. Figure 4.8b is a typical example showing the fine mesh
region near the silicon particles for mesh number 10. The applied far-field boundary condition
was a completely reversed cyclic tension-compression strain (displacement) with an amplitude of
0.4 % for three cycles. The original sixteen meshes contained silicon particles that were all
perfectly bonded to the Al-1%Si matrix. Each mesh was then modified to contain two fractured
or two debonded silicon particles within the cluster of silicon particles, resulting in 32 additional
finite element meshes. The two damaged particles were always the same as indicated on Figure
4.8 for clusters of silicon particles. The fractured particles were modeled by introducing a crack
across the center of the particles perpendicular to the applied loading axis. The debonded
particles had a crack introduced along the interface between the silicon particle and the Al-1%Si
interface, only on the lower half of the particle. Crack face boundary conditions involved treating
the exposed elements as frictionless surface contact elements. The contact conditions prevented
the crack faces from interpenetrating during local compressive deformation and the cracked or
debonded particles were included from the beginning of the calculations.

Two different stress values were extracted from each of the 48 finite element analyses during the
third loading cycle at the point of maximum applied tensile stress: 1. The maximum tensile
principal stress in a silicon particle, and 2. the maximum tensile hydrostatic stress at the interface
between a silicon particle and the Al-1%Si matrix material. The principal stress in the particle is
one measure of the driving force for silicon particle fracture. Likewise, the hydrostatic stress at
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the particle-matrix interface is one measure of the driving force for silicon particle debonding
(Needleman, 1987). In the meshes where the particles were debonded or cracked a priori, the
pre-damaged particles were not considered in the determination of stress values. In these cases,
the aim was to quantify how the debonding and fracture of adjacent particles affected the stress
distribution in neighboring, intact particles.

The computational DOE matrix in Table 4.2 yielded 16 output values chosen from individual
finite element analyses (Table 4.3). These output values are denoted as Oi, (i = 1, 2, 3 . . . 16),
and may represent the maximum principal stress in the particle or hydrostatic pressure at the
particle/matrix interface. In a full factorial design, the main parameter effects (E1 - E7) and
interaction effects (E12, E25, E123, etc.) can be explicitly calculated from the set of Oi values.
However, in this fractional factorial design (DeVor et al., 1992), the values calculated directly
from the Oi values represent linear combinations of confounded effects (L1 - L16). The Li values
are calculated through the following relationship (DeVor et al., 1992):
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The relationships between the Li values and the main parameter effects (E1 - E7) and interaction
effects (E12, E25, E123, etc.) are determined through a confounding relationship. For this common
design, the confounding relationship is given in (DeVor et al., 1992). It will also be noted that
for the present study, three factor interaction effects were ignored which is an accurate
assumption for most physically based systems (DeVor et al., 1992). Using the confounding
relationship in (DeVor et al., 1992), the following equations were determined which relate Li

values to the E values of interest for the present study:

L1 = Data-set mean
L2 = E1
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L3 = E2

L4 = E3

L5 = E4

L6 = E12 + E35 + E67

L7 = E13 + E25 + E46

L8 = E14 + E36 + E57

L9 = E23 + E15 + E47

L10 = E24 + E37 + E56

L11 = E34 + E16 + E27

L12 = E5

L13 = Three factor assumption error
L14 = E6

L15 = E7

L16 = E45 + E26 + E17

Hence, given the 16 output values for the meshes in Table 4.2, the present analysis delivers the 7
main parameter effects and the 21 confounded two factor interactions on a chosen output
parameter. The main effects (E1 - E7) were only considered in this study since the interaction
effects were all negligible or obvious from a physical standpoint. For example, a large interaction
between particle shape and alignment was uncovered. An interaction between shape and
alignment is consistent with expectations since round particles demonstrate no alignment effects;
however, elliptical particles demonstrate significant alignment effects.

4.2.1.2.1.2. SCREENING OF DOMINANT PARAMETERS

The data from the finite element analyses are presented in Table 4.3. Completely reversed,
uniaxial displacements were prescribed. Each data point represents a maximum stress value
(hydrostatic or principal) from an individual finite element analysis. The data in the columns
labeled “Bond” were extracted from analyses where the silicon particles were all perfectly
bonded within the given mesh. The data in the “Crack” and “Debond” columns were extracted
from analyses where two silicon particles in the cluster were cracked or debonded respectively
(Figure 4.8). It is difficult to visualize the relative importance of the seven parameters by
inspection of the data in Table 4.3. However, by performing the appropriate DOE transformation
on the six data columns in Table 4.3, the data reveal the quantitative effects of the seven
parameters. The meaning of the DOE data transformation is covered in detail in (DeVor et al.,
1992); however, an overview of the required calculations is presented in the Appendix.

From the data in Table 4.3, the main effects of the silicon particle parameters on silicon particle
fracture and debonding are presented in Figures 4.9-4.11. In the cases where all of the particles
are perfectly bonded, shape and alignment are by far the most dominant effects on particle
fracture (Figure 4.9a) and particle debonding (Figure 4.9b). Within the range considered here,
the five remaining parameters are shown to have a negligible effect on the initiation of fracture
or debonding of silicon particles in an Al-1%Si matrix. Once several of the particles within a
group are cracked, the effect of particle spacing enters as a significant effect as demonstrated in
Figure 4.10a and 4.10b. When several silicon particles within the groupings are partially
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debonded (Figures 4.11a and 4.11b), the effect of particle spacing becomes more dominant than
the other parameters studied.

Table 4.3. Results from the 48 finite element analyses on the 16 meshes in Table 4.2. All values
were taken from bonded silicon particles during the point of maximum tensile stress in the third
loading cycle. Bond, Crack, and Debond differentiate between meshes with all perfectly bonded
particles, two cracked particles, and two debonded particles respectively.

Maximum principal stress within a fully
bonded silicon particle

 σI (MPa)

Maximum hydrostatic stress at the Si-Al
interface of a bonded
Si particle, σH (MPa)

Mesh # Bond Crack Debond Bond Crack Debond

1 267 281 325 153 160 185

2 267 288 339 156 160 185

3 252 288 339 139 160 185

4 308 302 380 175 171 185

5 267 267 284 153 153 160

6 267 274 291 153 153 175

7 302 302 312 175 171 175

8 248 274 289 139 153 175

9 267 281 300 153 164 175

10 267 281 312 153 164 195

11 252 274 298 139 167 190

12 302 302 328 175 175 195

13 267 267 279 153 153 165

14 267 267 279 153 153 165

15 302 302 311 175 171 170

16 248 269 273 139 153 165

Depending on the damaged state of neighboring particles, the finite element results indicate that
the following parameters, listed in descending order of importance, have a significant influence
on the debonding and fracture of silicon particles in a Al-1%Si matrix:

1. Particle shape
2. Particle alignment
3. Particle spacing
4. Particle configuration
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To elucidate the influence of the four dominant parameters on fracture and debonding of silicon
particles it is necessary to examine the stress distributions in the silicon particles and in the
surrounding Al-1%Si matrix. The representative meshes used to study the dominant effects are
numbers 10, 11, and 12 (Table 4.2). Figures 4.12-4.14 show contour plots of the maximum
principal tensile stresses near the silicon particles. Figures 4.15-4.17 are contour plots of the
hydrostatic stresses near the silicon particles (tensile hydrostatic stresses are negative). The
contour plots in Figures 4.12-4.17 are symmetric about the left border, such that each analysis
contains eight particles. The far-field loading axis is vertical in the plane of the figures.
Furthermore, Figures 4.12-4.17 all contain three different damaged particle states: (a) all
particles intact, (b) two particles cracked, (c) two particles debonded. In the fractured particles,
the center crack runs through the entire silicon particle. The debonded particles have cracks that
cover the lower half of the particles along the interface between the silicon and Al-1%Si
materials. The contour plots were all created at the maximum applied tensile stress on the third
loading cycle. Given this information, we will now discuss the effects of individual parameters
on silicon particle fracture and debonding.

The influences of particle shape and alignment on particle fracture for monotonic and cyclic
loading are the most heavily documented effects in the materials science literature (Gurland and
Plateau, 1963; Yeh and Liu, 1996; Dighe and Gokhale, 1997; Gall et al., 1999-B). The influence
of shape and alignment on the debonding of silicon particles has received significantly less
attention (Dighe and Gokhale, 1997; Gall et al., 1999-B). Previously, particle shape and
alignment effects have been experimentally observed without considering a systematic variation
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in other relevant microstructural features. The present study demonstrates the influence of
particle shape and alignment relative to other pertinent microstructural parameters such as
spacing. The numerical results presented here confirm earlier predictions for isolated intact
particles (Gurland and Plateau, 1963), and extend these understandings to the cases where
adjacent particles are fractured or debonded. When all of the particles within a cluster are intact,
the maximum tensile stress in the particles and the maximum hydrostatic stress at the particle-
matrix interface are greatest when the major axis of the particle is parallel to the far-field loading
direction (Figure 4.14a and 4.17a). When the particles are rounded (Figures 4.12a and 4.15a), the
stress levels inside and surrounding the particles are smaller than the stresses near particles with
an elongated axis parallel to the loading direction. Furthermore, when the major axis of a particle
is perpendicular to the applied loading axis (Figures 4.13a and 4.16a), the stress levels in and
around the particles are even lower than the stresses near the rounded particles.

The principal stresses within the particles are relatively uniform, regardless of the orientation of
the elliptical particle. The hydrostatic stress at the particle-matrix interface is always a maximum
at the top and bottom of a particle along a line parallel to the uniaxial loading axis and through
the center of the particle. As the local particle radius of curvature is decreased at the top or
bottom of the particle, the maximum local hydrostatic stress at the particle-matrix interface
increases. For example, a particle with a major axis parallel to the loading axis (Figure 4.17a) has
an extremely small radius of curvature at the top of a particle compared to a particle with the
major axis perpendicular to the loading axis (Figure 4.15a). Consequently, the maximum
hydrostatic stress at the particle-matrix interface is much greater in elongated particles aligned
parallel to the loading axis (Figure 4.17a) versus round particles (Figure 4.15a) or elongated
particles aligned perpendicular to the loading axis.
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When several particles in a cluster are fractured across their center, the effects of particle shape
and alignment are still the dominant influences on particle fracture and debonding of surrounding
particles. Irrespective of the shape or alignment of the pre-cracked particle, the intensification of
local stresses occurs primarily within the cracked particle (Figures 4.12-4.17 (b)). The Al-1%Si
matrix surrounding fractured particles experiences a strain localization over a length scale
depending on the shape and alignment of the particle. Although intact particles with a major axis
perpendicular to the applied loading axis possess a higher resistance to particle fracture, fractured
particles with such orientations facilitate the highest local principal and hydrostatic stresses in
the surrounding Al-1%Si matrix. For example, in Figure 4.13b, a zone of magnified local
stresses is present in the Al-1%Si matrix near the fractured particle. However, in Figure 4.14b,
the zone of intensified stresses near the cracked particle is significantly smaller than that of the
cracked particle in Figure 4.14b. The smaller localized zone size in the case of the cracked
particle with a major axis parallel to the loading axis is caused by differences in the crack length
and constraint of the two particle halves. The cracked particle with a major axis parallel to the
loading axis has a much smaller inherent defect size (crack length), and therefore the zone of
enhanced plasticity and localized stresses near the crack tip are smaller. Furthermore, the cracked
particle with a major axis parallel to the loading axis (Figure 4.14b) experiences local stresses
within the fractured particle which are higher and farther reaching compared to the stresses
within the particle perpendicular to the loading axis (Figure 4.13b). Consequently, the local
stresses immediately outside the fractured particle with the major axis parallel to the loading axis
are smaller as expected by energetic arguments. In either orientation, the relatively small
localization of stresses surrounding the fractured particles only has a negligible influence on the
principal and hydrostatic stresses in neighboring intact particles (compare the stress distributions
in the particles surrounding the fractured and intact particles in Figures 4.12-4.17 (b) versus
Figure 4.12-4.17 (a)).
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When several particles within a cluster debond (Figures 4.12-4.17 (c)), the localization of
stresses within the surrounding Al-1%Si matrix is considerably more intense compared to the
intact (Figures 4.12-4.17 (a)) or fractured (Figures 4.12-4.17 (b)) particles. In contrast to the high
stresses within fractured particles, the stresses within the debonded particles are negligible. The
shape and alignment of a debonded particle has a similar influence on the localization of stresses
in the Al-1%Si matrix as that of the fractured particles. If the major axis of the debonded particle
is parallel to the loading axis (Figures 4.14c, 4.17c), then the intensification of stresses is less
than if the major axis of the particle is perpendicular to the loading axis (Figures 4.13c, 4.16c).
Debonded circular particles (Figures 4.12c, 4.15c) cause stress intensification bounded by the
two orientations of the elliptical particles. In the situations where adjacent particles debond, the
stresses in the neighboring particles are influenced by debonded particles of all orientations and
shapes. When the major axis of the debonded particle is perpendicular to the loading axis the
interaction with surrounding particles is the strongest.

Shape and alignment are the most dominant parameters influencing particle fracture and
debonding. It is important to point out that in Figure 4.10 and 4.11 shape and alignment still
appear as less dominant effects compared to the other parameters. However, when particles are
debonded and fractured, shape and alignment are more dominant than Figures 4.10 and 4.11
portray due to the “average” nature of the DOE effect measures. For example, particles arranged
in an array with their major axis parallel to the loading direction have the highest stress fields
inside of them. When particles within such an array crack or debond, the crack length is small
compared to fractured or debonded particles with a major axis perpendicular to the loading axis
(assuming that the cracks form perpendicular to the tensile axis). Consequently, the stress
increase in adjacent particles due to neighbors cracking and debonding is smaller for arrays of
particles parallel to the tensile axis compared to particles perpendicular to it. In other words, the
particles that are most prone for cracking and debonding also inflict the smallest increase in
stresses on their neighbors after failure. The counterbalancing effects of internal (self mismatch)
and external (neighbor effects) stresses for different shapes and alignments after fracture and
debonding yield a low “average” effect of shape and alignment in Figures 4.10 and 4.11.

When all of the silicon particles within a cluster are intact, the local stress fields surrounding the
particles are not strong enough to affect the debonding and fracture of neighboring particles. For
example, in Figures 4.12-4.17 (a), the stresses inside all of the particles are uniform within the
bounds of numerical noise. The uniformity of stresses within an elliptical inclusion is consistent
with the classical proof of Eshelby (Eshelby, 1957) for a single isolated inclusion. Consequently,
the particles do not feel the influence of the external stress fields from neighboring particles. In
Figures 4.12-4.17 (a), the particle spacing is one particle diameter. When the spacing is increased
to two particle diameters, the stress distributions within the perfectly bonded particles are nearly
identical to the distributions when the particles are one diameter apart.

If several particles within a cluster are fractured, particle spacing becomes a dominant effect in
addition to particle shape and alignment. The local stress intensification near a fractured particle
(Figures 4.12-4.17 (b)) extends over a distance significant enough to facilitate weak particle-
particle interactions. Consequently, when the distance between fractured and intact particles is
varied between one particle diameter and two particle diameters, the local stresses near the intact
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particles change. However, since the fractured particle contains much of the elastic strain energy
after fracture, the spacing of neighboring particles is not as significant of an effect as for the case
of debonded particles.

When several particles within a cluster debond, the spacing between particles exerts a strong
influence on the stresses in adjacent particles. The significant increase in the stresses in particles
adjacent to debonded particles (Figures 4.12-4.17 (c)), is due to the larger extent of the
redistributed stress fields in the Al-1%Si matrix surrounding the debonded particles. The
principal stress fields within intact particles near a debonded particle show considerable
gradients (Figures 4.12-4.14 (c)). In addition, the debonding of adjacent particles increases the
hydrostatic stresses at the particle-matrix interface of intact particles (Figures 4.15-4.17 (c)).
When the spacing between the particles is increased to two particle diameters, the effect of the
debonded particles is weaker since the surrounding particles are not embedded in such intense
local stress fields.

Essentially, the effect of particle spacing depends on the length scale of the stress and strain
gradients outside the embedded silicon particle. If the particle spacing is on the order of the
length scale where strong local stress gradients exist, then spacing will be a dominant effect. In
the present study, the particle spacing was varied from one particle diameter to two particle
diameters. In the intact and fractured particles, the length scale of the stress gradient was only a
fraction of the particle diameter. Consequently, particle spacing does not have a strong influence
on the debonding or fracture of adjacent particles when the spacing is more than a particle
diameter. On the other hand, strong stress gradients near a debonded particle exist over one or
two particle diameters. Therefore, the spacing between intact and debonded particles has a strong
influence on the stress distributions near the intact particles when the particle spacing is varied
one or two particle diameters.

When all of the silicon particles are intact, the interactions between particles are negligible.
Consequently, the spatial location of adjacent particles (at a fixed distance) does not affect the
stresses in particles when all particles are intact. However, when adjacent particles are fractured
or debonded, particle interactions exist. Furthermore, the spatial location of adjacent particles (at
a fixed distance) has a second order effect on the debonding and fracture of silicon particles.
Figures 4.13c and 4.16c demonstrate the effect of different particle positions on the principal and
hydrostatic stress distributions in intact particles near debonded particles. Aside from a smaller
absolute magnitude, configuration effects are similar for fractured particles (Figures 4.13b and
4.16b). For all different particle orientations and shapes, intact particles at a 45 degree angle
from a debonded particles experience the greatest principal stresses within the particle (Figure
4.13c) and hydrostatic stress at the particle matrix interface (Figure 4.16c). The strong
localization of stresses at a 45 degree angle from the debonded particle is due to “shear bands”
aligned with the maximum macroscopic shear strain plane. Intact particles to the right or left
(along a line perpendicular the loading axis) of debonded particles also demonstrate significant
stress levels. Intact particles below or above (along a line parallel the loading axis) debonded
particles demonstrate negligible stress levels.

The results of the present study imply that relative particle size has a negligible effect on the
fracture and debonding of silicon particles. However, experimental results indicate that larger
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particles consistently show an increased propensity for breakage and debonding (Dighe and
Gokhale, 1997). There are two proposed reasons for the biased fracture of larger particles. First,
the probability that a particle will contain a flaw that promotes premature fracture and debonding
is greater for larger particles (Cox and Low, 1974). The effect of initial defect size within the
particles was not considered in the present study, but can be superposed with the predictions
made here. Second, after observing numerous micrographs of debonded and fractured silicon
particles, we concluded that silicon particles traditionally labeled as “large” are always
irregularly shaped. During solidification it is extremely difficult to form a silicon particle which
is both large and well rounded. Consequently, based on the results of the present numerical
study, it is the consistent irregular shape (and aspect ratio) of large silicon particles further
lowers their resistance to fracture.

This DOE study provides the relative influence parametric effects on fatigue crack formation.
Although generalizations can be made with this study as we have done, remember that we
assumed plane strain conditions and we assumed certain limits on our parameters. Certainly the
A356-T6 material has three dimensional structure that may skew the results. Although the
relative values for the plastic shear strain would change, the trends would probably be similar.
This was observed for two dimensional and three dimensional crystal plasticity studies using the
DOE methodology (cf, Horstemeyer and McDowell, 1997; Horstemeyer et al., 1999). The limits
were chosen based upon observations from micrographs but certainly in some cases they could
be changed and thus altering the plastic shear strain response.

4.2.1.2.1.3. IMPLICATIONS ON THE FATIGUE OF CAST Al-Si ALLOYS

The results of the present study have several ramifications on the understanding and modeling of
the mechanical response of cast Al-Si alloys subjected to cyclic loading conditions. As a cast Al-
Si material is cyclically loaded or exposed to overloads, the first particles crack or debond will
be ones with high aspect ratios aligned with a major axis parallel to the loading axis. In addition,
owing to a higher probability for internal or interface inclusions, larger particles of such shape
and orientation will favorably fracture. Initial particle cracking and debonding is not strongly
affected by neighbor interactions. Consequently, it is more important to consider the particle
geometry and expected damaged state (debonded versus fractured) of individual particles rather
than the local distribution during the very initial stage of fatigue (crack nucleation period).

During continued cycling, fatigue cracks will eventually form in the surrounding material at the
cracked or debonded silicon particles. Based on the present results, the small growing fatigue
cracks (on the order of the silicon particle size) will interact with neighboring particles and hence
be affected by the distribution (configuration and spacing) of such particles. Furthermore, at such
small crack sizes and crack tip driving forces, the neighboring silicon particles will act as barriers
to fatigue crack propagation (Gall et al., 1999-B). Consequently, isolated damaged particles are
expected to produce relatively larger micro fatigue cracks during subsequent cycling. In either
case, the local fatigue cracks nucleated at damaged silicon particles can have two effects on the
fatigue response of the cast Al-Si alloy. If no inclusions are present at a larger size scale, such as
oxides or pores, then the distributed microcracks will grow until coalescence and final failure of
the material. In this situation, the growth characteristics and rates of small microcracks within the
particle-laden microstructure will have a strong influence on the fatigue life of the material.
Modeling efforts of such behavior might include the effects of particle alignment, shape, spacing,
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and configuration on small fatigue crack growth rates. If large scale oxides and pores are present
in the cast material, then a much larger dominant fatigue crack will nucleate and grow from such
inclusions. In this situation, the distributed microcracks will weaken the material ahead of the
dominant fatigue crack and, on average, lower the resistance to long fatigue crack propagation.
Modeling efforts of such an effect can simply incorporate a continuum damage approach, for
example, that effectively elevates the Paris law crack growth rate.

In summary, finite element analyses were constructed to independently study the relative effects
of silicon particle size, shape, spacing, configuration, alignment, grouping, and microporosity on
particle fracture and debonding within an Al-1%Si matrix. The meshes were designed to
conform to a two-level design of experiments methodology where the maximum and minimum
values for the above seven parameters were determined based on micrographs of a modified cast
Al-Si alloy. Particles within some meshes were fractured and debonded a priori in order to study
the effects of damaged neighboring particles on the stress distributions near intact particles. The
maximum principal stress in the silicon particle was used as a measure of the propensity of a
silicon particle to fracture. The maximum hydrostatic stress at the interface between the silicon
particle and the Al-1%Si matrix was used as a measure of the propensity of a silicon particle to
debond.

Regardless of the damaged state of the neighboring silicon particles, the relative size, grouping,
and Al-1%Si matrix microporosity were found to have a negligible effect on the fracture and
debonding of intact particles. When all of the silicon particles were intact, the particle shape and
alignment were the only parameters among those considered which significantly affected the
fracture and debonding of silicon particles within the Al-1%Si matrix. Intact elliptical particles
demonstrated the most resistance to fracture and debonding when the major axis of the particle
was perpendicular to the applied loading direction. When the major axis of an elliptical particle
was parallel to the applied loading direction, the elongated particle demonstrated the least
resistance to particle fracture and debonding. Circular particles demonstrated a resistance to
fracture and debonding bounded by elliptical particles of the two orientations mentioned above.

When a crack was introduced through the center of a silicon particle, the fractured particle
carried a significant fraction of the local redistributed stress field. The Al-1%Si matrix near the
fractured silicon particle experienced only a small localization of stresses near the crack tip.
When the lower half of a silicon particle was debonded, the debonded particle carried a
negligible fraction of the local stress field. The Al-1%Si matrix near the debonded silicon
particle experienced severe localization of stresses over a significant distance from the particle.
The localization of stress near the fractured and debonded particles altered the stresses in the
adjacent intact particles and along their interfaces depending on the shape and orientation of the
damaged particle. Despite the lower stresses in the intact case, fractured and debonded particles
with a major axis perpendicular to the loading axis caused a more severe localization of stresses
in the surrounding Al-1%Si matrix and the adjacent particles. Furthermore, intact silicon
particles placed at a 45 degree angle, or along a direction perpendicular to the applied loading
axis, showed the greatest influence from fractured or debonded particles.
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4.2.1.2.2. ABSOLUTE RESULTS OF PARTICLE SIZE, SPACING, ASPECT RATIO,
AND CLUSTER DENSITY OF PARTICLES

Now that relative influence of several parameters related to particles have been determined, we
now focus our attention more quantitatively determine the effects of particle size, spacing, aspect
ratio, and cluster density. An idealized particle cluster with four particles arranged in two rows
and two columns, similar to the pattern of Figure 4.3, is used. These simulations assume
perfectly intact particles and serve to generate more information for our understanding. Figures
4.18 and 4.19 show the effects of the particle size on the plastic strain amplitude and the number
of cycles for crack incubation. These results indicate that the local plastic shear strain amplitude
increases and cycles for crack incubation decreases with increased particle size for the size range
analyzed. The relative cycles for crack incubation reduction with the same particle size increase
is more distinct at the lower stress level of 110 MPa than at a higher stress level of 165 MPa.
Figures 4.20 and 4.21 show the effects of cluster density via particle number in a cluster along
the loading direction. For the effects of cluster density (particle number in a cluster along the
loading direction), results show that the plastic shear strain amplitude increases quickly when the
particle number in a cluster increases from 1 to 3, and the increase rate slows down when more
than three particles are involved as shown in Figures 4.18-4.19. This causes the cycles for fatigue
crack nucleation to decrease due to the increase of particle numbers in a cluster. The effects of
particle aspect ratio and normalized longitudinal particle spacing on the plastic strain amplitude
and Ninc can also be found, respectively, in Fig. 4.22-4.23, and Fig. 4.24-4.25. For a particle
aspect ratio ranging from 1-1.65, the Ninc is higher when the ratio is close to 1. The relative
reduction for a given increase of particle number is more distinct at lower stress levels than that
at higher stress levels. Concerning spacing effects between two particles along the loading
direction, the results indicate that the maximum plastic shear strain amplitude is higher when the
spacing between particles along the loading direction on the order of the particle size.

Figure 4.18. Effects of particle size on the average (over a distance of 2µm along loading
direction) maximum plastic shear strain range for stress amplitudes of 110, 133 and 165 MPa
(R=–1, Dmax/Dmin=1.65, L=10 µm, B/L=1, α=0.5, C=0.0211).
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Figure 4.19. Effects of particle size on Ninc for stress amplitudes of 110, 133 and 165 MPa (R=
–1, Dmax/Dmin=1.65, L=10 µm, B/L=1; α=0.5, C=0.0211).

Figure 4.20. Effects of cluster density (number of particles stacked parallel to the loading
direction) on the average (over a distance of 2µm along loading direction) maximum plastic
shear strain range for stress amplitudes of 110, 133 and 165 MPa (R= –1, D=7 µm,
Dmax/Dmin=1.65, L/D=0.85, B/L=1.43).
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Figure 4.21. Effects of number of particles stacked parallel to the loading direction on Ninc for
stress amplitudes of 110, 133 and 165 MPa (R= –1, D=7 µm, Dmax/Dmin=1.65, L/D=0.85,
B/L=1.43, α=0.5, C=0.0211).

Figure 4.22. Effects of particle aspect ratio on the average (over a distance of 2µm along loading
direction) maximum plastic shear strain range for stress amplitudes of 110, 133 and 165 MPa
(R= –1, D=7 µm, L/D=1.43, B/D=2.86).
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Figure 4.23. Effects of particle aspect ratio on Ninc for stress amplitudes of 110, 133 and 165
MPa (R= –1, D=7 µm, L/D=1.43, B/D=2.86, α=0.5, C=0.0211).

Figure 4.24. Effects of normalized longitudinal particle spacing on the average (over a distance
of 2µm along loading direction ) maximum plastic shear strain range for stress amplitudes of
110, 133 and 165 MPa (R= –1, Dmax/Dmin=1.65, D=7 µm, B/D=2.86).
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Figure 4.25. Effects of normalized longitudinal particle spacing on Ninc for stress amplitudes of
110, 133 and 165 MPa (R= –1, Dmax/Dmin=1.65, D=7 µm, B/D=2.86, α=0.5, C=0.0211).

4.2.2. PORES

One of the most deleterious inclusions in cast material is a large pore. In this section, we
examine pore effects on crack incubation using both realistic microstructures and idealized
geometries for FEA.

4.2.2.1 REALISTIC MICROSTRUCTURE

Figures 4.26 and 4.27 show the distribution of the largest principal stress and effective plastic
strain near a realistic pore of A356-T6 Al alloy taken from SEM imaging under symmetric cyclic
loading of tension and compression. The maximum and minimum dimensions of the pore in this
case are 205 and 131 µm. Over the perimeter of the pore, there are some arcs with small
curvature radius. The local curvature radius is about 3.5 µm. The location of the maximum
effective plastic strain and principal stress is on the arcs near the major axis that is perpendicular
to the loading direction. As the curvature radius decreases, the stress/strain concentration
increases. This finding indicates that the local curvature of the pore has an important impact on
fatigue crack incubation. The following values from the realistic pore analysis are listed to give a
concept of their order. For a pore with effective pore size of 55 µm under strain amplitude of
0.2%, the maximum plastic strain amplitude changed 992 to 1260 µε. The stress concentration
factor is about two. When the pore size increases to 168 µm, the stress concentration factor
increases to about 3.75 and the maximum effective plastic strain is 21,500 µm.
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Figure 4.26. Distribution of the maximum principal stress, σI, near a realistically shaped pore
cross section for A356 Al alloy (R= –1, εa=0.2%, pore size = 168 µm, pore ratio=1.6, local
radius of curvature=3.5 µm, boundary conditions: uniformly cyclic displacement along the y-
direction along the top side, simple support at the right side with ux=0, simple support at the
bottom side with uy=0, and free at the left side).

4.2.2.2 IDEALIZED MICROSTRUCTURE: PARAMETRIC STUDIES

This section builds on the correlation between the applied strains and the local strains based on
FEA from realistic SEM images, focusing on the relative importance of various microstructural
features. In particular, we examine pore size, spacing, local curvature, and proximity to the free
surface.

To investigate the effects of size, spacing and local curvature of pores on fatigue crack
incubation, an idealized pore cluster with pores arranged in the pattern of Figure 4.3 is loaded by
remote completely reversed strain amplitudes of 0.15%, 0.2% and 0.25%. Figures 4.28 and 4.29
show distributions of the largest principal stress and the maximum shear plastic strain amplitude
in the pore cluster of four pores. The pore size is 500 µm; the pore aspect ratio is two; and local
radius of curvature is 35 µm. For an applied strain amplitude of 0.2% (133 MPa), the maximum
principal stress is 324 MPa, and the maximum plastic shear strain amplitude is 7960 µε. The
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stress concentration factor is 2.43, and the ratio of the maximum plastic shear strain amplitude
over applied strain amplitude is 3.98. Roughly speaking, the plastic shear strain amplitude of the
matrix in pore clusters is about 15-30 times higher than that of the matrix in particle clusters.

Figure 4.27. Distribution of effective plastic strain, Pε , near a realistically shaped pore cross
section for A356 Al alloy (R= –1, εa=0.2%, pore size = 168 µm, pore ratio=1.6, local radius of
curvature=3.5 µm, boundary conditions: uniformly cyclic displacement along the y-direction
along the top side, simple support at the right side with ux=0, simple support at the bottom side
with uy=0, and free at the left side).

For internal pores, the interaction between neighboring pores is an important parameter for
fatigue failure. In these particular analyses, two assumptions need clarification. First, among
randomly distributed pore clusters, the fatigue life is mainly controlled by pore clusters with the
largest pore sizes. Second, the interaction effects of other pore clusters on the critical pore cluster
are only considered through the finite element boundary conditions. Specifically, four pores are
taken as a basic set of the largest pore cluster for the analysis. Figures 4.30 and 4.31 show effects
of the largest pore size on the maximum plastic shear strain amplitude and the number of cycles
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for crack incubation. The effects of pore spacing and the maximum local curvature radius of the
pore cluster are shown, respectively, in Figures 4.32-4.33 and 4.34-4.35.

By examining these figures, we conclude several things:
(a) The relative increase of the maximum plastic shear strain amplitude, ∆γp*

max, due to the
increase of pore size is higher at lower stress amplitudes than at higher stress amplitudes. For
example, for a completely reversed, cyclic loading, the computed ∆γp*

max of 8260 µε for the 800
µm pore is 2.36 times larger than that for the 100 µm pore under the stress amplitude of 110
MPa; this ratio reduces to 1.9 when the stress amplitude increases to 165 MPa with the ∆γp*

max of
21900 µε for the 800 µm pore.  
(b) The smaller the pore spacing, the lower the Ninc. This arises because smaller pore spacing
induces more svere pore interactions, resulting in more plastic shear strain intensification.
(c) When the local curvature radius of the pore reduces from 15 to 7 µm, the local plastic strain
range increases quickly. The corresponding Ninc is small; 7-100 cycles at the stress amplitudes of
133 and 165 MPa. For a local curvature radius within the range of 15-30 µm, N inc i s
approximately proportional to the local radius of curvature.

For pores near the free surface, Figure 4.36 shows that there is an intensification of cyclic plastic
strain (slip) between the pores and the free surface under cyclic loading. The slip band is nearly
+45 degree to the free surface. The location of the maximum plastic shear strain occurs near the
tip of the ellipse that is close to the free surface. This intensification causes crack nucleation near
the free surface by persistent slip banding. To simulate this phenomenon, ∆γp*

max and  the
Fatemi-Socie parameter  were calculated for pores with the same geometry and dimension but
with different distances between the free surface and the edge of the pore. A quantitative
relationship between the maximum plastic shear strain amplitude, the cycles for crack
incubation, and the distance between the free surface and the pore extreme under completely
reversed tension-compression cyclic loading are shown in Figures 4.37 and 4.38. The results
show that ∆γp*

max reduces and Ninc increases rapidly from the free surface to the inside of the
material. After the distance increases to about the same order of the pore’s largest dimension, the
decay of  ∆γp*

max with distance from the free surface stops, indicating a negligible effect of the
free surface on fatigue crack nucleation when the pore is inside of the material. The results show
that as the the applied stress amplitude increases, the more severe are the effects of the free
surface on the fatigue crack nucleation compared to those at a lower stress amplitude. The
tendency of stress amplitude effects differs from that of stress amplitude effects for clusters of
interior pores and for particle clusters. In the latter cases, these effects are more pronounced at
the lower stress amplitudes.

The ∆γp*
max values obtained for a single pore near a free surface are much higher than those

obtained for pore clusters inside of the material. For example, the smallest ∆γp*
max at a stress

amplitude of 165 MPa is about 50,000 µε for a single pore of 40 µm located 10 µm from the free
surface; however, the ∆γp*

max obtained for an interior pore of 100 µm at the same stress
amplitude is only about 25,000 µε.
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Figure 4.28. Distribution of the maximum principal stress, σI, in a contrived cluster of four pores
(R=–1, εa=0.2%, D=500 µm, Dmax/Dmin=2, L=B=720 µm, minimum radius of curvature=35 µm,
boundary conditions: periodic conditions along the right and top edges, simple support at the left
edge with ux=0, simple support at the bottom edge with uy=0).

4.2.3. CRACK INCUBATION: CYCLIC PLASTIC STRAIN INTENSIFICATION

In this section, FEA results are reported that give understanding of the driving force for crack
formation. From a continuum standpoint, the primary driving force for fatigue crack formation is
assumed to be the local maximum plastic shear strain amplitude, ∆γp*

max, with respect to all
possible shear strain planes. Three loading amplitudes (∆ε/2 = 0.10%, 0.15, 0.20%) and three
strain ratios (R = -1, 0, 0.5) were considered in determining the crack opening displacement for
cracks near silicon particles and pores. The results show that perfectly bonded particles have
∆γp*

max values two orders of magnitude less than those for voids, cracked, or debonded particles.
A cracked particle facilitates extremely large local stresses in the broken particle halves, which
will invariably lead to the debonding of a cracked particle. Based on these two observations,
debonded particles and voids are asserted to be the critical inhomogeneities for fatigue crack
formation. Furthermore, for voids and debonded particles, shape has a negligible effect on
fatigue crack formation compared to other significant effects such as inhomogeneity size and
reversed loading conditions (R-ratio). Increasing the size of a particle by a factor of four
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increases ∆γp*
max by about a factor of two. At low R-ratios (R=–1) equivalent sized voids and

debonded particles have comparable ∆γp*
max values. At higher R-ratios (R=0, 0.5) debonded

particles lead to ∆γp*
max values twice that of voids.

Figure 4.29. Distribution of the maximum plastic shear strain range in a contrived pore cluster of
four pores (R=–1, εa=0.2%, D= 500 µm, Dmax/Dmin=2, L=B=720 µm, minimum radius of
curvature=35 µm, boundary conditions: periodic conditions along the right and top edges, simple
support at the left edge with ux=0, simple support at the bottom edge with uy=0).

Figure 4.30. Effects of pore size on the average (over a distance of 20µm perpendicular to the
loading direction) maximum plastic shear strain range in a contrived cluster of four pores for
stress amplitudes of 110, 133 and 165 MPa (R= –1, Dmax/Dmin=2, B=L=720 µm).
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Figure 4.31. Effects of pore size on Ninc in a contrived cluster of four pores for stress amplitudes
of 110, 133 and 165 MPa (R= –1, Dmax/Dmin=2, B=L=720 µm, 'α =0.5464, 'C =0.0622).

Figure 4.32. Effects of pore spacing in a contrived cluster of four pores on the average (over a
distance of 20µm perpendicular to the loading direction) maximum plastic shear strain range for
the pore sizes of 300 and 500 µm versus applied stress.
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Figure 4.33. Effects of pore spacing in a contrived cluster of four pores on Ninc for the pore sizes
of 300 and 500 µm versus applied stress (R= –1, Dmax/Dmin=2, B/L=1, 'α =0.5464, 'C =0.0622).

Figure 4.34. Effects of the minimum radius of curvature in a contrived cluster of four pores on
the average (over a distance of 20µm perpendicular to the loading direction) maximum plastic
shear strain range at applied stress amplitudes of 110, 133 and 165 MPa (Dmax/Dmin=2,
Dmax=150 µm, R= –1).
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Figure 4.35. Effects of the minimum radius of curvature in a contrived cluster of four pores on
Ninc at applied stress amplitudes of 110, 133 and 165 MPa (Dmax/Dmin=2, Dmax=150 µm, R= –1,

'α =0.5464, 'C =0.0622).

Figure 4.36. Contours of the maximum plastic shear strain range around a pore near a free
surface (R=−1, Dmax/Dmin=2, Dmax=40 µm, εa=0.2%, boundary conditions: uniformly cyclic
displacement along the y-direction at the top side, simple support at the right side with ux=0,
simple support at the bottom side with uy=0, and free at the left side).
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Figure 4.37. Effects of the distance between a pore and a free surface on the average (over a
distance of 7.5 µm perpendicular to the loading direction) maximum plastic shear strain range for
applied stress amplitudes of 110, 133 and 165 MPa (R= –1, Dmax/Dmin=2, Dmax=40 µm).

Figure 4.38. Effects of the distance between a pore and a free surface on Ninc for applied stress
amplitudes of 110, 133 and 165 MPa (Dmax/Dmin=2, Dmax=40  µm, R= –1, 'α =0.5464,

'C =0.0622).
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4.2.3.1. FEA PRELIMINARIES

SEM images from the fracture surface of a cast Al-Si-Mg alloy (A356-T6) subjected to cyclic
loading conditions (∆ε/2 = 0.2%, R = –1, N ~ 100,000 cycles) were used to motivate the study
for the plastic strain intensification. Figure 4.39 shows the pertinent images related to our study.
The image on the left shows a typical casting pore (void) and the image on the right shows an
Al-Oxide inclusion. The inhomogeneities in Figure 4.39 are located at the specimen surface and
were determined to be the initiation sites for the fatigue crack which ultimately caused final
fracture. The inhomogeneities in Figure 4.39 have curved interfaces with the matrix material, as
evident from the black outlines marking the inhomogeneity-matrix boundary. The present study
will consider both realistic shaped inclusions with local radii of curvature as observed in Figure
4.39, and idealized circular inhomogeneities.

Figure 4.40 is an idealized schematic of the material inhomogeneities imaged on the fracture
surface in Figure 4.39. The pore (void) is considered to be a domain over which the matrix
material is absent. The inclusion is a domain over which the matrix material is replaced by a
brittle, elastic second phase with no initial misfit stresses. The unique feature of a second phase
inclusion, in contrast to a void, is that different local boundary conditions must be considered in
the case of the smaller inclusion. The inclusion can be considered to exist in three different
states; perfectly bonded, cracked, and debonded. A perfectly bonded and pristine inclusion
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contains no crack-like inclusions and is forced to obey radial and tangential displacement
compatibility across the interface with the matrix material. A cracked inclusion still maintains
displacement compatibility across the particle-matrix interface; however, the inclusion itself
contains a traction free crack. A debonded inclusion is assumed to be defect free itself, however,
the interface between the matrix and the inclusion contains a crack. The cracked particles will
have a defect that spans the entire inclusion, since it is unlikely that such a brittle phase will
contain a significant partial crack. Moreover, the debonded inclusion will have an interface crack
that covers only a portion of the particle circumference as experimentally observed (Lankford
and Kusenberger, 1973; Lankford, 1976).

Two-dimensional finite element meshes used for the fatigue crack formation study are presented
in Figure 4.41. The elements in Figure 4.41 are plane strain isoparametric elements with four
nodes each. The entire mesh is shown in Figure 4.41a, while the different fine mesh regions are
shown in Figure 4.41b. The mesh in Figure 4.41a has symmetry conditions applied to the left
face (ux = 0), the right face is specified as a free surface, and the bottom face is constrained from
moving in the y-direction (uy = 0). Far-field displacement boundary conditions were applied to
the top face by prescribing the uy displacements in a linear monotonic or cyclic ramp. The finite
element simulations were conducted in the commercial code ABAQUS (1994) with a UMAT
material subroutine containing the Bammann et al., (1993) plasticity model. Three different fine
mesh regions were considered in the present finite element study; an idealized circular shape and
two star-like shapes (Figure 4.41b). The meshed inclusions are set below the respective fine
mesh regions when appropriate. The idealized circular shape is used for finite element studies of
voids, bonded inclusions, cracked inclusions, and debonded inclusions. Whenever internal
surfaces were introduced into the finite element meshes, frictionless contact conditions were
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prescribed on the exposed elements. The contact conditions prevented the aphysical overlap of
internal surfaces during deformation. The awkward star shaped inhomogeneities are specific to
either an inclusion or a void (pore). The shapes of the star inclusion and pore attempt to model
the worst case scenario for the respective inhomogeneity. The star inclusion contains sharp
corners and fingers extending into the matrix material, consistent with a realistic solidification
front for an inclusion. The star pore contains very sharp internal radii of curvature where the
advancing solidification fronts inevitably contact during casting. Moreover, in processed powder
metallurgy alloys, the sintering of spheroidal particles during compaction will invariably lead to
void inclusions with inner radii as modeled in Figure 4.65b. The overall size of the different
inclusions is kept constant to appropriately compare the results from inhomogeneities of different
shapes.

In order to extract meaningful results from finite element models it is important to determine the sensitivity of the
results to the chosen finite element mesh. To study such dependence, three finite element meshes were constructed
with an idealized half-debonded inclusion surrounded by a matrix of Al-1.0%Si-0.3%Mg. The debonded inclusion
was chosen as the model situation for the mesh refinement analysis since it causes extremely localized plasticity
compared to the other inhomogeneities as will be shown in the Results and Discussion. The different meshes were
designed such that the approximate size of the elements in the fine mesh region changed from 1/12 D to 1/20 D to
1/32 D (Figure 4.41b), where D is the diameter of the idealized circular inclusion. The far ends of the meshes were
displaced in monotonic tension to a remote nominal strain of 0.25%, which is just above the macroscopic yield
strain (0.23%) of the Al-1.0%Si0.3%Mg matrix material. The maximum plastic shear strain, ∆γp*

max, was tracked
throughout the deformation for all three meshes. We note that the present study considers the maximum plastic shear
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strain with respect to the spatial location within the mesh and the associated shear strain plane. Two different
methods were used to quantify of ∆γp*

max for the three different mesh sizes:

1. The point-wise maximum (for individual elements) γmax value near the debonded inclusion.

2. An average value of γmax, denoted as ∆γp*
max, defined over an equivalent spatial area, A, near the debonded

inclusion.

A schematic demonstrating the determination of ∆γp*
max for a typical finite element mesh subjected to a total tensile

strain of 0.2% is presented in Figure 4.42. Only the fine mesh region is shown in Figure 4.42, since the plasticity is
concentrated near the inhomogeneity. The averaging domain, A, for calculating is placed in a region where the γmax

contours are a maximum (Figure 4.42). In Figure 4.42, the domain A covers about 12 elements, or approximately
0.012 D2. The finite element predictions will depend on the selected averaging area, and the appropriate choice of A
depends on the physical phenomenon of interest. In the finite element study, A was scaled with the particle diameter
D since there is not a length scale inherent in the present finite element analysis. In reality, fatigue crack formation
mechanisms operate over size scales on the order 0.2 µm, depending on the material of interest (Harvey et al.,
1994). Consequently, when extracting the driving force for fatigue crack formation from a continuum based
analysis, it is appropriate to average over a size scale no larger than several microns. Furthermore, the averaging size
scale should not be smaller than about 0.2 µm since local continuum calculations for the matrix are unable by
themselves to describe the materials capacity to resist singularities by virtue of dislocation self-organization
processes. In any case, since the present finite element analysis does not contain a length scale, the averaging size is
considered relative to the inhomogeneity size. Such an approach limits the extension of the results to situations
where the modeled inclusion is extremely large or small since the averaging size may lose physical meaning.

The largest local γmax and ∆γp*
max values in the mesh are both plotted as a function of the applied far-field strains in

Figures 4.43 (a) and 4.43 (b), respectively. When the maximum plastic shear strain is determined using a point-wise
measurement of γmax, the finite element results diverge as the mesh is refined (Figure 4.43a). The divergence of the
finite element model is an artifact of the extremely strong plastic strain gradients near a debonded particle, which
essentially serves as a crack-like singularity. As the mesh is refined, the elements near the tip of the debond crack
are capable of extrapolating over a smaller length scale, thus the peak plastic shear strain increases as the element
size cuts the local plastic strain distributions closer to the crack tip. Conversely, when the maximum plastic shear
strain value is extracted by considering an average value, ∆γp*

max, over A = 0.12D2, the finite element results are
invariant to the mesh size to within numerical error for the D/20 and D/32 meshes (Figure 4.43b). The mesh with a
fine mesh region size of D/12 appears a bit too coarse to capture the relevant local plastic shear strain gradients for
this averaging size. When the mesh is refined there is an increase in γmax over a small spatial area adjacent to the
inclusion for finer meshes. However, such an increase over a small area is negligible when averaging over larger
spatial length scales, hence the invariance in the average γmax. The remaining finite element analyses use the mesh
with a local element size of D/32 (Figure 4.41).



4-45

4.2.3.2. FEA SIMULATIONS FOR LOCAL CYCLIC PLASTICITY: DISCUSSION

The monotonic results provide the relative intensification of plastic strains and stresses near the inclusions and
pores. Figures 4.44 through 4.47 present contour plots of the maximum plastic shear strain, γmax, where the
maximum is with respect to all possible shear strain planes. The contour plots in Figures 4.44 through 4.47 are only
small sections of the finite element mesh near the fine mesh region, and the plots are symmetric about their left face.
The discretized finite element mesh was left overlaid on the inclusions to clearly identify their domain. Moreover,
all of the contour plots in Figures 4.44 through 4.47 were created at an applied far-field strain of 0.20%, which is
below the macroscopic yield strain of the matrix material (0.23%). The cracked inclusions (Figure 4.46) have a
crack-like defect across the center of the particle, and the debonded inclusions (Figure 4.47) have a crack along the
entire bottom half of the interface between the particle and matrix. We note that the monotonic results only consider
the maximum plastic shear strain, γmax, which is used for screening the relative intensity of plastic strains near the
different inhomogeneities. In reality, the maximum plastic shear strain amplitude, γmax, is an appropriate measure of
the driving force for fatigue crack nucleation based on experimental observations under multiaxial loading
conditions (Fatemi and Socie, 1988; Fatemi and Kurath, 1988; McDowell, 1996a, b). Consequently, the latter
sections of the section will focus on the plastic shear strain amplitude under realistic cyclic loading conditions.
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Aside from the crack-like defect in the matrix (Figure 4.44c), the partially debonded inclusion (Figure 4.47) causes
the largest intensification of γmax in the matrix material. The perfectly bonded inclusions (Figure 4.45) cause the
smallest intensification of γmax in the matrix. In fact, the γmax values in the case of the bonded particles are so small
that they may be considered negligible in light of γmax values near the other inhomogeneities, which are two orders
of magnitude higher. The cracked inclusions (Figure 4.46) do not localize plasticity in the matrix as severely as the
debonded inclusions. The effect of inclusion and void shape on the local γmax values is negligible, in light of the
severe difference in γmax for the different inhomogeneity types. For example, in the cases of a void (Figure 4.44), a
cracked inclusion (Figure 4.46), and a debonded inclusion (Figure 4.47), the awkward shaped star inhomogeneity
does not generate maximum γmax values significantly different than the round idealized cases. This is not to say that
shape will not have an indirect influence on the nucleation of fatigue cracks since inclusions with different shapes
will surely possess a different resistance to debonding and fracture (Gall et al., 1999-C). However, if the propensity
of an inclusion to debond and/or fracture is accounted for, then an idealized round defect shape appears appropriate
to model fatigue crack formation from inhomogeneities. Undoubtedly, the relative insensitivity of the γmax values
and distributions to the inhomogeneity shape (for an equivalent overall size) is one reason why the projected

area  criterion employed by Murakami and Endo, (1994) has proven useful to characterize the detrimental effect
of inclusions and voids on fatigue life.
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The aforementioned observations for monotonic loading at 0.20% strain, hold over a wide range of applied strain
amplitudes. In Figure 4.48 the local ∆γp*

max values are plotted as a function of the applied far-field strain for the eight
different inhomogeneities in Figures 4.44 through 4.71. The local ∆γp*

max values in Figure 4.48 were calculated by
averaging γmax over areas of A = 0.012 D2, where D is the size of the inhomogeneity (Figure 4.42). The hierarchy of
the γmax values for different inclusions is basically independent of applied far-field strain amplitude under monotonic
loading conditions.
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The extremely high γmax values near the debonded inclusions are caused by the crack like defect at the tip of the
debond seam coupled with the constraint and contact of the embedded inclusion. For example, in Figure 4.47b,
intense γmax values are generated both at the tip of the debond seam (the far right of the inclusion) and at the contact
point between the matrix and the debonded lower right finger of star inclusion. This observation circumvents the
possible argument that severe localized γmax values only occur near debonded inclusions owing to the artificially
arrested interface crack. The cracked inclusions do not lead to local γmax values as high as those of the debonded
particles, due to the difference in the crack geometry and the local balance of stresses. Figure 4.49 presents contour
plots of the effective stresses near a cracked, debonded, and a partially debonded-cracked inclusion. The cracked
inclusion (Figure 4.49a) carries a significant fraction of the local stresses in the broken particle halves after particle
fracture, while the debonded inclusion (Figure 4.49b) is virtually stress free. The extremely large stresses in a
cracked particle have a propensity to facilitate debonding at the particle matrix interface. Regardless of the strength
of the inclusion-matrix interface, it is unlikely that the interface can support such large local stresses. The
introduction of a debond in the region of high stresses near the cracked inclusion (Figure 4.49c) drastically lowers
the stresses in the inclusion. Hence, we assume that a particle cannot remain just cracked without some local
debonding surrounding it. Metallurgical observations support local debonding near cracked particles (Gall et al.,
1999b). In addition, the finite element calculation predicts that once a cracked particle begins to debond, the local
plastic strains are intensified in the matrix the same order of magnitude as an uncracked but partially debonded
inclusion.
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Based on the results under monotonic loading, the debonded inclusion and the void will be the focus of the
remainder of this paper. The small γmax values near bonded inclusions, coupled with the low probability that the
fatigue-crack-nucleating inclusions will remain completely bonded or perfectly cracked (no local debonding)
removes them as critical components. The fact that debonded inclusions and voids are considered critical
inhomogeneities is consistent with metallurgical observations on fatigue crack formation (Gosskreutz and Shaw,
1969; Lankford and Kusenberger, 1973; Lankford, 1976; Kung and Fine, 1978; Murakami and Endo, 1994). We
further note that only the idealized inclusion and void will be considered. The more realistic star shaped
inhomogeneities do cause more severe local γmax fields compared to the idealized inclusions, for an equivalent defect
size.

Strictly speaking, the primary driving force for fatigue crack formation is the maximum local plastic shear strain
range, ∆γp*

max or amplitude ∆γp*
max/2, over all possible shear strain planes (Fatemi and Socie, 1988; Fatemi and

Kurath, 1988). In this section we apply various cyclic boundary conditions to the debonded idealized inclusion and
the idealized void to determine local values of γmax and ∆γp*

max.
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 Moreover, we will compare the local plastic shear strain distributions under monotonic and cyclic loading
conditions. Such a comparison is useful since many previous analytical models of stress and plastic strain
intensifications near inhomogeneities only considered monotonic conditions (Harkegard, 1973; Sundstrom, 1974),
or far-field cyclic conditions linearly extended to local cyclic conditions (Tanaka and Mura, 1982). However,
reversed plasticity, elastic constraint, and local stress redistribution often make the transitions from far-field cyclic
conditions to local cyclic conditions non-trivial, as will be further demonstrated.

The results from the constant amplitude cyclic finite element simulations are presented in Figures 4.50 through 4.54.
All cyclic finite element simulations were conducted for either three or six cycles at strain amplitudes of ∆ε/2 =
0.10, 0.15, and 0.20 and R-ratios (εmin/εmax) of –1, 0, and 0.5. This preliminary study will not consider the effects of
variable amplitude loading sequences or large cycle numbers. Figure 4.50 presents contour plots of gmax for the ∆ε /2
= 0.20, R = -1 simulation at the maximum (0.20) and minimum (-0.20) applied strain for the debonded idealized
inclusion and the idealized void. Under monotonic tensile loading the void experiences lower amplitudes of γmax

compared to the debonded inclusion. At the maximum tensile strain, the cyclic results confirm the observations
under monotonic loading; however, the effects of reversed cyclic plasticity under elastic constraint have a significant
influence on the cyclic γmax distributions at the minimum applied strain. During compressive loading, the plasticity
near the void undergoes a change in the shear direction of γmax, while the magnitude of plastic shear strain near the
debonded inclusion remains. Even under far field compressive strains of 0.2%, the residual γmax near the debonded
inclusion has the same shear direction as under the maximum tensile strain. As such, the reversed plasticity levels
near the void are substantial; however, the reversed plasticity near the debonded inclusion is negligible (Figure
4.50).

The representative contour plots in Figure 4.50 demonstrate the overall spatial distributions of γmax under cyclic
loading conditions. However, to provide more quantitative insight into the reversed cyclic plasticity near the
inhomogeneities, Figures 4.51, 4.52, and 4.53 present plots of the far-field total strain versus ∆γp*

max for R = –1, 0,
and 0.5 loading conditions, respectively. In all figures, the results from constant applied strain amplitudes of ∆ε/2 =
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0.10, 0.15, and 0.20 are plotted on the same graph. Under R = –1 loading ∆γp*
max  for the void and the debonded

inclusion demonstrates a hysteresis with respect to the applied strain (Figure 4.51). As the applied far-field strain is
increased, the plastic shear strains begin accumulating at a critical strain level. During unloading, the plastic strains
do not begin to decrease in magnitude until a reversed critical strain level is reached. Moreover, under R= –1
loading, the shape of the hysteresis loop for the debonded inclusion shows a discontinuity at an applied compressive
strain of –0.5% (Figure 4.51a). The discontinuity is caused by contact between the particle and the matrix, which
decrease the rate of accumulation of local plastic shear strains as a function of the far-field applied strain. Of course,
such a change in the rate of plastic shear straining is not observed in the case of the void (Figure 4.51b).

For R-ratios of 0 and 0.5, the material near the debonded inclusion and the void still show a hysteritic behavior of
∆γp*

max  with  respect to the applied strain (Figures 4.52 and 4.53). Contact conditions are not encountered in the case
of the debonded inclusion cycled at high R-ratios. Consequently, the overall shape of the hysteresis loop is the same
for the void and the debonded inclusion at R-ratios of 0 and 0.5. Due to the imposed mean strain (stress), cyclic
ratcheting is observed.

The precise modeling of cyclic ratcheting, with respect to experimental observations, is beyond the scope of the
present study. We do note that, consistent with experimental observations, the ratchet strain diminishes with cycling
and is expected to reach an equilibrium state (McDowell, 1995). In all cases, six cycles were sufficient to reach a
hysteresis loop size with only a few percent change from the previous loop. Arguably, the most important
observation in Figures 4.52 and 4.53 is that the width of the hysteresis loop is consistently larger for the debonded
inclusion versus the void.

The widths of the hysteresis loops in Figures 4.51-4.53 are equal to the assumed driving force for fatigue crack
formation from a particular inhomogeneity, ∆γp*

max. Figure 4.54 summarizes the values of ∆γp*
max/2 at different

applied strain amplitudes and R-ratios for the debonded inclusion and the void. The points in Figure 4.54 follow the
same overall trends as the monotonic curves (Figure 4.55), but provide some contrast with respect to the different
inhomogeneities. Based on tensile monotonic results, the debonded inclusion facilitates local ∆γp*

max values about
twice those near a void, irrespective of the applied strain amplitude (Figure 4.48). On the other hand, the value of
∆γp*

max for voids compared to the inclusions depends strongly on the R-ratio considered. Under cyclic loading
conditions, the intensification of ∆γp*

max near the debonded inclusion is extremely sensitive to the R-ratio (Figure
4.54). By way of contrast, for voids, the local ∆γp*

max values are relatively insensitive to the R-ratio (Figure 4.54). At
low R-ratios, the debonded inclusion and void have driving forces for fatigue which are nearly equivalent (Figure
4.54). However, as the R-ratio is increased, the driving force for fatigue crack formation is much higher for a
debonded inclusion compared to a void (Figure 4.54).
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The different sensitivity of the plastic shear near voids and debonded inclusions to the R-ratio is a result of the
different local cyclic plastic strain distributions near the two inhomogeneities. The debonded inclusion facilitates
higher plastic strains under monotonic loading conditions, which in turn lead to higher local stress states.
Consequently, the reversed yielding occurs more readily near the debonded inclusion, and the hysteresis loop is
naturally larger.
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At high R-ratios, the aforementioned mechanism allows for plastic shear strains to be higher near the debonded
inclusion versus the void.  However, under fully reversed conditions, the contact of the inclusion with the matrix
inhibits reversed plasticity near the debonded inclusion in the same location as observed under maximum tensile
strain. Such constraint causes an R-ratio effect since very low R-ratios will result in relatively small ∆γp*

max values
for the debonded inclusion. The symmetric local plastic deformation near the void under forward and reversed
loading circumvents any significant geometrically driven R-ratio effects for the void.

The aforementioned observations on the differences in reversed plasticity levels for the debonded inclusion and the
void support the experimental observations of Bathias (1998). Bathias (1998) noted that high R-ratios consistently
favor fatigue crack formation from inclusions, while low R-ratios favor fatigue crack formation from similar sized
voids. In addition, the present study demonstrates that high R-ratios accentuate γmax values near debonded inclusions
compared to voids (Figure 4.54) due to differences in local plastic strain distributions during reversed loading. We
also note that the higher maximum applied stress amplitude encountered during cycling at high R-ratios facilitates
another contributing mechanism for such behavior. Greater stresses increase the chance that a pristine inclusion will
become fractured and debonded, subsequently increasing its propensity for fatigue crack formation.

The present section is devoted to modeling the effects of inhomogeneity size on fatigue crack formation from
debonded inclusions and voids. Differences in the relative sizes of voids versus inclusions (voids are often larger) is
one reason that experimental observations sometimes indicate the preferential formation of fatigue cracks from
voids versus inclusions (Gungor and Edwards, 1993; Murakami and Endo, 1994; Shiozawa et al., 1997; Bathias,
1998), aside from R-ratio effects. The formation of a fatigue crack is a mechanical process, which occurs over a
finite physical size scale (Harvey et al., 1994). Furthermore, the size scale of fatigue crack formation can be
assumed to be a constant dependent on the properties of the matrix material. As such, the size of an inclusion or void
will affect the formation of a fatigue crack since inhomogeneities of different characteristic sizes facilitate intense
and localized plasticity over a length scale proportional to their own size. For example, if the intense plasticity spans
a length scale much smaller than the size required for fatigue crack formation, then it will be difficult for a crack to
form near an inclusion. At the other extreme, if the intense plasticity acts over a length scale much greater than the
size required for fatigue crack formation, a crack will readily form near an inclusion.

The effect of inclusion size on the driving force for fatigue crack formation in the matrix can be quantified using
finite elements by assuming that the physical size scale for fatigue crack formation is a constant, independent of the
inclusion size. Figure 4.55 plots the average plastic shear strain amplitude, ∆γp*

max/2, as a function of the far-field
applied strain for idealized voids and debonded idealized inclusions of sizes D, 2D, and 4D. The plastic shear strain
amplitude was calculated at the third loading cycle under R = –1 cyclic loading conditions. The area used for
calculation of the ∆γp*

max values in Figure 4.55 was kept constant at A = 0.0625 D2. Both the debonded inclusion and
the void demonstrate a significant size effect. The inhomogeneity size effect is approximately proportional to the
square-root of the defect size. If the size of the void or debonded inclusion, D, increases by a factor of four, then the
driving force for fatigue crack formation, ∆γp*

max, increases by about a factor of two. Such an observation seems to

support the semi-empirical area  approach of Murakami and Endo (1994).

In closing, we note that statistical variations of inclusions in the microstructure also favor fatigue crack formation
from larger inhomogeneities. The probability that a weak local region of material, for example a grain orientation
with a low resistance to cracking, will be subjected to intense plasticity is greater for a larger inclusion. We will not
focus on the statistical aspects of fatigue crack formation, although the present approach has the framework to
consider such effects through statistical variations in the fatigue resistance of the matrix material.
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Monotonic and cyclic finite element simulations are conducted on linear-elastic inclusions (cracked, bonded, and
debonded) and voids embedded in a matrix material described by cyclic plasticity relationships. The local maximum
plastic shear strain, gmax , with respect to all possible shear strain planes is monitored throughout the simulations. A

local spatial average range of gmax , denoted as ∆γp*
max, is used as a measure of the driving force for fatigue crack

formation.

Under tensile monotonic loading conditions, at all applied strain amplitudes below macroscopic yielding of the
matrix (0.23%), debonded inclusions, voids, cracked inclusions, and bonded inclusions demonstrate descending
local levels of gmax . The gmax  levels near bonded inclusions are two orders of magnitude smaller than near the

other inhomogeneities, thus they are not considered critical fatigue-crack-initiating inhomogeneities. Owing to the
extreme stress levels near the edges of a cracked inclusion, it is improbable that a cracked inclusion will remain
completely bonded to the matrix material. Thus, a cracked inclusion is also discarded as a critical inhomogeneity
since it is practical to treat it as a debonded inclusion.

Irregular shaped inclusions and voids containing sharp corners and local radii of curvature do not magnify local
plastic strains in the matrix significantly more than idealized round inhomogeneities of equivalent overall size.  As
such, the shape of inclusions or voids is proposed to have a relatively small effect on the driving force for fatigue
crack formation compared to other critical effects such as size, damaged state, and reversed plasticity. The relative
indifference to the local driving force for fatigue crack formation to inclusion shape is consistent with the success of

the semi-empirical projected area  approach of Murakami and Endo (1994).

Based on the concept of a constant physical size for the process of fatigue crack formation in the matrix material, the
size of an inhomogeneity has a significant influence on the driving force for fatigue crack formation. Increasing the
size of a debonded inclusion or void from D to 4D, increases ∆γp*

max by about a factor of 2.
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Under monotonic tensile loading, the debonded inclusion exhibits ∆γp*
max values about twice as high as those of a

void. Conversely, under cyclic loading, the value of ∆γp*
max for the debonded inclusion and the void is strongly

dependent on the applied R-ratio. At low R-ratios (R=–1), equivalent sized voids and debonded inclusions have
comparable γmax values. At higher R-ratios, (R=0, 0.5) debonded inclusions have γmax values twice that of voids.

4.3. MICROSTRUCTURALLY/PHYSICALLY SMALL CRACK (MSC/PSC) GROWTH
REGIME

Once a crack has incubated to its lifetime, a fatigue crack has started. It is this range of the small
fatigue cracks that we now focus on in the next set of simulations. Here, the driving force versus
resistance of material is intimately related to the details of the microstructural features. Similar to
the crack incubation, little experimental observations are published. As such, we performed
several calculations examining the pertinent microstructural features in relation to the crack
driving force, that is, the crack tip displacement, ∆CTD.

In these calculations,  the definition of ∆CTD proposed by Lankford, Davidson and Chan (1984)
is adopted; that is, it is defined as the crack face separation of points initially 1 µm behind the
crack tip. We consider the magnitude of the entire vector of separation of two points on opposite
crack faces. Hence, we use the label ∆CTD after Li (1990). In the discretization of the matrix and
particles by finite elements, the crack path is simultaneously discretized by a number of element
nodes. The crack propagation process is also discretized by discontinuous growth-stopping
processes. During the ith individual process, the loading is cycled for the crack tip at the site xi for
a certain number of cycles Ni. The crack is then advanced a distance, ∆xi, by release of the crack
tip node. This distance equals the size of the element ahead of the tip. The “crack length versus
time criterion” of ABAQUS is used for release of the crack tip node. Here, the time is not
Newtonian, but a parameter proportional to the applied loading. To ensure the accuracy of the
calculation of theDCTD, the element size near the crack growth area is taken as 0.5 µm for most
meshes, which was decided by a mesh refinement study discussed later; the ∆CTDs were
therefore determined based on displacements of nodes which are two elements behind the crack
tip. In case of an element size other than 0.5 µm, an extrapolation from the data at the first and
second nodes is used to obtain the ∆CTD at a distance of 1 µm.

4.3.1 SILICON

Once a fatigue crack has started, it must move through the forest of silicon particles in the
eutectic region. In this section, we study the effect of silicon particles on cracks in the MSC/PSC
regime.

4.3.1.1. REALISTIC MICROSTRUCTURE

In this section, realistic morphology is used via SEM images for FEA but perfectly bonded
silicon particles are assumed. Figure 4.56 shows the crack tip displacement ∆CTD versus
projected crack length for a realistic particle cluster at the stress amplitude of 133 MPa. Figure
4.56 (a) shows that the symmetric top and bottom parts are taken as effective medium; the
middle part with microstructure configuration obtained by image analysis is taken for detailed
quantitative analysis of crack growth; a part of this region is shown in Figure 4.56 (b). The crack
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initiates from point O. The crack path is assumed be along the curves, passing through
succeeding points O1, O2,  A, A1, A2,  B, C, D, E, F, G, H, I, J K, and L from the right to the left.
This assumption is based on the experimental results that the crack in the MSC regime tends to
debond the interface between the matrix and the particles (Gall et al., 1999). The obtained ∆CTD
versus the projected length on the OX axis is shown in Figure 4.56 (c). One observes that when
the growing crack meets a particle at point G the ∆CTD reaches a local minimum. Since the
growing crack may be temporarily arrested when the crack meets a strong barrier, the realistic
average crack growth rate of the A356 Al alloy should be smaller than otherwise estimated.

4.3.1.2. IDEALIZED MICROSTRUCTURE: PARAMETRIC STUDIES

In this section, we used idealized plane strain geometries to help determine the effects of various
microstructural features on ∆CTD. The parameters that were varied included an in-plane particle
cluster, initial crack length, applied stress (strain), crack branching, particle size, particle aspect
ratio, particle spacing, dendrite cell size, and mean stress.
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Figure 4.56. Cyclic crack tip displacement ∆CTD versus projected crack length for a realistic
particle cluster morphology at the stress amplitude of 133 MPa. The projected crack length is the
length of the realistic crack length projected onto the OX axis which is perpendicular to the
loading direction (R= –1, εa =0.2%, boundary conditions: uniformly cyclic displacement along
the y-direction at the top side, simple support at the right side with ux=0, simple support at the
bottom side with uy=0, and free at the left side).
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4.3.1.2.1. CYCLIC CRACK TIP DISPLACEMENT CALCULATIONS FOR A
CRACK PASSING THROUGH AN IN-PLANE PARTICLE CLUSTER

The geometry used for the MSC fatigue crack growth FEA is given in Figure 4.4. Five silicon
particles are embedded in the matrix in the OXY plane. A crack initiates at site O, grows in the
matrix from left to the right, encounters the first particle at a point a1f with projected crack length
a1f. After the crack meets the particle, it is assumed that the crack debonds the upper half of the
interface between the particle and the matrix. We assume that this crack pattern is based on the
experimental observation of the particle debonding in the MSC regime (Gall et al., 1999). If the
driving force is not sufficient, the crack will stop growing. Otherwise, the crack will continue to
grow, passing along the interface and then growing into matrix again along the OX direction
until it meets the second particle at point a2f (with projected crack length a2f), and so on.

Figure 4.57 schematically shows the crack path and the calculated ∆CTD versus projected crack
length. The results are obtained under completely reversed cyclic tension-compression loading
with an applied strain amplitude of 0.2% (133MPa) for D=B= 4 µm, and Dmax/Dmin=1. The
results show that ∆CTD increases quickly at the onset of growth. ∆CTD reaches a first plateau at
point A when the distance between the crack tip and the particle reaches about 0.75D (3 µm).
However, when the distance reduces to about 0.25 D (1µm) and below, ∆CTD increases again
until an abrupt drop to a minimum value of 13.5 nm. Compared to the maximum value of 31.3
nm at point B before the crack meets the particle, the ∆CTD decreases by about 57%. This
abrupt decrease indicates a greatly reduced driving force for crack advance as a crack encounters
a particle. As a result, the crack may be arrested until the interface damage accumulates to the
critical value so that debonding occurs. After the crack overcomes the particle resistance, the
crack growth rate will accelerate again. The acceleration-retardation process is repeated as the
crack encounters successive barriers.

4.3.1.2.2. CYCLIC CRACK TIP DISPLACEMENT CALCULATIONS WITH
DIFFERENT INITIAL CRACK LENGTHS

Figure 4.58 shows a comparison of ∆CTD between two cracks of length 10.5 and 65 µm prior to
encountering the first particle within the same set of particle clusters at the stress amplitude of
133 MPa (R=–1, D=B=4 µm). This comparison of two different initial crack lengths shows that
the particle clusters have stronger relative retardation effects on the long crack. No matter how
different the ∆CTD for the two cracks, they follow a common retardation pattern, especially after
the interaction with the first particle. The long-crack case may be considered as a simulation of
the case of a crack first passing through a dendrite cell of 65 µm, and then encountering particle
clusters. Figure 4.41 shows that when the DCS is large, the driving force is much higher than that
when the DCS is small. This point will be investigated later from the viewpoint of fatigue crack
closure.
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Figure 4.57. Cyclic crack tip displacement ∆CTD versus projected crack length for an idealized
in-plane particle cluster for a stress amplitude of 133MPa (R= –1, D =B=4 µm, εa =0.2%).

An average of crack tip displacement over a certain distance of microstructure is clearly a
measure of average driving force. This is useful in developing a phenomenological fatigue
model. Figure 4.59 shows a comparison of the average ∆CTD between two cracks of initial
length 10.5 and 65 µm before they each meet the first particle of the same set of particle clusters
at the stress amplitude of 133 MPa. The results show that the average ∆CTD of the long crack is
about 1.61 times that of the short crack. This indicates that the average driving force is higher for
the long crack than for the short crack.

4.3.1.2.3. CYCLIC CRACK TIP DISPLACEMENT CALCULATIONS WITH
DIFFERENT APPLIED STRESS AMPLITUDES

Figure 4.60 shows effects of applied stress amplitude on ∆CTD with one curve at the stress
amplitude of 110 MPa, and the other at the amplitude of 133 MPa. The results show that the
trends of the effects of particle clusters on ∆CTD are similar at different stress amplitudes. The
quantitative relationships, however, are quite different at different intervals of the crack path.
Roughly speaking, before the crack meets the first particle, the ∆CTD at the stress amplitude of
110 MPa is proportionally less than the ∆CTD at the amplitude of 133 MPa. At the debonding
intervals (at the top half of the particles), the reduction of the ∆CTD at the 110 MPa amplitude is
much less than the ∆CTD at the amplitude of 133 MPa. In contrast, the corresponding reduction
is much smaller at the intervals between particles. This phenomenon may be related to the
microstructure effects on the MSC. More specifically, the results indicate that the particle cluster
has different effects on ∆CTD at different intervals: it reduces the driving force greatly at the
debonding intervals, but it reduces the driving force much less in the intervals between particles.
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Figure 4.58. Comparison of cyclic crack tip displacement ∆CTD between two cracks of initial
lengths of 10.4 and 65 µm prior to encountering the first particle of the same set of particle
clusters for the stress amplitude of 133 MPa (R= –1, D =B=4 ∆m, εa =0.2%).

Figure 4.59. Comparison of the average (over the maximum projected crack length) ∆CTD
between two cracks of initial lengths 10.4 and 65 µm prior to encountering the first particle of
the same set of particle clusters for a stress amplitude of 133 MPa (R= –1, D=B=4 µm, εa

=0.2%).
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Figure 4.60. Effect of applied stress amplitude on cyclic crack tip displacement ∆CTD versus
projected crack length for an idealized in-plane particle cluster for stress amplitude of 110 and
133MPa (R= –1, D =B=4 µm).

4.3.1.2.4. CYCLIC CRACK TIP DISPLACEMENT CALCULATIONS WITH
DIFFERENT CRACK BRANCHING ANGLES

Figure 4.61 shows the effects of crack branching angles on ∆CTD at the stress amplitude of 133
MPa. The crack meets a particle of D=4µm and Dmax/Dmin=1.67 at its surface when the crack
length is 10.5 µm. Then two paths are chosen: case A has an angle of 730 between the previous
crack growth direction and the new growth direction; the corresponding angle for case B is 1450.
The results show that the driving force for the small angle is much higher than that for the large
angle. This is significant in determining the crack growth path.

4.3.1.2.5. CYCLIC CRACK TIP DISPLACEMENT CALCULATIONS WITH
DIFFERENT CRACK GROWTH PATHS

To see the effects of the crack growth path on the average driving force, four crack paths were
taken for a comparison of the average ∆CTD over a certain degree of projected crack growth
under completely reversed tension-compression cyclic loading at the stress amplitude of 133
MPa. Figure 4.62 shows the results of the comparison. Path A with the maximum driving force
passes through the Al-1%Si matrix. In this case, there are no particles, so the crack path is a
straight line along the OX axis of Figure 4.4. Path B is the crack path which is investigated in
detail in Section 4.3.1.2.1 and passes through the in-plane particle cluster. Paths C and D are
passing through an hexagonal cell of six particles placed at each corner.
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Figure 4.61. Effect of crack branching angles on ∆CTD for a stress amplitude of 133 MPa: (A)
θ=73o , (B) θ=145o (D=4 µm, Dmax/Dmin=1.67, εa =0.2%).

The difference between paths C and D is that path C passes through the central line of the
hexagon, but path D is along the boundary of the same hexagonal cell. The details of the
geometry and the paths C and D can be found in the upper-right hand corner of Fig. 4.62. The
results show that the average ∆CTD decreases according to the order of A, B, C and D. The ratio
of the average ∆CTD according to this order is 1.74, 1.3, 1.08 and 1. The results indicate a very
important point in that silicon particle clusters can reduce the fatigue driving force to a large
extent and, in turn, can increase the fatigue life for A356 Al alloy. If one compares the results of
case B with those of case C, one can see that the ∆CTD calculated for the in-plane particle
cluster of Fig. 4.4 is much larger than that for the case of a hexagonal cell, indicating that the
shielding effects of the particle cluster are important to reduce the local crack driving force.
Finally, since the average ∆CTD for the paths of A, B, C and D are all larger than the average
∆CTD of the realistic structure, which is about 15 nm (see Fig. 4.39C), one should be cautious in
directly applying the obtained ∆CTD of the parametric studies for fatigue analysis. On the other
hand, these idealized analyses are important to investigate the relative effects of different factors
on fatigue life.

4.3.1.2.6.  EFFECTS OF SIZE, ASPECT RATIO, AND SPACING OF PARTICLES ON
THE CYCLIC CRACK TIP DISPLACEMENT

Figure 4.63 shows the effects of the particle size on the average ∆CTD when a fatigue crack
grows along the in-plane particle cluster of Fig. 4.4. The results show that the average crack
driving force (or average ∆CTD) reaches a minimum when the particle size D equals the particle
spacing B. This is different from the particle size effects on Ninc where the smaller the size, the
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larger the Ninc. Hence, particle size has a different influence on crack incubation versus the MSC
regime.

Figure 4.62. A comparison of average (over the maximum projected crack length) ∆CTD for
growth paths through  (A) Al-rich matrix, (B) in-plane particle cluster, (C) central line of a six-
particle cluster arranged as an hexagonal cell, and (D) along the boundary of the same hexagonal
cell (R= –1, D =B=4 µm, εa =0.2%).

Figure 4.64 shows the effects of the particle aspect ratio on the average ∆CTD when a fatigue
crack grows along the in-plane particle cluster of Fig. 4.4. The results show that the average
crack driving force (or average ∆CTD) reaches its minimum when the particle aspect ratio
reaches unity. This is consistent with the particle size effects on the Ninc where the maximum Ninc

is also at the aspect ratio of unity. It merits notice that when the aspect ratio increases, the driving
force (or ∆CTD) increases quickly.
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Figure 4.63. Effects of particle size on the average (over the maximum projected crack length)
∆CTD for fatigue crack growth along the in-plane particle cluster for a stress amplitude of 133
MPa (R= –1, B=4 µm, εa =0.2%).

As the aspect ratio increases from 1 to 2.5, the average ∆CTD increases from 35 nm to 49.5 nm.
This will cause the number of cycles, NMSC/PSC for the MSC and PSC regimes to reduce rapidly.
Since a large aspect ratio corresponds to a rod-like particle, this result means that the fatigue life
is much lower for particles with rod-like shape. This tendency is consistent with the recent
experimental report (Kennerknecht, et al., 1997). The report stated that for a plate thickness of
25.4 mm and a heat treatment of four hours, in a smooth A356 Al specimen subjected to a stress
amplitude of 151.6 MPa, the fatigue life for a rod-like eutectic structure is approximately 77% of
that for globular eutectic structure, under the same loading conditions. The rod-like shaped
particle’s greater crack driving force may be partially explained by the angle effects mentioned
in Section 4.3.1.2.4.

Figure 4.65 shows the effects of the particle spacing on the average ∆CTD during fatigue crack
growth along the in-plane particle cluster of Fig. 4.4. The results show that the average crack
driving force (or average ∆CTD) reaches its minimum when the particle spacing B equals to the
particle size D. This tendency is the same as that of Fig. 4.63. The difference is that in Fig. 4.63,
the spacing B is fixed while the size, D, changes; in Fig. 4.65, D is fixed while B changes.
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Figure 4.64. Effects of particle aspect ratio on the average (over the maximum projected crack
length) ∆CTD for fatigue crack growth along the in-plane particle cluster for a stress amplitude
of 133 MPa (D=B=4 µm, R= –1, εa= 0.2%).

4.3.1.2.7 EFFECTS OF STRAIN AMPLITUDE ON THE FATIGUE CRACK CLOSURE
FOR A CRACK GROWTH PASSING THROUGH AN IN-PLANE PARTICLE
CLUSTER

To explore the effects of fatigue crack closure on the fatigue behavior of A356-T6 Al alloy, the
time variation of crack opening displacement (COD) at a fixed node were determined.
Considering crack propagation along the path of Figure 4.4, for example, node 251 in the path is
chosen to investigate the particle effects on crack closure. The distance from that node to the first
particle is 6 µm. The variation of COD at that node with time is shown by a line in Figure 4.66.
We observed that before the time (ABAQUS measure of “time”) 0.54, the node 251 is not
fractured and the ∆CTD is zero. After t=0.54, this node opens and reaches its maximum value.
The ∆CTD then gradually decreases until the crack is fully closed when the node 251 is on the
wake of the crack tip. The crack tip at that node begins to open at point O, which is at t=0.78.  In
the Figure, another line shows the stress in a remote element adjacent to the top boundary. The
stress, σP,  at point P on the stress curve, which corresponds to point O on the COD curve,
approximately equals the applied stress when the crack re-opens. Two parameters Rcl and clR′ are

introduced to denote the relative period of the crack closure over a quarter of a
loading cycle. Their definitions are as follows: 
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where minσσσ −= Popen  and minσσσ −=′ ′Popen . The latter is shown in Fig. 4.66. Based on these

definitions, it is seen that the larger the values of these parameters, the larger the crack closure
effect (or the smaller ∆CTD) can be found.  Figures 4.66-4.68 show results at the strain (stress)
amplitude of 0.2% (133MPa), 0.15% (110MPa) and 0.25% (165MPa) under fully reversed cyclic
loading conditions (strain control). For the three cases all clR′  are about 100%, indicating crack

closure all over the whole compressive loading period. From the results of these figures, Rcl can
also be determined. They are about 100% for 0.15% (110MPa), 65% for 0.2% (133MPa), and
74% for 0.25% (165MPa).

Figure 4.65. Effects of particle spacing on the average (over the maximum projected crack
length) ∆CTD for fatigue crack growth along the in-plane particle cluster at a stress amplitude of
133 MPa (D=4 µm, R= –1, εa= 0.2%).

4.3.1.2.8 EFFECTS OF REMOTE STRAIN RATIO ON THE FATIGUE CRACK
CLOSURE FOR A CRACK GROWTH PASSING THROUGH AN IN-PLANE
PARTICLE CLUSTER

Figures 4.66, 4.69-4.70 show the effects of the remote strain ratio, R, on crack opening
displacement and crack closure at node 251, 6 µm ahead of particle 1 of the in-plane particle
cluster of Figure 4.4. These results were obtained at the same strain amplitude εa=0.2%, but with
different strain ratio R. In Fig. 4.66, the R ratio is -1. In Figure 4.69 and 4.70, the R ratios are 0
and 0.2. The opening stress are as follows:

openσ ′ =
openσ =75 MPa for Rε=0; 

openσ ′ =
openσ =0 for

R=0.2; 
openσ ′ =133MPa and 

openσ =86MPa for R=−1. From these figures, 2/)( minmax σσ −  can

also be determined. It turns out that Rcl= clR′ =0 for Rε=0.2 and Rcl= clR′ =56% for R=0. They are

smaller than the corresponding values for R=−1, indicating that the higher the mean stress, the
lower the crack closure period (or higher ∆CTD).   
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Figure 4.66. Crack opening displacement with crack closure effects at node 251 for a stress
amplitude of 133 MPa (R= –1, D=B=4 µm, εa=0.2%).

• Figure 4.67. Crack opening displacement with crack closure effects at node 251 for a stress amplitude of 110
MPa (R= –1, D=B=4 µm, εa=0.15%).
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Figure 4.68. Crack opening displacement with crack closure effects at node 251 for a stress
amplitude of 165 MPa (R=–1,D=B=4 µm, εa =0.25%).

Figure 4.69. Crack opening displacement with crack closure effects at node 251 for a stress
amplitude of 133 MPa (R=0, D=B=4 µm, εa =0.2%).
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Figure 4.70. Crack opening displacement with effects of crack closure at node 251 for a stress
amplitude of 133 MPa (R=0.2, D=B=4 µm, εa =0.2%).

4.3.1.2.9. DENDRITE CELL SIZE EFFECTS ON THE CYCLIC CRACK TIP
DISPLACEMENT AND CRACK CLOSURE

The finite element mesh used to simulate the growth of a microstructurally short crack in a cast
Al-Si alloy is presented in Figure 4.71. Initially, the study considered five dendrite cells created
by rows of Si particles embedded in an Al-1%Si dendritic material. We note that the mesh in
Figure 4.71 is symmetric about the left face, thus creating five dendrite cells. A section of the
fine mesh region is highlighted in Figure 4.71, and the element size is about 1/4 the silicon
particle diameter. An isotropic linear elastic constitutive model was used to model the silicon
particles, while a nonlinear elasto-plastic constitutive model was used to model the Al-1%Si
dendritic material. In this section, as a first approximation, the growth of the fatigue crack was
modeled by allowing the crack to grow incrementally along a prescribed crack plane without
considering a criterion for crack extension, or the residual deformation fields caused by a
traversing fatigue crack. As such, only monotonic loading conditions were considered with
different predetermined crack lengths, a. The purpose of such an analysis is to obtain a first order
approximation of the effects of silicon particle rich dendritic cell walls on fatigue crack growth.
The crack path was assumed to follow a Mode I route unless it encountered a silicon particle, in
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which case the crack grew around the particle matrix interface, as experimentally observed for
microstructurally small cracks (Gall et al., 1999b).

Contour plots of the maximum plastic shear strain are shown in Figures 4.72 and 4.73. The
overall crack lengths in Figures 4.72 and 4.73 are 24 µm and 36 µm, respectively. Furthermore,
Figures 4.72a and 4.73a present plastic strain contours for pure Al-1%Si materials and Figures
4.72b and 4.73b are plastic strain contours for Al-1%Si materials containing Si particles. An
overlay of the finite element mesh is included in Figure 4.72, but the mesh is removed from
Figure 4.73 for clarity of the plastic strain contours. By comparing the contour plots in the (a)
pure Al-1%Si and (b) Al-1%Si with Si particles, it is clear that the presence of the Si particles
alters the overall shape of the crack tip plastic zone. In general, the plasticity is forced to find
paths around the particles, as evident in Figures 4.72b and 4.73b. Although the shape of the crack
tip plastic zone is altered by the presence of the particles, the constraint of the particles has a
minimal influence on the local crack tip plasticity and crack opening displacement. Note in
Figure 4.73 that the size of the intense zone of plasticity near the crack tip is the same (b) with or
(a) without the surrounding Si particles. Furthermore, Figure 4.74 presents the crack opening
displacement for the materials with and without Si particles for the (a) 24 µm crack and (b) 36
µm crack. At both crack lengths, the crack tip is somewhat blunted by the presence of the silicon
particles. However, the degree of crack tip blunting is minimal compared to the severe decrease
in surface crack growth rates when a crack tip impinges upon a silicon particle (Shiozawa et al.
1997).

A summary of the crack tip opening displacement for materials with and without Si particles, as
a function of crack tip position, is shown in Figure 4.75. A schematic section of the finite
element mesh from Figure 4.71 is inset in Figure 4.76 to allow correlation of the crack tip
position with the location of the Si particles. Essentially, as the crack traverses through the pure
Al-1%Si material and the Al-1%Si material with silicon particles, the crack opening
displacements are nearly identical. The only noticeable difference between the crack opening
displacements in the two materials occurs when the crack is forced to change its local path and
move around a Si particle. Even when the crack tip node is at the boundary of the silicon particle
and the Al-1%Si matrix, the crack opening displacement is not significantly decreased by the
presence of the Si particle (Figure 4.76). The crack opening displacement is only lowered when
the crack is allowed to change direction and locally forced into an unfavorable mode of growth
(Figure 4.76).

With the results from the present section, we assert that the overall constraint of the surrounding
silicon particles does not have a strong relative influence on the growth of a microstructurally
small fatigue crack in cast Al-Si alloys in the matrix phase. Instead, the local interaction and
forced path change of the cracks when encountering silicon particles is the dominant cause for
the severe decrease in growth rates experimentally observed in cast Al-Si alloys (Shiozawa et al.
1997). Appropriately, it is not imperative to consider the surrounding silicon particles, and the
remainder or this paper will focus on the local interaction of cracks with silicon particles directly
in-line with the crack plane.
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Figure 4.77 shows the effects of dendrite cell size, DCS, on the average ∆CTD when a fatigue
crack grows inside a dendrite cell at the stress amplitude of 133 MPa for a reversal cyclic
tension-compression. It indicates that when the dendrite cell size is smaller, the driving force and
the crack growth rate is smaller. This is consistent with the results above.

To explore the role of fatigue crack closure to help explain the above DCS effects on the average
fatigue driving force, crack closure is investigated during the process of fatigue crack growth
into dendrite cells. The crack path is similar to the path of Figure 4.4, i.e., the crack originates
from point O, growing from left to right along the x-axis direction. The first particle that the
crack meets is used to simulate the interdendritic region. After the crack grows, passing through
the upper half of the particle, the crack continues to grow in the matrix of the dendrite cell. The
second particle which the crack meets is also used to simulate the interdendritic region. The
length of the crack before it meets the first particle is taken as 10.5 µm. The distance between the
centers of the two particles is taken as the DCS. The solid line of Figure 4.78 shows the history
of crack opening displacement at node 567, which is 22 µm inside a dendrite cell with DCS
being 44µm. We observed that before the time 0.8 the node 567 is not fractured, and the ∆CTD
is zero. After the time 0.8, this node opens, ∆CTD reaches its maximum value of 60 nm at the
time 0.9, and then gradually reduces until the crack is fully closed when node 567 is on the wake
of the crack tip. The crack is closed when the time equals 1.05, and the crack is re-opened at
point O which is at the time of 1.15. For the case of DCS=44µm at node 567, Rcl =30%
and clR′ =100%. However, for the case of DCS=28µm at node 559 which is 8.5 µm inside the

matrix region of the dendrite cell, Rcl= clR′ = 100%. This comparison indicates that as the dendrite

cell size increases, the crack closure period can be found to decrease. This means that if the DCS
is larger to some extent, the driving force will be larger to cause a low fatigue life.

 
Figure 4.77. Effects of dendrite cell size on the average (over the maximum projected length)
∆CTD for fatigue crack growth across a dendrite cell at a stress amplitude of 133 MPa (R=–1,
D=B=4 µm, εa =0.2%).
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Figure 4.78. Crack opening displacement with crack closure effects at node 567 at a stress
amplitude of 133 MPa (R= –1, D=4 µm, εa=0.2%).

Figure 4.79. Crack opening displacement with crack closure effects at node 559 for a stress
amplitude of 133 MPa (R= –1, D=4 µm, εa=0.2%).
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5. CONTROL ARM ANALYSIS

In this computational/experimental study we use the microstructure-mechanical fatigue model to
predict the response of a control arm given certain boundary conditions. Finite element
simulations were performed to determine the stress/strain state. The microstructure-property
fatigue model was then used with different control arms that included different
microstructure/inclusion contents. Validation experiments were run at two different strain
amplitudes.

In order to evaluate the predictive capability of the microstructure-property model within the
context of finite element modeling, control arm experiments were designed to validate the model.
Figure 5.1 shows the boundary conditions for the validation experiments of the control arm. Two
different control arms, labeled later as Control Arm 1 and Control Arm 2, were cast that would
ensure different levels of initial porosity. The microstructure/inclusion content was quantified by
NDE using radiography and by SEM imaging and analysis in five regions of the control arm.
Figure 5.2 shows the five locations. The pertinent features of interest were the spatial location of
the following entities:

1. porosity volume fraction,
2. pore size distribution,
3. pore nearest neighbor distances,
4. silicon particle volume fraction,
5. silicon particle size distribution,
6. silicon particle nearest neighbor distances, and
7. dendrite cell size.

2 mm/s

2 mm/s

2 mm/s

2 mm/s

2 mm/s

2 mm/s

no displacement

�

�

no displacement

no displacement

no displacement

no displacement

no displacement

no displacement

Figure 5.1. Boundary conditions for model validation tests .
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In the next set of calculations we initialize the microstructure/inclusion content with data from
radiography and SEM imaging. Table 5.1 summarizes the microstructure/inclusion content for the
five regions on the control arm as discussed above. The results in the table are averages of the at
least three measurements for two different control arms using SEM imaging (Gokhale, 2000) and
radiography (Dolan, 2000).

Table 5.1. Summary of results for control arm microstructure/inclusion content from SEM images
and radiography.

region %Vv pore
size
(µm)

Nearest
neighbor

dist

3D
pore
size
(µm)

Si
particle

Size
(µm)

Si
density
(#/mm2)

DCS
(µm)

Control Arm 1 (SEM results)
1 2.35 67.3 315 129 5.8 7088 50
2 0.30 38.9 669 54 4.8 7557 -
3 0.19 38.8 652 56 4.9 7738 -
4 0.19 45.0 402 66 4.6 6950 39
5 0.31 44.8 395 55 4.6 7659 42

Control Arm 1 (Radiography results)
1 0.72 - - - - - -
2 0.33 - - - - - -
3 0.33 - - - - - -
4 0.33 - - - - - -
5 0.41 - - - - - -

Control Arm 2 (SEM results)
1 0.43 68.7 - - 4.7 4251 -
2 - - - - 5.2 5389 -
3 0.34 62.7 - - 4.8 6318 -
4 - - - - - - -
5 0.32 57.8 - - 4.7 6803 -

Control Arm 2 (Radiography results)
1 0.48 - - - - - -
2 0.33 - - - - - -
3 0.33 - - - - - -
4 0.33 - - - - - -
5 0.33 - - - - - -

Table 5.1 shows that the radiography and SEM results are very close for each of the control
arms. One can see that the initial porosity volume fraction for Control Arm 1 is larger in certain
regions than for Control Arm 2.
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5

4

3

2

1

Figure 5.2. Lower control arm casting showing five locations from which  samples are extracted for
metallography and computed tomography analyses.

Finite element simulations for Control Arms 1 and 2 were performed with the bounding limits of
the microstructures that were averaged in Table 5.1.  Table 5.2 shows the lower and upper limits
of the quantities measured by SEM in Regions 1 and 3. The other regions gave very similar
results and hence were included as limiting bounds for the rest of the control arm.  Fatigue
analyses using the microstructure-property model were performed with the minimum and
maximum values for the microstructure attributes and the stresses and strains obtained from the
finite element simulations were used to predict the number of cycles for each control arm.

Because of time limitations for experimental testing, only tests that captured 0.8% local strain
amplitudes were used for the finite element simulations. Figures 5.3-5.4 show the maximum
principal stress results for Control Arms 1 and 2.  Given these local Mises and principal stress
values in Region 1, the microstructure-property fatigue model gave values for the incubation,
MSC, and PSC regimes between 1000-2000 cycles for up to a 1 mm crack. Interestingly, the
experimental load-cycle and displacement-cycle curves showed drops and/or bumps between
1000-2000 cycles.  This change in compliance of the control arms indicate possibly indicate the
onset of long crack growth as predicted by the model.  The long crack model was not used
because of project time limitations and complexities related to capturing a tortuous three
dimensional crack growing in a finite element analysis.  For specimens taken out of the control
arm and then tested at 0.8% strain amplitudes, the microstructure-property fatigue model
captured the general range of “small” crack sizes as the range was 5-80 cycles for the model and
4-84 for the specimen experiments.
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Table 5.2. Summary of mininum/maximum SEM image results for control arms
microstructure/inclusion content.

Region 1 Region 3 Other regions
Control Arm 1

attribute min max min max min max
%Vv 0.003 0.1118 0.0001 0.0032 0 0.0006

1
Pores size 34 118 25 63 0 67

Particle
size

4.5 7.1 4.5 5.5 4.1 5.2

DCS 49 54 40 54 40 40
Control Arm 2

%Vv 0.00085 0.005 0.00095 0.0056 0.00015 0.0069
Pores size 29 100 43 82 31 82

Particle
size

4.6 4.9 4.4 5.2 4.5 5.2

DCS
49 54 40 54 40 40

Next, we examine the connection between small specimen testing from regions within the control
arm versus testing the control arm and evaluate the fatigue of production versus lightweight
designs. The development of the multi-scale microstructure-property fatigue model was based
upon small specimen testing in fatigue as opposed to control arm tests of the whole component.
Typically, specimens are extracted from regions of a component and used for uniaxial fatigue
tests.  This was performed on the Control Arms 1 and 2.  In particular, small specimen uniaxial
fatigue tests (R=-1) were performed on material that was extracted from the five regions of the
two control arms. Tables 5.3 and 5.4 summarize the results. Three specimens were tested for
each section.  When one considers from Table 5.2 the microstructure/inclusion content, a
correlation with large pores (and volume fraction) can be made with the lowest fatigue life.  

Table 5.3. Data from small specimen uniaxial tests (R=-1) of regions in Control Arm 1.
Region Number of cycles (min/max) at

0.2% strain amplitude
Number of cycles (min/max) at

0.8% strain amplitude
1 12392-48558 12-22
2 4979-18133 22-26
4 5692- 37643 4-8
5 23806-37976 32-40

Let us now compare the small specimen data with the whole control arm tests.  To relate the
two, finite element simulation results must be used to determine the local stress/strain states in
Region 1, for example, to the specimen tests.  A completely reversed displacement boundary



5 - 5

condition was used.  Table 5.5 summarizes this correlation.  The results show one to two orders
of magnitude difference between the specimen and control arm for the 0.2% strain amplitude and
several orders of magnitude difference for the 0.8% strain amplitude.

Table 5.4. Data from small specimen uniaxial tests (R=-1) of regions in the Control Arm 2.
Region Number of cycles (min/max) at

0.2% strain amplitude
Number of cycles (min/max) at

0.8% strain amplitude
1 49762-169326 7-39
2 29382 29-84
3 103931-124200 10-29
4 36339-98693 10-35
5 109200-236963 23-60

These differences exist for several reasons.  First, the specimen test experienced truly uniaxial,
completely reversed loading.  The control arm experiences both a uniaxial loading and bending.
Bending fatigue tests generally give longer fatigue lives because as the crack progresses, a lesser
critical volume is stressed as it moves from tension to compression and so on.  Secondly,
although the uniaxial component of the stress/strain tensors are dominant, the finite element
results show that shear components are significant.  Hence, a multiaxial stress state exists in the
control arm but did not exist in the specimen tests.  Previous multiaxial tests were performed on
specimens showing that at 0.8% strain amplitudes the additional shear component actually
lengthens the fatigue life, approximately an order of magnitude.  But at the 0.2% strain
amplitudes, the additional shear component does almost nothing to the fatigue life.  Hence, these
explanations do account fully for the differences.  

Perhaps the most important difference between the specimen results and control arm results is
due to the following reason:  Almost 90% of the fatigue life is dominated by the small crack
regime (incubation, microstructurally small crack, and physically small crack) for small,
cylindrical uniaxial specimens.   The microstructure-property model has been able to model
cracks in this regime for specimens taken from a wide variety of components.  Furthermore, only
one crack usually dominated in the specimen tests.  For the control arm, Figure 5.5 shows that
two cracks typically formed on each side of the support hole in the Strut 1.  The fatigue life
recorded for the control arm tests relates to the when the whole Strut 1 failed.  In other words,
when the cracks proceeded to the control arm edges as shown in Figure 5.6.  The first crack
started at point a in Strut 1 near support hole and propagated three dimensionally to point b near
the control arm edge.  Just this first crack experienced a larger volume of stressed material than
the extracted specimens experienced.  As such, we would expect a lesser fatigue life for the
smaller specimens based upon this argument alone.  As such, a few thousand more cycles would
be experienced in the long crack regime in the control arm in this section, where the specimen
would not experience these cycles in the long crack regime.  But we are not done.  The control
arm experienced a second crack that went through the incubation, small crack, and long crack
regimes.  This second crack started at point c in Figure 5.5 and propagated to point d.  The
distance for the first crack to propagate was a little more than a quarter of an inch, but the second
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crack must traverse at least one inch.  These added distances added many cycles to the fatigue life
in the long crack regime.

Table 5.5. Data comparison from small specimen uniaxial tests in Region 1 versus control arm 2
(R=-1).

Number of cycles (min/max) at
0.2% strain amplitude

Number of cycles (min/max) at
0.8% strain amplitude

specimens 5 x104-1.7 x105 7-39
whole control arm 5x106 1.25x105

The lightweight monotonic mechanical properties were increased over the old production design
(see From Atoms to Autos, A New Design Paradigm Using Microstructure-Property Modeling
Part 1: Monotonic Loading Conditions).  If monotonic loading trends were directly transferable
to fatigue life, then one would expect that the lightweight design would have a significant
improvement on the fatigue life. This was indeed true as Table 5.6 summarizes the data for the
old designed control arms and the optimized, lightweight design.  To analyze the microstructure-
property fatigue model further, one would have to perform HCF regime testing.  Because of time
constraints on this project, these tests were not conducted.

Table 5.6. Data comparison from whole control arms (R=-1).
Control Arms 1 and 2  lightweight

Number of cycles
(min/max) at 35.6 kN

applied load

22-110 550

Number of cycles
(min/max) at 17.8 kN

applied load

14500-19000 42000-71000
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Figure 5.3. Finite element analysis showing maximum principle stress (SP3) distribution.
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Figure 5.4. Finite element analysis showing Mises stress distribution.
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ab

c
d

Figure 5.5. Fracture surfaces of Strut 1 in Region 1 and Strut 2.  Point a is where fracture initiated 
and propagated to point b. After fracture of the surface from points a to b, a new crack started at 
point c and propagated to point d. 

Strut 1

Strut 2

Figure 5.6.  Optical image of fracture surface. Point a signifies the initial fracture point and point b
 signifies the final fracture point before tensile overload.  

a

b
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6. SUMMARY

Previous work on relating the microstructure/inclusion content on fatigue life has not
received adequate treatment for cast materials. As such, we conducted a set of
experiments and performed micromechanical finite element simulations to develop a
database of information that was used to develop macroscale microstructure-property
model for fatigue analysis. The model captures the essense of fatigue damage
progression, thus enabling the promise of an accurate, predictive tool.  A multi-length
scale approach, from the micron scale to large structural scale analyses, was used to relate
the key microstructural features to the mechanical fatigue properties.

The specific inputs to microstructure-property model include the following:

(1) silicon volume fraction
(2) silicon particle size distribution
(3) pore volume fraction
(4) pore size distribution
(5) pore nearest neighbor distance
(6) dendrite cell size distribution
(7) stress/strain state and applied amplitudes
(8) R-ratio
(9) overloads and sequence effects

The microstructure-property model for fatigue is capable of capturing the trends for other
castings, such as magnesium or iron, for forgings, and for any wrought material.
Experiments would be needed to determine the material constants.  If some experiments
are not available, the microstructure-property fatigue model can still be used without that
particular feature.
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A. APPENDIX:  CYCLIC PLASTICITY MODELS AND CONSTANTS

In this work, two slightly different internal state variable plasticity models were used in
the micromechanical finite element simulations to model the elastic-plastic response of
A356 aluminum alloy and the Al-1%Si matrix. Both of these materials were assumed to
be plastically incompressible elastoplastic materials, and the silicon particles were
assumed to be elastic.

A.1. MCDOWELL MATERIAL MODEL DISCUSSION AND MATERIAL
CONSTANTS USED

The constitutive behavior of the matrix and the alloy is described by a simplified
nonlinear kinematic hardening law (McDowell, 1995). The yield surface is described as
follows:
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where σij is the deviatoric stress, ρ an isotropic hardening parameter, αij the back stress,
nij a unit vector, and dp is the increment of cumulative plastic strain. The latter two are
defined as follows:
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Since the material saturates quickly, the effect on fatigue life of the transient process
before the cyclic steady state on fatigue life is minimal. Therefore, isotropic hardening is
not considered in the work and ρ  is taken as a constant. It is found that two terms (n=2)
in the back stress expression are sufficient to describe the cyclic hysteresis loops for
A356 aluminum alloy and the Al-1%Si matrix. In this case, there are only five material
constants for the cyclic plastic response of each material. To determine these constants,
two cyclic stress-strain tests were conducted. One is the cyclic test of A356 aluminum
alloy of Al-7%Si, and the other is for the Al-1%Si (the Al-rich matrix). From the
obtained stress-strain curves, these material constants and elastic constants are
determined and listed in Table A.1. Figures 4.1 and 4.2 compare the stress/strain curves
showing the cyclic experimental data and the calculated curve, which uses these material
constants for A356 Al alloy and for the Al-1%Si matrix. Satisfactory agreement is found
using only five constants to describe the nonlinear behavior. This constitutive law was
embedded into a UMAT, a user-defined subroutine in the ABAQUS finite element code
(1998).
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Table A.1: Material parameters of constitutive laws for both A356 aluminum alloy and
Al-1%Si matrix.

Al-1%Si matrix A356 Al alloy Particle
ρ  (MPa) 91.5 92.9 -
b(1) (MPa) 73 90 N/A
b(2) (MPa) 27.2 27.2 N/A

C(1) 1500 1700 N/A
C(2) 839 839 N/A

E (MPa) 70 73.8 112.7
v 0.3 0.3 0.3

A.2. MODIFIED BCJ MATERIAL MODEL DISCUSSION AND MATERIAL
CONSTANTS USED

For the micromechanical finite element simulations using the BCJ material model.  The
inclusions are assumed to behave in an isotropic, linear elastic manner with an elastic
modulus of Es = 130 GPa and a Poisson’s ratio of 0.28 (representative of pure silicon).
The matrix material is described using an internal state variable cyclic plasticity model
(Bammann et al., 1993 and 1996), except that the isotropic hardening parameter was
changed to another kinematic hardening parameter.  The cyclic stress-strain model
captures the dependence of plastic flow on strain rate, temperature, and large strain
deformation.  However, in the present work for cyclic fatigue, the temperature and strain
rate dependence of the model are not utilized.  A thorough analysis of the relevant
equations, assumptions, and predictive capability of the model is found in a previous
publication (Bammann et al., 1993).  However, for the sake of completeness, the
important equations are summarized below.  The constants for the model were
determined by fitting the predicted stress-strain response to the uniaxial experimental
stress-strain response using a least squares data fit to the experimental data in Figures 4.1
and 4.2. In both the model and the experiment, the evolution of the stress-strain response
saturates after 10 cycles at this strain amplitude.

The constitutive model assumes a hyperelastic stress rate of the form,
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where σ  and σ
o

 are the Cauchy stress and the co-rotational (Jaummann) rate of the
Cauchy stress respectively, and k = 67.6 GPa and G = 25.9 GPa are the room temperature
elastic bulk and shear moduli, respectively.  The deviatoric plastic deformation tensor,
Dp , is given by the following relationship:
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where Y = 147 MPa is the initial uniaxial yield strength of the material at room
temperature.  The values f = 1 x 10-5 1/s, and V = 0 MPa are material constants also

related to the yielding, and σ ′  is the deviatoric Cauchy stress.  The terms α  are an
additive term that includes two internal state variable kinematic hardening terms.  The
elastic rate of deformation tensor, Dv , is given by the following relationship:

De = D - Dp Equation A.8

The rate equations for the two internal state variables α1  and α 2  are given as follows,
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where the constants h = 2,503 MPa and H = 1,000 MPa specify hardening rates and r =
8.45 MPa and R = 2.00 MPa relate to dynamic recovery rates for the Al-1.0%Si-0.3%Mg
matrix material.  The capability of the cyclic constitutive model to accurately capture the
nonlinear effects of reversed yielding and plastic flow are critical to the present analysis
of plastic deformation near inhomogeneities.  Moreover, the flow rules and evolution
equations for the present constitutive model have physical meaning since they are
motivated by dislocation based arguments (Bammann et al., 1993 and 1996).  Simple
elastic and elastoplastic constitutive relationships may give erroneous predictions owing
to the unphysical nature of their modeling and inability to accurately predict complex
multidimensional stress-strain paths.
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B. APPENDIX: Al-Si interface strength calculations using atomistic calculations

Predicting the monotonic or cyclic mechanical properties of materials containing incoherent
inclusions requires knowledge of the local misfit stress and strain distributions near such
particles when a material is subjected to far-field boundary conditions. For pristine and perfectly
bonded inclusions, an Eshelby based approach (Eshelby, 1957) can be used to obtain a
relationship between local and far-field stresses and strains. However, second phase inclusions
within a ductile matrix are not always pristine, but rather can be fractured or debonded (Puttick,
1959; Grosskreutz and Shaw, 1969; Broek, 1973; Lankford and Kusenberger, 1973; Hahn and
Rosenfield, 1975). For example, Figure B.1 is a duo of scanning electron microscope (SEM)
images taken from a fracture surface of cast A356 aluminum alloy, subjected to cyclic loading
conditions (Gall et al., 1999). The SEM images demonstrate that pure silicon inclusions within a
ductile aluminum matrix may (a) fracture or (b) debond depending on the fatigue crack tip
driving force (striation spacing) and inclusion morphology. Predicting whether an inclusion will
fracture versus debond for different particle shapes and loading conditions is difficult without
information on the relative strength of the particle versus its interface with the matrix material.
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As second phase particles fracture or debond, finite element calculations can be used to obtain
the evolution of local stress and strain distributions with respect to the far-field boundary
conditions (Harkegard, 1973; Gall et al., 1999). One consideration in the finite element modeling
of interface debonding, and crack propagation in general, is modeling the generation of free
surfaces. Previous finite element studies have used cohesive zone approaches (Dugdale, 1960;
Barenblatt, 1962) to model, for example, fracture in rocks (Boone et al., 1986), inclusion
debonding in ductile materials (Needleman, 1987; Xu and Needleman, 1993) dynamic crack
propagation in brittle materials (Camacho and Ortiz, 1996), failure of adhesive joints (Tvergaard
and Hutchinson 1994, 1996), and various other interfacial crack growth problems (Needleman,
1990a,b; Suo et al., 1992; Tvergaard and Hutchinson 1992; Needleman, 1992; Xu and
Needleman, 1993, 1995, 1996; Needleman, 1997; Bigoni et al., 1997; Siegmund et al., 1997; Xu
et al., 1997). The mathematical forms for cohesive zone equations are motivated (Needleman,
1990a) from metallic atomic binding energy relationships (Rose et al., 1981; Rose et al., 1983;
Ferrante and Smith, 1985).

Given this background we proceed first with atomistic simulations to determine an understanding
of silicon fracture and silicon-aluminum interface debonding. Second, we perform microscale
finite element analyses to determine the parameters of interest for macroscale microstructure-
mechanical property model.

The present atomistic study will consider the deformation characteristics of the interface between
pure FCC aluminum (Al) and diamond cubic silicon (Si). Al-Si interfaces have technological
importance in cast Al-Si alloys and electronics packaging applications. We will use the semi-
empirical Modified Embedded Atom Method (MEAM) (Baskes, 1992) to model the Al-Si
interfaces under imposed tensile boundary conditions. The MEAM (Baskes, 1992) differs from
the standard EAM (Daw and Baskes, 1984) in that the angular dependence of the electron
density is included in the MEAM. With exception to one MEAM simulation, which was
deformed under static loading conditions at 0 K, all models were deformed in the molecular
dynamics framework at high strain rates (1 x 109 1/s). The MEAM is a powerful tool for
analyzing local interfacial failure mechanisms since the structure and/or strength of the interface
need not be assumed a priori. Consequently, the predictions of the MEAM simulations provide
insight into the underlying physics of interfacial decohesion and fracture.
/
Previous MEAM simulations on the characteristics of Ni-Si interfaces (Baskes et al., 1994) have
provided insightful results. In general, the work of Baskes et al., (1994) determined the structure
and adhesion energy of a thin layer of Ni on a Si substrate. However, such MEAM studies on Ni-
Si interfaces have not considered the effects of different MEAM models on the strength of the
interface. In order to draw accurate comparisons with continuum based debonding models, a
more thorough study of the effects of MEAM model geometry, loading, and displacement
measurement conditions should be undertaken. The current MEAM simulations consider the
stress-strain and traction-displacement responses of Al and Si blocks of various size, attached at
a flat interface, and subjected to tensile boundary conditions applied parallel to the interface
normal. The effect of randomly dispersed point vacancy defects on the strength of the interface is
investigated. In addition, the effect of crack-like vacancy defect size on the competing failure
mechanisms of Al-Si interface debonding versus isolated fracture in the Al or Si is considered.
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Finally, different locations for measuring opening displacement are discussed in the framework
of a continuum based cohesive zone approach. This preliminary study will not consider the
effects of pertinent metallurgical factors such as interface misorientations (Kurtz and Hoagland,
1998), dislocations (Kurtz and Hoagland, 1998), or impurities (Rice and Wang, 1989; Olson,
1997). We attempt here to determine the overall applicability of atomistic simulations to study
interfacial decohesion in the context of current continuum based modeling approaches. Once the
task at hand has been accomplished, the effects of the aforementioned metallurgical factors can
be more effectively studied.

The results of the present study augment the findings of different experimental techniques used
to characterize the structure, strength, and fracture behavior of bi-material interfaces. For
example, the properties of material interfaces have been studied using a wide range of
mechanical testing methods such as: peel tests (Yoshino and Shibata, 1992), laser spallation tests
(Gupta et al., 1993), zero-creep tests (Josell and Spaepen, 1993-a, b), push-through tests (Warren
et al., 1992; Mackin et al., 1992; Izawa et al., 1996), pull-out tests (Lamon et al., 1995), normal
tension tests (He et al., 1996), transverse compression tests (Turner and Evans, 1996), and
bending tests (Reimanis et al., 1990; Reimanis et al., 1991; Bartlett and Evans, 1993; Leung et
al., 1995). The particular conclusions of the aforementioned collection of experimental studies
are dependent on the material studied. However, the interface between two adjoining materials
almost always serves as the weak link for failure for all material systems and loading conditions
considered. In addition to the experimental studies, numerous analytical approaches (Erdogan,
1963; Rice and Sih, 1965; Comninou, 1990; Loboda, 1998) have been used to study the stress
and strain fields near interfacial cracks in dissimilar materials, analogous to fracture mechanics
based approaches for homogeneous materials. Energy based criteria have also been utilized to
study the competing modes of interface debonding versus fracture into the bulk materials (Evans
et al., 1989; He et al., 1994).

Atomistic calculations, starting from atomic pair potentials or some related modification, have
been used for a wide variety of materials. Brenner (1996) summarized the class of bond order
formalism that has proven valuable for covalently bonded systems. Stoneham et al. (1996)
summarized the shell model, which is a modification of a pair potential, used for ceramics. For
metals, Daw and Baskes (1984) developed the MEAM, which employs a pair potential
augmented by a function of another pair-wise sum based on the electron density. We use the
MEAM in the atomistic simulations for the study of finite deformations of single crystal
aluminum and silicon and the interface between the two materials.

Figure B.2 is a representative example of the response of the interface model to applied far-field
velocity boundary conditions. The center figure is a plot of the average uniaxial stress versus the
true uniaxial strain for the aggregate shown in Figure B.2. The average stress is calculated using
for the entire aggregate of atoms. Upon initial application of the end velocities, the average axial
stress in the model is compressive (negative). The initial negative stresses, which exist even in a
statically relaxed model, is caused by the attempted contraction of the Al and Si due to the
presence of the free surfaces. Moreover, the lattice constants of the materials are not exact (.5 %
error) since their ratio must be an integer to properly enforce periodicity. During continued
movement of the end atoms, the average axial stresses become tensile, and the stresses continue
increasing until a critical stress level is reached. At the critical stress level, the failure of the
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interface between the Al and the Si atoms begins to nucleate (Figure B.2). The nucleation of
interfacial failure occurs spatially at the location where the Al and Si atoms are displaced
(rippled) in the relaxed and undeformed state. In fact, aside from differences in the bonding
potentials between Al and Si atoms, the rippled nature of the interface is one reason that the
interface is weak compared to the pristine bulk material. The rippling facilitates local stress
concentrations and failure through local damage nucleation and a subsequent unzipping of the
interface atoms rather than simultaneous bond breakage. Such a failure mechanism is analogous
to the severe decrease in strength for the movement of a single dislocation versus the
simultaneous failure of all adjacent atomic bonds.

As the interface debonds, the average stresses in the atomistic model decrease over a finite strain
increment (Figure B.2). Moreover, during interfacial debonding, the Si atoms are slightly
distorted from their elastic positions, however the Al atoms undergo gross permanent changes in
position, revealing that plastic dissipation occurs in the Al. Owing to the highly constrained and
pristine state of the present lattice, it is difficult to envision any explicit dislocation emission or
movement near the fracturing interface. When the average stress in the block reaches
approximately 0 GPa, the interfacial separation is complete and several Al atoms are still
attached to the Si (Figure B.2). After separation, the two blocks experience elastic springback in
an oscillatory manner as indicated in Figure B.2. For the remaining figures, the elastic
springback portion of the stress-strain curve is removed since it is not pertinent to understanding
the local debonding mechanisms. We note that the predicted debonding stress levels (~20 GPa)
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in the present study are elevated compared to, for example, the ultimate tensile strength (~200
MPa) of cast Al-Si alloys where debonded and fractured Si particles are observed (Dighe and
Gokhale, 1997; Samuel and Samuel, 1995). The high attainable stress levels are due to the
pristine state of the interface (defect and impurity free), the highly constrained (relatively thin
and periodic) nature of the interface model, and the dynamic loading conditions. The periodic
nature and relatively high applied strain rates are inherent to practical MEAM simulations, thus
revealing a limitation of current atomistic modeling efforts. The addition of defects such as point
vacancies will slightly lower the strength of the “perfect” incoherent interface, as will be
demonstrated in Section 5. Interface misorientations, dislocations (Kurtz and Hoagland, 1998),
and impurities (Rice and Wang, 1989; Olson, 1997) will further lower the strength of the
interface as much as several orders of magnitude. We also note that under some stress states
other than pure tension, a size scale effect, which is the basis of strain gradient plasticity, will
also cause the local stresses to be much higher than experimental observations on large scale
samples (Fleck et al., 1994; Horstemeyer and Baskes, 1999).

The stress distributions across the interface, predicted by the MEAM simulations, provide insight
into the local failure mechanisms. Figure B.3 is a distribution of average uniaxial stresses just
before interfacial failure. The stresses were averaged in the [010] and [001] directions, and the
average stress in the entire volume is also indicated in Figure B.3 as a straight line. The
distributions predicted by both the molecular dynamics and static simulations are presented in
Figure B.3. The average stresses in the stiffer silicon material are higher for an equivalent
dynamic displacement of both model ends. The different stress levels in the two materials are
artifacts of the dynamic nature of the simulations. However, in the static case, the stresses away
from the interface are comparable in both materials, consistent with static stress equilibrium
concepts. Very close to the interface, the stresses in both materials are higher than the nominal
values away from the interface, under both static and dynamic loading conditions. The
magnification of stresses is due to the rippled nature of the interface and the local balance of
forces. In other words, owing to the different crystal structures and lattice parameters of the two
phases, some atoms cannot interact strongly with immediate neighbors across the interface. The
low interaction force levels between certain atoms promotes high forces between other atoms
which are attempting to keep the interface intact. Thus, extremely close to the interface, several
atoms are equilibrated under relatively higher forces as evident in Figure B.3. This microscopic
disturbance of stresses near the interface facilitates the nucleation and propagation of debonding
failure. We note that such a local disturbance in the stress fields is produced by the
heterogeneous nature of the interface as caused by the lattice structure of the two materials. Of
course, in a homogeneous continuum based model, no stress intensification would be predicted
for the given periodicities and boundary conditions.
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The strength of material interfaces will invariably be degraded by the presence of metallurgical
defects such as dislocations, vacancies, and chemical impurities. Although chemical impurities
(Rice and Wang, 1989; Olson, 1997) and interface dislocations (Kurtz and Hoagland, 1998) are
expected to have a significant influence on the strength of an interface, the present MEAM
simulation will exclusively consider the effects of vacancy-type defects on interface debonding.
The incorporation of impurity atoms in MEAM simulations requires the development of atomic
potentials for such materials and is beyond the scope of the present study. Moreover, a thorough
study of different interface dislocations and misorientations is a separate topic altogether and can
be attacked once the present framework is set forth. Figure B.4 illustrates the dependence of the
strength of the interface on the number fraction of defects near the interface. The point vacancy
defects in the simulations in Figure B.4 were distributed randomly throughout the two atomic
planes adjacent to the interface in (a) just the Al, (b) just the Si, and (c) both the Al and Si. In all
three situations (Figures B.4) the incorporation of vacancy defects at the interface lowers the
fracture strength of the interface. In the range of defect number fractions considered, the decrease
in the interfacial strength scales nearly linearly with the number fraction of defects (Figure B.4a).
The small reductions in strength due to the randomly dispersed vacancies (Figures B.4) are
absolutely negligible given the small overall concentration (<< 1%) of vacancies traditionally
found in metals (Meyers and Chawla, 1984).
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We have established that the Al-Si interface with and without point vacancy defects is a weak
link for failure under tensile loading parallel to the [100]Al||[100]Si interface normal. Now we
investigate the role of microscopic crack like defects in the bulk materials on the competing
mechanisms of fracture in the pure Al, pure Si, or at the Al-Si interface. Figures B.5 and B.6 are
compilations of the initial damaged state and final failure mode of four different MEAM
simulations with different sized and spaced flaws in the Si or Al, respectively. Before conducting
the MEAM simulations, atomic rows along the [001] direction were removed to create a crack-
like vacancy defect in the silicon (Figure B.5) or aluminum (Figure B.6). Since the model is
periodic in the [010] direction, the models in Figures B.5 and B.6 simulate a periodic array of
evenly spaced cracks rather than a single defect. As the initial flaw size is increased (periodic
flaw spacing is concurrently decreased) in both materials, failure in the pure materials is favored
over interfacial failure. Flaws in the Si do not distract the failure from occurring at the interface
until the flaw area projected onto a plane normal to the tensile axis is nearly 30% (Figure B.5).
Flaws in the Al are even less effective in moving the failure away from the interface since it
takes a larger flaw area projected on a plane normal to the tensile axis (about 50%) to accomplish
bulk failure in the Al (Figure B.6) versus the interface. These values are only valid for pristine
materials with defects on this size scale.
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Figure B.7 demonstrates that the periodic size scales of the model in the [010] and [001]
directions have an influence on the fracture behavior of the material in the presence of defects.
The lower model in Figure B.7 has double periodicity in both directions and a flaw size that is
also double compared to the model at the top of the figure. Recall that changing the transverse
periodic lengths had a negligible influence on the tensile stress-strain behavior of the model
without defects. However, the size of the periodic lengths has an influence when flaws within the
materials are introduced. The dependence of the fracture mode of the model on the flaw size is
consistent with fracture mechanics notions where the intrinsic flaw size is related to the driving
force for fracture. However, in the present simulations, the larger flaw in the Si does not promote
earlier fracture in the Si compared to the smaller flaw, which is not entirely consistent with static
fracture mechanics concepts. One reason that the smaller flaw could promote earlier failure is
due to the propagation of elastic waves in the dynamic MEAM model. Such elastic waves can
promote premature fracture in the smaller model since the ligament between the cracks is smaller
than in the larger model, and shorter time is required for spatial movement of the waves. As
such, the probability that the local stress field that initiates fracture will be augmented by an
elastic stress wave is increased in the smaller scale MEAM model. Moreover, we note that the
interaction between the different flaw sizes and the interface, which is a flaw itself, may also
provide some rational for the qualitative disagreement with static fracture mechanics flaw size
concepts. In either case, caution must be exercised when extending static fracture mechanics
based ideas to dynamic debonding problems since complex local stress states may develop due to
interactions with the flaws, elastic waves, and the interface. Moreover, extending fracture
mechanics based ideas to atomistic size scales is not trivial due to the small flaw and geometry
size scale inherent to atomistic simulations.

Initial Damaged State Final Failure Mode

Figure B.7. Effect of initial defect size in the pure silicon material on the failure mode of the 40 
Angstrom [100]Si||[100]Al interface model.  The two models are periodic in the [010] and [001] 
directions and have periodicities scaled equivalently with the two different initial flaw sizes.
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