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ABSTRACT

Prediction of the evolution of microstructures in weapons systems is critical to
meeting the objectives of stockpile stewardship in accordance with the Nuclear Weapons
Test Ban Treaty. For example, accurate simulation of microstructural evolution in solder
joints, cermets, PZT power generators, etc. is necessary for predicting the performance,
aging, and reliability both of individual components and of entire weapons systems. A
recently developed but promising approach called the “Phase-Field Model” (PFM) has
the potential of allowing the accurate quantitative prediction of microstructural evolution,
with all the spatial and thermodynamic complexity of a real microstructure. Simulating
with the PFM requires solving a set of coupled nonlinear differential equations, one for
each material variable (e.g., grain orientation, phase, composition, stresses, anisotropy,
etc.). While the PFM is versatile and is able to incorporate the necessary complexity for
modeling real material systems, it is very computationally intensive, and it has been a
difficult and major challenge to formulate an efficient algorithmic implementation of the
approach.

We found that second order in space algorithm is more stable and leads to more
accurate results. However, the computational requirements still remain high, so we have
developed a single field algorithm to reduce the computations by 2 orders of magnitude.
We have created a 3-D parallel version of the basic phase-field (PF model) and
benchmarked it performance. Preliminary results indicate that we will be able to run very
large problems effectively with the new parallel code. Microstructural evolution in a
diffusion couple was simulated using PFM to simultaneously simulate grain growth,
diffusion and phase transformation. Solute drag in a variable composition material, a
process no other model can simulate, was successfully simulated using the phase-field
model. The phase field model was used to study the evolution of fractal high curvature



structures to show that these structures have very different morphological and kinetic
behaviors than those of equi-axed structures.
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Introduction

Microstructural features control the properties and performance of engineering
components to a large extent. Thus, it is vital that engineers tailor the microstructures of
the components they fabricate to the components’ applications. However, controlling
microstructural evolution during processing is a challenging problem because of the large
number of variables that must be understood and controlled. Therefore, predictive
modeling techniques are necessary for tailoring microstructures to their applications.

Coarsening models are the most numerous and most mature of the microstructural
evolution models. Many investigators have used a number of different numerical
techniques to simulate coarsening by processes such as grain grawth and Ostwald
ripeni Among the numeric%’Eﬂmdels used are the Potts model™ the se-field
model*=** front tracking model®™™ ™, Voronoi tessellation®, and vertex model™~ While
each of these models is vastly different in how it incorporates the physics of coeg&aing,
they all give similar results. Among these models, the Potts and phase-field are
arguably the most robust and versatile and certainly the most highly developed and
widely applied.

In this study, we focus on the phase-field model as incorporation of additional
microstructural c%gr]]plexity beyond coarsening is straightforward in this model. The
phase-field model™"is based on the early field theq modelsﬁﬁthat in turn are based on
the Cahn-Hilliard equation for a diffuse interfac The phase-field model employs
parameters called order parameters to represent microstructure. These field variables are
continuum functions of spatial coordinates r and time t and are used to characterize a
heterogeneous state consisting of phases with different composition and/or structure.
Continuous fields of composition and long-range order parameters that characterize
structural heterogeneities of a system are typical examples of such field variables. The
evolution of these field variables in space with time gives detailed information about
metastable and unstable microstructural states that occur during microstructural
evolution.  The combination of developments in the numerical techniques and
computation power has allowed many investigators to develop the phase-field model to
study a wide variety of microstructural evolution processes and progressively mhgfﬁ
complex proble Some of these applications have been normal,grain growth™=
Ostwald ripeninrgi! combined in_growth and Ost ripening™ microstructural
evolutionzjvith coherent strair‘% twin formation and ferroelectric domain
switching™

While the phase-field model is highly versatile, it is computationally very
intensive and becomes increasingly so as additional physics is introduced. The goal of
this investigation was to develop numerically efficient algorithms while preserving the
versatility of the phase-field model.

Model description

The phase-field model is a thermodynamic model, which uses a field
representation for microstructure. As an example, consider a 2D grain structure and
phase-field description of a polycrystal. The continuum grain and grain boundary
structure is mapped onto a discrete square lattice using a set of order parameters, {i(r)}
where i = {1, 2, ... Q}, which may be conceptualized as membership of site r in Q
different grains. This set of order parameters is allowed to evolve with time at each



lattice point r to simulate microstructural evolution. Figure 1 is a schematic diagram
showing how the order parameters vary continuously from one grain to its neighbor to
form diffuse grain boundaries. For the grain interior site, all order parameters have values
of 0.0 except one; it has a value of 1.0. This may be interpreted as that site having
exclusive and full membership in the grain represented by that particular order parameter
and in no other grains. A site at an interface between two grains has partial membership
in the two grains on both sides of it and no membership in any other grains. The order
parameters are nonconserved parameters, thus they need not sum to any particular value

locally at any given site or globally at all sites.di['t'rrs—type-of—represerrtanvn—reads-to—

diffuse interfaces as described by Cahn and Hilliard®
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Figure 1. Microstructural representation of the phase-field model.

The equation of state for the simulation is a free energy function, F, which is a
function of the order parameters. It defines the energy of the system given any
combination of order parameters 7’s. The order parameters, 7;’s, are locally and
globally non-conserved parameters. Since the free energy is defined for all possible
combination of 75;’s, the combination of these parameters which gives the lowest F is the
equilibrium state of the system.

The free energy for normal grain growth is

F= [f0 (.0 ...,ry,o(r))+i§pl%i (Onm) @ eq. 1

where f, is the bulk chemical free energy,
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with a=1, =1 and =1

In this model the interfacial energy consists of the excess free energy in the
interface and the terms quadratic in the gradients of the order parameters, 2«i(/G i),
where k; are the gradient coefficients of the order parameters. Thus, at grain boundaries
and triple junctions, where order parameters change spatially, the free energy of the
system is increased.

The driving force for microstructural evolution is the reduction of total free
energy of a system. In this case, the total interfacial energy is decreased as the
microstructure evolves. Kinetics for microstructural evolution is introduced by the time-
dependent Ginzburg-Landau equations.

a (r,t)

dri(r.1) =-L &Y =-L——+ LiKiDZUi(r,t) eq. 3
dt on an

where L; is the kinetic rate coefficient related to interface mobility and diffusivity.
Equation 3 determines the evolution of the order parameters and, hence, the grain
structure.

The starting microstructures for this study were initialized by assigning small
random numbers between -0.001 and 0.001 for each order parameter at each site at time t
= 0.0. This microstructure is analogous to a supercooled liquid. Once the microstructure
is initialized, grain growth is simulated by repetitive calculation of order parameters at
each site for the next time increment t = t+A4t or r;(r,t+A4t) which is calculated using the
forward Euler technique,

n(r,t+ At) = n(r,t) +

an.(r.Y) At eq. 4
o

where the quantity % is determined using eq. 3. The Laplacians used in eg. 3 were

calculated for a discretized system as

1,1 1
O°rF W'E i (7= n. ) 1 (nj— m)l eq. 5

]

where Ax is the grid size, i is the set of first nearest neighbors of site r, and j is the set of
second nearest neighbors of site r.

The results of the normal grain growth simulation are given in figure 2 showing
the microstructure at increasing times during grain growth. This simulation has all the
necessary materials physics to simulate grain growth correctly. Grain boundaries moved
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Figure 2. The microstructural evolution resulting from grain growth simulations
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to their centers of curvature, the grain growth exponent, n, in the grain growth equation
R" —R", = kt was found to be n = 2 in agreement with grain growth theory and the grain
size distributions at different times were self-similar.

Objectives

The grain growth example shown above can be used to demonstrate the huge
computational demand of the phase-field model. The differential eq. 4 was solved at
each lattice point (total simulation space was 1024 x 1024 sites) for 36 order parameters
n; at each time step (total simulation time was 100,000 time step). This is a huge number
of calculations for a relatively simple coarsening simulations. The drawbacks of PFM
simulations are that they (1) are very computationally intensive and become increasingly
so with more complex materials behaviors and (2) require the difficult task of
formulating of a set of differential equations that describe the materials phenomena and
are numerically stable and efficient. The purpose of this investigation was (1) to develop
numerically efficient algorithms to simulate microstructural evolution and to evaluate
their numerical stability to address materials problems, (2) to extend the phase-field
model to a massively parallel code to allow solving large 3D microstructures and, finally,
(3) to demonstrate the versatility of the phase-field model by incorporating additional
materials physics.

Numerical algorithms

In grain growth simulation shown above the number of order parameters
(representing the number of different grain orientations) is Q = 36. One wishes the
number Q of possible grain orientations to be as large as possible, since Q is actually
physically infinite. However, initial implementations of the phase field grain growth
algorithm scaled at least linearly with Q, presenting a bottleneck. Furthermore, the
algorithm also became increasingly unstable with larger Q.

We developed an algorithmic approach that replaces the multiple phase fields by a
single field, allowing the grain growth phase field method to scale independently of Q
and hence removing the previous bottleneck. The new method also allows a different
grain orientation to be initially associated with each discretized spatial point, giving the
practical equivalent of the desired "infinite” number of grain orientations. This new
approach was rigorously mapped to earlier ones. It reduces the number of differential
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equations to be solved from Q to 2 at each lattice site and at each time step. In addition,
we derived an accurate analytic estimate for the grain boundary width, allowing an a
priori selection of the spatial discretization.

A variety of implementation issues were investigated. A speed-up technique that
selectively ignores the less active grain interiors was developed by identifying regions
where the gradients of the order parameters in the simulation space are high. We
determined that a continuous single well was adequate for the grain growth functional,
which may allow a reduction in operations count from the previous quartic functional.
We next investigated discretization (or related alternative) approaches. One of the most
efficient, the alternating direction implicit (ADI) version of the Crank-Nicholson method,
routinely used for finite difference, is second order in both space and time discretization
and is unconditionally stable for the related heat equation by the (standard) von Neumann
criterion. However, it involves tridiagonal solves across the entire length of the simulated
region. We have found a completely local and hence more efficient alternative to ADI
which nonetheless retains ADI accuracy. This alternative is a second order in space
algorithm that is more stable and leads to more accurate results. While simulation results
obtained from second order in space discretization algorithms are highly accurate, the
computational demand still remains very high because the time step for each
microstructural evolution calculation is small.

Parallelization and extension to 3-D

Thus far during FY99, we have created a 3-D parallel version of the basic phase-
field model. Computationally, the PF equations require local stencil operations on a
regular 3-D grid to update the field variables in a coupled fashion for a single time step.
Using a spatial-decomposition of the grid across processors, only sub-domain boundary
information need be communicated between processors for each field variable. Although
the computation per grid point per field variable is relatively modest in the basic phase-
field model, we found this strategy to scale reasonably well to large numbers of
processors.

To wit, we have performed the following benchmark calculations with the new
parallel phase-field code on the Intel Paragon. For a small problem (50x50x50 grid with
10 order parameters) the code runs in 2.96 secs (per time step) on 1 processor, 0.07 secs
on 64 procs, and 0.024 secs on 256 procs. This is fixed-size parallel efficiency of
roughly 65% and 50% on 64 and 256 processors. A more typical production-scale
problem (100x100x100 grid with 36 order parameters) runs in 1.45 secs (per time step)
on 64 procs and 0.44 secs on 256 procs. This is a fixed-size parallel efficiency of 92%
and 75% on 64 and 256 procs. Scaled-size speed-ups would undoubtedly be even better.
These preliminary numbers indicate that we will be able to run very large problems
effectively with the new parallel code.

Complex microstructural evolution simulations
Microstructural evolution in a diffusion couple

Several microstructural evolution problems of higher complexity than simple
coarsening in a single phase material were investigated. The first was of simulating
microstructural evolution in a diffusion couple, such as that found during joining
processes. In this case, two materials are placed next to each other under high
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temperature so that they join to form a single part. The system simulated was
characterized by a two-component (A and B), two-phase (a and [3) system with mutual
solubility and diffusion of the two components in both phases. The active processes in
such a system are diffusion, coarsening, and phase transformation, all occurring
simultaneously. The phase field model used two sets of order parameters, one for each
phase. Each set of order parameters had a free energy functional associated with it. The
simulation of simultaneous coarsening, diffusion, and phase transformation gave
qualitatively accurate results, with the proper materials physics. The resulting
microstructures and composition profiles varied with the starting conditions of the
simulation as one would expect and were consistent with diffusion theory. The example
shown in figure 3 is simulation of grain growth and diffusion in a two-component, two-
phase system with an initial composition in the a-phase region. On the left side of the
simulation space, the a-phase nucleates homogeneously and grows. On the right side,
the B-phase nucleates heterogeneously and grows in as columnar grains before other (3-
grains can nucleate. However, the simulations showed two unexpected results: 1. The
coarsening rate was a function of composition, and 2. solute segregation was observed at
grain boundaries. These two results are undesired artifacts of the free energy functional.
This example highlights the need to carefully design the free energy functional to
incorporate the thermodynamic and kinetic properties of a particular system without
introducing any artifacts.

Figure 3. Microstructural evolution in a diffusion couple with simultaneous diffusion
and coarsening.

Simulation of solute drag

The second materials problem studied was solute drag. Several important
components that Sandia manufactures and maintains such as the PZT voltage bars, solder
joints and cermet source feed throughs have compositional gradients at the grain
boundaries. The grain boundary regions are regions of high entropy and can dissolve
more impurities than grain interiors in many systems. The grain boundary compositional
changes can influence the microstructural evolution of the components b uring
processing and during service by a process commonly know as solute dra . The
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understanding and prediction of solute drag is important for the design of many
engineering components.

Solute drag was simulated by the phase-field model by designing a free energy
functional for a two-component (A and B), single phase (a-phase) system with solute
enrichment in the grain boundary region. Simultaneous coarsening and diffusion was
simulated by coupling the free energy and solving the kinetic equations for grain growth
and diffusion alternately. Figure 4a shows a circular grain in a homogeneous matrix
shrinking uniformly while maintaining circular symmetry. However solute drag at the
grain boundary caused the composition at the grain boundary to change as shown in
figure 4b.  Furthermore, the grain growth rate decreased with increasing solute
enrichment at the grain boundary.

0'5 T T T
04 [
0.3 -

02}

Concentration of impurity %

01

0 I R T
0 50 100
Lattice site

150 200

Figure 4a. Density of solute phase Figure 4b. Solute phase concentration
across the center line in Figure 4a.

The ability to track solute enrichment at the grain boundaries as the microstructure
evolves will be very useful for a number of Sandia projects. Furthermore, no other
mesoscale microstructural model has the ability to treat solute drag at the grain
boundaries.

Coarsening kinetics of dendritic structures

Many materials have high curvature, fractal structures such as dendrites in braze
joints or eutectic colonies in solder joints. Microstructural evolution due to coarsening in
these structures is very different from that in equi-axed structures. Not only is the
morphology different, but the kinetics of coarsening are also very different. It is the
Kinetics that interests us more as it is not readily predictable and has implication for the
engineering performance of these components as they age. The phase field model was
used to study the evolution of high curvature structures such as the fractal structure
similar to that of a dendrite (shown in figure 5a). The free energy functional used was the
same as that for normal grain growth given by eq. 1. However, unlike normal grain
growth only two order parameters are necessary, one for the matrix grain (blue region in
figure 5a) and the other for the dendrite (the red feature in figure 5a). The results of this
simulation are shown in figure 5. Figure 5b, a plot of dendrite interface length as a
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function of time, shows that there are two distinct kinetic regions in such a system. At
high curvature, the grain boundary length dependence on time is given by the power law
with the exponent (1-Ds)/2 determined by on initial fractal dimension Ds of the grain
boundaries. At low curvature the behavior approaches the normal grain growth behavior
seen in the more equi-axed microstructures with a grain growth exponent n = 2. This
behavior was compared to the results of a Potts model simulation and very good
agreement was found between to the two systems.

Ln(t)

Figure 5a. Microstructural evolution of Figure 5b. Grain boundary length
initial dendritic structure used to study of dendrite as a function of time
coarsening.

Conclusions

The phase-field model is highly versatile and can simulate many problems of
microstructural evolution rigorously. We determined a relatively simple implementation
of the single-field algorithmic approach, which we expect to reduce computation by up to
two orders of magnitude and to eliminate unphysical “coalescence” by using a single
order parameter with infinite degenerate minima to represent different grain orientations.
We explored a higher-order spatial finite-difference stencil, finding it more stable and
accurate in some regimes. We created a 3-D parallel version of the basic phase-field
model important for realistic simulations, and benchmarked its performance. Preliminary
results indicate that we will be able to run very large problems efficiently with the
parallel code. The phase-field model was used to simulate microstructural evolution in a
diffusion couple with simultaneous diffusion, coarsening and phase transformation. The
important problem of solute drag in variable composition materials was successfully
simulated, a process no other model can simulate. The phase-field was used to study the
evolution of fractal high-curvature structures, showing that these structures have very
different morphological and kinetic behaviors than those of equi-axed structures.
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