
SANDIA REPORT
SAND2000-3011
Unlimited Release
Printed December 2000

ATR2000 Mercury/MPI
Real-Time ATR System
User's Guide

R. H. Meyer, D. W. Doerfler

Prepared By
Sandia National Laboratories
Albuquerque, NM 87185

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000

Approved for public release, further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof, nor
any of their employees, not any of their contractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http://www.ntis.gov/ordering.htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed Copy: A03
Microfiche copy: A01

http://www.ntis.gov/ordering.htm

3

SAND2000-3011
Unlimited Release

Printed December 2000

ATR2000 Mercury/MPI
Real-Time ATR System

User’s Guide

Richard H. Meyer, and Douglas W. Doerfler
Signal and Image Processing Systems Department

Sandia National Laboratories
 P. O. Box 5800

Albuquerque, NM 87185-0844

Abstract
The Air Force's Electronic Systems Center has funded Sandia National
Laboratories to develop an Automatic Target Recognition (ATR) System for the
Air Force's Joint STARS platform using Mercury Computer systems hardware.
This report provides general theory on the internal operations of the Real-Time
ATR system and provides some basic techniques that can be used to
reconfigure the system and monitor its runtime operation. In addition, general
information on how to interface an image formation processor and a human
machine interface to the ATR is provided. This report is not meant to be a
tutorial on the ATR algorithms.

4

Contents
Abstract .. 3
Introduction .. 5
Theory of Operation ... 5
Internode Communications .. 10

genericMCSMB .. 10
Booting and Startup ... 11
Getting to Know Your Way Around .. 18
Reconfiguration.. 19
Verbose Control Parameters.. 22
The Boot Process .. 24
References... 25
Appendix A:.. 26

The “sysmc” command and PowerPC Task States .. 26
FOA Executive Process .. 26
FOA Process (currently only have FOA Executive) 26
INDX Executive Process ... 26
CDI Process (CEID4, CEID5, CEID6, CEID7, CEID8, and CEID9) 26
ID Executive Process.. 26
TMPM, TMSE, and PGA Process (CEID2 and CEID3) 27
TMPM, CMPM and PGA Process (CEID11) .. 27

Appendix B:.. 28
Example: Mercury Startup Script File ... 28
Example: Mercury Configuration File.. 29
Example: ATR Startup Script File... 31
Example: MPI Process Group File.. 32
Example: Executive Routing Files .. 33

Appendix C:.. 34
Interface Requirements .. 34

genericMyri ... 35
genericRPC (resavRPC) ... 36

Distribution: .. 37

5

ATR2000 Mercury/MPI
Real-Time ATR System

User’s Guide

Introduction

A real-time automatic target recognition (ATR) system has been developed for
use with Mercury Computer systems hardware and operating system. The
purpose of this document is to provide a user’s guide to help personnel operating
the ATR become more familiar with its theory of operation.

Theory of Operation

The ATR is a multiprocessing system and is based on COTS embedded high
performance computing (EHPC) technology. The main ATR processing
elements are 300Mhz and 375 MHz PowerPC 750 processors with 32 and
64Mbytes of memory respectively. Mercury5 RACEway crossbar switch
technology is used for the interprocessor communications between the
embedded nodes. There are 12 such nodes in the system.

The system uses a Sun Microsystems workstation running the Solaris operating
system for a host. The host node also contains a Mercury shared memory VME
interface. This is the sole interface between the host and the compute nodes.

Mercury ATR

Image Formation

Processor or
Image Interface

ATR Host Processor

o Boot host
o Configuration data
o Interface bridge and router

Human Machine
Interface

RPC /TCP/IP Network

12 Node Mercury
Multicomputer

Each Node Contains:
o 300/375 Mhz 750 G3
o 32/64Mbytes DRAM
o 160 Mbyte/sec.

RACEway Crossbar

RACE

VME Interface

6

The host and compute nodes communicate with each other over the VME
backplane using the Sandia ATR-Chip API and the Mercury Shared Memory
Buffer (SMB) endpoints. The ATR-Chip API provides a software interface for
nodes to represent and manipulate ATR data and symbolic information.

The Mercury RACEway interface provides node to node communications. It is
implemented using the MPI Software Technology, Inc. (MTSI4) MPI/Pro
Message Passing Interface6 software and the Sandia ATR-Chip API messaging
protocol1,2.

The ATR System implements several algorithms. A description of the algorithms
is beyond the scope of this document. It is assumed the user is familiar with the
basic theory of the ATR algorithms.

7

The system consists of the following components: The interface to SAR image
formation process (IFP), the Image Former process (Host Executive), the Cuer
Executive process, the FOA process(s), the INDXer Executive, the CDI
process(s), the ID Executive process, and the TMPM, TMSE, CMPM and
Refocus processes.

The Host Executive (Image Former) process receives full SAR scenes from the
IFP. Image Former buffers up the incoming data and when a full scene has

Mercury/MPI ATR Data Flow

Image
Formation
Process

Host
Executive

Cue
Executive

(FOA)

Indexing
Executive

(CDI)

Identification
Executive

CMPM
TMPM

Phase
Gradient

Autofocus

TMSE

HMI

ATR Host

foaExec

indxExec

CEID11

idExec
CEID2
CEID3
CEID11

idExec

CEID2
CEID3
CEID11

CEID2
CEID3

chip_collect

ATR Host

FOA

CDI

CEID4
CEID5
CEID6
CEID7
CEID8
CEID9

8

been acquired, it transmits the image to the FOA Executive. The Host Executive
also has the ability to break very large scenes up into overlapping sub-scenes.
The sub-scenes are overlapped so as not to cut a potential target into two
pieces. If sub-scenes are formed they are transmitted individually to the FOA
Executive node and are treated as separate images until the results are re-
combined by the "chip_collect" process. At this time, duplicate ATR chip results
are possible in the overlapping portion of the sub-scenes. The Image Former
process also sends a message (i.e. number of sub-scenes) to tell the
"chip_collect" process that an image has arrived and is being sent to the ATR.

The FOA Executive process receives scenes (or sub-scenes), breaks them into
sub-images, and sends the sub-images to a specified number of nodes, which
are executing the FOA process. Again, the sub-images are overlapped so as not
to cut a potential target into two pieces Note the FOA Executive executes the
FOA algorithm and it sends the full scene to the INDX Executive. The FOA
Executive also reports the number of sub-images it created to the "chip_collect"
process.

Each FOA node performs the FOA algorithm on a sub-image and sends the FOA
results to the INDX Executive. The number of nodes running the FOA process is
determined by the expected workload of the system (i.e. input pixel rate) and is
configured by the system architect. Each FOA node gets a sub-image and they
operate in parallel.

The INDX Executive receives the SAR scene (or sub-scene) and ATR results
from each of the FOA process(s). It buffers ATR results until the sub-scene
components have been received. This buffering is due to the single-piped
nature of the MPI communication model. It can cause a communication
bottleneck and is an area that should be examined in future architectures. After
all results for a sub-image have been received, the INDX Executive chips out the
regions of interest as determined by FOA results; and routes the ATR chips to
the CDI node(s). Again, the number of nodes running the CDI process is
determined by the expected workload of the system (i.e. input pixel rate, image
complexity, etc.) and is configured by the system architect. ATR chips are
divided among available CDI nodes and they operate in parallel.

The ATR chips, which pass the CDI algorithm, are communicated to the ID
Executive process.

ATR chips results that fail the CDI algorithm are sent, via the INDX Executive, to
the "chip_collect" process on the ATR Host. Also, the total number of ATR chips
created per image is sent to the "chip_collect" process.

In earlier implementations, the Cuer(FOA) and Indexer(SLD) processes were
combined into a single process on the same processing nodes; and FOA/SLD
ATR chips were routed directly to the MBV(ID) Executive process. However, the

9

current implementation separates the Cuer and Indexer functions on different
nodes. The new INDX algorithm (CDI) is more complex and requires more
processing power than the older Indexer (SLD).

The ID Executive receives the ATR results from each of the CDI process(s). It
buffers ATR results until all CDI nodes have reported. This buffering is due to
the single-piped nature of the MPI communication model. It can cause a
communication bottleneck and is an area that should be examined in future
architectures.

Once the ID Executive receives ATR chips from the CDI processes, it routes the
chips to the identification (ID) algorithms TMPM, TMSE and CMPM. Each chip
does not necessarily get routed to each identification algorithm. The ID
Executive performs some executive control logic which combines the results of
all the ID algorithms into a single ID score, the TMD score. In order for a chip to
be declared as containing a target, the combined TMD score of all algorithms
must be lower than a given threshold. If at any point a chip’s combined score
grows greater than a given intermediate threshold, the target cue is declared a
non-target and the cue is no longer processed and is forwarded to the ATR Host
"chip_collect" process.

On the ATR Host, the "chip_collect" process queues the ATR chips for each
SAR scene sent to the ATR system. ATR chips are buffered until all results for
every scene are accounted for; then the entire chip list is transmitted to the HMI
for operator viewing. Multiple SAR scene results may be queued on the
"chip_collect" at any one time (currently a maximum of 5 scenes). Note the
actual SAR image data is currently not stored in the "chip_collect" process; it
must be transmitted directly from the SAR image formation processor (IFP) to
the HMI.

The system architect, for a given set of conditions determines the number of
nodes contained in an implementation of an ATR system. There can be multiple
instances of any given process. All data flow for the system is specified in
configuration files. An example description of configuration files can be found in
Appendix B:.

10

Internode Communications
The Mercury ATR system uses a combination of communication protocols
between the various system components (nodes). The external interface to the
ATR implements the same interface requirements as previous ATRs (Joint
STARS and TCTA - see Appendix C:). The Message Passing Interface (MPI)
communication software was selected for internal ATR messaging for
standardization purposes across multiple vendor platforms and ease of porting
the ATR architecture to new platforms.

"genericRPC" is a server process used on the ATR Host to receive SAR scene
data from external sources with RPC protocol. It passes the received scenes to
the Host Executive Image Former process. This allows the ATR Host to
immediately receive incoming data from a client (IFP), preventing the client from
blocking and slowing other client tasks. It can be used in conjunction with the
"genericMyri" server but this capability is not currently enabled on this version of
the ATR system (see Appendix C: for more details.).

"resavRPC" is another server process used on the ATR Host to receive ATR
results from internal clients with RPC protocol. It differs from the "genericRPC"
server only in respect that it shares the input message queue(s) with the
"genericMCSB" server. Host Executive Image Former ATR results are passed to
the "chip_collect" process using this server.

All internal messaging between Mercury Compute Environments (CEs), on the
RACEway, is performed using the Message Passing Interface (MPI)
communications software and the ATR Chip API.

The ATR Chip API is a software interface for managing ATR results and
communicating imagery and results between processing nodes. The ATR Chip
API is beyond the scope of this document. For details, refer to the documents
“ATR Chip API User’s Guide”1 and “ATR Chip API Man Pages” 2. There are
several Software protocols the ATR Chip API uses for sending and receiving
data, Remote Procedure Calls (RPC), the Myrinet API, Mercury SMBs, and
Message Passing Interface (MPI).

Since the MTSI MPI/Pro communication software for the Mercury operating
system does not include the Solaris host, another host communication method
was required. The Mercury Interprocessor Communications System (ICS)
supports the use Shared Memory Buffers (SMBs) for this purpose. An ATR Chip
API implementation which includes support for Mercury SMBs was implemented.

genericMCSMB

11

"GenericMCSMB" is a server process used on the ATR Host to receive image
data and algorithm results from the internal Mercury CE sources using the
Mercury Shared Memory Buffer (SMB) objects. A single instance runs on the
ATR Host with Mercury SMB communications. The "genericMCSMB" process
should run at a high priority. This allows the ATR Host to immediately receive
incoming data from a client (FOAEXEC, INDXEXEC, or IDEXEC), thus
preventing the client from blocking and hence slowing other client tasks*. As
messages are received from clients, they are put into a receiving buffer for a
worker task, i.e. the "chip_collect" process. When a worker task is ready for a
new ATR Chip message, it retrieves the message from the receive buffer. After
processing the message, the updated ATR Chip information is sent to the next
process in the data flow.

There can only be one "genericMCSB" task per node. If there are multiple
worker tasks per node, the single "genericMCSMB" process receives all data and
each worker process would have its own input queue. The client is able to
indicate which buffer to put the data in by specifying a service number. At
startup, "genericMCSMB" is configured with a given number of receive buffers
and a service number for each buffer. The one major difference between
"genericMCSMB" and the "genericMyri" process is that the "genericMCSMB"
supports multiple channels (i.e. up to four SMB buffers).

Booting and Startup

* There is however a limit to the number of messages the genericMCSMB task will accept. If the
limit is reached, it will no longer accept new messages. In this case the client process will be
blocked. This prevents the host's memory from being used up if it is sent too many messages at
one time.

genericMCSMB Process Architecture

genericMCSMB
Process

Worker
Process

Input Queue

Client
Process

To next
node

Mercury SMB

Node A

RPC or
Myrinet

Node B

12

The workstation serves as the host for the entire ATR system. It provides for
initialization (booting CEs) and file system services. To bootstrap the entire ATR
take the following steps:

1. Power up the ATR VME chassis and the host workstation.

2. Log into the ATR Host with the username “atruser” to ensure it has booted
properly. Below is an example script. It may be desirable to set the
DISPLAY environment variable.

3. The Mercury Compute Environments (CEs) are not initialized or booted at
this time. Two ATR scripts must be run in order to initialize the Mercury
hardware and then load the individual CEs.

The first Mercury Startup script configures the installed Mercury VME
boards and initializes the Configuration DataBase. The following example
script will initialize the Mercury hardware configuration. This procedure
must be executed once after the ATR Host has booted. An example
Mercury Startup Script and Mercury Configuration File are included in
Appendix B:.

$ rlogin mercury
*
*
*

login: atruser
Password: *******

*
*
*

mercury% set DISPLAY 199.26.46.29:0.0
mercury%

13

4. A second ATR Startup script will automatically start the required
processes on each Mercury CE. It takes a few minutes for the ATR to
boot. Each PowerPC must go out to the VME backplane and load it’s
operating system image, load all process executables, and initialize the
MPI communication interface. Each process must read its configuration
information and then load its appropriate configuration data. The
following example script will initialize the Mercury operating system
(MC/OS) and start the Mercury ATR system. An example Mercury ATR
Startup Script and MPI Process Group File are included in Appendix B:.

*
mercury% cd /atrsys/atr99/bin/mcPPC
mercury% startup2
config init: parsing configuration file /usr/mercury/etc/atrsetup2.conf

*
A rather large listing (~ 1 or 2 pages) will scroll by

*
Board MCH6_0 probed present

*
Board ILK4_1 probed present

*
CE host (CEID 1) probed present
CE CEID2 (CEID 2) probed present
CE CEID3 (CEID 3) probed present
CE CEID4 (CEID 4) probed present
CE CEID5 (CEID 5) probed present
CE CEID6 (CEID 6) probed present
CE CEID7 (CEID 7) probed present
CE CEID8 (CEID 8) probed present
CE CEID9 (CEID 9) probed present
CE FOAEXEC (CEID 10) probed present
CE CEID11 (CEID 11) probed present
CE INDXEXEC (CEID 12) probed present
CE IDEXEC (CEID 13) probed present
mercury%

14

Note that the Mercury window prompt, on the ATR Host, never returns.
This is because this window is now functioning as the console server for
the Mercury ATR. Any error or standard I/O messages, for any of the
Mercury CEs, will appear in this window.

To regain use of this window by typing the <Control C> character
combination on the keyboard while this window is active. Note this aborts
the Mercury CE name server CE. Then enter the following example to
halt Mercury ATR system. Re-running the above script will restart it.

Sometimes a Mercury CE cluster will not be reset by this 'halt_MCatr'
script. If this should happen, it must be reset manually as follows.

Both of these scripts, 'startup2' and 'start_MCatr', could be executed by the ATR
Host workstation at bootup. This would force an automatic Mercury ATR system
boot by executing them from a '/etc/rc3.d/s99atr' file.

*
mercury% cd /atrsys/atr99/bin/mcPPC
mercury% start_MCatr
[1] 10620

*
mpi_foaExec: Program Started

*
[NFS file access]
Config file: /atrsys/atrModules/templates/...

*
A rather large listing (~ 4 or 5 pages) will scroll by

*
load mse templates done

*
load templates done

*
load mpm templates done

*
load CMPM templates done

^Cmercury% halt_MCatr
killing 10620

*
A bunch of Error messages (these can be ignored) will scroll by

*
FOAEXEC successfully reset
mercury%

mercury% sysmc -v -f FOAEXEC reset
*
*

FOAEXEC successfully reset
mercury%

15

The best indication of the ATR state is to monitor the console server boot
messages and wait for all configuration templates to be loaded. This also
displays any error messages that may have occurred.

However, this console server window may not be available all the time (i. e.
automatic booting). Another indication of when the ATR is ready for processing
is to open a user window on the ATR Host workstation. Issue the MC/OS
“sysmc” command to view the status of processes running on each CE. All
algorithm processes will be in the READY state, except FOAEXEC, when it has
finished booting. The "mpi_foaExec" process will be in the I/O BLOCKED state;
waiting for the initial SAR scenes. You should see processes that have names
like “mpi_foaExec", "mpi_indxExec", "mpi_indxExec.***", "mpi_idExec", and
“mpi_id***...**”. Appendix A: shows the state of CEs when they have
successfully booted and are idle waiting for data to process. CMPM is usually
the slowest to boot. If it is finished loading, it will be in the READY state. If it is
still loading it’s templates, it will be in the BLOCKED state.

Input SAR scenes for the ATR are received by the Host Executive Image Former
process. Two processes on the host workstation must be started in order to
accept SAR scenes. The process "hostExec" buffers the incoming data, breaks
it into sub-images, and sends them to the FOA Executive. It uses "genericRPC"
(and/or "genericMyri") to receive and buffer the input ATR images.

All output data from the ATR that is intended for the HMI is routed through the
ATR Host workstation. Three processes on the workstation must be started in
order to perform the routing. The process "chip_collect" queues up the ATR
results on each SAR scene until all of it's component ATR chips have been
processed and then performs the HMI routing function. It uses the
"genericMCSMB" task to receive data from the ATR and the "resavRPC" task to
receive sub-image information from the "hostExec" Image Former process.

% rlogin mercury
login: atruser
Password: *******

*
*

mercury% sysmc -v -f CEID11 ps
CE 11 (CEID11), Running, unreserved, name server 10, PPC with 64MB, on MB 3
 PID State Flags Block_id Args
 0x000b0001 Ready E
 0x000b0021 Ready mpi_idPgaMpmCMpm.ppc 0x20 -config /atrsys/....
Images: 0xb00000xb0001

*
*

mercury% exit
Connection closed.

16

These input and output processes are started by a script called "start_MCatr" in
directory '/atrsys/atr99/bin/mcPPC'. This script may be executed automatically
when the ATR workstation boots. The Solaris boot script '/etc/rc3.d/s99atr' is
used to execute this script at boot time. If the host name of the HMI workstation
changes, the "start_MCatr" script must be changed to reflect the new host name.
To verify that each of the processes have started correctly, login to the ATR Host
workstation and look for the following processes in the process list.

*
mercury% ps -u atruser
 PID TTY TIME CMD

*
 10622 pts/0 0:00 genericMCSMB
 10630 pts/0 0:02 runmc

*
 10621 pts/0 0:00 genericRPC
 10628 pts/0 0:00 hostExec.mc

*
 10562 pts/0 0:00 start_MCatr
 10629 pts/0 0:00 chip_collect
 10617 ? 0:00 sysmc

*
*

 10620 pts/0 0:00 mc_fileServer
 10626 pts/0 0:00 procMCSMB0

*
*

10623 pts/0 0:00 procMCSMB1
 10627 pts/0 0:00 resavRPC
 10625 pts/0 0:00 procMCSMB2

*
*

mercury%
*

17

At this point, the system is ready to receive images from the IFP.

Note that both the Image Formation Process (i.e. dhs) and the HMI Display
process must be started independently. Each of these functions are separate
operations from the ATR; and may consist of very diverse procedures on
different hardware systems. A description of their operation is beyond the scope
of this document but the interface requirements are included in Appendix C:.

18

Getting to Know Your Way Around

There are a total of 12 PowerPC processors comprising the Mercury ATR
system. The PowerPC processors run the MC/OS real-time operating system,
and the ATR workstation processor runs Sun Microsystems Solaris (a Unix
variant) operating system. It is not necessary for the user to be familiar with
these operating systems, but if the user wants to check the state of the
processes and trouble shoot the system, basic knowledge of the Unix and
Mercury Operating System MC/OS environment is required.

Unfortunately, the MC/OS operating system is not as flexible as some other
real-time operating systems. In terms of allowing a user to examine internal
process parameters from the command line, it is very limited. A source level
debugger "gdbmc" is available for real-time operation; but it requires a high-level
of knowledge of the OS (and '-g' re-compilation). The most helpful MC/OS
console server command is the “sysmc .. ps” command which prints out all
processes presently loaded. Using the "sysmc" command it is possible to check
and make sure all processors have booted properly and that they have spawned
all the appropriate tasks. Appendix A: provides example sessions and executing
the “sysmc .. ps” command(s).

If the ATR is running correctly, it is not necessary to monitor its operation. If it is
desirable to monitor the ATR a little more closely, the verbose parameter "-v"
flag(s) may be set to some value in the CEs invocation string. This is a
command line argument which is passed to each ATR process at it's invocation.
Editing the verbose parameter '-v' in the Mercury ATR Startup Script (e.g.
"start_MCatr") file and/or the MPI Process Group File (e.g. "jstarsATR.pg") will
set it to the desired value.

By default (-v 0x20), the ATR Executive and Algorithm processes are configured
to generate TIME results for each ATR chip and totals for each SAR scene. The
ID Executive prints out these ATR TIME results for each SAR scene as it is
processed.

The following example output shows the TIME results as displayed in the
console server window. The exact meaning of each value in the printout varies
form algorithm-to-algorithm and is beyond the scope of this document. It does
represent the type of algorithms (FOA, CDI, etc.) which were utilized and the
times for a SAR scene.

19

Reconfiguration

In theory, any algorithm process can be run on any CE node. The purpose of
this section is to show the user how to reconfigure a given CE node to run a
given algorithm. This may be helpful if a node fails due to a hardware problem
and needs to be removed from the system.

Since the Mercury ATR system comprises PowerPC's with two memory sizes, 32
MBytes and 64 MBytes; some care should be exercised when selecting node
functions. In general, larger memory sizes should be reserved for FOA
processes and Executive processes. This is because the large SAR scenes and
ATR chip images are stored in process heap memory. It would not work if one
tried to allocate 50 MBytes of heap memory on a 32 Mbyte CE node.

The algorithm processes that a given CE node executes are determined by
which ATR Startup script "start_MCatr" and the MPI Process Group file
"jstarsATR.pg" which are executed to start the ATR. Startup scripts and their
corresponding Process Group files are located in the directory
'/atrsys/atr99/bin/mcPPC' on the host workstation.

Two other files that may have an influence on the reconfiguration process are
the Mercury Startup Script "startup2" and Mercury Configuration File
"atrsetup2.conf". These two files determine the CE node names which are
assigned to each PowerPC (i. e. FOAEXEC, INDXEXEC, IDEXEC, etc.). Be
careful if editing the "atrsetup2.conf" configuration file; the file format is unique
for the Mercury hardware setup program. Only change the "CE node names"
unless very familiar with the Mercury OS. The Mercury Startup script "startup2"
is located in the directory '/atrsys/atr99/bin/mcPPC' on the host workstation. The
Mercury Configuration File "atrsetup2.conf" is located in the directory

*
TIME:
alg time1 time2 time3 arg1 arg2 arg3
foa 0.500 0.500 0.500 100 2 0
foa 0.250 1270000.000 0.000 1 1 0
foa 0.250 1260000.000 0.000 0 0 0
foa 0.500 0.500 0.500 200 1 0
cdi 0.200 75000.000 0.000 2 2 4

*
cdi 0.340 0.340 0.340 300 7 0
mpm 0.070 240000.000 0.000 1 1 3

*
pga 0.070 230000.000 0.000 0 0 0
mse 0.280 57000.000 0.000 5 5 2

*
cmpm 0.120 140000.000 0.000 5 5 3
? 0.570 0.570 0.570 400 3 0

*

20

'/usr/mercury/etc' and you may need 'super-user' access' privileges in order to
change it.

If the Mercury Startup script "startup2" and/or Mercury Configuration File
"atrsetup2.conf" are modified, the configuration data base must be reset as
follows. For an example of the Mercury Startup script and Mercury Configuration
file see Appendix B:.

In previous example, the CE 10 & CE 11 nodes, both 64 MBytes of memory,
were renamed. E.g., let’s change the role of CE node11 to run the FOA
Executive and CE node10 to run the ID algorithms.

*
mercury% sysmc -v -f FOAEXEC reset

*
{ resets all CE nodes - FOAEXEC is the name server }

FOAEXEC successfully reset

mercury% configmc -v reset
*

{ Mercury Configuration DataBase reset }
Mercury Configuration DataBase successfully reset

mercury% startup2
config init: parsing configuration file /usr/mercury/etc/atrsetup2.conf

*
A rather large listing (~ 1 or 2 pages) will scroll by

*
Board MCH6_0 probed present

*
Board ILK4_1 probed present

*
CE host (CEID 1) probed present
CE CEID2 (CEID 2) probed present
CE CEID3 (CEID 3) probed present
CE CEID4 (CEID 4) probed present
CE CEID5 (CEID 5) probed present
CE CEID6 (CEID 6) probed present
CE CEID7 (CEID 7) probed present
CE CEID8 (CEID 8) probed present
CE CEID9 (CEID 9) probed present
CE CEID10 (CEID 10) probed present ***** Note Change *****
CE FOAEXEC (CEID 11) probed present ***** Note Change *****
CE INDXEXEC (CEID 12) probed present
CE IDEXEC (CEID 13) probed present
mercury%

21

Note the ATR Startup script "start_MCatr" requires one change because CE
nodes are referred to by name (e.g. FOAEXEC, INDXEXEC, etc.). Use any text
editor (e.g. vi, ..) to make changes. For an example ATR Startup script and MPI
Process Group file see Appendix B:.

Next one change is required in the MPI Process Group File "jstarsATR.pg". Use
any text editor (e.g. vi, ..) to make changes.

Finally three changes must be made to the routing file "id_jstars.cfg". An
example routing configuration file for the ID Executive is given in Appendix B:.

Restart the Mercury ATR by running the ATR Startup script "start_MCatr" as
before.

*
mercury% cd /atrsys/atr99/bin/mcPPC
mercury% vi start_MCatr

{ change the following line - even this could be avoided if
 I'd used CEID10 in the first place for FOAEXEC in this line only
 but this is more readable ? }

sysmc -f FOAEXEC -bcs=0 init FOAEXEC CEID10

:wq
mercury%

*
mercury% cd /atrsys/atr99/bin/mcPPC
mercury% vi jstarsATR.pg

{ change the following line - last line in file }
CEID 10 mpi_idPgaMpmCMpm.ppc -h 52428800 -v 0x20

*
:wq
mercury%

*
mercury% cd /atrsys/atr99/config/robust
mercury% vi id_jstars.cfg

{ change the following lines - CEID10 }
route -alg mpm -host CEID10 -max 1 -tfm LOG -fmt UINT16

*
route -alg cmpm -host CEID10 -max 1 -tfm LOG -fmt UINT16

*
route -alg pga -host CEID10 -max 1 -tfm IQ -fmt SCOMPLEX

*
:wq
mercury%

22

Note this reconfiguration example was one of the most difficult possible because
it involved PowerPC module name changes. However, it did take us through all
the possible reconfiguration steps. Many CE node changes require only
changes to the MPI Process Group file "jstarsATR.pg" and/or the routing file
"id_jstars.cfg".

Verbose Control Parameters

In terms of allowing a user to examine internal process parameters from the
command line, the MC/OS operating system is very limited. A source level
debugger "gdbmc" is available for real-time operation; but it requires a high-level
of knowledge of the OS ('-g' re-compilation) and may alter the program flow.
The previously mentioned "sysmc" command (see Appendix A:) is the only
available runtime command.

Unlike previous ATR versions, individual process parameters are not available
from the VxWorks shell command line. To compensate for this lack of internal
parameter visibility, an extensive set of verbose (-v) option flag settings are
included within the process modules. These verbose flags are set at program
initialization (boot time) by the ATR Startup script "start_MCatr" and the MPI
Process Group file "jstarsATR.pg" (see Appendix B:). They are intended for de-
bugging purposes and not as general user commands.

The core of the ATR system is the FOA, INDX, and ID Executives through with
all of the ATR images must pass. This Executive(s) software takes care of
routing chips to nodes. The difference between the FOA/INDX Executive(s) and
ID Executive is in the scoring software that determines routing for the ID
Executive. The FOA and INDX Executive have simple routing scheme(s), but
the ID Executive is more complicated because it has to combine the results of
the various identification stage algorithms. These Executive nodes are the first
to places to examine when trying to understand or trouble-shoot ATR problems.

When a certain verbose (-v 0x01) flag is set, information on a specific topic is
displayed in the console server window for that CE node. A high-level
knowledge of internal ATR process operation may be required to understand this
printout. This verbose capability is here for anyone who may have a more in-
depth understanding of the ATR operations.

Each CE node in the Mercury ATR system has it's own verbose flag and the
various options may be bit-wise OR'ed together. Because all the verbose
information is displayed on one console server window, the verbose flag for
individual CEs are usually set singularly (or in pairs). This prevents a flood of
incomprehensible information scrolling across the screen from separate CE
nodes.

23

The meaning of each bit set in the verbose flag word varies from process-to-
process and is beyond the scope of this document. Generally, three types of
verbose flag bit settings are useful to the ATR system manager and are
explained in the following table.

Verbose Bit (Hex) Function Description
0x00000001 Display Progress Prints out Executive Progress as

ATR image passes through CE
node.

0x00000020 TIME Attach ATR Timing results to
ATR chip list. Display Timing
results after ID Executive
completes.

0x00001000 Display ATR Chip
List "atr_chipShow"

Prints out ATR chip lists at
selected points in the Executive
flow.
(Note: This may be a large list).

Many more Executive verbose flag bit(s) are available but they may have
meaning only for individual ATR Executive and algorithm processes. Consult,
individual executive, communication, or algorithm source(s) for detailed
operation and meanings.

Several algorithm specific verbose flags may be set in the ATR Startup script
"start_MCatr" and the MPI Process Group files "jstarsATR.pg". These include
the following configuration parameters. Check the individual algorithm
documentation (sources) for values and uses.

Configuration
Parameter

Algorithm Verbose
Flag

Description

-foav lev microfoa_verbose FOA Algorithm Flag Level
-cv lev microcdi_verbose CDI Algorithm Flag Level

-tmd_verbose lev tmd_verbose TMD Scorer Flag Level
-pgav lev pga_verbose PGA Algorithm Flag Level
-msev lev micromse_verbose MSE Algorithm Flag Level
-mpmv lev mocrompm_verbose MPM Algorithm Flag Level
-cmpmv lev microcmpm_verbose CMPM Algorithm Flag Level

24

The Boot Process

The most critical procedure for the ATR is the boot process. If a node fails, it
most likely will occur at boot and/or program initialization.

The best indication of the ATR state is to monitor the console server boot
messages and wait for all configuration templates to be loaded. This also
displays any error messages that may have occurred.

At power-up all the Mercury Compute Environment (CE) VME boards will display
two yellow LEDs (PRC1 and PRC2) as the normal reset mode.

As the compute nodes are initialized (i.e. "sysmc ... init"), the yellow LEDs
extinguish and green LEDs (processors A, B, C, and D) flash depending on
which CE processor is being loaded. Also, the yellow (orange) VME LED
indicates VME backplane activity. When all CEs are loaded and initialized, the
green front panel LEDs will extinguish (turn OFF) except for bursts of monitoring
activity.

At this point, the green LEDs are functioning as an activity indicator for each CE
node. A special CE processor (e.g. currently CE 10) is designated as the
Mercury name server node and may show more activity than the other nodes.
During periods of SAR scene downloading, the FOAEXEC (i.e. CE 10) will
indicate significant VME bus activity.

If an error is detected or a required process(s) dies, the Error message will be
displayed in the Console Server window.

Pressing the "Reset" button on the front panel of the any Mercury VME board will
reset the individual board. However, if any board is reset the whole ATR system
will need to be halted and re-initialized (see Booting and Startup, section 4).

25

References
1. D. W. Doerfler, ATR Chip API User's Manual, internal documentation in HTML

format, Sandia National Laboratories, Albuquerque, NM, version 10/00.
2. D. W. Doerfler, ATR Chip API User's Man Pages, internal documentation in

HTML format, Sandia National Laboratories, Albuquerque, NM, version
11/00.

3. http://www.myri.com, Myricom, Inc., Arcadia, CA.
4. http://www.mpi-softtech.com, MPI Software Technology, Inc., Starkville, MS
5. http://www.mc.com, Mercury Computer Systems, Inc., Chelmsford, MA
6. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The

Complete Reference, The MIT Press, Cambridge, Massachusetts, 1996.

26

Appendix A:
The “sysmc” command and PowerPC Task States

FOA Executive Process

mercury% sysmc -v -f FOAEXEC ps

CE 10 (FOAEXEC), Running, unreserved, name server 10, PPC with 64MB, on MB 3
PID State Flags Block_id Args
0x000a0001 Ready E
0x000a0021 Blocked d45a0 mpi_foaExec -max_bytes 1000000 -co -1 ...

Images: 0xa0000 0xa0001

mercury%

FOA Process (currently only have FOA Executive)

mercury% sysmc -v -f CEID?? ps

CE ?? (CEID??), Running, unreserved, name server 10, PPC with ??MB, on MB ?
PID State Flags Block_id Args
0x000?0001 Ready E
0x000?0021 Ready mpi_foaExec.ppc 0x20 -co -1 -config /...

Images: 0x?0000 0x?0001

mercury%

INDX Executive Process

mercury% sysmc -v -f INDXEXEC ps

CE 12 (INDXEXEC), Running, unreserved, name server 10, PPC with 64MB, on MB 3
PID State Flags Block_id Args
0x000c0001 Ready E
0x000c0021 Ready mpi_indxExec 0x20 -config /atrsys/...

Images: 0xc0000 0xc0001

mercury%

CDI Process (CEID4, CEID5, CEID6, CEID7, CEID8, and CEID9)

mercury% sysmc -v -f CEID4 ps

CE 4 (CEID4), Running, unreserved, name server 10, PPC with 32MB, on MB 1
PID State Flags Block_id Args
0x00040001 Ready E
0x00040021 Ready mpi_indxExec.ppccdi 0x20 -config /...

Images: 0x40000 0x40001

mercury%

ID Executive Process

mercury% sysmc -v -f IDEXEC ps

CE 13 (IDEXEC), Running, unreserved, name server 10, PPC with 64MB, on MB 3

27

PID State Flags Block_id Args
0x000d0001 Ready E
0x000d0021 Ready mpi_idExec 0x20 -indexer cdi -config /...

Images: 0xd0000 0xd0001

mercury%

TMPM, TMSE, and PGA Process (CEID2 and CEID3)

mercury% sysmc -v -f CEID2 ps

CE 2 (CEID2), Running, unreserved, name server 10, PPC with 32MB, on MB 1
PID State Flags Block_id Args
0x00020001 Ready E
0x00020021 Ready mpi_idPgaMpmMse.ppc 0x20 -config /...

Images: 0x20000 0x20001

mercury%

TMPM, CMPM and PGA Process (CEID11)

mercury% sysmc -v -f CEID11 ps

CE 11 (CEID11), Running, unreserved, name server 10, PPC with 64MB, on MB 3
PID State Flags Block_id Args
0x000b0001 Ready E
0x000b0021 Ready mpi_idPgaMpmCMpm.ppc 0x20 -config /...

Images: 0xb0000 0xb0001

mercury%

28

Appendix B:

Example: Mercury Startup Script File

/atrsys/atr99/bin/mcPPC/startup2 :

Mercury Startup Script
#
Note: This script must be run once after the Solaris ATR Host is booted.

Initialize the MCOS Configuration Data Base.
setenv MC_show_progress
configmc -cf /usr/mercury/etc/atrsetup2.conf init

Set Environmental Variables.
setenv MC_device FOAEXEC
setenv MC_name_server FOAEXEC
setenv MC_become_console_server
setenv MC_exec_heap_size 64K
setenv MC_heap_size 20M
setenv MC_grm_size 32K
unsetenv MC_show_progress

Initialize(Boot) the Target Cluster(s).
sysmc -f FOAEXEC init CEID10 CEID11
sysmc -f CEID2 -ns FOAEXEC init CEID2 CEID3 CEID4 CEID5
sysmc -f CEID6 -ns FOAEXEC init CEID6 CEID7 CEID8 CEID9
sysmc -f CEID12 -ns FOAEXEC init CEID12 CEID13

Note: to Reset the MCOS Configuration Data Base.
This script (or another like it) must be run if the following command is used !
configmc -v reset

To Load/Run a VxWorks Target Image(s) - not used with Solaris Host.
setenv MC_remote_host atr_host
rspmc - &

29

Example: Mercury Configuration File

/usr/mercury/etc/atrsetup2.conf :

Mercury Config with Force CPU-50GT Ultra-Sparc IIi Board in Slot#1.
#
Mercury config file for three MCH6 boards all fully populated (P2F);
with four PPC's. The three boards are connected by an ILK4
interlink module.
#
nodes on the MCH6 are PowerPC
#
For details on ppc board defintions refer to the ppc.conf examples

PowerPC 6U board with 4 processors
board MCH6 -name MCH6_0
port VME -pVME 0x10000000 -pVMEws 32M -VMEil 3 -VMEiv 0xfb
port ILK -num 0
node A -memsize 32M -ptesize 0x100000 -node_name "CEID2"
node B -memsize 32M -ptesize 0x100000 -node_name "CEID3"
node C -memsize 32M -ptesize 0x100000 -node_name "CEID4"
node D -memsize 32M -ptesize 0x100000 -node_name "CEID5"

PowerPC 6U board with 4 processors
board MCH6 -name MCH6_1
port VME -pVME 0x12000000 -pVMEws 32M -VMEil 3 -VMEiv 0xfa
port ILK -num 0
node A -memsize 32M -ptesize 0x100000 -node_name "CEID6"
node B -memsize 32M -ptesize 0x100000 -node_name "CEID7"
node C -memsize 32M -ptesize 0x100000 -node_name "CEID8"
node D -memsize 32M -ptesize 0x100000 -node_name "CEID9"

PowerPC 6U board with 4 processors
board MCH6 -name MCH6_2
port VME -pVME 0x14000000 -pVMEws 64M -VMEil 3 -VMEiv 0xf9
port ILK -num 0
node A -memsize 64M -ptesize 0x100000 -node_name "FOAEXEC CEID10"
node B -memsize 64M -ptesize 0x100000 -node_name "CEID11"
node C -memsize 64M -ptesize 0x100000 -node_name "INDXEXEC CEID12"
node D -memsize 64M -ptesize 0x100000 -node_name "IDEXEC MBVEXEC CEID13"

30

#####
##
FORCE 50GT Solaris 2.6.1
##
Sample configuration for host
use host_vme_register ("HOST_DEV", 0x08000000, 0x2000000)
##
#####
board FRC50GT -board_name HOST_BRD -probe=0
port VME -VME 0x08000000 -VMEws 32M
device A -device_name HOST_DEV -memsize 32M
#####"

Defintion for four-slot motherboard interconnect ILK4. The ILK4
board attaches to the P2 connector of the VME backplane and provides
raceway connections between the four motherboards in the system.
board ILK4 -board_name ILK4_1
ILK ports 0 - 3 are raceway connections on the backplane
numbered left to right in a horizontal chassis
port ILK -num 0
port ILK -num 1
port ILK -num 2
port ILK -num 3
ILK ports 4 and 5 allow this ilk to be connected to other ILK boards
port ILK -num 4 # port 4 daisy-chain directive
port ILK -num 5 # port 5 daisy-chain directive

The MCH6 board is in slot 0 of the ILK4
connect ILK ILK4_1 0 MCH6_0
The MCH6 board is in slot 1 of the ILK4
connect ILK ILK4_1 1 MCH6_1
The MCH6 board is in slot 2 of the ILK4
connect ILK ILK4_1 2 MCH6_2
The MCH6 board is in slot 3 of the ILK4
connect ILK ILK4_1 3 MCH6_3

31

Example: ATR Startup Script File

/atrsys/atr99/bin/mcPPC/start_MCatr :

#!/usr/bin/csh
kill_MCatr
#set Default Heap size to 20 Mbytes.
setenv MC_heap_size=0x1400000
#set Default Stack Size to 128 Kbytes.
setenv MC_stack_size=0x00020000
#set Default GRM Size to 64 Kbytes.
setenv MC_grm_size=0x00010000
Initialize MCOS nodes; Name Server - FOAEXEC
sysmc -f FOAEXEC -bcs=0 init FOAEXEC CEID11
sysmc -f INDXEXEC -ns FOAEXEC -bcs=0 init INDXEXEC CEID4 CEID5 CEID6 CEID7 CEID8 CEID9
sysmc -f IDEXEC -ns FOAEXEC -bcs=0 init IDEXEC CEID2 CEID3
mc_fileServer &
start Communication Process(s) (for hostExec).
#genericMyri -qsize 4 -channel 2 -ckey 1022 -rkey 1023 &
genericRPC -qsize 4 -prog 0x20000010 -ckey 1022 -rkey 1023 &
start Communication Process(s) (for chip_collect).
genericMCSMB -qsize 4 -ce 10 -smb 0 -ce1 12 -smb1 -ce2 13 -smb2 -prog 20000009 \

-ckey 1016 -rkey 1017 &
sleep 1
resavRPC -qsize 4 -prog 0x20001000 -ckey 1016 -rkey 1017 &
start Host Executive (image Former).
Max - Scene Size - 24 Mbytes; ATR Report Host - FOAEXEC; Display Host (chip_collect)- atr_host.
hostExec.mc -ch FOAEXEC -np 12 -tfm IQ -fmt scomplex -chunk_size 0x1800000 \

-dh atr_host -dp 0x20001000 &
start Display Interface Program.
Chip List Queing(buffered); Verbose - Off; HMI Host - hmi_host.
chip_collect -v 0x00 -nh hmi_host -np 20000009 &
Chip List (un-buffered); Verbose - Off; HMI Host - hmi_host.
#resav -nh hmi_host -np 20000009 &
start Mercury/MPI ATR system.
runmc -h 50M -f FOAEXEC mpi_foaExec.ppc -rank 0 -size 12 -pg_file ./jstarsATR.pg \

-max_bytes 1000000 -co -1 -v 0x20 -rh INDXEXEC -dh atr_host -hostrank 0 \
-config /atrsys/atr99/config/robust/algorithm.cfg \
-confoa /atrsys/atr99/config/robust/foa.cfg

sleep 1
kill all MCOS processes executing on Mercury CE's.
kill_MCatr
reset MCOS CE's.
sysmc -f FOAEXEC reset
sysmc -f INDXEXEC reset
sysmc -f IDEXEC reset

32

Example: MPI Process Group File

/atrsys/atr99/bin/mcPPC/jstarsATR.pg :

#--
This is the jStars ATR ProcGroup file... the format is
#
CEname /path/to/execname1.ext [args...]
CEID 5 /path/to/execname2.ext [args...]
CEIDs 6-10 /path/to/execname3.ext [args...]
. . .
. . .
. . .
#
Where ext is ppc.
Ranks assigned to machines in order that they are listed.
#
#--
here are some PPC's
FOAEXEC mpi_foaExec.ppc -h 52428800 -v 0x20 -co -1 -max_bytes 1000000 \
-config /atrsys/atr99/config/robust/algorithm.cfg \
-confoa /atrsys/atr99/config/robust/foa.cfg -rh INDXEXEC
INDXEXEC mpi_indxExec.ppccdi -h 52428800 -v 0x20 \
-config /atrsys/atr99/config/robust/algorithm.cfg -rh IDEXEC -dh atr_host \
-hostrank 1
IDEXEC mpi_idExec.ppc -h 52428800 -v 0x20 -indexer cdi \
-config /atrsys/atr99/config/robust/algorithm.cfg \
-conid /atrsys/atr99/config/robust/id_jstars.cfg -rh atr_host -hostrank 2 \
-pgatype mpm
CEIDs 2-3 mpi_idPgaMpmMse.ppc -h 20971521 -v 0x20 \
-config /atrsys/atr99/config/robust/algorithm.cfg \
-conid /atrsys/atr99/config/robust/id_jstars.cfg
CEIDs 4-9 mpi_indxExec.ppccdi -h 20971521 -v 0x20 \
-config /atrsys/atr99/config/robust/algorithm.cfg -rh IDEXEC \
CEID 11 mpi_idPgaMpmCMpm.ppc -h 52428800 -v 0x20 \
-config /atrsys/atr99/config/robust/algorithm.cfg \
-conid /atrsys/atr99/config/robust/id_jstars.cfg

33

Example: Executive Routing Files

/atrsys/atr99/config/robust/id_jstars.cfg :

route -alg mpm -host CEID2 -max 1 -tfm LOG -fmt UINT16 -smp1X -pause 15
route -alg mpm -host CEID3 -max 1 -tfm LOG -fmt UINT16 –smp 1X -pause 15
route -alg mpm -host CEID11-max 1 -tfm LOG -fmt UINT16 -smp 1X -pause 15
route -alg msebb -host CEID2 -max 1 -tfm LOG -fmt UINT16 -smp 1X -pause 15
route -alg msebb -host CEID3 -max 1 -tfm LOG -fmt UINT16 -smp 1X -pause 15
route -alg cmpm -host CEID11 -max 1 -tfm LOG -fmt UINT16 -smp 1X -pause 15
route -alg pga -host IDEXEC -max 1 -tfm IQ -fmt SCOMPLEX -smp 1X -pause 15 -clean
route -alg pga -host CEID2 -max 1 -tfm IQ -fmt SCOMPLEX -smp 1X -pause 15 -clean
route -alg pga -host CEID3 -max 1 -tfm IQ -fmt SCOMPLEX -smp 1X -pause 15 -clean
route -alg pga -host CEID11 -max 1 -tfm IQ -fmt SCOMPLEX -smp 1X -pause 15 -clean
route -done -host mercury -max 10 -pause 15
tmd -file /atrsys/atr99/config/3algs/jstars.lsd.95.offsets.may00
tmd -file /atrsys/atr99/config/3algs/jstars.lsl.95.offsets.may00
tmd -file /atrsys/atr99/config/3algs/jstars.lsr.95.offsets.may00
tmd -file /atrsys/atr99/config/3algs/jstars.rsd.95.offsets.may00
tmd -file /atrsys/atr99/config/3algs/jstars.rsl.95.offsets.may00
tmd -file /atrsys/atr99/config/3algs/jstars.rsr.95.offsets.may00

34

Appendix C:
Interface Requirements

There are two interfaces to the Real-Time ATR System, an input image interface
and a result interface. Synthetic aperture radar images are sent to the ATR
using the input image interface. The ATR system processes the image and
transmits it's results to a human machine interface (HMI) or another application
using the result interface.

Both interfaces use the Sandia ATR Chip API protocol. The API is a way of
managing ATR image data, algorithm cues, and algorithm results within real-time
ATR processing systems. It also provides APIs for communicating this data
between real-time ATR processing modules. By using a unified API between
software modules, the process of connecting modules and building the top-level
control structure of an ATR system is simplified. For a tutorial on the ATR Chip
API and examples for sending and receiving ATR Chip data, refer to the ATR
Chip API User's Manual1,2.

The image and results interfaces can be a Myrinet3 connection or any hardware
transport that supports RPC/TCP/IP internet protocols, e.g. 10/100 BaseT
Ethernet or FDDI. The advantage of using Myrinet is that the ATR Chip API
communication routines use the Myrinet API as the middle layer protocol. This
provides a much higher performance (increased bandwidth with lower latencies)
interface for sending and receiving ATR Chip data. The disadvantage of its use
is that it requires a node in the system, which can accept a Myrinet host adapter
interface and is supported by Myricom software drivers.

Image Formation
Processor

or simulator

Real-Time
ATR System

Human
Machine
Interface• ATR Chip API Protocol

• RPC or Myrinet API
• Myrinet or any supported TCP/IP
 capable interconnect.

35

genericMyri

"genericMyri" is a server process used on the ATR Host to receive image data
and algorithm results from external sources. A single instance runs on every
node in the system with Myrinet communications. The "genericMyri" process
should run at a high priority. This allows the ATR Host to immediately receive
incoming data from a client (IFP), thus preventing the client from blocking and
hence slowing other client tasks*. In addition, communication processing can
occur at the same time as computation processing. As messages are received
from clients, they are put into a receiving buffer for a worker task, i.e. the Image
Former process. When a worker task is ready for a new ATR Chip message, it
retrieves it from the receive buffer. After processing the message, the updated
ATR Chip information is sent to the next process in the data flow.

There can only be one "genericMyri" task per node. If there are multiple worker
tasks per node, the single "genericMyri" process receives all data and each
worker process would have its own Input Queue. The client is able to indicate
which buffer to put the data in by specifying a service number. At startup,
"genericMyri" is configured with a given number of receive buffers and a service
number for each buffer.

There is however a limit to the number of messages the genericMyri task will accept. If the limit is
reached, it will no longer accept new messages. In this case the client process will be blocked.
This prevents the Host's memory from being used up if it is sent too many messages at one time.

genericMyri Process Architecture

genericMyri
Process

Worker
Process

Input Queue

Client
Process

To next
node

Myrinet

Node A

SMB or
MPI

Node B

36

genericRPC (resavRPC)

"GenericRPC" performs the exact same function as "genericMyri" except it
receives data sent using the RPC protocol. "GenericRPC" does not have the
restriction of only being able to execute a single instance of the process, hence it
does not maintain multiple receive buffers. If there are multiple algorithm
processes on a node, each process would have its own "genericRPC" process,
and associated receive buffer, for receiving data.

"GenericRPC" also maintains a send buffer. This is to support a Send/Receive
command. "GenericRPC" places the input data into the receive queue and then
blocks on a read of the send queue. The algorithm process reads the receive
queue, performs its calculations and then places the results in the send queue.
"GenericRPC" then unblocks, reads the send queue and sends the result back to
the client. This is useful during algorithm development for debug purposes and
also allows non-Myrinet nodes to be integrated into the system.

"resavRPC" is another server process used on the ATR Host to receive ATR
results with RPC protocol. It differs from the "genericRPC" server only in respect
that it attaches (shares) the Input Queue(s) of another (e. g. "genericMyri")
server.

GenericRPC Data Flow

GenericRPC
Process

Worker
Process

Input Queue

Client
Process

To next
node

Output Queue

To next
server

Optional data flow for results

Node A

Node B
RPC

RPC or
Myrinet

37

Distribution:

1 MS 0844 Drayton Boozer, 15352
20 MS 0844 Wallace Bow, 15352
1 MS 0844 Brian Bray, 15352
1 MS 1110 Douglas Doerfler, 9223
2 MS 0980 Richard H. Meyer, 5721
1 MS 1110 Neil Pundit, 9223
1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616
1 MS 0612 Review & Approval Desk, 9612

for DOE/OSTI

	Abstract
	Introduction
	Theory of Operation
	Internode Communications
	genericMCSMB

	Booting and Startup
	Getting to Know Your Way Around
	Reconfiguration
	Verbose Control Parameters
	The Boot Process
	Appendix A:
	The “sysmc” command and PowerPC Task States
	FOA Executive Process
	FOA Process (currently only have FOA Executive)
	INDX Executive Process
	CDI Process (CEID4, CEID5, CEID6, CEID7, CEID8, and CEID9)
	ID Executive Process
	TMPM, TMSE, and PGA Process (CEID2 and CEID3)
	TMPM, CMPM and PGA Process (CEID11)

	Appendix B:
	Example: Mercury Startup Script File
	Example: Mercury Configuration File
	Example: ATR Startup Script File
	Example: MPI Process Group File
	Example: Executive Routing Files

	Appendix C:
	Interface Requirements
	genericMyri
	genericRPC (resavRPC)

	Distribution:

