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Abstract

This report describes the design of PICO, a C++ framework for implementing general

parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the

eÆcient implementation of a wide range of branch-and-bound methods on an equally wide

range of parallel computing platforms. We �rst discuss the basic architecture of PICO, in-

cluding the application class hierarchy and the package's serial and parallel layers. We next

describe the design of the serial layer, and its central notion of manipulating subproblem

states. Then, we discuss the design of the parallel layer, which includes 
exible processor clus-

tering and communication rates, various load balancing mechanisms, and a non-preemptive

task scheduler running on each processor. We describe the application of the package to

a branch-and-bound method for mixed integer programming, along with computational re-

sults on the ASCI Red massively parallel computer. Finally we describe the application of

the branch-and-bound mixed-integer programming code to a resource-constrained project

scheduling problem for Pantex.
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Preface

This document summarizes the research conducted under the \Parallel Combinatorial Op-

timization for Scheduling Problems" LDRD, which was funded for �scal years 1998 through

2000. A portion of this research will appear in the conference proceedings entitled Inherently

Parallel Algorithms in Feasibility and Optimization and Their Applications.
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1. Introduction

This report describes PICO (Parallel Integer and Combinatorial Optimizer), an object-

oriented framework for parallel implementation of branch-and-bound algorithms. Parts of

PICO are based on CMMIP [7{10], a parallel branch-and-bound code for solving mixed

integer programming problems on the CM-5 parallel computer. Although CMMIP exhibited

excellent scalability to large numbers of processors, its design had a number of limitations:

�rst, it implemented only one speci�c branch-and-bound algorithm for a single (if fairly

general) class of problems; adapting it to more specialized classes of problems or to use more

advanced algorithmic techniques, such as branch and cut, proved awkward. Second, CMMIP

was designed to showcase certain properties of the CM-5, whose communication network was

fast relative to is processors, with specialized hardware and operating system support for

particular kinds of interprocessor communication. To run eÆciently on systems with less

specialized communication capabilities, it had to be signi�cantly restructured, as in [9].

By contrast, PICO is meant to be a very general parallel branch-and-bound environment.

Using object-oriented techniques, the parallel search \engine" is cleanly separated from the

details of the application and computing platform. This approach allows the same under-

lying parallel search code to be used on a wide variety of branch-and-bound applications,

ranging from those not requiring linear programming bounds to branch-and-cut methods.

The basic search engine also has a large number of run-time parameters that allow the user

to control the quantity and pattern of interprocessor communication. On systems with rela-

tively slow, unsophisticated communication abilities, such as networks of workstations, these

parameters can be \tuned" so that the code attempts a relatively low level of interprocessor

communication. For \MPP" supercomputers with eÆcient hardware and software commu-

nication support, the code can be adjusted to make full use of the available communication

bandwidth. A key design goal is that, in such MPP environments, PICO retain and extend

the level of scalability exhibited by CMMIP.

Flexible software environments, sometimes called \shells," for constructing branch-and-

bound algorithms are not a new idea. Broadly, prior research in this area divides into

two main categories. On the one hand, there are a number of packages aimed at serial

implementation of sophisticated linear-programming-based branch-and-bound methods, like

branch and cut or branch and price. Perhaps the most popular of these environments is

MINTO [29], and another noteworthy contribution is the ABACUS object-oriented branch-

and-cut environment [18]. PICO bases some of its basic class hierarchy structure on ABA-

CUS.

On the other hand, there have also been a number of tools for parallel implementation of

general branch-and-bound algorithms, such as PUBB [35,36], BoB [4], and PPBB-Lib [39].

These e�orts stem primarily from the computer science community, and emphasize parallel

implementation, but appear to be designed primarily for applications with simple bounding

procedures not based on linear programming.

More recently, there have been e�orts at parallel implementation of advanced linear-

programming-based branching methods. Some recent contributions and works in progress

include PARINO [24], SYMPHONY [32], and BCP [1]. SYMPHONY and BCP, which are

similar to one another, are broadly extensible libraries, but their design does not emphasize

scalability to large numbers of processors.
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The primary goal of PICO is to eventually combine capabilities similar to all of these

tools with the scalability and 
exibility of the work-distribution scheme of CMMIP, with

additional adjustments to accomodate a large variety of hardware platforms. PICO allows a

wide range of branch-and-bound methods, linear-programming-based and otherwise, to use

the same basic parallel search engine. This sharing occurs at the link level, without requiring

recompilation. While branch-and-cut capabilities are not yet present, PICO's design should

allow them to be added cleanly, without major changes to the components already developed.

The literature of parallel branch and bound is vast, and it is not possible to give a com-

prehensive review here. Two fairly comprehensive but not particularly recent surveys may

be found in [14] and [23, Chapter 8]; [5] is more recent but less comprehensive survey.

The remainder of this paper describes the design of current components of PICO. Section 2

describes the overall design of PICO, including its class hierarchy and the separation of the

package into serial and parallel layers. Section 3 discusses the design of the serial layer,

which contains a number of novel features not present in earlier branch-and-bound \shells,"

including the ability to use variable search \protocols," and the key notion of subproblem

state. Section 4 describes the parallel layer, and how to migrate an application from the

serial to the parallel layer. The parallel layer implements a compound work distribution

scheme that generalizes CMMIP's, but can run on general hardware platforms. We also

discuss the parallel layer's use of multiple threads of control arbitrated by a non-preemptive

\stride" scheduler, and the issue of terminating the computation. Section 5 describes a

sample application of PICO to mixed integer programming, without cutting planes, and

gives preliminary computational results on the \Janus" massively parallel computer, which

consists of thousands of Pentium-II processors. Section 6 describes the application of the

mixed-integer-programming code to a resource-constrained project scheduling problem for

Pantex. We describe how to exploit problem-speci�c structure to improve the eÆciency and

useability of the basic search engine. Section 7 describes tools and techniques for debugging

and insuring correctness. Section 8 gives conclusions and outlines future development plans

for PICO.

2. The general design of PICO

PICO is currently structured as a C++ class library. It provides a hierarchically-organized

set of capabilities which users may combine and extend to form their own applications. As

with ABACUS, extending the core capabilities of PICO requires the development of derived

classes that incorporate the additional required functionality. This design is in some sense

more demanding than interfaces like MINTO, which simply require the user provide auxilary

functions that are linked into the executable. However, we believe that the class library

approach is more powerful and 
exible, allowing the use of multiple inheritance, which is

critical to PICO's design.

Figure 1 shows a simpli�ed conceptual design, or inheritance tree of the library; elements

with solid boundaries have been completed or are in an advanced state of deveopment,

while those with dashed boundaries are in the planning or early development stages. At

the root of the inheritance tree is the PICO core, which provides basic capabilities for

describing and parallelizing branch-and-bound algorithms. Branch-and-bound methods that

have specialized bounding procedures not requiring direct use of linear programming can be
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de�ned as direct descendents of the PICO core. Currently there is one such algorithm, for

solving binary knapsack problems.

PICO Core

Knapsack

PANTEX
Other LP-based

Applications

PICO Branch-and-Cut Core

TSP
Other B&C

PICO MIP

Applications

Applications
Other non-LP

Figure 1. The current conceptual inheritance tree for PICO, in simpli�ed form. Dashed lines

indicate components in the planning or early development stages.

The PICOMIP package extends the PICO core by providing generic capabilities for solving

mixed integer programs, using commercial LP solvers to solve their linear programming re-

laxations, as will be described in Section 5. For specialized MIP applications, the PICO MIP

can itself be extended and re�ned by, for example, employing application-speci�c branch-

ing rules, fathoming rules, and heuristic methods for generating incumbent solutions. For

example, it is straightforward to extend the PICO MIP to include LP-based approximation

algorithms for scheduling problems, using the LP relaxation available at each node. We

have exploited this 
exibility for applications like the PANTEX production planning prob-

lem, which addresses a diÆcult scheduling problem within the U.S. Department of Energy.

This application will be discussed in a separate paper.

We plan to extend the PICO hierarchy by creating a generic branch-and-cut capability

that extends PICO MIP. This generic branch-and-cut could then be extended and re�ned as

needed to handle speci�c applications such as the traveling salesman problem (TSP).

PICO consists of two \layers," the serial layer and the parallel layer. The serial layer pro-

vides an object-oriented means of describing branch-and-bound algorithms, with essentially

no reference to parallel implementation. The serial layer's design, described in Section 3,

has some novel features, and we expect it to be useful in its own right. For users uninter-

ested in parallelism, or simply in the early stages of algorithm development, the serial layer

10



PICO Serial Layer

PICO Parallel Layer
Serial Application

(binaryKnapsack)

(parallelBinaryKnapsack)
Parallel Application

Figure 2. The conceptual relationships of PICO's serial layer, the parallel layer, a serial

application (in this case, binaryKnapsack), and the corresponding parallel application (in

this case, parallelBinaryKnapsack).

allows branch-and-bound methods to be described, debugged, and run in a familiar, serial

development environment.

The parallel layer contains the core code necessary to create parallel versions of serial

applications. To parallelize a branch-and-bound application developed with the serial layer,

the user simply de�nes new classes derived from both the serial application and the parallel

layer. A fully-operational parallel application only requires the de�nition of a few additional

methods for these derived classes, principally to tell PICO how to pack application-speci�c

problem and subproblem data into MPI message bu�ers, and later unpack them.

Any parallel PICO application constructed in this way inherits the full capabilities of the

parallel layer, including a wide range of di�erent parallel work distribution and load balancing

strategies, and user-con�gurable levels of interprocessor communication. Application-speci�c

re�nements to the parallelization can then be added by the user, but are not required.

Section 4 describes the parallel layer, and Figure 2 shows the conceptual relationship between

the two layers, a serial application, and its parallelization.

PICO's parallel layer was designed using a distributed-memory computation model, which

requires message passing to communicate information between processors. We expect that

this design will be e�ective on a wider range of systems than a design based on a shared-

memory model. Although it is always possible to emulate distributed memory and message

passing on hardware with memory-sharing capabilities, it is much more diÆcult to do the

reverse. Emulating shared memory without hardware support may involve signi�cant loss

of eÆciency and low-level control. Furthermore, shared memory, either hardware-supported

or emulated, becomes rarer, more expensive, or both as the number of processors increases.

Aside from portability considerations, we are particularly interested in the application of

PICO on DOE's massively parallel systems, for which distributed-memory parallel models

have proven particularly e�ective.
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The parallel layer is implemented using the MPI [37] standard for message-passing be-

tween processors. There are currently two portable, standard message-passing subroutine

libraries for constructing distributed-memory programs, MPI and PVM [13]. We selected

MPI because it is designed to be customized for maximum performance on MPP systems

like Janus, the ASCI Red supercomputer. The design of PVM stresses the ability to operate

on heterogeneous platforms, at some sacri�ce in performance.

3. The serial layer

To de�ne a serial branch-and-bound algorithm, a PICO user extends two fundamental

PICO classes, branching and branchSub, the principal classes in the PICO serial layer. The

branching class stores global information about a problem instance and contains methods

that implement various kinds of serial branch-and-bound algorithms, as described below.

The branchSub class stores data about each subproblem in the branch-and-bound tree, and

it contains methods that perform generic operations on subproblems. This basic organization

is borrowed from ABACUS [18], but it is more general, since there is no assumption that

cutting planes or linear programming methods are involved.

For example, our binary knapsack solver de�nes a class binaryKnapsack, derived from

branching, to describe the capacity of the knapsack and the possible items to be placed in

it. We also de�ne a class binKnapSub, derived from branchSub, which describes the status of

the knapsack items at nodes of the branching tree (i.e. included, excluded, undecided); this

class descrubes each node of the branch-and-bound tree. Each object in a subproblem class

like binKnapSub contains a pointer back to the corresponding instance of the global class,

in this case binaryKnapsack. Through this pointer, each subproblem object can �nd global

information about the branch-and-bound problem. Finally, both branching and branchSub

are derived from a common base class, picoBase, containing mainly common symbol de�-

nitions and run-time parameter objects. Figure 3 illustrates the basic class hierarchy for a

serial PICO application.

3.1. Subproblem states

A novel feature of PICO, even at the serial level, is that subproblems remember their

state. Each subproblem progresses through as many as six of these states, boundable,

beingBounded, bounded, beingSeparated, separated, and dead, as illustrated in Figure 4.

A subproblem always comes into existence in state boundable, meaning that little or no

bounding work has been done for it, although it still has an associated bound value; typically,

this bound value is simply inherited from the parent subproblem. Once PICO starts work

on bounding a subproblem, its state becomes beingBounded, and when the bounding work

is complete, the state becomes bounded.

Once a problem is in the bounded state, PICO may decide to branch on it, a process

also called \separation" or \splitting." At this point, the subproblem's state becomes

beingSeparated. Once separation is complete, the state becomes separated, at which

point the subproblem's children may be created. Once the last child has been created, the

subproblem's state becomes dead, and it may be deleted from memory. Subproblems may

also become dead at earlier points in their existence, because they have been fathomed or

represent portions of the search space containing no feasible solutions.

Class branchSub contains three abstract virtual methods, namely boundComputation,

12



branching

picoBase

Static Base Class

Global Pointer

branchSub
Global Pointer

binaryKnapsack

Application Global Class

binKnapSub

Application Subproblem Class

Figure 3. Basic class hierarcy for a serial PICO application (in this case, binaryKnapsack,

with corresponding subproblem class binKnapSub).

boundable

beingBounded

bounded

beingSeparated

separated

dead

C
hi

ld
re

n

boundComputation()

boundComputation()

splitComputation()

splitComputation()

makeChild()

Figure 4. PICO's subproblem state transition diagram. It is possible that a single appli-

cation of boundComputation may take a subproblem from the boundable state, through

beingBounded, to bounded. Similarly, a single use of splitComputation may move a sub-

problem from bounded, through beingSeparated, to separated.
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splitComputation, and makeChild, that are responsible for applying these state transitions

to subproblems. PICO's search framework interacts with applications primarily through

these methods; de�ning a branch-and-bound application with PICO primarily consists of

providing de�nitions for these three operators for the application subproblem class (e.g.

binKnapSub).

The boundComputation method's job is to move the subproblem to the bounded state,

updating the data member bound to re
ect the computed value. The boundComputation

method is allowed to pause an inde�nite number of times, leaving the subproblem in the

beingBounded state. The only requirement is that any subproblem will eventually become

bounded after some �nite number of applications of boundComputation. This 
exibility

allows PICO to support branch-and-bound variants where one can suspend bounding one

subproblem, set it aside, and turn one's attention to another subproblem or task in the

meantime. The subproblem's bound, re
ected in the data member bound, may change at

each step of this process.

The splitComputation method's job is similar to boundComputation's, but it manages

the separation process. Eventually it must change the problem state to separated, set the

data member totalChildren to the number of child subproblems. Before that, however, it is

allowed to return an inde�nite number of times with the problem left in the beingSeparated

state. This feature allows PICO to implement branch-and-bound methods where the work

in separating a subproblem is substantial and might need to be paused to attend to some

other subproblem or task. The subproblem's bound can be updated by splitComputation

if the separation process yields additional information about it.

Finally, makeChild returns a single child of the subproblem it is applied to, which must be

in the separated state. After the last child has been made, the subproblem becomes dead.

In addition to boundComputation, splitComputation, and makeChild, several additional

virtual methods must to be de�ned to complete the speci�cation of a branch-and-bound

application. These de�nitions are described in Section 3.3.

3.2. Pools, handlers, and the search framework

PICO's serial layer orchestrates serial branch-and-bound search through a module called

the \search framework" (literally, branching::searchFramework). The search framework

acts as an attachment point for two user-speci�able objects, the \pool" and the \handler,"

whose combination determines the exact \
avor" of branch and bound implemented.

The pool object dictates how the currently active subproblems are stored and accessed,

which e�ectively determines the branch-and-bound search order. Currently, there are three

kinds of pool: heap sorted by subproblem bound (biased slightly toward more integral prob-

lems if the bounds are all approximately equal), stack, and FIFO queue. If the user speci�es

the heap pool, then PICO will follow a best-�rst search order; specifying the stack pool

results in a depth-�rst order, and specifying the queue results in a breadth-�rst order. For

particular applications, however, users may implement additional kinds of pools, thus spec-

ifying other search orders.

Critically, at any instant in time, the subproblems in the pool may in principle represent

any mix of states: for example, some might be boundable, and others separated. This

feature gives the user 
exibility in specifying the bounding protocol, which is a separate issue

from the search order; the \handler" object implements a particular bounding protocol.
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To illustrate what a bounding protocol is, consider the branch-and-bound method for

mixed integer programming as typically described by operations researchers: one removes a

subproblem from the currently active pool, and computes its linear programming relaxation

bound. If the bound is strong enough to fathom the subproblem, it is discarded. Otherwise,

one selects a branching variable, creates two child subproblems, and inserts them into the

pool. This type of procedure is often called \lazy" bounding (see for example [6]), because

it views the bounding procedure as something time-consuming (like solving a large linear

program) that should be delayed if possible. In the PICO framework, lazy bounding is

implemented by keeping all subproblems in the active pool in the boundable state.

An alternative approach, common in work originating from the computer science commu-

nity, is usually called \eager" bounding (again, see [6] for an example of this terminology).

Here, all subproblems in the pool have already been bounded. One picks a subproblem out of

the pool, immediately separates it, and then forms and bounds each of its children. Children

whose bounds do not cause them to be fathomed are returned to the pool.

Lazy and eager bounding each have their own advantages and disadvantages, and the best

choice may depend on both the application and the implementation environment. Typically,

implementors seek to postpone the more time-consuming operations in the hope that the

discovery of a better incumbent solution will make them unnecessary. So, if the bounding

operation is much more time-consuming than separation, lazy bounding is most appealing.

If the bounding operation is very quick, but separation more diÆcult, then eager bounding

would be more appropriate. Eager bounding may save some memory since nodes can be

immediately fathomed, but has a larger task granularity, resulting in somewhat less potential

for parallelism.

Because PICO's serial layer stores subproblem states and lets the user specify a handler

object, it gives users the freedom to specify lazy bounding, eager bounding, or other proto-

cols. The search framework routine simply extracts subproblems from the pool and passes

them to the handler until the pool becomes empty. Currently, there are three possible han-

dlers, eagerHandler, lazyHandler, and hybridHandler, although the user is free to write

additional handlers if greater 
exibility is required.

The eagerHandler and lazyHandler methods implement eager and lazy bounding re-

spectively by trying to keep subproblems in the bounded and boundable states respec-

tively. Problems that become fathomed or dead anywhere in the process of applying the

boundComputation and splitComputation methods are immediately discarded. Further,

to permit users to pause the bounding or separation processes, any subproblem that re-

mains in the beingBounded state after the application of boundComputation, or in the

beingSeparated state following the application of splitComputation, is immediately re-

turned to the pool.

The hybridHandler implements a strategy that is somewhere between eager and lazy

bounding, and is perhaps the most simple and natural given PICO's concept of subprob-

lem states. Given any subproblem, hybridHandler performs a single application of ei-

ther boundComputation, splitComputation, or makeChild, to try to advance the subprob-

lem one transition through the state diagram. If the subproblem's state is boundable or

beingBounded, it applies boundComputation once. If the subproblem's state is bounded or

beingSeparated, it applies splitComputation once. Finally, if the state is separated, the

handler performs one call to makeChild, and inserts the resulting subproblem into the pool.
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Figure 5. The search framework, pool, and handler. Each \SP" indicates a branch-and-

bound subproblem.
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It discards any subproblems becoming fathomed or dead at any point in this process.

The combination of multiple handlers, multiple pool implementations, and the user's free-

dom in implementing boundComputation and splitComputation gives rise to enormous


exibility in the kinds of branch-and-bound methods that the serial layer can implement.

Figure 5 depicts the relationship of the search framework, pool, and handler.

3.3. Serial layer virtual methods and run-time parameters

In addition to boundComputation, splitComputation, and makeChild, there are a num-

ber of additional abstract virtual methods in classes branching and branchSub that the

user must de�ne in order to fully describe an application of the PICO serial layer. The two

classes also have a large number of other virtual methods that may be overridden at the

user's option. Table 1 describes all the required virtual methods and the more commonly-

overridden optional ones. The most noteworthy are candidateSolution, updateIncumbent,

and incumbentHeuristic, all members of branchSub.

The candidateSolution method tells the PICO search handlers whether a bounded sub-

problem needs to be separated at all. If this method returns TRUE, PICO assumes that the

computed bound is in fact the objective value of the best feasible solution within the portion

of the search space corresponding to the subproblem. If this bound is better than the current

incumbent, the handler calls updateIncumbent to replace the current incumbent with the

solution corresponding to the subproblem. By default, updateIncumbent simply stores the

corresponding objective value; in most applications, the user will override this function to

also store a representation of the solution for possible later output.

The incumbentHeuristic method provides a way for the user to specify a heuristic that

takes a subproblem for which candidateSolution returns FALSE and attempts to perturb

it into a feasible solution. In applications with linear-programming-based bounds, for ex-

ample, incumbentHeuristic might try to round the fractional variables found in the linear

programming relaxation. If it succeeds in �nding a solution better than the incumbent, the

heuristic should call updateIncumbent. PICO's handlers only call incumbentHeuristic for

a subproblem if the method haveIncumbentHeuristic returns TRUE. The default implemen-

tation of haveIncumbentHeuristic always returns FALSE.

PICO also provides a general mechanism for specifying run-time parameters. Table 2 shows

the limited number of parameters that control the operation of serial PICO. Technically, the

parameters are static objects that are members of the base class picoBase. User applications

can add an unlimited number of their own run-time parameters, so long as their names are

di�erent from those in picoBase.

3.4. Memory management

Managing the pool involves frequent allocation and deallocation of small pieces of memory.

This can incur a signi�cant time overhead from system calls, especially on a parallel machine.

Perhaps even more importantly, in systems such as Janus, the constant memory overhead

for allocation from the system heap can be close to the size of the memory request, which

halves the useable memory.

Therefore, PICO has its own memory management system for small, regular items such

as objects for pools or subproblem tokens (see section 4.2). PICO requests memory in large

blocks, and subdivides these blocks. This e�ectively eliminates the memory overhead and

almost eliminates calls to the system heap, at the cost of managing freelists.
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Required virtual method de�nitions: class branching

readIn Read problem instance data from the command line

and/or data �le.

blankSub Construct an empty subproblem.

Required virtual method de�nitions: class branchSub

setRootComputation Turn a blank subproblem into the root problem.

boundComputation Compute (perhaps only partially) the bound of a sub-

problem in the boundable or beingBounded state.

splitComputation Separate (perhaps only partially) a subproblem in the

bounded or beingSeparated state.

makeChild Create a child of a subproblem in the separated state.

candidateSolution Return TRUE if a bounded subproblem does not need fur-

ther separation.

Optional virtual method de�nitions: class branching (selected)

preprocess Preliminary computation before starting to search

aPrioriBound \Quick and dirty" bound on the best possible solution

(e.g. for knapsack, the sum of all item values).

initialGuess Initial heuristic feasible solution value (e.g. for knapsack,

the result of a simple greedy heuristic).

haveIncumbentHeuristic Return TRUE if there is a heuristic for forming possible

feasible solutions from bounded subproblems.

serialPrintSolution Write incumbent solution to an output stream.

Optional virtual method de�nitions: class branchSub (selected)

incumbentHeuristic Attempt to produce a feasible solution from the current

(bounded) subproblem.

updateIncumbent Store a new incumbent.

Table 1

Virtual method members of the branching and branchSub classes. Derived classes should

also have their own constructors and destructors.
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Name Meaning Default

statusPrintFrequency Number of subproblems to bound between

status printouts

1000

depthFirst Use a stack as the pool, causing depth-�rst

search

FALSE

breadthFirst Use a queue for the pool, causing breadth-

�rst search

FALSE

lazyBounding Use the lazy bounding handler FALSE

eagerBounding Use the eager bounding handler FALSE

relTolerance A subproblem may be fathomed if its bound

is within this factor of the incumbent objec-

tive value

10�7

absTolerance A subproblem may be fathomed if its bound

is within this absolute distance of the incum-

bent objective value

0

validateLog Causes quality-control output to be dumped

to a �le for later analysis

FALSE

Table 2

Run-time parameters de�ned in the static base class picoBase, which control the generic

operation of the serial layer. The default pool is a heap, which causes best-�rst search, and

the default handler is hybridHandler.
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4. The parallel layer

The parallel layer's capabilities are encapsulated in the classes parallelBranching and

parallelBranchSub, which have the same function as branching and branchSub, respec-

tively, except that they perform parallel search of the branch-and-bound tree. Both are

derived from a common, static base class parallelPicoBase, whose function is similar to

picoBase, containing mainly common symbol and run-time parameter de�nitions. Further-

more, each of parallelBranching and parallelBranchSub is derived from the correspond-

ing class in the serial layer.

To turn a serial application into a parallel application, one must de�ne two new classes.

The �rst is derived from parallelBranching and the serial application global class. In the

knapsack example, for instance, we de�ned a new class parallelBinaryKnapsack which has

both parallelBranching and binaryKnapsack as virtual public base classes. We call

this class the global parallel class. For each problem instance, the information in the global

parallel class is replicated on every processor.

The global parallel class's basic inheritance pattern is repeated for parallel subproblem

objects. In the knapsack case, we de�ned a parallel subproblem class parBinKnapSub to

have virtual public base classes binKnapSub and parallelBranchSub. As with the se-

rial subproblems, each instance of parBinKnapSub has a parallelBinaryKnapsack pointer

that allows it to locate global problem information. Figure 6 depicts the entire inheritance

structure for the parallel knapsack application.

Once this basic inheritance pattern is established, the parallel application automatically

combines the description of the application coming from the serial application (in the knap-

sack case, embodied in binaryKnapsack and binKnapSub) with the parallel search capabil-

ities of the the parallel layer. For the parallel application to function, however, a few more

methods must be de�ned, as summarized in Table 3.

First, the parallel application global and subproblems classes both require constructors

and destructors. However, these methods are essentially trivial to de�ne: the destruc-

tors may have empty bodies, and the constructors may simply invoke the constructors for

their underlying classes. For technical reasons, the user must de�ne two related methods,

blankParallelSub in the global class, and makeParallelChild in the subproblem class.

These methods ful�ll the same roles as blankSub and makeChild, respectively, but in a par-

allel setting. Typically, these methods do nothing but call the constructor for the parallel

subproblem class.

The packing and unpacking virtual methods are of greater interest. The parallel global and

subproblem objects each require the de�nition of two methods, pack and unpack. The pack

method is responsible for packing all the application-speci�c data in an instance of the class

into a bu�er suitable for sending between processors using the MPI datatype MPI PACKED.

The unpack method is responsible for unpacking the same data from an MPI receive bu�er,

and reconstituting the data members of the class instance. The parallel global class pack

and unpack methods are used to distribute the global problem de�nition when setting up

PICO, while the subproblem class pack and unpack methods are used to send subproblems

from one processor to another.

Optionally, the user may also de�ne a packChild method, whose functionality is equivalent

to makeChild followed by a pack on the resulting subproblem. This method is discussed
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branching

Global Pointer

branchSub
Global Pointer

binaryKnapsack

Application Global Class

binKnapSub

Application Subproblem Class

Parallel Subproblem Class

parBinKnapSub

parallelBranchSubparallelBranching

Global PointerparallelBinaryKnapsack

Parallel Global Class

Global Pointer

Figure 6. Inheritance structure of the parallel knapsack application. Other parallel applica-

tions are similar.
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further in Section 4.4.8.

In addition to the pack and unpack methods, the parallel application must de�ne one ad-

ditional packing-related method, spPackSize. This method, a member of the global parallel

class, should return an integer giving the maximum number of bytes required to bu�er the

application-speci�c data for a single subproblem. It is allowed to use any information in the

global parallel class, and will not be called until the global information has been replicated on

all processors. The parallel layer uses this method when allocating bu�er space for incoming

subproblem information.

We now describe the operation of the parallel layer. The layer is very 
exible, but as a

result it is also quite complex. For reasons of space, our description is somewhat abbreviated.

Required virtual method de�nitions: class parallelBranching

pack Pack application-speci�c global problem information

into a bu�er.

unpack Unpack application-speci�c global problem informa-

tion from a bu�er.

spPackSize Estimate the maximum bu�er space needed to pack

the application-speci�c portion of one subproblem.

blankParallelSub Construct an empty subproblem.

Required virtual method de�nitions: class parallelBranchSub

pack Pack application-speci�c subproblem data into a

bu�er.

unpack Unpack application-speci�c subproblem data from a

bu�er.

parallelMakeChild Construct a single child of the current subprob-

lem, which must be in the separated state. Sim-

ilar to makeChild, but returns an object of type

parallelBranchSub.

Table 3

Abstract virtual methods of the parallelBranching and parallelBranchSub classes.

4.1. Processor clustering

PICO's parallel layer employs a generalized form of the processor organization used by the

later versions of CMMIP [8,10]. Processors are organized into clusters, each with one hub

processor and one or more worker processors. The hub processor serves as a \master" in work-

allocation decisions, whereas the workers are in some sense \slaves," doing the actual work of

bounding and separating subproblems. Unlike CMMIP, however, the degree of control that

the hub has over the workers may be varied by a number of run-time parameters, and may
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not be as tight as a classic \master-slave" system. Further, the hub processor has the option

of simultaneously functioning as a worker; CMMIP only permitted this kind of function

overlap in clusters consisting of just one processor.

Three run-time parameters, all de�ned in parallelPicoBase, govern the partitioning of

processors into clusters: clusterSize, numClusters, and hubsDontWorkSize. First PICO

�nds the size k of a \typical" cluster via the formula

k = min

�
clusterSize;max

��
p

numClusters

�
; 1

��
;

where p is the total number of processors. Processors are then gathered into clusters of size

k, except that if k does not evenly divide n, the last cluster will be smaller. In clusters whose

size is greater than or equal to hubsDontWorkSize, the hub processor is \pure," that is, it

cannot simultaneously function as a worker. In clusters smaller than hubsDontWorkSize,

the hub processor is also a worker. The rationale for this arrangement is that, in very

small clusters, the hub will be lightly loaded, and its spare CPU cycles should be used to

help explore the branch-and-bound tree. If a cluster is too big, however, using the hub

simultaneously as a worker may unacceptably slow the hub's response to messages from its

workers, slowing down the entire cluster. In this case, a \pure" hub is more advantageous.

The value of hubsDontWorkSize must be at least 2, so it is impossible to form a cluster

with no workers.

4.2. Tokens and work distribution within a cluster

Unlike some \master-slave" implementations of branch and bound, each PICO worker

maintains its own pool of active subproblems. This pool may be any of the kinds of pools

described in Section 3.2, although all workers use the same pool type. Depending on how

various run-time parameters are set, however, the pool might be extremely small, in the

extreme case never holding more than one subproblem. Each worker processes its pool

in the same general manner as the serial layer: it picks subproblems out of the pool and

passes them to a search handler until the pool is empty. There are currently three parallel

search handlers, called eagerHandler, lazyHandler, and hybridHandler, which behave in

a similar manner to their respective serial counterparts, but with the additional ability to

release subproblems from the worker to the hub.

For simplicity throughout the remainder of this section, we describe these handlers for a

con�guration with a single cluster consisting of all available processors.

4.2.1. Random release of subproblems

The parallel version of eagerHandler decides whether to release a subproblem as soon

as it has become bounded. The parallel version of lazyHandler and hybridHandler make

the release decision when they create a subproblem. The decision is a random one, with

the probability of release controlled by run-time parameters. Released subproblems do not

return to the local pool; instead, the worker cedes control over these subproblems to the hub.

Eventually, the hub may send control of the subproblem back to the worker, or to another

worker.

If the release probability is 100%, then every subproblem is released, and control of sub-

problems is always returned to the hub at a certain point in their lifetimes (at creation for

lazyHandler and hybridHandler, and upon reaching the bounded state for eagerHandler).
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In this case, the hub and its workers function like a standard \master-slave" system. When

the probability is lower, the hub and its workers are less tightly coupled. The release proba-

bility is controlled by the run-time parameters minScatterProb, targetScatterProb, and

maxScatterProb. The use of three di�erent parameters, instead of a single one, allows the

release probability to be sensitive to a worker's load. Basically, if the worker appears to have

a fraction 1=k of the total work in the cluster, then it uses the value targetScatterProb. If it

appears to have less work, then a smaller value is used, but no smaller than minScatterProb;

if it appears to have more work, it uses a larger value, but no larger than maxScatterProb.

4.2.2. Subproblem tokens

When a subproblem is released, only a small portion of its data, called a token [33,7], is

actually sent to the hub. The subproblem itself may move to a secondary pool, called the

server pool, that resides on the worker. A token consists of only the information needed

to identify a subproblem, locate it in the server pool, and schedule it for execution. On a

typical 32-bit processor, a token requires 48 bytes of storage, much less than the full data

for a subproblem in most applications. Since the hub receives only tokens from its workers,

these space savings translate into reduced storage requirements and communication load at

the hub.

When making tokens to represent new, boundable subproblems, the parallel version of

lazyHandler and hybidHandler take an extra shortcut. Instead of creating a new subprob-

lem with parallelMakeChild and then making a token that points to it, they simply create

a token pointing to the parent subproblem, with a special �eld, whichChild, set to indicate

that the token is not for the subproblem itself, but for its children. Optionally, a single token

can represent multiple children. If every child of a separated subproblem has been released,

the subproblem is moved from the worker pool to the server pool.

4.2.3. Hub operation and hub-worker interaction

Workers that are not simultaneously functioning as hubs periodically send messages to

their controlling hub processor. These messages contain blocks of released subproblem to-

kens, along with data about the workload in the worker's subproblem pool, and other mis-

cellaneous status information.

The hub processor maintains a pool of subproblem tokens that it has received from work-

ers. Again, this pool may be any one of the pools described in Section 3.2. Each time

it learns of a change in workload status from one of its workers, the hub reevaluates the

work distribution in the cluster. The hub tries to make sure that each worker has a suf-

�cient quantity of subproblems, and optionally, that they are of suÆcient quality (that is,

with bounds suÆciently suÆciently far from the incumbent). Quality balancing is controlled

by the run-time parameter qualityBalance, which is TRUE by default. Workload quan-

tity evaluation is via the run-time parameter workerSPThreshHub; if a worker appears to

have fewer than this many subproblems in its local pool, the hub judges it \deserving" of

more subproblems. If quality balancing is activated, a worker is also judged deserving if

the best bound in its pool is worse than the best bound in the hub's pool by a factor ex-

ceeding the parameter qualityBalanceFactor. Of the workers that deserve work, the hub

designates the one with fewest subproblems as being most deserving, unless this number

exceeds workerSPThreshHub; in that case, the workers are ranked in reverse order of the

best subproblem bound in their pools.
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As long as there is a deserving worker and the hub's token pool is nonempty, the hub picks

a subproblem token from its pool and sends it to the most deserving worker. The message

sending the subproblem may not go directly to that worker, however; instead, it goes to

the worker that originally released the subproblem. When that worker receives the token, it

forwards the necessary subproblem information to the target worker, much as in [7,8,10,33].

This process will be described in more detail in Section 4.4.8.

Only one subproblem is dispatched at a time; if a token in the hub pool represents several

problems, the hub splits it into two, with one token representing one subproblem, and the

other any remaining subproblems. It sends the former token and retains the latter.

If the subproblem release probability is set to 100%, and workerSPThreshHub is set to 1,

the cluster will function like a classic master-slave system. The hub will control essentially all

the active subproblems, and send them to workers whenever those workers become idle. Less

extreme parameter settings will reduce the communication load substantially, however, at the

cost of possibly greater deviation from the search order that would have been followed by a

serial implementation. Also, setting workerSPThreshHub larger than 1 helps to reduce worker

idleness by giving each worker a \bu�er" of subproblems to keep it busy while messages are

in transit or the hub is attending to other workers.

The best setting of the parameters controlling the degree of hub-worker communication

depends on both the application and the hardware, and may require some tuning, but the

scheme has the advantage of being highly 
exible without any need for reimplementation or

recompilation.

In addition to sending subproblems, the hub periodically broadcasts overall workload infor-

mation to its workers, so the workers know the approximate relation of their own workloads

to other workers'. This information allows each worker to adjust its probability of releasing

subproblems appropriately.

4.2.4. Rebalancing

If the probability of workers releasing their subproblems is set too low, or the search process

is nearing completion, workers in a cluster have workloads that are seriously out of balance,

yet the hub's token pool is empty. In this case, the hub has no work to send to underloaded

workers. To prevent such diÆculties, there is a secondary mechanism, called \rebalancing,"

by which workers can send subproblem tokens to the hub. If a worker detects that it has a

number of subproblems exceeding a user-speci�able factor workerMaxLoadFactor times the

average load in the cluster, it selects a block of subproblems in its local pool and releases

them to the hub. The hub can then redistribute these subproblems to other workers.

4.3. Work distribution between clusters

With any system-application combination, there will be a limit to the size of a cluster that

can operate eÆciently, even if its hub does not have any worker responsibilities. Depending

on the application and the hardware, the hub may simply not be able to keep up with all the

messages from its workers, or it may develop excessively long queues of incoming messages.

At this point, one option is to adjust the PICO's run-time parameters to reduce the

amount of intra-cluster communication, but if communication is reduced too much, the hub

may have diÆculty maintaining a proper load balance in the cluster. To be able to use

all the available processors, it may then be necessary to partition the system into multiple

clusters. Another reason for such partitioning is that particular classes of applications may
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simply perform better with the more randomized search pattern that results from multiple

clusters [8,10].

PICO's method for distributing work between clusters resembles CMMIP's [8,10], with

some additional generality: there are two mechanisms for transferring work between clusters,

scattering and load balancing. Scattering comes into play when subproblems are released by

the handlers. If there are multiple clusters, and a worker has decided to release a subproblem,

the handler makes a second random decision as to whether the subproblems should be

released to the worker's own hub or to some other, randomly-chosen cluster's hub. This

random decision is controlled by the apparent workload of the cluster relative to the entire

system, and the parameters minNonLocalScatterProb, targetNonLocalScatterProb, and

maxNonLocalScatterProb.

To supplement scattering, PICO also uses a form of \rendezvous" load balancing that

resembles CMMIP's [8,10]; [26] and [19] also contain earlier, synchronous applications of

the same basic idea. This procedure also has the important side e�ect of gathering and

distributing global information on the amount of work in the system, which in turn facilitates

control of the scattering process, and is also critical to termination detection in the multi-hub

case.

Critical to the operation of the load balancing mechanism is the concept of the workload

at a cluster c at time t, which we de�ne as

L(c; t) =
X

P2C(c;t)

jz(c; t)� z(P; c; t)j�:

Here, C(c; t) denotes the set of subproblems that c's hub knows are controlled by the cluster

at time t, z(c; t) represents the incumbent value known to cluster c's hub at time t, and

z(P; c; t) is the best bound on the objective value of subproblem P known to cluster c's hub

at time t. The exponent � is either 0, 1, or 2, at the discretion of the user, much as in

CMMIP. If � = 0, only the number of subproblems in the cluster matters. Values of � = 1 or

� = 2 give progressively higher \weight" to subproblems farther from the incumbent. The

default value of � is 1.

The rendezvous load balancing mechanism organizes all the cluster hub processors into a

balanced binary tree. Periodically, messages \sweep" through this entire tree, from the leaves

to the root, and then back down to the leaves. These sweeps are organized into repeating

\rounds," each consisting of three sweeps, synchronization, survey, and balance, as follows:

Synchronization Sweep: Each hub waits until its cluster appears to be idle, its cluster

has bounded a suÆcient number of subproblems, or a suÆcient amount of time has

passed (\suÆcient" is de�ned by run-time parameters). Once these conditions are met,

it makes sure that it has received a message from each of its child hubs, if any. Once all

such messages have been received, the hub then sends a message to its parent, unless

it is at the root of the tree. Once the root receives messages from all its children, it

initiates a broadcast down the tree that the rest of the load balancing process may pro-

ceed. This technique is designed so that the survey sweep, which follows immediately,

can start in a roughly synchronized way.

Survey Sweep: Each processor waits to receive workload information from its children, if

any. It adds these workloads to its own current workload, and forwards the result up
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the tree. The root is then able to compute an approximate total workload for the

system, which it broadcasts down the tree. The messages in this sweep also contain

information on the incumbent values z(c; t) used to compute the cluster workloads, and

other miscellaneous information that is aggregated as the messages pass up the tree.

If there is any mismatch between the incumbent values used at the various clusters,

or a similar mismatch between the hub and any worker within a cluster, the survey is

repeated immediately. Such a mismatch means that a new incumbent value is currently

being broadcast (as will be described in Section 4.4.7), and some processors have not

had an opportunity to prune their subproblem pools to re
ect this new incumbent.

The aggregate workload information is therefore inconsistent, and must be gathered

again. Once consistent information has been gathered, the balance sweep may begin.

Balance Sweep: First, each processor determines whether its cluster should be a donor of

work, a receiver of work, or (typically) neither. Donors are clusters whose workload

exceeds the average by a factor of at least loadBalDonorFac, while receivers must be

below the average by at least loadBalReceiverFac. A single message sweep of the

tree then counts the total number of donors d and receivers r, and also assigns a unique

donor and receiver number. The �rst y = minfd; rg donors and receivers then \pair

up" via a rendezvous procedure involving 2y point-to-point messages; see [15, Section

6.3] or [8,10] for a more detailed description of this process. Within each pair, the

donor sends a single message to the reciever, containing enough subproblem tokens to

approximately equalize their workloads. Thus, the sweep messages are followed by a

possible additional 3y point-to-point messages. After these messages, if any, the entire

load balance round process repeats, starting with another synchronization sweep.

Under certain conditions, including at least once at the end of every run, a termination

check sweep is substituted for the balance sweep. This mechanism will be described in

Section 4.5.

Peer-to-peer load balancing mechanisms are frequently classi�ed as either \work stealing,"

that is, initiated by the receiver, or \work sharing," that is, initiated by the donor. The

rendezvous method is neither; instead, donors and receivers eÆciently locate one another on

an equal basis, possibly across a large collection of processors.

4.4. Thread and scheduler architecture

From the preceding discussion, it is clear that the parallel layer requires each processor

to perform a certain degree of multitasking. CMMIP handled multitasking by combining

user-level interrupts for the highest-priority tasks with an ad hoc round-robin scheme for the

remaining ones. The former mechanism was not portable, and the latter lacked 
exibility

(for example, a hub could not simultaneously serve as a worker and still control other worker

processors). Instead, PICO de�nes a thread of control for each required task on a processor,

and manages these threads through a scheduler module. The threads share a common global

memory space through a pointer to the instance of parallelBranching being solved.

PICO is not truly multithreaded code, however. We do not use POSIX or other standard

thread packages, and, on each processor, PICO appears to the operating system as only a

single thread of control. The scheduler is non-preemptive, much like the schedulers in the

Macintosh and Windows 3.x operating systems: the scheduler explicitly calls each thread as
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a subroutine, and the thread restores control to the scheduler, only when it is ready, through

a standard subroutine return. There are several reasons why we took this approach:

� Many versions of MPI are not \thread-safe" or make their own use of threads. If PICO

used \true" threads, it could not be ported to such systems.

� The approach simpli�ed debugging and development.

� Since PICO's tasks can be trusted to cooperate, a non-preemptive discipline is adequate

to control them.

� Since threads only return control at times of their choosing, they can leave global

data structures in a known state, and there is no need to worry about memory access

con
icts and locks.

� The approach allowed us to use our own customized scheduling algorithm.

PICO contains a general-purpose scheduler, which is designed to be useful for other ap-

plications as well. We now describe the general algorithm used the the scheduler. Further

detail for an earlier but similar version of the scheduler may be found in [11].

4.4.1. The scheduling algorithm

At any given time, each thread is in one of three states, ready, waiting, or blocked. Only

threads in the ready state are allowed to run. Threads in the waiting state are waiting

for the arrival of a particular kind of message, as identi�ed by an MPI tag. The scheduler

periodically tests for message arrivals, and changes thread states from waiting back to ready

as necessary. Threads in the blocked state are waiting for some event other than a message

arrival. The scheduler periodically polls these threads by calling their ready virtual methods;

when a blocked thread's ready method starts returning TRUE, the scheduler changes it back

to the ready state.

Threads are organized into groups, each group having its own priority. Group priorities

are absolute, in the sense that the scheduler only runs threads from the highest priority

group that contains ready threads. Only if all higher-priority thread groups are empty will

the scheduler permit thread in lower groups to run.

Each group may use one of two scheduling disciplines. The �rst is a simple round-robin

scheme, in which ready threads are selected in a repeating cyclic order. The second pos-

sibility is a variant of stride scheduling [40,20]. This scheme allows the user to specify the

approximate fraction of CPU resources that should be allocated to each thread.

In the stride scheduling discipline, each thread i has a bias bi that speci�es its importance.

Let R denote the ready list, the set of ready threads in the highest nonempty group, then the

fraction of the CPU devoted to thread i 2 R will be approximately bi=
P

j2R bj. Each thread

also has a value vi which speci�es its current position in the run queue. The scheduler runs

the ready thread with the lowest vi, and when the thread returns, updates vi  vi + u=bi,

where u is the amount of time just used by the thread.

All stride-scheduled threads start with vi = 0. When a waiting or blocked thread is about

to enter the ready list again, its vi is reset to maxfvi; v� + kig, where v� = minj2Rfvjg,
and ki 2 < may be user-speci�ed. To prevent numerical precision problems, a constant is

periodically subtracted from all the vi, i 2 R, so that v� = 0.
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4.4.2. Thread group organization and thread types

The threads used by PICO belong to two broad categories: message-triggered threads and

compute threads. There are two thread groups: the message-triggered threads occupy the

higher-priority group, which uses round-robin scheduling, and the compute threads make up

the lower-priority \base" group, which uses stride scheduling.

A message-triggered thread typically spends most of its time waiting for messages. When

a message with the right tag arrives, the scheduler changes the thread's state from waiting

to ready. Since message-triggered threads are in the high-priority group, they tend to run

soon after they become ready. Once it runs, the thread processes the message, issues a

nonblocking receive for another message, changes its state back to waiting, and returns.

Compute threads are usually in the ready state, but may be in the blocked state if they

have exhausted all their available work. These threads are scheduled in the proportional-

share manner described above, so long as no message-triggered threads need to run. By

default, all of PICO's compute threads contain logic to actively manage their granularity,

that is, the amount of time u they consume before returning to the scheduler. There is a

run-time parameter timeSlice which speci�es an ideal time quantum for compute threads.

Compute threads try to manage the amount of work they do at each invocation so that

the average value of u is approximately equal to timeSlice. The best value of timeslice

depends on the hardware, the MPI implementation, and the application. A very small value

means that message-triggered threads will run soon after their messages arrive, giving fast

communication response, whereas a large value will minimize the overhead expended on the

scheduler and entering and exiting compute threads. Ideally, one attempts to balance these

two goals; in preliminary testing, we have had good results with a value approximately 20

times the time the scheduler needs to check for arriving messages.

4.4.3. Beginning the parallel search

To read in a problem instance, the parallel layer uses the readAndBroadcast method.

ReadAndBroadcast �rst uses the readIn method, inherited from the serial application, to

construct the global class information on a single processor. It then uses the the global

class pack method to copy this information to a bu�er, which it then broadcasts. All other

processors receive the broadcast, and then use the global class unpack method to construct

their replicas of the global class object.

Once a problem has been created and replicated on all processors, the application calls the

parallelSearch method to search for a solution. Before starting the scheduler, this routine

�rst calls the preprocess virtual method on all processors. By rede�ning preprocess for

the parallel global class, the application may parallize its preprocessing procedure; Section 5

gives an example of this technique.

ParallelSearch next initializes the scheduler, creating the thread groups and calling

the virtual method placeTasks to create the threads and place them the groups. The

default version of placeTasks should suÆce for many applications, and we describe below

all the threads that it creates. If the application requires additional threads, it can rede�ne

placeTasks to call the default placeTasks, and then create and place any additional threads.

Again, we will present an example in Section 5.

Once the scheduler has been initialized, the �rst worker in the �rst cluster creates a blank

subproblem, calls makeRoot to turn it into the root problem, and then inserts the root

29



problem into its local pool. On all processors, ParallelSearch then calls the scheduler to

begin running all the threads. On each processor, the scheduler then runs until some thread

sets the scheduler's global termination 
ag, after which parallelSearch exits.

We now describe all the threads created by the default version of placeTasks, as also

depicted in Figure 7.

Incumbent Heuristic Thread
Hub Thread

Worker Auxiliarly Thread

Hubs Workers Workers
which are not Hubs(which may be Hubs)

Worker Thread

Subproblem Receiver Thread

Incumbent Broadcast ThreadAll Processors

Load Balancer Thread
(multiple clusters only) Subproblem Server Thread

(optional)

Figure 7. Threads used by the PICO core. Compute threads are shaded; all other threads

are message-triggered.

4.4.4. The worker thread

The worker thread is a compute thread that is present on every worker processor. This

thread simply extracts subproblems from the worker's local pool and passes them to the

search handler. If the local pool is empty, the worker thread enters the blocked state.

The worker thread attempts to regulate its granularity by adjusting the number of sub-

problems it passes to the handler before returning to the scheduler. For applications in

which the bounding or separation procedure is very time consuming, and may need to

be interrupted to allow message-triggered threads to run, the application may modify this

granularity-adjustment scheme. Essentially, the virtual methods boundComputation and

splitComputation can set the argument controlParam to some value proportional to the

amount of work they have done. On subsequent calls, the granularity-control algorithm will

pass, via this same argument, a suggested amount of work to perform.

The worker thread is also responsible for pruning the local subproblem pool and server

pool on its processor. If running on a processor that is also a hub, the worker thread also calls

the method parallelBranching::activateHub before returning control to the scheduler.

This call allows the hub logic to respond to any changes in the cluster's load resulting from

the work just performed, and is described in more detail in Section 4.4.6.

30



4.4.5. The incumbent heuristic thread

The incumbent heuristic thread is a second, optional compute thread. It is only created on

worker processors, and only if the both the application's haveIncumbentHeuristic virtual

methods returns TRUE and the run-time parameter useIncumbentThread is also set to TRUE.

This thread's task is to search for better incumbent solutions. The algorithm and granularity-

adjustment procedure used are entirely application-speci�c.

When any of the parallel search handlers move a subproblem to the bounded state, and the

incumbent heuristic thread exists, they call the feedToIncumbentThread virtual method,

a member of the parBranchSub class. This method can decide whether the subproblem

partial solution is of interest to the incumbent heuristic, and, if so, can copy any necessary

data to the incumbent heuristic's application-speci�c internal data structures. There is

also a quickIncumbentHeuristic virtual method which may be called for any bounded

subproblem. This method is meant for a \quick and dirty" procedure not requiring a separate

thread (such as �lling out a knapsack by the greedy method, or rounding up a fractional

solution to a set covering problem).

On worker processors, the scheduler uses stride scheduling to arbitrate between the worker

and incumbent heuristic threads. The biases of these threads are controlled by the run-

time parameters boundingPriorityBias and incSearchPriorityBias, respectively. In the

near future, we plan to add a feature whereby these biases may be dynamically adjusted

throughout the course of a run. This technique will allow applications to make heavy use of

the incumbent heuristic early in a run, when it is important to locate good incumbents, and

then phase it out as the run progresses and it is better to concentrate on proving optimality

of the current incumbent.

4.4.6. The hub thread

The hub thread is a message-triggered thread that runs on hub processors, and listens

for messages with the tag hubTag. These messages may originate from any worker in the

system. These messages contain workload status information, tokens of subproblems that are

being released or scattered to the hub, and/or acknowledgements of receipt of subproblems

dispatched from the hub.

When it awakes, the hub thread processes the contents of one of these messages, making

the requisite changes in hub logic data structures. It then calls the method activateHub.

Calling activateHub triggers all the functions of the hub, including pruning the hub's pool

of active tokens, distributing subproblems to any deserving workers, and possibly sending

messages to workers informing them of the workload distribution in the cluster. When an

event occurs that might alter the workload situation in the cluster, activateHub may be

called by any thread running on a hub processor, and not just the hub thread.

4.4.7. The incumbent broadcast thread

The incumbent broadcast thread is a message-triggered thread that runs on all processors,

and listens for incumbent broadcast messages. Each processor stores both the best objective

value it currently knows for the incumbent, incumbentValue, and and the rank of the proces-

sor that generated that value, incumbentSource. PICO's incumbent broadcasting scheme is

similar to CMMIP's: when a new incumbent is found, one uses the parallelBranching class

signalIncumbent method to begin the broadcast. The incumbent broacasting procedure

organizes all processors into a balanced tree rooted at the initiating processor. The tree's
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radix may be speci�ed by a run-time parameter; the default is a binary tree. The broad-

cast messages contain the objective value of the newly-found incumbent, and the processor

number of the tree root.

When the incumbent thread receives an incumbent broadcast message, it compares the

message's objective value to the incumbent value currently known at the current processor. If

the received value is worse, the incumbent thread does not attempt to continue the broadcast.

If the two values are equal, it then compares the processor rank of the processor initiating the

broadcast to incumbentSource. Only if the broadcast root is smaller than incumbentSource

will the thread attempt to continue the broadcast. This procedure guarantees that if several

processors simultaneously try to broadcast incumbents, that one of the broadcasts with the

best value will reach all processors, while the others will be aborted.

If the broadcast should continue, the incumbent broadcast thread updates the local values

of incumbentValue and incumbentSource to those in the message, and forwards this infor-

mation along the broadcast tree. It sets 
ags forcing the worker thread to become ready,

and then prune the server and local worker pools. The incumbent broadcast thread also sets

a similar 
ag to force the hub thread, if present, to perform pruning of the hub pool.

4.4.8. The subproblem server thread

The subproblem server is a message-triggered thread that runs on all workers, and listens

for work dispatch messages from the hubs. These messages contain a subproblem token and

the processor rank of a worker to which the corresponding subproblem should be delivered.

The subproblem server thread's task is to deliver the full information about the speci�ed

subproblem to the worker in question.

Upon receiving a message, the subproblem server thread decodes the subproblem token

and the rank w of the target worker. It also checks the bound on the token to make sure

that the problem cannot be fathomed because of some recently broadcast incumbent value.

If the subproblem can be fathomed, it sends an acknowledgement message to the originating

hub indicating that the subproblem was properly received, but does not bother actually

trying to send the subproblem data to the worker. If, as usual, the subproblem cannot be

fathomed, the thread then calls the method parallelBranching::deliverSP to deliver the

subproblem data

If a hub is also a worker, and it wishes to send some other worker a subproblem stored in

its own server pool, the hub simply calls the deliverSP method directly, rather than sending

a message to itself.

The deliverSP method �rst matches the token with the corresponding subproblem P on

the worker; this step is very eÆcient, because the token contains the memory address of P .

DeliverSP then separately handles four possible cases, depending on whether the token is a

\child" or \self" token, and whether the target worker w is the same as the current processor

p, or some other worker. \Self" tokens refer directly to some subproblem in the server pool,

while \child" tokens refer to a child of such a subproblem. The cases are handled as follows;

1. If the token is a self token, and w = p, P is transferred from the server pool to the

local worker pool, and is marked as \delivered."

2. If the token is a self token, and w 6= p, the server thread uses the application's sub-

problem pack method to pack P into a bu�er, and sends this bu�er to w. P is then
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deleted from the server pool.

3. If the token is a child token, and w = p, the server thread uses parallelMakeChild

to extract a child P 0 of P , and places P 0 in the the local worker pool, marking it as

delivered. If P has no children left, it is deleted.

4. If the token is a child token, and w 6= p, the server thread uses the application's

packChild method to pack a child P 0 of P into a bu�er. The packChild method has

the default implementation of creating a child with makeParallelChild, placing it in

a bu�er with pack, and then deleting it. However, the application is free to substitute

a more eÆcient, application-dependent implementation. The bu�er is sent to w, and

P is deleted if it has no children left.

The messages sent in cases 2 and 4 have MPI tag deliverSPTag.

After a subproblem is marked as delivered on a worker that is not a hub, an acknowledge-

ment for that subproblem is included in the worker's next communication to its hub. If the

worker is itself a hub, the acknowledgement is entered directly into the hub data structures.

4.4.9. The subproblem receiver thread

The subproblem receiver thread is a message-triggered thread present on all workers, and

listens for messages with the tag deliverSPTag. Upon receipt of such a message, the thread

calls blankParallelSub and then the application's subproblem unpack method to recreate

the data structures for the subproblem, which it then marks as delivered. If the subproblem

cannot be fathomed, the thread inserts it into the local worker pool.

4.4.10. The worker auxiliary thread

The worker auxiliary thread is a message-triggered thread that exists only on workers that

are not also hubs. It listens for messages with the MPI tag workerTag, which are sent by

hubs to their workers. Each of these messages can contain one of three possible \signals"

from the hub to the worker:

Load Information Signal: The message contains information on cluster and system-wide

workloads. The worker auxiliary thread copies this information to the workers local

data structures.

Termination Check Signal: This signal indicates PICO is double-checkiing whether the

system is indeed fully idle and ready to terminate. The worker auxiliary thread imme-

diately replies with a message containing a count of the total messages the worker has

sent. The reason for this procedure will be described in Section 4.5 below.

Terminate Signal: The hub has determined that the branch-and-bound search has termi-

nated. The worker auxiliary thread sets the scheduler's global termination 
ag. When

the thread exits, the scheduler terminates, and the call to parallelSearch returns.

4.4.11. The load balancer thread

The load balancer thread orchestrates the load balancing scheme described in Section 4.3.

It runs on all hub processor. It contains �nite state machine logic to move all processor
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approximately synchronously through the various message sweeps and other operations de-

scribed in Section 4.3. It is basically a message-triggered thread that listens for various kinds

of messages, depending on what phase of the load balancing procedure it is currently in. One

exception is that it may enter the blocked state when at the beginning of the synchronize

sweep, waiting for conditions to be right for another round of load balancing. The scheduler

unblocks it when the sweep is allowed to start.

The load balancer thread is responsible for terminating the search computation, as de-

scribed below. If there is only one cluster, then no load balancing is necessary, and termina-

tion is the thread's only function. In this case, it immediately puts itself in the termination

check sweep mode, �rst listening for termination check reply messages from the workers.

4.5. Termination detection

Proper detection of termination can be a tricky issue in asynchronous distributed-memory

computations. CMMIP's termination procedure relied on speci�c properties of the CM-5's

communication hardware and operating system, and could not be generalized to PICO.

In parallel branch and bound, it is important to terminate as soon as, but not before, there

are no active subproblems left to be bounded or separated anywhere in the system. In some

implementations of MPI, it is also important that when a processor calls MPI Finalize to

terminate its computation, that it have received all messages sent to it by other processors,

except any that were cancelled via MPI Cancel. If not, MPI Finalizemay \hang" or generate

system errors.

So, for PICO to be able to terminate, all worker subproblem pools and hub token pools

must be empty, and all messages sent must be received. We call this situation quiescence.

4.5.1. The case of a single cluster

If there is only one cluster, quiesence is relatively straightforward to detect. The hub

knows which subproblems it has assigned to which workers, and through the delivery marking

and acknowledgement mechanism, which of these problems have been received. It also has

recent workload information from each of its workers. Furthermore, the workload information

reported by workers contains counts of total messages sent and received, so hubs can also

detect messages in transit.

Once a worker becomes idle, it has no more subproblems in its active pool, and it reports

its workload to its hub immediately. If it is idle and receives a message of any kind, it resends

its idle report to the hub, with updated message send and receive counts included.

Suppose that the following conditions hold:

1. The hub has an empty token pool.

2. All the clusters workers have reported themselves idle.

3. All subproblems dispatched from the hub have been acknowledged as delivered.

4. All processors agree on the objective value of the incumbent, and which processor

stores the incumbent.

5. The total counts of message sends and receives appear to match when summed over

all processors in the cluster.
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In this situation, no more work can possibly arise in the normal operation of the system,

and no more messages can be sent by any of the PICO core threads. However, there is

still a possiblity of premature termination if any application-speci�c threads have messages

in transit; enen thought the total count of messages sent and received may appear equal,

messages may still be in transit due to the phenomenon of \aliasing," as described in the

next section. To check for this possibility, the hub sends a termination check signal to all

workers. The workers' replies to these messages wake up the hub's load balancing thread,

which double-checks the message counts, and terminates the computation if appropriate.

This process is described in more detail immediately below.

4.5.2. Multiple clusters

When there are multiple clusters, properly detecting quiescence is more diÆcult, even if no

application-speci�c threads are present. Basically, termination is detected at the end of the

survey sweep, when the total workload information summed over all clusters is distributed to

all hub processors. If all clusters have no active subproblems and the total counts of sent and

received messages match, then it is likely that the search can terminate. Note that messages

used by the load balancing process itself must necessarily be in balance at this point, and so

do not need to be included in the message counts.

However, even if the survey sweep detects that all clusters appear to be idle and the

total counts of sent and received messages match, it is still possible that the system is not

quiescent. Thus, we call this state pseudoquiescence. The reason is that it is not possible

to sample the message send and receive counts from all processors at exactly the same

time. Thus, a message can contribute to the total reception count collected by the sweep,

without yet contributing to the total send count. The reception of such a message can then

masquerade as the reception of another message whose send operation is included in the

count but has not been received even by the end of the sweep. Such \aliasing" can cause

premature detection of termination. If such a message contained a scattered subproblem,

then PICO might terminate with an incomplete proof of optimality, or possibly an incorrect

solution. This phenomenon can also occur if there is only a single cluster, but there are

application-speci�c threads that send interprocessor messages.

To prevent such premature termination, we use a variant of the \four counter" method

due to Mattern [27], which seems to be the most eÆcient technique available (the name is

misleading, since it is shown in the original reference [27] that the method can be implemented

with only three counters). In PICO's case, the procedure works as follows: at the end of

the survey sweep, the load balancer threads on all hubs detect pseudoquiescence. Instead of

proceeding to the balance sweep, they substitute a termination check sweep instead.

At the start of the termination check sweep, each hub sends a termination check signal

message to all its workers (except itself, if it is also a worker). The worker auxiliary threads

on these workers respond with their total message sent counts. Once all its workers have

responded, each hub adds the counts for its entire cluster, including itself, together. The

sweep messages now proceed, adding this information recursively up the cluster hub tree.

The overall message count sums form at the the cluster tree root, and are broadcast back

down the tree. If the total message sent count collected by the termination check sweep

is the same as that collected by the immediately preceeding survey sweep, then aliasing

is impossible, and the system was actually quiescent at the end of the last survey sweep;
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see [27] for a proof. In this case, the load balancer thread on each hub sends a termination

signal message to all its cluster's workers, and then sets the scheduler termination 
ag. If the

counts do not match, then true termination has not occurred, and the load balancer thread

simply commences another round of load balancing.

Note that if there is only one cluster, the \tree" used in the termination check \sweep" just

consists of a single node and no edges. If the termination check fails in the one-cluster case,

the load balancer simply starts another termination check sweep, listening for termination

check reply messages from the workers. The signal to send these messages will come from

the hub thread the next time it detects possible termination.

5. Application to mixed integer programming

To demonstrate how the PICO core can be used, we now describe the application of the

PICO class library to the solution of general mixed integer programming problems, without

the use of cutting planes. This application is the \PICO MIP" referred to in Section 2 and

Figure 1.

We stress that this application is not yet meant to be a completely state-of-the-art MIP

solver, as it is lacking a number of features present in the best commercial codes. At this

point, we present it to illustrate how the PICO core can be easily extended to include

additional, advanced features for applicaions, and to illustrate the degree of parallelism that

PICO can acheive.

Technically, the PICO MIP can solve any problem in the industry-standard MPS format.

For convenience, we will assume in our discussion that the problem being solved is to �nd

x 2 <n satisfying

min c>x

S.T. Ax = b

` � x � u

xj integer 8 j 2 Z;

(1)

where c 2 <n, b 2 <m, A is an m � n matrix, ` 2 [�1;+1)
n
, u 2 (�1;+1]

n
, ` � u,

and Z � f1; : : : ; ng is a nonempty set of indices of variables that are required to take

whole-number values. Note that inequality constraints can easily be accomodated in this

formulation by introducing slack variables, as is the case with most linear programming

solver software.

In the standard branch-and-bound algorithm for this problem, the root problem is sim-

ply (1) with the integrality constraints removed. The remaining subproblems are similar,

but with some of the lower bounds `j increased or upper bounds uj decreased, for j 2 Z.

Let `(P ) and u(P ) denote the lower and upper bound vectors for any given subproblem P .

The bound z(P ) for subproblem P is obtained by solving the corresponding linear program,

yielding some linear programming solution x(P ). The value z(P ) = c>x(P ) is a lower bound

on the objective value any solution x of (1) that has `(P ) � x � u(P ). If xj(P ) is integer

(to within some speci�ed numerical tolerance) for all j 2 Z, then x(P ) represents a feasible

solution to (1) that dominates all other solutions with `(P ) � x � u(P ).

If there exists any j 2 Z for which xj(P ) is not integer, then the subproblem must be

separated. We select some such j, call it j(P ), and create a down child subproblem P� with

uj(P )(P
�) = bxj(P )c and an up child P+ with `j(P )(P

+) = dxj(P )e.
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5.1. Pseudocosts

One of the keys to making this \textbook" branch-and-bound method work eÆciently in

practice is to make a good choice of the branching variable j(P ) from among the set J(P )

of indices j 2 Z for which xj(P ) is not integer.

The modeler may specify branching \priorities" to aid in this decision: for example, vari-

ables specifying whether or not a particular production plant is to be built would have higher

priority than variables specifying which products would be made in each plant. However,

priorities are not available for all problems, and often there are many eligible variables with

the same priority.

To choose among branching variables, we use a time-tested technique employing pseudo-

costs [2]. At any time t, let K(t) denote the collection of all subproblems P for which z(P )

is known. Then de�ne

S+j (t) =
n
P 2 K(t)

��� P+ 2 K(t); j(P ) = j
o
:

The \up" pseudo-cost of variable xj, j 2 Z, at any time t such that S+j (t) 6= ;, is

�+j (t) =

0
@ 1���S+j (t)���

1
A X

P2S+
j
(t)

 
z(P+)� z(P )

dxj(P )e � xj(P )

!
:

This quantity attempts to measure how rapidly the subproblem optimal objective value

increases, on average, as xj is forced upward. We de�ne the \down" pseudocost in a similar

way, but this time tracking how the objective value changes as variables are forced downward:

S�j (t) =
n
P 2 K(t)

��� P� 2 K(t); j(P ) = j
o
:

��j (t) =

0
@ 1���S�j (t)���

1
A X

P2S
�

j
(t)

 
z(P�)� z(P )

xj(P )� bxj(P )c

!
:

The method for choosing a branch variable is similar to CMMIP's: for each j 2 J(P ), we

calculate a \score" and branch on the variable maximizing the score. To compute the score,

we use the pseudocosts to estimate the respective degradations D+
j and D�

j in the objective

value for the up and down children, via:

D+
j = �+j (t) (dxj(P )e � xj(P ))

D�

j = ��j (t) (xj(P )� bxj(P )c) :

The score is then computed by

�j = �0Qj + �1minfD
+
j ; D

�

j g+ �2maxfD
+
j ; D

�

j g;

where Qj is the priority of variable j and �0, �1, and �2 are speci�ed via run-time parameters.

Typically, �0 is chosen very large, so that priority is the overriding consideration. Also, one

typically sets �2 = 0, or at any rate �2 � �1=10. Thus, after priority, the next most

important consideration is trying to simultaneously \push up" the bounds of both child

subproblems.

A critical issue is what to do when S+j (t) = ; or S
�

j (t) = ;. Here, we take a di�erent

approach than CMMIP, shown to be superior by Linderoth [24]. Every time the algorithm
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encounters an index j 2 J(P ) � Z that has not been fractional in any prior subproblem

solution, it \probes" | that is, computes the objective values for | the subproblems P̂+
j and

P̂�

j that would result if j were the branching variable. These subproblems do not necessarily

appear in the search tree unless j is later chosen to be the branching variable, but are

immediatly incorporated into the set K(t), and thus into the pseudocost calculations above,

so there will be at least one element present in each of the sets S+j (t) and S
�

j (t). If either of the

subproblems P̂+
j or P̂�

j is infeasible, we narrow the bounds of the variable accordingly, and

set the pseudocost to in�nity. If both directions are infeasible for any variable, the problem

has no solution. Once a pseudocost for a variable has a �nite pseudocost, all previous in�nite

pseudocosts are treated as inFeasFactor times that �nite pseudocost and any subsequent

infeasible branches found during branching are treated as inFeasfactor times the current

pseudocost.

During the initialization of pseudocosts for a variable, we adjust the bound of the subprob-

lem to (in the case of minimization), the maximum objective value of the two branches if it

is higher than the current bound. This means that each subproblem must store its parent's

LP bound for calculation of future pseudocosts, rather than using its parent's bound.

5.2. Other serial aspects of the algorithm

Our algorithm incorporates several other features that are standard in \industrial-strength"

MIP solvers. Before starting the search, we run a preprocessor, based on that in MINTO and

PARINO [34,29,24]. This preprocessor removes some redundant constraints and �xes the

values of some variables, if it can deduce the values they must take in the optimal solution.

Variable xj's value is �xed by setting `j = uj.

The algorithm also applies a standard \locking" procedure after solving the linear program

associated with each subproblem. Let z(t) denote the objective value of the incumbent at

time t. If the absolute value of the reduced cost of a nonbasic variable xj, j 2 Z, exceeds

z(t)�z(P ), then xj may be �xed at its present value in all of P 's descendents. This procedure
is valid because any descendant solution with a di�erent but still integral value of xj would

necessarily be fathomed. Again, the locking is accomplished by setting `j = uj.

There are a number of other features that are now becoming common in commercial MIP

solvers, but are not yet present in our algorithm: cutting plane methods to improve the

linear programming bounds, various kinds of rounding heuristics to obtain feasible solutions

from subproblem solutions x(P ) that do not meet the integrality constraints, and repeated

application of the preprocessor at branch-and-bound nodes. We plan to add these features in

later implementations or derived applications. Of these features, only an incumbent heuristic

was present in CMMIP; we plan to implement a more sophisticated approach.

5.3. Serial implementation

Mapping the MIP branch-and-bound algorithm to the PICO serial layer classes and virtual

functions is fairly straightforward. Class MILP is derived from branching, and contains

simple arrays for the vectors b, `, and u, along with sparse matrix representation of c the

matrix A. It also contains tables required to calculate and update the pseudocosts �+j (t)

and ��j (t).

Subproblems are represented by the class MILPNode, which is derived from branchSub.

Essentially, a subproblem P is completely described by the two n-vectors `(P ) and u(P ).
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In addition, however, each supproblem object stores a compacted representation of a cor-

responding linear programming basis. For problems in the boundable state, this basis cor-

responds to the optimal solution of the parent problem. For the bounded and separated

states, it describes the optimal solution to the problem itself.

The preprocess method for class MILP executes the preprocessing procedure, and MILP's

readIn method reads an MPS data �le into the MILP data structures. MILPNode's version of

the boundComputation method uses a commercial linear programming package to calculate

z(P ) and x(P ) for a subproblem. The linear programming solver is encapsulated in a special

interface class, allowing di�erent LP packages to be speci�ed at compile time. At present,

we are using ILOG, Inc.'s CPLEX 6.x packages, but we have also built encapsulations for

DASH Optimization's XPRESS-MP package and the public-domain solver SoPLEX.

Except for the root problem, boundComputation always begins from the optimal basis of

the parent problem, which greatly speeds the calculations. If the parent was the last problem

run, then we don't need to reset the basis. This preserves the LP-solver internal state and is

generally another signi�cant factor faster than the case where we must load the parent basis.

We call this favorable situation a warm start. For both root and non-root problems, the

user can specify whether the optimization is via primal simplex, dual simplex, or a barrier

method. The default for non-root problems is dual simplex.

Once the linear program has been solved, boundComputation executes the reduced-cost-

based variable locking procedure and identi�es the set J(P ) of variables violating the inte-

grality constraints. The candidateSolution method for MILPNode simply returns TRUE if

J(P ) = ;, and otherwise FALSE.

The splitComputation method for MILPNode scans J(P ) for any indices j that have

not appeared in J(P 0) for any prior subproblem P 0. For each such index, it computes the

objective value of the probe subproblems P̂+
j and P̂�

j , using P 's optimal basis as a starting

point for the �rst computation and thereafter using the existing basis from the solution of

the previous closely-related subproblem. This procedure may be signi�cantly more time

consuming than the original bound computation itself, but should become increasingly rare

as the computation progresses. After this probing process is complete, S+j (t);S
�

j (t) 6= ; for
all j 2 J(P ). SplitComputation then calculates the scores �j for all j 2 J(P ) and chooses

the branching variable index j(P ) to maximize �j.

Finally, MILPNode's makeChild method creates child subproblems. It creates a fresh

subproblem and copies the bound information `(P ) and u(P ) to the child, modifying the

bound `j(P )(P
+) for the up child, and uj(P )(P

�) for the down child. MakeChild also copies

P 's optimal basis information to the child.

Table 4 describes the runtime parameters for the serial MIP.

5.4. Parallel implementation

To make a parallel version of the MIP algorithm, we used the same procedure described

in Figure 6 and at the outset of Section 4. We de�ned a parallel global class parMILP with

parallelBranching and MILP as virtual public base classes. Further, we also de�ned a

parallel subproblem class parMILPNode with parallelBranchSub and MILPNode as virtual

public base classes. We also provided straightforward implementations of the constructors

and destructors for these classes, along with the virtual methods described in Table 3. These

de�nitions are suÆcient to provide a working parallel implementation. Since there is at

39



Name Meaning Default

pcostUseDistances Do we care how large the up/down movement

is in calculating branching priority?

TRUE

importSplitfac Weight on user-supplied priority in calculating

branching priority

1010

nearIntSplitfac Weight on how close a variable is to integer in

calculating branching priority

0.0

objBestSplitFac Weight on the better direction for a variable

(calculating branching priority)

10.0

objWorstSplitFac Weight on the worst direction for a variable

(calculating branching priority)

0.0

upSplitFac Weighting for general preference to branch up

�rst

5.0

downSplitFac Weighting for general preference to branch

down �rst

0:0

tableInitFrac Fraction of noninitialized (pseudocost)

integer-violating variables to initialize through

probing

1:0

infeasFactor Weighting for pseudocost updates from infea-

sible branches or those beyond cuto�

10

relVarSelectTol We can branch on any variable who's score is

within this factor of optimal 10�5

sendSolutionToFile Write the solution (as a vector) to the �le

PICO-Solution. If already tracking solutions

(see checkFathomOnSolution), append this so-

lution if it's new

FALSE

checkFathomOnSolution Exit with an error if the any of the solutions

stored in PICO-Solution are fathomed while

their value is better than the incumbent.

FALSE

rootSimplexMethod Which simlex method to use to solve the root

(primal, dual, barrier)

MILPNode::primal

warmSimplexMethod Which simlex method to use when a node's

parent was the last problem solved

MILPNode::dual

nonwarmSimplexMethod Which simlex method to use when a node's

parent was not the last problem solved

MILPNode::dual

preprocessLP Run the MILP preprocessor TRUE

Table 4

Run-time parameters de�ned in the branching class MILP, which control the selection of

branching variables and other aspects of the mixed-integer-programming search and param-

eters from the subproblem class MILPNode.
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present no incumbent heuristic in the serial application, there is currently no incumbent

heuristic thread in the parallel version.

However, we chose to extend the basic parallelization in a two ways, both relating to

pseudocosts. We expect this situation to be an example of a standard pattern: pseudocosts

consitute a type of information that is not part of the incumbent or active subproblem

pool, but is nevertheless global, in the sense that it is not localized within a particular

subproblem. Such global information typically needs some kind of special treatment in a

parallel implementation.

Consider how the default parallelization provided by PICO would operate in the case of

the MIP algorithm we have just described. The pseudocost tables, needed to calculate �+j (t)

and ��j (t), data members of MILP, will by default be maintained completely independently

on each processor. Initially, the �rst worker in the �rst cluster solves the root problem

P0, while the other workers remain idle because there is no incumbent heuristic. Typically,

the set J(P0) of the root's integrality-violating variable indices will be large. To initialize

the pseudocost information needed to split the root problem, the �rst worker must solve an

additional 2 jJ(P0)j linear programs (albeit from a good starting basis). During this time, all

other processors will remain essentially idle, although the work could easily be partitioned

into 2 jJ(P0)j independent tasks.
Once the search tree starts to grow, and other workers become busy, a second source of

ineÆciency would arise. Because the pseudocost tables are maintained separately and inde-

pendently on each processor, the pseudocost probing operation will be performed whenever

a variable xj, j 2 Z, is detected to be fractional for the �rst time on a given processor. Thus,

probing for any particular variable might occur as many as w times, where w is total the

number of processors, as opposed to once in the serial layer implementation.

To obtain more parallelism at the outset of the algorithm, we designed the preprocess

routine in parMILP so that it functions di�erently from MILP's. Recall that the parallel

search calls preprocess before running the scheduler; furthermore, this call is executed on

every processor. The parallel version of the preprocessor, parMILP::preprocess, starts by

�rst calling the serial version MILP::preprocess, to eliminate redundant constraints and �x

variables. This calculation is done redundantly on all processors.

Instead of returning at this point, however, the parallel MIP preprocessor now instructs all

processors to solve the root problem's linear program. Again, this operation is done in parallel

and redundantly on all processors. The preprocessor then identi�es the set of integrality

violating indices J(P0), which require 2 jJ(P0)j linear programs to be solved to initialize the

pseudocost tables. The preprocessor partitions these linear programs into p approximately

equal-sized groups, each of size approximately 2 jJ(P0)j =p. In parallel, without redundancy,

each of the p processors solves the problems in one of these groups. The preprocessor then

makes the combined results of these calculations collectively available to all processors via an

MPI Allgather communication operation. The preprocessor then returns. In this manner,

the work required to separate the root problem is signi�cantly parallelized.

ParMILPNode's version of makeRoot sets the state of the root problem to bounded instead

of the usual value of boundable, since the work of bounding the root problem has already

been performed. When the �rst worker �rst processes the root problem, it immediately

performs separation and chooses a branch variable, a rapid operation since all the necessary

pseudocost information is available.
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To limit possible redundancy in initializing the pseudocost information for indices j 62
J(P0), we employ a second strategy. Whenever a worker probes a to initialize the pseudocost

data for a variable xj, it places the resulting information in a special bu�er, as well as in its

regular pseudocost tables. As soon as all newly-fractional variables have been probed for a

given subproblem P , the worker broadcasts the bu�er to all other workers, as recommended

in [24]. The bu�er is then reset to empty. Upon reception, all other workers incorporate

this information into their own pseudocost tables, making it unnecessary for them to probe

any of the variables in J(P ) in the future. Otherwise, however, pseudocost information is

maintained completely separately by each processor.

Although substantial interprocessor communication is involved, each of the broadcast

operations may prevent as many as 2 (w � 1) redundant linear program solutions. Each

pseudocost pair is broadcast along a balanced tree consisting of all workers, with the orig-

inating worker at the root; the radix of this tree is controlled by the run time parameter

pCostTreeRadix, which defaults to 2.

To receive and forward the messages required for pseudocost broadcasts, we introduce one

additional thread, the pseudocost broadcast thread. This message-triggered thread listens

for incoming pseudocost data and incorporates the contained data into the local pseudocost

tables. If the current processor is not a leaf of the tree for the broadcast in question, it

forwards the broadcast to its children. To include this thread in the scheduler, parMILP

overrides parallelBranching's default implementation of the virtual method placeTasks.

The substitute implementation �rst calls the original implementation, in order to create all

the standard threads. It then creates an additional thread object (of type pCostCastObj)

and inserts it into the message-triggered, higher-priority thread group.

It is possible, under this scheme, that some variables may still be probed redundantly:

several processors could encounter the same newly-fractional variable at about the same

time, with one or more beginning to probe before the broadcast from the �rst one reaches

them. In practice, we �nd that there is very little redundancy.

The code also includes an option whereby pseudocost information for an index j 2 Z, may
be broadcast by processor p not only the �rst time processor p encounters a fractional value

of xj(P ), but the �rst k times, where k is set by a run-time parameter. This generalization

allows the code to better deal with problems where pseudocosts behave in an \unstable"

way, but such problems appear to be rare in practice. Even with this generalization, the

approach is considerably simpler than CMMIP's [8,10].

Finally, we note that the current version of the parallel MIP application does not pause

either the bounding or separation, that is, boundComputation always completes bounding a

subproblem, leaving it in the bounded state, and splitComputation always completes the

separation process, leaving a subproblem in the separated state. In the future, if we observe

situations where invocations message-triggered threads are unacceptably delayed by very

long bounding or separation operations by the worker thread, we could alter our approach.

For example, boundComputation could return, leaving a subproblem in the beingBounded

state, after a �xed number of dual simplex pivots. Applying boundComputation again would

resume the computation. A similar procedure could be applied when evaluating probe sub-

problems in splitComputation.

Table 5 describes the runtime parameters for the parallel mixed-integer-programming code.
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Name Meaning Default

pCostShareCutOff Stop broadcasting pseudocosts for a variable

after we have this many values

2

pCostMinBcastSize Minimum number of (up and down) pseudo-

costs to share at a time if none are new

5

Table 5

Run-time parameters de�ned in the class parMilp which control the level of pseudocost

broadcasting.

5.5. Preliminary computational results

To illustrate the parallelism PICO can attain, we now describe the performance of the

PICO MIP on the \Janus" ASCI Red supercomputer at Sandia National Laboratories [28].

This system consists of 4; 536 nodes, each with two 333-megahertz Pentium II processors

and 256 megabytes of RAM. By default, one processor on each node functions as a compute

processor, and the second as a communications processor for interacting with the internal

network. Optionally, in what is called \virtual node mode," the two processors on each node

can be used as compute processors, each with 128 megabytes of RAM. The nodes are linked

by an extremely fast 76 � 32 � 2 communications grid, which also includes some \service"

nodes that do not directly run user programs. We have measured this network's delivery

time for a 256-byte message at about 18 microseconds. The system implements \space

sharing", rather than time sharing; typically, each active job has full control of a subset of

the processing nodes.

In this section we describe the solution of some moderately diÆcult MIP problems from

the MIPLIB [3], using between 1 and 128 Janus processors. For our initial experiments, we

selected six problems, all solvable on a single processor using the basic branch-and-bound

algorithm described above, but still requiring a substantial amount of tree search. Table 6

describes these problems.

Tables 7 through 9 show the solution of these problems using the PICO MIP. The one-

processor data are for a single run of the serial layer on a single Janus processor. The data

for all other numbers of processors are the average of �ve runs of the parallel layer.

The parallel runs were con�gured with a clusterSize of 4, so processors were grouped in

sets of four, each consisting of one worker-hub and three pure workers. For the two- and three-

processor runs, there was just a single cluster of two or three processors, respectively. The

hybridHandler bounding protocol was used, in combination with the heapPool subproblem

pool, which implements best-�rst search. The scattering parameters were set so that an

average of 65% of newly-created subproblems were released to the hubs; 25% of the time,

subproblem releases were forced to go to the local hub, and the remaining 75% of the time

they were sent to a randomly-chosen hub. These parameter settings result in a fairly high

level of communication, but Janus' internal network seems able to support this level.

The p columns in the tables represent the number of compute nodes, the \nodes" column

gives the total number of subproblems bounded, and the run times are in seconds. The

\speedup" column displays the speedup relative to the corresponding one-processor run. The
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General

Binary Integer Continuous

Problem Variables Variables Variables Rows Application

bell3a 39 32 52 133 Fiber optic network

design

lseu 89 28 (Unknown)

misc07 259 1 212 (Unknown)

mod008 319 6 Machine loading

qiu 48 792 1192 Fiber optic network

design

stein45 45 331 (Unknown)

Table 6

Description of the test problems.

\idle" column is the percent of the total processor seconds spent in an idle state, and the

\scheduler" column is the percent of total processor seconds devoted to scheduler overhead.

Figures 8 through 10 display the same information graphically on a log-log scale. Each \+"

data point represents a run of the code, and dashed lines connect the average run times

for each processor con�guration. The straight dashed line represents an \ideal" situation in

which the speedup factor on p processors would be exactly p.

In many of the problems, the size of the search tree in
ates fairly dramatically as one moves

from the serial to the parallel version of the algorithm. This in
ation occurs because a parallel

algorithm cannot follow a strict best-�rst ordering, and the current implementation lacks an

incumbent heuristic. If a high-quality incumbent is unavailable for a signi�cant fraction of

the run, a parallel algorithm can spend signi�cant amounts of time investigating noncritical

subproblems. Experience from [7,10] suggests that even a crude incumbent heuristic can

greatly dampen such tree in
ation; we hope to add a (more sophisticated) heuristic to the

PICO MIP soon.

After the initial tree in
ation phenomenon, speedups generally remain fairly linear, with

some \noise" and gentle degradation, until about 48-64 processors, after which they \tail

o�." In the near future, we plan to experiment with more diÆcult problems, larger total

numbers of processors, and larger cluster sizes.

One problem, qiu, has dramatic osciallations in node counts (and hence runime) as the

number of processors grows. Though we haven't completed our investigation, we believe this

is due to the sensitivity and numerical properties of the problem. In particular, all the initial

pseudocosts for the �rst integer violations found after solving the root problem are very close.

When a processor calculates a number of pseudocosts, it repeatedly modi�es the bounds of

two variables between calls to the linear-programming solver. This dramatically increases

the solver speed because is can use internal state left from the previous solve. However, this

means that each variable is \probed" in a slightly di�erent environment depending upon the

number of processors, which determines which group of variables is initialized as a group on

some processor. Because the pseudocosts are all so close and the problem is diÆcult, and
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hence pushes the LP-solver tolerances, the initial set of global pseudocosts di�ers slightly

for each number of processors. We conjecture this e�ects initial tree growth and that qiu

can have radically di�erent behaviors depending upon these initial branching choices. In

fact making slightly-suboptimal branching strategies according to our ranking function can

lead to an order of magnitude increase in node count. When we forced a parent-basis reload

before each pseudocost initialization, and therefore forced a uniform set of initial costs, the

node counts were monotonically slightly increasing with the number of processors. Though

this provides more stability for this problem, this is not the default behavior because it

dramatically slows down this computation.
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Problem p Nodes Time Speedup Idle Scheduler

bell3a 1 54,111 152.8 1.0 0.0% 0.0%

bell3a 2 57,745 87.6 1.7 0.5% 1.0%

bell3a 3 57,758 59.6 2.6 0.5% 0.9%

bell3a 4 57,186 44.1 3.5 0.6% 1.0%

bell3a 6 55,218 30.0 5.1 1.5% 1.3%

bell3a 8 54,518 22.1 6.9 1.2% 1.4%

bell3a 12 54,436 15.1 10.1 1.3% 1.3%

bell3a 16 54,214 11.4 13.4 2.1% 0.9%

bell3a 24 53,962 7.8 19.6 2.3% 1.3%

bell3a 32 54,012 6.0 25.5 4.0% 1.7%

bell3a 48 54,045 4.7 32.5 14.0% 2.5%

bell3a 64 54,019 3.3 46.3 8.4% 3.0%

bell3a 96 54,093 2.4 63.7 12.4% 0.0%

bell3a 128 54,155 2.1 72.8 17.1% 0.0%

lseu 1 11,383 24.8 1.0 0.0% 0.0%

lseu 2 18,780 19.9 1.2 0.3% 1.0%

lseu 3 20,828 14.6 1.7 0.7% 1.0%

lseu 4 16,343 8.8 2.8 0.5% 1.1%

lseu 6 17,970 6.8 3.6 1.5% 1.5%

lseu 8 21,152 6.0 4.1 1.0% 1.7%

lseu 12 19,733 3.9 6.4 2.6% 2.6%

lseu 16 20,805 3.1 8.0 3.2% 3.2%

lseu 24 23,210 2.4 10.3 4.2% 1.7%

lseu 32 22,748 1.9 13.1 6.5% 0.0%

lseu 48 23,832 1.6 15.5 9.9% 0.0%

lseu 64 25,189 1.2 20.7 12.1% 0.0%

lseu 96 31,169 1.1 22.5 20.8% 0.0%

lseu 128 28,418 0.9 27.6 28.3% 0.0%

Table 7

Computational results for bell3a and lseu.
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Problem p Nodes Time Speedup Idle Scheduler

misc07 1 30,449 465.3 1.0 0.0% 0.0%

misc07 2 63,905 511.0 0.9 0.5% 0.3%

misc07 3 68,017 381.3 1.2 0.6% 0.3%

misc07 4 57,830 251.1 1.9 0.8% 0.3%

misc07 6 92,293 270.9 1.7 1.0% 0.4%

misc07 8 81,182 176.3 2.6 0.9% 0.4%

misc07 12 73,939 113.9 4.1 2.2% 0.5%

misc07 16 122,378 142.4 3.3 1.6% 0.4%

misc07 24 87,108 70.4 6.6 5.4% 0.7%

misc07 32 133,126 81.1 5.7 3.2% 0.5%

misc07 48 95,658 42.4 11.0 9.3% 0.9%

misc07 64 97,652 34.4 13.5 12.8% 1.0%

misc07 96 96,452 25.9 18.0 19.9% 1.5%

misc07 128 114,486 23.8 19.6 19.6% 1.3%

mod008 1 18,079 112.9 1.0 0.0% 0.0%

mod008 2 21,792 61.2 1.8 0.2% 0.5%

mod008 3 21,953 40.7 2.8 0.3% 0.5%

mod008 4 22,678 31.5 3.6 0.5% 0.6%

mod008 6 24,881 24.0 4.7 0.8% 0.8%

mod008 8 25,597 18.5 6.1 0.9% 0.5%

mod008 12 26,290 13.0 8.7 1.5% 0.8%

mod008 16 25,395 9.5 11.9 2.1% 1.1%

mod008 24 28,664 7.4 15.3 3.5% 1.4%

mod008 32 24,571 5.0 22.6 5.6% 2.0%

mod008 48 28,182 4.1 27.5 7.8% 1.5%

mod008 64 27,534 3.1 36.4 11.5% 0.6%

mod008 96 29,783 2.5 45.2 16.1% 0.0%

mod008 128 30,289 2.4 47.0 23.7% 0.8%

Table 8

Computational results for misc07 and mod008.
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Problem p Nodes Time Speedup Idle Scheduler

qiu 1 30,653 4,718.0 1.0 0.0% 0.0%

qiu 2 32,646 2,216.4 2.1 1.6% 0.1%

qiu 3 17,940 854.1 5.5 2.1% 0.1%

qiu 4 41,278 1,557.0 3.0 1.5% 0.1%

qiu 6 19,932 466.6 10.1 3.4% 0.2%

qiu 8 30,536 595.5 7.9 2.7% 0.2%

qiu 12 22,409 278.0 17.0 4.8% 0.3%

qiu 16 32,750 332.7 14.2 6.5% 0.4%

qiu 24 32,356 233.7 20.2 9.9% 0.6%

qiu 32 23,157 145.7 32.4 17.7% 1.0%

qiu 48 28,656 123.9 38.1 21.0% 1.2%

qiu 64 32,649 111.7 42.2 24.7% 1.4%

qiu 96 36,938 92.6 51.0 33.7% 1.9%

qiu 128 52,278 98.6 47.8 35.5% 2.0%

stein45 1 53,461 333.5 1.0 0.0% 0.0%

stein45 2 69,504 212.7 1.6 0.8% 0.6%

stein45 3 71,666 146.3 2.3 0.9% 0.6%

stein45 4 67,462 104.4 3.2 1.1% 0.6%

stein45 6 66,236 70.1 4.8 1.6% 0.8%

stein45 8 68,015 53.8 6.2 1.6% 0.7%

stein45 12 69,770 37.3 8.9 2.5% 0.8%

stein45 16 65,151 27.0 12.4 3.7% 0.7%

stein45 24 65,634 18.9 17.6 5.8% 1.1%

stein45 32 68,001 14.9 22.4 8.7% 1.3%

stein45 48 62,188 10.1 33.0 14.3% 1.2%

stein45 64 68,455 8.5 39.2 17.0% 1.2%

stein45 96 69,903 6.5 51.3 25.0% 1.5%

stein45 128 73,220 5.7 58.5 29.7% 1.7%

Table 9

Computational results for qiu and stein45.
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Figure 8. Computational results for bell3a and lseu.
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Figure 9. Computational results for misc07 and mod008.
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Figure 10. Computational results for qiu and stein45.
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6. Resource-constrained project scheduling

This section describes the application of the mixed-integer-programming capability in

PICO to a resource-constrained project scheduling problem. We derived problem-speci�c

classes from the general MIP branching and subproblem classes to provide customized in-

cumbent heuristics and output.

Sandia National Laboratories has developed and implemented the Pantex Process Model

[21] to support the planning and scheduling activities at Pantex, a US Department of Energy

production plant in Amarillo, Texas. The plant simultaneously supports three major DOE

programs { nuclear weapon disposal, stockpile evaluation, and stockpile maintenance { which

share its facilities, technicians, and equipment. We focused on one piece of the PPM, namely

the Evaluation Planning Module (EPM) used to project facility and technician utilization

over a given planning horizon (typically a year). Multiple mathematical formulations of this

problem are introduced in [17,21,22].

The remainder of this section is organized as follows. Section 6.1 de�nes the EPM resource-

constrained project scheduling problem. Section 6.2 gives the mixed-integer-programming

formulation of the EPM problem. Section 6.3 describes the incumbent heurstics we imple-

mented for this problem. Section 6.4 describes I/O and mapping variables from the Pantex

MIP formulation to PICO's linear variable organization. We used the AT&T Mathematical

Programming Language (AMPL) to facilitate the input and mapping. Section 6.5 discusses

modeling issues.

6.1. Problem description

A substantial portion of the Pantex workload relates to tests of weapons in the active

stockpile. Each of these jobs involves partial disassembly of the weapon, one or more tests,

and then re-assembly and return of the weapon to the active stockpile. The jobs are generally

referred to as evaluations, and their planning and scheduling �ts a job-shop paradigm.

Each job consists of a set of tasks. Some pairs of tasks have precedence constraints, where

one job must complete before the other begins. The task precedence relationship forms a

forest. That is, each task will have at most one \parent" task it must wait for. Of course,

by transitivity, it must also wait for any task its parent must wait for. In practice the trees

of precedence constraints are highly chainlike.

Tasks are assumed to have a �xed duration for purposes of the EPM planning problem.

This duration can be as short as an hour or as long as several months. The scheduling

of each task must obey a time window. It must start no earlier than its earliest allowable

start time (EAST), and must �nish by its latest allowable �nish time (LAFT). These time-

window boundaries are also called release dates and deadlines respectively in the scheduling

literature. The �rst task in a job (one with no parent) often has an EAST that is tied to

the arrival of the weapon. The task for the test itself often has a LAFT motivated by the

availability of external resources (e.g., o�-site engineers).

The time horizon is broken into time periods. Currently each period is six consecutive

working days, more generically called slots. Each day is decomposed into a �xed number of

units (currently the units are hours and each day is eight hours). Task lengths are given in

units. The PPM, and some stochastic global heuristics for the EPM, model the start time

of a job as a continuous variable. Humans generally don't schedule to a �ner granularity

than the quarter hour, and there is suÆcient uncertainty in the data to justify rounding or
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shifting to align job starts with the hour (unit).

The evaluation of each task requires a speci�c facility type (e.g., a Task Bay with 220

electricity) and a quali�ed crew (e.g., two people holding a single speci�c certi�cation).

Facilities are hierarchically arranged to re
ect how one facility can be replaced by another,

more general, facility (at a price). However, in the current PPM, and hence our data sets,

there is no hierarchy. Each technician has a list of certi�cations to which (s)he can be

assigned. The availability of each technician and the number of facilities of a given type

varies by time period in general. However, in our current model we assume all technicians

are available at all times and only the facility availability is part of the input. We also assume

that technician certi�cations don't expire.

In a true schedule, each job is assigned to a speci�c facility and given a speci�c team of

quali�ed technicians. However, for planning future technician/facility needs, it is currently

suÆcient to assign tasks to a pool of facilities and technicians. Each technician is assigned

to certi�cations by specifying the amount of time (possibly fractional) that will be devoted

to each certi�cation during each time period. No technician is assigned more time units for

a particular certi�cation during a time period than the sum of the task lengths (within that

period) of tasks requiring that certi�cation. For example, if there is only one task assigned

to the time period and it requires 3 technicians for 2 units each, then no technician can have

more than 2 units assigned to that certi�cation during that time.

A production plan assigns a start time and facility type to each task. Preemption is not

allowed, so a task will occupy that facility for its entire duration beginning at its start time.

A production plan is feasible if:

1. All precedence constraints, release dates, and deadlines are obeyed.

2. Each task is assigned to an acceptable facility (type matches or exceeds requirement).

3. The total amount of work scheduled for each facility type during any particular time

period does not exceed the availability of such facilities.

4. In each time period the requirements for technicians are matched by technician assign-

ments and the total time assigned to each technician is not greater than an entire time

period.

5. For each time period, no technician is assigned to a particular certi�cation for more

time units than the sum of the task lengths (within that period) of tasks requiring

that certi�cation (in the example above, constraint (4) could be satis�ed by a single

technician for 6 hours).

Typically, an EPM planning problem spans a year and involves at least 500 jobs and 1000

tasks. Each job has from one to six tasks. About 28 facility types are involved along with

300 technicians, each of whom holds 2{3 of the 80 possible certi�cations.

In practice, these planning problems are often infeasible. Consequently, the EPM module

formulates the EPM planning problem using ghost facilities or facility overage and ghost

certi�cation hours or technician overage that re
ect the number of additional resources that

are required by a production plan. Thus the only constraints on a production plan are the

time windows and precedence constraints, which are much easier to satisfy than resource
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constraints in general. With this formulation, production plans are evaluated by summing

the total number of hours of ghost facilities and ghost technicians over all time periods.

These two factors (technicians, facilities) are weighted equally.

6.2. The Pantex MIP Formulation

This section gives the mixed-integer-programming formulation of the EPM problem imple-

mented in the PICO system. We �rst discuss discretization issues and then give the explicit

mathematical formulation.

As mentioned in the previous section, the PPM aligns task start times to the hour, or an

even smaller granularity. To limit the size of the MIP, \big" tasks with length at least a slot

are aligned with slots (days) by starting them at the beginning of a slot. Short tasks (strictly

less than a slot long) can start on unit boundaries. This introduces less unforced idle time

and makes the MIP output more comparable to output from the PPM. This is implicitly

represented in the MIP with the function b(j; j 0) de�ned below. Start times are speci�ed as

slots, but understood to be mid-slot if a predecessor is running at the start of the slot, and

the task can �nish before the end of the slot while obeying precedence constraints. That is,

a short task will never be split across two slots.

To be more explicit, there are two types of precedence constraints: packed and normal. In a

normal precedence constraint, the successor cannot start until the slot after the completion

of the predecessor. In a packed precedence constraint, the (short) successor can \pack"

into the remaining time in the slot where the predecessor �nishes (without going into the

next slot). Therefore, long tasks have only normal predecessor constraints with their single

immediate ancestor (if it exists).

If a short job has a packing precedence constraint with its immediate ancestor, we may

need to add one more (normal) constraint with a nonadjacent predecessor. For example, if

there is a chain of many unit-sized jobs, each pair can share a slot, but the entire chain may

not �t into a single slot. Speci�cally, let the precedence chain for short job j be p1; p2; : : : ; pd,

where p1 is job j's immediate ancestor, p2 is p1's ancestor and so on. There is a constraint

between job j and job pd if all the following conditions are met:

1. job j and jobs p1 through pd�1 all �t in a slot,

2. adding job pd to the group in (1) would over
ow a slot, and

3. Jobs p1 through pd all �t in a slot.

The �rst condition implies there are no extra constraints required between job j and

predecessor jobs p1 through pd�1. The second condition implies a normal constraint between

job j and pd. However, if the third constraint is not met, then there will already be a

(nonadjacent) constraint earlier in the chain (e.g. between p1 and pd) and therefore adding

one between j and pd would be redundant.

We now give the mathematical formulation of the MIP for the EPM planning problem.

The formulation uses the following input parameters, constants, and shorthand:
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q1 The number of time units in a time slot

q2 The number of time slots in a time period

pj The processing time (in units) of task j

�j The minimum number of full time slots needed to process task j (dpj=q1e).
Used to constrain the start time of (long) successor jobs.

rj Release time slot of task j (possibly derived from the release dates of

predecessors). This is the EAST, earliest available start time.

dj Deadline (aligned with a slot) for task j (possibly derived from deadlines

of successors). This is the LAFT, last available �nish time.

T (j) Set of possible start slots for task j.

Shorthand for all time slots from rj to dj � �j.

p(j; t; �) The amount of processing (in units) on task j performed during

time period � if j is started in time slot t.

T (j; �) Set of start times t for task j such that p(j; t; �) > 0.

K(j) The set of possible facility types for task j.

cj The technician certi�cation for task j

sj Crew size for task j (number of required technicians)

C(w) The set of certi�cations held by worker w

fk;� The number of time units available in facilities of type k during

time period � .

j1 � j2 Task j1 preceeds task j2.

b(j; j 0) 1 if j � j 0 and task j 0 can be \packed" with j (see detailed documentation).

Otherwise b(j; j 0) = 0.
The formulation has the following integer variables:

xjtk =

(
1 if task j starts at time slot t in a facility of type k

0 otherwise

The MIP formulation uses rational variables for ghost facilities and ghost technicians:
ywc� = fraction of time worker w spends using certi�cation c in time period �

Fk� = number of ghost facilities of type k in time period �

Gc� = number of ghost technicians with certi�cation c in time period �
There are two justi�cations for using rational rather than integer variables. First, within

Pantex, resources are divided among various program managers, each responsible for evalu-

ating a subset of the stockpile. Thus one problem instance could be a the plan for one such

manager, which is a subset of the total plan for Pantex. In this case, the fractional piece of a

ghost facility could correspond to borrowing a facility part-time for another manager. Even

if borrowing part-time is not feasible in some instance, there is suÆcient uncertainty in the

values we eventually choose for the objective function that using the ceiling of these rational

variables will probably still be suÆciently optimal. For technicians, the fractional portion of

a person-hour also seems to be in the noise with respect to uncertainty in objective-function

weights.

Finally, here is the MIP formulation:

minimize �
X
k;�

Fk� + �
X
c;�

Gc;�
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subject to X
t2T (j)

k2K(j)

xjtk = 1 8j (2)

X
c2C(w)

ywc� � 1 8w; � (3)

X
k2K(j)

xjtk �
X

k2K(j0)

rj0�t
0
�t��0j+b(j

0;j)

xj0t0k 8t 2 T (j); j 0 � j (4)

X
j:k2K(j)

X
t2T (j;�)

p(j; t; �)xjtk � fk;� + q1q2Fk� 8�; k (5)

X
j:cj=c

X
t2T (j;�)

k2K(j)

p(j; t; �)sjxjtk �
X
w

q1q2ywc� + q1q2Gc� 8�; c (6)

q1q2ywc� �
X

j:cj=c

X
t2T (j;�)

k2K(j)

p(j; t; �)xjtk 8c; �; w : c 2 C(w) (7)

(8)

Constraints (2) assure that every task is done. Constraints (3) prevent overscheduling

any technician in any time period. Constraints (4) assure a task is not started until all

predecessors are completed. Constraints (5) ensure there is suÆcient facility capacity in each

time period to perform all the work that must be done in that time period, and constraints (6)

are the analogous constraints on certi�cation hours within each time period. Constraints (7)

prevent some situations where a technician is taking the place of multiple technicians (see

the detailed problem statement).

6.3. Pantex Incumbent Heuristics

This section describes the incumbent heurstics we implemented for the EPM planning

problem. The heuristic uses the LP-relaxation of the MIP, available at each node of the

branch-and-bound tree. It is an �-point schedule. This class of algorithms, �rst introduced

in [30], gives good theoretical and practical performance for schedules with average weighted

completion time as the objective function. It has also performed well in practice for the best-

e�ort objective, where one �nishes as many jobs as possible by their deadlines[31]. This is

closely related to our objective function. In an �-point schedule, one solves an LP-relaxation

of and integer-programming (IP) formulation for a scheduling problem. Then one sorts the

jobs by the point in time where an � fraction (for 0 < � � 1) of the job is completed. Then

one typically schedules the jobs greedily in that order.

We currently set � = :5. However, when we have many processors, it would be reasonable

for processors to try di�erent values of �. There can be at most n interesting ranges of �,

where all values in a given range yield the same ordering.

We need only specify the greedy procedure for scheduling the jobs given the ordering

by the � point. First we compute the \resource availability" from the linear programming

56



solution. That is, we consider the ghost facilities to be \real" and we assume the technician

availability dictated by the LP technician assignments (to certi�cations in each period) plus

the ghost technicians. Since the objective-function value of this solution is a lower bound on

the optimal integer solution, we are free to use all these resources in our heuristic solution

without degrading the objective value. Each job must be placed within its time window and

behind all its predecssors. Given this, we place each job in the earliest place that creates

no overage with respect to the modi�ed resources. If no such place exists, we place the job

either as early as possible, or in the place with minimum overage. We try each of these

strategies.

Note that as a subroutine in a branch-and-bound search, some of the jobs may be restricted

to an exact start time, or forbidden to start in certain time slots. Those that are �xed are

placed before all others. Forbidden slots are considered in determining the legal placements

for a job when it's time to place it.

The LP technician assignments may not be optimal with respect to these job start times.

However, we can compute an optimal (rational) technician assignment for these job place-

ments using a network 
ow algorithm. We compute one network-
ow problem for each

period.

The 
ow problem is formulated as follows. There is a source node s, a node Wi for each

worker i, a node Cj for each certi�cation j and a sink t. The sink is connected to each of the

Wi nodes with capacity equal to the total time the worker is available to work during this

period. In our current model, this is the same for all workers: 48 hours. There is an edge

from each worker node Wi to each certi�cation node Cj where worker i has certi�cation j.

The capacity is the total number of units of work for certi�cation j scheduled in this period

(according to our heuristic schedule). Finally, there is an edge from each certi�cation node

to the sink with capacity equal to the total man-hours of work for certi�cation j in this

time period. That is, for each (piece of a) job with certi�cation j run in this time period,

we multiply the length of the job (in this time period) by the crew size. The capacity on

the sink-to-worker edges re
ects the bound on technician availability. The capacity of the

worker-to-certi�cation edges re
ects the total time a worker can spend on a certi�cation

(constraints 7 above). The capacity of the certi�cation-to-sink edges re
ects the total work

requirement for each certi�cation. The technician assignment is encoded in the 
ow from

worker nodes to certi�cation nodes. The residual capacity on the edge from certi�cation j to

the sink (that is the di�erence between the capacity and the 
ow) is the technician overage

from this assignment. In particular, if the maximum 
ow in this network saturates all the

certi�cation-to-sink edges, then all the work is done and there is no overage.

We compute these network-
ow problems using Andrew Goldberg's maximum 
ow code

that at one point was available from DIMACS (from the �rst implementation challenge).

We could use the LP solver, but that would require constant exchanges of problems within

the solver and signi�cantly increase runtimes.

6.4. Input/Output and Variable Mapping

This section describes data input/output the mapping of variables from the Pantex MIP

formulation to PICO's linear variable organization.

The above incumbent heuristic used variables that had two or three indices. For example,

xjkt represented scheduling task j in facility type k and time slot t. However, PICO has a
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linear ordering of the variables. Therefore, the Pantex Problem class de�nes mapping arrays.

For example XMap[j][t][k] gives the integer variable number corresponding to xj(t�rj)k0 . That

is, the facility types are stored sparsely, and the legal start times are represented in a compact

array. Similarly the class de�nes the reverse map arrays xTaskMap, xSlotMap, xFacilityMap

which give the task, slot, and facility type for a given (linear-ordered) LP variable (and �1 if
the variable is not an x variable). We have similar mapping arrays/matrix for the y variables.

We went through a number of steps to get speci�c instance data into the PICO Pantex class

data structures. The PPM placed data into a series of ascii �les. We read these �les to �ll in

C++ data structures representing the problem. We created an AMPL (AT&T Mathematical

Programming Language) model of the MIP formulation and used a C++ program to create

an AMPL data �le corresponding the PPM ascii �les. We used AMPL to create an mps �le

(standard integer and linear program speci�cation language) and mappings of the AMPL

variables (logically named as in the above mathematical representation) to the rows and

columns of the MPS matrix. These �les together were suÆcient to initialize our branching-

and problem-class data structures.

We now describe how we (numerically) convert data from the PPM representation to legal

input parameters for the MIP. The PPM measures task length in periods, eg. 2:6667 periods.

We convert this to time units and round up (making tasks slightly longer).

In the PPM release dates (EASTs) are points in time, measured in (
oating-point) number

of time periods. The MIP interprets these as units, though they will almost always be aligned

with the start of a slot. Generally, the release date is computed by converting periods to

slots and rounding up (moving back in time). However, if a short task can run entirely in its

release slot, the release date rounded up to the nearest unit (rather than slot). Because task

lengths are rounded up to the nearest unit, there will be cases where a task can �t into its

release slot according to PPM data, but not for the MIP. For example, if a task is released

with 2:3 units remaining in the slot and is 2:3 units long, it can technically be run in its

release slot. However, for the MIP granularity, the task is 3 units long and released with

2 units remaining in the slot. Therefore, its release date will be the start of the following

slot. In the worst fcase, a job could be tightly constrained to a time window and the MIP

rounding make it appear infeasible when it could �t in the PPM world. We could handle

these cases by preprocessing.

Deadlines are a point in time in the PPM, given as a (
oating point) number of periods

since time 0. The MIP has deadlines aligned with units, rounded down (moved forward in

time). This is used with the (unit-based) length of the job to determine the last possible

starting time.

6.5. Modeling Issues

The plan modeled in the PPM is easier to solve or approximate than a true schedule,

and given the uncertainty in the data (job load, task duration, etc), the extra resolution is

probably not warrented. However, the optimal overage for this schedule is a lower bound

on the optimal overage for a true schedule where jobs are assigned to speci�c facilities with

speci�c teams of technicians and all resources constraints are met at the �nest resolution (in

this case, by the hour). Therefore, a decision to allocate more resources to Pantex can be

justi�ed based on the calculations of the PPM, but the resources speci�ed in the plan may

not be suÆcient. We feel it is important to determine how much this plan underestimates
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the resource requirements for a true schedule and how much the PPM overestimates the

optimal plan. These comparisons will be made in a future paper. Modeling a true schedule

with an hourly task-alignment will increase the size of the MIP by an order of magnitude.

7. Debugging and correctness

In this section we describe the tools we've developed and/or used to insure that PICO

is working correctly at all levels. In particular we describe the log analyzer, the quality-

assessment suite, the facility for \watching" the fathoming of speci�c solutions, utilib tools,

and commercial tools.

PICO has a runtime option to create for each processor a log �le containing information

on subproblem creation, bounding, splitting, fathoming, etc. The log analyzer checks the set

of �les for consistancy to make sure, for instance, that each subproblem is explicitly resolved.

For example, each problem must be explicitly fathomed or it must be split with each of its

children resolved.

The quality-assessment (qa) suite is a set of scripts to check PICO. The scripts run PICO

in serial and in parallel on one to six processors for each problem in the test suite with each of

a set of test parameter �les. The problems are taken for MIPLIB except for a tiny bipartite

matching problem that is included because the root problem as an integeral LP solution.

These test problems are small enough to run through all these tests settings in a reasonable

time. There is a pure binary integer program, one with general integer variables, one truly

mixed problem, one that is integer infeasible, and a couple that tend to have pathological

behavior and therefore tend to expose errors in the handling of special cases. The qa suite

runs each of these tests using the log analyzer option and the checks the objective value,

giving a �nal summary of errors.

In cases where the optimal objective value is known, but PICO is failing to �nd an optimal

solution, PICO has a facility for \watching" optimal solutions. This is particularly useful

when, for example, the serial code can return an optimal solution, but the parallel code is

incorrect. If the runtime parameter, sendSolutionToFile is TRUE, PICO will save the

solution (as a vector in a format PICO can read) to the �le PICO-Solution. If the runtime

parameter checkFathomOnSolution is TRUE, PICO will read the solution(s) in PICO-

Solution and exit with an error and a dump of state if it is about to fathom a subproblem

containing any of these solutions and the incumbent is strictly worse than these solutions

(i.e. they are still candidate solutions). If both of these runtime parameters are set, if PICO

�nds an optimal solution, it will append it to the PICO-Solution �le if it is new. This is

particularly useful when one is debugging a problem with multiple optimal solutions. One

can run PICO multiple times (using the repeat parameter), saving all the optimal solutions

that are found, and watching all of them for improper fathoming.

The PICO MIP class does a �nal feasibility check before accepting a new incumbent. It's

possible that the solution is considered a candidate because it satis�es the integer tolerance on

all integer variables, but the actual solution is slightly o� true integers. PICO explicitly sets

all the bounds in the LP solver to the rounded values of the variables and solves the problem

again. If the problem is (slightly) infeasible, the incumbent is rejected. The Pantex class also

does a feasibility check using its problem-speci�c view of the variables. For example, it checks

that time windows are obeyed, that ghost variables are correct given the job placements and
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resource availability and so on.

Finally, we used WilliamHart's utilib package of vector and matrix utilities. These provide

automatic bounds checking, allowing easy detection of bugs. We have also run PICO through

the purify and insure++ codes to check for memory leaks.

8. Conclusion and future development plans

We have just described a 
exible, object-oriented approach to implementing parallel

branch-and-bound algorithms, including an application to general mixed integer program-

ming and an application of mixed-integer programming to resource-constrained project

scheduling. Limited, preliminary computational testing on a small set of moderately dif-

�cult MIP's reveals some initial in
ation of the search tree, most likely due to the absence

of an incumbent heuristic, followed by fairly linear speedups through 32-48 processors.

The innovations of this work include:

� A novel object-oriented approach to describing branch-and-bound algorithms, using

transition operators acting on subproblems moving through a state graph.

� The ability to describe both the search order and bounding protocol in a modular way.

� The division of the class library into serial and parallel layers.

� A continuously adjustable degree of communication between the hub and worker pro-

cessors within a master-slave cluster.

� Use of stride scheduling to manage concurrent tasks within each processor executing

the parallel branch-and-bound method.

In future, we plan to carefully investigate the performance of PICO on various processor

con�gurations, re�ning its work distribution algorithm, so that the PICO core can be con-

�gured to operate eÆciently on harder problems and larger processor con�gurations than

described here. We also plan to re�ne the MIP application by including a parallel incumbent

heuristic, as well as adding some other modern features including node-level preprocessing

and cutting planes. The 
exible underpinnings provided by the PICO core should make these

enhancements relatively easy. Forthcoming papers will also describe some more speci�c ap-

plications of PICO, including a full description of computational results for the Pantex EPM

scheduling problem with comparisons to other heuristics for this problem.
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