
SANDIA REPORT
SAND2000-2217-Revised
Unlimited Release
Printed April 2001

Supercedes SAND2000-2217
Dated September 2000

Using Vector Spherical Harmonics to
Compute Antenna Mutual Impedance
from Measured or Computed Fields

Billy C. Brock

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE:  This report was prepared as an account of work sponsored by an agency
of the United States Government.  Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors.  The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA  22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov


 SAND2000-2217-Revised 
Unlimited Release 

 Printed April 2001 
  
 Supercedes SAND2000-2217 
 Dated September 2000 
 
 
 
 
 
 

 
 

Using Vector Spherical Harmonics to 
Compute Antenna Mutual Impedance 
from Measured or Computed Fields 

 
 

Billy C. Brock 
Radar/Antenna Department 

Sandia National Laboratories 
P. O. Box 5800 

Albuquerque, NM 87123-0533 
 
 
 
 

Abstract 
The mutual coupling that exists between the antenna elements in an 
antenna array can be described with a mutual impedance.  The knowledge 
of this mutual impedance is critical to the successful design of the array.  
Computing the mutual impedance involves integrating vector products of 
fields over a surface, but the integrands can oscillate wildly over the 
integration surface, and are often difficult to integrate accurately.  The 
method proposed and described here relies on the expansion of the fields 
in terms of vector spherical harmonics.  The integrations over the closed 
surface are performed in closed form, leaving the mutual impedance 
expressed as a sum of products of expansion coefficients. 
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About this Revision 
 

This revision came about because of the investigation of a typographical 
error in one of the references for Appendix III.  This typographical error 
had propagated into the original version of this report, in equation (III-9), 
which has been corrected in this revision.  During the course of the 
investigation, it was discovered that the method of computing the Wigner 
3j symbols, originally given in Appendix III, was inadequate for large 
degree and order.  A detailed description of a robust recursive algorithm is 
now included.  Consequently, Appendix III is much expanded.  Also, in 
the section on mutual impedance, a factor of 2r′  was inadvertently 
excluded from some of the expressions.  This has been corrected in this 
revision.  Further scrutiny of the formulation of the mutual impedance has 
revealed significant simplification that has now been incorporated, 
including additional material in Appendix IV.  Additionally, some of the 
text in the main body of the report has been moved to Appendix IV, and 
other parts have been revised in an effort to improve the clarity.  Thus, the 
discovery of a typographical error in a reference, while somewhat minor in 
itself, provided an opportunity to further examine the mutual impedance 
calculation, leading to a substantial revision of this document.  
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Introduction 
A new method of computing the mutual impedance between two antennas is proposed 
and described in detail.  The method utilizes an expansion of the vector fields in terms of 
the spherical vector harmonics.   
 
The mutual impedance is a circuit-theory quantity associated with a network.  It relates 
the current, i , flowing into one port of the network to the open-circuit voltage, v , at 
another port.  The definition is  

k j

 
0; 1,2, ,m

j
jk

k i m m

v
z

i k= = ≠

=
"

, 

where j, k, and m are indices which designate the various ports of the network.  
Alternatively, a mutual admittance can be defined,  

 
0; 1,2, ,m

j
jk

k v m m

i
y

v k= = ≠

=
"

, 

which relates the voltage, v , applied across one port to the short-circuit current, , at 
another port.  Mutual impedance (or admittance) exists between the antenna elements in 
an antenna array, and knowledge of this mutual impedance (or admittance) is critical to 
the successful design of the array.  Because of the mutual coupling, the reflection 
coefficient looking into an element is different when it is embedded in an array with all 
the elements excited, compared to that for the isolated element.  Thus, in order to tune the 
elements properly for minimum reflection in the active array, the mutual impedance (or 
admittance) is needed. 

k ji

 
Obviously, one could build an array of antenna elements, and then measure the coupling 
between the elements.  From this measurement, usually in the form of a scattering matrix, 
the mutual impedance (or admittance) is easily determined (see Appendix V).  However, 
this is not very practical in many situations, when the number of elements is large. 
 
As described below, the mutual impedance can be computed if the electric and magnetic 
fields for the elements are known.  Often, especially when the array is composed of 
small, identical elements, it is practical to measure or compute the fields for the element.  
Ideally, these fields should be measured or computed in the array environment, with all 
other elements terminated in matched impedances, but not excited.  However, this is not 
always practical, and, sometimes, useful information can be obtained with the element 
fields measured or computed in an environment where it is the only element present. 
 
For most applications, the mutual impedance is needed for many different relative 
positions of the two antenna elements.  When numerical methods, such as method of 
moments, finite-difference time-domain methods, and finite-element methods are used, it 
can be very time consuming to compute the fields at each new relative position of the 
antennas.  Computer memory requirements also limit the practicality of these methods for 
large arrays.  Thus, a field representation that allows easy translation to new positions 
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would be valuable for improving the efficiency of the computation as the relative position 
is iterated. 
 
Computing the mutual impedance involves integrating vector products of fields over a 
surface.  The integrands can oscillate wildly over the integration surface, and are often 
difficult to integrate accurately.  The method described here relies on the expansion of the 
fields in terms of vector spherical harmonics.  The integrations over the closed surface 
are performed in closed form, leaving the mutual impedance expressed as a sum of 
products of expansion coefficients. 
 
The mutual impedance is described in terms of a physical observable called the reaction, 
introduced by Rumsey.  The reaction theorem is related to the reciprocity theorem 
derived by Lorentz, and an understanding of the reciprocity theorem is helpful for 
understanding the reaction concept.  In the following, the Lorentz reciprocity theorem is 
derived and examined in some detail.  In order to understand better the generality and 
applicability of the theorem, it is derived in a very general form.  The medium in which 
the elements are embedded is assumed linear and time-invariant, but not homogeneous or 
even isotropic.  The validity of the theorem does place constraints on the medium, and 
these constraints will be stated.   
 
After the discussion of the reciprocity theorem, an expression for the mutual impedance 
in terms of the reaction quantity is written.  The reaction is a term contained in the 
mathematical statement of the reciprocity theorem, and thus the discussion of the 
reciprocity theorem is very relevant to understanding the mutual impedance. 
 
Once the expression for mutual impedance is written, the fields are expanded in vector 
spherical harmonics, and the mutual impedance is ultimately written in terms of the 
expansion coefficients.  This process is somewhat tedious and is described in detail.  
Fortunately, the final expression is simple, and it is straightforward to program a 
computer to perform the computation.  The first advantage, of course, is the avoidance of 
the need to integrate a wildly oscillating integrand that is slow to converge.  The second 
advantage is that mutual impedance can be computed for many sets of element positions, 
using a single measurement or computation of the fields around an element.  However, a 
disadvantage of this method is the loss of numerical significance that occurs for small 
element spacing.  This results, in part, from the need for a large number of harmonics to 
describe the translated field.  Further study is needed to adequately assess the method. 

Lorentz reciprocity theorem 
The reciprocity theorem derived by Lorentz [1, 2, 3] leads to a reaction concept [3, 4,5] 
that is useful for understanding and computing mutual coupling between two antennas, or 
more generally, between two sets of source currents.  The reciprocity theorem is 
discussed below, but a particularly entertaining discussion of the reciprocity theorem is 
contained in Weeks [6].  The reaction quantity, which corresponds to terms contained in 
the statement of the reciprocity theorem, was introduced by Rumsey [5].  The reaction 
quantity is a physical observable associated with the reaction between the fields of two 
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sources.  In an electrostatic system, Rumsey's reaction corresponds to the force exerted 
by one source of charge on another.  He shows that, for monochromatic electromagnetic 
fields, the reaction is the difference between the instantaneous and average rates (over 
one period) at which one source performs work against the other.   
 
Following [1], the reciprocity theorem will be developed in a general form.  It is 
important to realize that the theorem is obtained by simply applying certain mathematical 
operations to fields associated with two independent sets of sources.  The fields are 
required to satisfy Maxwell's equations, but they are not required to be related to each 
other, or even to exist at the same time.  However, they are required to be associated with 
the same region of space.  In addition, one would expect the validity of the theorem to 
require that the media associated with each set of fields be the same.  While this is true in 
the isotropic case, it will be shown below that a more general relationship between the 
two media must hold, and for certain anisotropic media, the two media will not be the 
same. 
 
The fields will be assumed time-harmonic (monochromatic) with dependence e j tω .  An 
electric current, 

K
, is the usual true physical source for the fields.  A fictitious magnetic 

current, 
K

, will also be included, because of its convenience in handling the equivalent 
sources often associated with the tangential electric-field of apertures in conducting 
surfaces.  The medium of interest will be assumed linear and time-invariant.  However, it 
will not be assumed homogeneous or even isotropic.  Thus, the medium will be 
characterized by dyadic electric permittivity and magnetic permeability, which are not 
necessarily symmetric, 

J
M

 †≠ε ε
L LK K , (1.1) 

 †≠µ µ
L LK K , (1.2) 

where  indicates the transposed dyadic.  The electric displacement field and magnetic 
flux density are 

†

 = ⋅D Eε
K L KK , (1.3) 

and 
 = ⋅B µ H

K KLK . (1.4) 
 
Suppose there exist two sets of independent sources, ( )1 1,J M

K K
, and .  The first 

set of sources is associated with the medium 

( 2 2,J M
K K )

( ),ε µ
L LK K , and the second source is associated 

with the "transposed" medium ( )† †,ε µ
L LK K .  At least when the medium is symmetric 

( , µ ), it is natural to ask whether the two sets of sources are present at the 
same time.  The theorem to be developed will be valid regardless of whether the sources 
are present at the same time.  The phasor fields associated with each source satisfy 

† =ε ε
L LK K † =

L LK µK

1M 1 1j∇ × = − ω ⋅ −E Hµ
K K KLK  (1.5) 

 1 1j 1∇ × = ω ⋅ +H Eε J
K L K KK  (1.6) 
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and 
 †

2 2j∇ × = − ω ⋅ −E Hµ
K K

2M
KLK  (1.7) 

 †
2 2j∇ × = ω ⋅ +H Eε 2J
K L K KK . (1.8) 

 
The reciprocity theorem is obtained by combining vector products of the fields and 
applying vector identities, with the fields subject to (1.5) through (1.8).  Thus, the 
theorem begins as simply a mathematical relationship that is imposed because the fields 
are solutions of Maxwell's equations.  We begin by forming the difference between the 
cross product between the electric field of the first source with the magnetic field of the 
second source and the cross product of the remaining electric and magnetic fields.  The 
divergence of this difference is 

 ( ) ( ) ( ) ( ) (1 2 2 1 2 1 1 2 1 2 2 1∇ ⋅ × − × = ⋅ ∇ × − ⋅ ∇ × − ⋅ ∇ × + ⋅ ∇ ×E H E H H E E H H E E H
K K K K K K K K K K K K ) . (1.9) 

Now, substitute (1.5) through (1.8) for the curl of the fields 

 

( ) ( )
(

†
1 2 2 1 2 1 1 2

†
2 1 1 2

2 1 1 2 1 2 2

j

j

∇ ⋅ × − × = − ω ⋅ ⋅ − ⋅ ⋅

+ ω ⋅ ⋅ − ⋅ ⋅ )
1+ ⋅ − ⋅ + ⋅ − ⋅

E H E H H H H H

E E E E

E J E J H M H M

µ µ

ε ε

K K K K K K K KL LK K

K L K K L KK K
K K K K K K K K

. (1.10) 

Since the transpose of a scalar is that same scalar, we see 

 ( )†
†⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅a X b a X b b X a

L L LK K K K K KK K

L

K

1

 

for all vectors a  and all dyadics X .  Thus, (1.10) becomes , b
KK K

 , (1.11) ( )1 2 2 1 2 1 1 2 1 2 2∇ ⋅ × − × = ⋅ − ⋅ + ⋅ − ⋅E H E H E J E J H M H M
K K K K K K K K K K K K

which is the differential form of the Lorentz reciprocity theorem.  Integrating (1.11) over 
the volume containing the sources, 

 
( ) ( )

( )

1 2 2 1 1 2 2 1

2 1 1 2 1 2 2 1

V

V

dV d

dV
Σ

∇ ⋅ × − × = × − × ⋅

= ⋅ − ⋅ + ⋅ − ⋅

∫∫∫ ∫∫

∫∫∫

E H E H E H E H s

E J E J H M H M

K K K K K K K K K

K K K K K K K K
w

, (1.12) 

where the closed surface  encloses the volume V, and the surface normal points out of 
the volume.  The integral form of the Lorentz reciprocity theorem is given by (1.12).   

Σ

 
For most situations of interest, the electric permittivity and the magnetic permeability are 
scalars or symmetric dyadics, and the two sets of sources are radiating in the same 
medium.  However, even when the constitutive parameters are non-symmetric dyadics, 
(1.11) and (1.12) still hold, provided 2 ,E H2

K K
 meet a very special condition:   must 

correspond to the fields when the second set of sources are embedded in a medium whose 
constitutive properties are the transpose of the constitutive properties of the medium in 
which the first set of sources are embedded, that is  

2 ,E H
K K

2

 †
2 1ε = ε
L LK K  
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and 
 †

2 1=µ µ
L LK K . 

 
When the source currents exist in a finite volume and radiate into unbounded space, the 
fields are subject to the radiation condition [7].  The radiation condition says that the 
electric and magnetic fields become transverse to each other and propagate outward, so 
that 

 ( )0 ˆlim 0
r

r jk
→∞

∇ × + × =E r E
K K

. (1.13) 

Applying the radiation condition as , we have r → ∞

 (0
1 ˆlim lim

r r

kr r
→∞ →∞

= ⋅ ×
ω

H −1µ )1r E
K KLK , (1.14) 

and 

 (†0
2 ˆlim lim

r r

kr r
→∞ →∞

= ⋅ ×
ω

H −1
µ )2r E

K KLK . (1.15) 

The differential surface-area vector is 
 2ˆ sind r d d= θ θ φs rK . (1.16) 
Thus, if the surface Σ  is taken to be the surface of the sphere at , the surface 
integral in (1.12), becomes 

r → ∞

 

( )

( ) ( )( )
1 2 2 1

† 20
1 2 2 1

lim

ˆ ˆ ˆlim sin

r

r

d

k r d

→∞
Σ

→∞
Σ

× − × ⋅ =

d× ⋅ × − × ⋅ × ⋅ θ θ
ω

∫∫

∫∫

E H E H s

E r E E r E r−1 −1µ µ

K K K K

φ

K

K K K KL LK K

w

w
. (1.17) 

L
A completely general form for 1−µK  is 

L
 1 ˆ ˆx y

− = + +m x m ˆzy m zµ K K KK , (1.18) 

and, since the inverse of the transpose of a dyadic is the same as the transpose of the 
inverse,  

 ( ) ( )1 †† 1 ˆ ˆ ˆx y

− −= = + +xm zym zmµ µ
L L K K KK K . (1.19) 

Substitution of (1.18) and (1.19) into (1.17) yields 

 

( )

( ) ( )
( ) ( )

1 2 2 1

1 2 20

2 1

lim

ˆˆ ˆ ˆ
ˆlim sin

ˆˆ ˆ ˆ

r

x y z

r
x y z

d

k r d

→∞
Σ

→∞
Σ

× − × ⋅

 × + + ⋅ ×
 = ⋅
 ω − × + + ⋅ × 

∫∫

∫∫

E H E H s

E xm ym zm r E
r

E m x m y m z r E

K K K K

dθ θ φ

K

K KK K K

K KK K K

w

w
. (1.20) 

Applying a cyclic permutation of the triple-vector products on the right of (1.20) 
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( )

( ) ( ) ( )
( ) ( ) ( )

1 2 2 1

1 2 2 2 2
0

2 1 1 1

lim

ˆ ˆ ˆˆ ˆ ˆ1 ˆlim sin
ˆ ˆ ˆˆ ˆ ˆ

r

x y z

r
x y z

d

k r

→∞
Σ

→∞
Σ

× − × ⋅ =

  × ⋅ × + ⋅ × + ⋅ ×   d d⋅ θ θ φ
 ω  − × ⋅ × + ⋅ × + ⋅ ×  

∫∫

∫∫

E H E H s

E xr E m yr E m zr E m
r

E m r E x m r E y m r E z

K K K K K

K K K KK K K

K K K KK K K

w

w
, (1.21) 

and, grouping the scalar factors in each term, we see that pairs of terms cancel, and the 
surface integral is zero, 

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2

1 2

1 2 2
1 2 2 1 0

2 1

2 1

2 1

ˆ ˆˆ

ˆ ˆˆ

ˆ ˆˆ1lim lim sin 0
ˆ ˆˆ

ˆ ˆˆ

ˆ ˆˆ

x

y

z

r r
x

y

z

d k r d d
→∞ →∞

Σ Σ

 ⋅ × × ⋅
 
 + ⋅ × × ⋅
 
 + ⋅ × × ⋅

× − × ⋅ = θ θ φ = 
ω − ⋅ × × ⋅ 

 
− ⋅ × × ⋅ 

  − ⋅ × × ⋅ 

∫∫ ∫∫

r E x E m r

r E y E m r

r E z E m r
E H E H s

r E m E x r

r E m E y r

r E m E z r

K K K

K K K

K K K
K K K K K

K KK

K KK

K KK

w w . (1.22) 

To reiterate,  

 ( 1 2 2 1lim 0
r

d
→∞

Σ

)× − × ⋅ =∫∫ E H E H s
K K K K Kw

K

, (1.23) 

as long as the fields E  are associated with a set of sources embedded in a medium 
whose constitutive properties are t pose of the constitutive properties of the 
medium in which the sources for E

K K
 are embedded, that is  

2 , H
K

2

he trans
11, H

 †
2 1ε = ε
L LK K , 

and 
 †

2 1=µ µ
L LK K , 

at each point in space.  This covers the cases where magnetic permeability and electric 
permittivity are any combination of scalars, symmetric dyadics, or even non-symmetric 
dyadics.  No spatial derivatives of the constitutive parameters were used, and the 
reciprocity theorem (1.12) and the result (1.23) are valid for inhomogeneous as well as 
homogeneous media.   
 
Inserting (1.23) into (1.12) we see that  

 ( )2 1 1 2 1 2 2 1 0
V

dV⋅ − ⋅ + ⋅ − ⋅ =∫∫∫ E J E J H M H M
K K K K K K K K

, (1.24) 

when currents contained in a finite volume radiate into unbounded space. 
 
Suppose each set of sources is localized and the sets are contained in non-overlapping, 
finite, closed volumes V  and V .  The volume integral can be broken into two pieces 1 2
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( ) ( )

( )
1

2

2 1 1 2 1 2 2 1 2 1 2 1

1 2 1 2

V V

V

dV dV

dV

⋅ − ⋅ + ⋅ − ⋅ = ⋅ − ⋅

− ⋅ − ⋅

∫∫∫ ∫∫∫

∫∫∫

E J E J H M H M E J H M

E J H M

K K K K K K K K K K K K

K K K K , (1.25) 

where V is a closed volume containing all of the sources, V  is the closed volume 
containing only sources , and V  is the closed volume containing only sources 

.  Because of (1.24), (1.25) becomes 

1

1,J M
K K

1

2

2

2 ,J M
K K

 ( ) ( )
1 2

2 1 2 1 1 2 1 2
V V

dV dV⋅ − ⋅ = ⋅ − ⋅∫∫∫ ∫∫∫E J H M E J H M
K K K K K K K K

. (1.26) 

 
Suppose we choose to integrate (1.12) over the source-free volume, the volume V less the 
two closed volumes containing the sources, V  and V .  The surface integral in (1.12) will 
now contain three separate parts,  

1 2

( ) ( ) ( )
1 2

1 2 2 1 1 2 2 1 1 2 2 1d d d
Σ Σ Σ

× − × ⋅ + × − × ⋅ + × − × ⋅∫∫ ∫∫ ∫∫E H E H s E H E H s E H E H
K K K K K K K K K K K KK K Kw w w s  (1.27) 

where  is the surface of volume V, and Σ 1Σ , 2Σ  are the surfaces of volumes V  and V , 
respectively.  In each of the integrals, the direction of 

1 2

dsK  is outward from the enclosed 
source-free volume.  This means that in the integrals over 1Σ , 2Σ , d  is pointing into the 
volume containing the sources.  Now, the volume integral on the right side of (1.12) will 
be zero since no sources are contained within the volume.  Also, as previously shown, the 
integral over the outer surface 

sK

Σ  will be zero as we allow .  In this case, the 
Lorentz reciprocity theorem reduces to  

r → ∞

 ( ) ( )
1 2

1 2 2 1 1 2 2 1 0d
Σ Σ

× − × ⋅ + × − × ⋅ =∫∫ ∫∫E H E H s E H E H s
K K K K K K K K

dK Kw w . (1.28) 

Fields associated with different media 
Suppose the two sets of sources are contained within different media, µ  for source 1, 
and  for source 2.  With this situation, (1.10) becomes 

1 1, ε
LL KK

2 ,µ ε
LL KK

2

 

( ) ( )
(

1 2 2 1 2 1 1 1 2 2

2 1 1 1 2 2

2 1 1 2 1 2 2

j

j

∇ ⋅ × − × = − ω ⋅ ⋅ − ⋅ ⋅

+ ω ⋅ ⋅ − ⋅ ⋅ )
1+ ⋅ − ⋅ + ⋅ − ⋅

E H E H H H H H

E E E E

E J E J H M H M

µ µ

ε ε

K K K K K K K KL LK K
K L K K L KK K

K K K K K K K K
. (1.29) 

As shown previously, in order for (1.29) to reduce to the usual forms of Lorentz's 
reciprocity theorem, (1.11) and (1.12), the media must have the transpose relationship 
 †

2 1=ε ε
L LK K , (1.30) 

 †
2 1=µ µ
L LK K . (1.31) 

However, when the fields are associated with media that do not satisfy the transpose 
relationship, the reciprocity theorem is not as simple, but still it can be stated that 
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( ) ( )

( )

1 2 2 1 2 1 1 2 1 2 2 1

2 1 1 2 1 1 1 2 2 1 2 2

V

V

d dV

j dV
Σ

× − × ⋅ = ⋅ − ⋅ + ⋅ − ⋅

+ ω ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

∫∫ ∫∫∫

∫∫∫

E H E H s E J E J H M H M

E E H H E E H Hε µ ε µ

K K K K K K K K K K K KK

K L K K K K L K K KL LK KK K
w

. (1.32) 

The additional volume integral compensates for the different materials, but now the 
integration must be extended to the entire volume where the media properties differ.  
When (1.30) and (1.31) hold, this last volume integral is zero because the integrand itself 
is zero. 
 
When the media are isotropic (scalar permittivity and permeability), then 

 
( ) ( )

( )

1 2 2 1 2 1 1 2 1 2 2 1

1 2 1 2

V

V

d d

j dV
Σ

× − × ⋅ = ⋅ − ⋅ + ⋅ − ⋅

′ ′+ ω ε ⋅ − µ ⋅

∫∫ ∫∫∫

∫∫∫

E H E H s E J E J H M H M

E E H H

K K K K K K K K K K K KK

K K K K
w V

2

, (1.33) 

where  
 1′ε = ε − ε , (1.34) 
and 
 1 2′µ = µ − µ . (1.35) 
 
Consider the situation as .  Using (1.13) in the left-hand expression of (1.33), we 
see that 

r → ∞

 ( )
( )

( )

10
1 2 2

1 2 2 1
10

2 1 1

ˆ
lim lim

ˆ
r r

k

d d
k

−

→∞ →∞
−Σ Σ

  × ⋅ ×  ω× − × ⋅ = ⋅
  − × ⋅ ×  ω  

∫∫ ∫∫
E r E

E H E H s
E r E

µ

µ

  s

K KLK
K K K K K K

K KLKw w  (1.36) 

 
In general, the surface integral does not go to zero as r  when the different media 
extend to .  However, it is reasonable to assume that the region of differing media 
is finite, so as , µ

→ ∞
r → ∞

r → ∞ 1 → µK  and µ2 → µ
LK .  With this assumption, the surface integral 

does go to zero at r .  Thus, in the general case where the currents are contained in a 
finite volume of differing media and radiate into unbounded space 

→ ∞
0

L
0

 
( ) ( )

( )

2 1 1 2 1 2 2 1 1 2 2 1 2 2

2 1 1 2 1 1

V V

V

dV j dV

j d

⋅ − ⋅ + ⋅ − ⋅ = ω ⋅ ⋅ − ⋅ ⋅

− ω ⋅ ⋅ − ⋅ ⋅

∫∫∫ ∫∫∫

∫∫∫

E J E J H M H M E E H H

E E H H

ε µ

ε µ

K K K K K K K K K L K K K

V

LK K

K L K K KLK K . (1.37) 

Reaction and mutual impedance 
Now suppose the volum  integration is the closed volume containing only sources K K

, or sources 
K K

.  In the first case, we have, from (1.12) 
e of

1 21,J M 2 ,J M
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 ( ) ( )
1 1

1 2 2 1 2 1 2 1
V

d
Σ

× − × ⋅ = ⋅ − ⋅∫∫ ∫∫∫E H E H s E J H M
K K K K K K K K

dVKw , (1.38) 

while in the second case, 

 ( ) ( )
2 2

1 2 2 1 1 2 1 2
V

d
Σ

× − × ⋅ = − ⋅ − ⋅∫∫ ∫∫∫E H E H s E J H M
K K K K K K K K

dVKw . (1.39) 

Rumsey [5] defines the right hand sides of (1.38) and (1.39) as the reaction, 1, 2 , 

between source 1 and 2, and 2,1  between sources 2 and 1, respectively.  In Rumsey's 

notation, the first designator in :,:  indicates the source located inside the volume of 
integration.  Specifically 

 ( )
1

2 1 2 11, 2
V

dV= ⋅ − ⋅∫∫∫ E J H M
K K K K

, (1.40) 

and 

 ( )
2

1 2 1 22,1
V

dV= ⋅ − ⋅∫∫∫ E J H M
K K K K

. (1.41) 

From (1.38) and (1.39), we also have 

 ( )
1

1 2 2 11, 2 d
Σ

= × − × ⋅∫∫ E H E H s
K K K K Kw , (1.42) 

and, 

 ( )
2

2 1 1 22,1 d
Σ

= × − × ⋅∫∫ E H E H s
K K K K Kw . (1.43) 

Richmond [4] has shown that the reaction can also be written 
 ,jk jv i j k= − , (1.44) 

where  is the voltage induced across the open-circuited terminals of source j in the 

presence of the fields, , due to current  at the terminals of source k.  The fields 

 are the result of applying terminal current  at source j. 

jkv

j

( ,k kE H
K K )

)

1

2

n

i
i

i

ki

( ,jE H
K K

ji
 
In a multiport network, the currents at each port are related to the port voltages by an 
impedance matrix, as follows, 

 

1 11 12 1

2 21

1

n

n n nn

v z z z
v z

v z z

   
   
 =  
   
  
   

"
% % #

# # % % #
" " 

#
. (1.45) 

Thus, from (1.44) and (1.45), the mutual impedance between port j and port k is 

 (
0;

, 1

jm

j jk
jk j k k j

k k j k j ki m k

v v j k
z d

i i i i i i Σ= ≠

−
= = = = − × − ×∫∫ E H E H ) ⋅ s

K K K K Kw . (1.46) 
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When the fields associated with two antennas are known, then the mutual impedance 
between them can be found from (1.46).  In this case, the currents on the antennas need 
not be known.  Only the fields radiated when each antenna is excited with a known 
terminal current are necessary.  If necessary, these fields can be obtained through 
measurement. 

Implementation of the computation of the mutual impedance 
In order to compute the mutual impedance between two antennas, we will assume that the 
near fields associated with each antenna have already been obtained in some manner.  
Perhaps, the fields have been obtained through spherical-near-field measurement, 
method-of-moments computation, finite-element computation, or some other means that 
results in the complex frequency-domain phasor representation of the spatial dependence 
of the time-harmonic field associated with each antenna.  Regardless of how the fields 
have been obtained, it will be convenient to write the fields as expansions in a set of 
orthogonal vector harmonics.  The convenient set associated with spherical coordinates is 
the set of vector spherical harmonics [3, 8, 9, 10, 11].  The vector spherical harmonics 
and their application in expansions of electromagnetic fields are described in Appendix I. 
 
Initially, it may seem that this approach unnecessarily complicates the formulation of the 
mutual impedance.  The motivation lies in the fact that considerable effort is required to 
obtain the near electric (or magnetic) field for a particular antenna element.  However, if 
this effort is expended once for the element of interest, then the procedure described here 
will allow the mutual impedance with another identical element to be obtained easily, for 
any number of different locations of the second element.  The second element can be 
translated to any position relative to the first element, but we will not consider rotation.  
(The method can be extended to include rotation, however.)  In addition, the integrand of 
(1.46) can oscillate wildly, causing difficulty in obtaining an accurate value for the 
mutual impedance by simply evaluating the integral.  The use of vector spherical 
harmonics allows the integrations to be performed in closed form, and the expression for 
the mutual impedance is reduced to sums containing products of expansion coefficients 
and appropriate closed-form integrals. 
 
In the expression for mutual impedance, (1.46), the fields associated with each element 
must be obtained in an environment that is consistent with the presence of the other 
antenna.  For example, if the fields are obtained for an isolated element, the computed 
mutual impedance will be approximate, to the extent that the presence of the second 
element perturbs the fields away from the isolated-element fields. 

Expansion of the antenna’s field in vector spherical harmonics 
We will assume that the region around the antenna, in which we wish to expand the field, 
is characterized by scalar permittivity, ε , and permeability, µ .  The electric field is 
written as an expansion in the normalized vector spherical harmonics 

 ( ) ( )(2) (2)
, , ,

1

n
TE TM
n m n,m n m n m

n m n
b b

∞

= =−

= +∑ ∑E M r N
K K K

rK K , (2.1) 
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where the normalized vector spherical harmonics are 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
, ,

cos

ˆ ˆcos sin
sin2

jm
i i m i

n m n m n n n n
x

e jm djC z kr P z kr P x
dx

φ

= θ

 
= θ + θ θπ  

M r mθ φ
K K , (2.2) 

and  

 ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )
, ,

( )

cos

ˆ1 cos

1 ˆ ˆsin cos
sin

i
n m

njm
i

n m n m
i m m

n n n
x

z kr
n n P

krejC
d jmrz kr P x P

kr r dx

φ

= θ

 
+ θ 

 =  
 ∂π   + − θ + θ   ∂ θ  

r

2
N r

θ φ

K K , (2.3) 

with 

 ( )
( )

( )
( ),

2 1
1 !n m

n n m
C

n n n m
+ −

≡
+ +

!
. (2.4) 

The expansion in (2.1) is often referred to as a multipole expansion [8].  The 1n =  terms 
are the dipole terms, while n 2=  corresponds to the quadrupole terms, etc.  In (2.2) and 
(2.3),  is one of the spherical Bessel’s functions ( ) (i

nz kr )

 ( )

( )
( )
( )
( )

(1)

(2)
( )

; 1
; 2
; 3
; 4

n

ni
n

n

n

h kr i
h kr i

z kr
j kr i
y kr i

 =
 ==  =
 =

, (2.5) 

and  is the associated Legendre function of the first kind.  The notation used here 
is consistent with the notation used by Jackson [8] and by Abramowitz and Stegun [9].   

( )m
nP x

 
The vector spherical harmonics are described in detail in Appendix I.  With the j te ω  time 
dependence, the  and ( ) ( )2

n,mM r
K K ( )(2)

,n mN r
K K  represent outwardly propagating waves. 

 
The magnetic field intensity is obtained by substituting (2.1) into the curl equation for the 
electric field,  

 ( ) ( )( ) ( )
, , ,

1

n
TE i TM i
n m n m n m n,m

n m n

kj b b
∞

= =−

 = + ωµ ∑ ∑H N r
K K

M r
KK K . (2.6) 

The coefficients b  describe the strength of the transverse-electric (TE) components of 

the radiated field, while coefficients  describe the strength of the transverse-magnetic 
(TM) components.  When the antenna can be enclosed in a sphere of radius a, the series 
usually can be truncated at degree 

,
TE
n m

,
TM
n mb

n ka≈  [12], but in critical cases, such as this, it is 
advisable to use , where 1a n≈ +n k 3 k1n ≈ 3 a [13, 14]. 
 
Using the asymptotic expansion of the spherical Hankel’s function, the vector harmonics 
in the far-field region are approximated at large radius, r, by  

  15 



 ( ) (
1

(2)
, ,

n jkr

n m n m
j e

kr

+ −

),≅ θ φM r X
K KK , (2.7) 

and 

 ( ) ((2)
. ˆ ,

n jkr

n m n m
j e

kr

−

),≅ × θN r r X
K KK φ , (2.8) 

K
where the radially independent vector spherical harmonic, ,n mX ,  is given by 

 

( ) ( )

( ) ( )

( )
, ,( )

,
cos

1,

ˆ ˆcos sin
sin2

i
n m n mi

n

jm
m m

n m n n
x

z kr

e jm djC P P x
dx

φ

= θ

θ φ =

 
= θ + θ θπ  

X M

θ φ

K K

. (2.9) 

Thus, the far-field expressions for the outward-propagating fields are 

 ( ) ( ), , , ,
1

ˆ,
jkr n

n TE TM
n m n m n m n m

n m n

e j jb b
kr

− ∞

= =−

= θ φ +∑ ∑E X r
K K

, × θ φ X
K

, (2.10) 

and  

 ( ) ( ), , , ,
1

ˆ ˆ, ,
jkr n

n TE TM
n m n m n m n m

n m n

e k kj jb b
kr

− ∞

= =−

= × θ φ − θ φωµ ωµ∑ ∑H r X X
K K K

 = × r E
K

. (2.11) 

 
Suppose we have obtained E r  at ( )

K K
0=r rK K .  Then,  

 
( ) ( ) ( )(2 *( )

, 0 0

1 sin
, ; ,

TE i
n m n,mb d d

m n m n
π π

⋅

= φ θ θ ⋅∫ ∫
M M

E r M r
I K K

)0 0

K KK K , (2.12) 

and 

 
( ) ( ) ( )(2 *( )

, 0 0

1 sin
, ; ,

TM i
n m n,mb d d

m n m n
π π

⋅

= φ θ θ ⋅∫ ∫
N N

E r N r
I K K

)0 0

K KK K , (2.13) 

where (see Appendix I) 

 ( ) ( ) ( )
2

0 0, ; , ; i
n nnm n m n r z kr mm′ ′⋅ ′ ′ = δ δM MI K K , 

and  

 ( ) ( ) ( ) ( )2 *( ) ( ) ( )
0 0 0 0 0 02 2

0

1, ; , ; i i i
n n nm n m n r z kr r z kr r z kr

k r r r ′⋅

 ∂ ∂  ′ ′ = + δ   ∂ ∂  
N NI K K nn mm′

 δ , (2.14) 

and 

 
1,  
0,  kj

k j
k j

=
δ =  ≠

. (2.15) 

If the magnetic field is obtained instead of the electric field, 

 
( ) ( ) ( )(2 *( )

, 0 , 00 0
0

sin
, ; , ;

TE i
n m n mb j d d

k m n m n r
π π

⋅

ωµ
= − φ θ θ ⋅∫ ∫

N N

H r N r
I K K

)K KK K , (2.16) 
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and 

 
( ) ( ) ( )(2 *( )

, 00 0
0

sin
, ; , ;

TM i
n m n,mb j d d

k m n m n r
π π

⋅

)0
ωµ

= − φ θ θ ⋅∫ ∫
M M

H r M r
I K K

K KK K . (2.17) 

Note that the units associated with the coefficients, b  and , are volts/meter. ,
TE
n m ,

TM
n mb

Translation of the fields 
Although the expression for mutual impedance (1.46) is valid for any two arbitrary 
antennas, the array problem is concerned with the mutual impedance between identical 
elements.  Thus, we will only address the problem of computing the mutual impedance 
between identical elements.  The extension to non-identical elements is simple and 
straightforward.  The translation of the fields is accomplished through the application of 
an appropriate addition theorem.  The addition theorem for vector spherical harmonics, 
described in Appendix III, relates harmonics evaluated at rK  to harmonics evaluated at ′rK , 
where K  is measured from the origin of a second coordinate system, whose axes are 
parallel to those of the original system.  The origin of the second coordinate system is 
located in the first coordinate system by 

′r

′′rK .  These three vectors are related by addition 
as 
 ′′ ′= +r r rK K K , (2.18) 
so the theorem is called an addition theorem. 
 
Antenna 1 is located at the origin of coordinate system 1 (unprimed), and antenna 2 is 
located at the origin of coordinate system 2 (primed).  The origin of coordinate system 2 
is located from the origin of antenna 1 by position vector ′′rK ,  
 [ ]1 1ˆ ˆsin cos sin sin cosr′′ ′′ ′′ ′′ ′′ ′′ ′′= θ φ + θ φ + θr x 1ˆy zK . (2.19) 

The geometry is illustrated in Figure 1.  To obtain , the integration in (1.46) will be 
performed over a sphere that surrounds antenna 2.  It is important to ensure that the 
sphere does not contain antenna 1, as well. 

21z

 
As illustrated in Figure 1,  locates the field point on the sphere of integration with 
respect to the origin of coordinate system 1 (unprimed), while 

rK

′rK  locates the same field 
point from the origin of coordinate system 2 (primed).  In fact, during the integration, ′rK  
will be constant at the value of the radius chosen for the integration, even though the 
length of K  changes.  Also, note that r ′′rK , which locates origin 2 from coordinate system 1, 
is a constant vector; it does not move during the integration.   
 
The fields for antenna 1 will be expanded in vector spherical harmonics as follows: 

 ( ) ( )(2) (2)
1 , , ,

1

n
TE TM
n m n,m n m n m

n m n
b b

∞

= =−

 = + ∑ ∑E M r N
K K K

rK K , (2.20) 

and 

 ( ) ( )(2) (2)
1 , , ,

1

n
TE TM
n m n m n m n,m

n m n

kj b b
∞

= =−

 = + ωµ ∑ ∑H N r
K K

M r
KK K , (2.21) 
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using vector spherical harmonics associated with the unprimed (antenna 1) coordinate 
system.  However, in order to integrate over a sphere around antenna 2, it is convenient to 
express these fields in terms of vector spherical harmonics associated with the primed 
coordinate system.   

x̂

ˆ ′x
ˆ ′y

ˆ ′z

ŷ

ẑ
rK

′′rK

′rK

antenna 1

antenna 2integration surface
ˆ ′r

 
Figure 1  Geometry describing the relationship between the two antennas. 

 
The vector-spherical-harmonic addition theorem says (see Appendix III) that for the 
additive relationship K K , ′ ′= +r r rK ′

i ( ) ( ) ( ) ( ) ( ) ( )2
, , ; , , , ; , ,

,

i
n m n m n m n m n m n m n m

n m

A B′ ′ ′ ′ ′ ′ ′ ′
′ ′

′ ′= +∑M r M r N r
K KK K K K

i

, (2.22) 

and  

 ( ) ( ) ( ) ( ) ( ) ( )2
, , ; , , , ; , ,

,

i
n m n m n m n m n m n m n m

n m

A B′ ′ ′ ′ ′ ′ ′ ′ ′ ′
′ ′

′ ′= +∑N r N r M r
K KK K K K , (2.23) 

where  and  are given in Appendix III.  Both the vector spherical 

harmonics  and  contain spherical Bessel's functions 
, ; ,n m n mA ′ ′

( )iM
K

, ; ,n m n mB ′ ′

)′r
K

(,n m′ ′
K ( ) ( ),

i
n m′ ′ ′N rK ( ) (i

nz kr′ ′) , the 
specific kind of which is determined by the relative size of r′  and r′′  as follows 

 in M  and ( ) ( ),
i

n m′ ′ ′r
K K ( ) ( ),

i
n m′ ′ ′N r
K K :  ( ) ( )

( )
( ) ( )2

,

,
ni

n
n

j kr r r
z kr

h kr r r
′

′
′

′ ′ ′′<′ = 
′ ′ ′> ′

. (2.24) 

Similarly, both sets of coefficients  and  contain spherical Bessel's 
functions evaluated at 

, ; ,n m n mA ′ ′ , ; ,n m n mB ′ ′

r′′ , the specific kind of which is determined according to 
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 in A  and B :  , ; ,n m n m′ ′ , ; ,n m n m′ ′
( ) ( )

( ) ( )
( )

2 ,
,

i n
n

n

h kr r r
z kr

j kr r r
′ ′′
′′

′′

 ′′ ′ <′′ = 
′′

′′ ′ ′> ′
. (2.25) 

It should be emphasized that, for the integration over the spherical surface around 
antenna 2 (Figure 1), these Bessel's functions are constant, since r  and  are constant. ′ r′′
 
Substituting (2.22) and (2.23) into (2.20) and (2.21) gives the appropriate expressions for 
the fields associated with antenna 1 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, , ; , , , ; , ,
,

1
1

, , ; , , , ; , ,
,

i iTE
n m n m n m n m n m n m n mn

n m

n m n i iTM
n m n m n m n m n m n m n m

n m

b A B

b A B

′ ′ ′ ′ ′ ′ ′ ′∞
′ ′

= =−
′ ′ ′ ′ ′ ′ ′ ′

′ ′

 ′ ′+ 
 =
 

′ ′+ + 
 

∑
∑ ∑

∑

M r N r
E

N r M r

K KK K
K

K KK K
, (2.26) 

and 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, , ; , , , ; , ,
,

1
1

, , ; , , , ; , ,
,

i iTE
n m n m n m n m n m n m n mn

n m

n m n i iTM
n m n m n m n m n m n m n m

n m

b A B
kj

b A B

′ ′ ′ ′ ′ ′ ′ ′∞
′ ′

= =−
′ ′ ′ ′ ′ ′ ′ ′

′ ′

 ′ ′+ 
 =
 ωµ

′ ′+ + 
 

∑
∑ ∑

∑

N r M r
H

M r N r

K KK K
K

K KK K
, (2.27) 

or 

 
( ) ( ) ( )

( ) ( ) ( )
, , ; , , , ; , ,

1
1 , , , ; , , , ; , ,

iTE TM
n n m n m n m n m n m n m n m

iTE TM
n m n n m n m n m n m n m n m n m n m

b A b B

b B b A

∞ ′ ′ ′ ′ ′ ′

′ ′= =− ′ ′ ′ ′ ′ ′

 ′+
=
 ′+ + 

∑ ∑ ∑
M r

E
N r



K K
K

K K , (2.28) 

and 

 
( )( ) ( ) ( )

( ) ( ) ( )
, , ; , , , ; , ,

1
1 , , , ; , , , ; , ,

iTE TM
n n m n m n m n m n m n m n m

iTE TM
n m n n m n m n m n m n m n m n m n m

b A b Bkj
b B b A

∞ ′ ′ ′ ′ ′ ′

′ ′= =− ′ ′ ′ ′ ′ ′

 ′ ′+
 =

ωµ  ′+ + 
∑ ∑ ∑

r N r
H

M r

KK K
K

K K . (2.29) 

Exchanging the order of summation 

 ( ) ( ) ( ) ( )(1 1 , , 1 , ,
1

n
iTE TM

n m n m n m n m
n m n

b b
′∞

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′= =−

)i′ ′= +∑ ∑E M r N
K K K

rK K , (2.30) 

and 

 ( ) ( ) ( ) ( )(1 1 , , 1 ,
1

n
iTM TE

n m n m n m n m
n m n

kj b b
′∞

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′= =−

),
i′ ′= +

ωµ ∑ ∑H N r
K K

M r
KK K , (2.31) 

where 

 , (2.32) (1 , , , ; , , , ; ,
1

n
TE TE TM
n m n m n m n m n m n m n m

n m n
b b A b B

∞

′ ′ ′ ′ ′ ′
= =−

= +∑ ∑ )

)
and 

 . (2.33) (1 , , , ; , , , ; ,
1

n
TM TE TM
n m n m n m n m n m n m n m

n m n
b b B b A

∞

′ ′ ′ ′ ′ ′
= =−

= +∑ ∑
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The pre-subscript is used to designate the coefficients as belonging to the field expansion 
for antenna 1. 
 
The fields from antenna 2 are simply 

 ( ) ( )(2) (2)
2 2 , , 2 , ,

1

n
TE TM
n m n m n m n m

n m n
b b

′∞

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′= =−

′ ′= +∑ ∑E M r N
K K K

rK K , (2.34) 

 ( ) ( )(2) (2)
2 2 , , 2 ,

1

n
TE TM
n m n m n m n m

n m n

kj b b
′∞

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′= =−

,′ ′ = + ωµ ∑ ∑H N r
K K

M r
KK K , (2.35) 

where 
  and 2 , . (2.36) 2 , ,

TE TE
n m n mb b= ,

TM TM
n m n mb b=

Mutual impedance 
The fields for antenna 1 and antenna 2 have been expanded in vector spherical harmonics 
as follows: 

 ( ) ( )( ) ( )
1 1 , , 1 , ,

1

n
TE i TM i
n m n m n m n m

n m n
b b

′∞

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′= =−

′ ′= +∑ ∑E M r N
K K K

rK K , (2.37) 

 ( ) ( )( ) ( )
1 1 , , 1 ,

1

n
TE i TM i
n m n m n m n m

n m n

kj b b
′∞

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′= =−

,′ ′ = + ωµ ∑ ∑H N r
K K

M r
KK K , (2.38) 

 ( ) ( )(2) (2)
2 2 , , 2 , ,

1

n
TE TM
n m n m n m n m

n m n
b b

∞

= =−

′ ′= +∑ ∑E M r N
K K K

rK K , (2.39) 

 ( ) ( )(2) (2)
2 2 , , 2 ,

1

n
TE TM
n m n m n m n m

n m n

kj b b
∞

= =−
,′ ′ = + ωµ ∑ ∑H N r

K K
M r
KK K . (2.40) 

The pre-subscripts on the coefficients correspond to the antenna designation.  The 
superscript showing the type of spherical Bessel's function used in the vector harmonic is 
designated with the superscript ( )i  in the expressions for 1E

K
 and 1H

K
.  It is assumed that 

the harmonics have already been translated using the translation theorem, so the 
coefficients 1  and 1  are the translated coefficients.  As noted above, the types of 
Bessel's functions contained in (2.37) and (2.38) depend on the relative size of the distance 
from the old coordinate origin to the new coordinate origin, 

,
TE
n mb ′ ′ ,

TM
n mb ′ ′

r′′ , and the distance from the 
new origin to the field point, . r′
 
The mutual impedance between the antennas is obtained from (1.46), where the 
integration is performed over the sphere constant′ =rK  around antenna 2 (Figure 1).  It is 
necessary that the sphere of integration contain only antenna 2, and this requires  
 ′ ′′<r rK K . (2.41)   

Since d r , the mutual impedance (1.46) 2 ˆ sin d d′ ′ ′ ′ ′= θ θs rK ′φ
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 (
2

2
12 21 1 2 2 1

1 2 0 0

1 ˆsinz z d r d
i i

π π

)′ ′ ′ ′= = − φ θ θ × − × ⋅∫ ∫ E H E H r′
K K K K

. (2.42) 

Substituting the fields, expanded in vector spherical harmonics, into (2.42) leads to  

 

( ) ( ) ( )

( ) ( ) ( )

12 21
1 11 2

2
2 ( ) (2)

1 , 2 , 2 , 1 , , ,
0 0

2 ( ) (2)
1 , 2 , 2 , 1 , , ,

1

ˆsin

sin

n n

n m n n m n

TE TE TM TM i
n m n m n m n m n m n m

TE TM TE TM i
n m n m n m n m n m n m

kz z j
i i

b b b b d r d

b b b b d r

′∞ ∞

′ ′ ′= =− = =−

π π

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

= = −
ωµ


′ ′ ′ ′ ′ ′ ′+ φ θ × ⋅



′ ′ ′ ′ ′+ + φ θ ×

∑ ∑ ∑ ∑

∫ ∫ M r N r r

M r M r

K KK K

K KK K

( ) ( ) ( )

( ) ( ) ( )

2

0 0
2

2 ( ) (2)
1 , 2 , 2 , 1 , , ,

0 0

2
2 ( ) (2)

1 , 2 , 2 , 1 , , ,
0 0

ˆ

ˆsin

ˆsin

TM TE TM TE i
n m n m n m n m n m n m

TM TM TE TE i
n m n m n m n m n m n m

d

b b b b d r d

b b b b d r d

π π

π π

′ ′ ′ ′ ′ ′

π π

′ ′ ′ ′ ′ ′

θ

′ ′⋅ θ

′ ′ ′ ′ ′ ′ ′+ + φ θ × ⋅



θ

′ ′ ′ ′ ′ ′ ′+ + φ θ × ⋅ 


∫ ∫

∫ ∫

∫ ∫

r

N r N r r

N r M r r

K KK K

K KK K θ

. (2.43) 

Each of these integrals contains the factor 

 ( )
2

,
0

2j m m
m me d

π
′ ′+ φ

′−′φ = πδ∫ , (2.44) 

so each integral is zero unless m m′ = − , eliminating the summation over .  Writing 
(2.43) in terms of integrals evaluated in Appendix IV, the mutual impedance is  

m′

( ) ( ) ( )
( ) ( ) ( )( )

( )min ,
, , , 1 3

12 21 , ,
1 1 min ,1 2 , , , 2 2

, , , ,1
, , , ,

n n
n n m n n

n m n m
n n m n n n n m n n

A G kr I n n m I n n mkz z j C C
i i jB H kr I n n m I n n m

′∞ ∞ ′ ′

′ −
′ ′= = =− ′ ′

 ′ ′ ′−   = = −
 ωµ ′ ′ ′+ − −   

∑∑ ∑  (2.45) 

where 

 ( ) ( ) ( ) ( )
1

2
1

1

, , 1 m m
n n

d dI n n m x P x P x dx
dx dx

−
′

−

′ = −∫ , (2.46) 

 ( ) ( ) ( )
1

2
1

, , m m
n n

dI n n m m P x P x dx
dx

−
′

−

′ = ∫ , (2.47) 

 ( ) ( ) ( )
1

2
3 2

1

1, ,
1

m m
n nI n n m m P x P x dx

x
−
′

−

′ = −
−∫ , (2.48)

 1 , 2 , 2 , 1 ,
, , 2

TE TM TE TM
n m n m n m n m

n n m
b b b b

B ′ ′− −
′

+
≡ , (2.50) 

 ( )
( )

( )
( ),

2 1
1 !n m

n n m
C

n n n m
+ −

≡
+ +

!
, (2.4) 
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 ( ) ( ) ( ) ( ) ( )
( ) (2)

(2) ( )
,

i
n n i

n n n n

z kr h kr
G kr r r h kr r r z kr

k r k r
′

′ ′

′ ′∂ ∂′ ′ ′ ′ ′ ′ ′  ≡ − +   ′∂ ∂ ′
, (2.51) 

 ( ) ( ) ( )
( ) ( )(2) ( )

2 (2) ( )
, 2

i
n n

i
n n n n

r h kr r z kr
r rH kr r h kr z kr

k

′

′ ′

∂ ∂′ ′ ′ ′     ′ ′∂ ∂′ ′ ′ ′≡ +


, (2.52) 

and, since the integration sphere must not contain antenna 1, r r′ ′′< ,  

 ( ) ( ) ( )i
n nz kr j kr′ ′′ ′= . (2.53) 

 
These equations look rather unwieldy, but fortunately, additional simplification is 
possible.  In addition, it appears from (2.51) and (2.52) that the impedance depends on 
the radius of the integration sphere, contrary to expectation.  However, it will be shown 
subsequently that, as long as the integration sphere does not contain antenna 1 so , 
the mutual impedance is independent of the radius. 

r r′ ′< ′

 
It is shown in Appendix IV that 
 ( ) ( )2 2, , , , 0I n n m I n n m′ ′− − = , (2.54) 

and using (IV-77) and (IV-79) 

 ( ) ( )
( ) ( )

1 3

0; 
, , , ,

2 ( 1)1 ; 
2 1

m

n n
I n n m I n n m

n n n n
n

 ′ ≠′ ′− =  + ′− =
 +

. (2.55) 

Thus, the only non-zero terms in (2.45) occur when n n′ = .  The mutual impedance can 
now be written 

 ( ) ( ) (12 21 , , , , ,
11 2

1 2 ( 1)1
2 1

n
m

n m n m n n m n n
n m n

k n nz z j C C A G kr
i i n

∞

−
= =−

+ )′= = − −
ωµ +∑ ∑ . (2.56) 

An alternate method of arriving at (2.56) from (2.43) is contained in Appendix VI.   
 
Substitution of (2.4) further simplifies (2.56) 

 ( ) ( )12 21 , , ,
11 2

2 1
n

m
n n m n n

n m n

kz z j A G kr
i i

∞

= =−

′= = − −
ωµ ∑ ∑ . (2.57) 

Using (2.53) in (2.51) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(2) (2)
,n n n n n n

n n n n

rG kr j kr r h kr h kr r j kr
k r r

rj j kr r y kr y kr r j kr
k r r

′ ∂ ∂ ′ ′ ′ ′ ′ ′ = − + ′    ′ ′∂ ∂ 
′ ∂ ∂ ′ ′ ′ ′ ′ ′= −      ′ ′∂ ∂ 

. (2.58) 

The spherical Bessel's functions satisfy the recursion [9], 
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 ( ) ( ) ( ) ( ) ( ) ( )1
i i i

n n nx z x nz x xz x
x +

∂
= −

∂
, (2.59) 

so 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (11i i i i i

n n n n nr z kr z kr kr z kr n z kr kr z kr
r kr +
∂ ∂′ ′ ′ ′ ′ ′ ′= + = + −

′ ′∂ ∂
)′ . (2.60) 

Substituting (2.60) into (2.58)  

 ( ) ( ) ( ) ( ) ( ), 1n n n n n n
rG kr j kr y kr j kr j kr y kr
k + 1+

′
′ ′ ′ ′ ′= − ′   . (2.61) 

The cross-product relation between the spherical Bessel's functions is [9] 

 ( ) ( ) ( ) ( )1 1 2 2
1

n n n ny kr j kr j kr y kr
k r+ +′ ′ ′ ′− =

′
, (2.62) 

so 

 ( ), 2
1

n nG kr j
k

′ = . (2.63) 

Using (2.49) and (2.63) in (2.57), the mutual impedance is simplified to 

 ( ) (12 21 1 , 2 , 2 , 1 ,2
11 2

1 1 1
n

m TE TE TM TM
n m n m n m n m

n m n

z z b b b b
i i k

∞

−
= =−

ε
= = − +

µ ∑ ∑ )− . (2.64) 

The coefficients 1 ,  have units of volts/meter, and the currents  
are measured in amperes.   

1 , 2 , 2 ,, , ,TE TM TE TM
n m n m n m n mb b b b 1 2,i i

 
Suppose the integration sphere had been allowed to contain both antennas so .  In 
this case, the proper choice of 

r r′ > ′′
( ) ( )i
nz kr′ ′  is  

 ( ) ( ) ( ) ( )2i
n nz kr h kr′ ′= . (2.65) 

Using (2.65) in (2.51) 

 ( )
( ) ( ) ( ) ( ) ( ) ( )
2 (2)

2(2)
,

0

n n
n n n n

h kr h kr
G kr r r h kr r r h kr

k r k r
′ ′∂ ∂ ′ ′ ′ ′ ′ ′ ′ = −  ′∂ ∂

=


′ . (2.66) 

In effect, the reaction of antenna 1 on antenna 2 is cancelled by the reaction of antenna 2 
on antenna 1, and the integration gives zero.  Thus, the requirement that the sphere of 
integration not contain both antennas is necessary. 

Mutual impedance from radiation pattern measurement 
The total time-averaged power radiated by an element is  

 
2

* 2

0 0

1 Re sin
2

P r
π π 

d d= × θ θ
 
∫ ∫ E H φ
K K

, (2.67) 

and substituting the vector-spherical-harmonic expansions for the fields, it can be shown 
that the total time-averaged power radiated by a single antenna element is 
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 ( )20
, ,2

10

1
2

n
TE TM
n m n m

n m n

P b
k

∞

= =−

ε
=

µ ∑ ∑
2

b+ . (2.68) 

The total time-averaged radiated power is also given by  

 ( )2
11

1 Re
2 radP i Z= η , (2.69) 

where 11Z  is the input impedance, and radη  is the radiation efficiency of the element.  
The mutual impedance can be written in terms of the radiation efficiency and the resistive 
part of the input impedance, 

 ( )

( )
( ) (11

12 21 1 , 2 , 2 , 1 ,2 2 1
, ,

1

Re
1

n
mrad TE TE TM TM

n m n m n m n mn
TE TM n m n
n m n m

n m n

Z
z z b b b b

b b

∞

−∞
= =−

= =−

η
= = − +

+
∑ ∑

∑ ∑
)− . (2.70) 

 
When fully polarimetric radiation gain and phase patterns are measured, the quantity 
measured is a complex vector gain,  

 
( ) ( ) ( ) ( )

( ) ( )

1
, , , ,

1

, , , ,
1

ˆ, ,

ˆ, ,

n
n TE n TM

cal cal n m n m n m n mjkr
n m n

n
TE TM
n m n m n m n m

n m n

krg g j b j b
e

c c

∞
+

−
= =−

∞

= =−

, θ φ = = θ φ + × θ φ 

 = θ φ + × θ φ 

∑ ∑

∑ ∑

g E r X r X

X r X

K KK K

K K

K

 (2.71) 

where the far-field vector spherical harmonics (2.7) and (2.8) are used, and  is the 
calibration factor, chosen so that the gain pattern is 

calg

 ( ) ( ) ( )
2

, , , ,
1

ˆ
n

TE TM
n m n m n m n m

n m n

G c c
∞

= =−

= + ×∑ ∑r X r r X r
K KK K K . (2.72) 

The field-expansion coefficients are related to the complex gain coefficients as  

 , 1
1TE TE

n m n mn
cal

b
j g+= ,c , (2.73) 

and 

 ,
1TM TM

n m n mn
cal

b
j g

= ,c . (2.74) 

 
The efficiency is  

 ( )2

, ,
1

1
4

n
TE TM

rad n m n m
n m n

c c
∞

= =−

η = +
π ∑ ∑

2
. (2.75) 

Thus, when the expansion coefficients represent the gain pattern (typically the case with 
measured patterns), then the mutual impedance is simply 

 ( ) ( ) (12 21 11 1 , 2 , 2 , 1 ,
1

1 Re 1
4

n
m n TE TE TM TM

n m n m n m n m
n m n

z z Z c c c c
∞

+
−

= =−

= = − − +
π ∑ ∑ )− . (2.76) 
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However, care must be maintained when using measured complex-gain patterns.  It is 
also common to use expansion coefficients defined so the far-field gain is 

 ( ) ( ) ( )
2

, , , ,
1

ˆ
n

n TE TM
n m n m n m n m

n m n

G j jd d
∞

= =−

 = + × ∑ ∑r X r r X r
K KK K K . (2.77) 

In this case 

 ,
1TE TE

n m n m
cal

b
g

= ,d , (2.78) 

 ,
1TM TM

n m n m
cal

b
g

= ,d , (2.79) 

and the mutual impedance is 

 ( ) ( ) (12 21 11 1 , 2 , 2 , 1 ,
1

1 Re 1
4

n
m TE TE TM TM

n m n m n m n m
n m n

z z Z d d d d
∞

−
= =−

= = − +
π ∑ ∑ )− . (2.80) 
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Appendix I — Vector Spherical Harmonics 

General vector harmonics 
The vector wave equation is  
 . (I-1) 2 2 2 0k∇ + = ∇∇ ⋅ − ∇ × ∇ × + =F F F F F

K K K K K
k

Three independent solutions of (I-1) are [15] 
 = = ∇ψF L

K K
, (I-2) 

 ˆ= = ∇ × ψF M a
K K

, (I-3) 
and 

 1 1 ˆ
k k

= = ∇ × = ∇ × ∇ × ψF N M a
K K K

, (I-4) 

where  is a solution of the scalar wave equation ψ

 2 2 0k∇ ψ + ψ = , (I-5) 

and  is a unit vector.  That â L
K

 is a solution of (I-1) is easily demonstrated.  We have 
K K

 ( ) ( )2 2 2k k∇ + = ∇∇ ⋅ ∇ψ − ∇ × ∇ × ∇ψ + ∇ ψL L .   (I-6) 

Since ∇ × , we have 0∇ψ ≡

 ( )2 2 0k∇ ∇ ψ + ψ = . (I-7) 

Substituting  into (I-1)  M
K

 ( ) ( )2 2 2 2ˆk k∇ + = ∇ ∇ × ψ + ∇ × ψM M a a
K K

ˆ . (I-8) 

Since ∇  commutes with  (see Appendix II), we see that 2 ∇ ×

 ( ) ( )2 2 2 2ˆ ˆ ˆ 0k∇ × ∇ ψ + ψ = ∇ × ∇ ψ + ψ =a a a
K

k . (I-9) 

Similarly, substituting  into (I-1) N

 2 2 2 21 1k k
k k

  ∇ + = ∇ ∇ × + ∇ ×  
   

N N M M
K K K K 

 . (I-10) 

Again, using the commutation property of 2∇  and ∇ ×  

 (2 2 2 21 0k
k

∇ + = ∇ × ∇ + =N N M M)k
K K K K

. (I-11) 
K

From (I-3) and (I-4)  and M
K

N  have no divergence, 
 0∇ ⋅ =M

K
, (I-12) 

and  
 0∇ ⋅ =N

K
. (I-13) 

Also, from (I-2)  has no curl, L
K
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 0∇ × =L
K

, (I-14) 
and since ψ  is a solution of the wave equation, 

 2 2k∇ ⋅ = ∇ ψ = − ψL
K

. 
When the curl operator, ∇ × , and  are anti-commutative (which is true when 

 or a , see Appendix II), the vector harmonics are also related by 
â

ˆ constant=a ˆ ˆ= r

 1ˆ ˆ ˆ
k

= ∇ × ψ = − × ∇ψ = − × = ∇ ×M a a a L
K K

N
K

. (I-15) 

Vector harmonics in the spherical coordinate system 
In the spherical coordinate system, the requirement that a  be a constant can be relaxed to 
the extent that it can be replaced by the radial unit vector r  [15], because the curl 
operator, ∇ × , and  are anti-commutative.  

ˆ
ˆ

r̂
 
The set of vector spherical harmonics used here based on the normalized radially-
independent vector spherical harmonic and notation as defined in Jackson [8]  

 ( )
( )

(,
1,

1
n m n mY

j n n
θ φ ≡ × ∇ θ φ

+
X r
K

), ,K , (I-16) 

where Y  are the scalar spherical harmonics given by (, ,n m θ φ)

 ( ) ( )
( ) ( ),

!2 1,
4 !

m
n m n

n mnY P
n m

cos jme φ−+
θ φ ≡ θ

π +
, (I-17) 

and  is the associated Legendre function given by ( )m
nP x †  

 ( ) ( ) ( ) ( )221 1
mmmm

n m
dP x x P x
dx

= − − n , (I-18) 

where  is the Legendre function ( )nP x

 ( ) ( 21 1
2 !

n n

n n n
dP x x

n dx )= − . (I-19) 

For negative order, m, [8] 

 ( ) ( ) ( )
( ) ( )!

1
!

mm
n

n m
P x P x

n m
− −

= −
+

m
n

), ,

)

, (I-20) 

so that  

 . (I-21) ( ) ( ) (*
, , 1 m

n m n mY Y− θ φ = − θ φ

The scalar spherical harmonics, Y (, ,n m θ φ  are orthonormal [8], so that  

                                                 
† Hanson [ ], Stratton [15], Arfken [16], and Mathews and Walker [18] omit the factor , but it is 
included by Jackson [8], Abramowitz and Stegun [9], Chew [10], Lebedev [11], and Balanis [ ]. 

−1b gm13
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 ( ) ( )*
, , ,, ,n m n m n n m mY Y d ,′ ′

Ω
′ ′θ φ θ φ Ω = δ δ∫∫ , (I-22) 

where  is .  The radially independent vector spherical harmonic, 

, satisfies the orthogonality relation [8]  

d
Ω

Ω∫∫
2

0 0
sin d d

π
θ θ φ∫ ∫

π

,

,n mX
K

 *
, , ,n m n m n n m md′ ′ ′

Ω
′⋅ Ω = δ δ∫∫ X X

K K
. (I-23) 

 
The explicit form for  is ,n mX

K

 ( ) ( )
( )

( )
( )

( )

( )
,

cos

ˆcos
2 1 ! sin

4 1 ! ˆsin

m jm
n

n m
m j

n
x

jm P e
n n m

j
dn n n m P x e
dx

φ

φ

= θ

m

 θ + − θ
 =

π + +  + θ  

X r
θ

φ

K K , (I-24) 

or 

 ( )
( )

( ) ( ), ,
ˆ, sin ,

sin cos1
n m n m n m

j jm Y Y
n n

∂
,

ˆ = θ φ + θ θ φ θ ∂ θ +
X r θ φ
K K . (I-25) 

From (I-21), we see that 

 ( ) ( )
( )

( ) ( )*
, ,

ˆ1 , sin
sin cos1

m
n m n m n m

j jm Y Y
n n

−
− ∂ *

,
ˆ, = − θ φ + θ θ φ θ ∂ θ +

X r θ φ
K K . (I-26) 

 
The usefulness of the vector spherical harmonic derives from the fact it forms a solution 
of the vector wave equation as 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
, ,,i i

n n m n n mz kr k z kr∇ θ φ + θX X , 0φ ≡
K K

, (I-27) 

where  represents any of the spherical Bessel’s functions ( )( )i
nz kr

 ( )

( )
( )
( )
( )

(1)

(2)
( )

; 1
; 2
; 3
; 4

n

ni
n

n

n

h kr i
h kr i

z kr
j kr i
y kr i

 =
 ==  =
 =

. (I-28) 

 
( ) ( ) ( ), ,i
n n mz kr∇ × θ φX

K

2 ∇ ×

 is also a solution of the vector wave equation, since the 

operators∇  and  commute (see Appendix II),  

 ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2
, ,i i

n n m n n mz kr k z kr∇ ∇ × θ φ + ∇ × θ φ ≡X X , , 0
K K

. (I-29) 
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Thus,  and ( ) ( ) ( ), ,i
n n mz kr θ φX

K ( ) ( ) ( ), ,i
n n mz kr∇ × θ φX

K
 are both harmonic solutions of the 

wave equation.  The two types of vector spherical harmonics are defined in terms of  
as 

,n mX
K

 ( ) ( )( ) ( )
, , ,i i

n m n n mz kr≡ θ φM X
K K

, (I-30) 

and 

 ( ) ( )( ) ( ) ( )
, ,

1 ,i i
n m n n m n,mz kr

k k
≡ ∇ × θ φ = ∇ ×N X

K K

K

1 iM
K

. (I-31) 
K

It is obvious that  and N  correspond to the general ( )
,
i

n mM
K ( )

,
i

n m M  and N
K

 harmonics defined 
in (I-3) and (I-4) for the special case  

 
( ) ( )

( )
(, ,

1

i
n

n m

z kr
Y

j n n
ψ = − θ φ

+
) , (I-32) 

since 

 ( ) ( )ˆ 0i
nz kr× ∇r = . (I-33) 

The M  and  have no divergence, and the corresponding harmonic with no curl is ( )
,
i

n m

K ( )
,
i

n mN
K

 ( )
( ) ( )

( )
(, ,

1

i
i n
n

z kr
Y

j n n
≡ ∇ψ = −∇ θ φ

+
L
K

)n m . (I-34) 

Only the harmonics without divergence are of interest outside the source region, since the 
magnetic field has no divergence anywhere, and electric field has no divergence away 
from the sources. 
 
It will be useful to note that 

 
( ) ( )( ) ( ) ( )

, ,

( ) 2 ( )

1 1,

1 1

i i
l m l l m l,m

i i
l,m l,m

z kr
k

k k

∇ × = ∇ × ∇ × θ φ = ∇ × ∇ ×

= ∇∇ ⋅ − ∇

N X

M M

K K

K K

K

i

k
M
K

, (I-35) 

and since ∇ ⋅ , and  is a solution of the wave equation, we see that  ( ) 0i
l,m =M
K ( )i

l,mM

 ( ) ( )
,

1i
l,m l mk

= ∇ ×M
K K iN . (I-36) 

This is the same result as (I-15) for the general vector-harmonic case. 
 
The explicit forms for the normalized vector spherical harmonics are 

 ( )

( )
( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
cos

sin ˆˆcos!2 1
4 1 ! ˆcos

sin

i im jm m j
n n n n

i x
n

i m jm
n n

d dz kr P e z kr P x en mn dr r dxj
n n n m jm z kr P e

r

φ φ

= θ

φ

θ θ − −+  =
π + +  + θ θ 

r θ

φ

K
m

L  (I-37) 
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 ( ) ( )
( )

( )
( )

( ) ( )

( ) ( )

( )

( )
,

( )

cos

ˆcos
2 1 ! sin

4 1 ! ˆsin

i m jm
n n

i
n m

i m
n n

x

jm z kr P e
n n m

j
dn n n m z kr P x e
dx

φ

φ

= θ

jm

 θ + − θ
 =

π + +  + θ  

M r
θ

φ

K K , (I-38) 

and  

 ( ) ( )
( )

( )
( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )
,

cos

( )

ˆ1 cos

2 1 ! 1 ˆsin
4 1 !

1 ˆcos
sin

i
n m jm

n

i i
n m n n

x

i m jm
n n

z kr
n n P e

kr
n n m dj rz kr P

n n n m kr r dx
jmrz kr P e

kr r

φ

φ

= θ

φ

m jmx e

 
+ θ 

 
+ − ∂  = − θ  π + + ∂ 

 ∂  + θ  ∂ θ 

r

N r θ

φ

K K . (I-39) 

Since  

 ( ) ( )
( )
( )

( ) ( ),

cos

!2 1 ˆ ˆˆ , sin
4 1 ! sin

m
n m

n m n

x

n m P xn jj P
n n n m x

cos jmm e φ

= θ

 − ∂+
× θ φ = − θ + θ 

π + + ∂ θ  
θ φ

K
r X  (I-40) 

we see that 

 
( ) ( )

( )
( )
( )

( ) ( ) ( )

( ) ( )

( )
( )

,

( )
,

2 1 !
ˆ1 cos

4 1 !

1 ˆ ,

i
ni m j

n m n

i
n n m

n n m z kr
j n n

n n n m kr

rz kr
kr r

φ+ −
= +

π + +

∂  + × θ φ ∂

N r

r X

K K

K

mP eθ r
, (I-41) 

or 

 ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
, ,

1ˆ ˆ1 ,
i

ni m i
n m n n n m

z kr
j n n Y rz kr

kr kr r
∂  = + θ φ + × θ φ ∂

N r r r X
K KK , , (I-42) 

K
and the transverse part of ( )( )

,
i

n mN rK  is simply 

 ( ) ( ) ( ) (( ) ( ) ( )
, , ,

1ˆ ˆ ˆ ,i i i
n m n m n n mrz kr

kr r
)∂  − ⋅ = × ∂

N r N r rr r X
K K KK K θ φ

)

. (I-43) 

These normalized vector spherical harmonics differ from those defined by Chew [10] and 
Stratton [15].  The harmonics used by Chew must be multiplied by a factor of 

( 1j n n +  to produce the normalized harmonics, and from those defined by Stratton 

must be multiplied by a factor of ( ) ( ) ( )
( ) ( )

2 1 !
1

4 1
m n n m

j
n n n m

+ −
−

π + + !
 to yield the normalized 

harmonics.  Hanson [13] uses normalized harmonics almost identical to those used here.  
However, Hanson’s harmonics, which are written with a different notation, must be 
multiplied by a factor of ( m

j m m )  to produce the ones defined here.  The relation 
between Hanson’s notation and that used here is 
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 ( ) ( ) ( ) ( ),

m
i

n m m n
mj
m

 
=  

 
M r F r
K K

1, ,
iK K , (I-44) 

and 

 ( ) ( ) ( ) ( ),

m
i

n m m n
mj
m

 
=  

 
N r F r
K KK

2, ,
i K . (I-45) 

 
A far-field representation of the vector spherical harmonics is obtained for out-going 
waves, where the  become ( )i

nz kr ( ) ( )2
nh kr .  Since  

 ( ) ( ) ( )
( ) ( )2 1

0

1
2

! 1

jkr n
pn

n
p

n peh kr j jkr
kr p n p

−
−+

=

Γ + +
=

Γ − +∑ , (I-46) 

the approximation for the far field region is,  

 ( ) ( )2 1  as 
jkr

n
n

eh kr j kr
kr

−
+≅ → ∞ , (I-47) 

and  

 ( ) ( )2  as 
jkr

n
n

z kr

eh z j kr
z kr

−

=

∂
≅ → ∞

∂
. (I-48) 

Thus, in the far field region,  

( ) ( )
( )

( )
( ) ( ) ( )(2)

,
cos

2 1 ! ˆ ˆcos sin
4 1 ! sin

n jkr
m m

n m n n
x

n n mj e jm d jmP P x e
kr n n n m dx

−
φ

= θ

+ −  
= − θ + θ π + + θ 

M r θ φ
K K , (I-49) 

and  

 ( ) ( )
( )
( ) ( ) ( )

1
(2)

,
cos

!2 1 ˆ ˆsin cos
4 1 ! sin

n jkr
m m

n m n n
x

n mj e n d jm jmP x P
kr n n n m dx

− −
φ

= θ

−  +
= θ − π + + θ 

N r θ
K K eθ φ , (I-50) 

or simply 

 ( ) (
1

(2)
, ,

n jkr

n m n m
j e

kr

+ −

),= θ φM r X
K KK , (I-51) 

and 

 ( ) ((2)
. ˆ ,

n jkr

n m n m
j e

kr

−

),= × θN r r X
K KK φ , (I-52) 

for the normalized vector spherical harmonics. 
 
The orthogonality integrals for the normalized vector harmonics are [8] 

 
( ) ( )

( ) ( )

2 *( ) ( )
, ,0 0

2

, ; , ; sin i i
n m n m

i
n nn mm

m n m n r d d

z kr

π π

′ ′⋅

′ ′

′ ′ = φ θ θ ⋅

= δ δ

∫ ∫M M M MI K K
K K

,  (I-53) 

and  
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( ) ( )

( )
( ) ( )

( ) ( ) ( )
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*( ) ( )

0 0

2( ) 2
( )

2 2 2 2

2 *( ) ( ) ( )
2 2

, ; , ; sin

11

1

i i
n,m n ,m

i
n i

n nn mm

i i i
n n n

m n m n r d d
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n n rz kr

k r k r r

z kr rz kr rz kr
k r r r

π π

′ ′⋅

′ ′

′ ′

′ ′ ≡ φ θ θ ⋅

 ∂  = + + δ ∂ 
 

∂ ∂   = + δ   ∂ ∂  

∫ ∫N N N NI K K

nn mm

δ

δ

K K

. (I-54) 

or, expanding (I-54),  

 ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2
2( ) ( )

2 2

*( ) ( )
*( ) ( )

2
*( ) ( )

2

11

, ; , ; 3

i i
n n
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i i
i in n

n n
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i i
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dz kr z x
k r dx

z kr z krd dm n m n r z x z x
kr dx kr dx

dz kr z x
dx

=

nn mm′ ′⋅
= =

=

  + +  
  

 
 ′ ′ = + + δ δ 
 
 
+ 
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N NI K K  (I-55) 

and  

 ( ) ( )2 *( ) ( )
, ,0 0

, , , ; sin

0

i i
n m n mm n m n r d d

π π

′ ′⋅ ′ ′ ≡ φ θ θ ⋅

=
∫ ∫M N M NI K K

K K
. (I-56) 

 
When r is small, the  component of r̂ ( )

,
i

n mN
K

 can be significant.  However, it will be 
necessary to expand a measured field in terms of the vector spherical harmonics, and the 

 component of the field is typically not measured.  Thus, for small r, the use of (I-55) 
for the normalization can produce an error.  Instead, we need the orthogonality integral 
for the transverse part of 

K
  

r̂

( )i
n,mN

 
( ) ( ) ( ) ( )

( )

2
*( ) ( ) ( )

ˆ ˆ
0 0

2
( )

2 2

ˆ ˆ, ; , ; sin

1

i i i
n,m n,m n ,m

i
n nn mm

m n m n r d d

rz kr
k r r

π π

′ ′− ⋅ ⋅

′ ′

′ ′ ≡ φ θ θ − ⋅ ⋅

∂  = δ δ ∂

∫ ∫N N rr N N N rr NI K K K
K K K

. (I-57) 

Special combinations of the vector spherical harmonics K
Consider the far-field representation of ( ) ( )2

1, 1±M rK  obtained from (I-51)  

 ( )(2)
1, 1

1 3 ˆ ˆcos
2 4

jkr
jej j

kr

−

e− φ
−

= −π
M r θ φ
K K θ  , (I-58) 

and  

 ( )(2)
1,1

1 3 ˆ ˆcos
2 4

jkr
jej j

kr

−

e φ = + θ π
M r θ φ
K K . (I-59) 
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For a TE field, M  represents a right-hand circularly polarized electric field at 

, while M  is the left-hand circularly polarized electric field.  Now consider 

the far-field representation of , from (I-52) 

( )(2)
1, 1− r
K K

( )(2)
1,1 r
K K0θ = °

( ) ( )2
1, 1±N r
K K

 ( )(2)
1, 1

1 3 ˆ ˆcos
2 4

jkr
je j e

kr

−
− φ

−
= − θ +π

N r θ φ
K K 

 , (I-60) 

and,  

 ( )(2)
1,1

1 3 ˆ ˆcos
2 4

jkr
je j e

kr

−
φ = θ + π

N r θ φ
K K

K
. (I-61) 

Similarly, for the TM field,  is the right-hand circularly polarized electric field 

when , and  is left-hand circularly polarized.  At 
( )(2)

1, 1−N rK

0θ = ° ( )(2)
1,1N r
K K 0θ ≠ ° , these fields are 

elliptical.  
 
For a TE field,  

 ( ) ( )(2) (2)
1,1 1, 1

3 ˆcos cos sin
4

jkrej
kr

−

−
ˆ + = φ − θ φ π

M r M r θ φ
K KK K , (I-62) 

 ( ) ( )(2) (2)
1,1 1, 1

3 ˆsin cos cos
4

jkre
kr

−

−
ˆ − = − φ + φ θ π

M r M r θ φ
K KK K , (I-63) 

which represent magnetic dipoles. 
 
For the TM field  

 ( ) ( )(2) (2)
1,1 1, 1

3 ˆcos sin cos
4

jkrej
kr

−

−
ˆ + = θ φ + φ π

N r N r θ φ
K KK K , (I-64) 

 ( ) ( )(2) (2)
1,1 1, 1

3 ˆcos cos sin
4

jkre
kr

−

−
ˆ − = θ φ − φ π

N r N r θ φ
K KK K , (I-65) 

 ( ) ( ) ( ) ( ) ( ) ((2) (2)
1,1 1, 1

3 ˆ ˆ1 1 cos sin cos sin cos
4

jkrej j
kr

−

− ) − − + = θ φ + φ − φ − φ π
N r N r θ φ
K KK K , (I-66) 

and  

 ( ) ( ) ( ) ( ) ( ) ((2) (2)
1, 1 1,1

3 ˆ ˆ1 1 cos sin cos sin cos
4

jkrej j
kr

−

− ) − − + = θ φ − φ + φ + φ π
N r N r θ φ
K KK K . (I-67) 

Equations (I-64), (I-65), (I-66), and (I-67) describe small linear dipoles oriented as , 
, , and  dipoles, respectively. 

Eφ

Eθ 45E ° 135E °
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Explicit forms for the associated Legendre function and its derivative 
mb gExplicit Forms for  P xn

 m 
n 0      1 2 3 4 5
0 1  0  0  0  0  0  
1 x  − −1 2x  0  0  0  0  
2 3 1

2

2x −  − −3 1 2x x  3 1 2− xd i  0  0  0  

3 5 3
2

3x x−  −
−

−3 5 1
2

1
2

2x x  15 1 2x x−d i  − −15 1 2 3 2
xd i  0  0  

4 35 30 3
8

4 2x x− +  −
−

−5 7 3
2

1
3

2x x x  15 7 1
2

1
2

2x x−
−d i  − −105 1 2 3 2

x xd i  105 1 2 2
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5 63 70 15
8

5 3x x x− +  −
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−15 21 14 1
8

1
4 2

2x x x  105 3
2

1
3

2x x x−
−d i  −

−
−105 9 1

2
1

2
2 3 2x xd i  945 1 2 2

x x−d i  − −945 1 2 5 2
xd i  

Explicit Forms for  Pn
m cos θb g

 m 
n 0     1 2 3 4 5
0 1  0  0  0  0  0  
1 cosθ  − sin θ  0  0  0  0  
2 3 1

2

2cos θ −  −3sin cosθ θ  3sin θ2  0  0  0  

3 5 3
2

3cos cosθ θ−  −
−3 5 1

2

2cos sinθ
θ  15 2cos sinθ θ  −15 3sin θ  0  0  

4 35 30 3
8
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2
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2

2
2cos sinθ
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5 63 70 15
8
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− +15 21 14 1

8
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2

3
2cos cos sinθ θ

θ
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−105 9 1
2

2
3cos sinθ

θ
945 4cos sinθ θ −945 5sin θ
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Explicit Forms for d
dx

P xn
m b g  

 m 
n 0      1 2 3 4 5
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4 2x x  31515 7
2

1
3

2x x x−
−  945 1 1 52 2− −x xd id i 4725 1 2 3 2

x x−d i  

Explicit Forms for d
dx

Pn
m cosθb g  

 m 
n 0      1 2 3 4 5
0 0  0  0  0  0  0  
1 1  cos

sin
θ
θ

 0  0  0  0  

2 3cosθ  
3 2 12cos

sin
θ
θ

−  −6cosθ  0  0  0  

3 
3 5 1

2

2cos θ −  315 11
2

3cos cos
sin
θ θ

θ
−  15 1 3 2− cos θd i  45cos sinθ θ  0  0  

4 
5 7 3

2

3cos cosθ θ−  5 28 27 3
2

4 2cos cos
sin

θ θ
θ

− +  30 4 7 3cos cosθ θ−d i  105 4 12cos sinθ θ−d i  −420 2cos sinθ θ  0  

5 15 21 14 1
8

4 2cos cosθ θ− +  15
105 126 29

8

5 3cos cos cos
sin

θ θ θ

θ

− +  −
− +10515 12 1

2

4 2cos cosθ θ  31515 7
2

3cos cos sinθ θ
θ

−  945 1 52 2sin cosθ θ−e j  4725 3cos sinθ θ  

 



 

Explicit forms for the scalar spherical harmonic and its derivative 

bExplicit Forms for Yn m, cos θg  
 m 
n 0 ±1 ±2 ±3 ±4 
0 1

4π
 0  0  0  0  

1 3
4π

θcos  ∓ 1
2

3
2π

θφe j± sin  0  0  0  

2 5
4

3 1
2

2

π
θcos −  ∓ 3

2
5

6π
θ θφe j± sin cos  3

4
5

6
2 2

π
θφe j± sin  0  0  

3 7
4

5 3
2

3

π
θ θcos cos−  ∓ 3

4
7

3
5 1

2

2

π
θ

θφe j± −cos sin 15
4

7
30

2 2

π
θ θφe j± cos sin  ∓ 5

8
7

5
3 3

π
θφe j± sin  0  

4 3 1
4

35 30 3
8

4 2

π
θ θcos cos− +  ∓15

4
1

5
7 3

2

3

π
θ θ

θφe j± −cos cos sin  15
4

1
10

7 1
2

2
2

2

π
θ

θφe j± −cos sin  ∓105
8

1
35

3 3

π
θ θφe j± cos sin  105

16
1

70
4 4

π
θφe j± sin  

Explicit Forms for 
dY

d
n m, cos

cos
θ

θ
b g  

 m 
n 0 ±1 ±2 ±3 ±4 
0 0  0  0  0  0  
1 3

4π
 ± ±1

2
3

2π
θ
θ

φe j cos
sin

 0  0  0  

2 
3 3

4π
θcos  ±

−±3
2

5
6

2 12

π
θ
θ

φe j cos
sin

 − ±3
2

5
6

2

π
θφe j cos  0  0  

3 
3 7

4
5 1

2

2

π
θcos −  ±

−±3
4

7
3

15 11
2

3

π
θ θ

θ
φe j cos cos

sin
15
4

7
30

1 32 2

π
θφe j± − cosd i  ± ±15

8
7

5
3

π
θ θφe j cos sin  0  

4 3 1
4

35 15
2

3

π
θ θcos cos−  ±

− +±15
4

1
5

28 27 3
2

4 2

π

θ θ

θ
φe j cos cos

sin
 15

2
1

10
4 72 3

π
θ θφe j± −cos cose j  ± −±105

8
1

35
4 13 2

π
θ θφe j cos sine j  − ±105

4
1

70
4 2

π
θ θφe j cos sin  
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Explicit expressions for the  vector spherical harmonic: 
K
X n m, ,θ φb g

 
 

K
X1 0

1
2

3
2, , sin �θ φ

π
θb g = j φ  

K
X1 1

1
2

3
4, , � cos �

−
−= −θ φ

π
θφb g e jj θ φ  

K
X1 1

1
2

3
4, , � cos �θ φ

π
θφb g = +e jj θ φ  

K
X2 0

25
6

3 1
4, , cos sin �θ φ

π
θ

θb g = −j φ  

K
X2 1

21
4

5 2 1, , cos � cos �
−

−= −θ φ
π

θ θφb g c he jj θ − φ  

K
X2 1

21
4

5 2 1, , cos � cos �θ φ
π

θ θφb g c h= + −e jj θ φ  

K
X2 2

21
4

5
, , sin � sin cos �
−

−= −θ φ
π

θ θ θφb g e jj θ φ  

K
X2 2

21
4

5
, , sin � sin cos �θ φ

π
θ θ θφb g = − +e jj θ φ  

 

 



 

Explicit expressions for the � ,,r X×
K

n m θ φb g  vector spherical harmonic: 
 
 

� , sin �
,r X× = −

K
1 0

1
2

3
2

θ φ
π

θb g j θ  

� , cos � �
,r X× = +−

−
K

1 1
1
2

3
4

θ φ
π

θφb g e jj θ φ  

� , c s � �
,r X× = − +o

K
1 1

1
2

3
4

θ φ
π

θφb g e jj θ φ  

� , cos sin �
,r X× = −

−K
2 0

25
6

3 1
4

θ φ
π

θ
θb g j θ  

� , cos � cos �
,r X× = − +−

−
K

2 1
21

4
5 2 1θ φ
π

θ θφb g c he jj θ φ  

� , cos � cos �
,r X× = − − +

K
2 1

21
4

5 2 1θ φ
π

θ θφb g c he jj θ φ  

� , sin cos � sin �
,r X× = +−

−
K

2 2
21

4
5

θ φ
π

θ θ θφb g e jj θ φ  

� , sin cos � sin �
,r X× = −

K
2 2

21
4

5
θ φ

π
θ θ θφb g e jj θ φ  
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Explicit expressions for the 
K KM rn m

i
,
b g b g  vector spherical harmonics: 

 
 

K KM r1 0 1
1
2

3
2,

i ijz krb g b gb g b g=
π

θsin �φ  

K KM r1 1 1
1
2

3
4,−

−= −i i jz kr e jb g b gb g b g
π

θφ � cos �θ φ  

K KM r1 1 1
1
2

3
4,

i i jz kr e jb g b gb g b g= +
π

θφ � cos �θ φ  

K KM r2 0 2

25
6

3 1
4,

i ijz krb g b gb g b g=
−

π
θ

θ
cos sin �φ  

K KM r2 2
21

4
5 2 1, 1−

−= −i i jz kr e jb g b gb g b g c h
π

θ θφ cos � cos �θ − φ  

K KM r2 2
21

4
5 2 1,1

i i jz kr e jb g b gb g b g c h= + −
π

θ θφ cos � cos �θ φ  

K KM r2 2
21

4
5

, 2−
−= −i i jz kr e jb g b gb g b g

π
θ θ θφ sin � sin cos �θ φ  

K KM r2 2
21

4
5

,2
i i jz kr e jb g b gb g b g= − +

π
θ θ θφ sin � sin cos �θ φ  

 

 



 

Explicit expressions for the 
K KN rn m

i
,
b g b g  vector spherical harmonics: 

 
 

K KN r r1 0
1

1
3

2
1 1

2
3

2, cos � sin �i
i

ij
z kr

kr
j

kr r
rz krb g

b g
b gb g b g b g= −

π
θ

∂
∂ π

θθ  

K KN r r1 1
1

1
3

4
1 1

2
3

4, sin � cos � �
−

− −= + +i
i

j i jj
z kr

kr
e

kr r
rz kr e jb g

b g
b gb g b g b g

π
θ

∂
∂ π

θφ φ θ φ  

K KN r r1 1
1

1
3

4
1 1

2
3

4, sin � cos � �i
i

j i jj
z kr

kr
e

kr r
rz kr e jb g

b g
b gb g b g b g= − + − +

π
θ

∂
∂ π

θφ φ θ φ  

K KN r r2 0
2 2

2

21
2

15
2

3 1 1 5
6

3 1
4, cos � cos sin �i

i
ij

z kr
kr

j
kr r

rz krb g
b g

b gb g b g c h b g= − −
−

π
θ

∂
∂ π

θ
θθ  

K KN r r2 1
2

2
23

2
5 1 1

4
5 2 1, sin cos � cos � cos �

−
− −= + − +i

i
j i jj

z kr
kr

e
kr r

rz kr e jb g
b g

b gb g b g b g c h
π

θ θ
∂
∂ π

θ θφ φ θ φ  

K KN r r2 1
2

2
23

2
5 1 1

4
5 2 1, sin cos � cos � cos �i

i
j i jj

z kr
kr

e
kr r

rz kr e jb g
b g

b gb g b g b g c h= − + − − +
π

θ θ
∂
∂ π

θ θφ φ θ φ  

K KN r r2 2
2 2 2

2
23

4
5 1 1

4
5

, sin � sin cos � sin �
−

− −= + +i
i

j i jj
z kr

kr
e

kr r
rz kr e jb g

b g
b gb g b g b g

π
θ

∂
∂ π

θ θ θφ φ θ φ  

K KN r r2 2
2 2 2

2
23

4
5 1 1

4
5

, sin � sin cos � sin �i
i

j i jj
z kr

kr
e

kr r
rz kr e jb g

b g
b gb g b g b g= + −

π
θ

∂
∂ π

θ θ θφ φ θ φ  
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Appendix II — Commutation Relations 
Consider the operators ∇  and 2 ∇ × .  The commutator is ( ) ( )2 2∇ ∇ × − ∇ × ∇ .  Using the 
representation of the operators in Cartesian coordinates, we see that 

( )
2 2 2

2
2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ

ˆ

x y z x y z

x y z x x y z y x y z z

x x y z y x y z

   ∂ ∂ ∂ ∂ ∂ ∂
∇ ∇ × = + + + + ×   ∂ ∂ ∂ ∂ ∂ ∂  

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

x y z

x y

x

ˆ ×z

( )

2 2 2

2 2 2

2

2 2 2

2 2 2

2

ˆ ˆ

ˆ ˆ ˆ

z x y z

x y z x y z

  ∂ ∂ ∂ ∂
+ + +   ∂ ∂ ∂ ∂   

= ∇∇ ×

    ∂ ∂ ∂ ∂ ∂ ∂
= + + × + +    ∂ ∂ ∂ ∂ ∂ ∂    
= ∇ × ∇

y z

x y z

×  (II-1) 

so that  
 ( ) ( )2 02∇ ∇ × − ∇ × ∇ = . (II-2) 

The commutator is zero, so the operators 2∇  and ∇ ×  commute. 
 
Let  be a constant vector.  Consider aK ∇ × ψaK , 

 

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

x y z

 ∂ ∂ ∂
∇× = + + × ψ ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + ψ × ∂ ∂ ∂

 ∂ ∂ ∂




= − × + + ψ ∂ ∂ ∂ 
= − × ∇ψ

x y z a

x y z a

a x y z

a

K

K

K

K

 (II-3) 

Thus, we have the operator anti-commutative relation, 
 0∇ × + × ∇ =a aK K . (II-4) 
 
Consider  when there is no additional function to the right.  We have ∇ × rK

 

( )ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
0

ˆx y z
x y z

 ∂ ∂ ∂
∇ × = + + × + + ∂ ∂ ∂ 

= × + × + ×
=

r x y z x y z

x x y y z z

K

 (II-5) 
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Next consider the operators  and ∇ × rK × ∇rK .  Note that ∇  in ∇ × rK  is expected to 
operate on whatever function is immediately to the right of ∇ × rK , in addition to r , 
unlike in (II-5).  Representing the operators in Cartesian coordinates, and explicitly 
including the right-hand function, ψ , on which the operators operate, 

K

 

( )ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

x y z
x y z

y z x z x y
x x y y z z

x x y y z z
y z x z x y

x y z
y z z x x y

 ∂ ∂ ∂
∇ × ψ = + + × + + ψ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂
= ψ − ψ − ψ + ψ + ψ − ψ

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= − ψ + ψ + ψ − ψ − ψ + ψ
∂ ∂ ∂ ∂ ∂ ∂

  ∂ ∂ ∂ ∂ ∂ ∂ = − − ψ − − ψ − − ψ   ∂ ∂ ∂ ∂ ∂ ∂   

r x y z x y z

z y z x y x

z ˆ





y z x y x

z y x z y x

K

( )ˆ ˆ ˆ ˆ ˆ ˆx y z
x y z

 ∂ ∂ ∂
= − + + × + + ψ ∂ ∂ ∂ 
= − × ∇ψ

x y z x y z

rK

, (II-6) 

so that 
 0∇ × ψ + × ∇ψ =r rK K . (II-7) 
Thus, the anti-commutator of the operators∇ ×  and rK  is zero. 
 
Now consider ∇ × , where ˆψr ˆ ≡r r rK K .  We have 

 

2

ˆ

1ˆ ˆ

1ˆ ˆ

ˆ

∇ × ψ = ∇ × ψ

 ψ ψ
= − × ∇ + ∇ × 

 
 

= − × ∇ψ − ψ × ∇  
 

= − × ∇ψ + ψ ×

= − × ∇ψ

rr
r

r r
r r

r r
r

r r
r

r

r̂

K
K

K K
K K

K

K

. (II-8) 

Thus, we also have the operator anti-commutative relation 
 . (II-9) ˆ ˆ 0∇ × + × ∇ =r r
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Appendix III  Addition Theorem for Vector Spherical 
Harmonics 
The vector-spherical-harmonic addition theorem allows a vector harmonic referenced to 
one coordinate system to be to be expanded in terms of vector harmonics referenced to 
another coordinate system, which has been translated with respect to the first.  The 
derivation rem is outlined well by Weng Cho Chew [10].  For a translation 
such that K K , as indicated in Figure III - 1, the addition theorem says [10]  

 of this theo
′′

i

′= +r r rK

 ( ) ( ) ( ) ( ) ( ) ( )2
, , ; , , , ; , ,

,

i
n m n m n m n m n m n m n m

n m

A B′ ′ ′ ′ ′ ′ ′ ′
′ ′

′ ′= +∑M r M r N r
K KK K K K

i

, (III-1) 

and  

 ( ) ( ) ( ) ( ) ( ) ( )2
, , ; , , , ; , ,

,

i
n m n m n m n m n m n m n m

n m

A B′ ′ ′ ′ ′ ′ ′ ′
′ ′

′ ′= +∑N r N r M r
K KK K K K , (III-2) 

where  

 
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

, ; ,

,

1 1 12
1 1 , , , , ,

nn n

n m n m i
n n w n m m w w

j n n n n n njA
n n n n A m n m n n z kr Y

′′′−

′ ′ ′
′′ ′′ ′′ ′−

 ′ ′ ′′ ′′+ + + − + π   =
 ′ ′+ + ′ ′ ′′ ′′ ′′ ′′⋅ − θ φ 

∑ , (III-3) 

and 

 
( ) ( )

( ) ( ) ( ) ( )( ), ; , ,
2 , , , , ,

1 1

n n
in

n m n m n w n m m w w
n

jB j B m n m n n z kr
n n n n

′−
′′′

′ ′ ′′ ′′ ′−
′′

π Y′ ′ ′′ ′′ ′′ ′′= −
′ ′+ +

∑ θ φ

)

, (III-4) 

and the difference in scaling factors between the definitions of the vector spherical 
harmonics defined by Chew [10] and those used here has been accounted for.   
 
In (III-1)–(III-4), the Y  is the scalar spherical harmonic (see Appendix I), (, ,n m θ φ

 ( ) ( ) ( )
( ) ( ),

2 1 !
,

4 !
m

n m n

n n m
Y

n m
φ+ −

θ φ = θ
π +

cos jmP e . (III-5) 

The choice of which spherical Bessel’s function, ( ) ( )i
nz kr , to use in (III-1)–(III-4) 

depends the relative sizes of r′  and r′′ : 

 in M  and ( ) ( ),
i

n m′ ′ ′r
K K ( ) ( ),

i
n m′ ′ ′N r
K K :  ( ) ( )

( )
( ) ( )2

,

,
ni

n
n

j kr r r
z kr

h kr r r
′

′
′

′ ′ ′<′ = 
′

′ ′ ′> ′
, (III-6) 

and 

 in A  and B :  , ; ,n m n m′ ′ , ; ,n m n m′ ′
( ) ( )

( ) ( )
( )

2 ,
,

i n
n

n

h kr r r
z kr

j kr r r
′ ′′
′′

′′

 ′′ ′ <′′ = 
′′

′′ ′ ′> ′
. (III-7) 

 
Also, in (III-1)–(III-4) 
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( ) ( ) ( ) ( ) ( )2 1 2 1 2 1
, , , , 1

0 0 04
m n n n n n nn n n

A m n m n n
m m m m

′ ′′ ′ ′′′ ′′+ + +   ′ ′ ′′ = −    ′− − +π   


′

, (III-8) 

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 , ,
2 1, , , , 1 1 , , 1, , 1
2 1

2 , , , , 1

n m n m n m m n m m A m n m n n
nB m n m n n n m n m n m m n m m A m n m n n
n

m n m m n m m A m n m n n

 ′ ′ ′ ′ ′′ ′ ′′ ′ ′ ′ ′′− + − + + + + + − − −
 ′′ +  ′ ′ ′′ ′ ′ ′ ′ ′′ ′ ′′ ′ ′ ′ ′′= + − + + − − − − − + ′′ −  

′ ′′ ′ ′′ ′ ′ ′ ′′− − − + + −  

1, , 1

−




)

, (III-9) 

and  is the Wigner 3j symbol.  There is a slight difference in the notation 

used here for 

1 2 3

1 2 3

j j j
m m m



 

( , , , ,B m n m n n′ ′ ′′

n′′
, and that used by Chew [10], who inserts an additional 

argument, , after .  Since that argument is redundant for the usage here, it has 
been deleted.  A typographical error contained in [10] has been corrected in (III-9).  This 
correction has been verified by symmetry arguments, comparison with [19], and the 
application of the addition to translate vector spherical harmonics.  Note that Tsang and 
Kong [19] use a different normalization for the vector harmonics than either Chew [10] or 
this report.  These different normalizations must be considered when comparing formulas 
from different sources.   

1n′′ −

 
The Wigner 3j symbol is related to the Clebsch-Gordon coefficients as [9, 10, 20] 

 ( ) (
1 2 3

1 2 3
1 1 2 2 1 2 3 3

1 2 3 3

1
,

2 1

j j mj j j
j m j m j j j m

m m m j

− −− 
=  + 

)−


 2

. (III-10) 

The Wigner 3j symbol and the Clebsch-Gordon coefficient will be described in more 
detail, and an accurate method for computing them will be given. 

 

The Wigner 3j symbol, , is nonzero only if m m1 2 3

1 2 3

j j j
m m m



 

3 1 m= − −  and if 

1 2 3 1 2j j j j j+ ≥ ≥ − .  The special case 
0 0 0
n n n′ ′′

 


  is nonzero only if 

 ′′n n n′+ +  is an 

even integer. 
 
From (III-8), we see that each term in the sum over n′′ , which is contained in  

(III-3), has a factor .  This means that the sum will only contain terms where 

 is even.  In addition, each term contains the factor 

, ; ,n m n mA ′ ′

n
m

0 0 0
n n n′ ′′ 


 



′′n n n′+ +
n n
m m m

′ ′′ 
 ′ ′ − −

, which 

will be zero unless n  satisfies ′′ n n n n n′ ′′ ′− ≤ ≤ + .  Note that when n n n′′ ′= − , then 
 is even for any .  Thus, we can write n n n′+ + ′′ ,n n′
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′′′− ′+
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′+ −

 ′ ′ ′′ ′′+ + + − + π   =
′ ′+ + ′ ′ ′′ ′′ ′′ ′′ ⋅ − θ φ 

∑
"

. (III-11) 

Similarly, from (III-9), we see that each term in the sum over n′′ , which is contained in 

 (III-4), has a factor , ; ,n m n mB ′ ′

1
0 0 0
n n n′ ′′ − 


 



′′

.  This means that the sum will only contain 

terms where n n n′+ +
1n

m m
′ ′′ − 

 ′ ′− − 

 is odd.  In addition, each term contains the factor 

 or 
n n
m m

1
1 1

n n n
m m m m

′ ′′ −
 ′− ± −
 

 ∓ ′
, which will be zero unless  satisfies n′′

1 n n+ − 1 n′n n′ ′′ ≤ + +≤ .  Note that when 1n n n′′ ′= + − , then  is odd for any 
.  Thus, we can write 

n n n′+ + ′′

,n n′

 
( ) ( )

( ) ( ) ( ) ( )
1

, ; , ,
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2 , , , , ,
1 1

n n n n
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jB j B m n m n n z kr
n n n n

′− ′+ +
′′′

′ ′ ′′ ′′ ′−
′′ ′= + −

′+ −

π Y ′ ′ ′′ ′′ ′′ ′′= − θ φ ′ ′+ +
∑

"
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ẑ

rK

′rK

′′rK

 
Figure III - 1 Relationship between the unprimed and primed coordinate systems for 

the vector-harmonic addition theorem. 

Application to translation of electromagnetic field 
Suppose the expansion of the magnetic field for an antenna is known in terms of vector 
spherical harmonics referenced to the origin of the unprimed coordinate system, as 
illustrated Figure III - 1.  The magnetic field in terms of harmonics referenced to the 
unprimed system is 

 ( ) ( ) ( )(2) (2)
, , ,

1

n
TE TM
n m n m n m n,m

n m n

kj b b
∞

= =−

 = + ωµ ∑ ∑H r N r M r
K KK K K K . (III-13) 
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In terms of harmonics referenced to the primed coordinate system, the same magnetic 
field is  

 
K K

K K

K KH r
M r

N r
′ =

+ ′

+ + ′

L
N
MM

O
Q
PP

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′′ ′=−=

∞

∑∑∑b g b g
b g

b g

b gj k b B b A

b A b B

n m
TE

n m n m n m
TM

n m n m n m
i

n m
TE

n m n m n m
TM

n m n m n m
i

n mm n

n

nωµ
, , ; , , , ; , ,

, , ; , , , ; , ,,1

. (III-14) 

Computing the Wigner 3j symbol and Clebsch-Gordon coefficient 
The Wigner 3j symbol and Clebsch-Gordon are the vector coupling coefficients from 
quantum mechanics [20, 21].  In this context,  and  represent the angular momenta 
of systems 1 and 2, and  represents the angular momentum of the total system 
composed of 1 and 2 together.  Here, they will be considered simply as a factor of the 
coefficients necessary to represent a vector spherical harmonic referenced to one 
coordinate system in terms of the harmonics referenced to a translated coordinate system. 

1j 2j

3j

 

The Wigner 3j symbol, , is given in closed form by the Racah formula 

[20] 

1 2 3

1 2 3

j j j
m m m



 




 
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 31 2 3 1 2 3 2 3 1 3 1 2

1 2 3 1 2 3

1 1 1 1 2 2 2 2 3 3 3 3

3 2 1 3 1 2 1 2 3 1 1 2 2

! ! !
1

1 !

! ! ! ! ! !

11
! ! ! ! !

j j m

k

k

j j j j j j j j j j j j
m m m j j j

j m j m j m j m j m j m

k j j m k j j m k j j j k j m k j m k

− − + − + − + − 
= − ⋅  + + +

⋅ + − + − + − ⋅

⋅ −
− + + − − + + − − − − + −∑ !

  , (III-15) 

where the 3j symbol is zero unless  
 1 2 3 0m m m+ + = , (III-16) 

 1 1 2 2 3, , and m j m j m≤ ≤ 3j≤ , (III-17) 

and 
 1 2 3 1j j j j j2− ≤ ≤ + . (III-18) 

In general [9, 20, 21], , ,  can be positive integers or multiples of half integers, 
, ,  can be positive or negative integers or multiples of half integers, and 

 must be an integer.  However, for the purposes here, , ,  will be 
restricted to positive integers and , ,  will be restricted to positive or negative 
integers. 

1j 2j 3j

1m 2m

1 2j j+
3m

3j+ 1j 2j 3j

1m 2m 3m

 
The Wigner 3j symbol satisfies certain symmetries [20, 21]  

 , (III-19) 1 2 3 3 1 2 2 3 1

1 2 3 3 1 3 2 3 1

j j j j j j j j j
m m m m m m m m m

    
= =    

     



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 , (III-20) ( ) 1 2 3 1 2 3 2 1 3 1 3 2 3 2 1

1 2 3 2 1 3 1 3 2 3 2 1

1 j j j j j j j j j j j j j j j
m m m m m m m m m m m m

+ +       
− = = =      

       









 3j

and 

 . (III-21) ( ) 1 2 31 2 3 1 2 3

1 2 3 1 2 3

1 j j jj j j j j j
m m m m m m

+ +  
= −   − − −  

 

Special values of the Wigner 3j symbol 

The special case   is nonzero only if 1 2 3

0 0 0
j j j

 
1 2j j+ +  is an even integer [20] and  

 

( )( )

( ) ( ) ( )
( )

1 2 3

1 2 3

1 2 3

1 2 3 2 3 1 3 1 2 1 2 3

2 1 2 3
1 2 3

1 2 3 2 3 1 3 1 2
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 ! ! !0 0 0 !
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2 2 2

j j j

j j j

j j j
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+ +




  
=  + − + − + −  + +     + + +   − + + − + − + −     

      
     

+

 (III-22) 

When , the following special values are obtained from (III-22)  1 2 0m m= =

 ( ) ( ) ( )
( )

( )
( ) ( )

1 21 2 1 2 2 1 1 2

1 2 2 1

 2 ! 2 !
1

0 0 0 2 2 1 ! !
j jj j j j j j j j

j j j j
++ + 

= −  + + 

!
!
, (III-23) 
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( )
( ) ( )
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j j j j
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hen

hen

− ≥
+ −

−  =  
  
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, (III-24) 

and  

 1 2 1 2 1
0

0 0 0
j j j j+ − 

=
 

 , (III-25) 

 1 2 1 2 1
0

0 0 0
j j j j− + 

=
 

 . (III-26) 

From  (III-15), we see that for any m j≤ ,   

 ( ) ( ) ( )
( ) ( )

( ) ( )
2 2 2 ! 2 22 11 2 !

2 4 1 ! ! !
m j m j mj j j

j
m m m j j m j m

− + 
= − − + + − 

!
, (III-27) 

and 
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( ) ( )

( ) ( )
( )

! 2 2 ! 4 !2
1

! 2 ! 2 2 1 !2
j m j m j m mj j m

j m m j mm m m
+ + − 

= −  − +−  +
. (III-28) 

Applying the symmetry relation (III-20), we see that  

 . (III-29) 3
30 for  an odd integer

2
j j j

j
m m m

 
= − 

 
Other special values, not containing factorials, are [20] 

 ( )
0 0 0 11
0 0 0 2 1

j mj j j j j j
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−     
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, (III-30) 
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+ 
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and from [21] 

 ( )
( ) ( )

1
1

0 1 2 1
j mj j m

m m j j j
− 

= − − + + 
. (III-32) 

Computing arbitrary values 
Using the Racah formula (III-15) to compute the Wigner 3j symbol presents some 
potential difficulties, because it contains products of factorials.  While the 3j symbol 
itself is well behaved when the arguments become large, intermediate products and 
factors can cause numerical overflow if appropriate precautions are not taken.  The 
logarithm of the factorial function can be computed easily for very large arguments, and 
can be utilized to avoid overflow when factorials of large integers are needed.  An 
approach that avoids overflow is to compute the 3j symbol as follows 

 ( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) (

( )

1 2 3

1 1
1 2 3 2 3 12 2
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 
 
 
 
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 

− 
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∑
)

  . (III-33) 

Unfortunately, this approach can loose accuracy for large degree because the terms of the 
sum alternate in sign, while some of the terms are many orders of magnitude larger than 
the final sum.   
 
The Racah formula (III-15) can be used if the factorials are factored into their prime 
factors before the multiplication.  By canceling common factors before multiplication, 
overflow is avoided.  Since the factors are all integers, an exact expression can be 
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obtained in terms of ratios and square roots of ratios of prime factors, called a root-
rational fraction.  However, this approach is complicated to program and is not very 
efficient.  However, it is attractive for exact computations, and the root-rational-fraction 
approach has been implemented by Stone and Wood [22]. 
 
As indicated above, some special values of the Wigner 3j symbol can be computed with a 
single term.  However, several of these special values, for example (III-23), (III-24), 
(III-27), and (III-28), still require computing products of factorials, leading to the 
possibility of numerical overflow. 

Stable recursive algorithm 
Luscombe and Luban [23] give a recursive algorithm for computing the Wigner 3j 
symbol.  The algorithm uses two nonlinear, two-term recursions and a three-term 
recursion.  No problems with overflow or rescaling occur, and the algorithm is very 
accurate.  However, there are pathological cases where the algorithm cannot be used 
precisely as described.  These cases will be addressed below.  The algorithm is 
implemented as follows. 
 

Let  represent .  The jψ 1 2

1 2 1 2

j j j
m m m m


 − − 


 jψ  satisfy the recursion relation [23] 

 1 1 min0,   j j j j j j maxX Y Z j j j+ −ψ + ψ + ψ = ≤ ≤ , (III-34) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
1 2 1 2 1 21 1 1 1jX j j j j j j j j m m    = + − − + + − + + − +    

2 
 , (III-35) 

 ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 1 2 2 1 22 1 1 1 1jY j m m j j j j m m j j= + + + − + − − +   , (III-36) 

 ( ) ( ) ( ) ( )2 22 2 2
1 2 1 2 1 21 1jZ j j j j j j j j m m    = + − − + + − − +    

2 
 , (III-37) 

 ( )min 1 2 1 2max ,j j j m= − + m

j

, (III-38) 

and 
 max 1 2j j= + . (III-39) 

The three-term recursion (III-34) can be converted to two two-term recursions by 
defining ratios of the  as follows jψ

 max
1 1

,  1j j
j

j j j j

Z
r

Y X r− +

j j
ψ −

= = ≤
ψ +

− , (III-40) 

and 

 min
1 1

,  1j j
j

j j j j

X
s

Y Z s+ −

j j
ψ −

= = ≥
ψ +

+ . (III-41) 

The three-term recursion (III-34) is stable in either direction over a center portion of the 
range of j.  The two-term recursion (III-40) is used at the upper end of the range of j and 
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is stable only in the downward direction.  Similarly, the other two-term recursion (III-41) 
is used at the lower end of the range of j and is stable only in the upward direction.   
 
The downward iteration with (III-40) is started with 

 max

max

max

j
j

j

Z
r

Y
−

= ,  (III-42) 

and  is iterated until  jr

 1, (III-43) jr
+

>

which determines a value for .  Next, the upward recursion (III-41) is iterated, with a 
starting value of   

j+

 min

min

min

j
j

j

X
s

Y
−

= . (III-44) 

The  are iterated until  js

 1 , (III-45) js
−

>

which defines .   j−

 
A normalized version of ψ  is defined j

 j
j

j

u
−

− ψ
≡

ψ
, 

with the obvious condition that 
 1ju

−

− = . (III-46) 

We now compute 

 . (III-47) min
1

, for 1
k

j k j p
p

u s k j
− −

−
− − −

=

= ≤ ≤∏ j−

The ratio u  satisfies also satisfies (III-34), since it differs from j
−

jψ  by only a constant, 
so 
 1 0j j j j j jX u Y u Z u− − −

+ 1−+ + =

1−

. (III-48) 

From (III-47) 
 1j ju s

−

−
− −= , (III-49) 

so, with (III-46) and (III-49) as starting values, the ju−  are iterated with (III-48) until 
.  Now j j+=

 j
j

j

u +

+

−

− ψ
=

ψ
, (III-50) 
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so continuing, 

 max
1

, for 1
k

j k j j p
p

u u r k j
+ + +

− −
+ +

=

j+= ≤ ≤ −∏ . (III-51) 

Since the  are un-normalized versions of the Wigner 3j symbols, the Wigner 3j symbol 
is  

ju−

 1 2

1 2 1 2
j

j j j S u
m m m m D

−
= − − 


 , (III-52) 

where the correct normalization is [23]  

 ( )
max

min

22 1
j

j
j j

D j
=

= +∑ u , (III-53) 

and 

 ( ) ( ) 1 2 1 2

max
sgn 1 j j m m

jS u − + +−= − . (III-54) 

This finishes the Luscombe and Luban recursive algorithm.   
 
Note that it is possible for Y X 1j j rj++ to be zero in (III-40) and Y Z  to be zero in 
(III-41).  Obviously, the two-term recursion cannot proceed when this occurs.  When 
(III-40) or (III-41) fails in this way, the implication is that 

1j j js −+

01j−ψ = j+ or ψ , 
respectively.  It is also possible that Y

1 0=

max
0j =  in (III-42) or Y

minj 0=  in (III-44), or both.  
In this case, one or both of the two-term recursions cannot be started.  The following 
situations require special procedures: 

1. Neither of the two-term recursions can be started with (III-42) and (III-44), 
because Y Y , when any of the following occur: 

min max
0j j= =

 1 1 0j m= = , 

 2 2 0j m= = , 

 1 2 10 for any ,m m j j2= = , 
or 

 1 2 1 and  j j m m2= = . 
2. The downward two-term recursion cannot be started with (III-42) because 

 
max

2
2 1

1

0 when  j
mY j
m

= = j . (III-55) 

3. The upward two-term recursion cannot be started with (III-44) because 
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2 1 2 1
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1 2 2 1 2 1
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1

 and 

10 when  and    or  1  
2

1 and    or  1
2
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
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. (III-56) 

Case 1 
When determining the method of computing the 3j symbols, Case 1 should be addressed 
first.  
  
When , or , (III-30) can be used without difficulty, so 1 1 0j m= = 2 2 0j m= =

( )
0 0 0 0 11
0 0 0 0 2 1

j mj j j j j j j j
m m m m m m m m j

+       
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. (III-57)  

When  and , (III-28) and (III-29) can be used to start the iteration of the 
three-term recursion (III-34) in the upward direction.  Alternatively, (III-27) and (III-29) 
can be used to start the downward iteration of the three-term recursion.  When 

, (III-23) and (III-25) can be used to start the downward three-term recursion, 
or (III-24) and (III-26) can be used to start the upward three-term recursion.  However, 

since  
   when  is an odd integer and 
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2j 2
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m m

2− 3j
1 2 3 0

0 0 0
j j j
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 is an odd integer, the three-term recursion (III-34) can actually be written as a 
two-term recursion as follows 


 

1 2j j+ 3j+

 ( )
2 1 maxmin

2 2 1
2 1
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k
k k

k

Z jju u k
X
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−
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When  and , the coefficients in (III-58) are 1j = 2j 21m m=

 ( ) ( ) ( ) ( )2 2 2 2
2 1 1 12 2 1 2 1 2 2 4kX k k j k k m−

   = − + − −    , (III-59) 

and 

 ( ) ( ) ( ) ( )2 2 2 2
2 1 1 12 2 1 2 1 2 1 2 1 4kZ k k j k k m−

  = − + − − − −  

 . (III-60) 

When , the coefficients in (III-58) 1 2 0m m= =

 ( ) ( ) ( ) ( ) ( )2 2 2
2 1 1 2 1 22 2 1 2 1 2kX k k k j j j j k−

  = − − − + + −  
2 
 , (III-61) 

and 

 ( ) ( ) ( ) ( ) ( )2 2 2
2 1 1 2 1 22 2 1 2 1 1 2 1kZ k k k j j j j k−

  = − − − − + + − −  
2 
 . (III-62) 
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In this case, the starting value can be arbitrary, and the sequence of values is normalized 
with  

 ( )
( )1 2

1 2

22 1
j j

j
j j j

D j
+

= −

= +∑ u

]u

, (III-63) 

and  

 , (III-64) ( ) 1 2

1 2
1 sgn[j j

j jS +
+= −

so 

 1 2

1 2 1 2

juj j j
S

m m m m D
 

= − − 
 . (III-65) 

By starting the recursion with an arbitrary value and applying the normalization (III-65), 
the evaluation of large factorials can be avoided.  The normalization ensures that the 
values are accurate, and since a two-term recursion is used, loss of significance cannot 
occur. 
Case 2 
When Case 2 occurs, and it is certain that Case 1 has not occurred, then the upward two-
term recursion (III-41) can be started using (III-44).  Upward recursion is performed until 

, at which time the three-term recursion is applied in the upward direction to 
.  From (III-40), (III-42) and (III-55), we can deduce that  
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Case 3 
When Case 3 occurs, and it is certain that Case 1 has not occurred, then the downward 
two-term recursion (III-40) can be started using (III-42).  Downward recursion is 
performed until , and then the three-term recursion is applied in the downward 
direction to .  From (III-41), (III-44), and (III-56), we deduce 
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Example families of Wigner 3j symbols 
Few references tabulate or plot the Wigner 3j symbol for large degree and order, but it is 
useful to examine its behavior by considering a few numerical examples.  When 
considered as families of values associated with ( )1 1,j m and ( )2 2,j m , and indexed by , 
the Wigner 3j symbol exhibits a variety of behaviors.  Several of these families will be 
illustrated.   

3j

 
For example, the Luscombe-Luban algorithm can be applied without any of the special 

considerations for the family defined by , as illustrated in [23] and in 

Figure III - 1.  The values oscillate (change sign) over much of the range for which the 3j 
symbol is not trivially zero.  If the orders  and  are changed to appropriate values, 
the oscillation disappears, as illustrated in Figure III - 2, where the family generated by 

 is plotted.  However, if the first two columns of the 3j symbol are 

interchanged, the symmetry relation (III-20) is invoked, and the oscillations return, but at 
a more rapid rate, as illustrated in Figure III - 3.  In this case, the values alternate sign as 

 is incremented by one. 
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The algorithm is applied under the conditions of Case 1 for 1 2 0m m= =

1 2nd m m

, where neither 
two-term recursion can be started.  Figure III - 4 illustrates the family of values defined 

by 
 .  Similar results obtain when 3100 60

0 0 0
j

 


 1 2  aj j= =




, illustrated in 

Figure III - 5 for the family generated by 
 .  In both examples, every other 

value is zero, and the three-term recursion reduces to a two-term recursion. 
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j
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When 2 1 2j j m m=

112
56

1




, the downward two-term recursion cannot be started, and the 
algorithm is applied with the constraints of Case 2.  An example is the family of values 

associated with  , illustrated in Figure III - 6.  The values oscillate 

rapidly in this case.  However, since consecutive values have the same sign in pairs over 
much of the range, interchanging the first two columns will not eliminate the oscillations.  
However, doing so does eliminate the some of oscillations at the low end of the range of 

, as illustrated in Figure III - 7, but 
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2

 is no longer a Case 2 situation.  

 
Case 3 occurs when  and 1j j> ( )2 1 21j j m= − + 1m 2 or when 1j j<  and 

(2 1 2 1 1j j m m= − + ) .  In this situation, the upward two-term recursion cannot be started.  
This case is illustrated in Figure III - 8 with the family obtained from  
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1Another Case 3 situation occurs when 2 1 2 and j j m m= = −

60
58−

, and the upward recursion 
cannot be started.  This situation is illustrated with the family of values generated by 

 in Figure III - 9.  The values change smoothly as  is incremented.  

However, interchanging the first two columns to obtain  invokes the 

symmetry of (III-20), with the result illustrated in Figure III - 10.  In this Case 3 situation, 
the values oscillate rapidly, changing sign with each increment of . 
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One final family is illustrated with large values of .  The family , 

illustrated in Figure III - 11, generates the interesting "baseball" pattern. 
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Figure III - 1 Family of points defined by , computed with the 

Luscombe-Luban algorithm without any of the special considerations. 
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Figure III - 2 Family of points defined by , computed with the 

Luscombe-Luban algorithm without any of the special considerations. 
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Figure III - 3 Family of points defined by , is related to the family 

of points plotted in Figure III - 2 by the factor ( . 
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Figure III - 4 Family of points defined by , a typical example of 

Case 1, with m m
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Figure III - 5 Family of points defined by , a typical example of 

Case 1, with 
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Figure III - 6 Family of points defined by , an example of Case 2, 

with 
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Figure III - 7 Family of points defined by , related to the family 

plotted in Figure III - 6 by the factor ( , but not a Case 2 situation. 
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Figure III - 8 Family of points defined by , an 

example of Case 3, with  and 
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Figure III - 9 Family of points defined by , an example of Case 3,  

with . 
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Figure III - 10 Family of points defined by , another example of Case 

3, where the points are related to those in Figure III - 9 by the factor 
. 
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Figure III - 11 Family of points defined by 3200 179
30 34 4

j 
 − − 

, the "baseball" family. 
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Appendix IV — Certain Integrals Containing Associated 
Legendre Functions 
In the evaluation of the mutual impedance, certain integrals containing associated 
Legendre functions are required.  The integrals in (2.43), after substituting the vector 
spherical harmonics, are    
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Examination of (IV-1) through (IV-4) indicates that we only need to evaluate three 
integrals: 
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The integrals (IV-5) and (IV-7) possess obvious symmetry properties: 
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It is convenient to express the integrals (IV-5)–(IV-7) in terms of integrals containing 
associated Legendre functions of only positive order, .  The definition of the 
associated Legendre functions follows the convention of [3, 8, 9, 10, 11] and Appendix I.  
Thus, for negative order, we use  
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Using (IV-10) in (IV-5) to (IV-7), we have 
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Thus, the required integrals are 
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In addition, it will prove convenient to evaluate 

 ( ) ( ) ( ) ( ) ( )
1

4
1

, , , m m m m
n n n n

d dn n m m P x P x P x P x d
dx dx

′ ′
′ ′

−

′ ′ = +
 ∫I x

 . (IV-17) 

and 

 . (IV-18) ( ) ( ) ( )
1

0
1

, , m m
n nn n m P x P x dx′

−

′ = ∫I

Establishing Orthogonality 
The associated Legendre functions possess well-known orthogonality properties.  The 
orthogonality relations are  
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It will be useful to derive these orthogonality relations, in order to illuminate the 
relationship between the various integrals. 

Application of the differential equation 
The associated Legendre differential equation for integer degree and order is  
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Interchange n  with  and  with n′ m m′  in (IV-22), subtract the new equation from 
(IV-22), and integrate over  to obtain 1 x− ≤ 1≤
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Applying the integration-by-parts procedure to the first two integrals 
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Thus,  and  are orthogonal with weight one over the interval .  
Similarly, if , then 
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and  and  are orthogonal with weight ( )m
nP x ( )m

nP x′ ( )21 1 x−  over the interval 
.  Thus, the orthogonality relations have been proven.  It remains to evaluate 

the nonzero integrals. 
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Relationship between the various integrals 
Initially the closed-form of the integrals will be obtained for positive order, .  
Negative order, m , will be handled by applying the convention (IV-10), so 

0m ≥
0<

 ( ) ( )
( )

( )
( ) (! !

, , , ,
! !i

n m n m
n n m n n m

n m n m
)i

′− −
′ − =

′+ +
I ′I . (IV-28) 

 
Integrating (IV-22) produces 

 

1 12

1 1

12
21

(1 ) ( ) ( ) ( 1) ( ) ( )

1 ( ) ( )
1

m m m m
n n n n

m m
n n

d dx P x P x dx n n P x P x dx
dx dx

m P x P
x

′ ′
′ ′− −

′
′−

− = +

 −  − 

∫ ∫

∫ x dx
. (IV-29) 

Thus, with , we obtain m m′=

 ( ) ( ) ( )2
1 0 3, , ( 1) , , , ,n n m n n n n m m n n m′ ′= + −I I I ′ . (IV-30) 
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Note that the integrals , , and I  are symmetric with respect to interchange of n  
and .  This symmetry, along with (IV-30) shows once again that 

0I 1I 3

n′

 
1

1
( ) ( ) 0,m m

n nP x P x dx n n′−
′= ≠∫ . (IV-31) 

Application of recursion relation 
The associated Legendre functions satisfy the following recursion relations [11] 

 ( ) ( ) ( )1
1

2 1 2 1
m m

n n
n m n m

1
m

nxP x P x P x
n n+ −

− + +
= +

+ +
, (IV-32) 

and 

 ( ) ( ) ( ) ( ) ( )2
11 m m m

n n n
dx P x nxP x n m P x
dx −− = − + , (IV-33) 

so that  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1

1 1
1

2 1 2 1
m m

n n

n n m n m nd
1

m
nx P x P x P x

dx n n+

− + + +
− = −

+ + − , (IV-34) 

valid for . 0m ≥
  
Substituting  for  in (IV-34), multiplying by n′ n ( ) ( )21m

nP x x− , and integrating, we 
obtain  

 
( ) ( ) ( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1

2 1

1 11 1
2 21 1

, ,

1 1
2 1 2 11 1

m m
n n

m m m m
n n n n

dn n m P x P x dx
dx

n n m P x P x n m n P x P x
dx dx

n nx x

′−

′ ′+ −

− −

′ =

′ ′ ′ ′− + + +
= − +

′ ′+ +− −

∫

∫ ∫

I

, (IV-35) 

or 

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( )2 3 3

1 1
, , , 1, , 1,  when 0

2 1 2 1
n m n n n m

n n m n n m n n m m
n n

′ ′ ′ ′+ + − +
′ ′ ′= − − +

′ ′+ +
I I I ≥ . (IV-36) 

 
If expressions for the integrals ( )0 , ,n n m′I  and ( )3 , ,n n m′I  can be found, then 

 can be obtained from (IV-30) and (1 , ,n n m′I ) ( )2 , ,n n m′I  can be obtained from (IV-36) 

Evaluation of I  ( ) ( ) ( )
1

0
1

, , m m
n nn n m P x P x dx′

−

′ = ∫
The explicit form of the associated Legendre function given by †  

                                                 
† Hanson [13], Stratton [15], Arfken [16], and Mathews and Walker [18] omit the factor , but it is 
included by Jackson [8], Abramowitz and Stegun [9], Chew [10], Lebedev [11], and Balanis [ ]. 

−1b gm
3
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 ( ) ( ) ( ) ( )221 1
mmmm

n m
dP x x P x
dx

= − − n  (IV-37) 

where , and  is the Legendre function 0m ≥ ( )nP x

 ( ) ( 21 1
2 !

n n

n n n
dP x x

n dx )= − . (IV-38) 

Using (IV-38) in (IV-37) 

 ( ) ( ) ( ) (22 11 1 1
2 !

n mmmm
n n n m

dP x x x
n dx

+

+= − − − )2 n
. (IV-39) 

Thus, the integral becomes 

 
( )

( ) ( ) ( )

1

0 1

1 2 2 2

1

, , ( ) ( )

1 1 1
2 ! !

m m
n n

n m n mm n

n n n m n m

n n m P x P x dx

d d 1
n

x x x
n n dx dx

′−

′+ + ′

′ ′+ + +−

′ =

= − − −
′

∫

∫

I

dx
. (IV-40) 

Since we have already shown that ( )0 , , 0 whenn n m n n′ ′= ≠I  (IV-26), we need to 
evaluate 

 
( )

( ) ( ) ( )1 12 2 2 2
221 1

1( ) 1 1 1
2 !

n m n mm nm
n n m n mn

d dP x dx x x x dx
dx dxn

+ +

+ +− −
  = − − − ∫ ∫

n

)

)

. (IV-41) 

Integrating by parts (  times  n m+

 , (IV-42) ( ) (
1 2

1
( ) , ,m

nP x dx n m n mΣ ∫−
  = + ∫ I I

where 

 ( )
( )

( ) ( ) ( ) ( )
11

1 2 2 2
2 12

1 1

1, 1 1 1
2 !

n m k k n mn m n mk
n m k k n mn

k

d d dn m x x x
dx dx dxn

+ − − ++
−

Σ + − − +
= −

 
= − − − − 

 
∑I 1

n
, (IV-43) 

and 

 ( ) ( )
( )

( ) ( ) ( )1 2 2 2
22 1

1
, 1 1

2 !

n m n m n mn m

n m n mn

d dn m x x x dx
dx dxn

+ + +

+ +∫ −

−  
= − − −

 
∫I 1

n



                                                

. (IV-44) 

 
Applying Leibnitz’ differentiation formula ‡  [16] 

 
‡ Leibnitz’ formula for the nth derivative of a product:   

( ) ( ) ( ) ( ) ( )
0

!
! !

n n sn

n n s
s

d n dA x B x A x B x
dx s n s dx dx

−

−
=

=   −∑
s

s
d
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( )
( )

( )
( )

( )
( ) ( ) ( )

1

2

1
22 11

1 2 2
1

0 1

1
1, 1

1 !2 !
1 1

! 1 !

n m k n

n m kn m
k

n k t n m tk m nk
k t n m t

t

d x
dx

n m
kn d dx x

t k t dx dx

+ −

+ −+
−

Σ − − + +−
=

− − + +
= −

  
 − 
  − −     ⋅ − −    − −     

∑
∑

I , (IV-45) 

and 

 ( ) ( )
( )

( )
( )

( ) ( )

( )

2

1 2
22 1

0 2

!
1

! !1
, 1

2 !
1

n m s m

n m n m sn mn

n n m s ns

n m s

n m d x
s n m s dx

n m x dx
n d x

dx

+ −

+ + −+

∫ + +−
=

+ +

 +  
−  + −−   = −    ⋅ −    

∑∫I . (IV-46) 

 
Using the binomial expansion, we can obtain the derivatives 

 
( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( )

2 2

0

2

2

1
1 1

! 1

1 2 !
1

! 1 2 !

q q
k k

q q
k

k k q

k q

d dx x
dx dx k k

k
x

k k k q

∞α

=

∞
−

=

Γ α +
− = −

Γ α + −

Γ α +
= −

Γ α + − −

∑

∑
, (IV-47) 

and 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2

2

1 2 !
1 1 1

! 1 2 !

q
k k q

q
k q

kd x x
dx k k k q

∞α α −

=

Γ α +
− = − −

Γ α + − −∑ , (IV-48) 

where q is an integer and  is a real number, not necessarily an integer.  For 
convergence, we require 

α
1x < .  Note that the infinite sums in (IV-47) and (IV-48) will 

terminate when , for  a positive integer.  However, if k = α α α  is not a positive integer, 
an infinite number of terms will occur in the sum.   
 
When , an integer, the derivatives also can be expanded into another useful form as 
follows (using equation 0.432-3 from Gradshteyn and Ryzhik [17]) ,  

nα =

 ( ) ( ) ( )
( )

( )
int 2

2

0

!1 ! 2 1
! 2 ! !

qq n n q kq k q k
q

k

d qx n x x
dx k q k n q k

− +− −

=

− = −
− − +∑ 2 2 2 . (IV-49) 

or 

 ( ) ( ) ( ) ( ) ( )
( )

( )
int 2

2 2 2 2

0

!1 1 ! 1 2 1
! 2 ! !

qq n n q kq k q k q k
q

k

d qx n x x
dx k q k n q k

− +− −

=

− = − − −
− − +∑ . (IV-50) 

This form is useful for evaluating the derivative at the values 1x = ± , but only when the 
exponent is an integer.  For nα =

k
, an integer, if , all the terms in (IV-49) and 

(IV-50) will be zero (  is always negative).  Additionally, if , there will 
always be a factor of 

2q > n
n q− +

(
q n<

)21 x−  so that  
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 ( )2

1

1 0 when
q n

q
x

d x q n
dx

=±

− = < ,  (IV-51) 

and, when , there will be a single term  q n=

 ( ) ( )2

1

1 1
n n n n
n

x

d x
dx

=±

− = ∓ !2n . (IV-52) 

Note that the  on the left side of (IV-52) correlates with the  on the right side.  
When q , the derivative has only a constant term 

1±
n

1∓
2=

 ( ) ( ) ( )
2

2
2 1 1
n n n
n

d 2 !x n
dx

− = − . (IV-53) 

 

We see from (IV-49) that ( )2

1

1
q n

q
x

d x
dx

=±

−  can only be nonzero if 2n q n≤ ≤ .  Thus, in 

, the factor ( ,n mΣI ) ( )
1

2

1

1
n m k n

n m k
d x
dx

+ −

+ −
−

 
− 

 
 is zero for , while k m> ( )

1
2

1

m
x

−

1

1 1
k t

k t
d
dx

− −

− −

 
− 

 
 

will be zero for k m .  Therefore, 1< + ( ),n mΣI  will be zero and 
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( )

( ) ( )
( ) ( ) ( )

1 2

1

1 2 2
22 1

0

( ) , , ,
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1 1

! !2 !

m
n

n m n m s n m sn mn m

n m s n m sn
s

P x dx n m n m

n m d d 2 1
n

x x x
s n m s dx dxn
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+ + − + ++

+ − + +−
=

  = 

− +
dx   

= − − −   + −    

∫

∑∫

0,
I

. (IV-54) 

The left derivative in (IV-54) is zero everywhere unless , while the right 
derivative is zero everywhere unless s n

s n m≥ −
m≤ − .  Thus only the term with  

will contribute to the integral, and   
( )s n m= −

 ( ) ( )
( )

( )
( ) ( )1 2 2

221

1 2 ! !
( ) 1

!2 !

n
nm

n n

n n m
P x dx x dx

n mn−

− +
  =  −∫

1

1−
−∫

θ

. (IV-55) 

Letting , we obtain [17]  cosx =

 ( ) ( ) ( ) ( )
( ) ( ) ( ) (

1 2 2 1

1 0

2 !! !1 = 1 sin 1 2 = 1 1 2
2 1 !! 3 2

n n n nn n nx dx d
n n

π +

−
− − θ θ = − − Γ

+ Γ +∫ ∫ )

!

. (IV-56) 

Since ( )  and ( )2 !! 2nn n= ( )1
22 1 !! 2nn n− = Γ + π  [9], it follows that 

 ( ) ( )
( ) ( )2 ! 2 !

2 1 !
2 ! 2 !!n

n n
n

n n
= = − ! , 

and we obtain the well-known result [9] 

 ( ) ( )
( )
( )

1 2

0 1

!2, , ( )  when 0
2 1 !

m
n

n m
n n m P x dx m

n n m−

+
 = =  + −∫I ≥ . (IV-57) 

Using the convention for negative order (IV-10) 
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1 2

0 1
2
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1

, , ( )

! 2( )  when 0
! 2 1 !

m
n

m
n

n n m P x dx
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−

−

−
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 − −
 = =   + + + 

∫

∫

I

!
≥

. (IV-58) 

Thus, combining (IV-57) and (IV-58), we have  
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1

0 1

0 when 
, , ( ) ( ) !2 when 

2 1 !

m m
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n n m P x P x dx n m
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′ ≠
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 (IV-59) 

Evaluation of ( ) ( ) ( )
1

3 2
1

1, ,
1

m m
n nn n m P x P x dx

x ′
−

′ =
−∫I  

Inserting (IV-39) into the integrand of ( )3 , ,n n m′I , 
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, (IV-60) 

where we require .  We integrate by parts p times  0m ≥

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
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∑

∫ dx

. (IV-61) 

Applying Leibnitz’ product differentiation formula to (IV-61) gives 
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. (IV-62) 

We see that the right-hand factor in the sum outside the integral in (IV-62), 

( )2

1

1
n m k n

n m k
x

d x
dx

+ −

+ −
=±

− , is nonzero only when m n k m− ≤ ≤ , while ( )
1 12
1

1

1
k s m

k s
x

d x
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− − −

− −
=±

−  
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is nonzero only when .  Thus, the nonzero contribution occurs for 
 and , so that for 

2m k s m≤ − ≤ − 1
k m= 0s = p m≥  
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( ) ( ) ( )

2

1
11 2 2 2

1

12 2 2

( )

1 1

2 ! ! 1 1
! !

m m

n mn m n

n m

p s n m sn m np
p s n m s

P x
x

dx x x
dx dx

n n d p d dx x x
s p s dx dx

′− + ′−

′− +
−

′− + + ′−

′− + +

 
 
 

  
− −  

  
′    

− −   −    

1

1
dx

−









∫

The integrand in (IV-63) will be nonzero for ( )2 m≥ − − 1s p  and s n m′≤ − .  If we take 
m , the integrand is nonzero only when 2n m s n m′− + ≤ ≤ − . 

 
At this point, we have not specified the relative size of n′  and n.  If we choose , 
we see that no value of s allows a nonzero integrand.  We simply obtain   

n n′≥

 

, , ( ) ( )

 odd

hen   even, ,  and 0

en 0

m m
n nn n x P x dx

n n n n m

m

′

′ ′= + ≥

=

>
. (IV-64) 

Noting the symmetry of I  with respect to n and n′ , and using the convention 
(IV-10) for negative order ( m ), we write 
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′ +
′− + <

′ −

=

 (IV-65) >

Note that  is undefined when , , m′I 0m = .  However, in cases where the integral is 
multiplied by m, letting m go to zero prior to performing the integration takes care of the 
problem.   

)
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Evaluation of ( ) ( ) ( ) ( )
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2
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, , 1 m m
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dx dx ′

−

′ = −∫I  

The relationship between ( )1 , ,n n m′I , ( )0 , ,n n m′I , and ( )3 , ,n n m′I  is given in (IV-30). 
Substitution of (IV-59) and (IV-65) into (IV-30) gives  
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, (IV-66) 

where 

 ,

0 when 
1 when n n

n n
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′≠
δ =  ′=

. 

Evaluation of ( ) ( ) ( )
1

2
1

, , m m
n n

dn n m P x P x dx
dx ′

−

′ = ∫I  

The relationship between ( )2 , ,n n m′I  and ( )3 , ,n n m′I  is given by (IV-36).  Substitution 
of (IV-65) into (IV-36) gives  

 ( ) ( )

( ) ( )
( )( )
( )( )

( )
( )( )
( )( )

( )

( ) ( )
( )( )
( )( )

( )
( )( )
( )( )

2

0;    even

min , 1 !
1

min , 1 ! odd1, , ; 
and 02 1 min , 1 !

1
min , 1 !

max , 1 !
1

max , 1 !1
2 1 max , 1 !

1
max , 1

n n

n n m
n n m

n n m n n
n n m

mm n n n m
n n m

n n m

n n m
n n m

n n m

m n n n m
n n m

n n m

′ +

 ′ − +
′ ′+ + 

′ − − ′ +  ′ =  ′ >+ ′ + +  ′ ′− + − ′ + − 
′ − +

′ ′+ +
′ − −

−
′ + ′ + +

′ ′− + −
′ + −

I

odd
; 

and 0

!

n n
m















    
 ′ +     <  
  
  

 (IV-67) 
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Note that (IV-67) does not give (2 , ,n n m)′I  when 0m =  if n n′ +  is odd.  Because 

 is undefined, (IV-36) cannot be used to obtain (3 , , 0n n m′ =I ) ( ), ,n n m2 ′I

m
 when .  

Taking a direct approach, and integrating (IV-15) by parts, with 
0m =

0= , 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

1
0 0

2
1

1
10 0 0 0

1
1

, , 0 n n

n n n n

dn n P x P x dx
dx

dP x P x P x P x dx
dx

′
−

′ ′−
−

′ =

= −

∫

∫

I

. (IV-68) 

Thus, we have 

 . (IV-69) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
2 2

0;  even
, ,0 , , 0 1 1 1 1

2;  oddn n n n

n n
n n n n P P P P

n n′ ′

′+′ ′+ = − − − =  ′+
I I

Substituting (IV-39) for m  into (IV-15) 0=

 
( ) ( ) ( )

( ) ( )

1
0 0

2
1

1 1
2 2

1
1

, , 0

1 1 1
2 ! !

n n

n nn n

n n n n

dn n P x P x dx
dx

d dx x d
n n dx dx

′
−

′+ ′

′ ′+ +
−

′ =

= −
′

∫

∫

I

x−

 (IV-70) 

Integrating (IV-70) by parts one time  

 ( )
( ) ( )

( ) ( )

11 1
2 2

1 1
1

2 1 1 2
2 2

1 2
1

1 1
1, ,0

2 ! !
1 1

n nn n

n n

n n n nn n

n n

d dx x
dx dx

n n
n n d dx x d

dx dx

′− + ′

′− +
−

′+ − ′− + ′

′− +
−

x

 
− − 

 ′ =  ′
 − − −
  

∫
I . (IV-71) 

From (IV-51), we see that the first term in the brackets is zero.  The integral can be 
further evaluated by the integration-by-parts procedure.  Applying this procedure a total 
of n times,  

 ( ) ( ) ( ) ( )
1 1

2 2
2 1

1

1
, , 0 1 1

2 ! !

n n nn

n n n n
dn n x x dx

n n dx

− ′+ + ′

′ ′+ + +
−

−
′ = −

′ ∫I
n

− . (IV-72) 

From (IV-53), we see that  

 ( )
1

2
1 1 0 when 

n n n

n n
d x n n
dx

′+ + ′

′+ +
′− = ≥ . (IV-73) 

Thus, we have  
 ( )2 , , 0 0 when n n n n′ ′= ≥I . (IV-74) 

Using this information with (IV-69) 

 ( )2

0;  even
, , 0 0;  odd and 

2;  odd and 

n n
n n n n n n

n n n n

′+
′ ′ ′= + >
 ′ ′+ >

I . (IV-75) 
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The complete integral is  

 

( ) ( ) ( )

( )

( ) ( )
( )( )
( )( )

( )
( )( )
( )( )

1

2
1

, ,

 even, for all 
0;   

 odd, , and 0
2;  odd, , and 0

min , 1 !
1

min , 1 ! odd1 ; 
a2 1 min , 1 !

1
min , 1 !

m m
n n

dn n m P x P x dx
dx

n n m
n n n n m

n n n n m

n n m
n n m

n n m n n
m n n n m

n n m
n n m

′
−

′ =

′ +
 ′ ′+ > =

′ ′+ > =

 ′ − +
′ ′+ + 

′ − − ′ + 
 ′ + ′ + +=  ′ ′− + − ′ + − 

∫I

( )

( ) ( )
( )( )
( )( )

( )
( )( )
( )( )

nd 0

max , 1 !
1

max , 1 ! odd1 ; 
and 02 1 max , 1 !

1
max , 1 !

m

n n m
n n m

n n m n n
mm n n n m

n n m
n n m










 >



  ′ − +
 ′ ′+ + 

′ − − ′ +  
−  ′ <+ ′ + +   ′ ′− + −  ′ + −    (IV-76) 

Evaluation of ( ) ( ) ( ) ( )
1

2
1

1

, , 1 m m
n n

d dI n n m x P x P x dx
dx dx

−
′

−

′ = −∫  

The integral  is evaluated above, so using (IV-11) and (IV-66), 1I

 ( ) ( ) ( )
( )
( )

( )( )
( )( )

( )
( )
( )

( )( )
( )( )

1 ,

,

0;  odd

min , ! even!2 ( 1), , 1 ; 
and 02 1 ! min , !

max , ! even!2 ( 1) ; 
and 02 1 ! max , !

m
n n

n n

n n

n n m n nn mn nI n n m m
mn n m n n m

n n m n nn mn n m
mn n m n n m

′

′


′ +


 ′ + ′′ +− +′ = − δ − ′ ′ ≥+ + − 
 ′ + ′′ +− + δ +  ′ ′

 

<+ + − 

. (IV-77) 

Evaluation of ( ) ( ) ( )
1

2
1

, , m m
n n

dI n n m m P x P x dx
dx

−
′

−

′ = ∫  

The integral  has been evaluated above, so with (IV-12) and (IV-67), 2I
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 ( ) ( )
( )

( ) ( )
( )

( )( )
( )( )

( )
( )

( )( )
( )( )

( )
( )

( ) ( )
( )

( )( )
( )( )

2

1

0;   even

min , 1 !!
1

1 ! min , 1 !  odd1
, , ;   

and 02 1 min , 1 !1 !
! min , 1 !

max , 1 !!
1

1 ! max , 1 !1
2 1

m

m

n n

n n mn m
n

n m n n m n n
I n n m

mn n n mn m
n

n m n n m

n n mn m
n

n m n n m

n n
n

+

′ +

 ′ − +′ −
′ + 

′ ′− + − − ′ +−   ′ =  ′ ≥+ ′ + +′ + − ′− ′ ′+ + − 
′ − +′ −

′ +
′ ′− + − −−

′ + ′
′−
( )

( )
( )( )
( )( )

 odd
;  

and 0max , 1 !1 !
! max , 1 !

n n
mn n mm

n m n n m















    
 ′ +     <′ + + + − 
  ′ ′+ + −  

. (IV-78) 

Evaluation of ( ) ( ) ( )
1

2
3 2

1

1, ,
1

m m
n nI n n m m P x P x dx

x
−
′

−

′ = −
−∫  

The integral  is evaluated above, and using (IV-13) and (IV-65), 3I

 ( ) ( ) ( )
( )

( )( )
( )( )

( ) ( )
( )

( )( )
( )( )

1
3

0;   odd

min , !!
, , 1 ;   even and 0

! min , !

max , !!
1 ;   even and 0

! max , !

m

m

n n

n n mn m
I n n m m n n m

n m n n m

n n mn m
m n n

n m n n m

+




′ +
 ′ +′ −′ ′= − + ≥ ′ ′+ −
 ′ +′ − ′− +
 ′ ′+ −

m <

. (IV-79) 

Evaluation of ( ) ( ) ( ) ( ) ( )
1

4
1

, , , m m m m
n n n n

d dn n m m P x P x P x P x d
dx dx

′ ′
′ ′

−

 ′ ′ = + 
 ∫ xI  

Although similar to (IV-15), it is useful to separately evaluate  

 ( ) ( ) ( ) ( ) ( )
1

4
1

, , , m m m m
n n n n

d dn n m m P x P x P x P x d
dx dx

′ ′
′ ′

−

′ ′ = +
 ∫I x



)′

. (IV-17) 

Because of the symmetry in I , it can be integrated easily with the 
procedure of integration by parts.  Let  

(4 , , ,n n m m′

 ( ) ( ) ( ), so m
n

du x P x du P x dx
dx

= = m
n , (IV-80) 
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and 

 ( ) ( ) ( ), so m
n

ddv P x dx v x P x
dx

′
′= m

n
′

′= .  (IV-81) 

Inserting (IV-80) and (IV-81) into (IV-17) 

 ( )
1 1

4
1 1

, , ,n n m m udv vdu
− −

′ ′ = +∫ ∫I . (IV-82) 

Applying the integration-by-parts procedure one time, 

 
( ) ( ) ( )

( ) ( ) ( )

1 1
1

4 1
1 1

1
41

, , , 2

2 ,

x

x

x

x

n n m m u x v x udv vdu

u x v x n n m m

=

=−
− −

=

=−

′ ′ = − −

, ,′ ′= −

∫ ∫I

I

. (IV-83) 

Thus,  

 

( ) ( ) ( ) ( ) ( )
( )

4

1

, , , 1 1 1 1

1 1 , 0
0, 0 or 0

m m m m
n n n n

n n

n n m m P P P P

m m
m m

′ ′
′ ′

′+ +

′ ′ = − − −

 ′+ − = == 
′≠ ≠

I

, (IV-84) 

since  

 

( )

( ) ( )

1, 0
1

0, 0
and

1 , 01
0, 0

m
n

n
m

n

m
P

m

mP
m

=
=  ≠

 − =− = 
≠

 (IV-85) 

Evaluation of ( ) ( ) ( ) ( )
1 1

1 1

m m m m
n n n n

d dm P x P x dx P x P x dx
dx dx

− −
′ ′

− −

 
+ 

 
∫ ∫  

Using (IV-15), we have  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

2 2
1 1

, , , ,m m m m
n n n n

d dm P x P x dx P x P x dx I n n m I n n m
dx dx

− −
′ ′

− −

 
′ ′+ = − 

 
∫ ∫ −

)

 (4.86) 

However, simplification is obtained by observing that (IV-78) is not the best way to 
evaluate ( ) (2 2, , , ,I n n m I n n m′ ′− − .  Rather, consider that  

 
( ) ( ) ( ) ( ) ( ) ( )

( )

1 1

2 2
1 1

4

, , , ,

, , ,

m m m m
n n n n

d dI n n m I n n m m P x P x dx m P x P x dx
dx dx

m n n m m

− −
′ ′

− −

 
′ ′− − = − − 

 
′= −

∫ ∫
I

 (IV-87) 

Using (IV-84), we obtain 

 ( ) ( )2 2, , , , 0I n n m I n n m′ ′− − = . (IV-88) 
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Evaluation of ( ) ( ) ( )
2

, ,
0 0

, , , , , sinn m n mn m n m d d
π π

′ ′⋅ ′ ′ ′ ′ ′ ′ ′ ′ ′= φ θ φ ⋅ θ φ θ∫ ∫X X X XK K θI
K K  

Evaluate: 

 ( ) ( ) ( )
2

, ,
0 0

, , , , , sinn m n mn m n m d d
π π

′ ′⋅ ′ ′ ′ ′ ′ ′ ′ ′= φ θ φ ⋅ θ φ θ∫ ∫X X X XI K K ′θ
K K

, (IV-89) 

The radially-independent vector spherical harmonic is (see Appendix I) 

 ( ) ( ) ( ), ,
cos

ˆ, cos sin
sin2

jm
m m

n m n m n n
x

e jm djC P P x
dx

φ

= θ

 
θ φ = θ + θ θπ  

X ˆθ φ
K

, (IV-90) 

where 

 
( )

( )
( ),

!2 1
1 !n m

n mnC
n n n m

−+
=

+ +
. (IV-91) 

 
Substitution of (IV-90) into (IV-89) 

 ( )
( ) ( ) ( )

( ) ( )

2 2

, ,
20 0

cos cos

cos cos
sin

, , , sin
4 sin

m m
n nj m m

n m n m
m m

n n
x x

mm P P
en m n m C C d d

d dP x P x
dx dx

′
′′π π+ φ

′ ′⋅
′

′
′ ′= θ = θ

′ ′ ′− θ θ ′θ
′ ′ ′ ′ = − φ θ θ

π  ′+ θ  

∫ ∫X X
K K ′I . (IV-92) 

Evaluating the integral over ′φ  and making the change of variables cosx ′= θ , 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2
, , , 2

1

1, , , 1
2 1

m m m m
n m n m m m n n n n

mm d dn m n m C C P x P x x P x P x dx
dx dxx

′ ′
′ ′ ′ ′ ′−⋅

−

 ′
′ ′ = − δ − + − 

−  
∫X XI K K . (IV-93) 

With the identification with integrals previously evaluated, we have 

( ) ( )
( )
( ) ( )

( )
( ) ( ) (, 1 3

! !2 1 2 1 1, , , , , , ,
1 ! 1 ! 2 m m

n m n mn nn m n m I n n m I n n m
n n n m n n n m ′−⋅

′ ′− −′+ +′ ′ ′ ′= − δ − )  ′ ′ ′ ′+ + + +X XI K K , (IV-94) 

and substitution of (IV-77) and (IV-79) gives 

 ( ) ( ) 1
,, , , 1 m

m m n nn m n m +
,′ ′−⋅

′ ′ = − δ δX XI K K  (IV-95) 

Evaluation of ( ) ( ) ( )
2

, ,ˆ
0 0

ˆ, , , , , sinn m n mn m n m d d
π π

′ ′× ⋅ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= φ × θ φ ⋅ θ φ θ θ∫ ∫r X X r X XK KI
K K  

Evaluate: 

 ( ) ( ) ( )
2

, ,ˆ
0 0

ˆ, , , , , sinn m n mn m n m d d
π π

′ ′× ⋅ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= φ × θ φ ⋅ θ φ θ θ∫ ∫r X X r X XI K K
K K

. (IV-96) 

Substituting (IV-90) into (IV-96) and performing the cross product, 

 ( )
( )

( ) ( ) ( ) ( )
2

, ,ˆ
0 0

, , ,
4

j m m
m m m m

n m n m n n n n
e d dn m n m C C d jm P x P x jmP x P x dx

dx dx

′π π+ φ
′ ′

′ ′ ′ ′× ⋅
 ′ ′ ′ ′= − φ − π  ∫ ∫r X X

K KI . (IV-97) 
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After performing the  integration and applying the change of variables ′φ cosx ′= θ , we 
have 

 ( ) ( ) ( ) ( ) ( ), , ,ˆ
0

1, , ,
2

m m m m
n m n m m m n n n n

d dn m n m jC C mP x P x mP x P x d
dx dx

π
− −

′ ′ ′ ′ ′−× ⋅ x ′ ′ = δ +  ∫r X XI K K . (IV-98) 

Identification of the integrals with previously evaluated integrals 

 ( ) ( ) (, , , 2 2ˆ
1, , , , , , ,
2n m n m m mn m n m jC C I n n m I n n m′ ′ ′−× ⋅ ′ ′ ′ ′= δ − )−  r X XI K K . (IV-99) 

Substitution of (IV-88) into (IV-99) shows that 

 ( )ˆ , , , 0n m n m× ⋅ ′ ′ =r X XI K K  (IV-100) 
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Appendix V — Relevant Network Parameters 

The relationship between the S parameters and the admittance matrix 
Define terminal voltages and currents at the ports of a two-port network as V  and 

 at ports 1 and 2, respectively.  The port voltages and currents can be related 
through the admittance matrix 

1 1, I

2 2,V I

 1 11 12

2 21 22

1

2

I Y Y V
I Y Y V

   
=  

   


−

1V

. (V-1) 

For a microwave network, the ports are typically fed with transmission lines.  In this case, 
it is convenient to describe the response in terms of incident and scattered port voltages, 

, respectively.  These port voltages are related through the scattering parameters ,i iV V+

 11 121

21 222 2

S SV
S SV V

− +

− +

  
=  

  
. (V-2) 

Associated with the incident voltage is an incident current, iI + , which flows into the port.  
Similarly, associated with the scattered voltage is a scattered current, iI − , flowing out of 
the port.  The incident and scattered voltages and currents are related by the transmission-
line wave admittance, Y  at the respective ports 0,i

 0,11

0,22 2

0
0

Y 1I V
YI V

± ±

± ±

  
=  

  
. (V-3) 

The total port voltage is  

 1 1

2 2 2

V V V
V V V

1
+ −

+ −

 
= + 

  
, (V-4) 

while the total port current is  

 0,11 1 1 1 1

0,22 2 2 2 2

0
0

YI I I V
YI

V
I I V V

+ − + −

+ −

    
= − = −          

+ −  , (V-5) 

with the reference direction into the port.  Substituting (V-2), (V-3), (V-4), and (V-5) into 
(V-1) gives the relationship between the admittance matrix and the scattering parameters  

 

( ) ( )
( ) ( )

( )
( )
( )

11 22 12 21 12
0,1 0,1

11 22 12 21 11 22 12 2111 12

21 22 11 22 12 2121
0,2 0,2

11 22 12 21 11 22 12 21

1 1 2
(1 ) 1 (1 ) 1

(1 ) 12
(1 ) 1 (1 ) 1

S S S S SY Y
S S S S S S S SY Y

Y Y S S S SS Y Y
S S S S S S S S

− + + 
− + + − + + −   =   + − +  − 

+ + − + + −  

. (V-6) 

Similarly  

    81 



 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

0,1 11 0,2 22 12 21 12 0,2

11 0,1 22 0,2 12 21 11 0,1 22 0,2 12 2111 12

21 22 0,1 11 0,2 22 12 2121 0,2

11 0,1 22 0,2 12 21 11 0,1 22 0,2 12 21

2

2

Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y YS S

S S Y Y Y Y Y YY Y
Y Y Y Y Y Y Y Y Y Y Y Y

 − + + −
 

+ + − + + −   
=   + − +−   

 + + − + + − 

  (V-7) 

In general, for a multiport network 

 = ⋅I Y V  (V-8) 

 − += ⋅V S V  (V-9) 

 0
± ±= ⋅I Y V  (V-10) 

 + −= +V V V  (V-11) 

and 

 ( )0
+ − + −= − = ⋅ −I I I Y V V  (V-12) 

so that 

 ( ) ( ) 1
0

−= − +Y Y 1 S 1 S  (V-13) 

and 

  (V-14) ( ) (1
0 0

−= + −S Y Y Y Y)

1

2

I
I

1V
+

The relationship between the S parameters and the impedance matrix 
Define terminal voltages and currents at the ports of a two-port network as V  and 

 at ports 1 and 2, respectively.  The port voltages and currents can be related 
through the impedance matrix 

1 1, I

2 2,V I

 . (V-15) 1 11 12

2 21 22

V Z Z
V Z Z

   
=   

   
For a microwave network, the ports are typically fed with transmission lines.  In this case, 
it is convenient to describe the response in terms of incident and scattered port voltages, 

, respectively.  These port voltages are related through the scattering parameters ,i iV V+ −

 . (V-16) 11 121

21 222 2

S SV
S SV V

− +

−

  
=  

  

Associated with the incident voltage is an incident current, iI + , which flows into the port.  
Similarly, associated with the scattered voltage is a scattered current, iI − , flowing out of 
the port.  The incident and scattered voltages and currents are related by the transmission-
line wave impedance, Y  at the respective ports 0,i
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1

0,11

0,22 2

0
0

Z 1I V
ZI V

−± ±

± ±

  
=  

  
. (V-17) 

The total port voltage is  

 1 1

2 2 2

V V V
V V V

1
+ −

+ −

 
= + 

  
, (V-18) 

while the total port current is  

 
1

0,11 1 1 1 1

0,22 2 2 2 2

0
0

ZI I I V
ZI

V
I I V

−

V

+ − + −

+ −

    
= − = −          

+ −  , (V-19) 

with the reference direction into the port.  Substituting (V-16), (V-17), (V-18), and (V-19) 
into (V-15) gives the relationship between the admittance matrix and the scattering 
parameters  

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

11 22 12 21 12
0,1 0,2

11 22 12 21 11 22 12 2111 12

21 22 11 22 12 2121
0,1 0,2

11 22 12 21 11 22 12 21

1 1 2
1 1 1 1

1 12
1 1 1 1

S S S S SZ Z
S S S S S S S SZ Z

Z Z S S S SS Z Z
S S S S S S S S

+ − + 
 − − − − − −   =   − + +   

− − − − − −  

. (V-20) 

Similarly  

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

11 0,1 22 0,2 12 21 12 0,1

11 0,1 22 0,2 12 21 11 0,1 22 0,2 12 2111 12

21 22 11 0,1 22 0,2 12 2121 0,2

11 0,1 22 0,2 12 21 11 0,1 22 0,2 12 21

2

2

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z Z Z ZS S

S S Z Z Z Z Z ZZ Z
Z Z Z Z Z Z Z Z Z Z Z Z

 − + −
 

+ + − + + −   
=   + − −   

 + + − + + − 

   (V-21) 

In general, for a multiport network 

 = ⋅V Z I , (V-22) 

 − += ⋅V S V , (V-23) 

 0
± ±= ⋅V Z I , (V-24) 

 + −= +V V V , (V-25) 

and 

 ( )1
0

+ − − + −= − = ⋅ −I I I Z V V , (V-26) 

so that 

 , (V-27) ( ) ( ) 1
0

−= + −Z 1 S 1 S Z

and 
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 ( ) ( 1
0 )0

−= − +S Z Z Z Z . (V-28) 

 

From either (V-8) and (V-22) or (V-14) and (V-28), we see that  

 1−=Y Z , (V-29) 

just as one would expect from the definitions of admittance and impedance in the network. 

 

84 



 

Appendix VI — Alternate Evaluation of Impedance Integrals 
The vector harmonics can be written in terms of the radially independent vector spherical 
harmonic, , as follows  (, ,n m θ φX

K
)

 ( ) ( ) ( ) ( ) ( ), , ,i i
n m n n mz kr= θ φM r X
K KK , 

and  

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ), ,

1ˆ ˆ1 ,
i

i in m
n m n n n m

z kr
j n n Y rz kr

kr kr r
∂

= + θ φ + × θ φ
∂

N r r r X
K KK , . 

In the cross products in (2.43), only the vector components transverse to r can produce 
terms parallel to r , so we have 

ˆ ′
ˆ ′

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )2( ) (2)

, , , ,ˆ ˆ, ,
i

ni
n m n m n n m n m

z kr
r h kr

kr r
′

′ ′ ′ ′

′ ∂   ˆ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ × ⋅ = θ φ × × θ φ  ′⋅  ′ ′∂
M r N r r X r X
K K K KK K r , (VI-1) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2( ) (2)
, , , ,ˆ ˆ, ,ii

n m n m n n n m n mh kr z kr′ ′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′× ⋅ = θ φ × θ φM r M r r X X
K K K KK K ′ ′⋅ r , (VI-2) 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

,2( ) (2)
, , 2 2

,

ˆ ,1ˆ ˆ
ˆ ,

n mii
n m n m n n

n m

r h kr r z kr
k r r r

′ ′

′ ′ ′

 ′ ′ ′ × θ φ∂ ∂ ′ ′ ′ ′ ′ ′ ′ × ⋅ =
′ ′ ′∂ ∂ ′ ′ ′

  ′⋅
  × × θ φ  

r X
N r r

r X

K
K KK K

KN r , (VI-3) r

and 

 ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )
2

( ) (2)
, , , ,ˆ ˆ , ,ini

n m n m n n m n m

h kr
r z kr

kr r′ ′ ′ ′ ′

′ ∂ ˆ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ × ⋅ = × θ φ × θ φ  ′⋅ ′ ′∂
M r r r X X

K K K KK KN r . (VI-4) r

Applying the identity for the vector triple product to (VI-1) and (VI-4) 

 ( ) ( )
( ) ( ) ( ) ( ) ( ) (2( ) (2)

, , , ,ˆ ,
i

ni
n m n m n n m n m

z kr
r h kr

kr r
′

′ ′ ′ ′

′ ∂  ′ ′ ′ ′ ′ ′ ′× ⋅ = θ φ ⋅ θ ′ ′∂
M r N r r X X
K K K KK K ),′ ′φ , (VI-5) 

and 

 ( ) ( )
( ) ( ) ( ) ( )( ) ( ) (
2

( ) (2)
, , , ,ˆ ,ini

n m n m n n m n m

h kr
r z kr

kr r′ ′ ′ ′ ′

′ ∂′ ′ ′ ′ ′ ′ ′× ⋅ = − θ φ ⋅ θ
′ ′∂

N r M r r X X
K K K KK K ),′ ′φ . (VI-6) 

Applying the identity for the scalar triple product to (VI-2) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) (2( ) (2)
, , , ,ˆ ˆ ,ii

n m n m n n n m n mh kr z kr′ ′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′× ⋅ = × θ φ ⋅ θM r M r r r X X
K K K KK K ), φ . (VI-7) 

K K K K K K
Applying the identity ( ) ( ) ( ) ( )× × × = × ⋅ − × ⋅a b c d a b d c a b c dK K K K K K , (VI-3) becomes 

( ) ( )
( ) ( )( ) ( ) ( )( )

( ) (
2

( ) (2)
, , , ,2 2ˆ ˆ ,

i
n n

i
n m n m n m n m

r h kr r z kr
r r

k r

′

′ ′ ′ ′ ),

∂ ∂′ ′ ′ ′
′ ′∂ ∂′ ′ ′ ′ ′ ′ ′ ′× ⋅ = − × θ φ ⋅ θ

′
N r N r r r X X
K K K KK K φ . (VI-8) 

Substitution of (VI-5) through (VI-8) into (2.43) gives 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

2

1 , 2 ,

22 , 1 ,

12 21
21 2 2

1 , 2 ,

2 , 1 , 2

, , ,

1

1

i
TE TE n n
n m n m

TM TM
in m n m

n n

i
TE TM n n
n m n m

TE TM
n m n m

z kr r h krb b r r n m n m
kb b h kr r z krk rz z j

i i
r h kr z krb b

b b
k

′
′ ′

⋅
′ ′

′

′
′ ′

′ ′

∂  ′ ′ ′    ′ ′∂ ′ ′     ∂+     ′ ′ ′−  ′∂ = = −
ωµ

′ ′ ′ 
+   ∂ + −  ∂

X XI K K

( ) ( )( ) ( ) ( )( ) ( )
1 1

ˆ2
, , ,

n n

n m n n m n

i
n n

n m n m
r h kr r z kr

r r

′∞ ∞

′ ′ ′= =− = =−

× ⋅
′

 
 
 
 
 
 

  
  ′ ′∂  ′ ′ ′ ′  ′ ′∂  

∑ ∑ ∑ ∑

r X XI K K

 (VI-9) 

where (see Appendix IV) 

 ′ , (VI-10) ( ) ( ) ( ) ( )
2

1
, , ,

0 0

, , , , , sin 1 m
n m n m n n m mn m n m d d

π π
+

′ ′ ′ −⋅ ′ ′ ′ ′ ′ ′ ′ ′ ′= φ θ φ ⋅ θ φ θ θ = − δ δ∫ ∫X X X XI K K
K K

,

and 

 ( ) ( ) ( )
2

, ,ˆ
0 0

ˆ, , , , , sin 0n m n mn m n m d d
π π

′ ′× ⋅ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= φ × θ φ ⋅ θ φ θ θ =∫ ∫r X X r X XI K K
K K

. (VI-11) 

Thus, (VI-9) simplifies to  

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

12 21 1 , 2 , 2 , 1 ,
211 2

1 1

i
n nn

m TE TE TM TM
n m n m n m n m

in m n
n n

z kr r h kr
k r rj b b b b

i i k h kr r z kr
r

∞

− −
= =−

∂ 

z z
 ′ ′ ′  ′ ′∂= = − +  

∂ωµ   ′ ′ ′−  ′∂ 

∑ ∑ . (VI-12) 
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