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Abstract 

The primary goal of using Design of Experiment (DOEx) methods is to extract the 
maximwn amount of information concerning experimental factors and their interactions 
from as few observations as possible. DOEx methodology allows an experimenter to 
selectively and systematically adjust process settings to learn which factors have the 
greatest impact on process and product performance. Using information about these 
factors, process settings can be adjusted until optimwn performance is obtained. 
Classical designs can be used for most types of studies, yet additional methods for 
constructing designed experiments for non-standard situations are needed. In particular, 
Sandia National Laboratories' current interest is in further developing and applying 
special DOEx procedures for low-volwne manufacturing process characterization and 
optimization. In this paper, we introduce and discuss the various "Design Optimality" 
criteria for constructing and "repairing" small-sample experiments. A case study 
involving the design, analysis, and repair of an ion source experiment is then presented, 
using the design of experiments software tool Statistica. Finally, we present a cost vs. 
benefit analysis of using the design optimality approach. 
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Introduction 

Classical Design of Experimene (DOEx) methods are available for most types of studies, 

yet special procedures for constructing and perfonning the analysis of experimental 

designs for non-routine situations are needed. In particular, Sandia National Laboratories' 

current interest is in further developing and applying special DOEx procedures for low 

volume manufacturing process characterization and optimization. Traditional DOEx often 

leads to experimental design plans with too many runs to be practical for small lot 

production. The goal of small sample P9Ex is to provide experimental design plans for 

process characterization and startup with the fewest number of experimental runs that 

meets the specific goals and constraints of the experiment. This paper discusses and 

illustrates the usefulness of the "Design Optimality" criteria for constructing and 

"repairing" such small sample experiments. A case study involving the design, analysis, 

and repair of an ion source experiment is also presented as an example of this technique. 

A generic cost vs. benefit analysis is also presented. 

Basic Design of Experiments 

The primary goal of using DOEx methods is to extract the maximum amount of 

information concerning experimental factors and their interactions from as few 

observations as possible. Granting that various process settings allow for some range of 

adjustment, the DOEx methodology allows an engineer to selectively and systematically 

adjust these settings to learn which factors have the greatest impact on performance. 

Using this information, the settings can be constantly improved through sequential 

experimentation until the optimum process settings are obtained. Naturally, the more that 

is known about the experimental region, the easier it is to select appropriate process 

factors and settings for experimentation, and to identify the right model for estimating 

effects and experimental error". In the initial stages of experimentation, DOEx provides 

relatively simple models that contain critical information, primarily identification of the 

1 DOEx concepts have been evolving since the 1920's when agricultural experimentation 
was used to develop the underlying modeling and analysis methods of designed 
experimentation. 
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most important factors. As the investigation progresses, more sophisticated DOEx 

methods can be applied (such as response surface methods) that are specifically designed 

for optimizing process settings. There are several references3 that provide explicit 

procedures for constructing these experiments, as well as providing guidance with respect 

to the logistic and economical considerations (e.g. time, money, etc.) involved in 

experimental work. Included below is a brief summary of the critical ideas of DOEx that 

are also pertinent to the later discussion of optimal-design experiments. 

The most desirable design characteristie'is that all-important main effects and interactions 

can be estimated. When the design allows the separate contribution of each factor to be 

estimated independently, the design is said to be orthogonal. Another very important 

aspect of planning the experiment is to include as much replication as possible. Besides 

improving the estimate of the average response, replication provides an estimate of the 

experimental error by calculating the variation between the repeated runs. If the 

experimental error variation is significantly large, an accurate estimated modd may be 

difficult to identify. 

Optimal-Design Concepts 

Often uncontrollable circumstances present unique challenges to the experimenter. For 

example, an equipment malfunction or breakdown could result in missing experimental 

runs. Consequently, some effects of interest might no longer be estimable without redoing 

the missing runs of the experiment. The problem is then how to choose a minimum 

number of additional runs necessary to estimate all the effects of interest. Other difficult 

2 An estimate of the variation between samples tested at the same combination of factors. 

3 A widely recognized and excellent reference is Box, Hunter, and Hunter (1978) 
Statistics for Experimenters. 

4 Specifies which factors are included in the regression analysis; in general, the model may 
be stated as: y = F(x}, X2, ••• , xn) where y, the dependent variable is a function of the 
independent variables or x's. A first order model includes linear terms, whereas higher 
order models are polynomial. 
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DOEx problems, such as constrained regions designs, have prompted much interest in 

developing special procedures to address these situations that classical designs cannot 

adequately handle. 

DOEx Optimal Design Tool 

With recent advances in design of experiment software, algorithms that construct 

"optimal" experimental designs6 are available to address the"se problems. 

These optimal-design algorithms can be.llsed to: 

1. Construct the "best" standard design through evaluating various efficiency measures 
and prediction variance measures. 

2. Construct the "best" minimum run designs. 
3. Augment or "repair" a current experimental design. 
4. Replace points in a design because of an :irregular or constrained experimental region. 

Because the optimal-design algorithms provide the ability to generate non-standard 

designs, an investigator can use the "optimal-design" approach to generate a design matrix 

that limits the number of experimental runs. This ability provides a method to create a 

design requiring a small or minimum number of runs. Because these programs can 

calculate efficiency measures (A, D and G-efficiencies, often referred to as the 

"alphabetic" optimality criterion) and maximum prediction variance (MPV) measures, a 

quantitative comparison of one design with another can easily be made. The goal of the 

optimal-design approach is to choose a design with the highest efficiency or smallest MPV 

possible while still meeting the specific goals and constraints of the experiment. 

D-Optimality / D-Efficiency Design Criterion 

This criterion searches for a design matrix that maximizes the determinane 'D' of the 

design/model matrix. The larger the determinant of a matrix, the more independent the 

S The factors within the design region (or sub-region) are not feasible or constrained 
(such as in mixture problems where all ingredients must sum to 100%). 

6 Design optimality became practical (-1970-80) when the designs were formulated as 
efficient in terms of criteria, the results of work by Kiefer et al. 
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colunms, thus, finding a design that maximizes the determinant of the design/model matrix 

means finding a design where the factor effects are maximally independent of each other. 

The D-efficiency measure can be interpreted as the relative number of runs (as a percent) 

that would be required by an orthogonal design to achieve the same value of the 

determinant lXXI, where X is the design/model matrix that specifies what levels of the 

factors are to be run in the design and what terms are to be included in the model. 

Another advantage of using the D-optimality criterion to select a design is that it 

minimizes the overall variance of the estimated effects. Since an orthogonal design may 

not be possible or practical, this measure:.is a relative indicator of efficiency. 

D-efficiency = 100 * (IXXII,p IN), 

Where: p = the number of factor effects to be estimated by the design 
(columns in the design/model matrix X), and 
N = the number of requested runs. 

A-Optimality I A-Efficiency Design Criterion 

Another optimality criterion maximizes the diagonal elements of the XX matrix while 

minimizing the off-diagonal elements. The effect of this criterion is to minimize the 

average variance of the estimated effects. The A-efficiency measure is the relative number 

of runs (as a percent) that would be required by an orthogonal design to achieve the same 

value of the trace8 of (XX)"I. Again this measure is a relative indicator of efficiency that 

can be used to compare other designs of the same size and constructed from the same 

design points candidate list. 

A-efficiency = 100 * p/trace (N*(XXr1
) 

Where: p = the number of factor effects in the design, 
N = the number of requested runs, and 
trace = the sum of the diagonal elements (of (N*(XXr1

) ) 

7 The determinant D of a square matrix is a specific numerical value that reflects the 
amount of independence between the columns and rows of the matrix; the larger the 
determinant, the closer to orthogonality. 

• The trace of a square matrix is defined as the sum of the elements on the principal 
diagonal. . 
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G-Optimality & Prediction Variances Design Criterion 

A third criterion, G-efficiency (global efficiency) or G-optimality emphasizes the use of 

designs for which the maximum prediction variance U (x), in the region of the design is not 

too large. This measure is different from the D and/or A -optimal criterion because it 

does not calculate a single number, but is a function of the x (Xl, X2, XIX2, XIX3, ••• Xq.j 

Xq •••• ) in the prediction. lfthe specified model is correct, and the value of Max U (x) ~ 1, 

then the model predictions are at least as precise as the measured responses. The 

prediction variance at a point X, is given.bY (standardized by dividing by 0
2

): 

U (x) = x{X'Xr1x'. 

The G-efficiency or G-optimality measure is computed as: 

G-efficiency = 100 * [square root (pIN)] + Max U (x),· 

Where: p = the number of factor effects in the design, 
N = number of requested runs, and 
Max U (x) = the maximum prediction variance (MPV) across the list of 
candidate points. 

The value in using the G-efficiency or max u (x) as a design measure is that both provide 

useful information about the prediction of the response throughout the design space. A 

useful rule of thumb9 is that a design matrix with max u (x) ~ 1.0 and/or G - efficiency ~ 

50% provides a reasonable design in many applications. 

Constructing an "Optimal-Design" Matrix 

To construct an "optimal-design" matrix using a computer software program requires the 

investigator to provide the following items: 

1. a list of "candidate points" that specifies the valid or feasible design points (points in 
this list can be marked for forced inclusion in the final design), 

2. the desired number of runs for the final experiment, 
3. the specified exact form of the expected model, and 
4. any other constraints. 

9 Reference: Snee, Ronald D., "Experimental Designs for Quadratic Models in 
Constrained Mixture Spaces1

'. Technometrics, Vol. 17. No 2. May 1975. 
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Using this infonnation as the basis, the optimal design algorithm searches for the "best 

design" that is orthogonal. Because an orthogonal design may not be possible, nearly 

orthogonal designs are generated. Other uncertainties or difficulties that the designer 

should be aware of include the following: 

• Expect to have low efficiency measures if the design is "saturated10
" or near saturated. 

• There are usually no exact solutions. There can be several "local minima," therefore it 
is important to try a number of different initial designs and algorithms. 

• Because the design intent is often to minimize the number of runs, an estimate of the 
experimental errorll may not be available. Replication of some design points will be 
necessary to obtain an estimate of e.~perimental error. 

• If the specified model is not correct, 'then the generated design may not maximize the 
'optimality criterion and may not be the best design. 

Application to Experiment Design 

The ability to quantitatively assess design efficiency is particularly valuable in creating 

small sample designs. Specifically in the low-volume manufacturing of very expensive 

parts, the number of experimental runs required in classical designs may not be possible. 

Other considerations such as production schedules provide additional incentives to use 

optimal-design methods with small sample experiments. Other design problems can also 

be accommodated (i.e., irregular or constrained design region). Such problems are 

commonly encountered in mixture problems, but other types of experiments can have 

factors where the upper or lower bounds of the design space must be constrained. (An 

example of such a situation is when the operating range of test equipment restricts the 

experimental region.) 

Application to Experiment Repair 

Since missing experimental runs can pose a real dilemma, the capability to "repair" a 

design becomes very important. The optimal-design algorithms allow the inclusion of 

10 It is possible to construct designs for investigating up to k facfors = N -1 in only N runs; 
these designs are said to be saturated (where N is the number of experimental runs). 
Example: a 23

-
1 design requires four experimental runs to examine 3 factors. 

11 There is no infonnation to test for model inadequacy. 
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existing design points and use the remaining candidate points to complete the design 

matrix (within the specified number of runs). The investigator can select the design that 

will provide the appropriate data for analysis with a limited number of additional runs. 

The design efficiency measures can be used to quantify the value of additional runs or to 

identify which part of the design region of greatest interest is best examined by the 

different designs. This information helps the experimenter decide which additional run (or 

runs) should be added to "repair" the existing experiment. 

Example of Optimal Experimental Design Selection 

Included here is a simple example of how the optimal design criteria can be applied to 

generate an experimental design. This example will compare the optimal design measures 

(A, D, G, and Max Prediction Variance) for different run sizes. The final design matrix for 

this example will be selected.using the recommended max prediction variance (MVP) 

criteria that satisfies max '\) (x) S;; 1.0. 

For the example, a 4-factor (A, B, C, & D), 3-level (3\ experiment is considered. The 

traditional full factorial design12 requires an experimental matrix of 81 runs; this design 

matrix is entered into the optimal design software program as the "candidate list". Next, the 

factors to include in the regression model13 must be determined. Selecting the model is the 

most challenging aspect of using the "optimal" design procedure since the experimenter is 

rarely certain of the model prior to designing any experiment. For this example, a linear and 

quadratic main effects with 2-way interactions model was specified 14. To perfonn an 

12 A full factorial design includes all possible combinations of the factors at their 
respective level settings; a fractional factorial would require at least 27 experimental runs. 

13 Specifies which factors are included in the regression analysis; in general, the model may 
be stated as: y = F(xh X2, .•• , xn) where y, the dependent variable is a function of the 
independent variables or x's. A first order model includes linear terms, whereas higher 
order models are polynomial. 

14 Regression model includes linear main effects for the 4 factors (A, B, C, & D), squared 
factor effects (A2, B2, C2, & D2) and two way interactions (A*B, A*C, A*D, B*C, B*D, 
&C*D) 
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analysis, the lower bound on the number of experimental runs is 15 (selected from the 

candidate list of 81 experimental runs). However, as shown in the following table and 

graph, to satisfy the selection criteria for the prediction variance (max u (x) ::;; 1.0/5
, the 

final design must include at least 24 runs. The value for the maximum prediction variance 

continues to improve (decrease) incrementally as more runs are included in the design. 

However, as the number of runs in the design exceeds the number required to achieve an 

orthogonal design, the improvement in the D, A and G- efficiencies measures do not 

improve (in this example at approximately 60). In comparing the improvement in the 

amount of the prediction variance within the first 30 experimental runs with the 

improvement over the next 20 runs, the point of "diminjshing returns" can be evaluated. 

Assuming that there are no other limitations (i.e., economic considerations) and the 

experimental objectives can be met, then the design matrix associated with the 24 runs 

would provide the "optimal design matrix" for the 4-factor, 3-level experiment. Using such 

a graph, the size of an experiment can be appropriated (Le., the minimum number of runs for 

which max u (x) ::;; 1.0 can be obtained vs. the point of "diminishing returns"). While this 

example uses the value of the prediction variance, other considerations such as cost per 

experiment, time to conduct each experiment, or some component performance measure 

could be used as the determining factor. 

15 As previously stated a design matrix with max u (x) ::;; 1.0 and/or G - efficiency ~ 50% 
provides a reasonable design. Reference: Snee, Ronald D., "Experimental Designs for 
Quadratic Models in Constrained Mixture Spaces". Technometrics, Vol. 17. No 2. May 
1975. 
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Measure 

D-Efficiency 

A-Efficiency 

G- Efficiency 

Max Prediction 

Variance 

Table Summary of Efficiency Measures 4-Factor, 3-Level 
Linear & Quadratic Main Effects with 2-wav Interactions Model16 

16 Runs 20 Runs 24 Runs 27 Runs 36 Runs 48 Runs 60 Runs 

43.02 46.28 46.32 47.67 48.15 48.44 48.60 

17.85 24.14 23.99 25.50 26.29 25.23 26.47 

70.94 74.53 80.32 84.86 85.16 90.92 94.23 

1.86 1.35 0.97 0.77 0.58 0.38 0.28 

L _ -- --- - - L ... _____ - ~ - -~ --

I 

81 Runs 

43.45 

32.26 

81.65 

0.28 

-- -

16 Regression model includes linear main effects for the 4 factors (A, B, C, & D), squared factor effects (A2
, B2, C2, & D2) and two way 

interactions (A*B, A*C, A*D, B*C, B*D, & C*D) 
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Case Study: Ion Source Experiment 

The objective of the Ion Source Experiment was to identify whether certain processing 

conditions had an impact on the total number of shots to failure (shot life) of the neutron 

generator tubes. Four factors were included in this investigation: 

A. Chromium Thickness (1000 or 3500 A), 2 levels 
B. Chromium Deposition Rate (10 or 200 Ns), 2 levels 
C. Cleaning Agent (Brulin or TCE), 2 levels and 
D. Getter Type (Getter, Throttled Getter, or No Getter), 3 levels. 

If any of these factors could be shown to impact shot life performance, those results would 

be used to optimize the process and maximize shot life. Other design and processing 

factors (Substrate surface finish (15 micron), Scandium temperature, Scandium deposition 

rate (200 Ns), Oxygen Passivation (None), and Exhaust profile (Standard» were held 

constant throughout the experiment. To be able to readily quantify the impact on the 

product in terms of producing a longer shot life, a standard full factorial mixed-level 

design17 was desired. This design (the full factorial matrix is given in Appendix A, Table 1) 

allows an estimate of all important factors and interactions between factors to be identified. 

Also, anticipating some sample-to-sample variation, it was recommended to obtain at least 

one replication for each combination of factor levels included in the experiment. This 

improves the estimate of the average response at each combination and provides an 

estimate of the experimental error. 

For various reasons the experiment as planned could not be completed, and the data 

available for analysis was very limited. In summary, only 29 of the originally planned 48 

tests were performed. Of these 29 tests, only 7 provided useful shot life data (the data 

matrix is provided in the Appendix, Table 2). The other 22 shot life tests were truncated at 

approximately 20 shots, resulting in data that could not be used in the analysis. The 

situation raised the following questions: 

17 A mixed-level design includes factors with unequal levels. (i.e., for a 3-factor experiment, 
2 of the factors have only 2-levels, high and low, while the other factor has 3-levels, high, 
medium, and low.) 
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• By using the DOEx tools for optimal designs, could we the "repair" the experiment? 
(i.e., is there an optimum number and choice of additional runs that could be performed 
to allow a meaningful analysis?) 

• If only a single additional run could be conducted (due to material, time, or other 
resource constraints), which run would provide the greatest amount of information? 

Ion Source Experiment Design Repair 

The data set used for this investigation included only the 7 runs from the Ion Source 

Experiment that had useful shot life test results. The additional runs necessary to complete 

the full factorial design matrix for a mixed~leveI3-factorI8 design were provided as the 

other candidate design points. (This design/data matrix is provided in Appendix A, Table 

2.) The objective of our investigation was to answer the questions, which were raised as a 

result of the missing experimental runs. Using the "optimal-design 19" software, several 

potential "repair" strategies were investigated by varying the following factors: 

1. Number of runs in repaired design (e.g., 7 vs 8, vs 9, etc ... ), 
2. Using different criterion to evaluate the designs (A-optimality vs. D­

optimality vs. Maximum Prediction Variance (MPV) criterion), 
3. Forcing the inclusion of design points (6 points vs. 8 points), and 
4. Specifying different models to fit in the analysis (e.g., main effects 

vs. inclusion of 2-way interactions). 

A summary of these comparisons is provided here and a comprehensive set of comparison 

tables is included in the appendix for further review. 

As expected, increasing the number of runs had a positive impact on the A and D-efficiency 

measures as well as the Maximum Prediction Variance criterion. This result was 

consistently seen, regardless of the complexity of the model specified. Throughout the 

investigation, there was no significant difference in the final recommended design when 

18 A decision was made to eliminate the type of cleaner from the initial design as one of the 
factors of interest in the repair effort, since it was believed to have no effect on the 
response variable, shot life. 

19 The computer software package used was Statistica's Industrial System Design and 
Analysis of Experiment!9 module, from Statsoft, Inc. 
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comparing the D-optimality and A-optimality criteria. For most of the trials, the points that 

were marked for forced inclusion in the final design were the six unique points from the 

existing shot life data set. However, for the sake of this investigation, we performed a few 

comparisons with 8 points forced into the final design. The efficiency measures for the 

designs with 8 forced points were consistently lower (D-efficiency measures for these 

comparison runs are provided in Appendix B.). 

As seen in the results of the Ion Source Experiment, the model specified in the investigation 

can make a considerable difference in the efficiency and maximum prediction variance 

measures. And as one would expect, as the complexity of the model increases, the 

efficiency measures decrease. An example that demonstrates the significant difference in 

both the efficiency and prediction variance measures is in the comparison of the models that 

include linear, quadratic and interaction effects with the model that includes only main 

effects. The first difference is that the more complex model cannot be estimated 

completely with only 7 runs, since more than 7 terms must be estimated. The next 

comparison, between the two models of 9 runs, shows that the efficiency is considerably 

better (as expected) in the main effects model. It is of interest, however, that the 9 run 

main effects design is still better than the 12 or 13 run higher order model. This shows the 

impact that model selection has on the efficiency and maximum prediction variance 

measures. 

D-Optimal Model includes linear, quadratic and interaction effects: 
. __ ~u!:l'l~~~J~u ~.~ __ .. J __ r.~.~.~S2.~ ...... L. ...... _ .... ~_ ~.~~-~ __ ..... _.J. ....... _ .... 1.? .... F.!.Y~~ ............ .J .. _._~.~ .... F.!~ .. ~.~ ..... . 

Selected Runs ! ! 1, 2, 3, 4, 6, 7, ! 1,2, 3, 4, 6, 7, ! all 
(added runs in I 8,11,13 I 8,9,10,11, I 

.. _ .............. _. __ ._9.2.I.qL ................ __ . ..l. ............ -............................. ..J. .................................. -....... _ ........... .1 ............... .J.?.! ... 1.~ ................... 1... ............. _ ............................. . 
D-efficiency I%'! -- ! 64.63 : 71.17 ! 69.11 -.... ··A-effiCTeiic~ .. ·i%~ ...... · .. l .. ··--·-· ........ ::· .. -.... ···-· .. · .. ,.. .. · .. _ .... ·· .. ···31··:47 .. ·_· .. _· .. _·· .. )·· .... · ............ 53":33 ........ ·· ........ ··r· .. ·· .. ··· .. S3:·3if··_ .. · .. · 

N_N ____ H. ___ J.._.~ .... _/ ___ ._.; ... __ ............. _ .... __ ......... -.~.-...... -.... - .. ----.... - ... -................... i .................. _ ......................................... ,;.. .......... _ ... _ ....... _~. __ ......... _ 

Max pred. var. ! ! 3.8 ! .75 : .745 

20 No measures could be calculated for 7 runs because requested interactions in the model. 
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D-Optimal Model includes main effects only: 
Measure I 7 RUNS! 9 RUNS . 12 RUNS ,13 RUNS 

···-S"eI ectedRu n·s---·T-·1~·2:3~···,r"-r1~··2;·-3-:-4-:S, 7, ·r-{·"2-;-3·:·4·;··S;···i;··r·-··_······air-··········· 
(added runs in bold) I 6,7,13 I 8,11,13 i 8,11,12,13, I 
····_·O:efflcle·ncy -(o;;f···+··_··-t3"S·:·4S·····_·+_·······-9i·j3S···-··········1····-······-~4·:~1··-··········1··········-88·:·1·9············ 
~.~~=:&i~fficiericy.~(r~)_ .... ~._. __ z.~.:?tC:~~:r::===~~~$.~I~~~:~~~::~~r:~~:=~~~§~~;,§~~:~:~:::~:~·~T::::=~]§.~~~L~~:=:: 

Max pred. var. : .91 ! .64 ! .36 ! .37 

Another means of comparing the different trials is shown in the table below. The addition of 

just a single run (from 9 to 10) provides a considerable improvement to the maximum 

prediction variance (2.43 to 0.875). 

D-Optimal model includes Linear Effects/Interacts A*B, A*C, B*C: 

Results Summary 

As previously stated, the objective of this effort was to address the following questions: 

• By using the DOEx tools for small designs, could we the repair the experiment? (i.e., 
Is there an optimum number and choice of additional runs that could be performed to 
allow a meaningful analysis?) 

• If only a single run could be conducted, (added to the existing runs) which run would 
provide the greatest amount of information? 

Given the results of this investigation the answers are: 

1. Depending on the specified model, the "optimal-design" tools could readily repair the 
experiment in as few as 7 runs for the main effects only model. If an estimate of all of 
the 2-way interaction terms is desired, then a 10 run design is required. In each case, 
the recommended number of runs to repair the design reduces the maximum prediction 
variance to below one, the recommended value of an adequate design. 

2. Concerning the question of adding a single run, the main effects model design with just 
7 runs showed a remarkable improvement in the efficiency and maximum prediction 
variance measures: 
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For the model including the 2-way interaction tenns, adding a single run would not have a 

meaningful benefit using the max u (x» ~ 1.0 criterion suggested. For this model the 

smallest feasible design (i.e., the one with the fewest number of runs) requires at least 3 

additional runs. However, in reviewing the efficiency and maximum prediction variance 

measures, an additional 4 runs (for a total of 10 runs) provides a much better design. 

Resources Comparison 

One of the benefits realized in using the DOEx approach is that statistical experiment 

design plans assure that the experimental work is done efficiently and the limitations of the 

traditional one-at-a-time scientific method are avoided. This benefit is further exploited 

with the ability to quantitatively evaluate different designs and minimize the number of runs 

using optimal design measures. 

To illustrate this aspect of the optimal design approach, an example has been created. 

Using a design of experiment software program, three standard Central Composite Designs 

(CCDs) were generated. By specifying the number of factors to include in the experimental 

design, the program generated the following design parameters and number of 

recommended experimental runs: 

2 Factors 
4 Factors 
6 Factors 

Center points: 5 
Center points: 7 
Center points: 14 
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Runs: 13 
Runs: 31 
Runs: 90 



Similar to the example presented earlier, each of the three design matrices was provided as 

candidate lists in the optimal design software program. The analysis model used for all 

three cases included linear and quadratic main effects with 2-way interactions. The 

following table is provided to show the optimal design results of the minimum number of 

runs that could be perfonned while satisfying the MPV criterion max u (x) ~ 1.0. 

Comparison of Traditional DOEx & Optimal Design 

Factors in Recommended Number of Runs Recommended Number of Runs 
Experiment Usinq Traditional DOEx CCD Usinq OPtimal Design Criteria 

2 13 9 
4 31 24 
6 90 45 

A graphical representation of the maximum prediction variance vs the number of 

experimental runs is shown in the following chart. This type of graph provides an easy way 

to appropriately size an experiment. It can be used to determine the number of runs 

required to satisfy the MVP~ 1.0. It can also be used to identify the point of "diminishing 

returns," that point at which additional experimental runs provide very little additional 

information. 

Comparison of the Number of Runs & Value of Max Prediction Variance 
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Using the graph and the next table, the value of the maximum prediction variance for the 

traditional CCD design and the optimal design can be compared. In the 2-factor case the 

maximum prediction variance is less than 1 after 9 runs (0.81) and the 13 run has a 
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maximum prediction variance of 0.79. From this analysis we can readily conclude that if 

four additional runs are conducted, the maximum prediction variance will improve by only 

0.02. The investigator can then determine if this amount of improvement is necessary and 

or of sufficient value to perform the additional 4 experimental runs. 

Number of 6-Factor 4-Factor 2-Factor 
Experimental Runs 

6 -- -- 2.75 
8 -- -- 1.25 
9 --.~. -- 0.81 
13 -- -- 0.79 
15 -- 2.56 0.44 
20 -- 1.25 0.35 
30 1.4 0.63- 0.22 
40 1.04 0.48 0.16 
45 0.87 0.38 0.14 
50 0.77 0.33 0.12 
60 

. 

0.74 0.29 0.11 
70 0.65 0.23 0.09 
80 0.52 0.21 0.08 
90 0.47 0.18 0.07 
100 0.35 0.16 0.06 

Given a situation where the number of factors or the number of experimental runs are 

limited due to budget constraints, the optimal design measurements may be of further use in 

evaluating the trade-off's, or as a method to justify additional experimental budget requests. 

(For example, to justify cost associated with performing the four additional runs in the Ion 

Source experiment, a graphical representation of the maximum prediction variance vs cost 

could provide meaningful support to a budget request.) The next example illu'strates using 

the optimal design measures in a systematic method to evaluate the trade-off's and 

determine the number of runs when cost is the underlining constraint. For; this example, 

hypothetical costs per run for each of the cases (6-factor, 4-factor, and 2-factor 
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experiments) were assumed21 and the plot shows the cumulative cost versus the maximum 

prediction variance value. 

Cummulative Experimental Cost va Max Prediction Variance Value 
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For the 4-factor experiment, approximately $2000 would be necessary to conduct the 

number of experimental runs that satisfy the criteria MVP::; 1.0. In the 6-factor case, 

approximately $4500 would be needed to conduct the desired number of runs to meet the 

criteria MVP::; LO. This information can be used to establish the overall DOEx budget; in 

keeping with general guidelines approximately 25% of the available experimental budget 

should be allotted to the initial screening phase, 50-60% allocated to the model building 

phase and the remaining 15-25% spent on verification. Therefore, given that this effort is 

part of the model building phase, the budgeted amount would represent 50-60% of the 

overall DOEx budget. While it was mentioned earlier, other considerations such as time to 

conduct each experiment or some component performance measure could be used as the 

factor in the analysis. 

21 Hypothetical Cost Assumptions: 
Cumulative Cost for 6-Factor: base cost $300, + $lOO/run 
Cumulative Cost for 4-Factor base cost $200, plus $60/run 
Cumulative Cost for 2-Factor base cost $150, plus $30/run 
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Conclusions 

Although the classic experimental design approach provides a reliable means of generating 

and analyzing experiments, the ability to generate "optimal designs" remains very important 

in the field of DO Ex. Because there will often be experiments where the sample size is 

limited (as in small sample process characterization), the region of experimentation is 

unusual, or (as in the Ion Source Experiment investigation) the need to repair the design 

exists, an optimal design tool must be provicled to support the design of experiments. In 

this paper, we introduced and discussed various ''Design Optimality" criteria for 

constructing and "repairing" small sample experiments. A case study involving the design, 

analysis, and repair of an Ion Source Experiment was then presented, using the design of 

experiments software tool Statistica. The case study demonstrated how to use the 

"optimal-design" approach to generate small yet efficient designs. Finally, we presented 

how a cost vs. benefit analysis could be performed using the design optimality approach. 
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APPENDIX A. 

The four factors identified for inclusion in the experiment: 

A. Chromium Thickness (1000 or 3500 A), 2 levels 

B. Chromium Deposition Rate (10 or 200 A/s), 2 levels 

C. Cleaning Agent (Brulin or TCE), 2 levels and 

D. Getter Type (Getter, Throttled Getter, or No Getter) 3 levels. 

T bl 1 E a e . tiD xperlmen a eSlgn M t' f G a rlxor roup 31 S on ource E xperlmen t 
Run Number Cr Thickness CrDeD Rate Cleaning Agent Getter Type 

1 1000 10 BruHn Getter 
2 1000 10 BruHn Getter 
3 1000 10 Brulin No Getter 
4 1000 10 Brulin No Getter 
5 1000 10 Brulin Throttled Getter 
6 1000 10 Brulin Throttled Getter 
7 1000 10 TeE Getter 
8 1000 10 TeE Getter 
9 1000 10 TeE No Getter 
10 1000 10 TeE No Getter 
11 1000 10 TeE Throttled Getter 
12 1000 10 TeE Throttled Getter 
13 1000 200 Brulin Getter 
14 1000 200 Brulin Getter 
15 1000 200 BruHn No Getter 
16 1000 200 BruHn No Getter 
17 1000 200 BruJin Throttled Getter 
18 1000 200 BruHn Throttled Getter 
19 1000 200 TeE Getter 
20 1000 200 TeE Getter 
21 1000 200 TeE No Getter 
22 1000 200 TeE No Getter 
23 1000 200 TeE Throttled Getter 
24 1000 200 TeE Throttled Getter 
25 3500 10 Brulin Getter 
26 3500 10 Brulin Getter 
27 3500 10 Brulin No Getter 
28 3500 10 Brulin No Getter 
29 3500 10 BruHn Throttled Getter 
30 3500 10 BruHn Throttled Getter 
31 3500 10 TeE Getter 
32 3500 10 TeE Getter 
33 3500 10 TeE No Getter 
34 3500 10 TeE No Getter 
35 3500 10 TeE Throttled Getter 
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36 3500 10 TCE Throttled Getter 
37 3500 200 Brulin Getter 
38 3500 200 Brulin Getter 
39 3500 200 Brulin No Getter 
40 3500 200 Brulin No Getter 
41 3500 200 Brulin Throttled Getter 
42 3500 200 Brulin Throttled Getter 
43 3500 200 TCE Getter 
44 3500 200 TCE Getter 
45 3500 200 TCE No Getter 
46 3500 200 TCE No Getter 
47 3500 200 TCE Throttled Getter 
48 3500 200. TCE Throttled Getter 

In the design/data matrix that follows, the levels for each of the factors are 

also shown designated as -1,0, and 1. 

Table 2. Grou 3 Ion Source Desi n/Data Matrix22 Usin 7 Life Test Runs 
List # ! Run # ! Cr Thk ! Cr Thk ! Cr Rate ! Cr Rate Getter! Getter ! Shot Life 
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22 Factor C, Cleaning Agent (Brulin or TCE) was not included in the effort to 
repair the design. 

23 Run 4 and 5 are replicate runs. 
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